

Probability & Computing

Continuous Probability Spaces & Random Geometric Graphs

Motivation – Radioactive Decay

- Two physicists study radioactive material that emits particles every now and then
- Both compete to get the most accurate model describing the emission
- "We could do this forever!" Could they really?
- They measure with infinite precision...

 - What is Pr[X = 2.71828182846]? What is Pr[X = 2.71828182847]? > 0? Emission could happen at any time...
 - But then the "sum" over uncountably infinite **non-zero values is** ∞ This is not a probability distribution!
- For continuous spaces we need to adjust how we measure probabilities

We assign probabilities to *intervals* instead of individual values!

- The probability is the *area* of the bar, *not* the height
- As bars get thinner, areas (probabilities) decrease
- We describe distributions using probability density functions

youtube.com/watch?v=ZA4JkHKZM50

Working in Continuous Probability Spaces

Discrete Random Variable X **Continuous** Random Variable X Cumulative distribution function Cumulative distribution function $F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$ $F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$ Probability mass function Probability density function $f_X(x) = \Pr[X = x] \ge 0 \quad \sum_{x} \Pr[X = x] = 1$ $f_X(x) \ge 0$ _____ $\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$ Expectation Expectation $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$ $\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$ Density **Example**: Uniform Distribution → Over [0, 5] You build a fence that is at least 2m tall at each point $f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & \text{o.w.} \end{cases}$ In the hardware store they have 5m planks The staff member cutting your planks wears hearing $\int_{-\infty}^{\infty} f_X(x) dx = \int_0^5 \frac{1}{5} dx = \left[\frac{x}{5}\right]_0^5 = 1 \checkmark$ protection and cuts uniformly at random $\int_{a}^{b} f_{X}(x) dx = \left[\frac{x}{5}\right]_{a}^{b} = \frac{1}{5}(b-a)\checkmark$ • What is the probability that you get two $\geq 2m$ boards out of one 5m plank? for $a < b \in [0, 5]$

Working in Continuous Probability Spaces

Discrete Random Variable X **Continuous** Random Variable X Cumulative distribution function Cumulative distribution function $F_X(x) = \Pr[X \le x] = \int_{-\infty}^{x} f_X(y) dy$ $F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$ Probability mass function Probability density function $f_X(x) = \Pr[X = x] \ge 0 \quad \sum_{x} \Pr[X = x] = 1$ $f_X(x) \ge 0$ _____ $\int_{-\infty}^{\infty} f_X(x) dx = 1$ Expectation Expectation $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$ $\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$ **Example**: Uniform Distribution → Over [0, 5] Density You build a fence that is at least 2m tall at each point In the hardware store they have 5m planks The staff member cutting your planks wears hearing $\Pr[X \in [2, 3]] = \Pr[X \le 3] - \Pr[X \le 2]$ protection and cuts uniformly at random $=\int_{0}^{3}\frac{1}{5}dx - \int_{0}^{2}\frac{1}{5}dx$ • What is the probability that you get two $\geq 2m$ boards- $= \left[\frac{x}{5}\right]_{0}^{3} - \left[\frac{x}{5}\right]_{0}^{2} = \frac{3}{5} - \frac{2}{5} = \frac{1}{5}$ out of one 5m plank?

Working in Continuous Probability Spaces

Discrete Random Variable X **Continuous** Random Variable X Cumulative distribution function Cumulative distribution function $F_X(x) = \Pr[X \le x] = \int_{-\infty}^x f_X(y) dy$ $F_X(x) = \Pr[X \le x] = \sum_{y \le x} f_X(y)$ Probability mass function Probability density function $f_X(x) = \Pr[X = x] \ge 0 \quad \sum_{x} \Pr[X = x] = 1$ $f_X(x) \ge 0$ _____ $\int_{-\infty}^{\infty} f_X(x) dx = 1$ Expectation Expectation $\mathbb{E}[X] = \int x \cdot f_X(x) \mathrm{d}x$ $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$ Density **Example**: Uniform Distribution → Over [0, 5] You build a fence that is at least 2m tall at each point $f_X(x) = \begin{cases} \frac{1}{5}, & \text{if } x \in [0, 5] \\ 0, & 0. \\ 0 \end{cases}$ In the hardware store they have 5m planks The staff member cutting your planks wears hearing • In general: $X \sim \mathcal{U}([a, b])$ protection and cuts uniformly at random $\Pr[X \in [c, d] \subseteq [a, b]] = \frac{d-c}{b-a}$ • What is the probability that you get two $\geq 2m$ boards out of one 5m plank?

