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Expectation Management
What does it mean? R Expectation
= “QuickSort has an expected running time of O(nlog(n)).”
® “The vertex has an expected degree of c.” 3
® “In expectation there is one hair in my soup.” 2
Expectation | 0123 456780510
m The average of infinitly many trials Hairs in Soup
= How useful is that information in practice? Knowing that the expected value is 1 hair:
. . . How likely is it that | get at least 107?
m Does not tell us much about the shape of the distribution Not at all  Somewhat
= Does not come with a level of certainty How likely is it that | get less than 27

Extremely Somewhat

Concentration
® In practice, expectation is often a good start

® But for meaningful statements, we need to know how likely we are close to the exepcation

Definition: A concentration inequality bounds the probability of a random variable to
deviate from a given value (typically its expectation) by a certain amount.

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Markov’s Inequality

About Markov
® Andrei “The Furious” Andreyevich Markov (Russian mathematician)

® Unhappy with the state of living at the time (1921)

® Informed St. Petersburg Academy of Sciences that he could not attend meetings due
to not having shoes

m After getting shoes from the Communist Party he replied:

Finally, | received footwear. However, it is stupidly stitched together and does not
accord with my measurements. Thus | cannot attend the meetings. | propose
placing the footwear in a museum, as an example of the material culture of the

current time.

L“Shape, The hidden geometry of absolutely everything”, Jordan EIIenbergW

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Markov’s Inequality A“(IT

Then, Pr[X > a] < E[X]/a.

}—L EX]=Y . x-PriX=x] > a-Pr[X > 4]

. ; ; ; > fits into
0 1 2 3 4 X
Proof E[X]=E[X|X <a]-PriIX<a]+E[X|X>a]-Pr[X>a]l>a-Pr[X>a]lv
>0 >0 > 2
LCoroIIary: Let X be a non-negative rand. var. and a > 0. Then, Pr[X > a- E[X]] < 1/a. 1

® “In expectation there is one hair in my soup.”
= How likely is it that | get at least 10? Pr[X > 10] <1/10
= How likely is that | get less than 27 PriX <2|=1-Pr[X>2] >1-1/2=1/2
Oh no...

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

[Theorem (Markov’s inequality): Let X be a non-negative random variable and let a> 0. 1

Visual Proof

Pr[X > x]
N[~ =

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Application: Unfair Coins A“(IT

= The sum of 20 unfair {0, 1}-coin tosses: X ~ Bin(20, ) BIOIGICIVINIOVIOINIO),
= What is the probability of getting at least 16 ones? OIOIOIOISIOVICIOINIO,
X =38

Pr[X > 16] < E[X]/16 = 0.25
-

{Markov: X non-negative, a > O:W

20 - % — 4 Pr[X > a] < E[X]/a.
® How tight is that bound?
PrIX > 16) = 37> s (CO) ()% - (1 — )2~k ~ 0.0000000138 Maybe it is just a weak bound?

Fair Coin

= A single {0, 1}-coin toss: Y ~ Ber(3)

® What is the probability of getting at least 17
= Clearly: Pr[Y > 1] = Pr[Y = 1] = <— | There exists a random variable and an a>0
= Markov: PrlY > 1] < E[Y]/1 = E[Y] = % such that Markov’s inequality is exact.

We need more information about

= There is no better bound (that relies only on the expected value) ¢ shape of the distribution!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Characterizing the Shape of a Distribution

® How much information do we need to characterize the shape of a distribution?

Expectation

Example & 4pip—i "

® X Y independent fair die-rolls, D = X — Y = ”‘tl— T

® [/ uniform distribution over {—5, —4, ..., 5} = 5 1 r .

= Consider all probabilities individually Tedious... We need to aggregate! 5 3 [ | | ]

Expectation? ~ % I 1
E[D] — Zk Pr[D — k] k=0 Same value, different shapes } — —
E[ ] = Zk Pr[ = k] - k = 0 (also just seen with Markov: E not enough) S 4321012345

® Problem: 4+ & — terms cancel m Problem: Nobody likes absolute value

= Fix: absolute value Vore concentraieat [ 1X: SQuare instead
E[|D|] = >_, Pr[D = k] - |k| = 1.945) eSgw:CIItgrd (E[Dz] = Pr[D = k] - k* ~ 5.833
E[|U]] = 3, PrlU = K] - |k| = 2.727 ¢ E[?] = 3, Pr[U = k] - k* = 10.0

istance to E
Distance to E Squared distance to E
These are just expectations of functions of random variables!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Do you have a Moment?

