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Motivation — Radioactive Decay

® Two physicists study radioactive material that emits particles every now and then

m Both compete to get the most accurate model describing the emission
But what does the axis denote then?

® “We could do this forever!” Could they really? tnen<
= They measure with infinite precision... 5 Alice Gurie
® What is Pr[X = 2.71828182846]7 Emission could :
_ > (07 happen at any
= What is Pr[X = 2.71828182847]?

time... Area =Pr[X € [1,2]] = x - §

= x =
= But then the “sum” over uncountably infinite \ :

n()n-zero values is oo Thisis notaprobab.ility distribution! . . T ————
® For continuous spaces we need to adjust how we 0 1 2 3 4 5 6 7 8 9 10
measure probabilities Time in seconds
We assign probabilities to intervals instead of individual values!
The probability is the area of the bar, not the height
® As bars get thinner, areas (probabilities) decrease

® We describe distributions using probability density functions

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Probability

youtube.com/watch?v=ZA4JkHKZM50

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Working in Continuous Probability Spaces A“(IT

Discrete Random Variable X Continuous Random Variable X
® Cumulative distribution function @ Cumulative distribution function
Fx(x)=PrIX <x] =% . x(¥) Fx(x)=PriX <x] = [ fx(y)dy
® Probability mass function T ® Probability density function T
fx(x) =Pr[ X =x] >0 Y. Prix=x=1  fx(x) >0 22, fx(x)dx =1
m Expectation m Expectation
E[X] =>_, x-Pr[X = x] E[X] = [ x - fx(x)dx
Example: Uniform Distribution > Over [0, 5] Density
® You build a fence that is at least 2m tall at each point {l, if x € [0, 5] 1I
fx(X): 5 5
® |[n the hardware store they have 5m planks 0, 0.W. TR Y

® The staff member cutting your planks wears hearing [ fx(x)dx = 51 4y H5 1y
protection and cuts uniformly at random 0 577 lslo™

= What is the probability that you get two > 2m boards [ f(x)dx = [g}: = f(b—a)v
out of one 5m plank? fora<be [0 5]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Working in Continuous Probability Spaces A“(IT

Discrete Random Variable X Continuous Random Variable X
® Cumulative distribution function @ Cumulative distribution function
Fx(x)=PrIX <x] =% . x(¥) Fx(x)=PriX <x] = [ fx(y)dy
® Probability mass function T ® Probability density function T
fx(x) = Pr[X =x] >0 >, PriX=x]=1 fx(x) >0 S0, fx(x)dx =1
m Expectation m Expectation
E[X] =>_, x-Pr[X = x] E[X] = [ x - fx(x)dx
Example: Uniform Distribution > Over [0, 5] Density
® You build a fence that is at least 2m tall at each point {l, if x € [0, 5] 1I
fx(X): 5 5
® |[n the hardware store they have 5m planks 0, 0.W. TR Y
® The staff member cutting your planks wears hearing
protection and cuts uniformly at random J*Pr[x €[2.3]]= P;[f =3 'fr[X <2
® What is the probability that you get two > 2m boards = Jo gdx - fg 54X
out of one 5m plank? =[5l -Bli=s-5=35v
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Working in Continuous Probability Spaces A“(IT

Discrete Random Variable X Continuous Random Variable X
® Cumulative distribution function @ Cumulative distribution function
Fx(x)=PrIX <x] =% . x(¥) Fx(x)=PriX <x] = [ fx(y)dy
® Probability mass function T ® Probability density function T
fx(x) = Pr[X =x] >0 >, PriX=x]=1 fx(x) >0 S0, fx(x)dx =1
m Expectation m Expectation
E[X] =>_, x-Pr[X = x] E[X] = [ x - fx(x)dx
Example: Uniform Distribution > Over [0, 5] Density
® You build a fence that is at least 2m tall at each point {l, if x € [0, 5] 1I
fx(X): 5 5
® |[n the hardware store they have 5m planks 0, 0.W. TR Y

® The staff member cutting your planks wears hearing
protection and cuts uniformly at random ® In general: X ~ U([a, b])

= What is the probability that you get two > 2m boards ~ Pr[X € [¢, d] C [a, b]] = £=<
out of one 5m plank?

