Probability \& Computing

Continuous Probability Spaces \& Random Geometric Graphs

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$?

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? $\begin{gathered}\text { happen a } \\ \text { time.. }\end{gathered}$

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}<0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we
 measure probabilities

$>0 ?$| Emission could |
| :---: |
| happen at any |
| time... |

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we
 measure probabilities

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at any
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? $\begin{gathered}\text { Emission could } \\ \text { hapen at any } \\ \text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease

Motivation - Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?

- They measure with infinite precision...
- What is $\operatorname{Pr}[X=2.71828182846]$?
- What is $\operatorname{Pr}[X=2.71828182847]$? $\}>0$? happen at $\begin{gathered}\text { time... }\end{gathered}$
- But then the "sum" over uncountably infinite non-zero values is ∞ This is not a probability distribution! - For continuous spaces we need to adjust how we measure probabilities

The probability is the area of the bar, not the height

- As bars get thinner, areas (probabilities) decrease
- We describe distributions using probability density functions

Working in Continuous Probability Spaces

Discrete Random Variable X
Continuous Random Variable X

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

Continuous Random Variable X

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \Sigma_{x} \operatorname{Pr}[X=x]=1
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability density function
$f_{X}(x) \geq 0$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability density function
$f_{X}(x) \geq 0$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \longrightarrow \quad \Sigma_{x} \operatorname{Pr}[X=x]=1
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]
$$

- Probability density function
$f_{X}(x) \geq 0$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \longrightarrow \quad \Sigma_{x} \operatorname{Pr}[X=x]=1
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0 \longrightarrow \int_{-\infty}^{\infty} f_{x}(x) d x=1$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow

$$
f_{X}(x) \geq 0 \longrightarrow \int_{-\infty}^{\infty} f_{x}(x) \mathrm{d} x=1
$$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \Sigma_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow

$$
f_{X}(x) \geq 0 \longrightarrow \int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function

$$
f_{X}(x) \geq 0 \longrightarrow \quad \int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \longrightarrow \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function

$$
f_{X}(x) \geq 0 \longrightarrow \quad \int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0 \longrightarrow \int_{-\infty}^{\infty} f_{x}(x) \mathrm{d} x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \longrightarrow \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow

$$
f_{X}(x) \geq 0 \longrightarrow \quad \int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \longrightarrow \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right.
$$

- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$

$$
\int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\text { - Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

$$
\begin{aligned}
& \text { Over }[0,5] \\
& f_{X}(x)=\left\{\left.\begin{array}{llllll}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. } & \frac{1}{5}
\end{array} \right\rvert\, \begin{array}{llllllllll}
& -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}\right.
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x
$$

- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$

$$
\int_{-\infty}^{\infty} f_{x}(x) d x=1
$$

- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\rightarrow \text { Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right. \\
& \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}
\end{aligned}
$$

- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right. \\
& \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}=1 \checkmark
\end{aligned}
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\rightarrow \text { Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

$$
\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}=1 \checkmark
$$

- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0,0 . w .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}=1 \checkmark \\
& \int_{a}^{b} f_{X}(x) \mathrm{d} x=\left[\frac{x}{5}\right]_{a}^{b}=\frac{1}{5}(b-a) \checkmark \\
& \text { for } a \leq b \in[0,5]
\end{aligned}
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0,0 . w .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}=1 \checkmark \\
& \int_{a}^{b} f_{X}(x) \mathrm{d} x=\left[\frac{x}{5}\right]_{a}^{b}=\frac{1}{5}(b-a) \checkmark \\
& \text { for } a \leq b \in[0,5]
\end{aligned}
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0,0 . w .
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=\int_{0}^{5} \frac{1}{5} \mathrm{~d} x=\left[\frac{x}{5}\right]_{0}^{5}=1 \checkmark \\
& \int_{a}^{b} f_{X}(x) \mathrm{d} x=\left[\frac{x}{5}\right]_{a}^{b}=\frac{1}{5}(b-a) \checkmark \\
& \text { for } a \leq b \in[0,5]
\end{aligned}
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\rightarrow \text { Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5} \text {, if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right.
$$

 protection and cuts uniformly at random

- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right.
$$

- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right.
$$

- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
${ }^{\boldsymbol{P}} \operatorname{Pr}[X \in[2,3]]$
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\rightarrow \text { Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right. \\
& \rightarrow \operatorname{Pr}[X \in[2,3]]=\operatorname{Pr}[X \leq 3]-\operatorname{Pr}[X \leq 2]
\end{aligned}
$$ out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards-

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right. \\
& \rightarrow \operatorname{Pr}[X \in[2,3]]=\operatorname{Pr}[X \leq 3]-\operatorname{Pr}[X \leq 2] \\
& =\int_{0}^{3} \frac{1}{5} \mathrm{~d} x-\int_{0}^{2} \frac{1}{5} \mathrm{~d} x
\end{aligned}
$$ out of one 5 m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution \longrightarrow Over [0,5]

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing The staff member cutting your planks we
protection and cuts uniformly at random
- What is the probability that you get two $\geq 2 \mathrm{~m}$ boards out of one 5 m plank?

$$
\begin{aligned}
\rightarrow \operatorname{Pr}[X \in[2,3]] & =\operatorname{Pr}[X \leq 3]-\operatorname{Pr}[X \leq 2] \\
& =\int_{0}^{3} \frac{1}{5} \mathrm{~d} x-\int_{0}^{2} \frac{1}{5} \mathrm{~d} x \\
& =\left[\frac{x}{5}\right]_{0}^{3}-\left[\frac{x}{5}\right]_{0}^{2}=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}
\end{aligned}
$$

Working in Continuous Probability Spaces

Discrete Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\sum_{y \leq x} f_{X}(y)
$$

- Probability mass function

$$
f_{X}(x)=\operatorname{Pr}[X=x] \geq 0 \quad \sum_{x} \operatorname{Pr}[X=x]=1
$$

- Expectation

$$
\mathbb{E}[X]=\sum_{x} x \cdot \operatorname{Pr}[X=x]
$$

Continuous Random Variable X

- Cumulative distribution function

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

- Probability density function \uparrow
$f_{X}(x) \geq 0$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$
- Expectation
$\mathbb{E}[X]=\int x \cdot f_{X}(x) \mathrm{d} x$

Example: Uniform Distribution
 $$
\text { - Over }[0,5]
$$

- You build a fence that is at least 2 m tall at each point
- In the hardware store they have 5 m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{5}, \text { if } x \in[0,5] \\
0, \text { o.w. }
\end{array}\right.
$$

- In general: $X \sim \mathcal{U}([a, b])$

What is the probability that you get two $\geq 2 \mathrm{~m}$ boards

$$
\operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}
$$ out of one 5 m plank?

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=\lambda \int_{0}^{x} e^{-\lambda y} \mathrm{~d} y
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
\begin{aligned}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y & =\lambda \int_{0}^{x} e^{-\lambda y} \mathrm{~d} y \\
& =\frac{\lambda}{-\lambda}\left[e^{-\lambda y}\right]_{0}^{x}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
\begin{aligned}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y & =\lambda \int_{0}^{x} e^{-\lambda y} \mathrm{~d} y \\
& =\frac{\lambda}{-\lambda}\left[e^{-\lambda y}\right]_{0}^{x} \\
& =\left[e^{-\lambda y}\right]_{x}^{0}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
\begin{aligned}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y & =\lambda \int_{0}^{x} e^{-\lambda y} \mathrm{~d} y \\
& =\frac{\lambda}{-\lambda}\left[e^{-\lambda y}\right]_{0}^{x} \\
& =\left[e^{-\lambda y}\right]_{x}^{0} \\
& =1-e^{-\lambda x}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

Integration by Parts $\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

$$
u=x
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

$$
u=x
$$

$$
v^{\prime}=e^{-\lambda x}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

$$
u=x
$$

$$
v^{\prime}=e^{-\lambda x}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

$$
\begin{gathered}
u=x \quad v=\frac{1}{-\lambda} e^{-\lambda x} \\
v^{\prime}=e^{-\lambda x}
\end{gathered}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

$$
\begin{array}{l|l}
u=x & v=\frac{1}{-\lambda} e^{-\lambda x} \\
u^{\prime}=1 & v^{\prime}=e^{-\lambda x}
\end{array}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x$

$$
\begin{array}{rl}
u=x & v=\frac{1}{-\lambda} e^{-\lambda x} \\
u^{\prime}=1 & v^{\prime}=e^{-\lambda x}
\end{array}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$
$\square \mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{array}{ll}
u=x & v=\frac{1}{-\lambda} e^{-\lambda x} \\
u^{\prime}=1 & v^{\prime}=e^{-\lambda x}
\end{array}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

$-\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
=\lambda\left(\frac{1}{\lambda}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right)
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
=\chi\left(\frac{1}{X}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{X} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right)
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{aligned}
& =\not \chi\left(\frac{1}{X}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{\not} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right) \\
& =0
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{aligned}
& =\chi\left(\frac{1}{\chi}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{X} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right) \\
& =0+0
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{array}{ll}
v=\frac{1}{-\lambda} e^{-\lambda x} & =\chi\left(\frac{1}{X}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{X} \int_{0}^{\infty} e^{-\lambda x} d x\right) \\
v^{\prime}=e^{-\lambda x} & =0+0
\end{array}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{array}{ll}
v=\frac{1}{-\lambda} e^{-\lambda x} & =\chi\left(\frac{1}{X}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{X} \int_{0}^{\infty} e^{-\lambda x} d x\right) \\
v^{\prime}=e^{-\lambda x} & =0+0+\frac{1}{-\lambda}\left[e^{-\lambda x}\right]_{0}^{\infty}
\end{array}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{aligned}
& =\chi\left(\frac{1}{\chi}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{\chi} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right) \\
& =0+0+\frac{1}{-\lambda}\left[e^{-\lambda x}\right]_{0}^{\infty}=\frac{1}{\lambda}\left[e^{-\lambda x}\right]_{\infty}^{0}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts

$$
\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x
$$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\lambda\left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1 \mathrm{~d} x\right)$

$$
\begin{aligned}
& =\chi\left(\frac{1}{X}\left[x e^{-\lambda x}\right]_{\infty}^{0}+\frac{1}{\not} \int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} x\right) \\
& =0+0+\frac{1}{-\lambda}\left[e^{-\lambda x}\right]_{0}^{\infty}=\frac{1}{\lambda}\left[e^{-\lambda x}\right]_{\infty}^{0}=\frac{1}{\lambda}[1-0]=\frac{1}{\lambda}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)
Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x$

