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Wheels of Fortune

The Problem
® Consider the two wheels of fortune
® The higher the value the larger the price

® Which do you spin?
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m Consider the two wheels of fortune

® The higher the value the larger the price

@ Which do you spin? Why? Can we prove that?
The Maths

m Let [ be the value of the left wheel

m Let ¥ be the value of the right wheel
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® For each k

®= Compute the sums of the probabilities
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Setup

= Fair {0, 1}-coin X with Pr[X =1] = p = 3
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® A measure of distance between the distributions of random variables

Definition: Let X, Y be random variables taking values in a set S. The total variation
distance of X and Y is dry(X,Y) = % Y wes | Pr[X =x] —PrlY = x]|.

® Intuition: Sum over the differences in the probabilities
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® A measure of distance between the distributions of random variables

Definition: Let X, Y be random variables taking values in a set S. The total variation )
distance of X and Y is dry(X,Y) = % Y wes | Pr[X =x] = PrlY = x]|.

® Intuition: Sum over the differences in the probabilities
® Maybe a bit tedious to work with, simple bound:

Lemma: dry(X,Y) < Pr[X #Y].|

® Note that dry is defined via the distributions of X and Y

LFréchet: Pr[A] — Pr[B] < Pr[A A B] )
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Total Variation Distance

® A measure of distance between the distributions of random variables

Definition: Let X, Y be random variables taking values in a set S. The total variation )
distance of X and Y is dry(X,Y) = % Y wes | Pr[X =x] = PrlY = x]|.

® Intuition: Sum over the differences in the probabilities
® Maybe a bit tedious to work with, simple bound:

LFréchet: Pr[A] — Pr[B] < Pr[A A B] )

Lemma: dry(X,Y) < Pr[X #Y].|

a Note that dy is defined via the distributions of X and Y
® For any coupling (X', Y') of X, Y we have X'ZXandY'Zy. Thus, drv(X,Y)=drv(X', Y')
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Lemma (coupling inequality): Let X, Y be random variables. Then for any coupling
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The Binomial-Poisson-Approximation
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® Ind. X; ~ Ber(p) for i €[n]
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a X' =31 X,V =%,
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@ X' = $I XY = B0, Y = (X)) coupling of (X, ) {E‘;L‘Sﬁ‘:g"s‘Z&??v‘?‘)"é?%i,,m; l
(F(X7). £(¥/)) coupling of (£(Xi), £(Y7)).
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"X =F1 X =T = (X)) coupling of (X.Y) [ Estemcicomts

dTV(X, ) < Pr[X/ # ] (f(X1), f(Y!)) coupling of (f(X;), f(Y7)).

For any coupling (X', Y’) of X,Y:

Coupling Inequality
drv(X,Y) < Pr[X’ #Y'].
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Theory
a Many computational problems are assumed to be hard

m Looks like there are no algorithms that can solve these problems fast

SAT Vertex Cover
Independent SetJ

NP-hard
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® “Modern SAT solvers can often handle problems with millions of clauses and hundreds
Of thOusandS Of Va”abIeS” L“Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 20171

= For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds -

‘Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & lwata, TCS, 201 61
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Recap: Theory-Practice Gap

Theory
a Many computational problems are assumed to be hard
m Looks like there are no algorithms that can solve these problems fast

SAT Vertex Cover
Independent SetJ

NP-hard

Practice
® Many computational problems can be solved extremely fast

® “Modern SAT solvers can often handle problems with millions of clauses and hundreds
Of thOusandS Of Va”abIeS” L“Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 20171

= For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds -

‘Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & lwata, TCS, 201 61

Average-Case Analysis
m Acknowledge difference between theoretical worst-case instances and practical ones
m Represent real world using mathematical models and analyze those theoretically
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Karlsruhe Institute of Technology

LA graph model describes a mechanism that can be used to generate a graph. ]

® Given a set of vertices, how are edges in the graph formed?
@ The model consists of rules defining which vertices are adjacent
® In random graph models these rules involve randomness
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Random Graph Models

® Given a set of vertices, how are edges in the graph formed?
@ The model consists of rules defining which vertices are adjacent
® In random graph models these rules involve randomness

Desirable Properties
m Simplicity: We cannot analyze a model that is too complicated

m Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world

m Fast Generation: We want to be able to generate many, large benchmark instances to ...
® analyze structural and algorithmic properties empirically
® generate hypotheses about asymptotic behavior
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Karlsruhe Institute of Technology