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Example: Radioactive Decay

Exponential Distribution X ~ Exp(}) A
= “Rate” parameter A > 0 g
= Continuous equivalent to geometric distributon 2
® “Time until first success” %
= Probability density function fx(x)= {Ae x>0
0,0.w. N I L I I L L IR L R R
@ Cumulative distribution function o 1 23 Sy irfsecgnd; 8 9 10
Fx(x)= [ fx(y)dy =1—e [Integration by Parts 1
Characterization via Moments (n-th moment: E[X"])  awlehe = aw — | otk

RE[X] = [T x-fx(x)dx =X [J° xe™dx = X <[x : }Ae_”‘]go — [0 Ee 1dx)
X (Blxe %+ 3 e o)
- 040+ [e]7 = 45, = di-0-

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Example: Radioactive Decay

>

Exponential Distribution X ~ Exp(})

m “Rate” parameter A > 0

m Continuous equivalent to geometric distribution

® “Time until first success”

de ™™ if x>0

. . . . . O’OW — T 17 T T T T " T "1 *rr+ »
= Cumulative distribution function o1 2 3 4 5 6 7 8 9 10
ime in seconds

Fx(x) = ffoo fx(y)dy =1— e Integration by Parts
[uv'dx = uv — [ v'vdx

Characterization via Moments (n-th moment: E[X"])

EX] = [T x-fx(x)dx =X [; xe Mdx = 1

RE[X?] = [7) X fx(x)dx =X [7° x?e > *dx _ .

= A ([ e B T e ) = M0+ 0+ ) =

Probability Density

= Probability density function fx(x) :{

e

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Example: Radioactive Decay

Exponential Distribution X ~ Exp(}) A
= “Rate” parameter A > 0 g
= Continuous equivalent to geometric distributon 2
® “Time until first success” %
= Probability density function fx(x)= {Ae x>0
0,0.w. N I L I I L L IR L R R
@ Cumulative distribution function o 1 23 Sy irfsecgnd; 8 9 10
Fx(x)= [ fx(y)dy =1—e [Integration by Parts 1
Characterization via Moments (n-th moment: E[X"])  awlehe = aw — | otk

RE(X] = [T x-fx(x)dx =X [y xe Mdx = 1

RE[X?] = [7) X fx(x)dx =X [[°xPe™dx = 5

@ Var[X] = B[X?] ~ EIX]? = 2 — (1) = &

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Exponential Distribution: Memorylessness

Motivation
® What is the probability of having to wait longer than an additional time s > 0 after already

having waited time t > 07

PriX >s+t| X > t] :Pr[X>PS+t/\X>t] X>s+t=X>t X~Exp()\—))\x
r[X > t] fr(x) = Ae
_ PriX>s+t]  1-PriX<s+t Fr(x) = 1 — e
- PrX >t 1-Pr[X<t] -
e_>‘(5‘|’t) A X1 LPI’[A | B] — P[r[g] ]

— e—>\t = e—>\5 — PF[X > S]

= No matter how long we already waited, waiting time
is distributed as if we just started

Observing Multiple Particles

= How long do we have to wait for the second
particle after having just seen the first? IO A e A A

Time in seconds
Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Probability Density

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Counting Decays

Nno emission here

Motivation
® Count number of particles emitted within a given time t Due to memorylessness
m Let X1, X5, X3, ... ~ Exp()) be independent waiting times PrINE)=H =PV =4
m L et N(a, b) be the number of emissions in [a, b] T T T T T T
m Let N, = N(0, t) be the number of emissions until ¢ Xt fime
Specific Values LLaw of Total Probability: Pr[A] = [*° Pr[A| X = x] - fx(x)dx | X ~ Exp(})
Pr[N; = 0]= et fx(x) = /\e‘“lexXzo
PrIN, = 1]= [ PriXy < t AN(x, £) = 0| X1 = x]fx, (x)dx Bl ==

= [ PriXs <t AN(x, t) = 0| X = x]Ae 1, 50dx

— 00

- fot PrZ’}ﬁ/\ N(x,t) =0]| X; = X])\e—Ax%dX
= [, PriN(x, t) = 0 | Xp==x]Xe Mdx e

— [TPrIN(x, £) = 0]xe dx = [l Pr[Ny_, = O[xe dx = [} e Xt . xe=2¥dx
= de fot ldx = Ate >t

