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Expectation Management

What does it mean?
“QuickSort has an expected running time of O(n log(n)).”
“The vertex has an expected degree of c.”
“In expectation there is one hair in my soup.”
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Expectation

The average of infinitly many trials

Does not tell us much about the shape of the distribution
How likely is it that I get at least 10?

How likely is it that I get less than 2?

How useful is that information in practice?

Expectation

Does not come with a level of certainty

In practice, expectation is often a good start

Definition: A concentration inequality bounds the probability of a random variable to
deviate from a given value (typically its expectation) by a certain amount.

Concentration

Knowing that the expected value is 1 hair:

SomewhatNot at all

Extremely Somewhat

0

But for meaningful statements, we need to know how likely we are close to the exepcation



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Markov’s Inequality

Andrei “The Furious” Andreyevich Markov (Russian mathematician)
Unhappy with the state of living at the time (1921)
Informed St. Petersburg Academy of Sciences that he could not attend meetings due
to not having shoes

Finally, I received footwear. However, it is stupidly stitched together and does not
accord with my measurements. Thus I cannot attend the meetings. I propose
placing the footwear in a museum, as an example of the material culture of the
current time.

After getting shoes from the Communist Party he replied:

“Shape, The hidden geometry of absolutely everything”, Jordan Ellenberg

About Markov
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Markov’s Inequality

Proof E[X] = E[X | X < a] · Pr[X < a] + E[X | X ≥ a] · Pr[X ≥ a]

≥0

Theorem (Markov’s inequality): Let X be a non-negative random variable and let a>0.
Then, Pr[X ≥ a] ≤ E[X]=a.

≥a

≥ a · Pr[X ≥ a] ✓

Corollary: Let X be a non-negative rand. var. and a > 0. Then, Pr[X ≥ a · E[X]] ≤ 1=a.

≥0

Visual Proof
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1 2 3 40

Pr[X = 1]

Pr[X = 3]

Pr[X = 2]

Pr[X = 4]

x · Pr[X = x ] ≥

fits into

a · Pr[X ≥ a]E[X] =
P

x

“In expectation there is one hair in my soup.”
How likely is it that I get at least 10? Pr[X ≥ 10] ≤ 1=10
How likely is that I get less than 2? Pr[X < 2] = 1− Pr[X ≥ 2] ≥ 1− 1=2 = 1=2

Oh no...
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Application: Unfair Coins

The sum of 20 unfair {0; 1}-coin tosses: X ∼ Bin(20; 15 ) 1 0 1 0 0

0 0 0 0 1

1 0 0 1 1

0 1 1

X = 8

00What is the probability of getting at least 16 ones?

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Pr[X ≥ 16] ≤ E[X]=16

20 · 1
5
= 4

= 0:25

How tight is that bound?
Pr[X ≥ 16] =

P20
k=16

`
20
k

´
( 15 )

k · (1− 1
5 )

20−k ≈ 0:0000000138

Not very?

Fair Coin
A single {0; 1}-coin toss: Y ∼ Ber( 12 )

What is the probability of getting at least 1?
Clearly: Pr[Y ≥ 1] = Pr[Y = 1] = 1

2

Markov: Pr[Y ≥ 1] ≤ E[Y ]=1 = E[Y ] = 1
2

There exists a random variable and an a>0
such that Markov’s inequality is exact.

⇒ There is no better bound (that relies only on the expected value) We need more information about
the shape of the distribution!

Maybe it is just a weak bound?
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Characterizing the Shape of a Distribution

Squared distance to E

How much information do we need to characterize the shape of a distribution?
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Pr[D=k]Example

Pr[U=k]U uniform distribution over {−5;−4; :::; 5}

E[U] =
P

k Pr[U = k] · k = 0

E[D] =
P

k Pr[D = k] · k = 0

Consider all probabilities individually

X; Y independent fair die-rolls, D = X − Y
more concentr.

less concentr.

Tedious... We need to aggregate!

Expectation?

Expectation

Same value, different shapes
(also just seen with Markov: E not enough)

Problem: + & − terms cancel
⇒ Fix: absolute value
E[|D|] =

P
k Pr[D = k] · |k| ≈ 1:945

E[|U|] =
P

k Pr[U = k] · |k| ≈ 2:727
Distance to E

Smaller
expected

distance to E

More concentrated!

Problem: Nobody likes absolute value
⇒ Fix: square instead
E[D2] =

P
k Pr[D = k] · k2 ≈ 5:833

E[U2] =
P

k Pr[U = k] · k2 = 10:0

These are just expectations of functions of random variables!

f (k) = k

f (k) = |k| f (k) = k2
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Do you have a Moment?

