
1

Probability & Computing

Coupling & Erdős-Rényi Random Graphs

www.kit.eduKIT – The Research University in the Helmholtz Association

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[L = k]

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof
For each k

Compute the sums of the probabilities

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof
For each k

Compare
Compute the sums of the probabilities

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

1 2 3 4 5 k

1
4

1
2

Pr[R = k]

Pr[L = k]

Proof
For each k

Compare
Tedious...

Compute the sums of the probabilities

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
1

2

5
4

3

Sort the wheels

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
1

2

5
4

3

Sort the wheels 5

4 3

2

1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
1

2

5
4

3

Sort the wheels 5

4 3

2

1(does not change their distributions)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
1

2

5
4

3

Sort the wheels 5

4 3

2

1(does not change their distributions)
Adjust sizes

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels 5

4 3

2

1(does not change their distributions)
Adjust sizes 1

2

54

3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes 1

2

54

3

5

4
3

2

1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes 1

2

54

3

5

4
3

2

1

and glue together

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together
Spin as one wheel

5

4
3

2

1

1

2

54

3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together
Spin as one wheel

5

4

3
2

1
1

2

54

3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together
Spin as one wheel

5

4
3

2

1

1

2

54

3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number
Note that L d

= L′ and R d
= R′ equal distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number
Note that L d

= L′ and R d
= R′ equal distributions

Pr[R = k] = Pr[R′ = k]

Pr[L = k] = Pr[L′ = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 1 R′ = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 1 R′ = 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 2 R′ = 3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 3 R′ = 4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 3 R′ = 5

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 4 R′ = 5

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 4 R′ = 5⇒ Pr[R′ ≥ k] ≥ Pr[L′ ≥ k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Wheels of Fortune

The Problem
Consider the two wheels of fortune

1

2

54

3

5

4

3

2

1
The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together

5

4
3

2

1

1

2

54

3
Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 4 R′ = 5⇒ Pr[R′ ≥ k] ≥ Pr[L′ ≥ k]

✓

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

independent

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel

independent

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

X ′
1 and X ′

2 live in the same space

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

X ′
1 and X ′

2 live in the same space
Typically we define X ′

1 and X ′
2 to be dependent

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

X ′
1 and X ′

2 live in the same space
Typically we define X ′

1 and X ′
2 to be dependent

Typically we do not talk about the probability
spaces explicitly

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

X ′
1 and X ′

2 live in the same space
Typically we define X ′

1 and X ′
2 to be dependent

Typically we do not talk about the probability
spaces explicitly

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Abstracting away technicalities, people
just “couple” X1 and X2 “directly”,
without introducing X ′

1 and X ′
2

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

= 2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

Throw each coin n times, count the 1s, yielding F and U

F =
P

U =
P = 2

= 4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Compare sums for all k ≤ 6

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Compare sums for all k ≤ 6 And if n = 100?

0:003

0:002

0:001

2010 30 40 50 60 70 80 90 100 k

Pr[U = k]

Pr[F = k]

so many sums...

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3 F ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3 Pr[F ′

i = 1] = 1
2

F ′
i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3 Pr[F ′

i = 1] = 1
2

Pr[F ′
i = 0] = 1

2
F ′
i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3 Pr[F ′

i = 1] = 1
2

Pr[F ′
i = 0] = 1

2⇒ Fi
d
= F ′

i
F ′
i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

⇒ Fi
d
= F ′

i
F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4 Pr[U ′

i = 1] = 2
3

⇒ Fi
d
= F ′

i
F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4 Pr[U ′

i = 1] = 2
3

Pr[U ′
i = 0] = 1

3

⇒ Fi
d
= F ′

i
F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4 Pr[U ′

i = 1] = 2
3

Pr[U ′
i = 0] = 1

3

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Wi

F ′
i

U ′
i

1

1

00011

00111

≥ ≥ ≥≥≥≥

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).⇒ U ′ ≥ F ′

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).⇒ U ′ ≥ F ′ ⇒ Pr[U ′ ≥ k] ≥ Pr[F ′ ≥ k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).⇒ U ′ ≥ F ′ ⇒ Pr[U ′ ≥ k] ≥ Pr[F ′ ≥ k]

✓

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2
This is a Bernoulli rand. var. X ∼ Ber(p)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k... which we have seen today already

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6

... which we have seen today already

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!
It’s a Poisson distribution with – = 50

Pr[X = k] = –ke−–=k!X ∼ Pois(–):

Pr[X = k]

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!
It’s a Poisson distribution with – = 50

Pr[X = k] = –ke−–=k!X ∼ Pois(–):

Pr[X = k]

Why lie? It was easier to plot that way and I thought you wouldn’t notice...

