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Wheels of Fortune A“(IT

The Problem

m Consider the two wheels of fortune

® The higher the value the larger the price

@ Which do you spin? Why? Can we prove that?
The Maths

m Let [ be the value of the left wheel

m Let ¥ be the value of the right wheel

® To show: For all values k: Pr[R > k] > Pr[L > K]

Proof
® For each k

®= Compute the sums of the probabilities
= Compare
® Tedious...
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Wheels of Fortune A“(IT

The Problem

m Consider the two wheels of fortune

® The higher the value the larger the price

@ Which do you spin? Why? Can we prove that?
The Maths

m Let [ be the value of the left wheel

m Let ¥ be the value of the right wheel

® To show: For all values k: Pr[R > k] > Pr[L > K]

Proof: Frankenstein’s Wheel of Fortune!
m Sort the wheels (does not change their distributions)
® Adjust sizes and glue together

® Spin as one wheel: [’ inner number, <’ outer number

@ Note that L g /" and g equal distributions
m But /" and R are dependent and always R’ > |’
= Pr[R" > k] > Pr[L" > K] ' =4
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What just happened? A“(IT

Setup & Method ‘/Lde@dent\‘
® Random variable L on the left wheel and R on right wheel

S| I

® Random variable L’ on inner wheel and R’ on outer wheel

m Define a relation between random variables to make statements about one using the
other Here:Pr[R’' > k] > Pr[L" > k] = Pr[R > k] > Pr[L > K]

Definition: Let X3, X, be random variables defined on probability spaces (€21, X1, Pry)
and (€., X, Pry), respectively. A coupling of X; and X, is a pair of random variables

(X4, X}) defined on a new probability space (2, &, Pr) such that x; < X1 and X5 g X3.

;Xi and X} live in the same space = Abstracting away technicalities, people
= Typically we define X{ and X} to be dependent Just” " X1 and X “directly”,

= Typically we do not talk about the probability without introducing X; and X;
spaces explicitly
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Application: Biased Coins A“(IT

The Problem
= We have a fair {0, 1}-coin that yields 1 with probability 2 F =3 @ @O © © © @© - 2

m And an {0, 1}-coin that yields 1 with probability 2 00DDDA
® Throw each coin n times, count the 1s, yielding  and

® You pick a coin. You win if your coin gets more 1s than the other. Which do you pick?
Claim Pr[UU > k] > Pr[F > K]

Proof Compare sums for all k < 6 And if n = 1007 so many sums...
A A
0.3 0.003 - Pr[F = K]
0.2 0.002 1
0.1 0.001
Pr[F = K]
- T T T T T I_>k ; ; ; ; T T T ; ; |>k
01 213 4 5 6 10 20 30 40 50)60 70 80 90 100
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Application: Biased Coins

The Problem
= We have a fair {0, 1}-coin that yields 1 with probability 2 F =3 @ @O © © © @© - 2

m And an {0, 1}-coin that yields 1 with probability 2 00DDDA
® Throw each coin n times, count the 1s, yielding  and

® You pick a coin. You win if your coin gets more 1s than the other. Which do you pick?

Claim Pr[ > k] > PF[F > k] Coupling: Random variables X1, X». Define )
P f random variables X7, X} in a shared probability
roo space such that x; d X{ and X> d X3

m Let F; be indicator for ith fair coin

m Let U; be indicator for ith unfair coin I] [-1'] .’ 313] [323] t8)| F < Ui
m Let V. be the result of a fair die-roll Prs & & & & & ol =
» Define F/ =1iff . <3 = F £ F! FF'i 11 0 0 of6F Ui

I - I A Al Al Al Al AN

= Define U/ = 1iff W: < 4 = U, £

® " and U’ are dependent and always U > F!
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Application: Biased Coins

The Problem

AT

stitute of Technology

= We have a fair {0, 1}-coin that yields 1 with probability 2 F =3 @ @O © © © @© - 2

® And an

{0, 1}-coin that yields 1 with probability 2

COOOOD®

® Throw each coin n times, count the 1s, yielding  and
® You pick a coin. You win if your coin gets more 1s than the other. Which do you pick?

