Probability \& Computing

Coupling \& Erdős-Rényi Random Graphs

Wheels of Fortune

The Problem

- Consider the two wheels of fortune
- The higher the value the larger the price
- Which do you spin? Why? Can we prove that?

The Maths

- Let L be the value of the left wheel
- Let R be the value of the right wheel
- To show: For all values k : $\operatorname{Pr}[R \geq k] \geq \operatorname{Pr}[L \geq k]$

Proof

- For each k
- Compute the sums of the probabilities
- Compare
- Tedious...

Wheels of Fortune

The Problem

- Consider the two wheels of fortune
- The higher the value the larger the price
- Which do you spin? Why? Can we prove that?

The Maths

- Let L be the value of the left wheel
- Let R be the value of the right wheel
- To show: For all values $k: \operatorname{Pr}[R \geq k] \geq \operatorname{Pr}[L \geq k]$

Proof: Frankenstein's Wheel of Fortune!

- Sort the wheels (does not change their distributions)
- Adjust sizes and glue together
- Spin as one wheel: L^{\prime} inner number, R^{\prime} outer number
- Note that $L \stackrel{d}{=} L^{\prime}$ and $R \stackrel{d^{\prime}}{=} R^{\prime}$ equal distributions
- But L^{\prime} and R^{\prime} are dependent and always $R^{\prime} \geq L^{\prime}$

What just happened?

Setup \& Method

- Random variable L on the left wheel and R on right wheel
- 1
lle
- Random variable L^{\prime} on inner wheel and R^{\prime} on outer wheel
dependent
L^{\prime} and R^{\prime} are related
- Define a relation between random variables to make statements about one using the other Here: $\operatorname{Pr}\left[R^{\prime} \geq k\right] \geq \operatorname{Pr}\left[L^{\prime} \geq k\right] \Rightarrow \operatorname{Pr}[R \geq k] \geq \operatorname{Pr}[L \geq k]$
Definition: Let X_{1}, X_{2} be random variables defined on probability spaces $\left(\Omega_{1}, \Sigma_{1}, \operatorname{Pr}_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \operatorname{Pr}_{2}\right)$, respectively. A coupling of X_{1} and X_{2} is a pair of random variables $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ defined on a new probability space $(\Omega, \Sigma, \operatorname{Pr})$ such that $X_{1} \stackrel{d}{=} X_{1}^{\prime}$ and $X_{2} \stackrel{d}{=} X_{2}^{\prime}$.
- X_{1}^{\prime} and X_{2}^{\prime} live in the same space
- Typically we define X_{1}^{\prime} and X_{2}^{\prime} to be dependent
- Typically we do not talk about the probability spaces explicitly

Application: Biased Coins

The Problem

- We have a fair $\{0,1\}$-coin that yields 1 with probability $\frac{1}{2} \quad F=\sum$ (0) (1) (0) (0) (0) (1) $=2$
- And an unfair $\{0,1\}$-coin that yields 1 with probability $\frac{2}{3} \quad U=\sum$ (0) (0) (1) (1) (1) (1) $=4$
- Throw each coin n times, count the 1s, yielding F and U
- You pick a coin. You win if your coin gets more 1s than the other. Which do you pick?

Claim $\operatorname{Pr}[U \geq k] \geq \operatorname{Pr}[F \geq k]$
Proof Compare sums for all $k \leq 6$

$$
\text { And if } n=100 \text { ? so many sums... }
$$

Application: Biased Coins

The Problem

- We have a fair $\{0,1\}$-coin that yields 1 with probability $\frac{1}{2}$

$$
\begin{aligned}
& F=\Sigma \text { (0) (1) (0) (0) (0) (1) }=2 \\
& U=\Sigma \text { (0) (0) (1) (1) (1) (1) }=4
\end{aligned}
$$

- And an unfair $\{0,1\}$-coin that yields 1 with probability $\frac{2}{3}$
- Throw each coin n times, count the 1 s, yielding F and U
- You pick a coin. You win if your coin gets more 1 s than the other. Which do you pick?

Claim $\operatorname{Pr}[U \geq k] \geq \operatorname{Pr}[F \geq k]$ Proof

- Let F_{i} be indicator for ith fair coin
- Let U_{i} be indicator for ith unfair coin
- Let W_{i} be the result of a fair die-roll
- Define $F_{i}^{\prime}=1$ iff $W_{i} \leq 3 \Rightarrow F_{i} \stackrel{d}{=} F_{i}^{\prime}$
- Define $U_{i}^{\prime}=1$ iff $W_{i} \leq 4 \Rightarrow U_{i} \stackrel{d}{=} U_{i}^{\prime}$

> Coupling: Random variables X_{1}, X_{2}. Define random variables $X_{1}^{\prime}, X_{2}^{\prime}$ in a shared probability space such that $X_{1} \stackrel{d}{=} X_{1}^{\prime}$ and $X_{2} \stackrel{d}{=} X_{2}^{\prime}$.

