

Probability & Computing

Continuous Probability Spaces & Random Geometric Graphs

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]?
 - What is Pr[X = 2.71828182847]?

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...

 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...

 - What is Pr[X = 2.71828182846]?
 What is Pr[X = 2.71828182847]? Pr[X = 2.71828182847]?

 However, the second of the property of the p
 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to *intervals* instead of individual values! The probability is the *area* of the bar, *not* the height

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to *intervals* instead of individual values! The probability is the *area* of the bar, *not* the height

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to *intervals* instead of individual values! The probability is the *area* of the bar, *not* the height

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]?
 What is Pr[X = 2.71828182847]? Pr[X = 2.71828182847]?

 Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to *intervals* instead of individual values! The probability is the *area* of the bar, *not* the height

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]? Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
 - What is Pr[X = 2.71828182846]?
 What is Pr[X = 2.71828182847]? Pr[X = 2.71828182847]?

 Emission could happen at any time...

 - But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

- As bars get thinner, areas (probabilities) decrease
- We describe distributions using probability density functions

youtube.com/watch?v=ZA4JkHKZM50

Discrete Random Variable X

Continuous Random Variable *X*

Discrete Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Continuous Random Variable *X*

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Continuous Random Variable *X*

$$F_X(x) = \Pr[X \leq x]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$

Continuous Random Variable *X*

$$F_X(x) = \Pr[X \leq x]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$

$$\sum_{x} \Pr[X = x] = 1$$

Continuous Random Variable *X*

$$F_X(x) = \Pr[X \leq x]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$

$$\sum_{x} \Pr[X=x]=1$$
 $f_X(x) \geq 0$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability density function

$$f_X(x) \geq 0$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$

$$\sum_{x} \Pr[X=x]=1$$
 $f_X(x) \geq 0$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability density function

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function
$$f_X(x) = \Pr[X = x] \ge 0$$
 Probability $f_X(x) = \Pr[X = x] = 1$ Probability $f_X(x) \ge 0$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \leq x]$$

Probability density function

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function
$$f_X(x) = \Pr[X = x] \ge 0$$
 Probability density function $f_X(x) \ge 0$ $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Continuous Random Variable X

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function
$$f_X(x) = \Pr[X = x] \ge 0$$
 Probability density function $f_X(x) \ge 0$ $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Example: Uniform Distribution

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

 $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$ $f_X(x) \ge 0$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

 $\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\ge 2m$ boards out of one 5m plank?

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

 $\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

→ Over [0, 5]

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

$f_X(x) = \Pr[X = x] \ge 0$ $\sum_{x} \Pr[X = x] = 1$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\ge 2m$ boards out of one 5m plank?

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

→ Over [0, 5]

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Density

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\geq 2m$ boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = \int_0^5 \frac{1}{5} \mathrm{d}x$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Density

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\geq 2m$ boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = \int_0^5 \frac{1}{5} \mathrm{d}x = \left[\frac{x}{5}\right]_0^5$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Density

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\geq 2m$ boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_0^5 \frac{1}{5} dx = \left[\frac{x}{5}\right]_0^5 = 1 \checkmark$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- \blacksquare What is the probability that you get two $\geq 2m$ boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_0^5 \frac{1}{5} dx = \left[\frac{x}{5}\right]_0^5 = 1 \checkmark$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

Over
$$[0, 5]$$

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{0}^{5} \frac{1}{5} dx = \left[\frac{x}{5}\right]_{0}^{5} = 1 \checkmark$$

$$\int_{a}^{b} f_{X}(x) dx = \left[\frac{x}{5}\right]_{a}^{b} = \frac{1}{5}(b-a) \checkmark$$
for $a \le b \in [0, 5]$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

Over
$$[0, 5]$$

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$
For all $x \in [0, 5]$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_0^5 \frac{1}{5} dx = \left[\frac{x}{5}\right]_0^5 = 1 \checkmark$$

$$\int_a^b f_X(x) dx = \left[\frac{x}{5}\right]_a^b = \frac{1}{5}(b-a) \checkmark$$
for $a < b \in [0, 5]$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

for $a < b \in [0, 5]$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

Over
$$[0, 5]$$

$$f_{X}(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\int_{-\infty}^{\infty} f_{X}(x) dx = \int_{0}^{5} \frac{1}{5} dx = \left[\frac{x}{5}\right]_{0}^{5} = 1 \checkmark$$

$$\int_{0}^{b} f_{X}(x) dx = \left[\frac{x}{5}\right]_{0}^{b} = \frac{1}{5}(b-a) \checkmark$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution -

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boardsout of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$ightharpoonup \Pr[X \in [2, 3]]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boardsout of one 5m plank?

Over
$$[0, 5]$$

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$
Density
$$\frac{1}{5}$$

→
$$\Pr[X \in [2, 3]] = \Pr[X \le 3] - \Pr[X < 2]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function •

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boardsout of one 5m plank?

Over
$$[0, 5]$$

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$Pr[X \in [2, 3]] = Pr[X \le 3] - Pr[X < 2]$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

 $\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$

Density

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boardsout of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\Pr[X \in [2, 3]] = \Pr[X \le 3] - \Pr[X \le 2]$$

$$= \int_0^3 \frac{1}{5} dx - \int_0^2 \frac{1}{5} dx$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\Pr[X \in [2, 3]] = \Pr[X \le 3] - \Pr[X \le 2]$$

$$= \int_0^3 \frac{1}{5} dx - \int_0^2 \frac{1}{5} dx$$

$$= \left[\frac{x}{5}\right]_0^3 - \left[\frac{x}{5}\right]_0^2$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Density

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

$$\Pr[X \in [2, 3]] = \Pr[X \le 3] - \Pr[X \le 2]$$

$$= \int_0^3 \frac{1}{5} dx - \int_0^2 \frac{1}{5} dx$$

$$= \left[\frac{x}{5}\right]_0^3 - \left[\frac{x}{5}\right]_0^2 = \frac{3}{5} - \frac{2}{5} = \frac{1}{5} \checkmark$$

Discrete Random Variable X

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$$

Probability mass function

$$f_X(x) = \Pr[X = x] \ge 0$$
 $\sum_{x} \Pr[X = x] = 1$

Expectation

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$$

Continuous Random Variable *X*

Cumulative distribution function

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$$

Probability density function \underset

$$f_X(x) \geq 0$$

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Expectation

$$\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$$

Example: Uniform Distribution

- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

→ Over [0, 5]

$$f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$$

■ In general: $X \sim \mathcal{U}([a, b])$

$$\Pr[X \in [c, d] \subseteq [a, b]] = \frac{d-c}{b-a}$$

Exponential Distribution $X \sim Exp(\lambda)$

• "Rate" parameter $\lambda > 0$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y$$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \lambda \int_0^x e^{-\lambda y} dy$$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \lambda \int_0^x e^{-\lambda y} dy$$
$$= \frac{\lambda}{-\lambda} \left[e^{-\lambda y} \right]_0^x$$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \lambda \int_0^x e^{-\lambda y} dy$$
$$= \frac{\lambda}{-\lambda} \left[e^{-\lambda y} \right]_0^x$$
$$= \left[e^{-\lambda y} \right]_x^0$$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = \lambda \int_0^x e^{-\lambda y} dy$$
$$= \frac{\lambda}{-\lambda} \left[e^{-\lambda y} \right]_0^x$$
$$= \left[e^{-\lambda y} \right]_x^0$$
$$= 1 - e^{-\lambda x}$$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \mathrm{d}x$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$u = x$$

$$v' = e^{-\lambda x}$$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$u = x$$

$$v' = e^{-\lambda x}$$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$u = x$$
 $v = \frac{1}{-\lambda}e^{-\lambda x}$
 $v' = e^{-\lambda x}$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$u = x$$
 $v = \frac{1}{-\lambda}e^{-\lambda x}$
 $u' = 1$ $v' = e^{-\lambda x}$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$u = x$$
 $v = \frac{1}{-\lambda}e^{-\lambda x}$
 $u' = 1$ $v' = e^{-\lambda x}$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Maximilian Katzmann, Stefan Walzer - Probability & Computing