Expectation and Functions
m Random variable X taking values in a set $

= A function £, e.g. f(X) = XL f(X) = |X], f(X) = X2, f(X) = VX, f(X) = X3, f(X) = ¥

BE[f(X)] =2 ,csPr[X =x]f(x) These turn out to be particularly useful!
Moments
LDefinition: For random variable X and n € N the n-th raw moment is E[X"]. W

m Just seen: For E[X]| = 0, this captures distances to E[X]| What if E[X] # 0?
{Definition: For random variable X and neN the n-th central moment is E[(X—E[X])”].W

= Just seen: the 2nd central moment captures squared distances to the expected value

E[(X — ]E[X])Z] = Var[X]
® The smaller the variance, the more concentrated the random variable
... and with Markov's help, we can turn that insight into a concentration inequality!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Chebychev’s Inequality e

\ Markov’s teacher! (Markov’s inequality actually appeared earlier in Chebychev’s works)

Theorem (Chebychev’s inequality): Let X be a random variable with finite variance )
and let b > 0. Then, Pr[|X — E[X]| > b] < Var[X]/b.

Proof > 0 Markov Y>0,a>0:Pr[Y >3] < ]E[Y]/a\
Pr[|X —E[X]| > b] = Pr [(X 15:,[><])2 > b <E[(X - E[X])2] /b®> = Var[X]/b* V/
Application: Unfair Coins @@@@@@@@@@@@@@@@@@@@
= X ~ Bin(20, 1), Pr[X >16]? E[X]=20-1=4 Var[X]=20-% -(1-1)= 2
PrIX>16] = Y50 6 () (2)%-(1 — 1)k ~ 0.0000000138 | X ~ Bin(n, ) : Var[X] = np(1 - p) |
= Markov: = Pr[X > 16] < E[X]/16 = 0.25
m Chebychev:
X > 16
B Pr[\X B E[X]‘ = 12] Order of magnitude & X —ElX] =12
< %[2)(] _ m ~0.022° porter than I\%arkov! X-E[X][z12= X =16 0r X < -8

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Application: ER — Degree Distribution

Recap

m G(n, p): Start with n nodes, connect any two with fixed probability p, independently

= Probability distribution of the degree of a single node v: deg(v) ~ Bin(n — 1, p)

m For p = ¢/nwith c € ©(1) the degree of a vertex is approximately Poisson-distributed

= Total variation distance of X, Y taking values in a set S:
drv(X,Y) =13 s |PrIX =x] - PrlY = x]

mFor A = —nlog(l — p) = c+ O(1/n) and X ~ Pois()\) we have dry(deg(v), X) = o(1)
® Empirical distribution of the degrees of all vertices in a graph G = (V, E)

Ny = ZVGV L {deg(v)=d} (normallzed LNy, for n = |V|)

- n = 100 5 n = 1000 5 n = 10000
5 B G -

? \J”h T

- . r_JJJ JJJJI-4 - D-m,

d d

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Application: ER — Degree Distribution
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Theorem: Consider a G(n, p) with p = ¢/n for constant ¢ > 0. For A = —nlog(1 — p), let )
X ~ Pois(X). Then for all d > 0 and every £ > 0 we have A =c+0(1/n) = cforn— oo

lim Pr [|Pr[X =d] — tNy| > | =0.

n—o0

Proof

= Step 1: Pr[X =d] is close to the expectation of 1Ny lim |Pr[X =d] —E [ Ng|| =0V
Pr[X = d]-E [;Ng|| = [Pr[X = d]—Pr[deg(v) = d]| < 3,5, [Pr[X = d]—Pr[deg(v) = d]
Y A -

= 1E[Nq]
= TE[X ey Tideg(v)=a}]
= =3 ey Bl {deg(v)=a}]

=+ oy Prldeg(v) = d]
= Pr[deg(v) = d]

= Step 2: £ Ny is concentrated

Maximilian Katzmann, Stefan Walzer — Probability & Computing

= 2-drv(X, deg(v))