Expectation and Functions
Random variable X taking values in a set S

Just seen: For E[X] = 0, this captures distances to E[X]

A function f , e.g. f (X) = X, f (X) = |X|, f (X) = X2, f (X) =
√
X, f (X) = X3, f (X) = eX

E[f (X)] =
P

x∈S Pr[X = x ] · f (x)

1

These turn out to be particularly useful!

Moments
Definition: For random variable X and n ∈ N the n-th raw moment is E[Xn].

What if E[X] ̸= 0?

Definition: For random variable X and n∈N the n-th central moment is E[(X−E[X])n].

Just seen: the 2nd central moment captures squared distances to the expected value

E[(X − E[X])2] = Var[X]

The smaller the variance, the more concentrated the random variable
... and with Markov’s help, we can turn that insight into a concentration inequality!
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Chebychev’s Inequality
Markov’s teacher! (Markov’s inequality actually appeared earlier in Chebychev’s works)

Proof Markov: Y ≥ 0; a > 0: Pr[Y ≥ a] ≤ E[Y ]=a

Pr [|X − E[X]| ≥ b] = Pr
ˆ
(X − E[X])2 ≥ b2

˜≥ 0

≤ E
ˆ
(X − E[X])2

˜
=b2 = Var[X]=b2 ✓

Application: Unfair Coins
X ∼ Bin(20; 15 ), Pr[X ≥ 16]?

Pr[X≥16] =
P20

k=16

`
20
k

´
( 15 )

k ·(1− 1
5 )

20−k ≈ 0:0000000138

⇒ Pr[X ≥ 16] ≤ E[X]=16Markov: = 0:25

Var[X] = 20 · 1
5 · (1− 1

5 ) =
16
5

Chebychev:
Pr[X ≥ 16] ⇔ X − E[X] ≥ 16− E[X]

⇔ X − E[X] ≥ 12

|X − E[X]|≥ 12 ⇒ X ≥ 16 or X ≤ −8

≤ Pr[X ≥ 16 ∨ X ≤ −8]
= Pr[|X − E[X]| ≥ 12]

≤ Var[X]
122

= 16
5·144

Order of magnitude
better than Markov!≈ 0:022

Theorem (Chebychev’s inequality): Let X be a random variable with finite variance
and let b > 0. Then, Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2.

X ∼ Bin(n; p) : Var[X] = np(1− p)

X ≥ 16

E[X] = 20 · 1
5 = 4

1 0 1 0 0 0 0 0 0 11 0 0 1 1 0 1 100
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Application: ER – Degree Distribution

Recap
G(n; p): Start with n nodes, connect any two with fixed probability p, independently

For p = c=n with c ∈ Θ(1) the degree of a vertex is approximately Poisson-distributed
Total variation distance of X; Y taking values in a set S:
dTV (X; Y ) =

1
2

P
x∈S |Pr[X = x ]− Pr[Y = x ]|

Probability distribution of the degree of a single node v : deg(v) ∼ Bin(n − 1; p)

For – = −n log(1− p) = c + O(1=n) and X ∼ Pois(–) we have dTV (deg(v); X) = o(1)

Empirical distribution of the degrees of all vertices in a graph G = (V; E)

n = 100 n = 1000 n = 10000

d d d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

Nd =
P

v∈V 1{deg(v)=d} (normalized: 1
n
Nd , for n = |V |)
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Application: ER – Degree Distribution

Theorem: Consider a G(n; p) with p = c=n for constant c > 0. For – = −n log(1− p), let
X ∼ Pois(–). Then for all d > 0 and every " > 0 we have

lim
n→∞

Pr
ˆ˛̨
Pr[X = d ]− 1

n
Nd

˛̨
≥ "
˜
= 0:

– = c + O(1=n) → c for n → ∞

Proof
Step 1: Pr[X=d ] is close to the expectation of 1

n
Nd lim

n→∞

˛̨
Pr[X = d ]− E

ˆ
1
n
Nd

˜˛̨
= 0˛̨

Pr[X = d ]−E
ˆ
1
n
Nd

˜˛̨
= 1

n
E[Nd ]

= 1
n

P
v∈V E[1{deg(v)=d}]

= 1
n

P
v∈V Pr[deg(v) = d ]

= Pr[deg(v) = d ]

= |Pr[X = d ]−Pr[deg(v) = d ]| ≤
P

d≥0 |Pr[X = d ]−Pr[deg(v) = d ]|

= 2 · dTV (X; deg(v))

= o(1) n → ∞ 0 ✓

X

Step 2: 1
n
Nd is concentrated lim

n→∞
Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0

= 1
n
E[
P

v∈V 1{deg(v)=d}]
Already shown last time!

