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Motivation – Radioactive Decay

Two physicists study radioactive material that emits particles every now and then
Both compete to get the most accurate model describing the emission
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“We could do this forever!” Could they really?
They measure with infinite precision...

What is P r [X = 2:71828182846]?

What is P r [X = 2:71828182847]?
>0?

Emission could
happen at any

time...

But then the “sum” over uncountably infinite
non-zero values is ∞ This is not a probability distribution!

For continuous spaces we need to adjust how we
measure probabilities
We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height
As bars get thinner, areas (probabilities) decrease

Area = Pr[X ∈ [1; 2]]

But what does the axis denote then?

= x · ‹
x

‹

⇒ x = Pr
‹

How much probability
fits in the interval?
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We describe distributions using probability density functions youtube.com/watch?v=ZA4JkHKZM50

Area = Pr[X ∈ [1; 2]]
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Working in Continuous Probability Spaces

Discrete Continuous
Cumulative distribution function
FX(x) = Pr[X ≤ x ]

Random Variable X Random Variable X

Probability density function
fX(x) ≥ 0

Probability mass function
fX(x) = Pr[X = x ] ≥ 0

Cumulative distribution function
FX(x) = Pr[X ≤ x ]=

P
y≤x fX(y) =

R x
−∞ fX(y)dy

Expectation
E[X] =

P
x x · Pr[X = x ]

Expectation
E[X] =

R
x · fX(x)dx

Example: Uniform Distribution
You build a fence that is at least 2m tall at each point
In the hardware store they have 5m planks
The staff member cutting your planks wears hearing
protection and cuts uniformly at random
What is the probability that you get two ≥ 2m boards
out of one 5m plank?

P
x Pr[X=x]=1

R∞
−∞ fX(x)dx = 1

Over [0; 5]

fX(x)=

ȷ
1
5
; if x ∈ [0; 5]

0; o.w.R∞
−∞ fX(x)dx =

R 5

0
1
5dx =

ˆ
x
5

˜5
0
=1 ✓
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Density

R b
a
fX(x)dx =

ˆ
x
5

˜b
a
= 1

5 (b − a)

1
5

✓
for a ≤ b ∈ [0; 5]
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1
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Pr[X ∈ [2; 3]]

=
R 3

0
1
5
dx −

R 2

0
1
5
dx

=
ˆ
x
5

˜3
0
−
ˆ
x
5

˜2
0
= 3

5
− 2

5
= 1

5 ✓

= Pr[X ≤ 3]− Pr[X ≤ 2]
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Working in Continuous Probability Spaces
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P
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ȷ
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5
; if x ∈ [0; 5]

0; o.w.
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1
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In general:
Pr[X ∈ [c; d ] ⊆ [a; b]] = d−c

b−a

X ∼ U([a; b])
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Example: Radioactive Decay

Exponential Distribution X ∼ Exp(–)

“Rate” parameter – > 0

Probability density function fX(x)=

ȷ
–e−–x ; if x ≥ 0

0;o.w.
Cumulative distribution function Time in seconds
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FX(x) =
R x
−∞ fX(y)dy

Continuous equivalent to geometric distribution
“Time until first success”

= 1− e−–x

Characterization via Moments (n-th moment: E[Xn])
E[X] =

R∞
−∞ x · fX(x)dx = –

R∞
0
xe−–xdx = –

“ˆ
x · 1

−–e
−–x˜∞

0
−
R∞
0

1
−–e

−–x · 1dx
”

= –
“

1
–

ˆ
xe−–x

˜0
∞ + 1

–

R∞
0
e−–xdx

”
= 0+0 + 1

−–
ˆ
e−–x

˜∞
0

= 1
–

ˆ
e−–x

˜0
∞ = 1

–
[1−0]= 1

–

Integration by PartsR
uv ′dx = uv −

R
u′vdx
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FX(x) =
R x
−∞ fX(y)dy

Continuous equivalent to geometric distribution
“Time until first success”

= 1− e−–x

Characterization via Moments (n-th moment: E[Xn])
E[X] =

R∞
−∞ x · fX(x)dx = 1

–

E[X2] =
R∞
−∞ x2 · fX(x)dx = –

R∞
0
x2e−–xdx

= –
“ˆ
x2 1

−–e
−–x˜∞

0
− 2

−–
R∞
0
x · e−–xdx

”
= –([0 + 0] + 2

–3 )

