

Probability & Computing

Coupling & Erdős-Rényi Random Graphs

Karlsruhe Institute of Technology

For each k

The Problem

The Maths

Proof

Wheels of Fortune

Consider the two wheels of fortune

Let L be the value of the left wheel

Let R be the value of the right wheel

The higher the value the larger the price

Which do you spin? Why? Can we prove that?

• To show: For all values k: $\Pr[R \ge k] \ge \Pr[L \ge k]$

- Compute the sums of the probabilities
- Compare
- Tedious...

Wheels of Fortune

The Problem

- Consider the two wheels of fortune
- The higher the value the larger the price
- Which do you spin? Why? Can we prove that?

The Maths

- Let L be the value of the left wheel
- Let R be the value of the right wheel
- To show: For all values k: $\Pr[R \ge k] \ge \Pr[L \ge k]$

Proof: Frankenstein's Wheel of Fortune!

- Sort the wheels (does not change their distributions)
- Adjust sizes and glue together
- Spin as one wheel: L' inner number, R' outer number
- Note that $L \stackrel{d}{=} L'$ and $R \stackrel{d}{=} \stackrel{r}{R'}$ equal distributions
- But *L'* and *R'* are dependent and always $R' \ge L'$ $\Rightarrow \Pr[R' \ge k] \ge \Pr[L' \ge k]$

Karlsruhe Institute of Technology

What just happened?

Definition: Let X_1 , X_2 be random variables defined on probability spaces $(\Omega_1, \Sigma_1, \Pr_1)$ and $(\Omega_2, \Sigma_2, \Pr_2)$, respectively. A **coupling** of X_1 and X_2 is a pair of random variables (X'_1, X'_2) defined on a new probability space (Ω, Σ, \Pr) such that $X_1 \stackrel{d}{=} X'_1$ and $X_2 \stackrel{d}{=} X'_2$.

- X'_1 and X'_2 live in the same space
- Typically we define X'_1 and X'_2 to be dependent
- Typically we do not talk about the probability spaces explicitly

Abstracting away technicalities, people just "couple" X₁ and X₂ "directly", without introducing X'₁ and X'₂

Application: Biased Coins

The Problem

- We have a fair $\{0, 1\}$ -coin that yields 1 with probability $\frac{1}{2}$
- And an unfair $\{0, 1\}$ -coin that yields 1 with probability $\frac{2}{3}$
- Throw each coin *n* times, count the 1s, yielding F and U
- You pick a coin. You win if your coin gets more 1s than the other. Which do you pick? **Claim** $\Pr[U \ge k] \ge \Pr[F \ge k]$ **Proof** Compare sums for all $k \le 6$ And if n = 100? so many sums...

 $U = \sum (0)$

• We have a fair $\{0, 1\}$ -coin that yields 1 with probability $\frac{1}{2}$

Application: Biased Coins

- And an unfair $\{0, 1\}$ -coin that yields 1 with probability $\frac{2}{3}$
- Throw each coin n times, count the 1s, yielding F and U
- You pick a coin. You win if your coin gets more 1s than the other. Which do you pick? **Claim** $\Pr[U \ge k] \ge \Pr[F \ge k]$ **Coupling**: Random variables X_1, X_2 . Define random variables X'_1, X'_2 in a shared probability space such that $X_1 \stackrel{d}{=} X'_1$ and $X_2 \stackrel{d}{=} X'_2$

Proof

The Problem

- Let F_i be indicator for ith fair coin
- Let U_i be indicator for *i*th unfair coin
- Let W_i be the result of a fair die-roll
 - Define $F'_i = 1$ iff $W_i < 3 \Rightarrow F_i \stackrel{d}{=} F'_i$