dTV (X; Y ) =
1
2

P
x∈S |Pr[X = x]− Pr[Y = x]|
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Step 2: Concentration of 1
n
Nd

Chebychev: X finite variance, b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜

≤ Var
ˆ
1
n
Nd

˜
="2

Nd =
P

v∈V 1{deg(v)=d}

Var[ 1
n
Nd ]=E[( 1

n
Nd)

2]−E[ 1
n
Nd ]

2

= 1
n2

`
E[(Nd)

2]− E[Nd ]
2
´

= E[
`P

v∈V 1{deg(v)=d}
´2
]

`P
i ai
´2

=
P

i a
2
i +

P
i

P
j ̸=i aiaj

= E[
P

v∈V (1{deg(v)=d})
2 +

P
v∈V

P
u ̸=v 1{deg(v)=d} · 1{deg(u)=d}]

Indicator RV X: X2 = X,
Lin. of Exp. = E[

P
v∈V 1{deg(v)=d}] + E[

P
v∈V

P
u ̸=v 1{deg(v)=d} · 1{deg(u)=d}]

=
P

v∈V E[1{deg(v)=d}] +
P

v∈V
P

u ̸=v E[1{deg(v)=d} · 1{deg(u)=d}]Lin. of Exp.

= Pr[deg(v) = d ] = 1 iff deg(v) = d ∧ deg(u) = d

= Pr[deg(v) = d ∧ deg(u) = d ]

= n · Pr[deg(v) = d ] + n(n − 1) · Pr[deg(v) = d ∧ deg(u) = d ]

= (nPr[deg(v) = d ])2 (see Step 1)

lim
n→∞

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0
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Step 2: Concentration of 1
n
Nd

Chebychev: X finite variance, b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜

≤ Var
ˆ
1
n
Nd

˜
="2

Var[ 1
n
Nd ]=E[( 1

n
Nd)

2]−E[ 1
n
Nd ]

2

= 1
n2

`
E[(Nd)

2]− E[Nd ]
2
´ `P

i ai
´2

=
P

i a
2
i +

P
i

P
j ̸=i aiaj= 1

n2 (nPr[deg(v)=d ]

≤ 1

≤ 1

≤ 1
n
+ Pr[deg(v)=d ∧ deg(u)=d ]

+n(n − 1) Pr[deg(v)=d ∧ deg(u)=d ]

= 1
n
Pr[deg(v)=d ]

−(nPr[deg(v)=d ])2)

+n−1
n

Pr[deg(v)=d ∧ deg(u)=d ]

−Pr[deg(v)=d ]2

−Pr[deg(v)=d ]2

lim
n→∞

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0
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Step 2: Concentration of 1
n
Nd

Chebychev: X finite variance, b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜

≤ Var
ˆ
1
n
Nd

˜
="2

Var[ 1
n
Nd ]=E[( 1

n
Nd)

2]−E[ 1
n
Nd ]

2

= 1
n2

`
E[(Nd)

2]− E[Nd ]
2
´ `P

i ai
´2

=
P

i a
2
i +

P
i

P
j ̸=i aiaj

Consider deg(u) and deg(v)

X1; X2 ∼ Ber(p)

≤ 1
n
+Pr[deg(v)=d ∧ deg(u)=d ]

Couplings

Y1; Y2 ∼ Bin(n − 2; p)
u

deg(u)

X2+Y2

independent

= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d ]

−Pr[X1+Y1=d ]Pr[X2+Y2=d ]

= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d ]

−Pr[X1+Y1=d ∧ X2+Y2=d ]

dependent

independent
X1+Y1

deg(v)deg(u)

X1+Y2

dependent

dependent
X1+Y1

deg(v)

v

Y2X1Y1 X2

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤ 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d

∧(X1+Y1 ̸=d ∨ X2+Y2 ̸=d)]
For the whole event to occur,

this needs to happen
Which excludes this from
happening

(deg(v); deg(u))
d
= (X1+Y1; X1+Y2)

d =

d= d=

d =

lim
n→∞

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0

deg(v)
d
= deg(u)−Pr[deg(v)=d ] Pr[deg(u)=d ]
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Step 2: Concentration of 1
n
Nd

Chebychev: X finite variance, b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜

≤ Var
ˆ
1
n
Nd

˜
="2

Var[ 1
n
Nd ]=E[( 1

n
Nd)

2]−E[ 1
n
Nd ]

2

= 1
n2

`
E[(Nd)

