Probability & Computing

Continuous Probability Spaces & Random Geometric Graphs
Motivation – Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- “We could do this forever!” Could they really?
- They measure with infinite precision...
 - What is $Pr[X = 2.71828182846]$?
 - What is $Pr[X = 2.71828182847]$?
- But then the “sum” over uncountably infinite non-zero values is ∞ This is not a probability distribution!

- For continuous spaces we need to adjust how we measure probabilities
 - We assign probabilities to *intervals* instead of individual values!
 - The probability is the *area* of the bar, *not* the height
 - As bars get thinner, areas (probabilities) decrease
 - We describe distributions using probability density functions

\[
\text{Area} = Pr[X \in [1, 2]] = x \cdot \delta \Rightarrow x = \frac{Pr}{\delta}
\]

Emission could happen at any time...

How much probability fits in the interval?

But what does the axis denote then?

Alice Curie

youtube.com/watch?v=ZA4JkHKZM50
Working in Continuous Probability Spaces

Discrete Random Variable X
- Cumulative distribution function
 \[F_X(x) = \Pr[X \leq x] = \sum_{y \leq x} f_X(y) \]
- Probability mass function
 \[f_X(x) = \Pr[X = x] \geq 0 \quad \sum_x \Pr[X = x] = 1 \]
- Expectation
 \[\mathbb{E}[X] = \sum_x x \cdot \Pr[X = x] \]

Example: Uniform Distribution
- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two ≥ 2m boards out of one 5m plank?

Continuous Random Variable X
- Cumulative distribution function
 \[F_X(x) = \Pr[X \leq x] = \int_{-\infty}^x f_X(y) dy \]
- Probability density function
 \[f_X(x) \geq 0 \]
- Expectation
 \[\mathbb{E}[X] = \int x \cdot f_X(x) dx \]

Over $[0, 5]$:
\[f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{otherwise} \end{cases} \]
\[
\int_{-\infty}^\infty f_X(x) dx = \int_0^5 \frac{1}{5} dx = \left[\frac{x}{5} \right]_0^5 = 1
\]
\[
\int_a^b f_X(x) dx = \left[\frac{x}{5} \right]_a^b = \frac{1}{5} (b - a)
\]
for $a \leq b \in [0, 5]$.
Working in Continuous Probability Spaces

Discrete Random Variable X
- Cumulative distribution function
 \[F_X(x) = \Pr[X \leq x] = \sum_{y \leq x} f_X(y) \]
- Probability mass function
 \[f_X(x) = \Pr[X = x] \geq 0 \quad \sum_x \Pr[X = x] = 1 \]
- Expectation
 \[\mathbb{E}[X] = \sum_x x \cdot \Pr[X = x] \]

Example: Uniform Distribution
- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two \(\geq 2 \)m boards out of one 5m plank?

Continuous Random Variable X
- Cumulative distribution function
 \[F_X(x) = \Pr[X \leq x] = \int_{-\infty}^{x} f_X(y)\,dy \]
- Probability density function
 \[f_X(x) \geq 0 \quad \int_{-\infty}^{\infty} f_X(x)\,dx = 1 \]
- Expectation
 \[\mathbb{E}[X] = \int x \cdot f_X(x)\,dx \]

Over \([0, 5]\)
\[
f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}
\]

\[
\Pr[X \in [2, 3]] = \Pr[X \leq 3] - \Pr[X \leq 2] = \int_{0}^{3} \frac{1}{5} \, dx - \int_{0}^{2} \frac{1}{5} \, dx = \left[\frac{x}{5} \right]_{0}^{3} - \left[\frac{x}{5} \right]_{0}^{2} = \frac{3}{5} - \frac{2}{5} = \frac{1}{5}
\]
Working in Continuous Probability Spaces

Discrete Random Variable X
- Cumulative distribution function
 \[
 F_X(x) = \Pr[X \leq x] = \sum_{y \leq x} f_X(y)
 \]
- Probability mass function
 \[
 f_X(x) = \Pr[X = x] \geq 0 \quad \text{with} \quad \sum_x \Pr[X = x] = 1
 \]
- Expectation
 \[
 \mathbb{E}[X] = \sum_x x \cdot \Pr[X = x]
 \]