Example: Radioactive Decay

Example: Radioactive Decay

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Example: Radioactive Decay

Exponential Distribution $X \sim Exp(\lambda)$

• "Rate" parameter $\lambda > 0$

- Continuous equivalent to geometric distribution
- "Time until first success"

Probability density function
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{o.w.} \end{cases}$$

Cumulative distribution function

$$F_X(x) = \int_{-\infty}^{x} f_X(y) \mathrm{d}y = 1 - e^{-\lambda x}$$

Characterization via Moments (*n*-th moment: $\mathbb{E}[X^n]$)

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \lambda \int_0^{\infty} x e^{-\lambda x} dx = \frac{1}{\lambda}$$
$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$
$$\mathbb{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$$

Exponential Distribution: Memorylessness

What is the probability of having to wait longer than an additional time s > 0 after already having waited time t > 0?

$$\Pr[X > s + t \mid X > t] = \frac{\Pr[X > s + t \land X > t]}{\Pr[X > t]} X > s + t \Rightarrow X > t$$

$$= \frac{\Pr[X > s + t]}{\Pr[X > t]} = \frac{1 - \Pr[X \le s + t]}{1 - \Pr[X \le t]}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} = e^{-\lambda s} = \Pr[X > s]$$
No matter how long we already waited, waiting time is distributed as if we just started
Observing Multiple Particles
How long do we have to wait for the second particle after having just seen the first?

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Counting Decays

Carlsruhe Institute of Technology

Carlsruhe Institute of Technology

Counting Decays

Motivation

Count number of particles emitted within a given time t

- Let $X_1, X_2, X_3, ... \sim E_{xp}(\lambda)$ be independent waiting times
- Let N(a, b) be the number of emissions in [a, b]

N(0, t) be the number of emissions until t I et N₄ Speci

$$\begin{array}{l} \text{Pr}[N_t = 0] = e^{-\lambda t} \\ \text{Pr}[N_t = 0] = e^{-\lambda t} \end{array} \begin{array}{l} \text{Define number of emissions until } t \\ \text{Define n$$

$$\begin{array}{l} \textbf{General Form } \Pr[N_t = k] = \frac{(\lambda t)^k e^{-\lambda t}}{k!} \text{ (proof via induction)} \\ \Pr[N_t = k+1] \\ = \int_0^t \Pr[N_{t-x} = k] \cdot \lambda e^{-\lambda x} dx \\ = \int_0^t \frac{(\lambda (t-x))^k e^{-\lambda (t-x)}}{k!} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_0^t (t-x)^k dx = \frac{\lambda^{(k+1)} e^{-\lambda t}}{k!} \int_t^0 \frac{u^k}{-1} du \quad u = g(x) \\ \end{array}$$

 $= \frac{\lambda^{(k+1)}e^{-\lambda t}}{k!} \Big[-\frac{1}{k+1}u^{(k+1)} \Big]_{t}^{0} = \frac{\lambda^{(k+1)}e^{-\lambda t}}{(k+1)!} \Big[u^{(k+1)} \Big]_{0}^{t} = \frac{(\lambda t)^{(k+1)}e^{-\lambda t}}{(k+1)!} \checkmark$ dg(x)

exactly one

t - x

no emission here

X

+

Time

Due to memorylessness $\Pr[N(\square) = k] = \Pr[N(\square) = k]$

 $\sim \text{Exp}(\lambda)$

 $\lambda(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$

Poisson Process

Definition: A **Poisson process** with *intensity* λ is a collection of random variables $X_1, X_2, ... \in \mathbb{R}$ such that, if $N(a, b) = |\{i \mid X_i \in [a, b]\}|$, then \blacksquare N(a, b) ~ Pois($\lambda(b-a)$) (homogeneity) • a < b < c < d: N(a, b) and N(c, d) are independent (independence) • Assuming we know how many X_i are in [a, b], $\Pr[N(a, b) = k] = \frac{(\lambda(b-a))^k e^{-\lambda(b-a)}}{k!}$ where are they within the interval? 0 due to memorylessness • Simple case: N(0, b) = 1, where is X_1 ? X_1 For $t \leq b$: $\Pr[X_1 \leq t \mid N(0, b) = 1] = \frac{\Pr[X_1 \leq t \land N(0, b) = 1]}{\Pr[N(0, b) = 1]}$ exactly one in [0, b] and it is $\leq t$ independence of $= \frac{\Pr[N(0,t)=1 \land N(t,b)=0]}{\Pr[N(0,b)=1]}$ disjoint intervals $= \frac{\Pr[N(0,t)=1] \cdot \Pr[N(t,b)=0]}{\Pr[N(0,b)=1]} \quad \text{for } X \sim \mathcal{U}([0,b])$ $= \frac{(\chi t)e^{-\chi t} \cdot e^{-\chi(b-t)}}{(\chi b)e^{-\chi b}} = \frac{t}{b} = F_X^{\downarrow}(t)$