2]− E[Nd ]
2
´ `P

i ai
´2

=
P

i a
2
i +

P
i

P
j ̸=i aiaj≤ 1

n
+Pr[deg(v)=d ∧ deg(u)=d ]

= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d ]

−Pr[X1+Y1=d ]Pr[X2+Y2=d ]

= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d ]

−Pr[X1+Y1=d ∧ X2+Y2=d ]

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤ 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d

∧(X1+Y1 ̸=d ∨ X2+Y2 ̸=d)]
For the whole event to occur,

this needs to happen
Which excludes this from
happening

lim
n→∞

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0

deg(v)
d
= deg(u)−Pr[deg(v)=d ] Pr[deg(u)=d ]

= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d∧X2+Y2 ̸=d ]
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Step 2: Concentration of 1
n
Nd

Chebychev: X finite variance, b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜

≤ Var
ˆ
1
n
Nd

˜
="2

Var[ 1
n
Nd ]=E[( 1

n
Nd)

2]−E[ 1
n
Nd ]

2

= 1
n2

`
E[(Nd)

2]− E[Nd ]
2
´ `P

i ai
´2

=
P

i a
2
i +

P
i

P
j ̸=i aiaj≤ 1

n
+Pr[deg(v)=d ∧ deg(u)=d ]

Fréchet: Pr[A]− Pr[B] ≤ Pr[A ∧ B̄]

≤ 1
n
+Pr[X2=1]+Pr[X1=1]

≤ 1
n
+2p = 1

n
+2 c

n
n → ∞ 0

n → ∞ 0 ✓lim
n→∞

Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0

deg(v)
d
= deg(u)−Pr[deg(v)=d ] Pr[deg(u)=d ]

≤ 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d∧X2+Y2 ̸=d ]

Law of total probability= 1
n
+Pr[X1+Y1=d ∧ X1+Y2=d∧X2+Y2 ̸=d |X1=0] Pr[X1=0]

+Pr[X1+Y1=d ∧ X1+Y2=d∧X2+Y2 ̸=d |X1=1] Pr[X1=1]

≤ 1
n
+ ≤ 1

+Pr[X1=1]

Pr[Y1=d ∧ Y2=d∧X2+Y2 ̸=d |X1=0]

≤ 1

⇒ X2 = 1 X1; X2 ∼ Ber(p)

Y1; Y2 ∼ Bin(n − 2; p)
independent

= 1
n
+Pr[Y1=d ∧ Y2=d∧X2=1|X1=0]+Pr[X1=1]

independent
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Application: ER – Degree Distribution

Theorem: Consider a G(n; p) with p = c=n for constant c > 0. For – = −n log(1− p), let
X ∼ Pois(–). Then for all d > 0 and every " > 0 we have

lim
n→∞

Pr
ˆ˛̨
Pr[X = d ]− 1

n
Nd

˛̨
≥ "
˜
= 0:

– = c + O(1=n) → c for n → ∞

Proof
Step 1: Pr[X=d ] is close to the expectation of 1

n
Nd lim

n→∞

˛̨
Pr[X = d ]− E

ˆ
1
n
Nd

˜˛̨
= 0 ✓

Step 2: 1
n
Nd is concentrated (via Chebychev) lim

n→∞
Pr
ˆ˛̨
E
ˆ
1
n
Nd

˜
− 1

n
Nd

˛̨
≥ "
˜
= 0 ✓

n = 100 n = 1000 n = 10000

d d d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d

P
r[
X

=
d
],

1 n
N
d
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Concentration Bounds So Far

Definition: A concentration inequality bounds the probability of a random variable to
deviate from a given value (typically its expectation) by a certain amount.

Markov
based on expectation (first moment)

P
ro

ba
bi

lit
y

D
en

si
ty

concentrated

Expectation

not
concentrated

P
ro

ba
bi

lit
y

D
en

si
ty

concentrated

not so
concentrated

Expectation

X non-negative random variable and a > 0

Pr[X ≥ a] ≤ E[X]=a

Chebychev
tight

based on variance (second moment)
X random variable with finite variance and b > 0
Pr[|X − E[X]| ≥ b] ≤ Var[X]=b2

Can we utilize higher-order moments for even stronger bounds?

tight (stated without proof)
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Another Moment Please

The n-th raw moment of a random variable X is E[Xn]

We can capture all moments of X using a single function

Definition: For a random variable X the moment generating function is MX(t)=E[etX ]

Where the name comes from: For the n-th derivative M(n)
X (t) we have M(n)

X (0) = E[Xn]
(assuming the function exists in a neighborhood around 0)

Theorem: For independent random variables X; Y : MX+Y (t) = MX(t) ·MY (t).