LA graph model describes a mechanism that can be used to generate a graph. ]

Random Graph Models

® Given a set of vertices, how are edges in the graph formed?
@ The model consists of rules defining which vertices are adjacent
® In random graph models these rules involve randomness

Desirable Properties
m Simplicity: We cannot analyze a model that is too complicated

m Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world

m Fast Generation: We want to be able to generate many, large benchmark instances to ...
® analyze structural and algorithmic properties empirically

m generate hypotheses about asymptotic behavior , ,
Let’s start with a simple model!
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Definitions

G(n, p)
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® Independently connect any two with fixed
probability p

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



10

Erdos—Rényi Random Graphs

History

a |nitially introduced by Edgar Gilbert in 1959

AT

stitute of Technology

L“Random Graphs”, Gilbert, Ann. Math. Statist., 1959]

® A related version introduced by Paul Erdos and Alfréd Rényi in 1959

Definitions
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L“On Random Graphs I”, Erdds & Rényi, Publ. Math. Debr., 1959

G(n, p)
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probability p

.

~N

G(n, m)
a Start with n nodes

= From the (;) possible edges select m
uniformly at random
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Definitions

Gilbert’s model, though often meant when

AT

Karlsruhe Institute of Technology

L“Random Graphs”, Gilbert, Ann. Math. Statist., 1959]

N
L“On Random Graphs I”, Erdds & Rényi, Publ. Math. Debr., 1959

G(n, p) “

probability p

\_

m Start with n nodes
® Independently connect any two with fixed

talking about Erdos—Rényi graphs

\_

G(n, m)
a Start with n nodes

= From the (;) possible edges select m
uniformly at random

~

= For p = m/(7) the expected number of edges in G(n, §) matches m
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G(n, p) “ | G(n, m) \
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. Indepenplently connect any two with fixed | | m From the (’27) possible edges select m

probability p uniformly at random

= For p = m/(7) the expected number of edges in G(n, §) matches m
® [n G(n, p) edges are independent, in G(n, m) they are not
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History
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® A related version introduced by Paul Erdos and Alfréd Rényi in 1959
NTY Glb t, d|,th h ft f h “On Random Graphs I”, Erdés enyi, Publ. Math. Debr. |
Deinitions °1°15 10 g e e (o o
G(n, p) “ | G(n, m) \
m Start with n nodes ® Start with n nodes
. Indepenplently connect any two with fixed | | m From the (’27) possible edges select m
probability p uniformly at random
= For p = m/(7) the expected number of edges in G(n, §) matches m
® In G(n, p) edges are independent, in G(n, m) they are not v T3 Evistonce of ed edges
= If @ G(5,6) contains a 4-clique, there can be no edge | "\ R e

Incident to the 5th node

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



10

AT

Erdos—Rényi Random Graphs
History
| |n|t|a”y introduced by Edgar Gilbert in 1959 L“Random Graphs”, Gilbert, Ann. Math. Statist.,1959]
® A related version introduced by Paul Erdos and Alfréd Rényi in 1959

= =l Gilbert’ d|,th h oft t wh “On Random Graphs I”, Erds & Rényi, Publ. Math. Debr. )
e e A e
G(n, p) “ | G(n, m) \
= Start with n nodes = Start with n nodes
. Indepenplently connect any two with fixed | | m From the (’27) possible edges select m

probability p uniformly at random

= For p = m/(7) the expected number of edges in G(n, §) matches m

® In G(n, p) edges are independent, in G(n, m) they are not v JI35e. Existence of red edges

. . Tk depends on existence of

= If a G(5,6) contains a 4-clique, there can be no edge | "\ 28 et ones.
iIncident to the 5th node number of edges linear in number of nodes

- e green ones.
®m Since many real-world networks are sparse, we focus on p = = for c € ©(1)

-
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G(n, p)
Independently connect any two
nodes with fixed probability p.