Continuous Random Variable X
- Cumulative distribution function
 \[
 F_X(x) = \Pr[X \leq x] = \int_{-\infty}^{x} f_X(y)\,dy
 \]
- Probability density function
 \[
 f_X(x) \geq 0
 \]
- Expectation
 \[
 \mathbb{E}[X] = \int x \cdot f_X(x)\,dx
 \]

Example: Uniform Distribution
- You build a fence that is at least 2m tall at each point
- In the hardware store they have 5m planks
- The staff member cutting your planks wears hearing protection and cuts uniformly at random
- What is the probability that you get two \(\geq 2 \)m boards out of one 5m plank?

\[
\begin{align*}
 f_X(x) &= \begin{cases}
 \frac{1}{5}, & \text{if } x \in [0, 5] \\
 0, & \text{o.w.}
 \end{cases} \\
 \Pr[X \in [c, d] \subseteq [a, b]] &= \frac{d - c}{b - a}
\end{align*}
\]
Example: Radioactive Decay

Exponential Distribution \(X \sim \text{Exp}(\lambda) \)
- “Rate” parameter \(\lambda > 0 \)
- Continuous equivalent to geometric distribution
- “Time until first success”
- Probability density function \(f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases} \)
- Cumulative distribution function \(F_X(x) = \int_{-\infty}^{x} f_X(y)dy = 1 - e^{-\lambda x} \)

Characterization via Moments (\(n \)-th moment: \(\mathbb{E}[X^n] \))
- \(\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx = \lambda \int_{0}^{\infty} xe^{-\lambda x}dx = \lambda \left(\left[x \cdot \frac{1}{-\lambda} e^{-\lambda x} \right]_0^{\infty} - \int_{0}^{\infty} \frac{1}{-\lambda} e^{-\lambda x} \cdot 1dx \right) \)
- \(= \lambda \left(\frac{1}{\lambda} \left[xe^{-\lambda x} \right]_0^{\infty} + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x} dx \right) \)
- \(= 0 + 0 + \frac{1}{\lambda} \left[e^{-\lambda x} \right]_0^{\infty} = \frac{1}{\lambda} \left[e^{-\lambda x} \right]_0^{\infty} = \frac{1}{\lambda} \left[1 - 0 \right] = \frac{1}{\lambda} \)
Example: Radioactive Decay

Exponential Distribution \(X \sim \text{Exp}(\lambda) \)
- “Rate” parameter \(\lambda > 0 \)
- Continuous equivalent to geometric distribution
- “Time until first success”

- Probability density function \(f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases} \)

- Cumulative distribution function
 \[
 F_X(x) = \int_{-\infty}^{x} f_X(y)dy = 1 - e^{-\lambda x}
 \]

Characterization via Moments \((n\text{-th moment: } \mathbb{E}[X^n])\)
- \(\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx = \lambda \int_{0}^{\infty} xe^{-\lambda x}dx = \frac{1}{\lambda}\)
- \(\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x)dx = \lambda \int_{0}^{\infty} x^2 e^{-\lambda x}dx\)
 \[
 = \lambda \left(\left[x^2 \frac{1}{-\lambda} e^{-\lambda x} \right]_{0}^{\infty} - \frac{2}{\lambda^2} \int_{0}^{\infty} x \cdot e^{-\lambda x}dx \right)
 = \lambda \left([0 + 0] + \frac{2}{\lambda^2} \right) = \frac{2}{\lambda^2}
 \]
Example: Radioactive Decay

Exponential Distribution \(X \sim \text{Exp}(\lambda) \)
- “Rate” parameter \(\lambda > 0 \)
- Continuous equivalent to geometric distribution
- “Time until first success”
- Probability density function \(f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0, & \text{o.w.} \end{cases} \)
- Cumulative distribution function \(F_X(x) = \int_{-\infty}^{x} f_X(y)dy = 1 - e^{-\lambda x} \)

Characterization via Moments \((n\text{-th moment: } \mathbb{E}[X^n])\)
- \(\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)dx = \lambda \int_{0}^{\infty} xe^{-\lambda x}dx = \frac{1}{\lambda} \)
- \(\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x)dx = \lambda \int_{0}^{\infty} x^2 e^{-\lambda x}dx = \frac{2}{\lambda^2} \)
- \(\text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} \)
Exponential Distribution: Memorylessness