Claim Pr[U/ > k] > Pr[F > k]”

Proof
m Let F; be indicator for ith fair coin

m Let U, be indicator for ith unfair coin

m Let IV, be the result of a fair die-roll
s Define F/ = 1iff 1/, <3 = F, £ F/
e Define U/ = 1iff W/, <4 = U, £

m /' and U’ are dependent and always
= V' > F = Pr[U > k] > Pr[F" > K]
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Coupling: Random variables X1, X». Define

random variables X7, X} in a shared probability

space such that x; < X! and X, < XJ.

\_

»U\

[l

Ul

F =

||

F/

F,'<

||

F!

[|o

U!

independent independent

~

\\

Observation: Independent rand. var. X;,Y; for i € [n]
with couplings (X!, Y/) for i € [n].

Then, for any function f: (f(X1, ..., X},), f(Y{,....Y))
is a coupling of (X1, ..., Xn) and £ (Y1, ..., Ya).

N
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The Binomial-Poisson-Approximation or “How | Lied To You™ A“(IT

Setup

m Fair {0, 1}-coin X with Pr[X = 1] = p = This is a Bernoulli rand. var. X ~ Ber(p)

1
2

® Sum of nind. coins F = 7, X;, X; ~ Ber(p) This is a Binomial rand. var. F ~ Bin(n, p)
= ... which we have seen today already PrlF = k] = (})p*(1 — p)" %

03%n=6 Pr[F = K] 0.0034n=100 p =]
This is not a binomial distribution!

0.2 0.002 / it's a Poisson distribution with A = 50

0.1 0.001 - ~ Pois(X): Pr[X = k] = )\ke_k/k!

T T T T T T T >k T T L
0O 1 2 3 4 5 6 10 20 30 40 50 60 70 80 90 100

a Why lie? It was easier to plot that way and | thought you wouldn’t notice...
® How dare |? As n increases, the two distributions are very close...
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Total Variation Distance

® A measure of distance between the distributions of random variables

~N

Definition: Let X, Y be random variables taking values in a set S. The total variation
distance of X and Y is dry(X,Y) = % Y wes | Pr[X =x] —PrlY = x]|.

® Intuition: Sum over the differences in the probabilities ; = )

Fréchet: Pr[A] — Pr[B] < Pr[AA B
® Maybe a bit tedious to work with, simple bound: L rechet: PriAl — PriB] < Prl |
2drv(X,Y)=Y s | PriX=x]—Pr[Y =x]| Sx ={x€S|PrX=x]>Prly =x]} Sy =5\S5x

=2 xesAPIIX=x]=Pr[Y=x]|+3_ cs [PrIX=x]-Pr[y =x|/

:ersx Pr[X:X]—Pr[Y:x]—I—ZXeSY PrlY =x]—Pr[X=Xx] y, JointSpace

<Y es, PIIX=xAYEX]+Y s PrlY=x A X #x] EEEE%EE

<Y s PrIX=xAY#X]+ 3 o PrlY=x A X#X] eix-y) {OO00O0O0

=Pr[X#Y] + Pr[Y #X] = ZPr[X #£Y] ZEEE%EE
LLemma: drv(X,Y) < Pr[X # Y].} a0oon,
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Total Variation Distance

® A measure of distance between the distributions of random variables

Definition: Let X, Y be random variables taking values in a set S. The total variation )
distance of X and Y is dry(X,Y) = % Y wes | Pr[X =x] = PrlY = x]|.

® Intuition: Sum over the differences in the probabilities

LFréchet: Pr[A] — Pr[B] < Pr[A A B] )

® Maybe a bit tedious to work with, simple bound:
Lemma: dry(X,Y) < Pr[X #Y].|

= Note that dry is defined via the distributions of X and Y
® For any coupling (X', Y') of X, Y we have X'£XandY'2Y. Thus, drv(X,Y)=drv(X"Y')

~

Lemma (coupling inequality): Let X, Y be random variables. Then for any coupling
(X', Y") of X and Y it holds that dry/(X,Y) < Pr[X’ # Y’].