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot \mathbf{1} dx \right)$$

$$u = x \quad v = \frac{1}{-\lambda} e^{-\lambda x}$$

$$u' = 1 \quad v' = e^{-\lambda x}$$

Integration by Parts $\int \frac{uv'}{dx} dx = \frac{uv}{uv'} - \int \frac{u'v}{u'} dx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$$
$$= \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^0 + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$$

Integration by Parts $\int uv'dx = uv - \int u'vdx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

Integration by Parts $\int uv' dx = uv - \int u'v dx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

 $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$ $= \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^{0} + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$ = 0

Integration by Parts $\int uv'dx = uv - \int u'vdx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

Integration by Parts $\int uv'dx = uv - \int u'vdx$

Exponential Distribution $X \sim Exp(\lambda)$

- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$ Cumulative distribution function $\bar{x}(x) = \int_{-\infty}^{x} f_X(y) dv 1$

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$$

$$\frac{v = \frac{1}{-\lambda} e^{-\lambda x}}{v' = e^{-\lambda x}} = \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^{0} + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$$

$$= \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^{0} + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$$

$$= 0 + 0$$

Integration by Parts $\int uv' dx = uv - \int u'v dx$

Exponential Distribution $X \sim Exp(\lambda)$

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$$

$$\frac{v = \frac{1}{-\lambda} e^{-\lambda x}}{v' = e^{-\lambda x}} = \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_0^{\infty} + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$$

$$= 0 + 0 + \frac{1}{-\lambda} \left[e^{-\lambda x} \right]_0^{\infty}$$

Integration by Parts $\int uv' dx = uv - \int u'v dx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

 $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$ $= \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^0 + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$ $= 0 + 0 + \frac{1}{-\lambda} \left[e^{-\lambda x} \right]_0^{\infty} = \frac{1}{\lambda} \left[e^{-\lambda x} \right]_{\infty}^0$

Integration by Parts $\int uv'dx = uv - \int u'vdx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

 $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_0^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 dx \right)$ $= \lambda \left(\frac{1}{\lambda} \left[x e^{-\lambda x} \right]_{\infty}^0 + \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x} dx \right)$ $= 0 + 0 + \frac{1}{\lambda} \left[e^{-\lambda x} \right]_0^{\infty} = \frac{1}{\lambda} \left[e^{-\lambda x} \right]_0^0 = \frac{1}{\lambda} [1 - 0] = \frac{1}{\lambda}$

Integration by Parts $\int uv'dx = uv - \int u'vdx$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\blacksquare \mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) \mathrm{d}x$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\blacksquare \mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} \frac{x^2 e^{-\lambda x}}{x^2} dx$$

$$u = x^2$$
 $v = \frac{1}{-\lambda}e^{-\lambda x}$
 $u' = 2x$ $v' = e^{-\lambda x}$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx$$
$$= \lambda \left(\left[x^2 - \frac{1}{\lambda} e^{-\lambda x} \right]_0^{\infty} \right)$$

$$= \lambda \int_0^\infty x^2 e^{-\lambda x} dx$$

$$= \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_0^\infty - \frac{2}{-\lambda} \int_0^\infty x \cdot e^{-\lambda x} dx \right) \quad u = x^2 \quad v = \frac{1}{-\lambda} e^{-\lambda x}$$

$$= \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_0^\infty - \frac{2}{-\lambda} \int_0^\infty x \cdot e^{-\lambda x} dx \right) \quad u' = 2x \quad v' = e^{-\lambda x}$$

 $\int \frac{\mathbf{u}\mathbf{v}'}{\mathbf{d}x} = \frac{\mathbf{u}\mathbf{v}}{\mathbf{v}} - \int \frac{\mathbf{u}'\mathbf{v}}{\mathbf{d}x}$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx$$

$$= \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \frac{2}{-\lambda} \int_0^{\infty} x \cdot e^{-\lambda x} dx \right)$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx$$
$$= \lambda \left(\left[x^2 - \frac{1}{\lambda} e^{-\lambda x} \right]_0^{\infty} \right)$$

Integration by Parts $\int uv' dx = uv - \int u'v dx$

$$= \lambda \int_0^\infty x^2 e^{-\lambda x} dx$$

$$= \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_0^\infty - \frac{2}{-\lambda} \int_0^\infty x \cdot e^{-\lambda x} dx \right) = \lambda ([0+0] + \frac{2}{\lambda^3})$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx$$
$$= \lambda \left(\left[x^2 \frac{1}{\lambda} e^{-\lambda x} \right]_0^{\infty} \right)$$

Integration by Parts $\int uv' dx = uv - \int u'v dx$

$$= \lambda \int_0^\infty x^2 e^{-\lambda x} dx$$

$$= \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_0^\infty - \frac{2}{-\lambda} \int_0^\infty x \cdot e^{-\lambda x} dx \right) = \lambda ([0+0] + \frac{2}{\lambda^3}) = \frac{2}{\lambda^2}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

$$Var[X] = \frac{\mathbb{E}[X^2]}{\mathbb{E}[X]^2} = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2$$

Exponential Distribution $X \sim Exp(\lambda)$

- "Rate" parameter $\lambda > 0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases}$
- Cumulative distribution function

$$F_X(x) = \int_{-\infty}^x f_X(y) dy = 1 - e^{-\lambda x}$$

$$\blacksquare \mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

•
$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[X > s + t \mid X > t]$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]}$$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x}$
 $F_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{c} X > s + t \Rightarrow X > t \\ \end{array}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline \\ \Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \xrightarrow{X > s + t \Rightarrow X > t}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda(s+t)}}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s}$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$

$$f_X(x) = \lambda e^{-\lambda x}$$
 $f_X(x) = 1 - e^{-\lambda x}$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

■ What is the probability of having to wait longer than an additional time s > 0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$

$$\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

No matter how long we already waited, waiting time is distributed as if we just started

Exponential Distribution: Memorylessness

Motivation

• What is the probability of having to wait longer than an additional time s>0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \qquad \begin{array}{l} X > s + t \Rightarrow X > t \\ \\ = \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]} \\ \\ = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \\ \\ = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \end{array}$$
No matter how long we already waited, waiting time

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

Maximilian Katzmann, Stefan Walzer - Probability & Computing

How long do we have to wait for the second particle after having just seen the first?

Motivation

• What is the probability of having to wait longer than an additional time s>0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \qquad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \\ \hline = \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]} \\ \hline = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \\ \hline \text{No matter how long we already waited, waiting time is distributed as if we just started} \\ \hline \textbf{bserving Multiple Particles} \\ \hline \text{How long do we have to wait for the second} \end{array}$$

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

Motivation

• What is the probability of having to wait longer than an additional time s>0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$
No matter how long we already waited, waiting time
$$= \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$
No matter how long we already waited, waiting time

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

Motivation

• What is the probability of having to wait longer than an additional time s>0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \qquad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > s + t \mid X > t] \\ \hline = \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]} \\ \hline = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \\ \hline \text{No matter how long we already waited, waiting time} \end{array}$$

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

Motivation

• What is the probability of having to wait longer than an additional time s>0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \qquad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \\ \hline = \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]} \\ \hline = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \\ \hline = \frac{e^{-\lambda(s + t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \end{array}$$
No matter how long we already waited, waiting time is distributed as if we just started
$$\frac{e^{-\lambda t}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$

$$\frac{e^{-\lambda t}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$
How long do we have to wait for the second

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

 $X \sim \operatorname{Exp}(\lambda)$

Motivation

■ What is the probability of having to wait longer than an additional time s > 0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} \quad \begin{array}{l} X > s + t \Rightarrow X > t \\ \hline Pr[X > t] \end{array}$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s] \stackrel{?}{\underset{6}{\rightleftharpoons}}$$

No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

Motivation

Count number of particles emitted within a given time t

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$Pr[N_t = 0]$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$Pr[N_t = 0] = Pr[X_1 > t]$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = \Pr[X_1 > t] = 1 - \Pr[X_1 \le t] = 1 - F_{X_1}(t)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values

$$\Pr[N_t = 0] = \Pr[X_1 > t] = 1 - \Pr[X_1 \le t] = 1 - F_{X_1}(t) = e^{-\lambda t}$$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = e^{-\lambda t}$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = e^{-\lambda t}$$