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!
It’s a Poisson distribution with – = 50

Pr[X = k] = –ke−–=k!X ∼ Pois(–):

Pr[X = k]

Why lie? It was easier to plot that way and I thought you wouldn’t notice...
How dare I? As n increases, the two distributions are very close...

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!
It’s a Poisson distribution with – = 50

Pr[X = k] = –ke−–=k!X ∼ Pois(–):

Pr[X = k]

Why lie? It was easier to plot that way and I thought you wouldn’t notice...
How dare I? As n increases, the two distributions are very close...

What does that mean?

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]|

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]|

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SXSX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=1 ∧ Y =3]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=1 ∧ Y =3]

Pr[X=3 ∧ Y =2]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=1 ∧ Y =3]

Pr[X=3 ∧ Y =2]

Pr[X=4 ∧ Y =4]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=1 ∧ Y =3]

Pr[X=3 ∧ Y =2]

Pr[X=1 ∧ Y =1]

Pr[X=4 ∧ Y =4]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=1 ∧ Y ̸=1]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=2 ∧ Y ̸=2]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X=3 ∧ Y ̸=3]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

Pr[X ̸=Y]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

=Pr[X ̸=Y] + Pr[Y ̸=X]
Pr[X ̸=Y]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

=Pr[X ̸=Y] + Pr[Y ̸=X] = 2Pr[X ̸=Y]
Pr[X ̸=Y]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

=Pr[X ̸=Y] + Pr[Y ̸=X] = 2Pr[X ̸=Y]
Pr[X ̸=Y]

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y)=
P

x∈S |Pr[X=x]−Pr[Y =x]| SY = S \ SX

=
P

x∈SX
|Pr[X=x]−Pr[Y =x]|+

P
x∈SY

|Pr[X=x]−Pr[Y =x]|
=
P

x∈SX
Pr[X=x]−Pr[Y =x]+

P
x∈SY

Pr[Y =x]−Pr[X=x]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x]+

P
x∈SY

Pr[Y =x ∧ X ̸=x]
≤
P

x∈S Pr[X=x ∧ Y ̸=x] +
P

x∈S Pr[Y =x ∧ X ̸=x]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

=Pr[X ̸=Y] + Pr[Y ̸=X] = 2Pr[X ̸=Y]
Pr[X ̸=Y]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Note that dTV is defined via the distributions of X and Y

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Note that dTV is defined via the distributions of X and Y
For any coupling (X ′; Y ′) ofX; Y we haveX ′ d=X and Y ′ d=Y . Thus, dTV (X; Y)=dTV (X ′; Y ′)

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Note that dTV is defined via the distributions of X and Y

Lemma (coupling inequality): Let X; Y be random variables. Then for any coupling
(X ′; Y ′) of X and Y it holds that dTV (X; Y) ≤ Pr[X ′ ̸= Y ′].

For any coupling (X ′; Y ′) ofX; Y we haveX ′ d=X and Y ′ d=Y . Thus, dTV (X; Y)=dTV (X ′; Y ′)

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y) ≤ Pr[X ̸= Y].

Note that dTV is defined via the distributions of X and Y

Lemma (coupling inequality): Let X; Y be random variables. Then for any coupling
(X ′; Y ′) of X and Y it holds that dTV (X; Y) ≤ Pr[X ′ ̸= Y ′].

Lemma (triangle inequality): For rand. var. X; Y , Z: dTV (X;Z)≤dTV (X; Y)+dTV (Y; Z).

For any coupling (X ′; Y ′) ofX; Y we haveX ′ d=X and Y ′ d=Y . Thus, dTV (X; Y)=dTV (X ′; Y ′)

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y) = 1

2

P
x∈S |Pr[X = x]− Pr[Y = x]|.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n] X =
Pn

i=1Xi X ∼ Bin(n; p)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p)

X =
Pn

i=1Xi X ∼ Bin(n; p)

Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Pr[Yi = k] = e−––k=k!