Motivation
- What is the probability of having to wait longer than an additional time \(s > 0 \) after already having waited time \(t > 0 \)?

\[
\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} = \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \leq s + t]}{1 - \Pr[X \leq t]}
\]

\[
e^{-\lambda(s+t)} = e^{-\lambda s} = \Pr[X > s]
\]

- No matter how long we already waited, waiting time is distributed as if we just started

Observing Multiple Particles
- How long do we have to wait for the second particle after having just seen the first?

\[
X \sim \text{Exp}(\lambda)
\]

\[
f_X(x) = \lambda e^{-\lambda x}
\]

\[
F_X(x) = 1 - e^{-\lambda x}
\]

\[
\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]}
\]

Probability Density

Time in seconds

0 1 2 3 4 5 6 7 8 9
Counting Decays

Motivation
- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, \ldots \sim \text{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x)dx$

\[\Pr[N_t = 0] = e^{-\lambda t} \]
\[\Pr[N_t = 1] = \int_{-\infty}^{\infty} \Pr[X_1 \leq t \land N(x, t) = 0 \mid X_1 = x] f_{X_1}(x)dx \]
\[= \int_{-\infty}^{\infty} \Pr[X_1 \leq t \land N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} 1_{x \geq 0}dx \]
\[= \int_{0}^{t} \Pr[N(x, t) = 0 \mid X_1 = x] \lambda e^{-\lambda x} 1_{x \geq 0}dx \]
\[= \int_{0}^{t} \Pr[N(x, t) = 0] \lambda e^{-\lambda x} dx = \int_{0}^{t} \Pr[N_{t-x} = 0] \lambda e^{-\lambda x} dx \]
\[= \int_{0}^{t} e^{-\lambda x} \cdot \lambda e^{-\lambda x} dx \]
\[= \lambda e^{-\lambda t} \int_{0}^{t} 1 dx = \lambda te^{-\lambda t} \]
Counting Decays

Motivation
- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, \ldots \sim \text{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values
- $\Pr[N_t = 0] = e^{-\lambda t}$
- $\Pr[N_t = 1] = \lambda t e^{-\lambda t}$
- $\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

Due to memorylessness
$\Pr[N(k) = k] = \Pr[N(\square) = k]$

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) \, dx$

$x \sim \text{Exp}(\lambda)$
- $f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
- $F_X(x) = 1 - e^{-\lambda x}$
Counting Decays

Motivation
- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, \ldots \sim \text{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] \cdot f_X(x) \, dx$

\[
\begin{align*}
\Pr[N_t = 0] &= e^{-\lambda t} \\
\Pr[N_t = 1] &= \lambda t e^{-\lambda t} \\
\Pr[N_t = 2] &= \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2
\end{align*}
\]

$X \sim \text{Exp}(\lambda)$

\[
\begin{align*}
f_X(x) &= \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0} \\
F_X(x) &= 1 - e^{-\lambda x}
\end{align*}
\]
Counting Decays

Motivation

- Count number of particles emitted within a given time t
- Let $X_1, X_2, X_3, \ldots \sim \text{Exp}(\lambda)$ be independent waiting times
- Let $N(a, b)$ be the number of emissions in $[a, b]$
- Let $N_t = N(0, t)$ be the number of emissions until t

Specific Values

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A | X = x] \cdot f_X(x) \, dx$

$\Pr[N_t = 0] = e^{-\lambda t}$
$\Pr[N_t = 1] = \lambda t e^{-\lambda t}$
$\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form

$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ (proof via induction)

Let $N_t = N(0, t)$ be the number of emissions until t

Due to memorylessness

$\Pr[N(\square) = k] = \Pr[N(\square) = k]$

$X \sim \text{Exp}(\lambda)$
$f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
$F_X(x) = 1 - e^{-\lambda x}$

Integration by Substitution

$u = g(x)$

$\int_a^b f(g(x)) \, dx = \int_{g(a)}^{g(b)} f(u) \left(\frac{dg(x)}{dx} \right) \, du$