= –
R∞
0
xe−–xdx

1
–2

= 2
–2

Integration by PartsR
uv ′dx = uv −

R
u′vdx
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Example: Radioactive Decay

Exponential Distribution X ∼ Exp(–)

“Rate” parameter – > 0
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FX(x) =
R x
−∞ fX(y)dy

Continuous equivalent to geometric distribution
“Time until first success”

= 1− e−–x

Characterization via Moments (n-th moment: E[Xn])
E[X] =

R∞
−∞ x · fX(x)dx = 1

–

E[X2] =
R∞
−∞ x2 · fX(x)dx = –

R∞
0
x2e−–xdx

= –
R∞
0
xe−–xdx

= 2
–2

Var[X] = E[X2]− E[X]2 = 2
–2 − ( 1

–
)2 = 1

–2

Integration by PartsR
uv ′dx = uv −

R
u′vdx
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Exponential Distribution: Memorylessness

Motivation
What is the probability of having to wait longer than an additional time s > 0 after already
having waited time t > 0?

Pr[X > s + t | X > t]
fX(x) = –e−–x
X ∼ Exp(–)

Pr[A | B] = Pr[A∧B]
Pr[B]

=
Pr[X > s + t ∧ X > t]

Pr[X > t]

=
Pr[X > s + t]

Pr[X > t]

X > s + t ⇒ X > t

=
1− Pr[X ≤ s + t]

1− Pr[X ≤ t]

FX(x) = 1− e−–x

=
e−–(s+t)

e−–t
= e−–s = Pr[X > s]

No matter how long we already waited, waiting time
is distributed as if we just started

Observing Multiple Particles
How long do we have to wait for the second
particle after having just seen the first?

Time in seconds
0 1 2 3 4 5 6 7 8 9
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Counting Decays

Motivation
Count number of particles emitted within a given time t

Timet

Let X1; X2; X3; ::: ∼ Exp(–) be independent waiting times
Let N(a; b) be the number of emissions in [a; b]

Specific Values
Pr[Nt = 0]
Pr[Nt = 1]

no emission here

Due to memorylessness
Pr[N( )=k]=Pr[N( )=k]

xt − x

=
R∞
−∞ Pr[X1 ≤ t ∧ N(x; t) = 0 | X1 = x ]fX1(x)dx

e−–(t−x)

=
R t
0
e−–(t−x) · –e−–xdx

= –e−–t
R t
0
1dx = –te−–t

= e−–t
X ∼ Exp(–)

FX(x) = 1− e−–x

Law of Total Probability: Pr[A] =
R∞
−∞ Pr[A | X = x ] · fX(x)dx

=
R∞
−∞ Pr[X1 ≤ t ∧ N(x; t) = 0 | X1 = x ]–e−–x1x≥0dx

=
R t
0
Pr[X1 ≤ t ∧ N(x; t) = 0 | X1 = x ]–e−–x1x≥0dx

=
R t
0
Pr[N(x; t) = 0 | X1 = x ]–e−–xdx

=
R t
0
Pr[N(x; t) = 0]–e−–xdx =

R t
0
Pr[Nt−x = 0]–e−–xdx

Let Nt = N(0; t) be the number of emissions until t

fX(x) = –e−–x1x≥0
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0!
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2!
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Counting Decays

Motivation
Count number of particles emitted within a given time t

Timet

Let X1; X2; X3; ::: ∼ Exp(–) be independent waiting times
Let N(a; b) be the number of emissions in [a; b]

Specific Values
Pr[Nt = 0]

no emission here

Due to memorylessness
Pr[N( )=k]=Pr[N( )=k]

xt − x

= –te−–t

exactly one

= –2e−–t · 1
2 t

2

General Form =
(–t)ke−–t

k!
Pr[Nt = k] (proof via induction)

Pr[Nt = k + 1]

=
R t
0
Pr[Nt−x = k] · –e−–xdx

k

=
R t
0

(–(t−x))ke−–(t−x)
k! · –e−–xdx= –(k+1)e−–t

k!

R t
0
(t − x)kdx

Integration by Substitution u = g(x)

u = g(x) = (t − x)
f (u) = uk

dg(x)
dx

= −1

= –(k+1)e−–t

k!