Why?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

Y ′
i

Y ′
i = Yi

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ; X

′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓; X ′

i = min{Y ′
i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?; X ′

i = min{Y ′
i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?; X ′

i = min{Y ′
i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p)

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0]

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓?

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1}

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]
Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound Coupling Inequality

For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1

P
j≥2 Pr[Yi = j]

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1

P
j≥2 Pr[Yi = j]

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

=
Pn

i=1

P
j≥2 e

−– –j

j!

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1 e
−–P

j≥2
–j

j!

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

= –2

2!
+ –3

3!
+ –4

4!
+ · · ·

=
Pn

i=1 e
−–P

j≥2
–j

j!

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

= –2

2!
+ –3

3!
+ –4

4!
+ · · ·

=
Pn

i=1 e
−–P

j≥2
–j

j!

≤ –2

2
(–

0

0!
+ –1

1!
+ –2

2!
+ · · ·)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

≤
Pn

i=1
–2

2 e
−–P

j≥0
–j

j!

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

= –2

2!
+ –3

3!
+ –4

4!
+ · · ·

=
Pn

i=1 e
−–P

j≥2
–j

j!

≤ –2

2
(–

0

0!
+ –1

1!
+ –2

2!
+ · · ·)

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

≤
Pn

i=1
–2

2 e
−–P

j≥0
–j

j!

= e–

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1 e
−–P

j≥2
–j

j!

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

≤
Pn

i=1
–2

2 e
−–P

j≥0
–j

j!

= e–

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1 e
−–P

j≥2
–j

j!

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

≤
Pn

i=1
–2

2 e
−–P

j≥0
–j

j! =
Pn

i=1
–2

2

= e–

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i) of (Xi ; Yi):

(f (X′
i); f (Y

′
i)) coupling of (f (Xi); f (Yi)).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y)

=
Pn

i=1 e
−–P

j≥2
–j

j! ✓

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y)≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Theory

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Practice

Theory

Many computational problems can be solved extremely fast

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Practice

Theory

Many computational problems can be solved extremely fast
“Modern SAT solvers can often handle problems with millions of clauses and hundreds
of thousands of variables” “Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 2017

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Practice

Theory

Many computational problems can be solved extremely fast

For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds “Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & Iwata, TCS, 2016

“Modern SAT solvers can often handle problems with millions of clauses and hundreds
of thousands of variables” “Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 2017

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Practice

Theory

Many computational problems can be solved extremely fast

For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds “Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & Iwata, TCS, 2016

“Modern SAT solvers can often handle problems with millions of clauses and hundreds
of thousands of variables” “Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 2017

Average-Case Analysis
Acknowledge difference between theoretical worst-case instances and practical ones
Represent real world using mathematical models and analyze those theoretically

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Desirable Properties
Simplicity : We cannot analyze a model that is too complicated

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Desirable Properties
Simplicity : We cannot analyze a model that is too complicated
Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Desirable Properties
Simplicity : We cannot analyze a model that is too complicated
Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world
Fast Generation: We want to be able to generate many, large benchmark instances to . . .

analyze structural and algorithmic properties empirically
generate hypotheses about asymptotic behavior

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Desirable Properties
Simplicity : We cannot analyze a model that is too complicated
Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world
Fast Generation: We want to be able to generate many, large benchmark instances to . . .

analyze structural and algorithmic properties empirically
generate hypotheses about asymptotic behavior

Let’s start with a simple model!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959 “Random Graphs”, Gilbert, Ann. Math. Statist., 1959

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p)

Start with n nodes
Independently connect any two with fixed
probability p

Definitions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Definitions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphsDefinitions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphs

For p̃ = m=
`
n
2

´
the expected number of edges in G(n; p̃) matches m

Definitions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphs

For p̃ = m=
`
n
2

´
the expected number of edges in G(n; p̃) matches m

Definitions

In G(n; p) edges are independent, in G(n;m) they are not

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphs

For p̃ = m=
`
n
2

´
the expected number of edges in G(n; p̃) matches m

Definitions

In G(n; p) edges are independent, in G(n;m) they are not
If a G(5; 6) contains a 4-clique, there can be no edge
incident to the 5th node

Existence of red edges
depends on existence of

green ones.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphs

For p̃ = m=
`
n
2

´
the expected number of edges in G(n; p̃) matches m

Definitions

In G(n; p) edges are independent, in G(n;m) they are not
If a G(5; 6) contains a 4-clique, there can be no edge
incident to the 5th node

Existence of red edges
depends on existence of

green ones.

