Probability and Computing – Cuckoo Hashing

Stefan Walzer, Maximilian Katzmann | WS 2023/2024
Probability and Computing – Cuckoo Hashing

Stefan Walzer, Maximilian Katzmann | WS 2023/2024
Probability and Computing – Cuckoo Hashing

Stefan Walzer, Maximilian Katzmann | WS 2023/2024
1. Cuckoo Hashing
 - Algorithm
 - Analysis
Cuckoo Hashing

Setup

- \(S \subseteq D \) key set of size \(n \)
- \(T_0, T_1 \) two tables of size \(m \)
- \(h_0, h_1 \sim U([m]^D) \) two hash functions (SUHA)
- \(\frac{n}{m} = 1 - \beta \) for some \(\beta > 0 \)
- (△ load factor \(\alpha = \frac{n}{2m} \))

\[
\begin{align*}
T_1 : & \quad \perp \perp a \quad d \quad \perp \perp \perp \\
T_0 : & \quad \perp \perp \perp \perp \perp b \quad \perp \perp
\end{align*}
\]

Algorithm lookup(x):

- return \(x \in \{ T_0[h_0(x)], T_1[h_1(x)] \} \)

Algorithm delete(x):

- if \(T_0[h_0(x)] = x \) then
 - \(T_0[h_0(x)] \leftarrow \perp \)
- else if \(T_1[h_1(x)] = x \) then
 - \(T_1[h_1(x)] \leftarrow \perp \)

Algorithm insert(x):

- for \(i = 0 \) to LIMIT do
 - \(b \leftarrow i \mod 2 \)
 - swap(\(x, T_b[h_b(x)] \))
 - if \(x = \perp \) then
 - return SUCCESS
 - return FAILURE
Cuckoo Hashing

Setup

- \(S \subseteq D \) key set of size \(n \)
- \(T_0, T_1 \) two tables of size \(m \)
- \(h_0, h_1 \sim \mathcal{U}([m]^D) \) two hash functions (SUHA)
- \(\frac{n}{m} = 1 - \beta \) for some \(\beta > 0 \)
- (load factor \(\alpha = \frac{n}{2m} \))

Algorithm lookup(\(x \)):

- return \(x \in \{ T_0[h_0(x)], T_1[h_1(x)] \} \)

Algorithm delete(\(x \)):

- if \(T_0[h_0(x)] = x \) then
 - \(T_0[h_0(x)] \leftarrow \bot \)
- else if \(T_1[h_1(x)] = x \) then
 - \(T_1[h_1(x)] \leftarrow \bot \)

Algorithm insert(\(x \)):

- for \(i = 0 \) to LIMIT do
 - \(b \leftarrow i \mod 2 \)
 - swap(\(x, T_b[h_b(x)] \))
 - if \(x = \bot \) then
 - return SUCCESS
 - return FAILURE
Cuckoo Hashing

Algorithm lookup(x):
\[
\text{return } x \in \{ T_0[h_0(x)], T_1[h_1(x)] \}
\]

Algorithm delete(x):
\[
\begin{align*}
&\text{if } T_0[h_0(x)] = x \text{ then} \\
&T_0[h_0(x)] \leftarrow \bot
\end{align*}
\]
\[
\begin{align*}
&\text{else if } T_1[h_1(x)] = x \text{ then} \\
&T_1[h_1(x)] \leftarrow \bot
\end{align*}
\]

Algorithm insert(x):
\[
\begin{align*}
&\text{for } i = 0 \text{ to LIMIT do} \\
&b \leftarrow i \mod 2 \\
&\text{swap}(x, T_b[h_b(x)]) \\
&\text{if } x = \bot \text{ then} \\
&\text{return SUCCESS} \\
&\text{return FAILURE}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \subseteq D) key set of size (n)</td>
</tr>
<tr>
<td>(T_0, T_1) two tables of size (m)</td>
</tr>
<tr>
<td>(h_0, h_1 \sim \mathcal{U}(\lbrack m \rbrack^D)) two hash functions (SUHA)</td>
</tr>
<tr>
<td>(\frac{n}{m} = 1 - \beta) for some (\beta > 0)</td>
</tr>
<tr>
<td>(load factor (\alpha = \frac{n}{2m}))</td>
</tr>
</tbody>
</table>

- **\(T_0 \):**
 - \(\bot \quad \bot \quad \text{a} \quad \text{d} \quad \bot \quad \bot \quad \bot \)

- **\(T_1 \):**
 - \(\text{a} \quad \text{b} \quad \text{d} \quad \text{e} \)
Cuckoo Hashing

Setup

- $S \subseteq D$, key set of size n
- T_0, T_1, two tables of size m
- $h_0, h_1 \sim \mathcal{U}([m]^D)$, two hash functions (SUHA)
- $\frac{n}{m} = 1 - \beta$, for some $\beta > 0$
- \triangle load factor $\alpha = \frac{n}{2m}$

Algorithm lookup(x):

```
return x ∈ \{T_0[h_0(x)], T_1[h_1(x)]\}
```

Algorithm delete(x):

```
if T_0[h_0(x)] = x then
  T_0[h_0(x)] ← ⊥
else if T_1[h_1(x)] = x then
  T_1[h_1(x)] ← ⊥
```