$$
\begin{aligned}
u & =x^{2} \quad v=\frac{1}{-\lambda} e^{-\lambda x} \\
u^{\prime} & =2 x \quad v^{\prime}=e^{-\lambda x}
\end{aligned}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) \mathrm{d} y=1-e^{-\lambda x}
$$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x \quad u=x^{2} \quad v=\frac{1}{-\lambda} e^{-\lambda x}$ $=\lambda\left(\left[x^{2} \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\frac{2}{-\lambda} \int_{0}^{\infty} x \cdot e^{-\lambda x} d x\right) \quad u^{\prime}=2 x \quad v^{\prime}=e^{-\lambda x}$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x$

$$
=\lambda\left(\left[x^{2} \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\frac{2}{-\lambda} \int_{0}^{\infty} x \cdot e^{-\lambda x} d x\right)
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x$

$$
=\lambda\left(\left[x^{2} \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\frac{2}{-\lambda} \int_{0}^{\infty} x \cdot e^{-\lambda x} \mathrm{~d} x\right)=\lambda\left([0+0]+\frac{2}{\lambda^{3}}\right)
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x$

$$
=\lambda\left(\left[x^{2} \frac{1}{-\lambda} e^{-\lambda x}\right]_{0}^{\infty}-\frac{2}{-\lambda} \int_{0}^{\infty} x \cdot e^{-\lambda x} d x\right)=\lambda\left([0+0]+\frac{2}{\lambda^{3}}\right)=\frac{2}{\lambda^{2}}
$$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x=\frac{2}{\lambda^{2}}$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x=\frac{2}{\lambda^{2}}$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x=\frac{2}{\lambda^{2}}$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}$

Example: Radioactive Decay

Exponential Distribution $X \sim \operatorname{Exp}(\lambda)$

- "Rate" parameter $\lambda>0$
- Continuous equivalent to geometric distribution
- "Time until first success"
- Probability density function $f_{X}(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, \text { if } x \geq 0 \\ 0, \text { o.w. }\end{array}\right.$
- Cumulative distribution function

Integration by Parts
$\int u v^{\prime} \mathrm{d} x=u v-\int u^{\prime} v \mathrm{~d} x$

Characterization via Moments (n-th moment: $\mathbb{E}\left[X^{n}\right]$)

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot f_{x}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x e^{-\lambda x} \mathrm{~d} x=\frac{1}{\lambda}$
- $\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \cdot f_{X}(x) \mathrm{d} x=\lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} \mathrm{~d} x=\frac{2}{\lambda^{2}}$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}}$

Exponential Distribution: Memorylessness

Motivation

What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

```
X ~ Exp(\lambda)
f}(x)=\lambda\mp@subsup{e}{}{-\lambdax
FX(x)=1- e
```


Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\operatorname{Pr}[X>s+t \mid X>t]
$$

```
X~\operatorname{Exp}(\lambda)
f}(x)=\lambda\mp@subsup{e}{}{-\lambdax
FX(x)=1- e
```


Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\operatorname{Pr}[X>s+t \mid X>t]=\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]}
$$

$$
\begin{aligned}
& \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
& f_{X}(x)=\lambda e^{-\lambda x} \\
& F_{X}(x)=1-e^{-\lambda x} \\
& \hline
\end{aligned}
$$

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{array}{r}
\operatorname{Pr}[X>s+t \mid X>t]=\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{array}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
& \operatorname{Pr}[X>s+t \mid X>t]=\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
&=\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]} \\
& \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{aligned}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \quad \begin{array}{l}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{array}
\end{aligned}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \quad \begin{array}{l}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]} \\
\end{array}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}
\end{aligned}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \quad \begin{array}{l}
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]} \\
\end{array}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}
\end{aligned}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{array}{rlrl}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t & \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s] & \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{array}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t]= & \frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
= & \frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
e^{-\lambda(s+t)} & \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{aligned}
$$

$$
=\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s]
$$

- No matter how long we already waited, waiting time is distributed as if we just started

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s]
\end{aligned}
$$

- No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

- How long do we have to wait for the second particle after having just seen the first?

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
& \qquad \begin{array}{rlrl}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} & X>s+t \Rightarrow X>t & \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} & \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s] \\
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
\end{array} \\
& \text { - No matter how long we already waited, waiting time } \\
& \text { is distributed as if we just started } \\
& \text { Observing Multiple Particles } \\
& \text { - How long do we have to wait for the second } \\
& \text { particle after having just seen the first? }
\end{aligned}
$$

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
f_{X}(x)=\lambda e^{-\lambda x} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array} \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s]
\end{aligned}
$$

- No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

- How long do we have to wait for the second particle after having just seen the first?

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s]
\end{aligned}
$$

- No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

- How long do we have to wait for the second particle after having just seen the first?

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
\operatorname{Pr}[X>s+t \mid X>t] & =\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} X>s+t \Rightarrow X>t \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s]
\end{aligned}
$$

- No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles

- How long do we have to wait for the second particle after having just seen the first?

Exponential Distribution: Memorylessness

Motivation

- What is the probability of having to wait longer than an additional time $s>0$ after already having waited time $t>0$?

$$
\begin{aligned}
& \operatorname{Pr}[X>s+t \mid X>t]=\frac{\operatorname{Pr}[X>s+t \wedge X>t]}{\operatorname{Pr}[X>t]} \quad X>s+t \Rightarrow X>t \\
& =\frac{\operatorname{Pr}[X>s+t]}{\operatorname{Pr}[X>t]}=\frac{1-\operatorname{Pr}[X \leq s+t]}{1-\operatorname{Pr}[X \leq t]} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=\operatorname{Pr}[X>s] \\
& \text { - No matter how long we already waited, waiting time } \\
& \text { is distributed as if we just started } \\
& \text { - How long do we have to wait for the second } \\
& \text { particle after having just seen the first? }
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\operatorname{Pr}\left[N_{t}=0\right]
$$


```
\(X \sim \operatorname{Exp}(\lambda)\)
\(f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}\)
\(F_{X}(x)=1-e^{-\lambda x}\)
```


Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\operatorname{Pr}\left[N_{t}=0\right]=\operatorname{Pr}\left[X_{1}>t\right]
$$


```
\(X \sim \operatorname{Exp}(\lambda)\)
\(f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}\)
\(F_{X}(x)=1-e^{-\lambda x}\)
```


Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\operatorname{Pr}\left[N_{t}=0\right]=\operatorname{Pr}\left[X_{1}>t\right]=1-\operatorname{Pr}\left[X_{1} \leq t\right]=1-F_{X_{1}}(t)
$$


```
\(X \sim \operatorname{Exp}(\lambda)\)
\(f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}\)
\(F_{X}(x)=1-e^{-\lambda x}\)
```


Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\operatorname{Pr}\left[N_{t}=0\right]=\operatorname{Pr}\left[X_{1}>t\right]=1-\operatorname{Pr}\left[X_{1} \leq t\right]=1-F_{X_{1}}(t)=e^{-\lambda t}
$$

$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$
$f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$
$F_{X}(x)=1-e^{-\lambda x}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}
$$


```
\(X \sim \operatorname{Exp}(\lambda)\)
\(f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}\)
\(F_{X}(x)=1-e^{-\lambda x}\)
```


Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\begin{aligned}
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\begin{aligned}
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\operatorname{Pr}\left[X_{1} \leq t \wedge N\left(X_{1}, t\right)=0\right]
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\begin{aligned}
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\operatorname{Pr}\left[X_{1} \leq t \wedge N\left(X_{1}, t\right)=0\right]
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values

$$
\begin{aligned}
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\operatorname{Pr}\left[X_{1} \leq t \wedge N\left(X_{1}, t\right)=0\right]
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

| Specific Values Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$ | $\begin{array}{l}\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\ f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x} \geq 0 \\ F_{X}(x)=1-e^{-\lambda x}\end{array}$ |
| :--- | :--- | :--- |
| $\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$ | |
| $\operatorname{Pr}\left[N_{t}=1\right]=\operatorname{Pr}\left[X_{1} \leq t \wedge N\left(X_{1}, t\right)=0\right]$ | |

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t
$\begin{array}{lll}\text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \begin{array}{l}\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\ f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\ F_{X}(x)=1-e^{-\lambda x}\end{array} \\ \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \\ \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x & \end{array}$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \\
\begin{array}{ll}
\operatorname{Law} \text { of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=1\right]=e^{-\lambda t} & \int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array} & \begin{array}{l}
F_{X}(x)=1-e^{-\lambda \lambda}
\end{array}
\end{array}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \underbrace{\mathbb{1}_{x \geq 0}}_{=0 \text { for } x<0} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \\
\begin{array}{ll}
\operatorname{Law} \text { of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{x} \sim \operatorname{Exp}(\lambda) \\
f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=1\right]=e^{-\lambda t} & \int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array} & \begin{array}{l}
F_{X}(x)=1-e^{-\lambda \lambda}
\end{array}
\end{array}
$$

$$
=\int_{-\infty}^{\infty} 0_{0} \underbrace{\operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right]}_{=0 \text { for } x>t} \lambda e^{-\lambda x} \underbrace{\mathbb{1}_{x \geq 0} \mathrm{~d} x}_{=0 \text { for } x<0}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \\
\begin{array}{ll}
\operatorname{Law} \text { of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=1\right]=e^{-\lambda t} & \int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array} & \begin{array}{l}
F_{X}(x)=1-e^{-\lambda \lambda}
\end{array}
\end{array}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \\
\begin{array}{ll}
\operatorname{Law} \text { of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=1\right]=e^{-\lambda t} & \int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array} & \begin{array}{l}
F_{X}(x)=1-e^{-\lambda \lambda}
\end{array}
\end{array}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \leq \leq \mathrm{d} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \\
\begin{array}{ll}
\operatorname{Law} \text { of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
f_{f}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=1\right]=e^{-\lambda t} & \int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array} & F_{X}(x)=1-e^{-\lambda x}
\end{array}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{I} x \leq \underline{d} d x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x \\
& \begin{aligned}
\operatorname{Pr}\left[N_{t}=0\right] & =e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=1\right] & =\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x} \leq \mathbb{C} \mathrm{d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathrm{~d} x
\end{aligned}
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} 1 \times \leq \varrho d x \\
& =\int_{0}^{t} \operatorname{Pr}\left[N(x, t) \underset{\text { independent }}{=0 \mid X_{1}}=x\right] \lambda e^{-\lambda x} \mathrm{~d} x \\
& \text { ndependent }
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x \\
& \begin{aligned}
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x \\
&=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x \\
&=\int_{0}^{t} \operatorname{Pr}\left[X_{X} \leq t\right) \\
&=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}\right. \\
& F_{x}(x)=1-e^{-\lambda x}
\end{aligned} \\
& \hline
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
\text { Specific Values } \\
\begin{aligned}
\operatorname{Pr}\left[N_{t}=0\right] & =e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=1\right] & =\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \mathbb{1}_{x} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1} \leq x\right] \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x
\end{aligned} \quad \begin{array}{l}
\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
F_{x}(x)=1-e^{-\lambda x}
\end{array} \\
\hline
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

| Specific Values \quad Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$ | $\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$
 $f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x} \geq 0$
 $F_{X}(x)=1-e^{-\lambda x}$ |
| :--- | :--- | :--- |
| $\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$ | |
| $\operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x$ | |