• Define
$$U'_i = 1$$
 iff $W_i \le 4 \Rightarrow U_i \stackrel{d}{=} U'_i$

 \blacksquare F'_i and U'_i are dependent and always $U'_i \ge F'_i$

$$F = \sum_{i=1}^{i} 0 (1) (0) (0) (1) = 2$$
$$U = \sum_{i=1}^{i} 0 (0) (1) (1) (1) (1) = 4$$

$$V_{i} \bullet \bullet \bullet \downarrow f_{i} \bullet \downarrow$$

• We have a fair $\{0, 1\}$ -coin that yields 1 with probability $\frac{1}{2}$

- And an unfair $\{0, 1\}$ -coin that yields 1 with probability $\frac{2}{3}$
- Throw each coin n times, count the 1s, yielding F and U
- You pick a coin. You win if your coin gets more 1s than the other. Which do you pick? Claim $\Pr[U > k] > \Pr[F > k]$

 $F = \sum_{i=1}^{n} F_i$

 $U = \sum_{i=1}^{n} U_i$

Proof

- Let F_i be indicator for ith fair coin
- Let U_i be indicator for *i*th unfair coin
- Let W_i be the result of a fair die-roll
 - Define $F'_i = 1$ iff $W_i \leq 3 \Rightarrow F_i \stackrel{d}{=} F'_i \mid F' = \sum_{i=1}^n F'_i$

Define
$$U'_i = 1$$
 iff $W_i \le 4 \Rightarrow U_i \stackrel{d}{=} U'_i \mid U' = \sum_{i=1}^n V_i$

 \blacksquare F'_i and U'_i are dependent and always $U'_i \ge F'_i$ $\Rightarrow U' \ge F' \Rightarrow \Pr[U' \ge k] \ge \Pr[F' > k]$

Application: Biased Coins

Coupling: Random variables X_1, X_2 . Define random variables X'_1, X'_2 in a shared probability space such that $X_1 \stackrel{d}{=} X'_1$ and $X_2 \stackrel{d}{=} X'_2$. independent independent 10 $\| \boldsymbol{\sigma} \|$ F'**Observation**: Independent rand. var. X_i , Y_i for $i \in [n]$ with couplings (X'_i, Y'_i) for $i \in [n]$. Then, for any function $f: (f(X'_1, ..., X'_n), f(Y'_1, ..., Y'_n))$

is a coupling of $f(X_1, ..., X_n)$ and $f(Y_1, ..., Y_n)$.

U =

(0)

The Binomial-Poisson-Approximation or "How I Lied To You"

Setup • Fair {0, 1}-coin X with $Pr[X = 1] = p = \frac{1}{2}$ This is a Bernoulli rand. var. $X \sim Ber(p)$ • Sum of *n* ind. coins $F = \sum_{i=1}^{n} X_i$, $X_i \sim \text{Ber}(p)$ This is a Binomial rand. var. $F \sim \text{Bin}(n, p)$ $\Pr[F = k] = \binom{n}{k} p^k (1-p)^{n-k}$ • ... which we have seen today already 0.3 f n = 6 $\Pr[F = k] = 0.003$ n = 100This is not a binomial distribution! 0.2 0.002 It's a Poisson distribution with $\lambda = 50$ $X \sim \text{Pois}(\lambda)$: $\Pr[X = k] = \lambda^k e^{-\lambda}/k!$ 0.10.001 10 20 30 40 50 60 70 80 90 100 K 0 2

Why lie? It was easier to plot that way and I thought you wouldn't notice...
 How dare I? As n increases, the two distributions are very close...

What does that mean?

Total Variation Distance

A measure of distance between the distributions of random variables

(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Definition: Let *X*, *Y* be random variables taking values in a set *S*. The **total variation distance** of *X* and *Y* is $d_{TV}(X, Y) = \frac{1}{2} \sum_{x \in S} |\Pr[X = x] - \Pr[Y = x]|$.

Total Variation Distance

A measure of distance between the distributions of random variables

(Disclaimer: In the following we use a very simplified notation that abstracts away a lot of details!)

Definition: Let *X*, *Y* be random variables taking values in a set *S*. The **total variation distance** of *X* and *Y* is $d_{TV}(X, Y) = \frac{1}{2} \sum_{x \in S} |\Pr[X = x] - \Pr[Y = x]|$.