In general: the positions of the points are distributed uniformly in an interval

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Continuous Spaces: Joint Distributions

Definition: For two random variables X, Y the **joint cumulative distribution function** is $F_{X,Y}(a, b) = \Pr[X \le a \land Y \le b].$

The joint density function $f_{X,Y}(a, b)$ satisfies $F_{X,Y}(a, b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y) dy dx$.

Definition: The marginal density of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$.

Definition: The **conditional density** of *X* with respect to an event *A* is $f_{X|A}(x) = \begin{cases} f_X(x) / \Pr[A], & \text{if } x \in A, \\ 0, & \text{otherwhise.} \end{cases}$

• For continuous Y, we specifically get $f_{X|Y=y}(x) = f_{X,Y}(x,y)/f_Y(y)$

• We can then write $f_{X,Y}(x, y) = f_{X|Y=y}(x) \cdot f_Y(y)$ (like the chain rule for probabilities)

Definition: Random variables X, Y are **independent** if $F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y)$.

Example: $U([0, 1]^2)$

Uniform Distribution on the Unit Square

• We want to draw a point P uniformly at random from $[0, 1]^2$

Let X, Y be the x- and y-coordinates of P, respectively

• $f_P(x, y) = f_{X,Y}(x, y) = 1$ for $(x, y) \in [0, 1]^2$ and $f_P(x, y) = 0$, otherwise Marginal Distributions

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_0^1 1 dy = [y]_0^1 = 1 \qquad f_Y(y) = 1$$

Note that $X \sim \mathcal{U}([0, 1])$ and $Y \sim \mathcal{U}([0, 1])$ Independence

 $F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx = \int_{0}^{a} \int_{0}^{b} 1 dy dx$ = $\int_{0}^{b} 1 dy \cdot \int_{0}^{a} 1 dx$ = $\int_{0}^{b} f_{Y}(y) dy \cdot \int_{0}^{a} f_{X}(x) dx = F_{Y}(b) \cdot F_{X}(a)$

• Sample $P = (X, Y) \sim \mathcal{U}([0, 1]^2)$ by independently sampling $X, Y \sim \mathcal{U}([0, 1])!$

Marginal Density
$\int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

 $\begin{array}{l} X, Y \text{ independent if} \\ F_{X,Y}(x, y) = F_X(x) \cdot F_Y(y) \end{array}$

Application: Random Geometric Graphs

Motivation

Average-case analysis: analyze models that represent the real world

- So far: Erdős-Rényi random graphs (connect two vertices independently with equal prob)
- Problem: In real networks, edges do not form independently
 - Two vertices are more likely to be adjacent if they have a common neighbor
 - ► This property is called *locality* or *clustering*
- ER-graph: $Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = Pr[\{v, w\} \in E] \times Idea$
- Vertices are likelier to connect if their distance is already small
 - \Rightarrow Define vertex distances in advance by introducing geometry

Definition: A random geometric graph is obtained by distributing vertices in a metric space and connecting any two with a probability that depends on their distance.

How many? Which space? Which metric? Which distribution? Which probability? Simple & Realistic!

Lecturer

Students

Application: Simple Random Geometric Graphs

Convention: $v = P_v$ Locality Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Two vertices v and w are likelier to connect if they have a common neighbor u $\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$ w.l.o.g assume u = (r, r) 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$ **Numerator** $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$ $= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$ $= \int_{0}^{2r} \int_{0}^{2r} \Pr[w \in N(v) \land w \in [0, 2r]^{2} \mid v = (x, y)] dy dx$ Due to symmetry the area of the intersection Law of Total Probability is the same for these 4 positions of v. $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$ \Rightarrow Integrate only one guarter and multiply by 4 $(X,Y) \sim \mathcal{U}([0,1]^2)$ $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Locality Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Convention: $v = P_v$ Two vertices v and w are likelier to connect if they have a common neighbor u $\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$ w.l.o.g assume u = (r, r) 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$ +x**Numerator** $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$ $= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$ $=4\int_{0}^{r}\int_{0}^{r}\Pr[w \in N(v) \land w \in [0, 2r]^{2} | v = (x, y)]dydx$ Consider size of intersection in *one* dimension depending on position of v Law of Total Probability 1*d*-intersection $3r + \frac{1}{r}$ $r^{-intersection}$ $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$

