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Wheels of Fortune

The Problem
Consider the two wheels of fortune
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The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]
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Pr[R = k]

Pr[L = k]

Proof
For each k

Compare
Tedious...

Compute the sums of the probabilities
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Wheels of Fortune

The Problem
Consider the two wheels of fortune
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The higher the value the larger the price
Which do you spin? Why? Can we prove that?

The Maths
Let L be the value of the left wheel
Let R be the value of the right wheel

L = 3 R = 2
To show: For all values k: Pr[R ≥ k] ≥ Pr[L ≥ k]

Proof: Frankenstein’s Wheel of Fortune!
Sort the wheels (does not change their distributions)
Adjust sizes and glue together
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Spin as one wheel: L′ inner number, R′ outer number

But L′ and R′ are dependent and always R′ ≥ L′
Note that L d

= L′ and R d
= R′ equal distributions

L′ = 4 R′ = 5⇒ Pr[R′ ≥ k] ≥ Pr[L′ ≥ k]

✓
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What just happened?

Setup & Method
Random variable L on the left wheel and R on right wheel

Random variable L′ on inner wheel and R′ on outer wheel
d =

d=

independent

dependent

Define a relation between random variables to make statements about one using the
other

X ′
1 and X ′

2 live in the same space
Typically we define X ′

1 and X ′
2 to be dependent

Typically we do not talk about the probability
spaces explicitly

Definition: Let X1; X2 be random variables defined on probability spaces (Ω1;Σ1;Pr1)
and (Ω2;Σ2;Pr2), respectively. A coupling of X1 and X2 is a pair of random variables
(X ′

1; X
′
2) defined on a new probability space (Ω;Σ;Pr) such that

Abstracting away technicalities, people
just “couple” X1 and X2 “directly”,
without introducing X ′

1 and X ′
2

Here:Pr[R′ ≥ k] ≥ Pr[L′ ≥ k] ⇒ Pr[R ≥ k] ≥ Pr[L ≥ k]

X1
d
= X ′

1 and X2
d
= X ′

2.

The coupling defines how
L′ and R′ are related
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Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k]

Pr[U = k]

Compare sums for all k ≤ 6 And if n = 100?

0:003

0:002

0:001

2010 30 40 50 60 70 80 90 100 k

Pr[U = k]

Pr[F = k]

so many sums...
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Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll Pr 1

6
1
6

1
6

1
6

1
6

1
6

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.

Wi

F ′
i

U ′
i

1

1

00011

00111

≥ ≥ ≥≥≥≥
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Application: Biased Coins

We have a fair {0; 1}-coin that yields 1 with probability 1
2

Pr[U ≥ k] ≥ Pr[F ≥ k]

The Problem
0 1 0 0 0 1

0 0 1 1 1 1And an unfair {0; 1}-coin that yields 1 with probability 2
3

You pick a coin. You win if your coin gets more 1s than the other.
Throw each coin n times, count the 1s, yielding F and U

Which do you pick?

F =
P

U =
P = 2

= 4

Claim
Proof

independentFi Ui

d =

d=

dependent

Let Fi be indicator for i th fair coin
Let Ui be indicator for i th unfair coin
Let Wi be the result of a fair die-roll

Define F ′
i = 1 iff Wi ≤ 3

Define U ′
i = 1 iff Wi ≤ 4

F ′
i and U ′

i are dependent and always U ′
i ≥ F ′

i

⇒ Fi
d
= F ′

i

⇒ Ui
d
= U ′

i

F ′
i U ′

i

Coupling: Random variables X1; X2. Define
random variables X′

1; X
′
2 in a shared probability

space such that X1
d
= X′

1 and X2
d
= X′

2.
F =

Pn
i=1 Fi

U =
Pn

i=1 Ui independentF U

d =

d=

dependent
F ′ U ′

F ′ =
Pn

i=1 F
′
i

U ′ =
Pn

i=1 U
′
i Observation: Independent rand. var. Xi ; Yi for i ∈ [n]

with couplings (X′
i ; Y

′
i ) for i ∈ [n].

Then, for any function f : (f (X′
1; :::; X

′
n); f (Y

′
1 ; :::; Y

′
n))

is a coupling of f (X1; :::; Xn) and f (Y1; :::; Yn).⇒ U ′ ≥ F ′ ⇒ Pr[U ′ ≥ k] ≥ Pr[F ′ ≥ k]

✓
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The Binomial-Poisson-Approximation or “How I Lied To You”

1 2 3 4 5 k

0:1

0:2

0:3

0 6

Pr[F = k] 0:003

0:002

0:001

Pr[F = k]

Setup
Fair {0; 1}-coin X with Pr[X = 1] = p = 1

2

Sum of n ind. coins F =
Pn

i=1Xi , Xi ∼ Ber(p)

This is a Bernoulli rand. var. X ∼ Ber(p)

This is a Binomial rand. var. F ∼ Bin(n; p)

Pr[F = k] =
`
n
k

´
pk(1− p)n−k

n = 6 n = 100
This is not a binomial distribution!
It’s a Poisson distribution with – = 50

Pr[X = k] = –ke−–=k!X ∼ Pois(–):

Pr[X = k]

Why lie? It was easier to plot that way and I thought you wouldn’t notice...
How dare I? As n increases, the two distributions are very close...