R 0

t
uk

−1du

= –(k+1)e−–t

k!

ˆ
− 1

k+1u
(k+1)

˜0
t

= (–t)(k+1)e−–t

(k+1)!

= e−–t Pr[Nt = 1] Pr[Nt = 2]

= –(k+1)e−–t

(k+1)!

ˆ
u(k+1)

˜t
0 ✓

Nt ∼ Pois(–t)

X ∼ Exp(–)

FX(x) = 1− e−–x

Law of Total Probability: Pr[A] =
R∞
−∞ Pr[A | X = x ] · fX(x)dx

Let Nt = N(0; t) be the number of emissions until t

fX(x) = –e−–x1x≥0

R b
a
f (g(x))dx =

R g(b)
g(a)

f (u)“
dg(x)
dx

”du
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Poisson Process

(homogeneity)
(independence)

a b c d

Assuming we know how many Xi are in [a; b],
where are they within the interval? 0 due to memorylessness

Simple case: N(0; b) = 1, where is X1?
Pr[X1 ≤ t | N(0; b) = 1] = Pr[X1≤t∧N(0;b)=1]

Pr[N(0;b)=1]

= Pr[N(0;t)=1∧N(t;b)=0]
Pr[N(0;b)=1]

exactly one in
[0; b] and it is ≤ t

= Pr[N(0;t)=1]·Pr[N(t;b)=0]
Pr[N(0;b)=1]

independence of
disjoint intervals

= (–t)e−–t ·e−–(b−t)
(–b)e−–b = t

b
= FX(t)

for X ∼ U([0; b])

In general: the positions of the points are distributed uniformly in an interval

Pr[N(a; b) = k] = (–(b−a))ke−–(b−a)
k!

Definition: A Poisson process with intensity – is a collection of random variables
X1; X2; ::: ∈ R such that, if N(a; b) = |{i | Xi ∈ [a; b]}|, then
N(a; b) ∼ Pois(–(b − a))

a < b < c < d : N(a; b) and N(c; d) are independent

For t ≤ b:
X2 X3X1
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Continuous Spaces: Joint Distributions

Definition: For two random variables X; Y the joint cumulative distribution function is
FX;Y (a; b) = Pr[X ≤ a ∧ Y ≤ b].

The joint density function fX;Y (a; b) satisfies FX;Y (a; b) =
R a
−∞

R b
−∞ fX;Y (x; y)dydx .

Definition: The conditional density of X with respect to an event A is

fX|A(x) =

ȷ
fX(x)=Pr[A]; if x ∈ A;
0;otherwhise:

We can then write fX;Y (x; y) = fX|Y=y (x) · fY (y) (like the chain rule for probabilities)

Definition: The marginal density of X is fX(x) =
R∞
−∞ fX;Y (x; y)dy .

Definition: Random variables X; Y are independent if FX;Y (x; y) = FX(x) · FY (y).

For continuous Y , we specifically get fX|Y=y (x) = fX;Y (x; y)=fY (y)
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Example: U([0; 1]2)

Uniform Distribution on the Unit Square 1

1

We want to draw a point P uniformly at random from [0; 1]2

Let X; Y be the x- and y -coordinates of P , respectively
fP (x; y) = fX;Y (x; y) = 1 for (x; y) ∈ [0; 1]2 and fP (x; y) = 0, otherwise

Marginal Distributions
fX(x) =

R∞
−∞ fX;Y (x; y)dy =

R 1

0
1dy =

ˆ
y
˜1
0
= 1 fY (y) = 1

Note that X ∼ U([0; 1]) and Y ∼ U([0; 1])
Independence X; Y independent if

FX;Y (x; y) = FX(x) ·FY (y)

Marginal Density
fX(x) =

R∞
−∞ fX;Y (x; y)dy

FX;Y (a; b) =
R a
−∞

R b
−∞ fX;Y (x; y)dydx =

R a
0

R b
0
1dydx

constant w.r.t. x

=
R b
0
1dy ·

R a
0
1dx

= FY (b) · FX(a)=
R b
0
fY (y)dy ·

R a
0
fX(x)dx ✓

Sample P = (X; Y ) ∼ U([0; 1]2) by independently sampling X; Y ∼ U([0; 1])!
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Application: Random Geometric Graphs

Motivation
Average-case analysis: analyze models that represent the real world
So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
Problem: In real networks, edges do not form independently Lecturer

Students

Two vertices are more likely to be adjacent if they have a common neighbor

ER-graph: Pr[{v; w} ∈ E | {u; v} ∈ E ∧ {u; w} ∈ E] = Pr[{v; w} ∈ E] ✗

u

v w

Idea
Vertices are likelier to connect if their distance is already small
⇒ Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric
space and connecting any two with a probability that depends on their distance.