 $\Pr[N_t = 1]$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = e^{-\lambda t}$$

 $\Pr[N_t = 1] = \Pr[X_1 \le t \land N(X_1, t) = 0]$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = e^{-\lambda t}$$

 $\Pr[N_t = 1] = \Pr[X_1 \le t \land N(X_1, t) = 0]$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t Specific Values

$$\Pr[N_t = 0] = e^{-\lambda t}$$

 $\Pr[N_t = 1] = \Pr[X_1 \le t \land N(X_1, t) = 0]$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$

 $\Pr[N_t = 1] = \Pr[X_1 \le t \land N(X_1, t) = 0]$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t}$$

$$\Pr[N_t = 1] = \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t}$$

$$\Pr[N_t = 1] = \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \frac{f_{X_1}(x)}{f_{X_1}(x)} dx$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= 0 \text{ for } x < 0 \end{aligned}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= 0 \text{ for } x > t \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\begin{aligned} \Pr[N_t &= 0] = e^{-\lambda t} \\ \Pr[N_t &= 1] = \int_{-\infty}^{\infty} \Pr[X_1 \leq t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \leq t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} dx \\ &= \int_0^t \Pr[X_1 \leq t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} dx \end{aligned}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx \end{aligned}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\begin{aligned} \Pr[N_{t} = 0] &= e^{-\lambda t} \\ \Pr[N_{t} = 1] &= \int_{-\infty}^{\infty} \Pr[X_{1} \leq t \land N(x, t) = 0 \mid X_{1} = x] f_{X_{1}}(x) dx \\ &= \int_{-\infty}^{\infty} \Pr[X_{1} \leq t \land N(x, t) = 0 \mid X_{1} = x] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} dx \\ &= \int_{0}^{t} \Pr[X_{1} \leq t \land N(x, t) = 0 \mid X_{1} = x] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} dx \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$
independent

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$
independent

Time
$$X = x \cdot f_X(x) dx$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

$$F_X(x) = 1 - e^{-\lambda x}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

$$= x] \cdot f_X(x) dx$$

$$= x \cdot f_X(x) dx$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$
 $X = x \cdot f_X(x) dx$
 $X \sim \text{Exp}(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \Pr[N_{t-x} = 0] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

$$X \sim \operatorname{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \quad e^{-\lambda (t - x)} \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$

$$X \sim \operatorname{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \quad e^{-\lambda (t - x)} \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \quad e^{-\lambda (t - x)} \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \\ \Pr[N_t = 1] &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} \mathrm{d}x \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \quad e^{-\lambda (t - x)} \\ &= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathrm{d}x \quad e^{-\lambda (t - x)} \\ &= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$

$$\Pr[N_t = 1] = \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx$$

$$= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} dx e^{-\lambda (t - x)}$$

$$= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} dx = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} dx = \int_0^t e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} dx$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

 $=\lambda e^{-\lambda t} \int_0^t 1 dx$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t}$$

$$\Pr[N_t = 1] = \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x) dx$$

$$= \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[X_1 \le t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0} dx$$

$$= \int_0^t \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} dx e^{-\lambda (t - x)}$$

$$= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} dx = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} dx = \int_0^t e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \Pr[N(x, t) = 0] \lambda e^{-\lambda x} dx = \int_0^t \Pr[N_{t - x} = 0] \lambda e^{-\lambda x} dx = \int_0^t e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} dx$$

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

 $=\lambda e^{-\lambda t} \int_0^t 1 dx = \lambda t e^{-\lambda t}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability: $Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] \cdot f_X(x) dx$

$$Pr[N_t = 0] = e^{-\lambda t}$$
 $Pr[N_t = 1] = \lambda t e^{-\lambda t}$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$$

 $f_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$
 $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$ $\Pr[N_t = 2]$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t}$$

 $\Pr[N_t = 2] = \Pr[X_1 \le t \land N(X_1, t) = 1]$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t}$$

 $\Pr[N_t = 2] = \int_{-\infty}^{\infty} \Pr[X_1 \le t \land N(x, t) = 1 \mid X_1 = x] f_{X_1}(x) dx$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Example 2 Preserve Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t}$$

$$\Pr[N_t = 2] = \int_{0}^{\infty} \Pr[X_t = t] \cdot N(x, t) = 1 \mid X_t = x \mid f_{X_t}(x) dx$$
independent

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t}$$
 $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$
 $\Pr[N_t = 2] = \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} dx$

$$X \sim \operatorname{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \int_0^t t - x \mathrm{d}x \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$$

$$F_X(x) = 1 - e^{-\lambda x}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \int_0^t t - x \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \left(t \cdot \int_0^t 1 \mathrm{d}x - \int_0^t x \mathrm{d}x \right) \end{aligned}$$

exactly one potential emission here

Due to memorylessness
$$Pr[N(\square) = k] = Pr[N(\square) = k]$$
 $t - x \times t$

Time

$$X \sim \text{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \boxed{\Pr[N_t = 1] = \lambda t e^{-\lambda t}} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \int_0^t t - x \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \left(t \cdot \int_0^t 1 \mathrm{d}x - \int_0^t x \mathrm{d}x \right) \\ &= \lambda^2 e^{-\lambda t} \left(t^2 - \left[\frac{1}{2} x^2 \right]_0^t \right) \end{aligned}$$

exactly one potential emission here

Due to memorylessness
$$\Pr[N(\square) = k] = \Pr[N(\square) = k]$$
 $t - x \times t$

Time

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

$$F_X(x) = 1 - e^{-\lambda x}$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\begin{aligned} \Pr[N_t = 0] &= e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \\ \Pr[N_t = 2] &= \int_0^t \Pr[N(x, t) = 1] \lambda e^{-\lambda x} \mathrm{d}x \\ &= \int_0^t \Pr[N_{t-x} = 1] \lambda e^{-\lambda x} \mathrm{d}x = \int_0^t \lambda (t - x) e^{-\lambda (t - x)} \cdot \lambda e^{-\lambda x} \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \int_0^t t - x \mathrm{d}x \\ &= \lambda^2 e^{-\lambda t} \left(t \cdot \int_0^t 1 \mathrm{d}x - \int_0^t x \mathrm{d}x \right) \end{aligned}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

 $= \lambda^2 e^{-\lambda t} \left(t^2 - \left[\frac{1}{2} x^2 \right]_0^t \right) = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = \underbrace{e^{-\lambda t}}_{0!} \Pr[N_t = 1] = \underbrace{\lambda t e^{-\lambda t}}_{1!} \Pr[N_t = 2] = \underbrace{\lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2}_{2!}$$

$$\underbrace{\frac{(\lambda t)^0 e^{-\lambda t}}{0!}}_{1!} \qquad \underbrace{\frac{(\lambda t)^1 e^{-\lambda t}}{1!}}_{2!}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$
$$F_X(x) = 1 - e^{-\lambda x}$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction) $\Pr[N_t = k+1]$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$
$$F_X(x) = 1 - e^{-\lambda x}$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction) $\Pr[N_t = k+1]$

$$= \int_0^t \Pr[N_{t-x} = k] \cdot \frac{\lambda e^{-\lambda x}}{\lambda e^{-\lambda x}} dx$$

$$X \sim \text{Exp}(\lambda)$$

 $f_X(x) = \frac{\lambda e^{-\lambda x}}{1} \mathbb{1}_{x \geq 0}$
 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$\Pr[N_t = k+1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx$$

$$X \sim \text{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction) $\Pr[N_t = k+1]$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx$$

$$X \sim \text{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form $\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ (proof via induction) $\Pr[N_t = k+1]$

$$\Pr[N_t = K + 1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx$$

$$X \sim \text{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction) $\Pr[N_t = k+1]$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx$$

$$X \sim \text{Exp}(\lambda)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Integration by Substitution
$$u = g(x)$$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$\Pr[N_t = k+1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

$$f(u) = u^{k}$$

$$u = g(x) = (t - x)$$

$$\frac{dg(x)}{dx} = -1$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$
 $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$ $\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$\Pr[N_t = k+1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{-1} du \ u = g(x) = (t-x)$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

$$\frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} du \quad u = g(x) = (t-x)$$

$$\frac{dg(x)}{dx} = -1$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$\Pr[N_t = k+1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{-1} du \ u = \frac{f(u) = u^k}{g(x) = (t-x)}$$

$$= \frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \left[-\frac{1}{k+1}u^{(k+1)} \right]_t^0$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

$$\frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} du \quad u = g(x) = (t-x)$$

$$\frac{dg(x)}{dx} = -1$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$
 $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$ $\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$\Pr[N_t = k+1]$$