$=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x$
$=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathrm{d} x$
$=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0 \mid \underline{X} \mathcal{P} \in x] \lambda e^{-\lambda x} d x$
$=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{l|l|}
\text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{array}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathbb{d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0 \mid X 1<x] \lambda e^{-\lambda x} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=0\right] \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{dxp}(\lambda) \\
& f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq 0 \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{p}-x\right] \lambda e^{-\lambda x} \mathrm{~d} x \quad \underbrace{e^{-\lambda(t-x)}}
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \overbrace{\operatorname{Pr}\left[N_{t-x}=0\right]} \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathbb{d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1}<x\right] \lambda e^{-\lambda x} d x \underbrace{e^{-\lambda(t-x)}}
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \overbrace{\operatorname{Pr}\left[N_{t-x}=0\right]} \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathbb{d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1}<x\right] \lambda e^{-\lambda x} d x \underbrace{e^{-\lambda(t-x)}}
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \overbrace{\operatorname{Pr}\left[N_{t-x}=0\right]} \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathbb{d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1}<x\right] \lambda e^{-\lambda x} d x \underbrace{e^{-\lambda(t-x)}}
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \overbrace{\operatorname{Pr}\left[N_{t-x}=0\right]} \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

$$
=\lambda e^{-\lambda t} \int_{0}^{t} 1 \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=1\right]=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \mathrm{~d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=0 \mid X_{1}=x\right] \lambda e^{-\lambda x} \mathbb{1} \times \leq \varrho \mathbb{d} x
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N(x, t)=0 \mid X_{1}<x\right] \lambda e^{-\lambda x} d x \underbrace{e^{-\lambda(t-x)}}
$$

$$
=\int_{0}^{t} \operatorname{Pr}[N(x, t)=0] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \overbrace{\operatorname{Pr}\left[N_{t-x}=0\right]} \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

$$
=\lambda e^{-\lambda t} \int_{0}^{t} 1 \mathrm{~d} x=\lambda t e^{-\lambda t}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{llll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
\operatorname{Fr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \begin{array}{l}
\text { 位 }
\end{array} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{lll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
f_{f}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \begin{array}{l}
F_{X}(x)=1-e^{-\lambda \lambda} \\
\operatorname{Pr}\left[N_{t}=2\right]
\end{array}
\end{array}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$	$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$ $f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x} \geq 0$ $\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$ $\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$ $\operatorname{Pr}\left[N_{t}=2\right]=\operatorname{Pr}\left[X_{1} \leq t \wedge N\left(X_{1}, t\right)=1-1\right]$	

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x]$	$f_{x}(x) d x$	$\boldsymbol{X} \sim \operatorname{Exp}(\lambda)$
$\begin{aligned} & \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\ & \operatorname{Pr}\left[N_{t}=2\right]=\int_{-\infty}^{\infty} \end{aligned}$	$\begin{aligned} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\ & \operatorname{Pr}\left[X_{1} \leq t \wedge N(x, t)=1 \mid X_{1}=x\right] f_{X_{1}}(x) \mathrm{d} x \end{aligned}$		$\begin{aligned} & f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\ & F_{x}(x)=1-e^{-\lambda x} \end{aligned}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$	$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$ $f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x} \geq 0$ $\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$ $\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$ $\operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x$	

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

| Specific Values \quad Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$ | $\boldsymbol{x} \sim \operatorname{Exp}(\boldsymbol{\lambda})$
 $f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$
 $F_{x}(x)=1-e^{-\lambda x}$ |
| :--- | :--- | :--- |
| $\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$ | |
| $\operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x$ | |

$$
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} d x
$$

Counting Decays

exactly one

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x
\end{aligned}
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \lambda(t-x) e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

exactly one

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
& \operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x
\end{aligned}
$$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x=\int_{0}^{t} \lambda(t-x) e^{-\lambda(t \not \supset x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \begin{aligned}
\operatorname{Pr}\left[N_{t}=0\right] & =e^{-\lambda t} \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\begin{aligned}
\operatorname{Pr}\left[N_{t}=2\right] & =\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x
\end{aligned} & =\int_{0}^{t} \lambda(t-x) e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t} \int_{0}^{t} t-x \mathrm{~d} x
\end{aligned}
\end{aligned}
$$

$$
X \sim \operatorname{Exp}(\lambda)
$$

$$
f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}
$$

$$
F_{X}(x)=1-e^{-\lambda \bar{x}}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x
\end{array} \quad \begin{aligned}
& f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

$$
\begin{aligned}
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x & =\int_{0}^{t} \lambda(t-x) e^{-\lambda(t \not \supset x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t} \int_{0}^{t} t-x \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t}\left(t \cdot \int_{0}^{t} 1 \mathrm{~d} x-\int_{0}^{t} x \mathrm{~d} x\right)
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x
\end{array} \quad \begin{aligned}
& f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

$$
\begin{aligned}
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x & =\int_{0}^{t} \lambda(t-x) e^{-\lambda(t \not \supset x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t} \int_{0}^{t} t-x \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t}\left(t \cdot \int_{0}^{t} 1 \mathrm{~d} x-\int_{0}^{t} x \mathrm{~d} x\right) \\
& =\lambda^{2} e^{-\lambda t}\left(t^{2}-\left[\frac{1}{2} x^{2}\right]_{0}^{t}\right)
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=2\right]=\int_{0}^{t} \operatorname{Pr}[N(x, t)=1] \lambda e^{-\lambda x} \mathrm{~d} x
\end{array} \quad \begin{aligned}
& f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

$$
\begin{aligned}
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=1\right] \lambda e^{-\lambda x} \mathrm{~d} x & =\int_{0}^{t} \lambda(t-x) e^{-\lambda(t>x)} \cdot \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t} \int_{0}^{t} t-x \mathrm{~d} x \\
& =\lambda^{2} e^{-\lambda t}\left(t \cdot \int_{0}^{t} 1 \mathrm{~d} x-\int_{0}^{t} x \mathrm{~d} x\right) \\
& =\lambda^{2} e^{-\lambda t}\left(t^{2}-\left[\frac{1}{2} x^{2}\right]_{0}^{t}\right)=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \\
& \qquad \begin{array}{ll|l}
\text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
\operatorname{Pr}\left[N_{t}=0\right]=\underbrace{e^{-\lambda t}} & \operatorname{Pr}\left[N_{t}=1\right]=\underbrace{\lambda t e^{-\lambda t}} \operatorname{Pr}\left[N_{t}=2\right]=\underbrace{\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}} & \begin{array}{l}
f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array}
\end{array}
\end{aligned}
$$

$$
\operatorname{Pr}\left[N_{t}=0\right]=\underbrace{e^{-\lambda t}}_{\frac{(\lambda t)^{0} e^{-\lambda t}}{0!}} \operatorname{Pr}\left[N_{t}=1\right]=\underbrace{\lambda t e^{-\lambda t}}_{\frac{(\lambda t)^{1} e^{-\lambda t}}{1!}} \operatorname{Pr}\left[N_{t}=2\right]=\underbrace{\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t}_{\frac{(\lambda t)^{2} e^{-\lambda t}}{2!}}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in [a, b]
exactly one

- Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{lll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) d x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{array} \begin{aligned}
& f_{X}(x)=\lambda e^{-\lambda} \\
& F_{x}(x)=1-1
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t - Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times - Let $N(a, b)$ be the number of emissions in [a, b]

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x$	$X \sim \operatorname{Exp}(\lambda)$
$\left[N_{t}=0\right]=e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}$	$\begin{aligned} & f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\ & F_{x}(x)=1-e^{-\lambda x} \end{aligned}$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$	$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$	
$\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}$	$f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$ $F_{x}(x)=1-e^{-\lambda x}$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} d x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

- Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x$	$x \sim \operatorname{Exp}(\lambda)$
$\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$	$=1]=\lambda t e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}$	$\begin{aligned} & f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\ & F_{x}(x)=1-e^{-\lambda x} \end{aligned}$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} d x$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$	$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$	
$\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}$	$f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$ $F_{x}(x)=1-e^{-\lambda x}$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} d x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

Specific Values	Law of Total Probability: $\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x$	$\boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda})$	
$\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t}$	$\operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}$	$f_{x}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$ $F_{x}(x)=1-e^{-\lambda x}$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \begin{array}{l}
\text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{array} .
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{g(x)}{d x}\right)} \mathrm{d} u$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x$

Counting Decays

Motivation

- Count number of particles emitted within a given time t Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{ll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \\
\operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{array}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction) $\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x$

$$
\text { Integration by Substitution } u=g(x)
$$

$$
\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{d g(x)}{d x}\right)} \mathrm{d} u
$$