Let $u = g(x) = (t-x)$
$\frac{dg(x)}{dx} = -1$

$\int_0^t \frac{u^k}{k!} \, du = f(u) = u^k$

$\lambda^k e^{-\lambda t} \, t^k / (k+1) = (\lambda t)^k e^{-\lambda t} / (k+1)!$

Due to memorylessness

$\Pr[N(\square) = k] = \Pr[N(\square) = k]$

$X \sim \text{Exp}(\lambda)$
$f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
$F_X(x) = 1 - e^{-\lambda x}$

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A | X = x] \cdot f_X(x) \, dx$

$\Pr[N_t = 0] = e^{-\lambda t}$
$\Pr[N_t = 1] = \lambda t e^{-\lambda t}$
$\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form

$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ (proof via induction)

Let $N_t = N(0, t)$ be the number of emissions until t

Due to memorylessness

$\Pr[N(\square) = k] = \Pr[N(\square) = k]$

$X \sim \text{Exp}(\lambda)$
$f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
$F_X(x) = 1 - e^{-\lambda x}$

Integration by Substitution

$u = g(x)$

$\int_a^b f(g(x)) \, dx = \int_{g(a)}^{g(b)} f(u) \left(\frac{dg(x)}{dx} \right) \, du$

Let $u = g(x) = (t-x)$
$\frac{dg(x)}{dx} = -1$

$\int_0^t \frac{u^k}{k!} \, du = f(u) = u^k$

$\lambda^k e^{-\lambda t} \, t^k / (k+1) = (\lambda t)^k e^{-\lambda t} / (k+1)!$

Due to memorylessness

$\Pr[N(\square) = k] = \Pr[N(\square) = k]$

$X \sim \text{Exp}(\lambda)$
$f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
$F_X(x) = 1 - e^{-\lambda x}$

Law of Total Probability: $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A | X = x] \cdot f_X(x) \, dx$

$\Pr[N_t = 0] = e^{-\lambda t}$
$\Pr[N_t = 1] = \lambda t e^{-\lambda t}$
$\Pr[N_t = 2] = \lambda^2 e^{-\lambda t} \cdot \frac{1}{2} t^2$

General Form

$\Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ (proof via induction)

Let $N_t = N(0, t)$ be the number of emissions until t

Due to memorylessness

$\Pr[N(\square) = k] = \Pr[N(\square) = k]$

$X \sim \text{Exp}(\lambda)$
$f_X(x) = \lambda e^{-\lambda x} 1_{x \geq 0}$
$F_X(x) = 1 - e^{-\lambda x}$

Integration by Substitution

$u = g(x)$

$\int_a^b f(g(x)) \, dx = \int_{g(a)}^{g(b)} f(u) \left(\frac{dg(x)}{dx} \right) \, du$

Let $u = g(x) = (t-x)$
$\frac{dg(x)}{dx} = -1$

$\int_0^t \frac{u^k}{k!} \, du = f(u) = u^k$

$\lambda^k e^{-\lambda t} \, t^k / (k+1) = (\lambda t)^k e^{-\lambda t} / (k+1)!$
Poisson Process

Definition: A Poisson process with *intensity* λ is a collection of random variables $X_1, X_2, \ldots \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then

- $N(a, b) \sim \text{Pois}(\lambda(b - a))$
- $a < b < c < d$: $N(a, b)$ and $N(c, d)$ are independent

Assuming we know how many X_i are in $[a, b]$, where are they within the interval?

Simple case: $N(0, b) = 1$, where is X_1?

For $t \leq b$: $\Pr[X_1 \leq t \mid N(0, b) = 1] = \frac{\Pr[X_1 \leq t \land N(0,b) = 1]}{\Pr[N(0,b) = 1]}$ due to memorylessness

$_{\text{independence of disjoint intervals}}$

$= \frac{\Pr[N(0,t) = 1 \land N(t,b) = 0]}{\Pr[N(0,b) = 1]}$

$= \frac{\Pr[N(0,t) = 1] \cdot \Pr[N(t,b) = 0]}{\Pr[N(0,b) = 1]}$

$= \frac{(\lambda t)e^{-\lambda t} \cdot e^{-\lambda(b-t)}}{(\lambda b)e^{-\lambda b}}$

$= \frac{t}{b} = F_X(t)$

In general: the positions of the points are distributed uniformly in an interval.
Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the **joint cumulative distribution function** is

$$F_{X,Y}(a, b) = \Pr[X \leq a \land Y \leq b].$$

The **joint density function** $f_{X,Y}(a, b)$ satisfies

$$F_{X,Y}(a, b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y) \, dy \, dx.$$

Definition: The **marginal density** of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$.