2*d*-intersection is product of 1*d*-intersections $(r+x) \cdot (r+y)$

 $(X,Y) \sim \mathcal{U}([0,1]^2)$ $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

r x

Locality Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Convention: $v = P_v$ Two vertices v and w are likelier to connect if they have a common neighbor u $\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$ w.l.o.g assume u = (r, r) 1 $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E]$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]}$ **Numerator** $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]$ $= \int_{\mathbb{R}^2} \Pr[w \in N(v) \land v \in N(u) \land w \in N(u) \mid v = (x, y)] f_{X,Y}(x, y) dy dx$ $=4 \int_{0}^{r} \int_{0}^{r} \Pr[w \in N(v) \land w \in [0, 2r]^{2} | v = (x, y)] dy dx$ $= 4 \int_0^r \int_0^r (r+x) \cdot (r+y) dy dx = 4 \left(\int_0^r r dx + \int_0^r x dx \right)^2$ Law of Total Probability $=4\int_{0}^{r}(r+x)\cdot\int_{0}^{r}(r+y)dydx\Big| =4\left(r\left[x\right]_{0}^{r}+\left[\frac{1}{2}x^{2}\right]_{0}^{r}\right)^{2}$ $|\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$ $=4\int_{0}^{r} (r+y) dy \cdot \int_{0}^{r} (r+x) dx \bigg| =4\left(r^{2} + \frac{1}{2}r^{2}\right)^{2} =4\left(\frac{3}{2}r^{2}\right)^{2} =4\left(\frac{3}{4}r^{2}\right)^{2} =4\left(\frac{3}{4}r^$ $= 4 \left(\int_{0}^{r} (r+x) dx \right)^{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Locality Realistic assumption: $r = \Theta(n^{-1/2})$ such that $\mathbb{E}[\deg(v)] = \Theta(1)$ Convention: $v = P_v$ Two vertices v and w are likelier to connect if they have a common neighbor u $\Pr[\{v, w\} \in E] = \Pr[v \in N(w)] = 4r^2 = \Theta(1/n)$ $\Pr[\{v, w\} \in E \mid \{u, v\} \in E \land \{u, w\} \in E] = \Theta(1)$ $= \Pr[w \in N(v) \mid v \in N(u) \land w \in N(u)] = \frac{\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)]}{\Pr[v \in N(u) \land w \in N(u)]} = \frac{9}{16}$ **Numerator** $\Pr[w \in N(v) \land v \in N(u) \land w \in N(u)] = 9r^4$ Denominator $\Pr[v \in N(u) \land w \in N(u)] = \Pr[v \in N(u)] \cdot \Pr[w \in N(u)]$ distribution identical positions are drawn Law of Total Probability for all vertices independently $\Pr[A] = \int_{-\infty}^{\infty} \Pr[A \mid X = x] f_X(x) dx$ $= (\Pr[v \in N(u)])^2$ $(X,Y) \sim \mathcal{U}([0,1]^2)$ $=(4r^2)^2=16r^4$ $f_{X,Y}(x,y) = \mathbb{1}_{\{(x,y)\in[0,1]^2\}}$

Application: Simple RGGs – Fair Distribution

- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n}$
- Let X_i denote the number of vertices in C_i

$$\mathbb{E}[X_i] = \mathbb{E}[\sum_{v \in V} \mathbb{1}_{\{v \in C_i\}}] = n \cdot \Pr[v \in C_i] = n \frac{\sqrt{\log(n)/n}}{1-0} \frac{\sqrt{\log(n)/n}}{1-0} = \log(n)$$

• What is the probability that each cell gets *exactly* log(n) vertices?

$$\Pr[X_1 = \log(n)] = \binom{n}{\log(n)} \left(\frac{\log(n)}{n}\right)^{\log(n)} \left(1 - \frac{\log(n)}{n}\right)^{n - \log(n)}$$