Ldrv(X, Y) =353 s |PrIX =x] - Pr[y = X]q

im Pr{|E[ZNy] — 1Ng| > €] =0

n— o0

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Step 2: Concentration of N,

°r IR LaNe] ~ate] 2¢] < o [ Na] /€ lim Pr{|E [;Na] — 3 Na| > €] =0
Var[ N ]—]El[(l 4)%]— IE[ N ]2 Chebychev: X finite variance, b > 0
( [(Ng) ] — E[Ng]?) Pr{|X — E[X]| > b] < Var[X]/¥’
2 )\
¥ (nPrldeg(v) = d])? (eestept) | (i) =2 +3;3 a8

Na =3 vev Lideg(v)=d} = E:(ZVEV ]l{deg(V)Zd})z]
=E[3 ey (Lideg(v)=d})* + 2 vev 2z Ldeg(v)=d} - Lideg(u)=d}]
Indicator RV )|<_|an2)f e, = — Zvev ]l{deg(v) d}] + E[Zvev Zu#v ]l{deg(v) d} - ]l{deg(U) d}]
Lin.of Exp. =3\, E[ﬂ{deg(v) d}] +2 v 2wty ]E[]l{deg(v) d} * Lideg(u)= d}]

= Pr[deg( ) = d] = Lliffdeg(v) = ='d A deg(u) =
= Pr[deg(v) = d A deg(u) = d]

= n- Pr[deg(v) = d| + n(n—1) - Pr[deg(v) = d A deg(u) = d]

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Step 2: Concentration of N,

Pr{|E [ZNa] — 2Ny| > €] < Var[TN] /&° im Pr [|E [LNa] — 2Na| > ] =0
VaF[%Nd] =E[(£Ny)?]|—E[£Ny]? Chebychev: X finite variance, b > 0 |

_ % (]E[(Nd)2] _ E[Nd]z) \Pr[\X —E[X]| > b] < Var[X]/b’

= 5 (nPr[deg(v)=d] \(Z" DN RS WIWILE
+n(n— 1) Pr[deg(v)=d A deg(u)=d]
~(nPrldeg(v)=d])")
— % Pr[deg(v)=d]
+2=1 Pr{deg(v)=d A deg(u)=d] < 1
— Pr[deg(v)=d]?
< L4 Pr[deg(v)=d A deg(u)=d]
— Pr[deg(v)=d]?

~N

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Step 2: Concentration of N,

Pr|E [ Ng| — 3Na| > €] < Var[;N]

/€°

J

Var[L Ny =E[(LN

<

<

n

d)?]—E[+ Ng]?

7 (E[(Na)?] — E[Nq]?)

L+ Pr[deg(v)=d A deg(u)=d]
—Pr[deg(v) =d] Pr[deg(u) =d] deg(v) < deg(v)
L P Xi4+Yi=d A X1+ Yo =d]

—Pr[X1+Y1=d|Pr[Xa+Ys=d]

Karlsruhe Institute of Technology

~

lim Pr[|E [1Ng] — INg| > €] =0

Chebychev: X finite variance, b > 0 )
Pr[|X — E[X]| > b] < Var[X]/b’

2
(Xia) =%,a7 + % > i didj
Fréchet: Pr[A] — Pr[B] < Pr[A A B]

vV u
(==

~N

\

~

Couplings
® Consider deg(u) and deg(v)
® Y, Ys ~ Bin(n—2,p)

independent

L+PriXi+Yi=d A X1 +Y2=d)]
—Pr[X1+Yi=d A Xa+Yo=d]
L+PriXi+Yi=d A X1 +Yo=d

® X, Xo ~ Ber(p)
® (deg(v), deg(u)) = (XitY1, X1t¥2) Y1 X1 Xo Ya

ANXi+YAd v Xa$ Y5 £ d)]

For the whole event to occur,
this needs to happen

Which excludes this from
happening

Maximilian Katzmann, Stefan Walzer — Probability & Computing

deg(v) dependent deg(u) deg(v) dependent deg(u)
| Il ! ||a
d dent ind dent
X1V <> X14Y2 | | Xi4+Y1 = Xa+ Y2
§ \

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Step 2: Concentration of N,

J

Pr{|E[iNg] — INy| > €] <Var[ing] /e

Var[: Ng] = E[(1Ng)2] —E[E N ]2
= 7 (E[(Na)’] — E[Na]?)
- deg(v)=d A deg(u)