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{-1} du \ u = g(x) = (t-x)$$

$$= \frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \left[-\frac{1}{k+1} u^{(k+1)} \right]_{t}^{0} = \frac{\lambda^{(k+1)}e^{-\lambda t}}{(k+1)!} \left[u^{(k+1)} \right]_{0}^{t}$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

$$\frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} du \quad u = g(x) = (t-x)$$

$$\frac{dg(x)}{dx} = -1$$

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

$$\Pr[N_t = 0] = e^{-\lambda t} \quad \Pr[N_t = 1] = \lambda t e^{-\lambda t} \quad \Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction) $\Pr[N_t = k+1]$

$$= \int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^{\infty} \Pr[N_{t-x} = \kappa] \cdot \lambda e^{-\lambda t} dx$$

$$= \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \left[-\frac{1}{k+1} u^{(k+1)} \right]_t^0 = \frac{\lambda^{(k+1)} e^{-\lambda t}}{(k+1)!} \left[u^{(k+1)} \right]_0^t = \frac{(\lambda t)^{(k+1)} e^{-\lambda t}}{(k+1)!} \checkmark$$

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$$

 $F_X(x) = 1 - e^{-\lambda x}$

Integration by Substitution
$$u = g(x)$$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{t!} du \quad u = g(x) = (t-x)$$

$$\frac{\mathrm{d}g(x)}{\mathrm{d}x} = -1$$

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, ... \sim \text{Exp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values Law of Total Probability:
$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) dx$$
 $X \sim \operatorname{Exp}(\lambda)$

 $N_t \sim \mathsf{Pois}(\lambda t)$

$$\Pr[N_t = 0] = e^{-\lambda t}$$
 $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$ $\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form
$$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
 (proof via induction)

$$=\int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx$$

$$= \int_0^t \frac{(\lambda(t-x))^k e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{t!} du \quad u = g(x) = (t-x)$$

$$= \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \left[-\frac{1}{k+1} u^{(k+1)} \right]_{t}^{0} = \frac{\lambda^{(k+1)} e^{-\lambda t}}{(k+1)!} \left[u^{(k+1)} \right]_{0}^{t} = \frac{(\lambda t)^{(k+1)} e^{-\lambda t}}{(k+1)!} \checkmark$$

Integration by Substitution
$$u = g(x)$$

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{dg(x)}{dx}\right)} du$$

exactly one por emission here

Due to memorylessness
$$Pr[N(\square) = k] = Pr[N(\square) = k]$$

Time

Integration by Substitution
$$u = g(x)$$

$$\int_{0}^{b} f(g(x)) dx = \int_{0}^{g(b)} \frac{f(u)}{f(u)} du$$

$$rac{\mathsf{d} g(x)}{\mathsf{d} x} = -1$$

 $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{x>0}$

 $F_X(x) = 1 - e^{-\lambda x}$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

lacksquare a < b < c < d: N(a, b) and N(c, d) are independent

(independence)

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a, b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

 $\blacksquare a < b < c < d$: N(a, b) and N(c, d) are independent

(independence)

$$Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$

a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

$$\mathsf{Pr}[N(a,b)=k]=rac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

a < b < c < d: N(a, b) and N(c, d) are independent

(independence)

Assuming we know how many X_i are in [a, b], where are they within the interval?

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

a < b < c < d: N(a, b) and N(c, d) are independent

(independence)

Assuming we know how many X_i are in [a, b], where are they within the interval?

O due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables X_i , X_i , C, \mathbb{P} such that if $N(a,b) = |f(i)| X_i$, C, [a,b] | [b], then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

■ Simple case: N(0, b) = 1, where is X_1 ?

For
$$t \le b$$
: $\Pr[X_1 \le t \mid N(0, b) = 1]$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a, b) \sim \text{Pois}(\lambda(b-a))$

(homogeneity)

a < b < c < d: N(a, b) and N(c, d) are independent

(independence)

Assuming we know how many X_i are in [a, b], where are they within the interval?
0 due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

■ Simple case: N(0, b) = 1, where is X_1 ?

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0, b) = 1] = \frac{\Pr[X_1 \leq t \land N(0, b) = 1]}{\Pr[N(0, b) = 1]}$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |\{i \mid X_i \in [a,b]\}|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

a < b < c < d: N(a, b) and N(c, d) are independent

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \le b$$
: $\Pr[X_1 \le t \mid N(0, b) = 1] = \frac{\Pr[X_1 \le t \land N(0, b) = 1]}{\Pr[N(0, b) = 1]}$ exactly one in
$$= \frac{\Pr[N(0, t) = 1 \land N(t, b) = 0]}{\Pr[N(0, b) = 1]}$$
 exactly one in
$$\Pr[N(0, b) = 1]$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |f_i| |X_j \in [a,b]|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$
 exactly one in $[0,b]$ and it is $\leq t$
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, \ldots \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a, b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

 $\blacksquare a < b < c < d$: N(a, b) and N(c, d) are independent

(independence)

• Assuming we know how many X_i are in $[\mathscr{A}, b]$, where are they within the interval? () due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{\Pr[N(0,t) = 1] \cdot \Pr[N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{(\lambda t)e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(\lambda b)e^{-\lambda b}}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |f_i| |X_j \in [a,b]|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in [0, b] and it is $\leq t$ independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{\Pr[N(0,t) = 1] \cdot \Pr[N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{(x \land t) e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(x \land b) e^{-\lambda b}}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |f_i| |X_j \in [a,b]|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{\Pr[N(0,t) = 1] \cdot \Pr[N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{(\chi t)e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(\chi b)e^{-\lambda b}}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |\{i \mid X_i \in [a,b]\}|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in [0, b] and it is $\leq t$ independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$

$$= \frac{\Pr[N(0,t) = 1] \cdot \Pr[N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$
 ($(x_t)e^{-\lambda t} \cdot e^{-\lambda (b-t)}$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_i, X_j \in \mathbb{R}$ such that if $N(a,b) = |f_i| |X_j \in [a,b]|$ then

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a,b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

■ Assuming we know how many X_i are in [a, b], where are they within the interval? 0 due to memorylessness

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0, b) = 1] = \frac{\Pr[X_1 \leq t \land N(0, b) = 1]}{\Pr[N(0, b) = 1]}$ exactly one in independence of disjoint intervals
$$= \frac{\Pr[N(0, t) = 1 \land N(t, b) = 0]}{\Pr[N(0, b) = 1]}$$

$$= \frac{\Pr[N(0, t) = 1] \cdot \Pr[N(t, b) = 0]}{\Pr[N(0, b) = 1]}$$

$$= \frac{(\chi t)e^{-\chi t} \cdot e^{-\chi(b-t)}}{(\chi b)e^{-\chi b}} = \frac{t}{b}$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

 $ightharpoonup N(a, b) \sim \mathsf{Pois}(\lambda(b-a))$

(homogeneity)

 $\blacksquare a < b < c < d$: N(a, b) and N(c, d) are independent

(independence)

• Assuming we know how many X_i are in $[\mathscr{A}, b]$, where are they within the interval? () due to memorylessness (

$$\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$$

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$
 for $X \sim \mathcal{U}([0,b])$
$$= \frac{(X_t)e^{-\lambda t} \cdot e^{-\lambda (b-t)}}{(X_b)e^{-\lambda b}} = \frac{t}{b} = F_X(t)$$

Definition: A **Poisson process** with *intensity* λ is a collection of random variables

 $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $ightharpoonup N(a, b) \sim \mathsf{Pois}(\lambda(b-a))$
- a < b < c < d: N(a, b) and N(c, d) are independent

(homogeneity)

(independence)

- Assuming we know how many X_i are in $[\mathscr{A}, b]$, where are they within the interval? () due to memorylessness (
 - $\Pr[N(a,b)=k]=\frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$

■ Simple case: N(0, b) = 1, where is X_1 ?