- F_{i}^{\prime} and U_{i}^{\prime} are dependent and always $U_{i}^{\prime} \geq F_{i}^{\prime}$

Application: Biased Coins

The Problem

- We have a fair $\{0,1\}$-coin that yields 1 with probability $\frac{1}{2}$ $F=\sum$ (0) (1) (0) (0) (0) (1) $=2$
- And an unfair $\{0,1\}$-coin that yields 1 with probability $\frac{2}{3} \quad U=\sum$ (0) (0) (1) (1) (1) (1) $=4$
- Throw each coin n times, count the 1 s, yielding F and U
- You pick a coin. You win if your coin gets more 1 s than the other. Which do you pick?

Claim $\operatorname{Pr}[U \geq k] \geq \operatorname{Pr}[F \geq k]$

Proof

- Let F_{i} be indicator for ith fair coin
- Let U_{i} be indicator for ith unfair coin
- Let W_{i} be the result of a fair die-roll
- Define $F_{i}^{\prime}=1$ iff $W_{i} \leq 3 \Rightarrow F_{i} \stackrel{d}{=} F_{i}^{\prime} F^{\prime}=\sum_{i=1}^{n} F_{i}^{\prime}$
- Define $U_{i}^{\prime}=1$ iff $W_{i} \leq 4 \Rightarrow U_{i} \stackrel{d}{=} U_{i}^{\prime} U^{\prime}=\sum_{i=1}^{n} U_{i}^{\prime}$
- F_{i}^{\prime} and U_{i}^{\prime} are dependent and always $U_{i}^{\prime} \geq F_{i}^{\prime}$
$\Rightarrow U^{\prime} \geq F^{\prime} \Rightarrow \operatorname{Pr}\left[U^{\prime} \geq k\right] \geq \operatorname{Pr}\left[F^{\prime} \geq k\right]$

Observation: Independent rand. var. X_{i}, Y_{i} for $i \in[n]$ with couplings $\left(X_{i}^{\prime}, Y_{i}^{\prime}\right)$ for $i \in[n]$. Then, for any function $f:\left(f\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right), f\left(Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right)\right)$ is a coupling of $f\left(X_{1}, \ldots, X_{n}\right)$ and $f\left(Y_{1}, \ldots, Y_{n}\right)$.

The Binomial-Poisson-Approximation or "How I Lied To You"

Setup

- Fair $\{0,1\}$-coin X with $\operatorname{Pr}[X=1]=p=\frac{1}{2} \quad$ This is a Bernoulli rand. var. $X \sim \operatorname{Ber}(p)$
- Sum of n ind. coins $F \xlongequal[\sum_{i=1}^{n} X_{i}, X_{i} \sim \operatorname{Ber}(p)]{ }$ This is a Binomial rand. var. $F \sim \operatorname{Bin}(n, p)$
- ... which we have seen today already

$$
\operatorname{Pr}[F=k]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

This is not a binomial distribution! It's a Poisson distribution with $\lambda=50$ $X \sim \operatorname{Pois}(\lambda): \operatorname{Pr}[X=k]=\lambda^{k} e^{-\lambda} / k!$

- Why lie? It was easier to plot that way and I thought you wouldn't notice...
- How dare I? As n increases, the two distributions are very close...

Total Variation Distance

- A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)
Definition: Let X, Y be random variables taking values in a set S. The total variation distance of X and Y is $d_{T V}(X, Y)=\frac{1}{2} \sum_{x \in S}|\operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]|$.
- Intuition: Sum over the differences in the probabilities
- Maybe a bit tedious to work with, simple bound:

Fréchet: $\operatorname{Pr}[A]-\operatorname{Pr}[B] \leq \operatorname{Pr}[A \wedge \bar{B}]$

$$
\begin{aligned}
\mathscr{2} d_{T V}(X, Y) & =\sum_{x \in S}|\operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]| \quad S_{X}=\{x \in S \mid \operatorname{Pr}[X=x] \geq \operatorname{Pr}[Y=x]\} \\
& =\sum_{x \in S_{X}} \nmid \operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x] \nmid+\sum_{x \in S_{Y}} \backslash \operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x] \nmid \\
& =\sum_{x \in S_{X}} \operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]+\sum_{x \in S_{Y}} \operatorname{Pr}[Y=x]-\operatorname{Pr}[X=x] \\
& \leq \sum_{x \in S_{X}} \operatorname{Pr}[X=x \wedge Y \neq x]+\sum_{x \in S_{Y}} \operatorname{Pr}[Y=x \wedge X \neq x] \\
& \leq \sum_{x \in S} \operatorname{Pr}[X=x \wedge Y \neq x]+\sum_{x \in S} \operatorname{Pr}[Y=x \wedge X \neq x] \quad \operatorname{Pr}[X \neq Y] \\
& =\operatorname{Pr}[X \neq Y]+\operatorname{Pr}[Y \neq X]=\not 2 \operatorname{Pr}[X \neq Y]
\end{aligned}
$$

$$
S_{Y}=S \backslash S_{X}
$$

Lemma: $d_{T V}(X, Y) \leq \operatorname{Pr}[X \neq Y]$.

Total Variation Distance

- A measure of distance between the distributions of random variables
(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)
Definition: Let X, Y be random variables taking values in a set S. The total variation distance of X and Y is $d_{T V}(X, Y)=\frac{1}{2} \sum_{x \in S}|\operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]|$.
- Intuition: Sum over the differences in the probabilities
- Maybe a bit tedious to work with, simple bound:

Lemma: $d_{T V}(X, Y) \leq \operatorname{Pr}[X \neq Y]$.

- Note that $d_{T V}$ is defined via the distributions of X and Y
- For any coupling $\left(X^{\prime}, Y^{\prime}\right)$ of X, Y we have $X^{\prime} \stackrel{d}{=} X$ and $Y^{\prime} \stackrel{d}{=} Y$. Thus, $d_{T V}(X, Y)=d_{T V}\left(X^{\prime}, Y^{\prime}\right)$

Lemma (coupling inequality): Let X, Y be random variables. Then for any coupling $\left(X^{\prime}, Y^{\prime}\right)$ of X and Y it holds that $d_{T V}(X, Y) \leq \operatorname{Pr}\left[X^{\prime} \neq Y^{\prime}\right]$.

Lemma (triangle inequality): For rand. var. $X, Y, Z: d_{T V}(X, Z) \leq d_{T V}(X, Y)+d_{T V}(Y, Z)$.

The Binomial-Poisson-Approximation

- Ind. $X_{i} \sim \operatorname{Ber}(p)$ for $i \in[n] \longrightarrow X=\sum_{i=1}^{n} X_{i} \longrightarrow \sim \operatorname{Bin}(n, p)$
\square Ind. $Y_{i} \sim \operatorname{Pois}(\lambda)$ for $i \in[n], \lambda=-\log (1-p) \longrightarrow Y=\sum_{i=1}^{n} Y_{i} \longrightarrow \mathcal{P o i s}(n \lambda)$
Lemma: $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Pois}(-n \log (1-p)): d_{T V}(X, Y) \leq \frac{n}{2} \log (1-p)^{2}$.

$$
\operatorname{Pr}\left[Y_{i}=k\right]=e^{-\lambda} \lambda^{k} / k!
$$

Proof

- For each i we couple Y_{i} and $X_{i}: Y_{i}^{\prime}=Y_{i}, X_{i}^{\prime}=\min \left\{Y_{i}^{\prime}, 1\right\}$
- To show that this is a coupling, we need $X_{i} \stackrel{d}{=} X_{i}^{\prime}$

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{i}^{\prime}=0\right]=\operatorname{Pr}\left[Y_{i}=0\right]=e^{-\lambda}=e^{\log (1-p)}=1-p=\operatorname{Pr}\left[X_{i}=0\right] \checkmark \\
& \operatorname{Pr}\left[X_{i}^{\prime}=1\right]=\operatorname{Pr}\left[Y_{i}>0\right]=1-\operatorname{Pr}\left[Y_{i}=0\right]=1-\operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

- $X^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}, Y^{\prime}=\sum_{i=1}^{n} Y_{i}^{\prime} \Rightarrow\left(X^{\prime}, Y^{\prime}\right)$ coupling of (X, Y)