Which space? Which metric? Which distribution? Which probability?
Simple & Realistic!

This property is called locality or clustering

How many?
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Application: Simple Random Geometric Graphs

Random Geometric Graph
Nodes distributed in metric space
Connection probability depends
on distance

Space: 2-dimensional torus T2 (unit square with opposite sides identified)

1

1

Metric: for p = (p1; p2); q = (q1; q2): di = |pi − qi |

Distribution: For each v independently: Pv ∼ U([0; 1]2)

Pr[{u; v} ∈ E] =
ȷ
1; if d(Pu; Pv ) ≤ r

0;otherwise
Probability threshold

parameter

Expected Degree of v
Neighbors of v are in N(v)
E[deg(v)] = E[

P
u∈V \{v} 1{Pu∈N(v)}] =

P
u∈V \{v} Pr[d(Pu; Pv ) ≤ r ]

and y -coordinate of u in hereDraw Pu = (X; Y ) as independent
X; Y ∼ U([0; 1])

X ∼ U([a; b]) : Pr[X ∈ [c; d ] ⊆ [a; b]] = d−c
b−a

=
P

u∈V \{v}
2r
1−0 · 2r

1−0

a bc d
rr= (n − 1) · 4r2

(area of the region N(v))

Number: n vertices

(here N(v) denotes the region in the ground space)

L∞ norm: d(p; q) = maxi∈{1;2} min{di ; 1− di}
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Simple Random Geometric Graphs – Locality

Locality
Two vertices v and w are likelier to connect if they have a common neighbor u
Pr[{v; w} ∈ E] = Pr[v ∈ N(w)] = 4r2 = Θ(1=n)

Convention: v = Pv

Pr[{v; w} ∈ E | {u; v} ∈ E ∧ {u; w} ∈ E]
1

1

= Pr[w ∈ N(v) | v ∈ N(u) ∧ w ∈ N(u)] = Pr[w∈N(v)∧v∈N(u)∧w∈N(u)]
Pr[v∈N(u)∧w∈N(u)]

Numerator Pr[w ∈ N(v) ∧ v ∈ N(u) ∧ w ∈ N(u)]
=
R
R2 Pr[w ∈N(v) ∧ v ∈ N(u) ∧ w ∈N(u) | v = (x; y)]fX;Y (x; y)dydx

Law of Total Probability
Pr[A] =

R∞
−∞ Pr[A | X=x ]fX(x)dx

(X; Y ) ∼ U([0; 1]2)
fX;Y (x; y) = 1{(x;y)∈[0;1]2}

Realistic assumption: r = Θ(n−1=2) such that E[deg(v)] = Θ(1)

w.l.o.g assume u = (r; r)

=
R 2r

0

R 2r

0
Pr[w ∈N(v) ∧ w ∈ [0; 2r ]2 | v = (x; y)]dydx

Due to symmetry the area of the intersection
is the same for these 4 positions of v .

2

34

⇒ Integrate only one quarter and multiply by 4

1
r

r
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Simple Random Geometric Graphs – Locality

Locality
Two vertices v and w are likelier to connect if they have a common neighbor u
Pr[{v; w} ∈ E] = Pr[v ∈ N(w)] = 4r2 = Θ(1=n)

Convention: v = Pv

Pr[{v; w} ∈ E | {u; v} ∈ E ∧ {u; w} ∈ E]
1

1

= Pr[w ∈ N(v) | v ∈ N(u) ∧ w ∈ N(u)] = Pr[w∈N(v)∧v∈N(u)∧w∈N(u)]
Pr[v∈N(u)∧w∈N(u)]

Numerator Pr[w ∈ N(v) ∧ v ∈ N(u) ∧ w ∈ N(u)]
=
R
R2 Pr[w ∈N(v) ∧ v ∈ N(u) ∧ w ∈N(u) | v = (x; y)]fX;Y (x; y)dydx