$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{g(x)}{d x}\right)} \mathrm{d} u$

$$
\begin{aligned}
& \boldsymbol{X \sim \operatorname { E x p } (\lambda)} \\
& f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

$$
\begin{aligned}
f(u) & =u^{k} \\
u=g(x) & =(t-x) \\
\frac{d g(x)}{d x} & =-1
\end{aligned}
$$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{lll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\boldsymbol{\lambda}) \\
\\
\quad \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2}
\end{array} \begin{aligned}
& f_{x}(x)=\lambda e^{-\lambda x} 1_{x \geq 0} \\
& F_{X}(x)=1-e^{-\lambda x}
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} d x$
Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{g(x)}{d x}\right)} \mathrm{d} u$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} \mathrm{~d} u \quad \begin{gathered}f(u)=u^{k} \\ u=g(x)=(t-x)\end{gathered}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \begin{array}{lll}
\text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2} & \operatorname{Exp}(\boldsymbol{\lambda}) \\
f_{X}(x)=\lambda e^{-\lambda x} 1_{x} \\
F_{v}(x)=1-e^{-\lambda}
\end{array}
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction)
$\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} d x$
Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{g(x)}{d x}\right)} \mathrm{d} u$
$=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} \mathrm{~d} u \quad \begin{gathered}f(u)=u^{k} \\ u=g(x)=(t-x)\end{gathered}$
$=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!}\left[-\frac{1}{k+1} u^{(k+1)}\right]_{t}^{0}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \\
& \begin{array}{lll}
\text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) d x \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} \quad \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2} & \boldsymbol{\operatorname { E x p } (\boldsymbol { \lambda })} \\
f_{X}(x)=\lambda e^{-\lambda} \\
F_{v}(x)-1
\end{array}
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction) $\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{g(x)}{d x}\right)} \mathrm{d} u$ $=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} \mathrm{~d} u \begin{gathered}f(u)=u^{k} \\ u=g(x)=(t-x)\end{gathered}$
$=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!}\left[-\frac{1}{k+1} u^{(k+1)}\right]_{t}^{0}=\frac{\lambda^{(k+1)} e^{-\lambda t}}{(k+1)!}\left[u^{(k+1)}\right]_{0}^{t}$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{aligned}
& \text { Specific Values } \quad \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{x}(x) d x \\
& \operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} \begin{array}{ll}
\operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2} \\
f_{X}(x)=\lambda e^{-\lambda} \\
F_{v}(\lambda)-1
\end{array}
\end{aligned}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction) $\operatorname{Pr}\left[N_{t}=k+1\right]$
$=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} \mathrm{~d} x$
Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{d g(x)}{d x}\right)} \mathrm{d} u$ $=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} \mathrm{~d} u \quad u=\begin{gathered}f(u)=u^{k} \\ \lambda^{k}(x)=(t-x)\end{gathered}$
$=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!}\left[-\frac{1}{k+1} u^{(k+1)}\right]_{t}^{0}=\frac{\lambda^{(k+1)} e^{-\lambda t}}{(k+1)!}\left[u^{(k+1)}\right]_{0}^{t}=\frac{(\lambda t)^{(k+1)} e^{-\lambda t}}{(k+1)!} \checkmark$

Counting Decays

Motivation

- Count number of particles emitted within a given time t

Let $X_{1}, X_{2}, X_{3}, \ldots \sim \operatorname{Exp}(\lambda)$ be independent waiting times

- Let $N(a, b)$ be the number of emissions in $[a, b]$

Let $N_{t}=N(0, t)$ be the number of emissions until t

$$
\begin{array}{clll}
\text { Specific Values } & \text { Law of Total Probability: } \operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] \cdot f_{X}(x) \mathrm{d} x & \boldsymbol{X} \sim \operatorname{Exp}(\lambda) \\
\operatorname{Pr}\left[N_{t}=0\right]=e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=1\right]=\lambda t e^{-\lambda t} & \operatorname{Pr}\left[N_{t}=2\right]=\lambda^{2} e^{-\lambda t} \cdot \frac{1}{2} t^{2} & \begin{array}{l}
f_{X}(x)=\lambda e^{-\lambda x} 1_{x \geq 0} \\
F_{X}(x)=1-e^{-\lambda x}
\end{array}
\end{array}
$$

General Form $\operatorname{Pr}\left[N_{t}=k\right]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}$ (proof via induction) $\operatorname{Pr}\left[N_{t}=k+1\right]$

$$
\longrightarrow N_{t} \sim \operatorname{Pois}(\lambda t)
$$

Integration by Substitution $u=g(x)$
$\int_{a}^{b} f(g(x)) \mathrm{d} x=\int_{g(a)}^{g(b)} \frac{f(u)}{\left(\frac{d g(x)}{d x}\right)} \mathrm{d} u$

$$
=\int_{0}^{t} \operatorname{Pr}\left[N_{t-x}=k\right] \cdot \lambda e^{-\lambda x} d x
$$

$$
=\int_{0}^{t} \frac{(\lambda(t-x))^{k} e^{-\lambda(t-x)}}{k!} \cdot \lambda e^{-\lambda x} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{0}^{t}(t-x)^{k} \mathrm{~d} x=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_{t}^{0} \frac{u^{k}}{-1} \mathrm{~d} u \quad \begin{gathered}
f(u)=u^{k} \\
u=g(x)=(t-x)
\end{gathered}
$$

$$
=\frac{\lambda^{(k+1)} e^{-\lambda t}}{k!}\left[-\frac{1}{k+1} u^{(k+1)}\right]_{t}^{0}=\frac{\lambda^{(k+1)} e^{-\lambda t}}{(k+1)!}\left[u^{(k+1)}\right]_{0}^{t}=\frac{(\lambda t)^{(k+1)} e^{-\lambda t}}{(k+1)!} \checkmark
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in $[a, b]$, where are they within the interval?

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in $[a, b]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

For $t \leq b$: $\operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

For $t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]=\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]}$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval? 0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \begin{aligned}
t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right] & =\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]} \\
& =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned}\left\{\begin{array}{c}
\text { exactly one in } \\
{[0, b] \text { and it is } \leq}
\end{array}\right.
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \begin{aligned}
t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right] & =\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]} \\
& =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned} \quad \begin{gathered}
\text { exactly one in } \\
{[0, b] \text { and it is } \leq t}
\end{gathered}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \begin{aligned}
t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right] & =\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]}- \\
& =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned} \quad \begin{gathered}
\text { exactly one in } \\
\text { independence of } \\
\text { disjoint intervals }
\end{gathered} \rightarrow=\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \quad 1 \text { it is } \leq t
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\begin{aligned}
& \text { For } t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]=\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]} \\
& \text { exactly one in } \\
& {[0, b] \text { and it is } \leq t} \\
& \text { independence of } \\
& \begin{aligned}
C & =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \\
\rightarrow & =\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \\
= & \frac{(X t) e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(X b) e^{-\lambda b}}
\end{aligned}
\end{aligned}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \begin{aligned}
t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right] & =\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]}- \\
& =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned} \quad \begin{gathered}
\text { exdependly one in } \\
\text { indence of } \\
\text { disjoint intervals }
\end{gathered} \rightarrow=\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \quad 1 \text { it is } \leq t
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \left.\begin{array}{rl}
t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right] & =\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]}- \\
& =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{array} \begin{array}{c}
\text { exactly one in } \\
\text { independence of } \\
\text { disjoint intervals }
\end{array} \rightarrow b\right] \text { and it is } \leq t .
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d$: $N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\begin{aligned}
& \text { For } t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]=\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]} \\
& \text { exactly one in } \\
& \begin{aligned}
\begin{array}{c}
\text { independence of } \\
\text { disjoint intervals }
\end{array} & =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned}=\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} 0[0, b] \text { and it is } \leq t
\end{aligned}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\text { For } \begin{aligned}
& t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]=\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]}- \\
& \begin{aligned}
\begin{array}{c}
\text { independence of } \\
\text { disjoint intervals }
\end{array} & =\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]}
\end{aligned} \quad \begin{array}{c}
\text { exactly one in } \\
{[0, b] \text { and it is } \leq t}
\end{array} \\
&=\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \quad \text { for } X \sim \mathcal{U}([0, b]) \\
&=\frac{(X t) e^{-\lambda t e} \cdot e^{-\lambda(t b>i)}}{(X b) e-\lambda \cdot b}=\frac{t}{b}=F_{X}^{\downarrow}(t)
\end{aligned}
$$

Poisson Process

Definition: A Poisson process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}$ such that, if $N(a, b)=\left|\left\{i \mid X_{i} \in[a, b]\right\}\right|$, then

- $N(a, b) \sim \operatorname{Pois}(\lambda(b-a))$
(homogeneity)
- $a<b<c<d: N(a, b)$ and $N(c, d)$ are independent (independence)
- Assuming we know how many X_{i} are in [$\left.a, b\right]$, where are they within the interval?

0 due to memorylessness

$$
\operatorname{Pr}[N(a, b)=k]=\frac{(\lambda(b-a))^{k} e^{-\lambda(b-a)}}{k!}
$$

- Simple case: $N(0, b)=1$, where is X_{1} ?

$$
\begin{aligned}
& \text { For } t \leq b: \operatorname{Pr}\left[X_{1} \leq t \mid N(0, b)=1\right]=\frac{\operatorname{Pr}\left[X_{1} \leq t \wedge N(0, b)=1\right]}{\operatorname{Pr}[N(0, b)=1]} \\
& \text { exactly one in } \\
& {[0, b] \text { and it is } \leq t} \\
& \begin{array}{l}
\begin{array}{l}
\text { independence of } \\
\text { disjoint intervals }
\end{array} \longrightarrow=\frac{\operatorname{Pr}[N(0, t)=1 \wedge N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \\
\longrightarrow=\frac{\operatorname{Pr}[N(0, t)=1] \cdot \operatorname{Pr}[N(t, b)=0]}{\operatorname{Pr}[N(0, b)=1]} \quad \text { for } X \sim \mathcal{U}([0, b])
\end{array} \\
& =\frac{(X t) e^{-\lambda t} \cdot e^{-\lambda(t b-i)}}{(X b) e^{-\lambda \cdot h}}=\frac{t}{b}=F_{X}^{\downarrow}(t)
\end{aligned}
$$

- In general: the positions of the points are distributed uniformly in an interval

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function is $F_{X, Y}(a, b)=\operatorname{Pr}[X \leq a \wedge Y \leq b]$.
The joint density function $f_{X, Y}(a, b)$ satisfies $F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$.