~

Lemma (triangle inequality): For rand. var. X, Y, Z: drv(X, Z2) <drv(X,Y)+drv(Y, Z)
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The Binomial-Poisson-Approximation A“(IT

m Ind. X; ~ Ber(p) for i €[n] - X =7 X > X ~ Bin(n, p)
® Ind. i~ Pois(A) for i€ [n], A=—log(1—p) ——> v =% 7 | > ~ Pois(n)\)
LLemma: X ~Bin(n, p), ¥ ~Pois(—nlog(1—p)): drv (X, )Sglog(l—p)gw | PrIYi = K] = e Mkl
PrOOf Xi = independent — \/I \
® For each i we couple ¥ and X;: ¥/ =V, X! =min{Y/, 1} <l o
a To show that this is a coupling, we need X, < X; X; Y!
PriX! =0]=Pr[Y, =0]=e > =¢€8l=P) =1 — p = Pr[X; =0] v/ )
PriX! =1]=Pr[Y; >0]=1—-Pr[Y, =0]=1—-Pr[X; =0]=Pr[X; =1] v/
=X = X0 X = B0 = (X)) coupling of (X, ) [Ensmetcoms
drv(X,Y) < Pr[X' £ Y'< Zf’_l Pr[Xf £ Y] = Z{?_ Pr[y/ > 2] (F(X}), £(Y)) coupling of (£(X;), f(Y7)).
nunion kin;d—f N n K Coupling Ine_quallt/ / _\
— Zizl e > 5T S 1 1 2/ <0 JI Z, . 7 CF/::/e(lggguSphg?[&),(%szffX,Y.

~
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AT

Recap: Theory-Practice Gap

Theory
a Many computational problems are assumed to be hard
m Looks like there are no algorithms that can solve these problems fast

SAT Vertex Cover
Independent SetJ

NP-hard

Practice
® Many computational problems can be solved extremely fast

® “Modern SAT solvers can often handle problems with millions of clauses and hundreds
Of thOusandS Of Va”abIeS” L“Propagation = Lazy Clause Generation”, Ohrimenko, Stuckey & Codish, CP, 20171

= For many real-world graphs optimal vertex covers (containing up to millions of nodes)
can be found in seconds -

‘Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover”, Akiba & lwata, TCS, 201 61

Average-Case Analysis
m Acknowledge difference between theoretical worst-case instances and practical ones
m Represent real world using mathematical models and analyze those theoretically
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LA graph model describes a mechanism that can be used to generate a graph. ]

Random Graph Models

® Given a set of vertices, how are edges in the graph formed?
@ The model consists of rules defining which vertices are adjacent
® In random graph models these rules involve randomness

Desirable Properties
m Simplicity: We cannot analyze a model that is too complicated

m Realism: We do not want to analyze a model that cannot be used to make predictions
about the real world

m Fast Generation: We want to be able to generate many, large benchmark instances to ...
® analyze structural and algorithmic properties empirically

m generate hypotheses about asymptotic behavior , ,
Let’s start with a simple model!
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Erdos—Rényi Random Graphs
History
| |n|t|a”y introduced by Edgar Gilbert in 1959 L“Random Graphs”, Gilbert, Ann. Math. Statist.,1959]
® A related version introduced by Paul Erdos and Alfréd Rényi in 1959

= =l Gilbert’ d|,th h oft t wh “On Random Graphs I”, Erds & Rényi, Publ. Math. Debr. )
e e A e
G(n, p) “ | G(n, m) \
= Start with n nodes = Start with n nodes
. Indepenplently connect any two with fixed | | m From the (’27) possible edges select m

probability p uniformly at random

= For p = m/(7) the expected number of edges in G(n, §) matches m

® In G(n, p) edges are independent, in G(n, m) they are not v JI35e. Existence of red edges

. . Tk depends on existence of

= If a G(5,6) contains a 4-clique, there can be no edge | "\ 28 et ones.
iIncident to the 5th node number of edges linear in number of nodes

- e green ones.
®m Since many real-world networks are sparse, we focus on p = = for c € ©(1)

-
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ER — Degree of a Vertex

Vertex Degree
® Number of neighbors, number of incident edges
m each of n — 1 potential edges exists with prob. p

® deg(v) ~ Bin(n—1, p) <:Pr[deg(v) — k] = (n;l)pk(l — p)n=1=k

Karlsruhe Institute of Technology

VvV )
o G(n, p)
Independently connect any two
o /! e |nodes with fixed probability p.
o o © S
Lp = =, c € 0(1)

N\

Approximation E[deg(V)] = (n — 1)p & Var[deg(V)] = (n — ].)p(]_ — p) Inconvenient...
Lemma: Let p = = for c € ©(1), let X ~ Bin(n —1, p) and let " ~ Bin(n, p). Then, )
drv (X, V) = o(1).