Lp = -, Cc€ @(1)\
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Vertex Degree. o . G(n, p)
= Number of neighbors, number of incident edges .-/~ | Independently connect any two
o /. ‘e |nodes with fixed probability p.
o o ©

Lp = -, Cc€ @(1)\
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Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*».. | Independently connect any two

. : : v\ e | nodes with fixed probability p.
m each of n — 1 potential edges exists withprob. p ® ' i y ® LB 1P DY .
Lp = =, c € 0(1)
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
» Number of neighbors, number of incident edges .-/~ Independently connect any two

= each of n — 1 potential edges exists with prob. p * ¢ | °, ® (10968 With fxed probadiliy p
= deg(v) ~ Bin(n — 1, p) —=Pr[deg(v) = k] = (" }) p(L

n—1—k Lp — < ce0(1))
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ER — Degree of a Vertex
Vertex Degree 4 G(n, p)
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

. . . /1N e | nodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p * | °y ® with Tixed p W13

~

= deg(v) ~ Bin(n — 1, p) <= Prldeg(v) = k] = ("")p*(1 — p)"*7* p=tceoQ)

E[deg(v)] = (n — 1)p & Var[deg(v)] = (n — 1)p(1 — p)
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= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

. . . /1N e | nodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p * | °y * with Tixed p W13
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv (X, Y) = o(1).
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv (X, Y) = o(1).
Proof X =

~

independent > Y
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Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two
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= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
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Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv (X, Y) = o(1).

PrOOf X - independent - Y
® Independent /; ~ Ber(p)forie[n] zn 2z z --- Z.a 2z,

~
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ER — Degree of a Vertex

Vertex Degree
® Number of neighbors, number of incident edges
m each of n — 1 potential edges exists with prob. p

® deg(v) ~ Bin(n—1, p) <:Pr[deg(v) — k] = (n;l)pk(l — p)n=1=k

Karlsruhe Institute of Technology

VvV )
o G(n, p)
Independently connect any two
o /! e |nodes with fixed probability p.
o o © S
Lp = =, c € 0(1)

Approximation E[deg(v)] = (n—=1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...
Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then, )
dryv (X, V) = o(1).

Proof \

X <ineenent> Y
= Independent 7, ~ Ber(p) foric [n] z 2 z - 24 z =

P wan ) X ) X
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Proof \
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Vertex Degree
® Number of neighbors, number of incident edges
m each of n — 1 potential edges exists with prob. p

® deg(v) ~ Bin(n—1, p) <:Pr[deg(v) — k] = (n;l)pk(l — p)n=1=k
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VvV )
o G(n, p)
Independently connect any two
o /! e |nodes with fixed probability p.
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Lp = =, c € 0(1)

Approximation E[deg(V)] = (n — 1)p & Var[deg(V)] = (n — ].)p(]_ — p) Inconvenient...
Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then, )
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Proof )
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ER — Degree of a Vertex
Vertex Degree { G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i" . Inddepenqﬁr}tly (cjonn%ctbe_llqy two
= each of n — 1 potential edges exists with prob. p ® ¢ : § ° nodes with fixed probabiiy .
® deg(v) ~ Bin(n — 1, p) <= Prldeg(v) = k] = (" 1)p*(1 — p)"17* P=fceow
Approximation E[deg(V)] == (n — 1)p & Var[deg(V)] = (n — ].)p(]_ — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv (X, Y) = o(1).

PrOOf X - independent - Y \

® Independent /; ~ Ber(p)foriec[n] zn 2z z ... z..1 2z, sl f e of

S X =3 LY =X b X } X' Y’
dTV(X1 ) S PF[X’ 7é ] Coupling Inequality )

For any coupling (X', Y’) of X,Y:
drv(X,Y) < Pr[X’ # Y]
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Vertex Degree
® Number of neighbors, number of incident edges
m each of n — 1 potential edges exists with prob. p

® deg(v) ~ Bin(n—1, p) <:Pr[deg(v) — k] = (n;l)pk(l — p)n=1=k

Karlsruhe Institute of Technology

VvV )
o G(n, p)
Independently connect any two
o /! e |nodes with fixed probability p.
o o © S
Lp = =, c € 0(1)

N\

Approximation E[deg(V)] = (n — 1)p & Var[deg(V)] = (n — ].)p(]_ — p) Inconvenient...
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Proof )
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S X =3 LY =X b X } X' Y’

dTV(X' ) S PF[X’ 7é ] Coupling Inequality b
o . For any coupling (X', Y’) of X,Y:
= Pr[Z, =1] drv(X,Y) < PrIX! # Y]
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Vertex Degree
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m each of n — 1 potential edges exists with prob. p
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Independently connect any two
o /! e |nodes with fixed probability p.
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N\

Approximation E[deg(V)] = (n — 1)p & Var[deg(V)] = (n — ].)p(]_ — p) Inconvenient...
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Proof )
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ER — Degree of a Vertex

Vertex Degree
® Number of neighbors, number of incident edges

AT

stitute of Technolo

9y

o G(n, p)
Independently connect any two

."/ S " e | Nodes with fixed probability p.