VAN
[—=
_I_
;U

L PrX1+Yi=d A X1 +Ys

—Pr[X1+Y1=d|Pr[Xa+Ys =
:d]
:d]

= Ly PrXi+Yi=d A X1+ Y2
—Pr[X; +Yi=d A X2+ Yo
< SHPIXitYi=d A Xi+Yo=

—d]
—Pr[deg(v) = d] Pr[deg(u) =
—d]

d] deg(v) < deg(u)

d]

d

Karlsruhe Institute of Technology

\

lim Pr HE[ } %Nd‘ > s] =0

n— oo

~

Chebychev: X finite variance, b > 0 )
Pr[|X — E[X]| > b] < Var[X]/b’

(Zi a")z =2, a; + > Zj;éi didj

\

Fréchet: Pr[A] — Pr[B] < Pr[A A B]

~

/\(Xl—l—\/J;éd\/Xz—l-Yz#d)]——+Pr[X1—|—Y1 d A X14+Yo=dAXo+Ys #d]

For the whole event to occur, Which excludes this from

this needs to happen  happening

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Step 2: Concentration of N, A“(IT

~N

Pr[[E [;Ng] — s Na| = €] < Var[;Ng] /&* ===>0 im Pr [|E [4Ng] — 1Ng| > €] = 0
Var[ N ]_]E[(l ) |- IE[ N ]2 S% +2p :%4_2% LEX= Ny Cl}rbycth:”Xfinite v\ellrieEnci,?,é3> 0|
Pr{|X — E|X]| > b] < Var|X]/b
— L (BI(No] - EINGP) Pl \
< L +Prl[deg(v)=d A deg(u)=d] \(Z,-a;) =33 + X, %39
—Pr[deg(v)=d] Pr[deg(u) =d] deg(v) = deg(u) |[ Frechet: Pr[A] — Pr[B] < PrlAA B]
S%—l—Pr:X1—|—Y1:d/\X1—|—Y2:d/\X2—|—Y27éd: <1

1 —|—PI'X1 —|—§/1 :d /\ Xl —I—)/de/\Xz—l—\/z#d Xl :O] |5r[X1 :O] Law of total probability
+Pr[X1+Yi=d A X1+Yo=dAXo+Yo#d| X1 =1] Pr[X; =1]

- w_J .
< IiPrYi=d AYa=dAXo+Ys#£d|X;=0] TT WVLYanBin(n—2p)) o
—I—Pr'Xl_l] = X2 =1 ® X1, X2 ~ Ber(p)

= 24+Pr[Yi=d A Ya=dAXo=1[Xp=0]+Pr[X; =1] <L+Pr[Xo=1]+Pr[X;=1] —

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Theorem: Consider a G(n, p) with p = ¢/n for constant ¢ > 0. For A = —nlog(1 — p), let )
X ~ Pois(X). Then for all d > 0 and every £ > 0 we have A=c+0(1/n) = cforn— oo

lim Pr[|Pr[X =d] — 1Ng4| > €] =0.

n—o0

Proof
= Step 1: Pr[X=d] is close to the expectation of 1Ny  lim [Pr[X =d] —E [-Ny][ =0V

= Step 2: £ Ny is concentrated (via Chebychev) lim Pr[|E[fNg] — INg| > €] =0V

n— 00 n

5 - n = 100 5 n = 1000 - n = 10000
2 . 2 2
|—4|:m —~C . g -
T - 5) 5)
I Il Il
X X X
o o o
Sy
11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Concentration Bounds So Far

Definition: A concentration inequality bounds the probability of a random variable to
deviate from a given value (typically its expectation) by a certain amount.

>
>

Markov
® based on expectation (first moment)

® X non-negative random variable and a > 0

concentrated concentrated

not not so

Probability Density
Probability Density

concentrated concentrate
PriX > a] < E[X]/a A
m tight
Chebychev

® based on variance (second moment)

a X random variable with finite variance and b > 0
Pr[|X —E[X]] > b] < Var[X]/b?

0 tight (stated without proof)

Can we utilize higher-order moments for even stronger bounds?