Function of Couplings

Couplings $\left(X_{i}^{\prime}, Y_{i}^{\prime}\right)$ of $\left(X_{i}, Y_{i}\right)$

$$
\begin{aligned}
& d_{T V}(X, Y) \leq \operatorname{Pr}\left[X^{\prime} \neq Y^{\prime}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}^{\prime} \neq Y_{i}^{\prime}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[Y_{i}^{\prime} \geq 2\right] \\
& =\sum_{i=1}^{n} e^{\text {union bound }} e^{-\lambda} \sum_{j \geq 2} \frac{\lambda^{j}}{j!} \leq \sum_{i=1}^{n} \frac{\lambda^{2}}{2} e^{\nearrow \chi} \underbrace{\sum_{j j 0} \frac{\lambda^{\top}}{j!}}_{=e^{\lambda}}=\sum_{i=1}^{n} \frac{\lambda^{2}}{2} \checkmark
\end{aligned}
$$

Coupling Inequality

For any coupling $\left(X^{\prime}, Y^{\prime}\right)$ of X, Y : $d_{T V}(X, Y) \leq \operatorname{Pr}\left[X^{\prime} \neq Y^{\prime}\right]$.

Recap: Theory-Practice Gap

Theory

- Many computational problems are assumed to be hard

Practice

- Many computational problems can be solved extremely fast
- "Modern SAT solvers can often handle problems with millions of clauses and hundreds of thousands of variables"
"Propagation = Lazy Clause Generation", Ohrimenko, Stuckey \& Codish, CP, 2017
- For many real-world graphs optimal vertex covers (containing up to millions of nodes) can be found in seconds

[^0]
Average-Case Analysis

- Acknowledge difference between theoretical worst-case instances and practical ones
- Represent real world using mathematical models and analyze those theoretically

Random Graph Models

A graph model describes a mechanism that can be used to generate a graph.

- Given a set of vertices, how are edges in the graph formed?
- The model consists of rules defining which vertices are adjacent
- In random graph models these rules involve randomness

Desirable Properties

- Simplicity: We cannot analyze a model that is too complicated
- Realism: We do not want to analyze a model that cannot be used to make predictions about the real world
- Fast Generation: We want to be able to generate many, large benchmark instances to ...
- analyze structural and algorithmic properties empirically
- generate hypotheses about asymptotic behavior

Erdős-Rényi Random Graphs

History

- Initially introduced by Edgar Gilbert in 1959
- A related version introduced by Paul Erdős and Alfréd Rényi in 1959

Definitions
 Gilbert's model, though often meant when
 talking about Erdős-Rényi graphs

$$
G(n, p)
$$

- Start with n nodes
- Independently connect any two with fixed probability p

$$
G(n, m)
$$

- Start with n nodes
- From the $\binom{n}{2}$ possible edges select m uniformly at random
- For $\tilde{p}=m /\binom{n}{2}$ the expected number of edges in $G(n, \tilde{p})$ matches m
- In $G(n, p)$ edges are independent, in $G(n, m)$ they are not
- If a $G(5,6)$ contains a 4 -clique, there can be no edge incident to the 5th node
number of edges linear in number of nodes

- Since many real-world networks are sparse, we focus on $p=\frac{c}{n}$ for $c \in \Theta(1)$

ER - Degree of a Vertex

Vertex Degree

- Number of neighbors, number of incident edges
- each of $n-1$ potential edges exists with prob. p

$G(n, p)$
Independently connect any two nodes with fixed probability p.
$-\operatorname{deg}(v) \sim \operatorname{Bin}(n-1, p) \longrightarrow \operatorname{Pr}[\operatorname{deg}(v)=k]=\binom{n-1}{k} p^{k}(1-p)^{\bullet-1-k}$

$$
p=\frac{c}{n}, c \in \Theta(1)
$$

Approximation

$$
\mathbb{E}[\operatorname{deg}(v)]=(n-1) p \& \operatorname{Var}[\operatorname{deg}(v)]=(n-1) p(1-p) \text { Inconvenient... }
$$

Lemma: Let $p=\frac{c}{n}$ for $c \in \Theta(1)$, let $X \sim \operatorname{Bin}(n-1, p)$ and let $Y \sim \operatorname{Bin}(n, p)$. Then, $d_{T V}(X, Y)=o(1)$.