Intuition: Sum over the differences in the probabilities
Maybe a bit tedious to work with, simple bound:

Fréchet: $\Pr[A] - \Pr[B] \leq \Pr[A \land \overline{B}]$

Lemma: $d_{TV}(X, Y) \leq \Pr[X \neq Y]$.

• Note that d_{TV} is defined via the distributions of X and Y

• For any coupling (X', Y') of X, Y we have $X' \stackrel{d}{=} X$ and $Y' \stackrel{d}{=} Y$. Thus, $d_{TV}(X, Y) = d_{TV}(X', Y')$

Lemma (coupling inequality): Let *X*, *Y* be random variables. Then for any coupling (X', Y') of *X* and *Y* it holds that $d_{TV}(X, Y) \leq \Pr[X' \neq Y']$.

Lemma (triangle inequality): For rand. var. X, Y, Z: $d_{TV}(X, Z) \leq d_{TV}(X, Y) + d_{TV}(Y, Z)$.

The Binomial-Poisson-Approximation

Recap: Theory-Practice Gap

Theory

- Many computational problems are assumed to be hard
- Looks like there are no algorithms that can solve these problems fast

Practice

- Many computational problems can be solved extremely fast
 - "Modern SAT solvers can often handle problems with millions of clauses and hundreds" of thousands of variables" "Propagation = Lazy Clause Generation", Ohrimenko, Stuckey & Codish, CP, 2017
 - For many real-world graphs optimal vertex covers (containing up to millions of nodes) can be found in seconds "Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover", Akiba & Iwata, TCS, 2016

Average-Case Analysis

- Acknowledge difference between theoretical worst-case instances and practical ones
- Represent real world using mathematical models and analyze those theoretically

Vertex Cover

Independent Set

NP-hard

SAT

Random Graph Models

A graph model describes a mechanism that can be used to generate a graph.

- Given a set of vertices, how are edges in the graph formed?
- The model consists of *rules* defining which vertices are adjacent
- In random graph models these rules involve randomness

Desirable Properties

- Simplicity: We cannot analyze a model that is too complicated
- Realism: We do not want to analyze a model that cannot be used to make predictions about the real world
- Fast Generation: We want to be able to generate many, large benchmark instances to ...
 - analyze structural and algorithmic properties empirically
 - generate hypotheses about asymptotic behavior

Let's start with a simple model!

Erdős–Rényi Random Graphs

Initially introduced by Edgar Gilbert in 1959 "Random Graphs", Gilbert, Ann. Math. Statist., 1959 A related version introduced by Paul Erdős and Alfréd Rényi in 1959 Gilbert's model, though often meant when "On Random Graphs I", Erdős & Rényi, Publ. Math. Debr., 1959 **Definitions** talking about Erdős–Rényi graphs G(n,m)G(n, p)Start with n nodes Start with n nodes Independently connect any two with fixed • From the $\binom{n}{2}$ possible edges select m probability p uniformly at random • For $\tilde{p} = m/\binom{n}{2}$ the *expected* number of edges in $G(n, \tilde{p})$ matches m In G(n, p) edges are independent, in G(n, m) they are not Existence of red edges depends on existence of • If a G(5, 6) contains a 4-clique, there can be no edge green ones. incident to the 5th node number of edges linear in number of nodes

• Since many real-world networks are *sparse*, we focus on $p = \frac{c}{n}$ for $c \in \Theta(1)$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

 $n - \stackrel{c}{=} c \in \Theta(1)$

ER – Degree of a Vertex

Vertex Degree

Number of neighbors, number of incident edges

• each of n-1 potential edges exists with prob. p

• $\deg(v) \sim \operatorname{Bin}(n-1,p) \longrightarrow \operatorname{Pr}[\operatorname{deg}(v) = k] = \binom{n-1}{k} p^k (1-p)^{n-1-k}$

Approximation

$$\mathbb{E}[\deg(v)] = (n - 1)p \& \operatorname{Var}[\deg(v)] = (n - 1)p(1 - p) \operatorname{Inconvenient...}$$

G(n, p)

Independently connect any two

nodes with fixed probability p.