Algorithm insert(x):

```
for i = 0 to LIMIT do
  b ← i mod 2
  swap(x, T_b[h_b(x)])
  if x = ⊥ then
    return SUCCESS
return FAILURE
```
Cuckoo Hashing

Setup

- $S \subseteq D$ (key set of size n
- T_0, T_1 (two tables of size m
- $h_0, h_1 \sim \mathcal{U}([m]^D)$ (two hash functions (SUHA)
- $\frac{n}{m} = 1 - \beta$ (for some $\beta > 0$

\[\Delta \text{ load factor } \alpha = \frac{n}{2m} \]

Algorithm lookup(x):
- return $x \in \{ T_0[h_0(x)], T_1[h_1(x)] \}$

Algorithm delete(x):
- if $T_0[h_0(x)] = x$ then
 - $T_0[h_0(x)] \leftarrow \perp$
- else if $T_1[h_1(x)] = x$ then
 - $T_1[h_1(x)] \leftarrow \perp$

Algorithm insert(x):
- for $i = 0$ to LIMIT do
 - $b \leftarrow i \mod 2$
 - swap($x, T_b[h_b(x)]$)
 - if $x = \perp$ then
 - return SUCCESS
 - return FAILURE
Cuckoo Hashing Theorem

Algorithm insert(x):

for $i = 0$ to LIMIT do

$b \leftarrow i \mod 2$

swap(x, $T_b[h_b(x)]$)

if $x = \bot$ then

\[\text{return } \text{SUCCESS} \]

return FAILURE

Theorem (Analysis with $\text{LIMIT} = \infty$)

Assume we insert all $x \in S$ and then another key y. Let E be the event that this succeeds and

\[
T = \begin{cases}
\text{insertion time of } y & \text{if } E \text{ occurs} \\
0 & \text{otherwise}
\end{cases}
\]

Then

\[\mathbb{P}[E] = 1 - O(1/m) \]

and

\[\mathbb{E}[T] = O(1) \]

Theorem (full analysis, not here)

If we

- set $\text{LIMIT} = \Omega(\log n)$ appropriately
- rebuild the table with fresh hash functions when LIMIT is reached

we obtain a hash table where lookup and delete take $O(1)$ time and insert takes expected $O(1)$ time.
The Cuckoo Graph

Consider the bipartite *cuckoo graph*

\[G = ([m], [m], \{(h_0(x), h_1(x)) | x \in S\}) \]

the key \(x\) corresponds to the edge \((h_0(x), h_1(x))\) and each table position to a vertex.
Proof of i: Success probability is $1 - \mathcal{O}(1/m)$

Assume \tilde{E} occurs, i.e. an insertion fails due to an infinite loop. Let $G^* = (V^*, E^*)$ be the subgraph of G with

- V^*: table positions touched infinitely often
- E^*: keys touched infinitely often.

Properties of G^*:

- connected
- $|E^*| = |V^*| + 1$ can you see why?
- $\text{deg}_{E^*}(v) \geq 2$.

Possibilities for G^*

There are three options:

In all three cases: Simple path through $|V^*|$ and two extra edges connecting inwards:
Assume \bar{E} occurs, i.e. an insertion fails due to an infinite loop. Let $G^* = (V^*, E^*)$ be the subgraph of G with
- V^*: table positions touched infinitely often
- E^*: keys touched infinitely often.

Properties of G^*:
- connected
- $|E^*| = |V^*| + 1$ can you see why?
- $\deg_{E^*}(v) \geq 2$.

Possibilities for G^*
There are three options:

In all three cases: Simple path through $|V^*|$ and two extra edges connecting inwards.
Proof of i: Success probability is $1 - \mathcal{O}(1/m)$

$\Pr[\bar{E}] = \Pr[\exists \text{path as shown}]$

$= \Pr[\exists k \in \mathbb{N} : \exists x_0, \ldots, x_{k+1} \in S : x_0, \ldots, x_{k+1} \text{ form a path as shown}]$

union bound

$\leq \sum_{k=1}^{n} \sum_{x_0, \ldots, x_{k+1} \in S} \Pr[x_0, \ldots, x_{k+1} \text{ form a path as shown}]$

$\leq \sum_{k=1}^{n} n^{k+2} \cdot 2 \cdot \frac{1}{m^{k+1}} \cdot \left(\frac{k+1}{2m} \right)^2$