For
$$t \leq b$$
: $\Pr[X_1 \leq t \mid N(0,b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ exactly one in [0, b] and it is $\leq t$ independence of disjoint intervals
$$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$$
 for $X \sim \mathcal{U}([0,b])$
$$= \frac{(x_t)e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(x_b)e^{-\lambda t}} = \frac{t}{b} = F_X(t)$$

■ In general: the positions of the points are distributed uniformly in an interval

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a,b) = \Pr[X \le a \land Y \le b].$

The **joint density function** $f_{X,Y}(a,b)$ satisfies $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$.

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a,b) = \Pr[X \le a \land Y \le b].$

The joint density function $f_{X,Y}(a,b)$ satisfies $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$.

Definition: The marginal density of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a,b) = \Pr[X \le a \land Y \le b].$

The **joint density function** $f_{X,Y}(a,b)$ satisfies $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$.

Definition: The marginal density of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.

Definition: The **conditional density** of *X* with respect to an event *A* is

$$f_{X|A}(x) = \begin{cases} f_X(x) / \Pr[A], & \text{if } x \in A, \\ 0, & \text{otherwhise.} \end{cases}$$

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a,b) = \Pr[X \le a \land Y \le b].$

The **joint density function** $f_{X,Y}(a,b)$ satisfies $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$.

Definition: The marginal density of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.

Definition: The **conditional density** of *X* with respect to an event *A* is

$$f_{X|A}(x) = \begin{cases} f_X(x) / \Pr[A], & \text{if } x \in A, \\ 0, & \text{otherwhise.} \end{cases}$$

- For continuous Y, we specifically get $f_{X|Y=y}(x) = f_{X,Y}(x,y)/f_Y(y)$
- We can then write $f_{X,Y}(x,y) = f_{X|Y=y}(x) \cdot f_Y(y)$ (like the chain rule for probabilities)

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a,b) = \Pr[X \le a \land Y \le b].$

The **joint density function** $f_{X,Y}(a,b)$ satisfies $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$.

Definition: The marginal density of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$.

Definition: The **conditional density** of X with respect to an event A is

$$f_{X|A}(x) = \begin{cases} f_X(x) / \Pr[A], & \text{if } x \in A, \\ 0, & \text{otherwhise.} \end{cases}$$

- For continuous Y, we specifically get $f_{X|Y=y}(x) = f_{X,Y}(x,y)/f_Y(y)$
- We can then write $f_{X,Y}(x,y) = f_{X|Y=y}(x) \cdot f_Y(y)$ (like the chain rule for probabilities)

Definition: Random variables X, Y are **independent** if $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$.

Karlsruhe Institute of Technology

Uniform Distribution on the Unit Square

• We want to draw a point P uniformly at random from $[0, 1]^2$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_0^1 1 dy$$

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1}$$

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

Marginal Density
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$$

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_0^1 1 dy = [y]_0^1 = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$
$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$
$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$
$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$
$$f_{Y}(y) \qquad f_{X}(x)$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x,y) = f_{X,Y}(x,y) = 1$ for $(x,y) \in [0,1]^2$ and $f_P(x,y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 1 dy = [y]_{0}^{1} = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$
$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$
$$= \int_{0}^{b} f_{Y}(y) dy \cdot \int_{0}^{a} f_{X}(x) dx$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

constant w.r.t. x

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_0^1 1 dy = [y]_0^1 = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$

$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$

$$= \int_{0}^{b} f_{Y}(y) dy \cdot \int_{0}^{a} f_{X}(x) dx = F_{Y}(b) \cdot F_{X}(a) \checkmark$$

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

$$E_{1}(b)$$
 $E_{2}(a)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_0^1 1 dy = [y]_0^1 = 1$$
 $f_Y(y) = 1$

■ Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$$

$$= \int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$$

$$= \int_{0}^{b} f_{Y}(y) dy \cdot \int_{0}^{a} f_{X}(x) dx = F_{Y}(b) \cdot F_{X}(a) \checkmark$$

■ Sample $P = (X, Y) \sim \mathcal{U}([0, 1]^2)$ by independently sampling $X, Y \sim \mathcal{U}([0, 1])!$

constant w.r.t. x

Marginal Density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

$$X, Y$$
 independent if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Students

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ *

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

v w Students

Lecturer

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many?

Lecturer

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space?

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

v w Students

Lecturer

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric?

Lecturer

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric? Which distribution?

Lecturer

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric? Which distribution? Which probability?

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do *not* form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
 - ER-graph: $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Pr[\{v, w\} \in E]$ 🗶

v w Students

Lecturer

Idea

- Vertices are likelier to connect if their distance is already small
 - ⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric? Which distribution? Which probability? Simple & Realistic!

Random Geometric Graph

Number: n vertices

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 - d_i\}$

"Chebychev distance"

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1,2\}} \min\{d_i, 1 - d_i\}$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 - d_i\}$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i - q_i|$ \bot L_∞ norm: $d(p, q) = \max_{i \in \{1,2\}} \min\{d_i, \frac{1 - d_i}{1 - d_i}\}$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u, v\} \in E] = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \end{cases}$ threshold parameter

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2)$, $q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases} \text{ threshold parameter} \\ \text{Expected Degree of } v \end{cases}$

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

- Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)
- $\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

- Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)
- $\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

$$\mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \leq r]$$
 and y-coordinate of u in here

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

• Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$

■ Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter **Expected Degree of** v

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

$$\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$$

■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$

■ Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

$$\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$$

■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b])$$
 : $\mathsf{Pr}[X \in [c,d] \subseteq [a,b]] = rac{d-c}{b-a}$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

■ Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$

■ Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

$$\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$$

■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b])$$
 : $\Pr[X \in [c,d] \subseteq [a,b]] = rac{d-c}{b-a}$

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

- Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)
- $\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$
- Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b]) : \Pr[X \in [c,d] \subseteq [a,b]] = \frac{d-c}{b-a}$$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

and v-coordinate of u in here

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

• Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$

■ Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

■
$$\mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \leq r]$$
■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$= \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \leq r]$$

$$= \sum_{u \in V \setminus \{v\}} \frac{2r}{1 - 0} \cdot \frac{2r}{1 - 0}$$

■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b]) : \Pr[X \in [c,d] \subseteq [a,b]] = rac{d-c}{b-a}$$

Random Geometric Graph

Number: n vertices

■ Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)

• Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i - q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$

■ Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$

Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

■ Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)

$$\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$$

■ Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b]) : \Pr[X \in [c,d] \subseteq [a,b]] = \frac{d-c}{b-a}$$

and y-coordinate of u in here

$$= \sum_{u \in V \setminus \{v\}} \frac{2r}{1-0} \cdot \frac{2r}{1-0}$$

$$- \sum_{u \in V \setminus \{v\}} 1 - 1 = (n-1) \cdot 4r^2$$

Random Geometric Graph

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^2 (unit square with opposite sides identified)
- Metric: for $p = (p_1, p_2), q = (q_1, q_2)$: $d_i = |p_i q_i|$ L_{∞} norm: $d(p,q) = \max_{i \in \{1,2\}} \min\{d_i, 1-d_i\}$
- Distribution: For each ν independently: $P_{\nu} \sim \mathcal{U}([0,1]^2)$
- Probability $\Pr[\{u,v\} \in E] = \begin{cases} 1, & \text{if } d(P_u,P_v) \leq r \end{cases}$ threshold parameter 0, otherwise