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function is $F_{X, Y}(a, b)=\operatorname{Pr}[X \leq a \wedge Y \leq b]$.
The joint density function $f_{X, Y}(a, b)$ satisfies $F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$.
Definition: The marginal density of X is $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function is $F_{X, Y}(a, b)=\operatorname{Pr}[X \leq a \wedge Y \leq b]$.
The joint density function $f_{X, Y}(a, b)$ satisfies $F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$.
Definition: The marginal density of X is $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.
Definition: The conditional density of X with respect to an event A is

$$
f_{X \mid A}(x)=\left\{\begin{array}{l}
f_{X}(x) / \operatorname{Pr}[A], \text { if } x \in A, \\
0, \text { otherwhise } .
\end{array}\right.
$$

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function is

$$
F_{X, Y}(a, b)=\operatorname{Pr}[X \leq a \wedge Y \leq b] .
$$

The joint density function $f_{X, Y}(a, b)$ satisfies $F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$.
Definition: The marginal density of X is $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.
Definition: The conditional density of X with respect to an event A is

$$
f_{X \mid A}(x)=\left\{\begin{array}{l}
f_{X}(x) / \operatorname{Pr}[A], \text { if } x \in A, \\
0, \text { otherwhise }
\end{array}\right.
$$

- For continuous Y, we specifically get $f_{X \mid Y=y}(x)=f_{X, Y}(x, y) / f_{Y}(y)$
- We can then write $f_{X, Y}(x, y)=f_{X \mid Y=y}(x) \cdot f_{Y}(y) \quad$ (like the chain rule for probabilities)

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function is

$$
F_{X, Y}(a, b)=\operatorname{Pr}[X \leq a \wedge Y \leq b]
$$

The joint density function $f_{X, Y}(a, b)$ satisfies $F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$.
Definition: The marginal density of X is $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.
Definition: The conditional density of X with respect to an event A is

$$
f_{X \mid A}(x)=\left\{\begin{array}{l}
f_{X}(x) / \operatorname{Pr}[A], \text { if } x \in A, \\
0, \text { otherwhise }
\end{array}\right.
$$

- For continuous Y, we specifically get $f_{X \mid Y=y}(x)=f_{X, Y}(x, y) / f_{Y}(y)$
- We can then write $f_{X, Y}(x, y)=f_{X \mid Y=y}(x) \cdot f_{Y}(y) \quad$ (like the chain rule for probabilities)

Definition: Random variables X, Y are independent if $F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)$.

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$ Independence

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$ Independence

$$
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

```
X,Y independent if
F
```


Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$ Independence

$$
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x=\int_{0}^{a} \int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence constant w.r.t. \times

$$
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x=\int_{0}^{a} \overbrace{\int_{0}^{b}} 1 \mathrm{~d} y \mathrm{~d} x
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$
\begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x} \\
& =\int_{0}^{b} 1 \mathrm{~d} y \cdot \int_{0}^{a} 1 \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$
\begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x} \\
& =\int_{0}^{b} \underbrace{1 \mathrm{~d} y}_{f_{Y}(y)} \cdot
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence

$$
\begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d}} \mathrm{~d} x \\
& =\int_{f_{Y}(y)}^{b} \underbrace{1 \mathrm{~d} y}_{f_{X}(x)} \cdot \underbrace{a}_{0} 1 \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

Independence constant w.r.t. \times

$$
\begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x} \\
& =\int_{0}^{b} 1 \mathrm{~d} y \cdot \int_{0}^{a} 1 \mathrm{~d} x \\
& =\int_{0}^{b} f_{Y}(y) \mathrm{d} y \cdot \int_{0}^{a} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& X, Y \text { independent if } \\
& F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

$$
\begin{aligned}
& \text { Independence } \\
& \qquad \begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x}^{\text {constant w.r.t. } x} \\
& =\int_{0}^{b} 1 \mathrm{~d} y \cdot \int_{0}^{a} 1 \mathrm{~d} x \\
& =\int_{0}^{b} f_{Y}(y) \mathrm{d} y \cdot \int_{0}^{a} f_{X}(x) \mathrm{d} x=F_{Y}(b) \cdot F_{X}(a)
\end{aligned}
\end{aligned} \begin{aligned}
& \begin{array}{l}
X, Y \text { independ } \\
F_{X, Y}(x, y)=F
\end{array}
\end{aligned}
$$

Example: $\mathcal{U}\left([0,1]^{2}\right)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0,1]^{2}$
- Let X, Y be the x - and y-coordinates of P, respectively
- $f_{P}(x, y)=f_{X, Y}(x, y)=1$ for $(x, y) \in[0,1]^{2}$ and $f_{P}(x, y)=0$, otherwise

Marginal Distributions

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{1} 1 \mathrm{~d} y=[y]_{0}^{1}=1 \quad f_{Y}(y)=1
$$

$$
\begin{aligned}
& \text { Marginal Density } \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y
\end{aligned}
$$

- Note that $X \sim \mathcal{U}([0,1])$ and $Y \sim \mathcal{U}([0,1])$

$$
\begin{aligned}
& \text { Independence } \\
& \qquad \begin{aligned}
F_{X, Y}(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x & =\int_{0}^{a} \overbrace{\int_{0}^{b} 1 \mathrm{~d} y \mathrm{~d} x}^{\text {constant w.r.t. } x} \\
& =\int_{0}^{b} 1 \mathrm{~d} y \cdot \int_{0}^{a} 1 \mathrm{~d} x \\
& =\int_{0}^{b} f_{Y}(y) \mathrm{d} y \cdot \int_{0}^{a} f_{X}(x) \mathrm{d} x=F_{Y}(b) \cdot F_{X}(a)
\end{aligned}
\end{aligned} \begin{aligned}
& X, Y \text { indepeno } \\
& F_{X, Y}(x, y)=F
\end{aligned},
$$

- Sample $P=(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)$ by independently sampling $X, Y \sim \mathcal{U}([0,1])$!

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
\checkmark This property is called locality or clustering

Students

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students

Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many?

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many? Which space?

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many? Which space? Which metric?

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many? Which space? Which metric? Which distribution?

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many? Which space? Which metric? Which distribution? Which probability?

Application: Random Geometric Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
- Two vertices are more likely to be adjacent if they have a common neighbor
- This property is called locality or clustering
- ER-graph: $\operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\operatorname{Pr}[\{v, w\} \in E] X$

Students Idea

- Vertices are likelier to connect if their distance is already small
\Rightarrow Define vertex distances in advance by introducing geometry
Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.
How many? Which space? Which metric? Which distribution? Which probability? Simple \& Realistic!

Application: Simple Random Geometric Graphs

```
Random Geometric Graph
Nodes distributed in metric space
Connection probability depends on distance
```


Application: Simple Random Geometric Graphs

- Number: n vertices

Random Geometric Graph
Nodes distributed in metric space
Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$
$\rightarrow \underbrace{L_{\infty}} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
"Chebychev distance"

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$
$\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$
$\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$
$\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\longrightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \longleftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \longleftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]= \begin{cases}1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \longleftarrow & \text { threshold } \\ 0, \text { otherwise }\end{cases}
$$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$
- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\begin{aligned}
& \operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
\text { egree of } v
\end{array}\right. \text { othreshold } \\
& \text { parameter }
\end{aligned}
$$

Expected Degree of v

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of v

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of v

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of v

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
- $\mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$

Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distance- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$
Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$

$$
X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}
$$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distanceDistribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$

- Probability

$$
\begin{aligned}
& \operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right. \\
& \text { egree of } v
\end{aligned}
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$
Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$

$$
X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}
$$

and y-coordinate of u in here

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distanceDistribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$

- Probability

$$
\begin{aligned}
& \operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right. \\
& \text { egree of } v
\end{aligned}
$$

Expected Degree of v

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$
Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$

$$
X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}
$$

$$
X, r \sim \mathcal{U}([0,1])
$$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distance- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$
Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$
$=\sum_{u \in V \backslash\{v\}} \frac{2 r}{1-0} \cdot \frac{2 r}{1-0}$
$X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$ $\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distance- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\begin{aligned}
& \operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right. \\
& \text { egree of } v
\end{aligned}
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
$\square \mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$
Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$
$\stackrel{\nabla}{=} u \in V \backslash\{v\} \frac{2 r}{1-0} \cdot \frac{2 r}{1-0}$
$X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}=(n-1) \cdot 4 r^{2}$

Application: Simple Random Geometric Graphs

- Number: n vertices
- Space: 2-dimensional torus \mathbb{T}^{2} (unit square with opposite sides identified)
- Metric: for $p=\left(p_{1}, p_{2}\right), q=\left(q_{1}, q_{2}\right): d_{i}=\left|p_{i}-q_{i}\right|$

$$
\rightarrow L_{\infty} \operatorname{norm}: d(p, q)=\max _{i \in\{1,2\}} \min \left\{d_{i}, 1-d_{i}\right\}
$$

Random Geometric Graph

 Nodes distributed in metric space Connection probability depends on distance- Distribution: For each v independently: $P_{v} \sim \mathcal{U}\left([0,1]^{2}\right)$
- Probability

$$
\operatorname{Pr}[\{u, v\} \in E]=\left\{\begin{array}{l}
1, \text { if } d\left(P_{u}, P_{v}\right) \leq r \leftarrow \text { parameter } \\
0, \text { otherwise }
\end{array}\right.
$$

Expected Degree of \boldsymbol{v}

- Neighbors of v are in $N(v)$ (here $N(v)$ denotes the region in the ground space)
- $\mathbb{E}[\operatorname{deg}(v)]=\mathbb{E}\left[\sum_{u \in V \backslash\{v\}} \mathbb{1}_{\left\{P_{u} \in N(v)\right\}}\right]=\sum_{u \in V \backslash\{v\}} \operatorname{Pr}\left[d\left(P_{u}, P_{v}\right) \leq r\right]$

Draw $P_{u}=(X, Y)$ as independent $X, Y \sim \mathcal{U}([0,1])$
$=\sum_{u \in V \backslash\{v\}} \frac{2 r}{1-0} \cdot \frac{2 r}{1-0}$
$X \sim \mathcal{U}([a, b]): \operatorname{Pr}[X \in[c, d] \subseteq[a, b]]=\frac{d-c}{b-a}=\underset{\text { (area of the reg }}{(n-1) \cdot r^{2}}$

Simple Random Geometric Graphs - Locality

Locality

- Two vertices v and w are likelier to connect if they have a common neighbor u

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1)$

- Two vertices v and w are likelier to connect if they have a common neighbor u

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$
Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n)
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$
Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$
Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$
Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$
Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] \underbrace{f_{X, Y}(x, y)}_{=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}} \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\left[\begin{array}{l}\mathbb{R}^{2} \\ {[0,1]^{2}}\end{array}\right.} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] \underbrace{f_{X, Y}(x, y)}_{=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}} \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\underset{\substack{\frac{\mathbb{R}^{2}}{N(u)}}}{ } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] \underbrace{f_{X, y}(x, y)}_{=0, \text { if } v=(x, y) \notin N(u)} d y d x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{N(u)} \operatorname{Pr}[w \in N(v) \wedge w \in N(u) \mid v=(x, y)] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{N(u)} \operatorname{Pr}[w \in N(v) \wedge w \in N(u) \mid v=(x, y)] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{N(u)} \operatorname{Pr}[w \in N(v) \wedge w \in N(u) \mid v=(x, y)] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=\int_{=[0,2 r]^{2}}^{\int_{N(u)}^{N(u)}} \operatorname{Pr}[w \in N(v) \wedge w \in \underbrace{N(u)} \mid v=(x, y)] \mathrm{d} y \mathrm{~d} x
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection is the same for these 4 positions of v.