- Same distribution for all X_i : $\Pr[\forall i : X_i = \log(n)] = \prod_i \Pr[X_i = \log(n)]$
- X_1 and X_2 are *not* independent $\Pr[X_1 = \log(n) \mid X_2 = n] = 0$ • Chain rule of probability:

$\Pr[\forall i : X_i = \log(n)] = \Pr[X_1 = \log(n)] \cdot \Pr[X_2 = \log(n) \mid X_1 = \log(n)] \cdot \Pr[X_3 = \log(n) \mid X_1 = \log(n) \land X_2 = \log(n)] \cdot \dots$

 \neq

 $n = \mathbb{E}[|\{i \mid X_i \in [0, 1]^2\}|] = \mathbb{E}[N([0, 1]^2)] = \lambda |[0, 1]^2| = \lambda$

- Recall: conditioned on their number, points are distributed uniformly
- Simulate PPP: sample $N \sim Pois(n)$, sample N points uniformly
- The resulting Poissonized RGG has n vertices in expectation

Poissonization

Idea

Avoid dependencies by replacing uniform point sampling with a Poisson point process

Definition: A **Poisson** *Point* **process** with *intensity* λ is a collection of random variables $X_1, X_2, \ldots \in \mathbb{R}^2$ such that, if |A| is the area of A and $N(A) = |\{i \mid X_i \in A\}|$, then • $N(A) \sim \text{Pois}(\lambda |A|)$ (homogeneity) • $A \cap B = \emptyset$: N(A) and N(B) are independent (independence) (Generalizes to arbitrary dimension, 1d is the Poisson process seen earlier) Note: We do not know how many points we get! $N \sim \mathsf{Pois}(\beta) \Rightarrow \mathbb{E}[N] = \beta$ • How do we choose λ ? • We should at least *expect n* points in our ground space [0, 1]² X_6 X_4

Application: Poissonized RGGs – Fair Distribution

- Vertices of RGG distributed using Poisson point process with intensity $\lambda = n$
- Discretize the space into equally sized grid cells, such that the expected number of vertices in each cell is log(n)
- Each cell C_i has width and height $\sqrt{\log(n)/n} \Rightarrow |C_i| = \log(n)/n$
- Let X_i denote the number of vertices in $C_i \Rightarrow X_i \sim \text{Pois}(\lambda |C_i|)$ $\mathbb{E}[X_i] = \lambda |C_i| = \log(n)$
- What is the probability that each cell gets exactly log(n) vertices?

$$\Pr[X_{i} = \log(n)] = \frac{(\lambda|C_{i}|)^{\log(n)}e^{-\lambda|C_{i}|}}{\log(n)!} = \frac{(n\frac{\log(n)}{p})^{\log(n)}e^{-n\frac{\log(n)}{p}}}{\log(n)!} = \frac{\log(n)^{\log(n)}e^{-\log(n)}}{\log(n)!}$$
$$\leq \frac{\log(n)^{\log(n)}e^{-\log(n)}}{e(\frac{\log(n)}{p})^{\log(n)}} = \frac{1}{e} \qquad \text{there are } n/\log(n) \text{ cells}$$
$$\bullet \text{ Same distribution for all } X_{i}: \quad \Pr[\forall i : X_{i} = \log(n)] = \prod_{i=1}^{i} \Pr[X_{i} = \log(n)]$$

by definition, disjoint regions are independent $- < e^{-n/\log(n)} \checkmark$

$$\begin{array}{l} N \sim \mathsf{Pois}(\lambda|A|) \\ \mathbb{E}[N] = \lambda|A| \\ \mathsf{Pr}[N = k] = \frac{(\lambda|A|)^k e^{-\lambda|A|}}{k!} \end{array}$$

$$k! \ge e(k/e)^k$$

but we cheated...

De-Poissonization

Situation

- We started with a simple RGG $(\frac{n}{n}, \mathbb{T}^2, L_{\infty}$ -norm, $P_i \sim \mathcal{U}([0,1]^2)$, $\Pr[\{u,v\} \in E] = \mathbb{1}_{\{d(u,v) \leq r\}})$ Switched to Poissonized RGG $(\frac{n}{n}$ is replaced by Pois(n) and obtained
- $\Pr[\forall i : X_i = \log(n)] \le e^{-n/\log(n)}$
- How can we translate this result to the original model?