- Neighbors of v are in N(v) (here N(v) denotes the *region* in the ground space)
- $\blacksquare \mathbb{E}[\deg(v)] = \mathbb{E}[\sum_{u \in V \setminus \{v\}} \mathbb{1}_{\{P_u \in N(v)\}}] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \le r]$
- Draw $P_u = (X, Y)$ as independent $X, Y \sim \mathcal{U}([0, 1])$

$$X \sim \mathcal{U}([a,b]) : \Pr[X \in [c,d] \subseteq [a,b]] = \frac{d-c}{b-a}$$
 = $(n-1) \cdot 4r^2$ (area of the region $N(v)$)

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

and y-coordinate of u in here

 $\stackrel{\blacktriangledown}{=} \sum_{u \in V \setminus \{v\}} \frac{2r}{1-0} \cdot \frac{2r}{1-0}$

Locality

Locality Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)]$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^{2}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^{2}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \mathbb{1}_{\{(x, y) \in [0, 1]^{2}\}}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^{2}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$[0, 1]^{2}$$

$$= \mathbb{1}_{\{(x, y) \in [0, 1]^{2}}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^{2}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 0, \text{ if } v = (x, y) \notin N(u)$$

$$= \mathbb{1}_{\{(x, y) \in [0, 1]^{2}\}}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^{d}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 0, \text{ if } v = (x, y) \notin N(u)$$

$$= \mathbb{1}_{\{(x, y) \in [0, 1]^{2}}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] + v = (v \land v) | f_{v} =$

$$= \int_{N(u)} \Pr[w \in N(v) \land w \in N(u) \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^{2} = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^{2}} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_{N(u)} \Pr[w \in N(v) \land w \in N(u) \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_{N(u)} \Pr[w \in N(v) \land w \in N(u) \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_{N(u)} \Pr[w \in N(v) \land w \in N(u) \mid v = (x, y)] dy dx$$

$$= [0, 2r]^{2}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability $Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability $Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Due to symmetry the area of the intersection is the same for these 4 positions of ν .

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Due to symmetry the area of the intersection is the same for these 4 positions of ν .

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$ Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

⇒ Integrate only one quarter and multiply by 4

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$f_{X,Y}(x,y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$f_{X,Y}(x,y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in *one* dimension depending on position of *v*

$$f_{X,Y}(x,y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in *one* dimension depending on position of *v*

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in *one* dimension depending on position of *v*

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in *one* dimension depending on position of v

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in one dimension depending on position of v

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = \Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 19 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 19 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in one dimension depending on position of v

2*d*-intersection is product of 1*d*-intersections $(r + x) \cdot (r + y)$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in one dimension depending on position of ν

2*d*-intersection is product of 1*d*-intersections $(r + x) \cdot (r + y)$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Law of Total Probability

 $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

Consider size of intersection in one dimension depending on position of v

2*d*-intersection is product of 1*d*-intersections $(r + x) \cdot (r + y)$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$= 4 \int_0^r \int_0^r (r+x) \cdot (r+y) dy dx$$
constant w.r.t. y

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\land w\in N(u)]=\frac{\Pr[w\in N(v)\land v\in N(u)\land w\in N(u)]}{\Pr[v\in N(u)\land w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r(r+x)\cdot\int_0^r(r+y)\mathrm{d}y\mathrm{d}x$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$= 4 \int_0^r (r+x) \cdot \underbrace{\int_0^r (r+y) dy dx}_{\text{constant w.r.t. } x}$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v,w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r,r)$ 1 $\Pr[\{v,w\} \in E \mid \{u,v\} \in E \land \{u,w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r(r+x)\cdot\int_0^r(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r(r+y)\mathrm{d}y\cdot\int_0^r(r+x)\mathrm{d}x$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r(r+x)\cdot\int_0^r(r+y)\mathrm{d}y\mathrm{d}x$$

$$= 4 \int_0^r (r+y) dy \cdot \int_0^r (r+x) dx$$
same integral

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$=4\int_0^r\int_0^r(r+x)\cdot(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r(r+x)\cdot\int_0^r(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r (r+y)\mathrm{d}y\cdot\int_0^r (r+x)\mathrm{d}x$$

$$=4\left(\int_0^r(r+x)\mathrm{d}x\right)^2$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$= 4 \int_0^r \int_0^r (r+x) \cdot (r+y) dy dx = 4 \left(\int_0^r r dx + \int_0^r x dx \right)^2$$

$$=4\int_0^r(r+x)\cdot\int_0^r(r+y)\mathrm{d}y\mathrm{d}x$$

$$=4\int_0^r (r+y)\mathrm{d}y\cdot\int_0^r (r+x)\mathrm{d}x$$

$$=4\left(\int_0^r(r+x)\mathrm{d}x\right)^2-$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$= 4 \int_0^r \int_0^r (r+x) \cdot (r+y) dy dx = 4 \left(\int_0^r r dx + \int_0^r x dx \right)^2$$

$$= 4 \int_0^r (r+x) \cdot \int_0^r (r+y) dy dx = 4 \left(r \left[x \right]_0^r + \left[\frac{1}{2} x^2 \right]_0^r \right)^2$$

$$= 4 \int_0^r (r+y) dy \cdot \int_0^r (r+x) dx = 4 \left(r \left[x \right]_0^r + \left[\frac{1}{2} x^2 \right]_0^r \right)^2$$

Law of Total Probability

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

 $=4\left(\int_0^r (r+x)\mathrm{d}x\right)^2$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 19 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_{0}^{r}\int_{0}^{r}\Pr[w\in N(v)\wedge w\in [0,2r]^{2}\mid v=(x,y)]\mathrm{d}y\mathrm{d}x$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+x) \cdot \int_{0}^{r} (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+x) \cdot \int_{0}^{r} (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

 \blacksquare Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 15 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_{0}^{r}\int_{0}^{r}\Pr[w\in N(v)\wedge w\in [0,2r]^{2}\mid v=(x,y)]dydx$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+x) \cdot \int_{0}^{r} (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx$$

$$= 4 \left(\int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 19 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$=\Pr[w\in N(v)\mid v\in N(u)\wedge w\in N(u)]=\frac{\Pr[w\in N(v)\wedge v\in N(u)\wedge w\in N(u)]}{\Pr[v\in N(u)\wedge w\in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+x) \cdot \int_{0}^{r} (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$\operatorname{Pr}[A] = \int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 w.l.o.g assume $u = (r, r)$ 1? $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$

$$= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$$

$$=4\int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} \int_{0}^{r} (r+x) \cdot (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+x) \cdot \int_{0}^{r} (r+y) dy dx$$

$$= 4 \int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx$$

$$= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$$

$$= 4 \left$$

$$\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$$

$$\begin{cases} (X,Y) \sim \mathcal{U}([0,1]^2) \\ f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}} \end{cases}$$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$

Denominator

$$\Pr[v \in N(u) \land w \in N(u)]$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$$

$$\Pr[\mathbf{v} \in N(u) \land w \in N(u)]$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$

$$\Pr[\mathbf{v} \in \mathcal{N}(u) \land \mathbf{w} \in \mathcal{N}(u)]$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

$$\Pr[v \in N(u) \land w \in N(u)]$$
positions are drawn independently

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator $\Pr[w \in N(v) \land w \in N(w) \land w \in N(w)] = 0.4$

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently distribution identical for all vertices

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 0$.4

$$\Pr[\mathbf{v} \in \mathcal{N}(u) \land \mathbf{w} \in \mathcal{N}(u)] = \Pr[\mathbf{v} \in \mathcal{N}(u)] \cdot \Pr[\mathbf{w} \in \mathcal{N}(u)]$$
positions are drawn independently distribution identical for all vertices
$$= (\Pr[\mathbf{v} \in \mathcal{N}(u)])^2$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$
Numerator
$$\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$$

$$\Pr[\mathbf{v} \in \mathcal{N}(u) \land \mathbf{w} \in \mathcal{N}(u)] = \Pr[\mathbf{v} \in \mathcal{N}(u)] \cdot \Pr[\mathbf{w} \in \mathcal{N}(u)]$$
positions are drawn independently distribution identical for all vertices
$$= (\Pr[\mathbf{v} \in \mathcal{N}(u)])^2$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

$$\Pr[\mathbf{v} \in \mathcal{N}(u) \land \mathbf{w} \in \mathcal{N}(u)] = \Pr[\mathbf{v} \in \mathcal{N}(u)] \cdot \Pr[\mathbf{w} \in \mathcal{N}(u)]$$
positions are drawn independently distribution identical for all vertices
$$(\Pr[\mathbf{v} \in \mathcal{N}(u)])^2$$

for all vertices
$$= (\Pr[v \in N(u)])^{2}$$

$$= (4r^{2})^{2}$$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices *v* and *w* are likelier to connect if they have a common neighbor *u*