Definition: The **conditional density** of X with respect to an event A is

$$f_{X|A}(x) = \begin{cases} f_X(x) / \Pr[A], & \text{if } x \in A, \\ 0, & \text{otherwise}. \end{cases}$$

- For continuous Y, we specifically get $f_{X|Y=y}(x) = f_{X,Y}(x, y) / f_Y(y)$.
- We can then write $f_{X,Y}(x, y) = f_{X|Y=y}(x) \cdot f_Y(y)$ (like the chain rule for probabilities).

Definition: Random variables X, Y are **independent** if

$$F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y).$$
Example: $\mathcal{U}([0, 1]^2)$

Uniform Distribution on the Unit Square

- We want to draw a point P uniformly at random from $[0, 1]^2$
- Let X, Y be the x- and y-coordinates of P, respectively
- $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise

Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y)\,dy = \int_0^1 1\,dy = \left[y\right]_0^1 = 1 \quad f_Y(y) = 1$$

Note that $X \sim \mathcal{U}([0, 1])$ and $Y \sim \mathcal{U}([0, 1])$

Independence

$$F_{X,Y}(a, b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y)\,dy\,dx = \int_0^a \int_0^b 1\,dy\,dx$$

$$= \int_0^b 1\,dy \cdot \int_0^a 1\,dx$$

$$= \int_0^b f_Y(y)\,dy \cdot \int_0^a f_X(x)\,dx = F_Y(b) \cdot F_X(a) \checkmark$$

- Sample $P = (X, Y) \sim \mathcal{U}([0, 1]^2)$ by independently sampling $X, Y \sim \mathcal{U}([0, 1])$!
Application: Random Geometric Graphs

Motivation
- Average-case analysis: analyze models that represent the real world
- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - This property is called locality or clustering
- ER-graph: \(\Pr\{\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E\} = \Pr\{v, w\} \in E \times \)

Idea
- Vertices are likelier to connect if their distance is already small
 - Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric? Which distribution? Which probability?

Simple & Realistic!
Application: Simple Random Geometric Graphs

- Number: \(n \) vertices
- Space: 2-dimensional torus \(\mathbb{T}^2 \) (unit square with opposite sides identified)
- Metric: for \(p = (p_1, p_2), q = (q_1, q_2) \): \(d_i = |p_i - q_i| \)
 \[\rightarrow \text{ } L_\infty \text{ norm: } d(p, q) = \max_{i \in \{1, 2\}} \min\{d_i, 1 - d_i\} \]
- Distribution: For each \(v \) independently: \(P_v \sim U([0, 1]^2) \)
- Probability
 \[\Pr\{u, v\} \in E = \begin{cases} 1, & \text{if } d(P_u, P_v) \leq r \\ 0, & \text{otherwise} \end{cases} \]
- Expected Degree of \(v \)
 - Neighbors of \(v \) are in \(N(v) \) (here \(N(v) \) denotes the region in the ground space)
 - Draw \(P_u = (X, Y) \) as independent \(X, Y \sim U([0, 1]) \)
 - \(X \sim U([a, b]) : \Pr[X \in [c, d] \subseteq [a, b]] = \frac{d-c}{b-a} \)
 - \(\mathbb{E}[\deg(v)] = \mathbb{E}\left[\sum_{u \in V \setminus \{v\}} 1\{P_u \in N(v)\}\right] = \sum_{u \in V \setminus \{v\}} \Pr[d(P_u, P_v) \leq r] = \sum_{u \in V \setminus \{v\}} \frac{2r}{1-0} \cdot \frac{2r}{1-0} = (n - 1) \cdot 4r^2 \) (area of the region \(N(v) \))

Random Geometric Graph
Nodes distributed in metric space
Connection probability depends on distance
Simple Random Geometric Graphs – Locality

Locality

Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$

- Two vertices v and w are likelier to connect if they have a common neighbor u

\[
\Pr\{v, w\} \in E = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)
\]

w.l.o.g assume $u = (r, r)$

\[
\Pr\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E = \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}
\]

Numerator

\[
\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) \, dy \, dx
\]

\[
= \int_0^{2r} \int_0^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] \, dy \, dx
\]

Due to symmetry the area of the intersection is the same for these 4 positions of v.