Law of Total Probability
Pr[A] =

R∞
−∞ Pr[A | X=x ]fX(x)dx

(X; Y ) ∼ U([0; 1]2)
fX;Y (x; y) = 1{(x;y)∈[0;1]2}

Realistic assumption: r = Θ(n−1=2) such that E[deg(v)] = Θ(1)

w.l.o.g assume u = (r; r)

= 4
R r
0

R r
0
Pr[w ∈N(v) ∧ w ∈ [0; 2r ]2 | v = (x; y)]dydx

r

r

Consider size of intersection in one dimension depending on position of v

xr1
d

-in
te

rs
ec

tio
n

r

2r

yr1
d

-in
te

rs
ec

tio
n

r

2r
(r + x) (r + y)

2d-intersection is product
of 1d-intersections
(r + x) · (r + y)

(r + x)

(r + y)
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Simple Random Geometric Graphs – Locality

Locality
Two vertices v and w are likelier to connect if they have a common neighbor u
Pr[{v; w} ∈ E] = Pr[v ∈ N(w)] = 4r2 = Θ(1=n)

Convention: v = Pv

Pr[{v; w} ∈ E | {u; v} ∈ E ∧ {u; w} ∈ E]
1

1

= Pr[w ∈ N(v) | v ∈ N(u) ∧ w ∈ N(u)] = Pr[w∈N(v)∧v∈N(u)∧w∈N(u)]
Pr[v∈N(u)∧w∈N(u)]

Numerator Pr[w ∈ N(v) ∧ v ∈ N(u) ∧ w ∈ N(u)]
=
R
R2 Pr[w ∈N(v) ∧ v ∈ N(u) ∧ w ∈N(u) | v = (x; y)]fX;Y (x; y)dydx

Law of Total Probability
Pr[A] =

R∞
−∞ Pr[A | X=x ]fX(x)dx

(X; Y ) ∼ U([0; 1]2)
fX;Y (x; y) = 1{(x;y)∈[0;1]2}

Realistic assumption: r = Θ(n−1=2) such that E[deg(v)] = Θ(1)

w.l.o.g assume u = (r; r)

= 4
R r
0

R r
0
Pr[w ∈N(v) ∧ w ∈ [0; 2r ]2 | v = (x; y)]dydx

r

r

= 4
R r
0

R r
0
(r + x) · (r + y)dydx

(r + x)

(r + y)

= 4
R r
0
(r + x) ·

R r
0
(r + y)dydx

= 4
R r
0
(r + y)dy ·

R r
0
(r + x)dx

= 4
`R r

0
(r + x)dx

´2
= 4

`R r
0
rdx +

R r
0
xdx

´2
= 4

`
r
ˆ
x
˜r
0
+
ˆ
1
2x

2
˜r
0

´2
= 4

`
r2 + 1

2 r
2
´2

= 4
`
3
2 r

2
´2

= 4 9
4 r

4

= 9r4
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Simple Random Geometric Graphs – Locality

Locality
Two vertices v and w are likelier to connect if they have a common neighbor u
Pr[{v; w} ∈ E] = Pr[v ∈ N(w)] = 4r2 = Θ(1=n)

Convention: v = Pv

Pr[{v; w} ∈ E | {u; v} ∈ E ∧ {u; w} ∈ E]
1

1

= Pr[w ∈ N(v) | v ∈ N(u) ∧ w ∈ N(u)] = Pr[w∈N(v)∧v∈N(u)∧w∈N(u)]
Pr[v∈N(u)∧w∈N(u)]

Numerator Pr[w ∈ N(v) ∧ v ∈ N(u) ∧ w ∈ N(u)]

Law of Total Probability
Pr[A] =

R∞
−∞ Pr[A | X=x ]fX(x)dx

(X; Y ) ∼ U([0; 1]2)
fX;Y (x; y) = 1{(x;y)∈[0;1]2}

Realistic assumption: r = Θ(n−1=2) such that E[deg(v)] = Θ(1)

= 9r4

Denominator
Pr[v ∈ N(u) ∧ w ∈ N(u)]

positions are drawn
independently

= Pr[v ∈ N(u)] · Pr[w ∈ N(u)]

distribution identical
for all vertices

= (Pr[v ∈ N(u)])2

= (4r2)2 = 16r4

= 9
16

= Θ(1)
>

✓
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Application: Simple RGGs – Fair Distribution

1

1

Discretize the space into equally sized grid cells, such that the
expected number of vertices in each cell is log(n)

Each cell Ci has width and height
p
log(n)=n

E[Xi ] = E[
P

v∈V 1{v∈Ci}] = n · Pr[v ∈ Ci ] = n

√
log(n)=n

1−0

√
log(n)=n

1−0
= log(n)

What is the probability that each cell gets exactly log(n) vertices?