Proof )

X <ineenent> Y

® Independent /;, ~ Ber(p)forie[n] z 2z z Z: [ z. <l e la o

S X =3 LY =X b X } X' Y’

dTV(X' ) S PF[X’ 7é ] (I;:oupling In?quality f b
c ran ing (X, Y") of X, Y:
=Pr[7, =1 =5 =o(1)v o) SR £V

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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ER — Degree of a Vertex

Vertex Degree 4 G(n, p) b
= Number of neighbors, number of incident edges ~ .-/i*~._ | Independently connect any two

: : : o /' ‘e | nNodes with fixed probability p.
= each of n — 1 potential edges exists with prob. p = ¢ © ]
= deg(v) ~ Bin(n — 1, p) = Prldeg(v) = k] = (7 )p¥(1 = p) 1+ p=fcee
Approximation E[deg(v)] = (n—1)p & Var[deg(v)] = (n = 1)p(1 — p) Inconvenient...

Lemma: Let p = = for c € ©(1), let X ~ Bm(n —1,p) and let ¥ ~ Bin(n, p). Then,
drv(X,Y) = o(1). " And for Z ~ Pois(c + O(%)): drv(X, Z) = o(1).

~N

drv(X,Z) < dry(X,Y)+ drv(Y, Z) Binomial-Poisson-Approximation
= o(1) + 2 Iog(l _ p)z o(1) ~ Bin(n, p), ZwPOls(—2n|og(1—p)):
drv (Y, 7)< 2 log(1—p)>.
*p OGN = 2(6° + 06 A 2D = et :
= g((g) +O(( )*)) Triangle Inequality
_ g_ o( )= o(1) \dTV(X1Z) <drv(X,Y)+drv(V, 2).
® E[Z] = Var[Z] = ¢, much simpler than the above! Taylor p — 0: |og(1—p):—p—0(p2)\

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



12

Karlsruhe Institute of Technology

Conclusion

Coupling
m Define relation between rand. var. to make statements about one using the other

m A coupling of (X, Y) is a pair (X’ ) of random variables in a shared X .y
probability space such that x £ X’ and ¥ £ mdspendent

= Often X’ and @ k > @ ;L \”/Q/

m Examples: Wheel of fortune & Unfair dice N
® Coupling inequality to bound total variation distance

~

Random Graph Models
a Mathematical models represent real-world networks and allow for theoretical analysis
® Desirable properties: simple, realistic, fast to generate

Erdos-Rényi Random Graphs
® G(n, p): Start with n nodes, connect any two with fixed probability p, independently
m [n sparse G(n, p) the degree of a vertex is approximately Poisson-distributed
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Outlook: Degree Distribution vs. Degree Distribution

Distributions
= Probability distribution of the degree of a given vertex in a G(n, <) approaches Pois(c)

® Empirical distribution of the degrees of all vertices in a graph G = (V, E)

Ng = ZvEV ]l{deg(v):d} (normalized: %Nd, for n = |V‘) Homogeneous  Heterogeneous
Characterizing a Distribution g ) finte Al infinite
® Mean: What degree would we expect for a vertex?

m Variance: (very rough intuition) How far would we expect the
degree of a vertex to deviate from the mean?

Frequency
Frequency

Degree Degree
Empirical Distribution of G(n, -) — homogeneous
= - n = 100 s n = 1000 - n = 10000
2 . 2 2
—| C o —C . | g -
T - &) T
I Il I -
a a S
o o o
7 ud 9 10 1 2 1B 1 15 16 17 000 0 1 2 3 4 5 6 7 a 9 10 1 12 13 14 15 16 17 0007 o 1 2 3 4 5 & 7 8 9 10 an 13 14 15 16 17 18 19 20 21 22 23
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