⇒ Integrate only one quarter and multiply by 4

\[
(X, Y) \sim \mathcal{U}([0, 1]^2)
\]

\[
f_{X,Y}(x, y) = 1\{ (x, y) \in [0, 1]^2 \}
\]

Convention: $v = P_v$
Simple Random Geometric Graphs – Locality

Locality

Realistic assumption: \(r = \Theta(n^{-1/2}) \) such that \(\mathbb{E}[\deg(v)] = \Theta(1) \)

- Two vertices \(v \) and \(w \) are likelier to connect if they have a common neighbor \(u \)

\[
\Pr\{v, w \in E\} = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)
\]

w.l.o.g assume \(u = (r, r) \)

\[
Pr\{v, w \in E \mid \{u, v\} \in E \land \{u, w\} \in E\} = \frac{Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{Pr[v \in N(u) \land w \in N(u)]}
\]

Numerator

\[
Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx
\]

\[
= 4 \int_0^r \int_0^r \Pr[w \in N(v) \land w \in [0, 2r]^2 \mid v = (x, y)] dy dx
\]

Consider size of intersection in one dimension depending on position of \(v \)

\[
\begin{align*}
1d\text{-intersection} & \quad (r + x) \\
2d\text{-intersection} & \quad (r + x) \cdot (r + y)
\end{align*}
\]

2d-intersection is product of 1d-intersections \((r + x) \cdot (r + y)\)

Convention: \(v = P_v \)

Law of Total Probability

\[
Pr[A] = \int_{-\infty}^{\infty} Pr[A \mid X=x] f_X(x) dx
\]

\[
(X, Y) \sim \mathcal{U}([0, 1]^2)
\]

\[
f_{X,Y}(x, y) = 1_{\{(x, y) \in [0, 1]^2\}}
\]

\[
\begin{align*}
1d-intersection & \quad (r + x) \\
2d-intersection & \quad (r + x) \cdot (r + y)
\end{align*}
\]
Simple Random Geometric Graphs – Locality

Locality

Realistic assumption: \(r = \Theta(n^{-1/2}) \) such that \(\mathbb{E}[\deg(v)] = \Theta(1) \)

Two vertices \(v \) and \(w \) are likelier to connect if they have a common neighbor \(u \)

\[
\Pr\{v, w\} \in E = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)
\]

w.l.o.g assume \(u = (r, r) \)

\[
\Pr\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E
\]

\[
= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}
\]

Numerator

\[
= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y)\,dy\,dx
\]

\[
= 4 \int_0^r \int_0^r (r + x) \cdot (r + y)\,dy\,dx
\]

\[
= 4 \int_0^r (r + y)\,dy \cdot \int_0^r (r + x)\,dx
\]

\[
= 4 \left(\int_0^r (r + x)\,dx \right)^2
\]

\[
= 4 \left(r \left[x \right]_0^r + \left[\frac{1}{2} x^2 \right]_0^r \right)^2
\]

\[
= 4 \left(r^2 + \frac{1}{2} r^2 \right)^2 = 4 \left(\frac{3}{2} r^2 \right)^2 = \frac{9}{4} r^4
\]

\[
\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x)\,dx
\]

\[
(X, Y) \sim \mathcal{U}([0,1]^2)
\]

\[
f_{X,Y}(x, y) = 1_{\{(x, y) \in [0,1]^2\}}
\]
Simple Random Geometric Graphs – Locality

Locality

Realistic assumption: \(r = \Theta(n^{-1/2}) \) such that \(\mathbb{E}[\text{deg}(v)] = \Theta(1) \)

- Two vertices \(v \) and \(w \) are likelier to connect if they have a common neighbor \(u \)

\[
\Pr\{v, w\} \in E = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n) \quad \checkmark
\]

\[
\Pr\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E = \Theta(1) \quad \checkmark
\]

\[
\Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]} = \frac{9}{16}
\]

Numerator \(\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4 \)