Pr[X1=log(n)] =
`

n
log(n)

´“ log(n)
n

”log(n)“
1− log(n)

n

”n−log(n)

Same distribution for all Xi : Pr[∀i : Xi = log(n)] =
Q
i Pr[Xi = log(n)]

X1 and X2 are not independent

Let Xi denote the number of vertices in Ci

Pr[X1 = log(n) | X2 = n] = 0

̸=

Chain rule of probability:
Pr[∀i : Xi=log(n)]

= Pr[X1=log(n)]·Pr[X2=log(n) | X1=log(n)]·Pr[X3=log(n) | X1=log(n) ∧ X2=log(n)]·:::
https://i.imgflip.com/1pln6k.jpg?a471949
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Poissonization

Avoid dependencies by replacing uniform point sampling with a Poisson point process
Idea

(homogeneity)
(independence)

How do we choose –?
Note: We do not know how many points we get!

(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier)

We should at least expect n points in our ground space [0; 1]2

1

1

X5

X3
X2

X7

X6
X4

X1

X8

E[|{i | Xi ∈ [0; 1]2}|] = E[N([0; 1]2)]

N ∼ Pois(˛) ⇒ E[N] = ˛

= –|[0; 1]2| = –n =

Definition: A Poisson Point process with intensity – is a collection of random variables
X1; X2; ::: ∈ R2 such that, if |A| is the area of A and N(A) = |{i | Xi ∈ A}|, then
N(A) ∼ Pois(–|A|)
A ∩ B = ∅: N(A) and N(B) are independent

The resulting Poissonized RGG has n vertices in expectation

Recall: conditioned on their number, points are distributed uniformly
Simulate PPP: sample N ∼ Pois(n), sample N points uniformly
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Application: Poissonized RGGs – Fair Distribution

=
(n log(n)

n )log(n)e
−n log(n)

n

log(n)!

1

1

Discretize the space into equally sized grid cells, such that the
expected number of vertices in each cell is log(n)

Each cell Ci has width and height
p
log(n)=n ⇒ |Ci | = log(n)=n

Let Xi denote the number of vertices in Ci ⇒ Xi ∼ Pois(–|Ci |)
E[Xi ] = –|Ci | = log(n)

What is the probability that each cell gets exactly log(n) vertices?

Vertices of RGG distributed using Poisson point process with
intensity – = n

N ∼ Pois(–|A|)
E[N] = –|A|

Same distribution for all Xi : Pr[∀i : Xi=log(n)] =
Q
i Pr[Xi=log(n)]

by definition, disjoint regions are independent

Pr[Xi=log(n)] = (–|Ci |)log(n)e−–|Ci |
log(n)! = log(n)log(n)e− log(n)

log(n)!

k! ≥ e(k=e)k≤ log(n)log(n)e− log(n)

e( log(n)
e )log(n)

= 1
e

≤ e−n= log(n)

there are n= log(n) cells

Pr[N = k] = (–|A|)ke−–|A|
k!

✓

?

but we cheated...
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De-Poissonization

Situation
We started with a simple RGG (n;T2, L∞-norm, Pi∼U([0;1]2), Pr[{u;v}∈E]=1{d(u;v)≤r})
Switched to Poissonized RGG (n is replaced by Pois(n)) and obtained
Pr[∀i : Xi=log(n)] ≤ e−n= log(n)

How can we translate this result to the original model?
Recall

Conditioned on the number of points in area A, the points are distributed uniformly in A
So we get from the poissonized RGG to the original, by conditioning on the fact that the
number of points N in [0; 1]2 obtained in the Poisson point process is exactly N = n

N ∼ Pois(–|A|)
Pr[N = k] = (–|A|)ke−–|A|

k!

Pr[N=n] = (–|A|)ne−–|A|
n! = nne−n

n!