Proof MX+Y (t) = E[et(X+Y )] = E[etX · etY ] = E[etX ] · E[etY ] = MX(t) ·MY (t) ✓

Concentration Inequality
Theorem (Chernoff Bounds): Let X be a random variable and a > 0.
Then, Pr[X ≥ a] ≤ mint>0 E[etX ]=eta and Pr[X ≤ a] ≤ mint<0 E[etX ]=eta.

Proof Pr[X ≥ a] = Pr[etX ≥ eta]

Had his 100th birthday in 2023! Thought the bound (now named after him) to
be so trivial that he didn’t mention that it actually came from Herman Rubin.

“A conversation with Herman Chernoff”,
John Bather, Statist. Sci. 1996

≤ E[etX ]=eta Markov: X non-negative, b>0:
Pr[X ≥ b] ≤ E[X]=b.

for all t > 0:
≤ mint>0 E[etX ]=eta ✓

for all t < 0: analogous. ✓ Get bounds for specific random variables by finding a good t!

Looks scary, but is again just
E[f (X)] for f (X) = etX
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Application: Binomial Distribution

Proof
MXi

(t) = E[etXi ] = Pr[Xi = 0] · et·0 + Pr[Xi = 1] · et·1

= (1− p) + pet = 1 + (et − 1)p ≤ e(e
t−1)p

1 + x ≤ ex

MX(t) = MP
Xi
(t)

Moment Addition: Independent X; Y :
MX+Y (t) = MX(t) ·MY (t).=

Qn
i=1MXi

(t)≤
Qn

i=1e
(et−1)p = e(e

t−1)·np

= e(e
t−1)E[X]

Pr[X ≥ (1 + ")E[X]] ≤mint>0
E[etX ]

et(1+")E[X] ≤mint>0
e(e

t−1)E[X]

et(1+")E[X] =mint>0

“
e(e

t−1)

et(1+")

”E[X]

≤
“

e"

(1+")(1+")

”E[X]

for t = log(1 + ")
✓Example

Sum of 20 unfair {0; 1}-coin tosses: X ∼ Bin(20; 15 ), E[X] = 4

Pr[X ≥ 16] = Pr[X ≥ (1+3)E[X]]

Consider X as the sum of independent Xi ∼ Ber(p)

≤
“

e3

(1+3)1+3

”4
= e12

444
≈0:00003789

≤ 0:25

/ 0:022

≈ 0:0000000138

Markov:
Chebychev:
Actual:

Chernoff: Random variable X and a > 0:
Pr[X ≥ a] ≤ mint>0 E[etX ]=eta.

Mom. Gen. Function: MX(t)=E[etX ]

1 0 1 0 0 0 0 0 0 11 0 0 1 1 0 1 100

Theorem: Let X ∼ Bin(n; p). Then for any " > 0

Pr[X ≥ (1 + ")E[X]] ≤
„

e"

(1 + ")(1+")

«E[X]

:
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Chernoff – Simpler Versions

Chernoff: Random variable X and a > 0:
Pr[X ≥ a] ≤ mint>0 E[etX ]=eta.

Theorem: Let X ∼ Bin(n; p). Then for any " > 0

Pr[X ≥ (1 + ")E[X]] ≤
„

e"

(1 + ")(1+")

«E[X]

:

Corollary: Let X ∼ Bin(n; p). Then for any t ≥ 6E[X], Pr[X ≥ t] ≤ 2−t .

Corollary: Let X ∼ Bin(n; p). Then for any " ∈ (0; 1], Pr[X ≥ (1 + ")E[X]] ≤ e−"2=3·E[X].

Corollary: Let X ∼ Bin(n; p). Then for any " ∈ (0; 1), Pr[X ≤ (1− ")E[X]] ≤ e−"2=2·E[X].

In fact, these also work when the Xi are Bernoulli random variables with different success
probabilities
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Conclusion

Concentration
Is a random variable likely to yield values close to the expectation?
Concentration inequalities bound the probability for a random
variable to deviate from its expectation

P
ro

ba
bi

lit
y

D
en

si
ty

concentrated

Expectation

not
concentrated

Moments
Used to characterize the shape of a distribution
First moment: expected value
Second moment: variance
Moment generating functions to determine higher-order moments

Concentration Inequalities
Markov: Based on first moment
Chebychev: Squaring within Markov (utilizing second moment)
Chernoff: Exponentiating within Markov (utilizing moment generating functions)
Examples: Sum of coin flips, empirical degree distribution of ER graphs

n = 10000

d

P
r[
X

=
d
],

1 n
N
d

1 0 1 0 0

0 0 0 0 1

1 0 0 1 1

0 1 100