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Counting Decays
exactly one
e’ emission here
Motivation
® Count number of particles emitted within a given time t Due to memorylessness
m Let X1, X5, X3, ... ~ Exp()) be independent waiting times PrINED =K =PANC) =K
m L et N(a, b) be the number of emissions in [a, b] T T T T T T
. . Time

mlet N; = N(0O, t) be the number of emissions until ¢ Xt
Specific Values LLaw of Total Probability: Pr[A] = [*° Pr[A| X = x] - fx(x)dx | X ~ Exp(})

Pr[N; = 0]= e Pr[N; = 1]= Ate ™t Pr[N, = 2]= X2e >t . 1#? x(x) = AT Lo

Fx(X) =1—e AX

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Counting Decays
exactly one
e’ emission here
Motivation
® Count number of particles emitted within a given time t Due to memorylessness
m Let X1, X5, X3, ... ~ Exp()) be independent waiting times PrINED =K =PANC) =K
m L et N(a, b) be the number of emissions in [a, b] T T T T T T
. . Time

mlet N; = N(0O, t) be the number of emissions until ¢ Xt
Specific Values LLaw of Total Probability: Pr[A] = [*° Pr[A| X = x] - fx(x)dx | X ~ Exp(})

Pr[N; = 0]= e Pr[N; = 1]= Ate™** Pr[N, = 2]= X2e >t . 1#? e(x) = Ae™ L

—— — J FX(X) =1—-e ™
()\t)Oe—At ()\t)l — At ()\t)2e—>\t

0! 1! 2!

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Counting Decays

Motivation
® Count number of particles emitted within a given time t

mLet Xy, X5, X3, ... ~ Exp()) be independent waiting times
m L et N(a, b) be the number of emissions in [a, b]
mlet N; = N(0O, t) be the number of emissions until ¢

AT

e of Technology

k
exactly opé
e’ emission here

Due to memorylessness

Pr(N() = k] =Pr[N(]) = K]

|—-—|---—|—--||--|-|-|-|-_|>
X £ Time

Specific Values LLaw of Total Probability: Pr[A] = [*° Pr[A| X = x] - fx(x)dx | X ~ Exp(})
Pr[N; = 0]= et Pr[N; = 1]= Ate ™t Pr[N, = 2]= A%e~*t. %tz P(x) = Ae‘“il;?o
(At)ke At L . xx)=1-e
Se/r\‘/eralkForin PriN: = k|= Y (proot via induction) Integration by Substitution v = g(x) )
{ L 1 L N, ~ Pois(\t) [, f(g(x))dx = [£) (di;((ux)))d“
= [, Pr[Ne—x = k] - Xe7Mdx !
t (A(t—x))<e At=%) X% (k+1) g=At (k+1) g =Xt f(u) = u”
0((t ))k! AP dx = 2 K fott_xkdxzA K ft —1d” u=g(x)=(t—x)
B )\(k+1)e—>\t 1 K 0 . )\(k+1)e—>\t (}\t)(kJrl) —t dg(x) — _1
= |- k—+1“( H)]t = " (kt1) [”(k+1)]o (k+1)] o

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Poisson Process

Definition: A Poisson process with intensity X\ is a collection of random variables |

X1, X2, ... € Rsuch that, if N(a, b) = [{i | X; € [a, b]}|, then

® N(a, b) ~ Pois(A(b — a)) (homogeneity)

ma< b<c<d:N(a b)and N(c, d) are independent (independence)

m Assuming we know how many X; are in [, b], LPr[N(a b) = k] = Cb=a)fe =2 ]

where are they within the interval? O due to memorylessness ’ K

® Simple case: N(0, b) = 1, where is X;? a b ¢ d
. Pr{X1<tAN(0,b)= : - S Y

Fort < b:Pr[X; <t| N(O,b)=1] = [Pr[—,\f(/gib()o:ﬁ 1 exactly one in )?1' ' )?2 )?3

[0,b] and itis < t
Pr[N(0,t)=1AN(t,b)=0]

independence of - Pr[N(0,b)=1]
disjoint intervals __ Pr[N(0,t)=1]-Pr[N(t,b)=0]
— Pr[N(0,b)=1] ffr X ~ U(]0, b])
B ( t)e—).'i:_e— —) B B
— X ()(b)e?/(;b — % — FX(t)

® In general: the positions of the points are distributed uniformly in an interval

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the joint cumulative distribution function s |
Fxy(a, b) =Pr[X <aAY < b.