What does that mean?

... which we have seen today already

2010 30 40 50 60 70 80 90 100 k
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Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

2dTV (X; Y )=
P

x∈S |Pr[X=x ]−Pr[Y =x ]| SY = S \ SX

=
P

x∈SX
|Pr[X=x ]−Pr[Y =x ]|+

P
x∈SY

|Pr[X=x ]−Pr[Y =x ]|
=
P

x∈SX
Pr[X=x ]−Pr[Y =x ]+

P
x∈SY

Pr[Y =x ]−Pr[X=x ]

SX = {x ∈ S | Pr[X = x] ≥ P r [Y = x]}

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤
P

x∈SX
Pr[X=x ∧ Y ̸=x ]+

P
x∈SY

Pr[Y =x ∧ X ̸=x ]
≤
P

x∈S Pr[X=x ∧ Y ̸=x ] +
P

x∈S Pr[Y =x ∧ X ̸=x ]

X

Y

1 2 3 4 5 6

1

2

3

4

5

6

Joint Space

=Pr[X ̸=Y ] + Pr[Y ̸=X] = 2Pr[X ̸=Y ]
Pr[X ̸=Y ]

Lemma: dTV (X; Y ) ≤ Pr[X ̸= Y ].

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y ) = 1

2

P
x∈S |Pr[X = x ]− Pr[Y = x ]|.
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Total Variation Distance

A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

Lemma: dTV (X; Y ) ≤ Pr[X ̸= Y ].

Note that dTV is defined via the distributions of X and Y

Lemma (coupling inequality): Let X; Y be random variables. Then for any coupling
(X ′; Y ′) of X and Y it holds that dTV (X; Y ) ≤ Pr[X ′ ̸= Y ′].

Lemma (triangle inequality): For rand. var. X; Y , Z: dTV (X;Z)≤dTV (X; Y )+dTV (Y; Z).

For any coupling (X ′; Y ′) ofX; Y we haveX ′ d=X and Y ′ d=Y . Thus, dTV (X; Y )=dTV (X ′; Y ′)

Definition: Let X; Y be random variables taking values in a set S. The total variation
distance of X and Y is dTV (X; Y ) = 1

2

P
x∈S |Pr[X = x ]− Pr[Y = x ]|.
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The Binomial-Poisson-Approximation

Ind. Xi ∼ Ber(p) for i ∈ [n]
Ind. Yi∼Pois(–) for i ∈ [n], –=− log(1−p) Y =

Pn
i=1 Yi

Proof
For each i we couple Yi and Xi :

= Pr[Yi = 0] = e log(1−p) = 1− p = Pr[Xi = 0] ✓
= 1− Pr[Yi = 0] = 1− Pr[Xi = 0] ✓

independentXi Yi

d =

d=

dependentX ′
i Y ′

i

Y ′
i = Yi ✓

= e−–Pr[X ′
i = 0]

Pr[X ′
i = 1]= Pr[Yi > 0]

; X ′
i = min{Y ′

i ; 1} ✓

dTV (X; Y ) ≤ Pr[X ′ ̸= Y ′]≤
Pn

i=1 Pr[X
′
i ̸= Y ′

i ]
union bound

=
Pn

i=1 Pr[Y
′
i ≥ 2]

≤
Pn

i=1
–2

2 e
−–P

j≥0
–j

j! =
Pn

i=1
–2

2

= e–

Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y ) ≤ Pr[X′ ̸= Y ′].

Function of Couplings
Couplings (X′

i ; Y
′
i ) of (Xi ; Yi ):

(f (X′
i ); f (Y

′
i )) coupling of (f (Xi ); f (Yi )).

X =
Pn

i=1Xi X ∼ Bin(n; p)
Y ∼ Pois(n–)

To show that this is a coupling, we need Xi
d
= X ′

i

= Pr[Xi = 1]

X ′ =
Pn

i=1X
′
i , Y

′ =
Pn

i=1 Y
′
i ⇒ (X ′; Y ′) coupling of (X; Y )

=
Pn

i=1 e
−–P

j≥2
–j

j! ✓

Lemma: X∼Bin(n; p), Y ∼Pois(−n log(1−p)): dTV (X; Y )≤ n
2 log(1−p)

2. Pr[Yi = k] = e−––k=k!
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Recap: Theory-Practice Gap

Many computational problems are assumed to be hard SAT Vertex Cover
Independent Set

NP-hard
Looks like there are no algorithms that can solve these problems fast

Practice

Theory

Many computational problems can be solved extremely fast

For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds “Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & Iwata, TCS, 2016

“Modern SAT solvers can often handle problems with millions of clauses and hundreds
of thousands of variables” “Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 2017

Average-Case Analysis
Acknowledge difference between theoretical worst-case instances and practical ones
Represent real world using mathematical models and analyze those theoretically
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Random Graph Models

Given a set of vertices, how are edges in the graph formed?