Since many real-world networks are sparse, we focus on p = c
n

for c ∈ Θ(1)
number of edges linear in number of nodes

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

G(n; p)
Independently connect any two
nodes with fixed probability p.

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
p = c

n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k p = c

n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)&

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)&

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

independentX YProof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

independentX Y
Independent Zi ∼ Ber(p) for i ∈ [n] Z1 Z2 Z3 Zn−1 Zn

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

&

independentX Y

X ′
Independent Zi ∼ Ber(p) for i ∈ [n] Z1 Z2 Z3 Zn−1 Zn

X ′

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

&

independentX Y

dependent
X ′ Y ′

Independent Zi ∼ Ber(p) for i ∈ [n] Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

&

independentX Y

d =

d=

dependent
X ′ Y ′

✓Independent Zi ∼ Ber(p) for i ∈ [n] ✓Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]

&

independentX Y

d =

d=

dependent
X ′ Y ′

✓Independent Zi ∼ Ber(p) for i ∈ [n] ✓Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′ Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]

&

independentX Y

d =

d=

dependent
X ′ Y ′

✓Independent Zi ∼ Ber(p) for i ∈ [n] ✓Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′ Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].= Pr[Zn = 1]

Proof

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

dTV (X; Y) ≤ Pr[X ′ ̸= Y ′]

&

independentX Y

d =

d=

dependent
X ′ Y ′

✓Independent Zi ∼ Ber(p) for i ∈ [n] ✓Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′ Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y) ≤ Pr[X′ ̸= Y ′].= Pr[Zn = 1] = c

n = o(1)

Proof

✓

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

n
2
(−p − O(p2)))2

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3) + O(p4))

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3) + O(p4))

⊇

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

= n
2
((c
n
)2 + O((c

n
)3))

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

= o(1)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

= n
2
((c
n
)2 + O((c

n
)3))

= c2

2n
+ O(c

3

n2
)

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
))

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

= o(1)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

= n
2
((c
n
)2 + O((c

n
)3))

= c2

2n
+ O(c

3

n2
)

= o(1)

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
)) : dTV (X;Z) = o(1).

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

= o(1)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

= n
2
((c
n
)2 + O((c

n
)3))

= c2

2n
+ O(c

3

n2
)

= o(1)

E[Z] = Var[Z] ≈ c , much simpler than the above!

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O(1
n
)) : dTV (X;Z) = o(1).

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Examples: Wheel of fortune & Unfair dice

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Examples: Wheel of fortune & Unfair dice
Coupling inequality to bound total variation distance

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Random Graph Models
Mathematical models represent real-world networks and allow for theoretical analysis
Desirable properties: simple, realistic, fast to generate

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Examples: Wheel of fortune & Unfair dice
Coupling inequality to bound total variation distance

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Conclusion

Random Graph Models
Mathematical models represent real-world networks and allow for theoretical analysis
Desirable properties: simple, realistic, fast to generate

Erdős-Rényi Random Graphs
G(n; p): Start with n nodes, connect any two with fixed probability p, independently
In sparse G(n; p) the degree of a vertex is approximately Poisson-distributed

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Examples: Wheel of fortune & Unfair dice
Coupling inequality to bound total variation distance

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Degree

Fr
eq

ue
nc

y

Degree

Fr
eq

ue
nc

y

Homogeneous Heterogeneous

Characterizing a Distribution
Nd =

P
v∈V 1{deg(v)=d} (normalized: 1

n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Degree

Fr
eq

ue
nc

y

Degree

Fr
eq

ue
nc

y

Homogeneous Heterogeneous

Characterizing a Distribution
Mean: What degree would we expect for a vertex?

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Degree

Fr
eq

ue
nc

y

Degree

Fr
eq

ue
nc

y

Homogeneous Heterogeneous

Characterizing a Distribution
Mean: What degree would we expect for a vertex?
Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?

finite infinite

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Degree

Fr
eq

ue
nc

y

Degree

Fr
eq

ue
nc

y

Homogeneous Heterogeneous

Characterizing a Distribution
Mean: What degree would we expect for a vertex?
Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?

finite infinite

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Empirical Distribution of G(n; c
n
)

n = 100 n = 1000 n = 10000

d d d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

homogeneous