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=\int_{0}^{2 r} \int_{0}^{2 r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
Due to symmetry the area of the intersection
is the same for these 4 positions of v.
\Rightarrow Integrate only one quarter and multiply by 4
is the same for these 4 positions of v.
\Rightarrow Integrate only one quarter and multiply by 4

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$ $=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$ $=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)
$$

$$
f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)
$$

$$
f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)
$$

$$
f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$2 d$-intersection is product of $1 d$-intersections $(r+x) \cdot(r+y)$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$

Consider size of intersection in one dimension depending on position of v

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$2 d$-intersection is product of $1 d$-intersections $(r+x) \cdot(r+y)$
$(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)$
$f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Consider size of intersection in one dimension depending on position of v

$2 d$-intersection is product of $1 d$-intersections $(r+x) \cdot(r+y)$

Law of Total Probability
$(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)$
$f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]$
$=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x$
$=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

constant w.r.t. y

$$
=4 \int_{0}^{r} \int_{0}^{r} \underbrace{(r+x)} \cdot(r+y) \mathrm{d} y \mathrm{~d} x
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r}(r+x) \cdot \underbrace{\int_{0}^{r}(r+y) \mathrm{d} y}_{\text {constant w.r.t. } x} \mathrm{~d} x
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
\begin{aligned}
& =4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x \\
& =4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x
$$

$$
=4\left(\int_{0}^{r}(r+x) \mathrm{d} x\right)^{2}
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x>=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x
$$

$$
=4\left(\int_{0}^{r}(r+x) \mathrm{d} x\right)^{2}
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x{ }_{\Gamma}=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x=4\left(r[x]_{0}^{r}+\left[\frac{1}{2} x^{2}\right]_{0}^{r}\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x
$$

$$
=4\left(\int_{0}^{r}(r+x) \mathrm{d} x\right)^{2}
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)
$$

$$
f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x{ }_{\Gamma}=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x=4\left(r[x]_{0}^{r}+\left[\frac{1}{2} x^{2}\right]_{0}^{r}\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x=4\left(r^{2}+\frac{1}{2} r^{2}\right)^{2}
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x{ }_{\Gamma}=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

Law of Total Probability

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x=4\left(r[x]_{0}^{r}+\left[\frac{1}{2} x^{2}\right]_{0}^{r}\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x=4\left(r^{2}+\frac{1}{2} r^{2}\right)^{2}=4\left(\frac{3}{2} r^{2}\right)^{2}
$$

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x{ }_{\Gamma}=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x=4\left(r[x]_{0}^{r}+\left[\frac{1}{2} x^{2}\right]_{0}^{r}\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x=4\left(r[x]_{0}+\left[\frac{1}{2} x^{2}\right]_{0}=4\left(r^{2}+\frac{1}{2} r^{2}\right)^{2}=4\left(\frac{3}{2} r^{2}\right)^{2}=4 \frac{9}{4} r^{4}\right.
$$

$(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)$
$f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \text { w.l.o.g assume } u=(r, r) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

$$
\text { Numerator } \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]
$$

$$
=\int_{\mathbb{R}^{2}} \operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u) \mid v=(x, y)] f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r} \operatorname{Pr}\left[w \in N(v) \wedge w \in[0,2 r]^{2} \mid v=(x, y)\right] \mathrm{d} y \mathrm{~d} x
$$

$$
=4 \int_{0}^{r} \int_{0}^{r}(r+x) \cdot(r+y) \mathrm{d} y \mathrm{~d} x{ }_{\Gamma}=4\left(\int_{0}^{r} r \mathrm{~d} x+\int_{0}^{r} x \mathrm{~d} x\right)^{2}
$$

$$
=4 \int_{0}^{r}(r+x) \cdot \int_{0}^{r}(r+y) \mathrm{d} y \mathrm{~d} x=4\left(r[x]_{0}^{r}+\left[\frac{1}{2} x^{2}\right]_{0}^{r}\right)^{2}
$$

$$
\begin{aligned}
&=4 \int_{0}^{r}(r+y) \mathrm{d} y \cdot \int_{0}^{r}(r+x) \mathrm{d} x \\
&=4\left(\int_{0}^{r}(r+x) \mathrm{d} x\right)^{2}=4\left(r^{2}+\frac{1}{2} r^{2}\right)^{2}=4\left(\frac{3}{2} r^{2}\right)^{2}=4 \frac{9}{4} r^{4} \\
&=9 r^{4}
\end{aligned}
$$

$$
(X, Y) \sim \mathcal{U}\left([0,1]^{2}\right)
$$

$$
f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$ - Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator
$\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]$
positions are drawn independently

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
& \operatorname{Pr}[v \in N(u) \wedge w \in N(u)]=\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
& \begin{array}{l}
\text { positions are drawn } \\
\quad \text { independently }
\end{array}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([\mathbf{0}, \mathbf{1}]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]=\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)]
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
& \operatorname{Pr}[v \in N(u) \wedge w \\
& \begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array}=N(u)] \\
&=(\underbrace{\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)]}_{\substack{\text { distribution identical } \\
\text { for all vertices }}} \\
&=(\operatorname{Pr}[v \in N(u)])^{2}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
& \operatorname{Pr}[v \in N(u) \wedge w \\
& \begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array}=N(u)] \\
&=(\underbrace{\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)]}_{\substack{\text { distribution identical } \\
\text { for all vertices }}} \\
&=(\operatorname{Pr}[v \in N(u)])^{2}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)] & =\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
\begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array} & \begin{array}{c}
\text { distribution identical } \\
\text { for all vertices }
\end{array} \\
& =(\operatorname{Pr}[v \in N(u)])^{2} \\
& =\left(4 r^{2}\right)^{2}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)] & =\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
\begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array} & \begin{array}{c}
\text { distribution identical } \\
\text { for all vertices }
\end{array} \\
& =(\operatorname{Pr}[v \in N(u)])^{2} \\
& =\left(4 r^{2}\right)^{2}=16 r^{4}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)] & =\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
\begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array} & \begin{array}{c}
\text { distribution identical } \\
\text { for all vertices }
\end{array} \\
& =(\operatorname{Pr}[v \in N(u)])^{2} \\
& =\left(4 r^{2}\right)^{2}=16 r^{4}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E] \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}=\frac{9}{16}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)] & =\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
\begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array} & \begin{array}{c}
\text { distribution identical } \\
\text { for all vertices }
\end{array} \\
& =(\operatorname{Pr}[v \in N(u)])^{2} \\
& =\left(4 r^{2}\right)^{2}=16 r^{4}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Simple Random Geometric Graphs - Locality

Locality Realistic assumption: $r=\Theta\left(n^{-1 / 2}\right)$ such that $\mathbb{E}[\operatorname{deg}(v)]=\Theta(1) \quad$ Convention: $v=P_{v}$

- Two vertices v and w are likelier to connect if they have a common neighbor u

$$
\begin{aligned}
& \operatorname{Pr}[\{v, w\} \in E]=\operatorname{Pr}[v \in N(w)]=4 r^{2}=\Theta(1 / n) \\
& \operatorname{Pr}[\{v, w\} \in E \mid\{u, v\} \in E \wedge\{u, w\} \in E]=\Theta(1) \checkmark \\
& =\operatorname{Pr}[w \in N(v) \mid v \in N(u) \wedge w \in N(u)]=\frac{\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]}{\operatorname{Pr}[v \in N(u) \wedge w \in N(u)]}=\frac{9}{16}
\end{aligned}
$$

Numerator $\operatorname{Pr}[w \in N(v) \wedge v \in N(u) \wedge w \in N(u)]=9 r^{4}$
Denominator

$$
\begin{aligned}
\operatorname{Pr}[v \in N(u) \wedge w \in N(u)] & =\operatorname{Pr}[v \in N(u)] \cdot \operatorname{Pr}[w \in N(u)] \\
\begin{array}{c}
\text { positions are drawn } \\
\text { independently }
\end{array} & \begin{array}{c}
\text { distribution identical } \\
\text { for all vertices }
\end{array} \\
& =(\operatorname{Pr}[v \in N(u)])^{2} \\
& =\left(4 r^{2}\right)^{2}=16 r^{4}
\end{aligned}
$$

Law of Total Probability

$$
\operatorname{Pr}[A]=\int_{-\infty}^{\infty} \operatorname{Pr}[A \mid X=x] f_{X}(x) \mathrm{d} x
$$

$$
\begin{aligned}
& (X, Y) \sim \mathcal{U}\left([0,1]^{2}\right) \\
& f_{X, Y}(x, y)=\mathbb{1}_{\left\{(x, y) \in[0,1]^{2}\right\}}
\end{aligned}
$$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}$
$\sqrt{\log (n) / n}$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left[X_{i}=\log (n)\right]$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left(X_{-\log (n)]}\right.$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left[X_{1} \log (n)\right]$
- X_{1} and X_{2} are not independent

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left(X_{1}=\log (n)\right]$
- X_{1} and X_{2} are not independent $\operatorname{Pr}\left[X_{1}=\log (n) \mid X_{2}=n\right]=0$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr} X_{T}$ log $\left.(n)\right]$
- X_{1} and X_{2} are not independent $\operatorname{Pr}\left[X_{1}=\log (n) \mid X_{2}=n\right]=0$
- Chain rule of probability:

$$
\begin{aligned}
& \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \\
& =\operatorname{Pr}\left[X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{2}=\log (n) \mid X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{3}=\log (n) \mid X_{1}=\log (n) \wedge X_{2}=\log (n)\right] \cdot \ldots
\end{aligned}
$$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr} X_{T}$ log $\left.(n)\right]$
- X_{1} and X_{2} are not independent $\operatorname{Pr}\left[X_{1}=\log (n) \mid X_{2}=n\right]=0$
- Chain rule of probability:

$$
\begin{aligned}
& \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \\
& =\operatorname{Pr}\left[X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{2}=\log (n) \mid X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{3}=\log (n) \mid X_{1}=\log (n) \wedge X_{2}=\log (n)\right] \cdot \ldots
\end{aligned}
$$