~

= each of n — 1 potential edges exists with prob. p = ¢ © .
= deg(v) ~ Bin(n — 1, p) <= Prldeg(v) = k] = (", })p"(1 — p)"17* p=fccem
Approximation E[deg(V)] — (n — 1)p & Var[deg(V)] = (n — ].)p(]. — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,

drv (X, V) = o(1).
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~Bin(n, p), Z ~Pois(—nlog(1—p)):

drv(Y, Z)< 2 log(1—p)°.

~N

Triangle Inequality
\dTV(X1 Z) <drv(X,Y)+drv(Y, Z2).
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv(X,Y) = o(1). And for Z ~ Pois(c + O(1))

drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation
~Bin(n, p), Z ~Pois(—nlog(1—p)):
drv(v,Z)<3 Iog(l—p)z.

~N

N

Triangle Inequality
\dTV(X1 Z) <drv(X,Y)+drv(Y, Z2).
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N

N
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— o1 n 1 — p)2 ~Bin(n, p), Z~Pois(—nlog(1—p)):
o1) +; Og(. f) . drv(Y, Z) < 5 log(1—p)*.
3(=p—0(p%))) \ J
Triangle Inequality
\dTV(X1 Z) <drv(X,Y)+drv(Y, Z2).

~N

Taylor p — 0: log(1—p)=—p—0(p?)
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Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv(X,Y) = o(1). And for Z ~ Pois(c + O(1))
drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation

— o(1) + g log(1 — p)z ~ Bin(n, p), ZNPois(—2n|og(1—p)):
é , y drv(¥, Z) <35 log(1—p)-.

~N

~~
ko]
N
+
S
—~~
ko)
w
~—
~—
(

((£)> +O((£)?)) Triangle Inequality )
\dTV(X1 Z) <drv(X,Y)+drv(Y, Z2).

Taylor p — 0: log(1—p)=—p—0(p?)
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then,
drv(X,Y) = o(1). And for Z ~ Pois(c + O(1))

drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation
— o(1) + 2 log(1 — p)>? ~Bin(n, p), Z ~Pois(—nlog(1—p)):
(1) + 5 loal — p)° drv (7, )< 2 log(1-p)>

~N

3(—p — O0(p"))*= 5(p* + O(p*)) - y
= 2((£)* + 0((£)%)) Triangle Inequality
_ §+O(;—2):o(l) \dTv(X,Z) < dTv(X, )—I—dTv( ,Z).

Taylor p — 0: log(1—p)=—p—0(p?)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



11

Karlsruhe Institute of Technology

Vertex Degree . G(n, p) )

= Number of neighbors, number of incident edges ~ .-/i" lnddependﬁr}tly gonnictbﬁny two

= each of n — 1 potential edges exists with prob. p ¢ ;| °, '® (1008 W IXECPrOvabIly p-

= deg(v) ~ Bin(n — 1, p) <= Prldeg(v) = k] = (") p*(1 — p)" 27" p=fccem

Approximation E[deg(V)] — (n — 1)p & Var[deg(V)] = (n — ].)p(]. — p) Inconvenient...
Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then, )
drv(X,Y) = o(1). And for Z ~ Pois(c + O(%)): drv(X, Z) = o(1).

ER — Degree of a Vertex

drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation |
— o(1) + 2 log(1 — p)2 = of1 ~Bin(n, p), Z ~Pois(—nlog(1—p)):
( ) ;2 g( ' f) J2 ?( 2) ; dTV( 1Z)§ g |og(1—p)2
2(=p—0(p7)))"= 3(p” + O(p?)) \ ]
= 2((£)* + 0((£)%)) Triangle Inequality
:§—2+O(C—2):O(l) \dTv(X,Z)SdTv(X, )—I—dTv( ,Z).
Taylor p — 0: Iog(l—p):—p—O(p2)\
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bm(n —1,p) and let ¥ ~ Bin(n, p). Then,
drv(X,Y) = o(1). " And for Z ~ Pois(c + O(%)): drv(X, Z) = o(1).