The joint density function fx v (a, b) satisfies Fxy(a, b) = [ __ ffoo fx y(x, y)dydx.

.

@)

Definition: The marginal density of X is fx(x) = [__ fxy(x, y)dy.

.

Definition: The conditional density of X with respect to an event A is

() = fx(x)/ Pr[A],if x € A,

XIA% 71 0, otherwhise.
® For continuous Y, we specifically get fxjy—,(x) = fxv(x,y)/f(y)
a We can then write fx y(x, y) = fxjy=,(x) - fr(y) (like the chain rule for probabilities)
Definition: Random variables X, Y are independent if Fx y(x,y) = Fx(x) - Fy(y). 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Example: U([0, 1]?) A“(IT

Uniform Distribution on the Unit Square 1A
= We want to draw a point P uniformly at random from [0, 1]?
m Let X, Y be the x- and y-coordinates of P, respectively .
mfp(x,y) = fxy(x,y) = 1for (x,y) € [0,1]° and fp(x, y) = 0, otherwise L
Marginal Distributions Marginal Density

() = [ ey (xoy)dy = foldy =[]y =1 #(y) =1 {W) = vaY<X'y>dy]
® Note that X ~ U([0,1]) and Y ~ U([0, 1])

Independence constant w.r.t. x {X, Y independent if 1
FX’Y(a, b) _ f_aoo fi)oo fX’y(X,y)dde _ foa fob ]_dde FX,Y(X,y) = FX(X) . FY(_)/)
= fob 1dy - foa 1dx
=y f()dy - J§ i(x)dx = Fy(b) - Fx(a) v
m Sample P = (X,Y) ~ U([0, 1]?) by independently sampling X, Y ~ 1([0, 1])!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



10

Karlsruhe Institute of Technology

Application: Random Geometric Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® So far: Erdos-Rényi random graphs (connect two vertices independently with equal prob)

® Problem: In real networks, edges do not form independently Lecturer
= Two vertices are more likely to be adjacent if they have a common neighbor u
> This property is called locality or clustering voow
» ER-graph: Pr[{v,w} € E | {u,v} € EA{u,w} € E] =Pr[{v,w} € E] X Students
Idea

m Vertices are likelier to connect if their distance is already small
= Define vertex distances in advance by introducing geometry

space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric?  Which distribution?  Which probability?
Simple & Realistic!

Definition: A random geometric graph is obtained by distributing vertices in a metric 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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® Number: n vertices Random Geometric Graph )
» Space: 2-dimensional torus T? (unit square with opposite sides identified) | Nodes distributed in metric space

= Metric: for p = (Pl, p2), g = (Q1, q2): d: = \Pi B q-\ gr?rcli?setgtr:(c):g probability depends
> [ o norm: d(p, q) = maxjeq1.2y min{d;, 1 — d;} )

= Distribution: For each v independently: P, ~ U([0, 1]?)

= Probability {1, if d(P,, P,) < r = reshold

Application: Simple Random Geometric Graphs

Pri{u,v} € E] = _ parameter A
Expected Degree of v 0, otherwise <
® Neighbors of v are in |N(v)| (here N(v) denotes the region in the ground space) |

 Eldeg(v)] = E[ZUGV\{V} Lep,envyi] = ZUEV\{V} Prid(Py, Pv) < r] ’ -% .

® Draw P, = (X’ Y) as independent and y-coordinate of uinhere || ]
- 2r 2r 1 ° i
X, Y ~ U([O, 1]) — ZUEV\{V} 1-0 1-0 . : 2 : _
N | i) =(n—-1) iri " 1
{X Ulla, Bl) - PriX € e, d] € [a, Bl = b‘aw (area of the region N(v)) z i * 2

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Simple Random Geometric Graphs — Locality A“(IT

Locality Realistic assumption: r = ©(n~'/?) such that E[deg(v)] = ©(1)  Convention: v = P,
® Two vertices v and w are likelier to connect if they have a common neighbor u

Pr[{v,w} € E] = Pr[v € N(w)] = 4r* = ©( A

Pri{v,w} € E |{u,v} € EAN{u, w} € E]

= Prlw € N(v) | v € N(u) Aw € N(u)] = Pr[Wg:\[l‘(/‘é)I(,\(‘/ue)/ly&V”E)mue)]N(”)]
Numerator Prjw € N(v) Av € N(u) Aw € N(u)]