Stirling

n! ≥
√
2ın

`
n
e

´n
e

1
12n+1

≤
`
n
e

´n · 1
√
2ın( ne )

n
e

1
12n+1

Θ(1)

= Θ(n−1=2)

PrRGG(n)[∀i : Xi=log(n)] = PrRGG(Pois(n))[∀i : Xi=log(n) | N=n]

=
PrRGG(Pois(n))[∀i :Xi=log(n)∧N=n]

PrRGG(Pois(n))[N=n] ≤ PrRGG(Pois(n))[∀i :Xi=log(n)]

PrRGG(Pois(n))[N=n] ≤ e−n= log(n)

Θ(n−1=2) ✓
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RGG – The Bigger Picture

Seen so far
Simple RGG

Random Geometric Graph
Nodes distributed in metric space
Connection probability depends
on distance

n;T2, L∞-norm, Pi ∼ U([0; 1]2), Pr[{u; v} ∈ E] = 1{d(u;v)≤r}

Expected degree of a vertex is (n−1)4r2

Probability to connect given common neighbor is constant
More commonly used model
n; [0; 1]2, L2-norm, Pi ∼ U([0; 1]2), Pr[{u; v} ∈ E] = 1d(u;v)≤r

1

Complications
Vertices near the boundary / corners behave differently
Intersections of neighborhoods are lenses or parts thereof

Still E[deg(v)] = Θ(nr2)

Still probability to connect given common neighbor non-vanishing
Problem: Homogeneous degree distribution does not match many real-world graphs

No wrap-around!
N(v) is a disk
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A Heterogeneous Distribution

Degree

Fr
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y

Degree

Fr
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nc

y

Homogeneous Heterogeneous
finite infinite

Motivation
Distributions seen so far have finite variance
Graphs with corresponding degree distributions are
homogeneous

For constant expected degree, it is very unlikely to find a
high-degree vertex

In real-world graphs high-degree vertices are not too rare
(think of celebrities in a social network)

Pareto Distribution
X ∼ Par(¸; xmin)

Probability density function:
shape parameter
minimum attainable value

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise 1 2 3 4 5 6

Par(2; 1)

Par(3; 1)

0

P
ro

b.
D

en
si

ty

⇒

1

2

Hard to distinguish!
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A Heterogeneous Distribution

Degree
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Degree
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Homogeneous Heterogeneous
finite infinite

Motivation
Distributions seen so far have finite variance
Graphs with corresponding degree distributions are
homogeneous

For constant expected degree, it is very unlikely to find a
high-degree vertex

In real-world graphs high-degree vertices are not too rare
(think of celebrities in a social network)

Pareto Distribution
X ∼ Par(¸; xmin)

Probability density function:
shape parameter
minimum attainable value

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise

⇒

Log-Log-Plot y = bxk

log(y) = log(b) + k log(x)

Y = log(b) + kX

101

10−4

100

10−1

10−3

10−2

101100

Par(2; 1)

Par(3; 1)

P
ro

b.
D
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Y = log(y)

X = log(x)
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A Heterogeneous Distribution

Degree
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Homogeneous Heterogeneous
finite infinite

Motivation
Distributions seen so far have finite variance
Graphs with corresponding degree distributions are
homogeneous

For constant expected degree, it is very unlikely to find a
high-degree vertex

In real-world graphs high-degree vertices are not too rare
(think of celebrities in a social network)

Pareto Distribution
X ∼ Par(¸; xmin)

Probability density function:
shape parameter
minimum attainable value

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise
Exercise: Determine for which values of ¸ we have E[X] <∞ but Var[X] = ∞

⇒

Log-Log-Plot y = bxk

log(y) = log(b) + k log(x)

Y = log(b) + kX

konect.cc/plot/degree.a.topology.full.png

Internet
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Conclusion

Poisson (Point) Process

Continuous Distributions
For our purposes they are handled like discrete versions (replacing sums with integrals)
Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint
distributions

Yields random point set with certain properties (homogeneity & independence)
Number of points is a random variable
Conditioned on certain number, points are distributed uniformly

We can simulate a PPP by drawing
number according to Poisson

distribution and distributing as many
points uniformly

Random Geometric Graphs
(De-)Poissonization to circumvent stochastic dependencies

Vertices distributed at random in metric space
Edges form with probability depending on distances
Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution

(not discussed in lecture)