~N

drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation
= o(1) + 2 Iog(l _ p)z o(1) ~ Bin(n, p), ZwPOls(—2n|og(1—p)):
drv (Y, 7)< 2 log(1—p)>.
*p OGN = 2(6° + 06 A 2D = et :
= g((g) +O(( )*)) Triangle Inequality
_ g_ o( )= o(1) \dTV(X1Z) <drv(X,Y)+drv(V, 2).
® E[Z] = Var[Z] = ¢, much simpler than the above! Taylor p — 0: |og(1—p):—p—0(p2)\
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® A coupling of (X, Y) is a pair ( ) of random variables in a shared

orobability space such that x < x’ and v 2
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m Define relation between rand. var. to make statements about one using the other

m A coupling of (X, Y) is a pair ( ) of random variables in a shared
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probability space such that x = X’ and ¥ =
m Often X’ and

m Examples: Wheel of fortune & Unfair dice
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m Define relation between rand. var. to make statements about one using the other

m A coupling of (X, Y) is a pair (X’ ) of random variables in a shared

probability space such that X £ x’ and ¥ <
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® Coupling inequality to bound total variation distance

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



12

Conclusion

Coupling

Karlsruhe Institute of Technology

m Define relation between rand. var. to make statements about one using the other

m A coupling of (X, Y) is a pair (X’ ) of random variables in a shared
probability space such that X £ x’ and ¥ <

a Often X’ and @ k _,®

m Examples: Wheel of fortune & Unfair dice

® Coupling inequality to bound total variation distance
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a Mathematical models represent real-world networks and allow for theoretical analysis

® Desirable properties: simple, realistic, fast to generate
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Conclusion

Coupling
m Define relation between rand. var. to make statements about one using the other

m A coupling of (X, Y) is a pair (X’ ) of random variables in a shared X .y
probability space such that x £ X’ and ¥ £ mdspendent

= Often X’ and @ k > @ ;L \”/Q/

m Examples: Wheel of fortune & Unfair dice N
® Coupling inequality to bound total variation distance

~

Random Graph Models
a Mathematical models represent real-world networks and allow for theoretical analysis
® Desirable properties: simple, realistic, fast to generate

Erdos-Rényi Random Graphs
® G(n, p): Start with n nodes, connect any two with fixed probability p, independently
m [n sparse G(n, p) the degree of a vertex is approximately Poisson-distributed
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Distributions
= Probability distribution of the degree of a given vertex in a G(n, <) approaches Pois(c)
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Outlook: Degree Distribution vs. Degree Distribution

Distributions
= Probability distribution of the degree of a given vertex in a G(n, <) approaches Pois(c)

® Empirical distribution of the degrees of all vertices in a graph G = (V, E)
Na =Y ,cv L{deg(v)=ay (normalized: 2N, for n = |V)
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Distributions
= Probability distribution of the degree of a given vertex in a G(n, <) approaches Pois(c)

® Empirical distribution of the degrees of all vertices in a graph G = (V, E)
Ny = Zvev ]l{deg(v):d} (normalized: %Nd, for n = |V|) Homogeneous Heterogeneous
Characterizing a Distribution 4 4
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® Empirical distribution of the degrees of all vertices in a graph G = (V, E)

Ny = ZvEV ]l{deg(v):d} (normalized: %Nd, for n = |V|) Homogeneous Heterogeneous
Characterizing a Distribution 4 4
® Mean: What degree would we expect for a vertex?
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Ng = ZvEV ]l{deg(v):d} (normalized: %Nd, for n = |V|) Homogeneous  Heterogeneous
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® Mean: What degree would we expect for a vertex?

m Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?
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Outlook: Degree Distribution vs. Degree Distribution

Distributions
= Probability distribution of the degree of a given vertex in a G(n, <) approaches Pois(c)

® Empirical distribution of the degrees of all vertices in a graph G = (V, E)

Ng = ZvEV ]l{deg(v):d} (normalized: %Nd, for n = |V‘) Homogeneous  Heterogeneous
Characterizing a Distribution g ) finte Al infinite
® Mean: What degree would we expect for a vertex?

m Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?

Frequency
Frequency

Degree Degree
Empirical Distribution of G(n, -) — homogeneous
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