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$ **Denominator**

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently distribution identical for all vertices

distribution identical for all vertices $= (\Pr[v \in N(u)])^2$ $= (4r^2)^2 = 16r^4$

Law of Total Probability
$$Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X = x] f_X(x) dx$$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

Two vertices v and w are likelier to connect if they have a common neighbor u

$$Pr[\{v, w\} \in E] = Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$

$$Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$$

$$= Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{Pr[v \in N(u) \land w \in N(u)]}$$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = \frac{9r^4}{2}$ **Denominator**

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently distribution identical for all vertices

=
$$(\Pr[v \in N(u)])^2$$

= $(4r^2)^2 = 16r^4$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$
 $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]} = \frac{9}{16}$

Numerator $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$

Denominator

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently distribution identical for all vertices

distribution identical for all vertices $= (\Pr[v \in N(u)])^{2}$ $= (4r^{2})^{2} = 16r^{4}$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

Convention: $v = P_v$

■ Two vertices v and w are likelier to connect if they have a common neighbor u

$$\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$$
 \Rightarrow $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Theta(1)\}$ \Rightarrow $\Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]} = \frac{9}{16}$ **Numerator** $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$ **Denominator**

$$\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$$
positions are drawn independently distribution identical for all vertices

distribution identical for all vertices $= (\Pr[v \in N(u)])^2$ $= (4r^2)^2 = 16r^4$

$$(X,Y) \sim \mathcal{U}([0,1]^2)$$

 $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

■ Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)

■ Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)

■ Each cell C_i has width and height $\sqrt{\log(n)/n}$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i]$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0}$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

Let
$$X_i$$
 denote the number of vertices in C_i

Let
$$X_i$$
 denote the number of vertices in C_i
$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$
- $lackbox{1}{\bullet} X_1$ and X_2 are *not* independent

■ Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)

Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$
- X_1 and X_2 are *not* independent $Pr[X_1 = log(n) \mid X_2 = n] = 0$ ◆
- Chain rule of probability:

$$Pr[\forall i : X_i = \log(n)] = Pr[X_1 = \log(n)] \cdot Pr[X_2 = \log(n) \mid X_1 = \log(n)] \cdot Pr[X_3 = \log(n) \mid X_1 = \log(n) \land X_2 = \log(n)] \cdot ...$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$
- X_1 and X_2 are *not* independent $Pr[X_1 = log(n) \mid X_2 = n] = 0$ ◆
- Chain rule of probability:

$$\Pr[\forall i : X_i = \log(n)] \\ = \Pr[X_1 = \log(n)] \cdot \Pr[X_2 = \log(n) \mid X_1 = \log(n)] \cdot \Pr[X_3 = \log(n) \mid X_1 = \log(n) \land X_2 = \log(n)] \cdot \dots$$

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- \blacksquare Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$
- X_1 and X_2 are *not* independent $Pr[X_1 = log(n) \mid X_2 = n] = 0$ ◀
- Chain rule of probability:

$$\Pr[\forall i: X_i = \log(n)]$$

$$= \Pr[X_1 = \log(n)] \cdot \Pr[X_2 = \log(n) \mid X_1 = \log(n)] \cdot \Pr[X_3 = \log(n) \mid X_1 = \log(n) \land X_2 = \log(n)] \cdot \dots$$

https://i.imgflip.com/1pln6k.jpg?a471949

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity) (independence)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

ldea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(independence)

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(independence)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

 $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$

(homogeneity)

 $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(independence)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

Note: We do not know how many points we get!

(homogeneity)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?

(homogeneity)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|]$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)]$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)]$$

(homogeneity)

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)]$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda|[0, 1]^2|$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda|[0, 1]^2|$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda|[0, 1]^2| = \lambda$$

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda|[0, 1]^2| = \lambda$$

Recall: conditioned on their number, points are distributed uniformly

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda |[0, 1]^2| = \lambda$$

- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim Pois(n)$, sample N points uniformly

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then

- $ightharpoonup N(A) \sim \mathsf{Pois}(\lambda |A|)$
- $\blacksquare A \cap B = \emptyset$: N(A) and N(B) are independent

(homogeneity)

(independence)

- Note: We do not know how many points we get!
- How do we choose λ ?
 - We should at least expect n points in our ground space $[0, 1]^2$

$$n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda |[0, 1]^2| = \lambda$$

- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim Pois(n)$, sample N points uniformly
- The resulting **Poissonized RGG** has *n* vertices in expectation

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathcal{N} \sim \mathsf{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\mathsf{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\mathcal{N} \sim \operatorname{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\operatorname{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$ $\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$
- What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\mathcal{N} \sim \mathsf{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\mathsf{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$ $\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$

• What is the probability that each cell gets
$$exactly \log(n)$$
 vertices?

$$\Pr[X_i = \log(n)]$$

$$\mathcal{N} \sim \operatorname{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\operatorname{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!}$$

$$\mathcal{N} \sim \operatorname{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\operatorname{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\frac{\lambda |C_i|}{n}}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-\frac{\log(n)}{n}}}{\log(n)!}$$

$$\mathcal{N} \sim \operatorname{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\operatorname{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{n}})^{\log(n)} e^{-n^{\frac{\log(n)}{n}}}}{\log(n)!}$$

$$\mathcal{N} \sim \mathsf{Pois}(\lambda|A|)$$
 $\mathbb{E}[\mathcal{N}] = \lambda|A|$
 $\mathsf{Pr}[\mathcal{N} = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{p'}})^{\log(n)} e^{-n^{\frac{\log(n)}{p'}}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\mathbb{E}[N] = \lambda|A|$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{p'}})^{\log(n)} e^{-n^{\frac{\log(n)}{p'}}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda |C_{i}|)^{\log(n)} e^{-\lambda |C_{i}|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{n})^{\log(n)}}$$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda |C_{i}|)^{\log(n)} e^{-\lambda |C_{i}|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e^{(\log(n))\log(n)}}$$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{n})^{\log(n)}}$$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda |C_{i}|)^{\log(n)} e^{-\lambda |C_{i}|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e^{(\log(n))\log(n)}} = \frac{1}{e}$$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda |C_{i}|)^{\log(n)} e^{-\lambda |C_{i}|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{n}})^{\log(n)} e^{-\frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e^{(\frac{\log(n)}{n})\log(n)}} = \frac{1}{e}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda |C_{i}|)^{\log(n)} e^{-\lambda |C_{i}|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{n}})^{\log(n)} e^{-n^{\frac{\log(n)}{n}}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e^{(\frac{\log(n)}{n})\log(n)}} = \frac{1}{e}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$ by definition, disjoint regions *are* independent

$$N \sim \text{Pois}(\lambda|A|)$$
 $\mathbb{E}[N] = \lambda|A|$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{n})^{\log(n)}} = \frac{1}{e} \quad \text{there are } n/\log(n) \text{ cells}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i^{\dagger} \Pr[X_i = \log(n)]$ by definition, disjoint regions *are* independent

$$egin{aligned} \mathcal{N} & \sim \operatorname{Pois}(\lambda|A|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \operatorname{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets $exactly \log(n)$ vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n \frac{\log(n)}{n})^{\log(n)} e^{-n \frac{\log(n)}{n}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{n})^{\log(n)}} = \frac{1}{e} \quad \text{there are } n / \log(n) \text{ cells}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i^{\downarrow} \Pr[X_i = \log(n)]$ by definition, disjoint regions *are* independent $-\!\!\!/ < e^{-n/\log(n)} \checkmark$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\mathbb{E}[N] = \lambda|A|$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets exactly log(n) vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n \frac{\log(n)}{p'})^{\log(n)} e^{-p \frac{\log(n)}{p'}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{p})^{\log(n)}} = \frac{1}{e} \quad \text{there are } n/\log(n) \text{ cells}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i^{\bullet} \Pr[X_i = \log(n)]$ by definition, disjoint regions *are* independent $-\sqrt{e^{-n/\log(n)}}$

$$egin{aligned} \mathcal{N} & \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathbb{E}[\mathcal{N}] &= \lambda|A| \ \mathsf{Pr}[\mathcal{N} &= k] &= rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

$$k! \geq e(k/e)^k$$

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$

$$\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$$

• What is the probability that each cell gets exactly log(n) vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda |C_i|)^{\log(n)} e^{-\lambda |C_i|}}{\log(n)!} = \frac{(n^{\frac{\log(n)}{p'}})^{\log(n)} e^{-n^{\frac{\log(n)}{p'}}}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e(\frac{\log(n)}{p'})^{\log(n)}} = \frac{1}{e} \quad \text{there are } n/\log(n) \text{ cells}$$

■ Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i^{\downarrow} \Pr[X_i = \log(n)]$ by definition, disjoint regions *are* independent $-\sqrt{e^{-n/\log(n)}}$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\mathbb{E}[N] = \lambda|A|$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

$$k! \geq e(k/e)^k$$

but we cheated...