A graph model describes a mechanism that can be used to generate a graph.

The model consists of rules defining which vertices are adjacent
In random graph models these rules involve randomness

Desirable Properties
Simplicity : We cannot analyze a model that is too complicated
Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world
Fast Generation: We want to be able to generate many, large benchmark instances to . . .

analyze structural and algorithmic properties empirically
generate hypotheses about asymptotic behavior

Let’s start with a simple model!
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Erdős–Rényi Random Graphs

History
Initially introduced by Edgar Gilbert in 1959
A related version introduced by Paul Erdős and Alfréd Rényi in 1959

“Random Graphs”, Gilbert, Ann. Math. Statist., 1959

“On Random Graphs I”, Erdős & Rényi, Publ. Math. Debr., 1959

G(n; p) G(n;m)

Start with n nodes
Independently connect any two with fixed
probability p

Start with n nodes
From the

`
n
2

´
possible edges select m

uniformly at random

Gilbert’s model, though often meant when
talking about Erdős–Rényi graphs

For p̃ = m=
`
n
2

´
the expected number of edges in G(n; p̃) matches m

Definitions

In G(n; p) edges are independent, in G(n;m) they are not
If a G(5; 6) contains a 4-clique, there can be no edge
incident to the 5th node

Existence of red edges
depends on existence of

green ones.

Since many real-world networks are sparse, we focus on p = c
n

for c ∈ Θ(1)
number of edges linear in number of nodes
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ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation

X ′ =
Pn−1

i=1 Zi

dTV (X; Y ) ≤ Pr[X ′ ̸= Y ′]

&

independentX Y

d =

d=

dependent
X ′ Y ′

✓Independent Zi ∼ Ber(p) for i ∈ [n] ✓Z1 Z2 Z3 Zn−1 Zn

, Y ′ = X ′ + Zn X ′

Y ′ Coupling Inequality
For any coupling (X′; Y ′) of X; Y :
dTV (X; Y ) ≤ Pr[X′ ̸= Y ′].= Pr[Zn = 1] = c

n = o(1)

Proof

✓

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y ) = o(1).

p = c
n
, c ∈ Θ(1)
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ER – Degree of a Vertex

Vertex Degree
Number of neighbors, number of incident edges

G(n; p)
Independently connect any two
nodes with fixed probability p.

v

each of n − 1 potential edges exists with prob. p
deg(v) ∼ Bin(n − 1; p) Pr[deg(v) = k] =

`
n−1
k

´
pk(1− p)n−1−k

Inconvenient...E[deg(v)] = (n − 1)p Var[deg(v)] = (n − 1)p(1− p)Approximation &

Triangle Inequality
dTV (X;Z) ≤ dTV (X; Y ) + dTV (Y ; Z).

dTV (X;Z) ≤ dTV (X; Y ) + dTV (Y ; Z)

= o(1) + n
2 log(1− p)2

Taylor p → 0: log(1−p)=−p−O(p2)

= o(1)

n
2
(−p − O(p2)))2= n

2
(p2 + O(p3))

= n
2
(( c
n
)2 + O(( c

n
)3))

= c2

2n
+ O( c

3

n2
)

= o(1)

E[Z] = Var[Z] ≈ c , much simpler than the above!

Lemma: Let p = c
n

for c ∈ Θ(1), let X ∼ Bin(n − 1; p) and let Y ∼ Bin(n; p). Then,
dTV (X; Y ) = o(1).

Binomial-Poisson-Approximation
Y ∼Bin(n; p), Z∼Pois(−n log(1−p)):
dTV (Y ; Z)≤ n

2
log(1−p)2.

And for Z ∼ Pois(c + O( 1
n
)) : dTV (X;Z) = o(1).

p = c
n
, c ∈ Θ(1)

youtube.com/watch?v=3d6DsjIBzJ4
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Conclusion

Random Graph Models
Mathematical models represent real-world networks and allow for theoretical analysis
Desirable properties: simple, realistic, fast to generate

Erdős-Rényi Random Graphs
G(n; p): Start with n nodes, connect any two with fixed probability p, independently
In sparse G(n; p) the degree of a vertex is approximately Poisson-distributed

Coupling
Define relation between rand. var. to make statements about one using the other
A coupling of (X; Y ) is a pair (X ′; Y ′) of random variables in a shared
probability space such that X d

= X ′ and Y d
= Y ′

Often X ′ and Y ′ dependent

independentX Y

d =

d=

dependent
X ′ Y ′

Examples: Wheel of fortune & Unfair dice
Coupling inequality to bound total variation distance
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Outlook: Degree Distribution vs. Degree Distribution

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

Degree

Fr
eq

ue
nc

y

Degree

Fr
eq

ue
nc

y

Homogeneous Heterogeneous

Characterizing a Distribution
Mean: What degree would we expect for a vertex?
Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?

finite infinite

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)

Probability distribution of the degree of a given vertex in a G(n; c
n
) approaches Pois(c)

Distributions

Empirical Distribution of G(n; c
n
)

n = 100 n = 1000 n = 10000

d d d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

homogeneous