Denominator

\[
\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]
\]

positions are drawn independently

distribution identical for all vertices

\[
= (\Pr[v \in N(u)])^2
= (4r^2)^2 = 16r^4
\]

Law of Total Probability

\[
\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) \, dx
\]

\((X, Y) \sim U([0, 1]^2) \)

\[
f_X,Y(x, y) = \mathbf{1}_{\{(x, y) \in [0, 1]^2\}}
\]
Application: Simple RGGs – Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is \(\log(n) \).
- Each cell \(C_i \) has width and height \(\sqrt{\log(n)/n} \).
- Let \(X_i \) denote the number of vertices in \(C_i \).
 \[
 \mathbb{E}[X_i] = \mathbb{E}\left[\sum_{v \in V} 1_{\{v \in C_i\}}\right] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)
 \]
- What is the probability that each cell gets exactly \(\log(n) \) vertices?
 \[
 \Pr[X_1 = \log(n)] = \left(\frac{n}{\log(n)} \right)^{\log(n)} \left(1 - \frac{\log(n)}{n} \right)^{n-\log(n)}
 \]
- Same distribution for all \(X_i \): \(\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)] \)
- \(X_1 \) and \(X_2 \) are not independent \(\Pr[X_1 = \log(n) \mid X_2 = n] = 0 \).
- Chain rule of probability:
 \[
 \Pr[\forall i : X_i = \log(n)] = \Pr[X_1 = \log(n)] \cdot \Pr[X_2 = \log(n) \mid X_1 = \log(n)] \cdot \Pr[X_3 = \log(n) \mid X_1 = \log(n) \land X_2 = \log(n)] \cdot \ldots
 \]
Poissonization

Idea
- Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A Poisson Point process with intensity λ is a collection of random variables $X_1, X_2, \ldots \in \mathbb{R}^2$ such that, if $|A|$ is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then
 - $N(A) \sim \text{Pois}(\lambda|A|)$ (homogeneity)
 - $A \cap B = \emptyset$: $N(A)$ and $N(B)$ are independent (independence)

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

- Note: We do not know how many points we get!
- How do we choose λ?
 - We should at least expect n points in our ground space $[0, 1]^2$
 \[n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda[0, 1]^2 = \lambda \]
- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim \text{Pois}(n)$, sample N points uniformly
- The resulting Poissonized RGG has n vertices in expectation
Application: Poissonized RGGs – Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is $\log(n)$
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda|C_i|)$

$$\mathbb{E}[X_i] = \lambda|C_i| = \log(n)$$

- What is the probability that each cell gets exactly $\log(n)$ vertices?

$$\Pr[X_i = \log(n)] = \frac{(\lambda|C_i|)^{\log(n)} e^{-\lambda|C_i|}}{\log(n)!} = \frac{(n^{\log(n)/\log(n)})^{\log(n)} e^{-|C_i|/\log(n)}}{\log(n)!} = \frac{\log(n)^{\log(n)} e^{-\log(n)}}{\log(n)!}$$

$$\leq \frac{\log(n)^{\log(n)} e^{-\log(n)}}{e^{\log(n)^{\log(n)/\log(n)}}} = \frac{1}{e}$$

there are $n/\log(n)$ cells

- Same distribution for all X_i: $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$

by definition, disjoint regions are independent

$$\leq e^{-n/\log(n)} \checkmark$$

but we cheated...
De-Poissonization

Situation
- We started with a simple RGG \((n, \mathbb{T}^2, L_\infty\text{-norm}, P_i \sim \mathcal{U}([0,1]^2), \Pr\{u,v\} \in E = 1_{\{d(u,v) \leq r\}}\)
- Switched to Poissonized RGG \((n\text{ is replaced by } \text{Pois}(n))\) and obtained
 \[
 \Pr[\forall i: X_i = \log(n)] \leq e^{-n/\log(n)}
 \]
- How can we translate this result to the original model?