= [ PriweN(v) Ave N(u) AweN(u) | v =(x,y)lfxy(x, y)dydx

1/n) w.l.o.gassume u=(r,r) 1

2r 2
=[5 J; PriweN(v) Awe[0,2r]? | v = (x, y)]dydx =
r
Due to symmetry the area of the intersection Law of Total Probability
is the same for these 4 positions of v. PrA] = [ PrA | X =x]fx(x)dx
= Integrate only one quarter and multiply by 4 —®

v (%, ¥) = Liyenary

{(x. Y) ~U(0, 1) |

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Simple Random Geometric Graphs — Locality

Locality Realistic assumption: r = ©(n~'/?) such that E[deg(v)] = ©(1) Convention: v = P,
® Two vertices v and w are likelier to connect if they have a common neighbor u

Pr[{v,w} € E] = Pr[v € N(w)] = 4r* = ©( A

Pri{v,w} € E |{u,v} € EAN{u, w} € E]

= Prlw € N(v) | v e N(u) Aw € N(u)] = Pr[Wg:\[l‘(/‘é)I(,\(Vue)/ly&V”E)mue)]N(”)]
Numerator Prjw € N(v) Av € N(u) Aw € N(u)] —
= [ PriweN(v) Ave N(u) AweN(u) | v =(x, y)lfxy(x y)dydx || . Lrﬂ)
=4 [0 5 PriweN(v) Awe(0,2r]? | v = (x, y)]dydx

1/n) w.l.o.gassume u=(r,r) 1

; - >
r 1

Consider size of intersection in one dimension depending on position of v |} aw of Total Probability
S o (r+x) % o A tY) Pr[A] = [*° Pr[A | X =x]fx(x)dx
(]
2 2 2d-intersection is product b
r r 2
% *°§’ of 1d-intersections 1(CX’ Y)~ g([o' 1)
S — S > (r+x)-(r+y) xy (% ¥) = Lieay ey

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Locality Realistic assumption: r = ©(n~'/?) such that E[deg(v)] = ©(1) Convention: v = P,
® Two vertices v and w are likelier to connect if they have a common neighbor u

Pr[{v,w} € E] = Pr[v € N(w)] = 4r* = ©( A

Pri{v,w} € E |{u,v} € EAN{u, w} € E]

= Prlw € N(v) | v e N(u) Aw € N(u)] = Pr[Wg:\[l‘(/‘é)I(,\(Vue)/ly&V”E)mue)]N(”)]
Numerator Prjw € N(v) Av € N(u) Aw € N(u)] —
= [ PriweN(v) Ave N(u) AweN(u) | v =(x, y)lfxy(x y)dydx || . Lrﬂ)
=4 [0 5 PriweN(v) Awe(0,2r]? | v = (x, y)]dydx

Simple Random Geometric Graphs — Locality

1/n) w.l.o.gassume u=(r,r) 1

r 1
— 4f0r for(r +x) - (r+y)dydx » = 4 (for rdx + for XdX)2 [Law of Total Probability
— 4f0r(r + x) - for(” + y)dydx | _ 4 (r[x]g 4 [%Xz]gf Pr[A] = [~ Pr[A| X =x]fx(x)dx
Tkl LU —a(2 1) - - (U -
=4 (fy (r+x)dx)’ gt b= Lo

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Simple Random Geometric Graphs — Locality A“(IT

Locality Realistic assumption: r = ©(n~*/?) such that E[deg(v)] = ©(1)  Convention: v = P,
® Two vertices v and w are likelier to connect if they have a common neighbor u
Pr[{v,w} € E] = Pr[v € N(w)] = 4r* = G)(l/n)<>> 14
Pri{v,w} e E |{u,v}e EN{uw} e E]|=0(1) v
PrlweN(v)AveN(u)AweN(u
= Prlw € N(v) | v e N(u) Aw € N(u)] = [ f,r[‘(/e),(,\(ue)/\fve)/,:,(ue)] (W)l — 1%
Numerator Prjw € N(v) Av € N(u) Aw € N(u)] =9r*
Denominator
Prlv € N(u) Aw € N(u)] = Prlv € N(u)] - Prlw € N(u)] _
V\_/V \_/ 1
positions are drawn distribution identical Law of Total Probability )
independently for all vertices [Pr[A] = [ Pr[A | X =x]fx(x)dx
= (Pr[v € N(u)])? = .
= (4r2)2 = 16+ (X.Y) ~U([0,1]%)
By (%, ) = Litay)cnary