Application: Simple RGGs - Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n}$
- Let X_{i} denote the number of vertices in C_{i}
$\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\left\{v \in C_{i}\right\}}\right]=n \cdot \operatorname{Pr}\left[v \in C_{i}\right]=n \frac{\sqrt{\log (n) / n}}{1-0} \frac{\sqrt{\log (n) / n}}{1-0}=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{1}=\log (n)\right]=\binom{n}{\log (n)}\left(\frac{\log (n)}{n}\right)^{\log (n)}\left(1-\frac{\log (n)}{n}\right)^{n-\log (n)}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left[X_{\text {O }}(n)\right]$
- X_{1} and X_{2} are not independent $\operatorname{Pr}\left[X_{1}=\log (n) \mid X_{2}=n\right]=0$
- Chain rule of probability:

$$
\begin{aligned}
& \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \\
& =\operatorname{Pr}\left[X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{2}=\log (n) \mid X_{1}=\log (n)\right] \cdot \operatorname{Pr}\left[X_{3}=\log (n) \mid X_{1}=\log (n) \wedge X_{2}=\log (n)\right] \cdot \ldots
\end{aligned}
$$

Poissonization

Idea

- Avoid dependencies by replacing uniform point sampling with a Poisson point process

Poissonization

Idea

- Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

- Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

- Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)

Poissonization

Idea

avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
Note: We do not know how many points we get!

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
- We should at least expect n points in our ground space $[0,1]^{2}$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
- We should at least expect n points in our ground space $[0,1]^{2}$ $n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]$

Poissonization

Idea

avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$

$$
n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|=\lambda
$$

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$ $n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|=\lambda$
- Recall: conditioned on their number, points are distributed uniformly

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent (independence)
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$ $n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|=\lambda$
- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim \operatorname{Pois}(n)$, sample N points uniformly

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Definition: A Poisson Point process with intensity λ is a collection of random variables $X_{1}, X_{2}, \ldots \in \mathbb{R}^{2}$ such that, if $|A|$ is the area of A and $N(A)=\left|\left\{i \mid X_{i} \in A\right\}\right|$, then

- $N(A) \sim \operatorname{Pois}(\lambda|A|)$
(homogeneity)
- $A \cap B=\emptyset: N(A)$ and $N(B)$ are independent
(Generalizes to arbitrary dimension, $1 d$ is the Poisson process seen earlier)
- Note: We do not know how many points we get!
- How do we choose λ ?
$N \sim \operatorname{Pois}(\beta) \Rightarrow \mathbb{E}[N]=\beta$
- We should at least expect n points in our ground space $[0,1]^{2}$ $n=\mathbb{E}\left[\left|\left\{i \mid X_{i} \in[0,1]^{2}\right\}\right|\right]=\mathbb{E}\left[N\left([0,1]^{2}\right)\right]=\lambda\left|[0,1]^{2}\right|=\lambda$
- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim \operatorname{Pois}(n)$, sample N points uniformly

- The resulting Poissonized RGG has n vertices in expectation

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$N \sim \operatorname{Pois}(\lambda|A|)$ $\mathbb{E}[N]=\lambda|A|$ $\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{i}=\log (n)\right]
$$

$\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?
$\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|c_{i}\right|{ }^{\log (n)} e^{-\lambda\left|c_{i}\right|}\right.}{\log (n)!}$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?
$\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(\frac{\log (n)}{n}\right)^{\log (n)} e^{-n \frac{\log (n)}{n}}}{\log (n)!}$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?
$\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n^{\log (n)} \frac{\ln }{\log (n)} e^{-\eta\left(\frac{\log (n)}{\not n}\right.}\right.}{\log (n)!}$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?
$\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \cdot \frac{\log (n)}{\not n}\right)^{\log (n)} e^{-\gamma^{\prime \log (n)}}}{\ln } \log (n)!\quad=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!}$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$ $\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)$
- What is the probability that each cell gets exactly $\log (n)$ vertices?

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\eta}\right)^{\log (n)} e^{-p^{\prime \log (n)}}}{\ln } \\
\log (n)! & \frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{e}\right)^{\log (n)}}
\end{aligned}
$$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{n}\right)^{\log (n)} e^{-n^{\prime} \frac{\log (n)}{n}}}{\log (n)!}=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{e}\right)^{\log (n)}}
\end{aligned}
$$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\eta}\right)^{\log (n)} e^{-\gamma^{\prime} \frac{\log (n)}{\eta}}}{\log (n)!}=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n \pi)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{e}\right) \log (n)}
\end{aligned}
$$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{n}\right)^{\log (n)} e^{-\gamma^{\prime} \frac{\log (n)}{\eta}}}{\log (n)!}=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n n)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{e}\right) \log (n)}=\frac{1}{e}
\end{aligned}
$$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\eta}\right)^{\log (n)} e^{-p^{\prime \log (n)}}}{\ln } \\
\log (n)! & \frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{e}\right) \log (\bar{n})}
\end{aligned}=\frac{1}{e}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\lambda|A|) \\
& \mathbb{E}[N]=\lambda|A| \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{aligned}
$$

$$
k!\geq e(k / e)^{k}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left[X_{i}=\log (n)\right]$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=\log (n)\right] & =\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{n}\right)^{\log (n)} e^{-p^{\prime \log (n)}}}{\ln } \\
\log (n)! & \frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!} \\
& \leq \frac{\log (n)^{\log (n)} e-\log (n)}{e\left(\frac{\log (n)}{e}\right) \log (\sqrt{n})}
\end{aligned}=\frac{1}{e}
$$

$N \sim \operatorname{Pois}(\lambda|A|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i} \operatorname{Pr}\left[X_{i}=\log (n)\right]$
by definition, disjoint regions are independent

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\not n}\right)^{\log (n)} e^{-\gamma^{\prime \log (n)}}}{\boldsymbol{\eta}} \log (n)!\quad=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!}
$$

$\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|)$
$\mathbb{E}[\boldsymbol{N}]=\lambda|\boldsymbol{A}|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|\boldsymbol{A}|)^{k} e^{-\lambda|\boldsymbol{A}|}}{k!}$

$$
\leq \frac{\log (n)^{\log (n)} e^{-\log (n)}}{e\left(\frac{\log (n)}{\ln }\right) \log (n)}=\frac{1}{e}
$$

there are $n / \log (n)$ cells

$$
k!\geq e(k / e)^{k}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i}^{\downarrow} \operatorname{Pr}\left[X_{i}=\log (n)\right]$
by definition, disjoint regions are independent

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\not n}\right)^{\log (n)} e^{-\gamma^{\prime \log (n)}}}{\boldsymbol{\eta}} \log (n)!\quad=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!}
$$

$\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|)$
$\mathbb{E}[\boldsymbol{N}]=\lambda|\boldsymbol{A}|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|\boldsymbol{A}|)^{k} e^{-\lambda|\boldsymbol{A}|}}{k!}$

$$
\leq \frac{\log (n)^{\log (n)} e-\log (\pi)}{e\left(\frac{\log (\pi)}{e}\right) \log (n)}=\frac{1}{e}
$$

$$
\text { there are } n / \log (n) \text { cells }
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i}^{\Downarrow} \operatorname{Pr}\left[X_{i}=\log (n)\right]$
by definition, disjoint regions are independent $\Omega \leq e^{-n / \log (n)} \downarrow$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(\kappa \frac{\log (n)}{\not n}\right)^{\log (n)} e^{-\gamma^{\log (n)}}}{\eta} \log (n)!\quad=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!}
$$

$\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|)$
$\mathbb{E}[\boldsymbol{N}]=\lambda|\boldsymbol{A}|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|\boldsymbol{A}|)^{k} e^{-\lambda|\boldsymbol{A}|}}{k!}$

$$
\leq \frac{\log (n)^{\log (n)} e-\log (\pi)}{e\left(\frac{\log (\pi)}{e}\right) \log (n)}=\frac{1}{e}
$$

$$
\text { there are } n / \log (n) \text { cells }
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i}^{\Downarrow} \operatorname{Pr}\left[X_{i}=\log (n)\right]$
by definition, disjoint regions are independent $-\leq e^{-n / \log (n)} \checkmark$

Application: Poissonized RGGs - Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda=n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log (n)$
- Each cell C_{i} has width and height $\sqrt{\log (n) / n} \Rightarrow\left|C_{i}\right|=\log (n) / n$
- Let X_{i} denote the number of vertices in $C_{i} \Rightarrow X_{i} \sim \operatorname{Pois}\left(\lambda\left|C_{i}\right|\right)$

$$
\mathbb{E}\left[X_{i}\right]=\lambda\left|C_{i}\right|=\log (n)
$$

- What is the probability that each cell gets exactly $\log (n)$ vertices?

$$
\operatorname{Pr}\left[X_{i}=\log (n)\right]=\frac{\left(\lambda\left|C_{i}\right|\right)^{\log (n)} e^{-\lambda\left|C_{i}\right|}}{\log (n)!}=\frac{\left(n \frac{\log (n)}{\not n}\right)^{\log (n)} e^{-\gamma^{\prime \log (n)}}}{\boldsymbol{\eta}} \log (n)!\quad=\frac{\log (n)^{\log (n)} e^{-\log (n)}}{\log (n)!}
$$

$$
\leq \frac{\log (n)^{\log (n)} e-\log (\pi)}{e\left(\frac{\log (n)}{e}\right) \log (n)}=\frac{1}{e}
$$

$$
\text { there are } n / \log (n) \text { cells }
$$

$\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|)$
$\mathbb{E}[N]=\lambda|A|$
$\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}$

$$
k!\geq e(k / e)^{k}
$$

- Same distribution for all $X_{i}: \operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right]=\prod_{i}^{\downarrow} \operatorname{Pr}\left[X_{i}=\log (n)\right]$
by definition, disjoint regions are independent $\Omega \leq e^{-n / \log (n)} \checkmark$