Recall
- Conditioned on the number of points in area \(A\), the points are distributed uniformly in \(A\)
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points \(N\) in \([0,1]^2\) obtained in the Poisson point process is exactly \(N = n\)
 \[
 \Pr[N = n] = \frac{\lambda^{|A|} e^{-\lambda |A|}}{n!} = \frac{n^n e^{-n}}{n^n} \leq \left(\frac{n}{e}\right)^n \cdot \frac{1}{\sqrt{2\pi n}} \frac{1}{e^{\frac{1}{12n+1}}} = \Theta(n^{-1/2})
 \]
 \[
 \Pr_{\text{RGG}}(n) [\forall i: X_i = \log(n)] = \frac{\Pr_{\text{RGG}}(\text{Pois}(n)) [\forall i: X_i = \log(n)]}{\Pr_{\text{RGG}}(\text{Pois}(n)) [N = n]} \leq \frac{\Pr_{\text{RGG}}(\text{Pois}(n)) [\forall i: X_i = \log(n)]}{\Pr_{\text{RGG}}(\text{Pois}(n)) [N = n]} \leq \Theta(n^{-1/2})
 \]
- \(N \sim \text{Pois}(\lambda |A|)\)
 \[
 \Pr[N = k] = \frac{\lambda^{|A|} e^{-\lambda |A|}}{k!}
 \]
- Stirling
 \[
 n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}}
 \]
RGG – The Bigger Picture

Seen so far
- Simple RGG
- \(n, \mathbb{T}^2, L_\infty\)-norm, \(P_i \sim \mathcal{U}([0, 1]^2) \), \(\Pr\{\{u, v\} \in E\} = 1_{\{d(u, v) \leq r\}} \)
- Expected degree of a vertex is \((n - 1)4r^2\)
- Probability to connect given common neighbor is constant

More commonly used model
- \(n, [0, 1]^2, L_2\)-norm, \(P_i \sim \mathcal{U}([0, 1]^2) \), \(\Pr\{\{u, v\} \in E\} = 1_{d(u, v) \leq r} \)
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof
- Still \(\mathbb{E}[\deg(v)] = \Theta(nr^2) \)
- Still probability to connect given common neighbor non-vanishing

Problem: Homogeneous degree distribution does not match many real-world graphs

Random Geometric Graph
Nodes distributed in metric space
Connection probability depends on distance

\(N(v) \) is a disk
No wrap-around!
A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are **homogeneous**
 - For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

- \(X \sim \text{Par}(\alpha, x_{\text{min}}) \)

- Probability density function:
 \[
 f_X(x) = \begin{cases}
 \alpha x_{\text{min}}^\alpha \cdot x^{-(\alpha+1)}, & \text{if } x \geq x_{\text{min}} \\
 0, & \text{otherwise}
 \end{cases}
 \]

[Diagram showing homogeneous and heterogeneous distributions with Pareto distributions for \(\text{Par}(2, 1) \) and \(\text{Par}(3, 1) \)]

Hard to distinguish!
A Heterogeneous Distribution

Motivation
- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are *homogeneous*
 - For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution
- \(X \sim \text{Par}(\alpha, x_{\text{min}}) \)
- Probability density function: \(f_X(x) = \begin{cases} \alpha x_{\text{min}}^{\alpha} x^{-(\alpha+1)}, & \text{if } x \geq x_{\text{min}} \\ 0, & \text{otherwise} \end{cases} \)

Log-Log-Plot \(y = b x^k \)
- \(\log(y) = \log(b) + k \log(x) \)
- \(Y = \log(b) + k X \)

![Homogeneous vs. Heterogeneous Degree Frequency](image)
A Heterogeneous Distribution

Motivation
- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are **homogeneous**
 - For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution
- \(X \sim \text{Par}(\alpha, x_{\text{min}}) \)
 - minimum attainable value
 - shape parameter
- Probability density function:
 \[
 f_X(x) = \begin{cases}
 \alpha x_{\text{min}}^\alpha x^{-(\alpha+1)}, & \text{if } x \geq x_{\text{min}} \\
 0, & \text{otherwise}
 \end{cases}
 \]

Exercise: Determine for which values of \(\alpha \) we have \(\mathbb{E}[X] < \infty \) but \(\text{Var}[X] = \infty \)

Log-Log-Plot:
\[
y = b x^k
\]
- \(y = \log(b) + k \log(x) \)

Internet
Conclusion

Continuous Distributions
- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process
- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs
- Vertices distributed at random in metric space
- Edges form with probability depending on distances
- Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution (not discussed in lecture)