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Another Moment Please

® The n-th raw moment of a random variable X is E[X"] o
_ _ . Looks scary, but is again just
® We can capture all moments of X using a single function E[f(X)] for £(X) = etX

LDefinition: For a random variable X the moment generating function is My (t) =E[etX ﬂ

= Where the name comes from: For the n-th derivative M\ (t) we have M{"(0) = E[X"]

(assuming the function exists in a neighborhood around 0)

LTheorem: For independent random variables X, Y: Mx.y(t) = Mx(t) - My (t). W
Proof Myx.y(t) = E[e!XTY)] = E[e™* - etY] = E[e™*] - E[e®"] = Mx(t) - My (t) v/

Had his 100th birthday in 2023! Thought the bound (now named after him) to tA conversation with Herman Chernoff”q

Concentl‘atlon Ineq ual It/L be so trivial that he didn’t mention that it actually came from Herman Rubin. |John Bather, Statist. Sci. 1996

Theorem (Chernoff ‘B,ounds): Let X be a random variable and a > 0.
Then, Pr[X > a] < mings E[etX]/et? and Pr[X < a] < min,.o E[etX]/e".
Proof for all t > O: PI’[X > a] — Pr[etX > eta] < E[etx]/eta Markov: X non-negative, b > 0:
| ; £X ta Pr[X > b] < E[X]/b.
> < mings E[e?*]/et? v/

for all ¢ < 0: analogous. v Get bounds for specific random variables by finding a good t!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Application: Binomial Distribution

~N

Theorem: Let X ~ Bin(n, p). Then for any £ > 0

e\ EIX]
Pr[X > (14 ¢)E[X]] < <(1 n s)(1+€)) .

Proof Consider X as the sum of independent X; ~ Ber(p) Chernoff: Random variable X and a > 0: |
Pr[X > a] < mingo E[etX]/et?.

MX,-(t) = ]E[etX"] = PF[X,' = O] etV 4 PF[X,' = 1] . et'l S
_ (1 B P) n pet 14 (et B 1)P < e(et_l)p \Mom. Gen. Function: Mx (t) =E[e!X]
1 +x§ex Moment Addition: Independent X, Y':
Mx (t) = Ms= x,(t) =TT, Mx,(t) < TT7 el 0P = ele=1)np (e Z MO (D)
— e(e"=1)E[X] ]
- etX : e(ef —DEIX] . o(ef—1) \ X e O\EIX]
Pr[X > (1 T E)E[X” <MiNngs % <Min¢sg ot(I+e)E[X] :mlnt>o(etT;) < ((1_|_£)(1+s)) /
Example @000 000000000000Q@00O for ¢ = log(1 + ¢)
® Sum of 20 unfair {0, 1}-coin tosses: X ~ Bin(20, %), E[X] =4 Markov: < 0.25
— e’ e Chebychev: < 0.022
® Pr[X 2 16] = Pr[X = (1+3)E[X]] < (W) pr 000003789 e ~ 0.0000000138

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Chernoff — Simpler Versions

Theorem: Let X ~ Bin(n, p). Then for any £ > 0

Pr[X > (14 ¢)E[X]] < ( -

£ E[X]
(1+ s)<1+€>> |

Chernoff: Random variable X and a > 0: )
Pr[X > a] < mingo E[etX]/et?.

Corollary: Let X ~ Bin(n, p). Then for any t > 6[E[X], Pr[X > t] < 27T,

~

Corollary: Let X ~ Bin(n, p). Then for any ¢ € (0, 1], Pr[X > (1 + £)E[X]] < e—¢ /3EIX],

~N

Corollary: Let X ~ Bin(n, p). Then for any & € (0, 1), Pr[X < (1 — £)E[X]] < e~ /2EX],

® In fact, these also work when the X; are Bernoulli random variables with different success
probabilities

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Conclusion

Concentration R

m |[s a random variable likely to yield values close to the expectation? 2 concentrated

m Concentration inequalities bound the probability for a random % .
variable to deviate from its expectation g concentrated

Moments

m Used to characterize the shape of a distribution

® First moment: expected value %%%%%%%%88

® Second moment: variance

® Moment generating functions to determine higher-order moments =2 n = 10000

Concentration Inequalities —

= Markov: Based on first moment - I‘ ‘ I

m Chebychev: Squaring within Markov (utilizing second moment) e

® Chernoff: Exponentiating within Markov (utilizing moment generating functions)
® Examples: Sum of coin flips, empirical degree distribution of ER graphs

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