De-Poissonization

Situation

- We started with a simple RGG $\left(n, \mathbb{T}^{2}, L_{\infty}\right.$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{aligned}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} \mathrm{e}^{-\lambda|A|}}{k!}
\end{aligned}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{n} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stirling } \\
& n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{aligned}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{\not ㇒} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}}
$$

$$
\begin{array}{|l}
\boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{array}
$$

Stirling

$$
n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{n} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \underbrace{\frac{1}{12 n+1}}} \Theta_{(1)}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{aligned}
$$

Stirling

$$
n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{\boldsymbol{N}} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \underbrace{\frac{1}{12 n+1}} \Theta(1)}=\Theta\left(n^{-1 / 2}\right) \quad \begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stirling } \\
& n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{aligned}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\begin{array}{ll}
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{\not ㇒} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{\prime \prime} \underbrace{e^{\frac{1}{12 n+1}}}=\Theta(1)}=\Theta\left(n^{-1 / 2}\right) & \begin{array}{l}
N \sim \operatorname{Pois}(\boldsymbol{\lambda | A |)} \\
\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!} \\
\operatorname{Pr}_{R G G(n)}\left[\forall i: X_{i}=\log (n)\right]=\operatorname{Pr}_{R G G(\operatorname{Pois}(n))}\left[\forall i: X_{i}=\log (n) \mid N=n\right]
\end{array} \\
\hline \begin{array}{l}
\text { Stirling } \\
n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{array}
\end{array}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\begin{array}{ll}
\operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{\not \prime} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \underbrace{e^{\frac{1}{12 n+1}} \Theta(1)}=\Theta\left(n^{-1 / 2}\right)} \begin{array}{ll}
\operatorname{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
\operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!}
\end{array} \\
\operatorname{Pr}_{R G G(n)}\left[\forall i: X_{i}=\log (n)\right]=\operatorname{Pr}_{R G G(\operatorname{Pois}(n))}\left[\forall i: X_{i}=\log (n) \mid N=n\right] & \text { Stirling } \\
=\frac{\operatorname{Pr}_{R G G(\operatorname{Pois}(n))}\left[\forall i: X_{i}=\log (n) \wedge N=n\right]}{\operatorname{Pr}_{\mathrm{RGG}(\operatorname{Pois}(n))}[N=n]} & n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{array}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\begin{aligned}
& \operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{n} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}}=\Theta\left(n^{-1 / 2}\right) \\
& \operatorname{Pr}_{\mathrm{RGG}(n)}\left[\forall i: X_{i}=\log (n)\right]=\operatorname{Pr}_{\mathrm{RGG}(\operatorname{Pois}(n))}\left[\forall i: X_{i}=\log (n) \mid N=n\right]
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|\boldsymbol{A}|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|\boldsymbol{A}|}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stirling } \\
& n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{aligned}
$$

De-Poissonization

Situation

- We started with a simple RGG ($n, \mathbb{T}^{2}, L_{\infty}$-norm, $\left.P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}\right)$
- Switched to Poissonized RGG (${ }_{n}^{4}$ is replaced by $\operatorname{Pois}(n)$) and obtained $\operatorname{Pr}\left[\forall i: X_{i}=\log (n)\right] \leq e^{-n / \log (n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0,1]^{2}$ obtained in the Poisson point process is exactly $N=n$

$$
\begin{aligned}
& \operatorname{Pr}[N=n]=\frac{(\lambda|A|)^{n} e^{-\lambda|A|}}{n!}=\frac{n^{n} e^{-n}}{n!} \leq\left(\frac{n}{e}\right)^{n} \cdot \frac{1}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}}=\Theta\left(n^{-1 / 2}\right) \\
& \operatorname{Pr}_{\mathrm{RGG}(n)}\left[\forall i: X_{i}=\log (n)\right]=\operatorname{Pr}_{\mathrm{RGG}(\operatorname{Pois}(n))}\left[\forall i: X_{i}=\log (n) \mid N=n\right] \\
& =\frac{\operatorname{Pr}_{\operatorname{RGG}(\operatorname{Pois}(n)}\left[\forall i: X_{i}=\log (n) \wedge N=n\right]}{\operatorname{Pr}_{\text {rgG }}(\operatorname{Pois}(n)[N=n]} \leq \frac{\left.\operatorname{Pr}_{\operatorname{RGG}(\operatorname{Pois}(n)}\right)\left[\forall i: X_{i}=\log (n)\right]}{\operatorname{Pr}_{\mathrm{RGG}}(\operatorname{Pois}(n)[N=n]} \leq \frac{e^{-n / \log (n)}}{\Theta\left(n^{-1 / 2}\right)} \checkmark \\
& \boldsymbol{N} \sim \operatorname{Pois}(\boldsymbol{\lambda}|A|) \\
& \operatorname{Pr}[N=k]=\frac{(\lambda|A|)^{k} e^{-\lambda|A|}}{k!} \\
& \text { Stirling } \\
& n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}
\end{aligned}
$$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph Nodes distributed in metric space Connection probability depends on distance

RGG - The Bigger Picture

Seen so far
 - Simple RGG
 $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
$n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph
Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$
- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant

More commonly used model

- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently
- Intersections of neighborhoods are lenses or parts thereof

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$
- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant

More commonly used model

- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently
- Intersections of neighborhoods are lenses or parts thereof

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently
- Intersections of neighborhoods are lenses or parts thereof
- Still $\mathbb{E}[\operatorname{deg}(v)]=\Theta\left(n r^{2}\right)$
- Still probability to connect given common neighbor non-vanishing

RGG - The Bigger Picture

Seen so far

- Simple RGG
- $n, \mathbb{T}^{2}, L_{\infty}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{\{d(u, v) \leq r\}}$

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

- Expected degree of a vertex is $(n-1) 4 r^{2}$
- Probability to connect given common neighbor is constant More commonly used model
- $n,[0,1]^{2}, L_{2}$-norm, $P_{i} \sim \mathcal{U}\left([0,1]^{2}\right), \operatorname{Pr}[\{u, v\} \in E]=\mathbb{1}_{d(u, v) \leq r}$
- Complications
- Vertices near the boundary / corners behave differently
- Intersections of neighborhoods are lenses or parts thereof
- Still $\mathbb{E}[\operatorname{deg}(v)]=\Theta\left(n r^{2}\right)$
- Still probability to connect given common neighbor non-vanishing
$N(v)$ is a disk
No wrap-around!

Problem: Homogeneous degree distribution does not match many real-world graphs

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\min }\right)$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\min }\right)$
\longleftarrow minimum attainable value shape parameter

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$
\uparrow _ minimum attainable value shape parameter
- Probability density function: $f_{X}(x)= \begin{cases}\alpha x_{\text {min }}^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
\(\downarrow\) minimum attainable value
```

- Probability density function: $f_{X}(x)=\left\{\begin{array}{lll}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & & \\ 0 & & \\ \hline\end{array}\right.$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
minimum attainable value
shape parameter
```

- Probability density function: $f_{X}(x)=\left\{\begin{array}{llllllllll}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\min } \\ 0, & & & & & & & \\ 0, & \text { otherwise } & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right.$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
\(\downarrow\) minimum attainable value shape parameter
```

- Probability density function: $f_{X}(x)=\left\{\begin{array}{lllllllll}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\min } & & & & & & & \\ 0, & \text { otherwise } & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right.$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
\(\downarrow\) minimum attainable value
\(\uparrow \quad 4\) minimum attainable value
```

Probability density function: $f_{X}(x)=\left\{\begin{array}{l}\alpha x_{\text {min }}^{\alpha} \\ 0,\end{array}\right.$

- Probability density function: $f_{X}(x)= \begin{cases}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
\(\uparrow \quad\) minimum attainable value
```

- Probability density function: $f_{X}(x)= \begin{cases}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \text { Log-Log-Plot } y=b x^{k} \\
& \begin{array}{l}
\underbrace{\log (y)}_{\square Y}=\log (b)+k \log (b)+k X
\end{array}
\end{aligned}
$$

Hard to distinguish!

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

```
& minimum attainable value
shape parameter
```

$$
\text { Log-Log-Plot } y=b x^{k}
$$

$$
\log (y), \log (b)+k \log (x)
$$

$$
Y=\log (b)+k X
$$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex

konect.cc/plot/degree.a.youtube-links.full.png
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$
\square minimum attainable value
shape parameter

$$
\begin{aligned}
& \text { Log-Log-Plot } y=b x^{k} \\
& \begin{array}{l}
\log (y) \\
\underbrace{}_{\square}=\log (b)+k \\
=\log (b)+k X
\end{array}
\end{aligned}
$$

- Probability density function: $f_{X}(x)= \begin{cases}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

$$
\begin{aligned}
& \square \text { minimum attainable value } \\
& \text { shape parameter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Log-Log-Plot } y=b x^{k} \\
& \log (y)=\log (b)+k \log (x) \\
& \square Y=\log (b)+k X
\end{aligned}
$$

- Probability density function: $f_{X}(x)= \begin{cases}\alpha x_{\min }^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$

konect.cc/plot/degree.a.topology.full.png

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
\Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$

$$
\uparrow \text { minimum attainable value }
$$

- Probability density function: $f_{X}(x)=\left\{\begin{array}{lll}\alpha x_{\text {min }}^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }}{ }^{100^{10}} & \text { shame } \\ 0, & \text { otherwise } & \text { Degree (d) }\end{array}\right.$

$$
\begin{aligned}
& \text { Log-Log-Plot } y=b x^{k} \\
& \log (y)=\log (b)+k \log (x) \\
& \square=\log (b)+k X
\end{aligned}
$$

Exercise: Determine for which values of α we have $\mathbb{E}[X]<\infty$ but $\operatorname{Var}[X]=\infty$

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity \& independence)

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity \& independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly

We can simulate a PPP by drawing number according to Poisson distribution and distributing as many points uniformly

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity \& independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly

We can simulate a PPP by drawing number according to Poisson distribution and distributing as many points uniformly

- (De-)Poissonization to circumvent stochastic dependencies

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity \& independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances

We can simulate a PPP by drawing number according to Poisson distribution and distributing as many
points uniformly

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity \& independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances

We can simulate a PPP by drawing number according to Poisson distribution and distributing as many
points uniformly

- Exhibit locality (edges tend to form between vertices with common neighbors)

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

(not discussed in lecture)

- Yields random point set with certain properties (homogeneity \& independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly

We can simulate a PPP by drawing number according to Poisson
distribution and distributing as many points uniformly

- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances
- Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution