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Application: Simple RGGs — Fair Distribution

m Discretize the space into equally sized grid cells, such that the 14
expected number of vertices in each cell is log(n)

= Each cell C; has width and height +/log(n)/n
m Let X; denote the number of vertices in C;
E[X]] = E[Y ey Livec] = n-Prlv € Cj] = n¥/2E0/n J/lBn)/n _ jog )

1-0 1-0
» What is the probability that each cell gets exactly log(n) vertices? 4l
log(n) n—log(n) 1>
PrXy =log(n)] = (ogtey) (22) T (1-10822) "
® Same distribution for all X;: Pr[Vi : X; = log(n)] = [[, Pt

® X; and X; are not independent Pr[X; = log(n) | X2 = n] =0
® Chain rule of probability:

Pr[Vi: X;=log(n)]

= Pr[X1=log(n)]-Pr[X>=log(n) | X1=log(n)]-Pr[X3=log(n) | X1 =log(n) A Xo=log(n)]-...

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Poissonization

Idea
® Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A Poisson Point process with intensity X is a collection of random variables |
X1, X, ... € R? such that, if |A| is the area of A and N(A) = |{i | X; € A}, then

® N(A) ~ Pois(A|A|) (homogeneity)
" AN B =0: N(A) and N(B) are independent (independence)
(Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier) 1 A

= Note: We do not know how many points we get! X, ®
= How do we choose \? L’V ~ Pois(f) = E[N] = 51 ‘o X3
= We should at least expect n points in our ground space [0, 1]

* o Xoo
n=E[{i | X; € [0, 1]°}] = E[N([0, 1]*)] = A/[0, 1]*| = X e Xs
m Recall: conditioned on their number, points are distributed uniformly x* °x
m Simulate PPP: sample N ~ Pois(n), sample N points uniformly 1

® The resulting Poissonized RGG has n vertices in expectation
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Application: Poissonized RGGs — Fair Distribution A“(IT

l)
m Vertices of RGG distributed using Poisson point process with 14
intensity A = n < \>._
m Discretize the space into equally sized grid cells, such that the X
expected number of vertices in each cell is log(n) [ S
7——'
= Each cell C; has width and height +/log(n)/n = |C;| = log(n)/n L 2&()/
m Let X; denote the number of vertices in C; = X; ~ Pois(\|C;|) X \‘<{’
E[X] = X|Ci| = log(n) I
= What is the probability that each cell gets exactly log(n) vertices? | N ~ Pois(A|A|) )
I_ log(n) g —XIC;] log(n) ylog(n) ,— 07'2 oo (n)o8(n) g log(n) E[N] — >‘|A‘
PrX;=log(n)] = G ||)og(n)| e )Iog(n)l = )Iog(n)! PriN = k] = QlaNte 2"
< W/M there are n/ log(n) cells \ K
= (e yogtn) ”¢ ogln Lk! > e(k/e)
® Same distribution for all X;: Pr[‘v’/ : Xi=log(n)] =[], Pr[Xi=log(n)]
by definition, disjoint regions are independent —"'< e=n/log(n) / but we cheated...
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De-Poissonization

Situation
= We started with a simple RGG (n, T?, Loo-norm, P;~U([0,1]%), Pr[{u,v} € E]=114(u.v)<r3)
® Switched to Poissonized RGG (;; s replaced by Pois(n)) and obtained
Pr[Vi: X;=log(n)] < e—"/lo&(n)
® How can we translate this result to the original model?

Recall
® Conditioned on the number of points in area A, the points are distributed uniformly in A

® So we get from the poissonized RGG to the original, by conditioning on the fact that the
number of points N in [0, 1]? obtained in the Poisson point process is exactly N = n

. n ,—AlA| n_—n i
Pr[N=n] = (MA')”,G = 75— < (/ga}( | S @(n_1/2) N ~ Pois(\|A|)
! ' \/m nxY" el2n+1 o(1) Pr[N _ k] _ ()\|A|)ll<(le—>\|A|
Prrea(n)|Vi: Xi=log(n)] = Prraa(pois(n))[Vi: Xi=log(n) | N=n] Stirling N
. PrRGG(pois(n))[‘v’i:X,-zlog(n)/\N:n] PrReg(pois(n))[Vi:X;:|Og(n)] e—”/|og(”) a\n 1
o PrraG(pois(n)) [N=n] < Prraa(pois(n)) [N=n] — ©(n=1/2) \n! 2 v/2ma (3) e
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RGG - The Bigger Picture A“(IT

See_n so far Random Geometric Graph
® Simple RGG Nodes distributed in metric space

® n, T?, Loo-norm, P; ~ U([0, 1]?), Pr[{u, v} € E] = Ligu.v)<n gr?g?;gtr'fére‘ probability depends
m Expected degree of a vertex is (n—1)4r? )

- : : : N(v) is a disk
= Probability to connect given common neighbor is constant No wrap-around!
More commonly used model A
@ n, [O, 1]2, L2—n0rm, P,' ~ Z/{([O, 1]2), PI’[{U, V} - E] — ]ld(u,v)gr v

a Complications
= \ertices near the boundary / corners behave differently
= [ntersections of neighborhoods are lenses or parts thereof

= Still E[deg(v)] = ©(nr?)
a Still probability to connect given common neighbor non-vanishing
Problem: Homogeneous degree distribution does not match many real-world graphs
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A Heterogeneous Distribution
Motivation Homogeneous Heterogeneous
A finite A infinite

m Distributions seen so far have finite variance
® Graphs with corresponding degree distributions are

Frequency
Frequency

homogeneous
= For constant expected degree, it is very unlikely to find a — -
high-degree vertex o
= In real-world graphs high-degree vertices are not too rare Hard to distinguish:
(think of celebrities in a social network) $
Pareto Distribution z,| PG
® X ~ Par(a, Xmin) 3
‘ L minimum attainable value 8 1
shape parameter (et D) s X‘L_
m Probability density function: fx(x) = {O, otherwise & T 5 11+ =

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



A Heterogeneous Distribution
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Motivation Homogeneous Heterogeneous
= Distributions seen so far have finite variance $ ) e | infnie
® Graphs with corresponding degree distributions are 5 5
homogeneous 8 g
= For constant expected degree, it is very unlikely to find a — —
high-degree vertex ° ’
= In real-world graphs high-degree vertices are nottoo rare ' 'Og(l)g_l
(think of celebrities in a social network) § NG
. . . - - _ k 10" 1
Pareto Distribution ILO? ')'oglpk(’z){r—k be () s
® X ~ Par - o8y~ o8 e g
d (Ol,Xmln) o . Y:|og(b)—|—kX D .,
‘ L minimum attainable value \ 8 10777
h o
N Snape parameter ax® x> x0T Par(3,1)
= Probability density function: fx(x) = min ’ T >
0, otherwise *~ |, X = log(x) 10!
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AT

A Heterogeneous Distribution
Motivation Homogeneous  Heterogeneous
a Distributions seen so far have finite variance $ ) e | infnie
® Graphs with corresponding degree distributions are 5 5
homogeneous 8 g
= For constant expected degree, it is very unlikely to find a — —
high-degree vertex ° ’
® In real-world graphs high-degree vertices are not too rare 10% g Y
(think of celebrities in a social network) L 0tE Internet
= - - - - _ k (;; E .
Pareto Distribution IL°? ')'°9|P"(’Z)y+ p be o) 10t T
® X ~ Par(a, Xmi CEVUE e OBV S0k .
( ! m'“) o . wjzlog(b)—i—kw E F ’\5» s
‘ L minimum attainable value \ 10" Ry E
Shape parameter . Ll | H..Jl L1 l.]I::::ir— .“H ] J.Jj
X X_(a+1), if x > Xminm?oo 10" 102 10° 10

Degree (d)

m Probability density function: fx(x) = {0 min otherwise

Exercise: Determine for which values of o we have E[X] < oo but Var[X] = o0
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Conclusion

Continuous Distributions
m For our purposes they are handled like discrete versions (replacing sums with integrals)

® Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint
distributions

Poisson (Point) Process (not discussed in lecture)
® Yields random point set with certain properties (homogeneity & independence)
= Number of points is a random variable We can simulate a PPP by drawing

number according to Poisson

® Conditioned on certain number, points are distributed uniformly distfibutiorg) girr‘]?sduisntirfigrtﬂlf;g as many
m (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs
m Vertices distributed at random in metric space . . A< f
® Edges form with probability depending on distances .
® Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution
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