Proof

- Independent $Z_{i} \sim \operatorname{Ber}(p)$ for $i \in\left[\begin{array}{lllllllll}n] & z_{1} & z_{2} & z_{3} & \cdots & z_{n-1} & z_{n}\end{array}\right.$
- $X^{\prime}=\sum_{i=1}^{n-1} Z_{i}, Y^{\prime}=X^{\prime}+Z_{n}$

$$
\begin{aligned}
d_{T V}(X, Y) & \leq \operatorname{Pr}\left[X^{\prime} \neq Y^{\prime}\right] \\
& =\operatorname{Pr}\left[Z_{n}=1\right]=\frac{c}{n}=o(1)
\end{aligned}
$$

ER - Degree of a Vertex

Vertex Degree

- Number of neighbors, number of incident edges
- each of $n-1$ potential edges exists with prob. p
$G(n, p)$
Independently connect any two nodes with fixed probability p.
- $\operatorname{deg}(v) \sim \operatorname{Bin}(n-1, p) \longrightarrow \operatorname{Pr}[\operatorname{deg}(v)=k]=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$

$$
p=\frac{c}{n}, c \in \Theta(1)
$$

Approximation

$$
\mathbb{E}[\operatorname{deg}(v)]=(n-1) p \& \operatorname{Var}[\operatorname{deg}(v)]=(n-1) p(1-p) \text { Inconvenient... }
$$

Lemma: Let $p=\frac{c}{n}$ for $c \in \Theta(1)$, let $X \sim \operatorname{Bin}(n-1, p)$ and let $Y \sim \operatorname{Bin}(n, p)$. Then, $d_{T V}(X, Y)=o(1)$. And for $Z \sim \operatorname{Pois}\left(c+O\left(\frac{1}{n}\right)\right): d_{T V}(X, Z)=o(1)$.

$$
\begin{aligned}
& d_{T V}(X, Z) \leq d_{T V}(X, Y)+d_{T V}(Y, Z) \\
&=o(1)+\frac{n}{2} \log (1-p)^{2}=o(1) \\
&\left.\frac{n}{2}\left(-p-O\left(p^{2}\right)\right)\right)^{2}=\frac{n}{2}\left(p^{2}+O\left(p^{3}\right)\right) \\
&=\frac{n}{2}\left(\left(\frac{c}{n}\right)^{2}+O\left(\left(\frac{c}{n}\right)^{3}\right)\right) \\
&=\frac{c^{2}}{2 n}+O\left(\frac{c^{3}}{n^{2}}\right)=o(1)
\end{aligned}
$$

Binomial-Poisson-Approximation

$$
Y \sim \operatorname{Bin}(n, p), Z \sim \operatorname{Pois}(-n \log (1-p)):
$$

$$
d_{T V}(Y, Z) \leq \frac{n}{2} \log (1-p)^{2} .
$$

$$
\begin{aligned}
& \text { Triangle Inequality } \\
& d_{T V}(X, Z) \leq d_{T V}(X, Y)+d_{T V}(Y, Z) .
\end{aligned}
$$

- $\mathbb{E}[Z]=\operatorname{Var}[Z] \approx c$, much simpler than the above!

Taylor $p \rightarrow 0: \log (1-p)=-p-O\left(p^{2}\right)$

Conclusion

Coupling

- Define relation between rand. var. to make statements about one using the other
- A coupling of (X, Y) is a pair $\left(X^{\prime}, Y^{\prime}\right)$ of random variables in a shared probability space such that $X \stackrel{d}{=} X^{\prime}$ and $Y \stackrel{d}{=} Y^{\prime}$
- Often X^{\prime} and Y^{\prime} dependent
- Examples: Wheel of fortune \& Unfair dice

- Coupling inequality to bound total variation distance

Random Graph Models

- Mathematical models represent real-world networks and allow for theoretical analysis
- Desirable properties: simple, realistic, fast to generate

Erdős-Rényi Random Graphs

- $G(n, p)$: Start with n nodes, connect any two with fixed probability p, independently
- In sparse $G(n, p)$ the degree of a vertex is approximately Poisson-distributed

Outlook: Degree Distribution vs. Degree Distribution

Distributions

- Probability distribution of the degree of a given vertex in a $G\left(n, \frac{c}{n}\right)$ approaches Pois(c)
- Empirical distribution of the degrees of all vertices in a graph $G=(V, E)$ $N_{d}=\sum_{v \in V} \mathbb{1}_{\{\operatorname{deg}(v)=d\}} \quad$ (normalized: $\frac{1}{n} N_{d}$, for $n=|V|$)

Characterizing a Distribution

- Mean: What degree would we expect for a vertex?
- Variance: (very rough intuition) How far would we expect the degree of a vertex to deviate from the mean?

Empirical Distribution of $\boldsymbol{G}\left(\boldsymbol{n}, \frac{c}{n}\right) \rightarrow$ homogeneous

[^0]: "Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover", Akiba \& Iwata, TCS, 2016