Lemma: Let $p = \frac{c}{n}$ for $c \in \Theta(1)$, let $X \sim Bin(n-1, p)$ and let $Y \sim Bin(n, p)$. Then, $d_{TV}(X, Y) = o(1)$.

Proof

 $p=\frac{c}{r}, c\in\Theta(1)$

ER – Degree of a Vertex

Vertex Degree

Number of neighbors, number of incident edges

• each of n-1 potential edges exists with prob. p

 $deg(v) \sim Bin(n-1,p) \longrightarrow Pr[deg(v) = k] = \binom{n-1}{k} p^k (1-p)^{n-1-k}$

Approximation

$$\mathbb{E}[\deg(v)] = (n-1)p \& \operatorname{Var}[\deg(v)] = (n-1)p(1-p) \text{ Inconvenient...}$$

G(n, p)

Lemma: Let $p = \frac{c}{n}$ for $c \in \Theta(1)$, let $X \sim Bin(n-1, p)$ and let $Y \sim Bin(n, p)$. Then, $d_{TV}(X, Y) = o(1)$. And for $Z \sim Pois(c + O(\frac{1}{n}))$: $d_{TV}(X, Z) = o(1)$.

$$d_{TV}(X, Z) \leq d_{TV}(X, Y) + d_{TV}(Y, Z)$$

= $o(1) + \frac{n}{2} \log(1-p)^2 = o(1)$
 $\frac{n}{2}(-p - O(p^2)))^2 = \frac{n}{2}(p^2 + O(p^3))$
 $= \frac{n}{2}((\frac{c}{n})^2 + O((\frac{c}{n})^3))$
 $= \frac{c^2}{2n} + O(\frac{c^3}{n^2}) = o(1)$

• $\mathbb{E}[Z] = Var[Z] \approx c$, much simpler than the above!

Binomial-Poisson-Approximation $Y \sim Bin(n, p), Z \sim Pois(-n log(1-p)):$ $d_{TV}(Y, Z) \leq \frac{n}{2} log(1-p)^2.$

Independently connect any two

nodes with fixed probability p.

Triangle Inequality $d_{TV}(X, Z) \leq d_{TV}(X, Y) + d_{TV}(Y, Z).$

Taylor $p \rightarrow 0$: log $(1-p) = -p - O(p^2)$

youtube.com/watch?v=3d6DsjIBzJ4

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Conclusion

Coupling

- Define relation between rand. var. to make statements about one using the other
- A coupling of (X, Y) is a pair (X', Y') of random variables in a shared probability space such that $X \stackrel{d}{=} X'$ and $Y \stackrel{d}{=} Y'$
- Often X' and Y' dependent
- Examples: Wheel of fortune & Unfair dice
- Coupling inequality to bound total variation distance

Random Graph Models

- Mathematical models represent real-world networks and allow for theoretical analysis
- Desirable properties: simple, realistic, fast to generate

Erdős-Rényi Random Graphs

- G(n, p): Start with *n* nodes, connect any two with fixed probability *p*, independently
- In sparse G(n, p) the degree of a vertex is approximately Poisson-distributed

• Probability distribution of the degree of a *given* vertex in a $G(n, \frac{c}{n})$ approaches $\frac{Pois(c)}{r}$ • Empirical distribution of the degrees of all vertices in a graph G = (V, E)

 $N_d = \sum_{v \in V} \mathbb{1}_{\{\deg(v)=d\}}$ (normalized: $\frac{1}{n}N_d$, for n = |V|) **Characterizing a Distribution**

- Mean: What degree would we expect for a vertex?
- Variance: (very rough intuition) How far would we expect the degree of a vertex to deviate from the mean?

Outlook: Degree Distribution vs. Degree Distribution

Empirical Distribution of $G(n, \frac{c}{n}) \rightarrow \text{homogeneous}$

Frequency

Homogeneous

Frequency

Pr[X

finite

Heterogeneous

infinite

Distributions

 $\frac{1}{n}N_d$

d],

Pr[X