Recall

- Conditioned on the number of points in area A, the points are distributed uniformly in A
- So we get from the poissonized RGG to the original, by conditioning on the fact that the number of points N in $[0, 1]^2$ obtained in the Poisson point process is exactly N = n

$$\Pr[N=n] = \frac{(\lambda|A|)^{n}e^{-\lambda|A|}}{n!} = \frac{n^{n}e^{-n}}{n!} \leq \binom{n}{e}^{n} \cdot \frac{1}{\sqrt{2\pi n \binom{n}{e}}^{n} e^{\frac{1}{12n+1}}} = \Theta(n^{-1/2})}{\sqrt{2\pi n \binom{n}{e}}^{n} e^{\frac{1}{12n+1}}} \qquad \Theta(1)$$

$$\Pr_{\text{RGG}(n)}[\forall i: X_{i} = \log(n)] = \Pr_{\text{RGG}(\text{Pois}(n))}[\forall i: X_{i} = \log(n) \mid N = n]$$

$$= \frac{\Pr_{\text{RGG}(\text{Pois}(n))}[\forall i: X_{i} = \log(n)]}{\Pr_{\text{RGG}(\text{Pois}(n))}[\forall i: X_{i} = \log(n)]} \leq \frac{e^{-n/\log(n)}}{\Theta(n^{-1/2})} \checkmark$$

$$\frac{\text{Stirling}}{n! \geq \sqrt{2\pi n \binom{n}{e}^{n} e^{\frac{1}{12n+1}}}}$$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Seen so farSimple RGG

- $n, \mathbb{T}^2, L_\infty$ -norm, $P_i \sim \mathcal{U}([0, 1]^2), \Pr[\{u, v\} \in E] = \mathbb{1}_{\{d(u, v) \leq r\}}$
- Expected degree of a vertex is $(n-1)4r^2$
- Probability to connect given common neighbor is constant
 More commonly used model
- n, $[0, 1]^2$, L_2 -norm, $P_i \sim \mathcal{U}([0, 1]^2)$, $\Pr[\{u, v\} \in E] = \mathbb{1}_{d(u, v) \leq r}$
- Complications
 - Vertices near the boundary / corners behave differently
 - Intersections of neighborhoods are lenses or parts thereof
- Still $\mathbb{E}[\deg(v)] = \Theta(nr^2)$
- Still probability to connect given common neighbor non-vanishing

Problem: Homogeneous degree distribution does not match many real-world graphs

Random Geometric Graph

Nodes distributed in metric space Connection probability depends on distance

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

Probability density function: $f_X(x) = \begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, & \text{if } x \ge x_{\min} \\ 0, & \text{otherwise } 0 \end{cases}$

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - ⇒ For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

• $X \sim \operatorname{Par}(\alpha, x_{\min})$

—— minimum attainable value —— shape parameter

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Homogeneous

finite

Heterogeneous

infinite

A Heterogeneous Distribution

Motivation

- Distributions seen so far have finite variance
- Graphs with corresponding degree distributions are homogeneous
 - \Rightarrow For constant expected degree, it is very unlikely to find a high-degree vertex
- In real-world graphs high-degree vertices are not too rare (think of celebrities in a social network)

Pareto Distribution

• $X \sim Par(\alpha, x_{min})$

- minimum attainable value — shape parameter

Probability density function: $f_X(x) = \begin{cases} \alpha x_{\min}^{\alpha} \cdot x^{-(\alpha+1)}, & \text{if } x \ge x_{\min}^{10^{\circ}} \\ 0, & \text{otherwise} \end{cases}$

Exercise: Determine for which values of α we have $\mathbb{E}[X] < \infty$ but $Var[X] = \infty$

Degree (d)

Heterogeneous

infinite

Conclusion

Continuous Distributions

- For our purposes they are handled like discrete versions (replacing sums with integrals)
- Seen today: Uniform distribution, exponential distribution, Pareto distribution, joint distributions

Poisson (Point) Process

- Yields random point set with certain properties (homogeneity & independence)
- Number of points is a random variable
- Conditioned on certain number, points are distributed uniformly
- (De-)Poissonization to circumvent stochastic dependencies

Random Geometric Graphs

- Vertices distributed at random in metric space
- Edges form with probability depending on distances
- Exhibit locality (edges tend to form between vertices with common neighbors)

Outlook: More realistic extension of RGGs featuring a heterogeneous degree distribution

(not discussed in lecture)

We can simulate a PPP by drawing

number according to Poisson

distribution and distributing as many

points uniformly