$\leq \frac{1}{2} \sum_{k=1}^{n} m^{k+2-k-1-2} (1 - \beta)^{k+2} (k + 1)^2$

$\leq \frac{1}{2m} \sum_{k=1}^{\infty} (1 - \beta)^{k+2} (k + 1)^2 = \frac{1}{m} \cdot \mathcal{O}(\frac{1}{\beta^3}) = \frac{1}{m} \cdot \mathcal{O}(1)$
Proof of (i): Success probability is $1 - \mathcal{O}(1/m)$

\[
\Pr[\tilde{E}] = \Pr[\exists \text{path as shown}]
= \Pr[\exists k \in \mathbb{N} : \exists x_0, \ldots, x_{k+1} \in S : x_0, \ldots, x_{k+1} \text{ form a path as shown}]
\leq \sum_{k=1}^{n} \sum_{x_0, \ldots, x_{k+1} \in S} \Pr[x_0, \ldots, x_{k+1} \text{ form a path as shown}]
\leq \sum_{k=1}^{n} n^{k+2} \cdot \frac{2}{m^{k+1}} \cdot \left(\frac{k+1}{2m} \right)^2
\leq \frac{1}{2} \sum_{k=1}^{n} m^{k+2-k-1-2} (1 - \beta)^{k+2}(k + 1)^2
\leq \frac{1}{2m} \sum_{k=1}^{\infty} (1 - \beta)^{k+2}(k + 1)^2 = \frac{1}{m} \cdot \mathcal{O}(\frac{1}{\beta^3}) = \frac{1}{m} \cdot \mathcal{O}(1)
\]

- **a**: Choose sequence of $k + 2$ keys.
- **b**: Choose to start in left or right table.
- **c**: Neighbouring keys share a hash.
- **d**: Two bordering keys connect back inward.
Proof of \(i \): Success probability is \(1 - \mathcal{O}(1/m) \)

\[
\Pr[\overline{E}] = \Pr[\exists \text{path as shown}] = \Pr[\exists k \in \mathbb{N} : \exists x_0, \ldots, x_{k+1} \in S : x_0, \ldots, x_{k+1} \text{ form a path as shown}]
\]

union bound

\[
\leq \sum_{k=1}^{n} \sum_{x_0, \ldots, x_{k+1} \in S} \Pr[x_0, \ldots, x_{k+1} \text{ form a path as shown}]
\]

\[
\leq \sum_{k=1}^{n} n^{k+2} \cdot \frac{2}{m^{k+1}} \cdot \left(\frac{k+1}{2m} \right)^2
\]

\[
\leq \frac{1}{2} \sum_{k=1}^{n} m^{k+2-k-1-2}(1 - \beta)^{k+2}(k + 1)^2
\]

\[
\leq \frac{1}{2m} \sum_{k=1}^{\infty} (1 - \beta)^{k+2}(k + 1)^2 = \frac{1}{m} \cdot \mathcal{O}(\frac{1}{\beta^3}) = \frac{1}{m} \cdot \mathcal{O}(1)
\]

\(\square \)
Lemma

If the insertion of y takes $t \in \mathbb{N}$ steps then the cuckoo graph G contained (previously) a path of length $\lceil (t - 2)/3 \rceil$ starting from $h_0(y)$ or from $h_1(y)$.

Proof.

- No turning back
 - \rightsquigarrow path of length $t - 1$
 - starting from $h_0(y)$

- Turn back once
 - \rightsquigarrow path of length $\lceil (t - 2)/3 \rceil$
 - starting from $h_0(y)$ or $h_1(y)$

- Turn back twice
 - Impossible: insertion would fail
Proof of \(\boxed{\text{ii}} \): Expected insertion time is \(\mathcal{O}(1) \) (continued)

\[
\mathbb{E}[T] = \sum_{t \geq 1} \Pr[T \geq t]
\]
\[
\leq \sum_{t \geq 1} \Pr[\exists \text{path of length } \lceil (t - 2)/3 \rceil \text{ starting from } h_0(y) \text{ or } h_1(y)] \quad \text{by Lemma}
\]
\[
\leq 2 \cdot \sum_{t \geq 1} \Pr[\exists \text{path of length } \lceil (t - 2)/3 \rceil \text{ starting from } h_0(y)] \quad \text{union bound + symmetry}
\]
\[
\leq 2 \left(2 + 3 \cdot \sum_{t \geq 1} \Pr[\exists \text{path of length } t \text{ starting from } h_0(y)] \right)
\]
\[
\leq 4 + 6 \cdot \sum_{t \geq 1} \Pr[x_1, \ldots, x_t \text{ form path starting from } h_0(y)] \quad \text{union bound}
\]
\[
\leq 4 + 6 \cdot \sum_{t \geq 1} n^t m^{-t} = 6 \sum_{t \geq 0} (1 - \beta)^t = \mathcal{O}(1/\beta) = \mathcal{O}(1).
\]
Conclusion

Cuckoo Hashing

- hash table with *worst case* constant access times
- analysis considers path in graphs similar to the Erdős-Rényi model
- many variations and spin-offs (not discussed here)
Was ist und was kann Cuckoo Hashing?
- Was ist die Grundidee? Wie funktionieren die Operationen?
- Worauf ist bei der Wahl der Tabellengröße / beim Load Factor zu achten?
- Was kann man über die Laufzeit der Operationen sagen?
- Welche Vorteile und Nachteile ergeben sich im Vergleich zu anderen Techniken wie linearem Sondieren?

Analyse:
- Eine Einfügung, die fehlschlägt, entspricht gewissen Strukturen im Cuckoo-Graphen. Welchen?
- Wie haben wir gezeigt, dass solche Strukturen unwahrscheinlich sind?
- Wie haben wir die erwartete Einfügezeit abgeschätzt?