Situation

■ We started with a simple RGG $(n, \mathbb{T}^2, L_\infty$ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$

$$\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

Conditioned on the number of points in area A, the points are distributed uniformly in A

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG (n is replaced by Pois(n)) and obtained $Pr[\forall i : X_i = log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG (n is replaced by Pois(n)) and obtained $Pr[\forall i : X_i = log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!}$$

$$egin{aligned} \mathcal{N} \sim \mathsf{Pois}(\pmb{\lambda}|\pmb{A}|) \ \mathsf{Pr}[\mathcal{N}=k] = rac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{aligned}$$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG (\dot{n} is replaced by Pois(n)) and obtained $Pr[\forall i: X_i = log(n)] \leq e^{-n/log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!}$$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by Pois(n)) and obtained Pr[$\forall i: X_i = \log(n)$] $\leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}}$$

$$N \sim \text{Pois}(\lambda|A|)$$

$$\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

Stirling
$$n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}$$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by Pois(n)) and obtained $\Pr[\forall i : X_i = \log(n)] \le e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}}$$

$$N \sim \text{Pois}(\lambda|A|)$$

$$\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

Stirling
$$n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}$$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by Pois(n)) and obtained $\Pr[\forall i : X_i = \log(n)] \le e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0, 1]^2$ obtained in the Poisson point process is exactly N = n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}} \Theta(1)$$

$$N \sim \text{Pois}(\lambda|A|)$$

$$\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

Stirling
$$n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}$$

Situation

- We started with a simple RGG $(n, \mathbb{T}^2, L_{\infty}\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by Pois(n)) and obtained $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}}} = \Theta(n^{-1/2}) \qquad \text{Pr}[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

Stirling

$$n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}$$

Situation

- We started with a simple RGG (\underline{n} , \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$)
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by $\frac{\text{Pois}(n)}{n}$) and obtained $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}} = \Theta(n^{-1/2}) \qquad \boxed{N \sim \operatorname{Pois}(\lambda|A|) \\ \Pr[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}}$$

$$\Pr_{\mathsf{RGG}(n)}[\forall i : X_i = \log(n)] = \Pr_{\mathsf{RGG}(\mathsf{Pois}(n))}[\forall i : X_i = \log(n) \mid N = n]$$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

$$n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}$$

Situation

- We started with a simple RGG (\underline{n} , \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$)
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by $\frac{\text{Pois}(n)}{n}$) and obtained $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}}} = \Theta(n^{-1/2})$$

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}}} = \Theta(n^{-1/2})$$

$$\Pr[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

$$N \sim \text{Pois}(\lambda|A|)$$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

Stirling $n! \geq \sqrt{2\pi n} \left(\frac{n}{a}\right)^n e^{\frac{1}{12n+1}}$

Situation

- We started with a simple RGG (\underline{n} , \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$)
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by $\frac{\text{Pois}(n)}{n}$) and obtained $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \binom{n}{e}} e^{\frac{1}{12n+1}} = \Theta(n^{-1/2})$$

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \binom{n}{e}} e^{\frac{1}{12n+1}} = \Theta(n^{-1/2})$$

$$\Pr[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

$$N \sim \mathsf{Pois}(\lambda|A|)$$
 $\mathsf{Pr}[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

Stirling $n! \geq \sqrt{2\pi n} \left(\frac{n}{2}\right)^n e^{\frac{1}{12n+1}}$

Situation

- We started with a simple RGG (n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$)
- Switched to Poissonized RGG ($\stackrel{\uparrow}{n}$ is replaced by $\frac{\text{Pois}(n)}{n}$) and obtained $\Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^2$ obtained in the Poisson point process is exactly N=n

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \binom{n}{e}} e^{\frac{1}{12n+1}} = \Theta(n^{-1/2})$$

$$\Pr[N=n] = \frac{(\lambda|A|)^n e^{-\lambda|A|}}{n!} = \frac{n^n e^{-n}}{n!} \le \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n} \binom{n}{e}} e^{\frac{1}{12n+1}} = \Theta(n^{-1/2})$$

$$\Pr[N=k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$$

$$N \sim \operatorname{Pois}(\lambda|A|)$$
 $\Pr[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!}$

Stirling $n! \geq \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^n e^{\frac{1}{12n+1}}$

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$

Random Geometric Graph

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$

Random Geometric Graph

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant

Random Geometric Graph

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant

More commonly used model

■ n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$

Random Geometric Graph

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant

More commonly used model

■ n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$

Random Geometric Graph

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant

More commonly used model

■ n, $[0,1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{d(u,v) \leq r}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

N(v) is a disk

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant

More commonly used model

■ n, $[0,1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{d(u,v) \leq r}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

N(v) is a disk

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0,1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{d(u,v) \leq r}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- **Expected degree of a vertex is** $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0,1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{d(u,v) \leq r}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof
- Still $\mathbb{E}[\deg(v)] = \Theta(nr^2)$
- Still probability to connect given common neighbor non-vanishing

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Seen so far

- Simple RGG
- n, \mathbb{T}^2 , L_∞ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof
- Still $\mathbb{E}[\deg(v)] = \Theta(nr^2)$
- Still probability to connect given common neighbor non-vanishing

Problem: Homogeneous degree distribution does not match many real-world graphs

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $lacksquare X \sim \mathsf{Par}(\alpha, x_{\mathsf{min}})$

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\min})$ minimum attainable value shape parameter

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\min})$ minimum attainable value shape parameter

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\min})$ minimum attainable value shape parameter

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex

In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\min})$ - minimum attainable value shape parameter

Probability density function: $f_X(x) = \begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, & \text{if } x \geq x_{\min} \\ 0. & \text{otherwise} \end{cases}$

Hard to distinguish!

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex

In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\text{min}})$ - minimum attainable value shape parameter

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\text{min}})$ - minimum attainable value shape parameter

Probability density function: $f_X(x) = \begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, & \text{if } x \geq x_{\min} \frac{10^{0}}{10^{0}} \end{cases}$ otherwise

konect.cc/plot/degree.a.youtube-links.full.png YouTube Frequency 01

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\text{min}})$ - minimum attainable value shape parameter

$$\begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, \\ 0, \end{cases}$$

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex

 In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

 $X \sim \text{Par}(\alpha, x_{\min})$ minimum attainable value shape parameter

Probability density function: $f_X(x) = \begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, & \text{if } x \geq x_{\min}^{10^{0}} \\ 0, & \text{otherwise} \end{cases}$

Exercise: Determine for which values of α we have $\mathbb{E}[X] < \infty$ but $\text{Var}[X] = \infty$

Log-Log-Plot $y = bx^k$

 $\log(y) = \log(b) + k \log(x)$ $Y = \log(b) + kX$

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

Yields random point set with certain properties (homogeneity & independence)

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances
- Exhibit locality (edges tend to form between vertices with common neighbors)

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

(not discussed in lecture)

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances
- Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution

