Probability \& Computing

Concentration

Expectation Management

What does it mean?

- "QuickSort has an expected running time of $O(n \log (n))$."
" "The vertex has an expected degree of c."
- "In expectation there is one hair in my soup."

Expectation

- The average of infinitly many trials
- How useful is that information in practice?
- Does not tell us much about the shape of the distribution
- Does not come with a level of certainty

Concentration

Knowing that the expected value is 1 hair:
How likely is it that I get at least 10 ?
Not at all Somewhat
How likely is it that I get less than 2 ?
Extremely Somewhat

- In practice, expectation is often a good start
- But for meaningful statements, we need to know how likely we are close to the exepcation

Definition: A concentration inequality bounds the probability of a random variable to deviate from a given value (typically its expectation) by a certain amount.

Markov's Inequality

About Markov

- Andrei "The Furious" Andreyevich Markov (Russian mathematician)
- Unhappy with the state of living at the time (1921)
- Informed St. Petersburg Academy of Sciences that he could not attend meetings due to not having shoes
- After getting shoes from the Communist Party he replied:

Finally, I received footwear. However, it is stupidly stitched together and does not accord with my measurements. Thus I cannot attend the meetings. I propose placing the footwear in a museum, as an example of the material culture of the current time.
"Shape, The hidden geometry of absolutely everything", Jordan Ellenberg

Markov’s Inequality

Theorem (Markov's inequality): Let X be a non-negative random variable and let $a>0$. Then, $\operatorname{Pr}[X \geq a] \leq \mathbb{E}[X] / a$.

Visual Proof

$$
\mathbb{E}[X]=\underset{\text { fits into }}{\sum_{x} x \cdot \operatorname{Pr}[X=x] \geq} a \cdot \operatorname{Pr}[X \geq a]
$$

Proof $\mathbb{E}[X]=\underbrace{\mathbb{E}[X \mid X<a]}_{\geq 0} \cdot \underbrace{\operatorname{Pr}[X<a]}_{\geq 0}+\underbrace{\mathbb{E}[X \mid X \geq a]}_{\geq a} \cdot \operatorname{Pr}[X \geq a] \geq a \cdot \operatorname{Pr}[X \geq a] /$
Corollary: Let X be a non-negative rand. var. and $a>0$. Then, $\operatorname{Pr}[X \geq a \cdot \mathbb{E}[X]] \leq 1 / a$.

- "In expectation there is one hair in my soup."
- How likely is it that I get at least 10 ?

$$
\begin{aligned}
& \operatorname{Pr}[X \geq 10] \leq 1 / 10 \\
& \operatorname{Pr}[X<2]=1-\operatorname{Pr}[X \geq 2] \geq 1-1 / 2=1 / 2
\end{aligned}
$$

Application: Unfair Coins

- The sum of 20 unfair $\{0,1\}$-coin tosses: $X \sim \operatorname{Bin}\left(20, \frac{1}{5}\right)$
(1) (0) (1) (0) (0) (1) (0) (0) (1) (1)
- What is the probability of getting at least 16 ones?
(0) (0) (0) (0) (1) (0) (0) (0) (1) (1)

$$
\operatorname{Pr}[X \geq 16] \leq \underbrace{\mathbb{E}[X]}_{20 \cdot \frac{1}{5}=4} / 16=0.25
$$

$$
X=8
$$

Markov: X non-negative, a>0:
$\operatorname{Pr}[X \geq a] \leq \mathbb{E}[X] / a$.

- How tight is that bound? Not very?
$\operatorname{Pr}[X \geq 16]=\sum_{k=16}^{20}\binom{20}{k}\left(\frac{1}{5}\right)^{k} \cdot\left(1-\frac{1}{5}\right)^{20-k} \approx 0.0000000138 \quad$ Maybe it is just a weak bound?

Fair Coin

- A single $\{0,1\}$-coin toss: $Y \sim \operatorname{Ber}\left(\frac{1}{2}\right)$
- What is the probability of getting at least 1 ?
- Clearly: $\operatorname{Pr}[Y \geq 1]=\operatorname{Pr}[Y=1]=\frac{1}{2}$ There exists a random variable and an $a>0$
- Markov: $\left.\operatorname{Pr}[Y \geq 1] \leq \mathbb{E}[Y] / 1=\mathbb{E}[Y]=\frac{1}{2}\right\} \quad$ such that Markov's inequality is exact.
\Rightarrow There is no better bound (that relies only on the expected value) $\begin{gathered}\text { We need more information about } \\ \text { the shape of the distribution! }\end{gathered}$

Characterizing the Shape of a Distribution

- How much information do we need to characterize the shape of a distribution?

Example

- X, Y independent fair die-rolls, $D=X-Y$
- U uniform distribution over $\{-5,-4, \ldots, 5\}$
- Consider all probabilities individually Tedious... We need to aggregate! Expectation?
$f(k)=k$

$$
\begin{aligned}
& \mathbb{E}[D]=\sum_{k} \operatorname{Pr}[D=k] \cdot k=0 \quad \text { Same value, dififerent shapes } \\
& \mathbb{E}[U]=\sum_{k} \operatorname{Pr}[U=k] \cdot k=0 \text { (also just seen with Markov: } \mathbb{E} \text { not enough) }
\end{aligned}
$$

- Problem: $+\&-$ terms cancel

$$
\Rightarrow \text { Fix: absolute value } f(k)=|k| \quad \text { More concentrated! } \Rightarrow \text { Fix: square instead } f(k)=k^{2}
$$

Distance to \mathbb{E}
These are just expectations of functions of random variables!

Do you have a Moment?

Expectation and Functions

- Random variable X taking values in a set S
- A function f, e.g. $f(X)=X^{1}, f(X)=|X|, f(X)=X^{2}, f(X)=\sqrt{X}, f(X)=X^{3}, f(X)=e^{X}$
$\square \mathbb{E}[f(X)]=\sum_{x \in S} \operatorname{Pr}[X=x] \cdot f(x) \quad$ These turn out to be particularly useful!

Moments

Definition: For random variable X and $n \in \mathbb{N}$ the \boldsymbol{n}-th raw moment is $\mathbb{E}\left[X^{n}\right]$.

- Just seen: For $\mathbb{E}[X]=0$, this captures distances to $\mathbb{E}[X]$ What if $\mathbb{E}[X] \neq 0$?

Definition: For random variable X and $n \in \mathbb{N}$ the n-th central moment is $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$.

- Just seen: the $\underbrace{2 n d}$ central moment captures squared distances to the expected value

$$
\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\operatorname{Var}[X]
$$

- The smaller the variance, the more concentrated the random variable ... and with Markov's help, we can turn that insight into a concentration inequality!

Chebychev's Inequality

Theorem (Chebychev's inequality): Let X be a random variable with finite variance and let $b>0$. Then, $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq b] \leq \operatorname{Var}[X] / b^{2}$.

Application: Unfair Coins

- $X \sim \operatorname{Bin}\left(20, \frac{1}{5}\right), \operatorname{Pr}[X \geq 16] ? \mathbb{E}[X]=20 \cdot \frac{1}{5}=4 \left\lvert\, \operatorname{Var}[X]=20 \cdot \frac{1}{5} \cdot\left(1-\frac{1}{5}\right)=\frac{16}{5}\right.$

$$
\operatorname{Pr}[X \geq 16]=\sum_{k=16}^{20}\binom{20}{k}\left(\frac{1}{5}\right)^{k} \cdot\left(1-\frac{1}{5}\right)^{20-k} \approx 0.0000000138 \quad X \sim \operatorname{Bin}(n, p): \operatorname{Var}[X]=n p(1-p)
$$

- Markov: $\Rightarrow \operatorname{Pr}[X \geq 16] \leq \mathbb{E}[X] / 16=0.25$
- Chebychev:

$$
\begin{array}{rlrl}
\operatorname{Pr}[X \geq 16] & \leq \operatorname{Pr}[X \geq 16 \vee X \leq-8] & & X \geq 16 \\
& =\operatorname{Pr}[|X-\mathbb{E}[X]| \geq 12] & & \Leftrightarrow X-\mathbb{E}[X] \geq 16-\mathbb{E}[X] \\
& \leq \frac{\operatorname{Var}[X]}{12^{2}}=\frac{16}{5 \cdot 144} \approx 0.022 & \text { Order of magnitude } & \\
\text { better than Markov! } & & \mid X-\mathbb{E}[X] \geq 12 \\
& & & \geq 12 \Rightarrow X \geq 16 \text { or } X \leq-8
\end{array}
$$

Application: ER - Degree Distribution

Recap

- $G(n, p)$: Start with n nodes, connect any two with fixed probability p, independently
- Probability distribution of the degree of a single node $v: \operatorname{deg}(v) \sim \operatorname{Bin}(n-1, p)$
- For $p=c / n$ with $c \in \Theta(1)$ the degree of a vertex is approximately Poisson-distributed
- Total variation distance of X, Y taking values in a set S :

$$
d_{T V}(X, Y)=\frac{1}{2} \sum_{x \in S}|\operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]|
$$

- For $\lambda=-n \log (1-p)=c+O(1 / n)$ and $X \sim \operatorname{Pois}(\lambda)$ we have $d_{T V}(\operatorname{deg}(v), X)=o(1)$
- Empirical distribution of the degrees of all vertices in a graph $G=(V, E)$

Application: ER - Degree Distribution

Theorem: Consider a $G(n, p)$ with $p=c / n$ for constant $c>0$. For $\lambda=-n \log (1-p)$, let $X \sim \operatorname{Pois}(\lambda)$. Then for all $d>0$ and every $\varepsilon>0$ we have $\quad \lambda=c+O(1 / n) \rightarrow c$ for $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\operatorname{Pr}[X=d]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right]=0
$$

Proof

- Step 1: $\operatorname{Pr}[X=d]$ is close to the expectation of $\frac{1}{n} N_{d} \lim _{n \rightarrow \infty}\left|\operatorname{Pr}[X=d]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]\right|=0 \checkmark$

$$
=\operatorname{Pr}[\operatorname{deg}(v)=d]
$$

- Step 2: $\frac{1}{n} N_{d}$ is concentrated

$$
\begin{aligned}
& \left.|\operatorname{Pr}[X=d]-\underbrace{\mathbb{E}\left[\frac{1}{n} N_{d}\right]}|\left|=|\operatorname{Pr}[X=d]-\operatorname{Pr}[\operatorname{deg}(v)=d]| \leq \sum_{d \geq 0}\right| \operatorname{Pr}[X=d]-\operatorname{Pr}[\operatorname{deg}(v)=d] \right\rvert\, \\
& =\frac{1}{n} \mathbb{E}\left[N_{d}\right] \\
& =\frac{1}{n} \mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right] \\
& =\frac{1}{n} \sum_{v \in V} \mathbb{E}\left[\mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right] \\
& =\frac{1}{n} \sum_{v \in V} \operatorname{Pr}[\operatorname{deg}(v)=d] \\
& =2 \cdot d_{T V}(X, \operatorname{deg}(v)) \\
& =o(1) \xrightarrow{n \rightarrow \infty} 0 \checkmark \\
& d_{T V}(X, Y)=\frac{1}{2} \sum_{x \in S}|\operatorname{Pr}[X=x]-\operatorname{Pr}[Y=x]|
\end{aligned}
$$

Step 2: Concentration of $\frac{1}{n} N_{d}$

$$
\operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right] \leq \operatorname{Var}\left[\frac{1}{n} N_{d}\right] / \varepsilon^{2}
$$

$$
\operatorname{Var}\left[\frac{1}{n} N_{d}\right]=\mathbb{E}\left[\left(\frac{1}{n} N_{d}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]^{2}
$$

$$
=\frac{1}{n^{2}}(\underbrace{\mathbb{E}\left[\left(N_{d}\right)^{2}\right]}-\underbrace{\mathbb{E}\left[N_{d}\right]^{2}}_{\underline{v}(n \operatorname{Pr}})
$$

$$
N_{d}=\sum_{v \in V} \mathbb{1}_{\{\operatorname{deg}(v)=d\}} \stackrel{\downarrow}{=} \mathbb{E}\left[\left(\sum_{v \in V} \mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right)^{2}\right]
$$

$$
\stackrel{N}{=}(n \operatorname{Pr}[\operatorname{deg}(v)=d])^{2} \quad(\text { see Step 1) }
$$

$$
=\mathbb{E}\left[\sum_{v \in V}\left(\mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right)^{2}+\sum_{v \in V} \sum_{u \neq v} \mathbb{1}_{\{\operatorname{deg}(v)=d\}} \cdot \mathbb{1}_{\{\operatorname{deg}(u)=d\}}\right]
$$

$$
\begin{array}{r}
\text { Indicator } \mathrm{RV} \mathcal{X} X: X^{2}=\underset{\text { Lin. of Exp. }}{X,}
\end{array}=\mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right]+\mathbb{E}\left[\sum_{v \in V} \sum_{u \neq v} \mathbb{1}_{\{\operatorname{deg}(v)=d\}} \cdot \mathbb{1}_{\{\operatorname{deg}(u)=d\}}\right]
$$

$$
\text { Lin. of Exp. }=\sum_{v \in V} \underbrace{\mathbb{E}\left[\mathbb{1}_{\{\operatorname{deg}(v)=d\}}\right]}_{=\operatorname{Pr}[\operatorname{deg}(v)=d]}+\sum_{v \in V} \sum_{u \neq v} \underbrace{\mathbb{E}[\underbrace{\mathbb{1}\{\operatorname{deg}(v)=d\}}_{=1 \mathrm{iff} \operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d} \cdot \mathbb{1}_{\{\operatorname{deg}(u)=d\}}}_{=\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d]}]
$$

$$
=n \cdot \operatorname{Pr}[\operatorname{deg}(v)=d]+n(n-1) \cdot \operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d]
$$

Step 2: Concentration of $\frac{1}{n} N_{d}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right] \leq \operatorname{Var}\left[\frac{1}{n} N_{d}\right] / \varepsilon^{2} \\
& \operatorname{Var}\left[\frac{1}{n} N_{d}\right]=\mathbb{E}\left[\left(\frac{1}{n} N_{d}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]^{2} \\
& =\frac{1}{n^{2}}\left(\mathbb{E}\left[\left(N_{d}\right)^{2}\right]-\mathbb{E}\left[N_{d}\right]^{2}\right) \\
& =\frac{1}{n^{2}}(n \operatorname{Pr}[\operatorname{deg}(v)=d] \\
& +n(n-1) \operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \\
& \left.-(n \operatorname{Pr}[\operatorname{deg}(v)=d])^{2}\right) \\
& =\frac{1}{n} \operatorname{Pr}[\operatorname{deg}(v)=d] \\
& +\frac{n-1}{n} \operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \leq 1 \\
& -\operatorname{Pr}[\operatorname{deg}(v)=d]^{2} \\
& \leq \frac{1}{n}+\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \\
& -\operatorname{Pr}[\operatorname{deg}(v)=d]^{2}
\end{aligned}
$$

Step 2: Concentration of $\frac{1}{n} N_{d}$

$$
\operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right] \leq \operatorname{Var}\left[\frac{1}{n} N_{d}\right] / \varepsilon^{2}
$$

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{n} N_{d}\right]= & \mathbb{E}\left[\left(\frac{1}{n} N_{d}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]^{2} \\
= & \frac{1}{n^{2}}\left(\mathbb{E}\left[\left(N_{d}\right)^{2}\right]-\mathbb{E}\left[N_{d}\right]^{2}\right) \\
\leq & \frac{1}{n}+\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \\
& \quad-\operatorname{Pr}[\operatorname{deg}(v)=d] \operatorname{Pr}[\operatorname{deg}(u)=d] \quad \operatorname{deg}(v) \stackrel{d}{=} \operatorname{deg}(u) \\
= & \frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right] \quad \text { Couplings }
\end{aligned}
$$

$$
-\operatorname{Pr}\left[X_{1}+Y_{1}=d\right] \operatorname{Pr}\left[X_{2}+Y_{2}=d\right]
$$

$$
=\frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right]
$$

$$
-\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{2}+Y_{2}=d\right]
$$

$$
\leq \frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right.
$$

$$
\left.\wedge\left(X_{1}+Y_{1} \mid \neq d \vee X_{2}+Y_{2} \neq d\right)\right]
$$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right]=0
$$

Chebychev: X finite variance, $b>0$ $\operatorname{Pr}[|X-\mathbb{E}[X]| \geq b] \leq \operatorname{Var}[X] / b^{2}$

$$
\left(\sum_{i} a_{i}\right)^{2}=\sum_{i} a_{i}^{2}+\sum_{i} \sum_{j \neq i} a_{i} a_{j}
$$

Fréchet: $\operatorname{Pr}[A]-\operatorname{Pr}[B] \leq \operatorname{Pr}[A \wedge \bar{B}]$

Couplings

Couplings

- Consider $\operatorname{deg}(u)$ and $\operatorname{deg}(v)$
- $Y_{1}, Y_{2} \sim \operatorname{Bin}(n-2, p)$
- $X_{1}, X_{2} \sim \operatorname{Ber}(p)$
- $(\operatorname{deg}(v), \operatorname{deg}(u)) \stackrel{d}{=}\left(X_{1}+Y_{1}, X_{1}+Y_{2}\right) \quad Y_{1} \quad X_{1} X_{2} \quad Y_{2}$

Step 2: Concentration of $\frac{1}{n} N_{d}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right] \leq \operatorname{Var}\left[\frac{1}{n} N_{d}\right] / \varepsilon^{2} \\
& \operatorname{Var}\left[\frac{1}{n} N_{d}\right]=\mathbb{E}\left[\left(\frac{1}{n} N_{d}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]^{2} \\
& =\frac{1}{n^{2}}\left(\mathbb{E}\left[\left(N_{d}\right)^{2}\right]-\mathbb{E}\left[N_{d}\right]^{2}\right) \\
& \leq \frac{1}{n}+\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \\
& -\operatorname{Pr}[\operatorname{deg}(v)=d] \operatorname{Pr}[\operatorname{deg}(u)=d] \operatorname{deg}(v) \stackrel{d}{=} \operatorname{deg}(u) \\
& =\frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right] \\
& -\operatorname{Pr}\left[X_{1}+Y_{1}=d\right] \operatorname{Pr}\left[X_{2}+Y_{2}=d\right] \\
& =\frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right] \\
& -\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{2}+Y_{2}=d\right] \\
& \leq \frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right. \\
& \left.\wedge\left(X_{1}+Y_{1} \mid \neq d \vee X_{2}+Y_{2} \neq d\right)\right]=\frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d \wedge X_{2}+Y_{2} \neq d\right]
\end{aligned}
$$

Step 2: Concentration of $\frac{1}{n} N_{d}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right] \leq \operatorname{Var}\left[\frac{1}{n} N_{d}\right] / \varepsilon^{2} \xrightarrow{n \rightarrow \infty} 0 \\
& \operatorname{Var}\left[\frac{1}{n} N_{d}\right]=\mathbb{E}\left[\left(\frac{1}{n} N_{d}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]^{2} \leq \frac{1}{n}+2 p=\frac{1}{n}+2 \frac{c}{n} \xrightarrow{n \rightarrow \infty} 0 \\
& =\frac{1}{n^{2}}\left(\mathbb{E}\left[\left(N_{d}\right)^{2}\right]-\mathbb{E}\left[N_{d}\right]^{2}\right) \\
& \leq \frac{1}{n}+\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d] \\
& -\operatorname{Pr}[\operatorname{deg}(v)=d] \operatorname{Pr}[\operatorname{deg}(u)=d] \operatorname{deg}(v) \stackrel{d}{=} \operatorname{deg}(u) \\
& \leq \frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d \wedge X_{2}+Y_{2} \neq d\right] \\
& =\frac{1}{n}+\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d \wedge X_{2}+Y_{2} \neq d \mid X_{1}=0\right] \overbrace{\operatorname{Pr}\left[X_{1}=0\right]} \\
& +\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d \wedge X_{2}+Y_{2} \neq d \mid X_{1}=1\right] \operatorname{Pr}\left[X_{1}=1\right] \\
& \left.\begin{array}{cccc}
\leq \frac{1}{n}+\operatorname{Pr}\left[Y_{1}=d \wedge Y_{2}=d \wedge X_{2}+Y_{2} \neq d \mid X_{1}=0\right] & \leq 1 & \bullet Y_{1}, Y_{2} \sim \operatorname{Bin}(n-2, p) \\
& +\operatorname{Pr}\left[X_{1}=1\right] \quad \Rightarrow X_{2}=1
\end{array} \quad \begin{array}{lll}
X_{1}, X_{2} \sim \operatorname{Ber}(p)
\end{array}\right\} \text { independent } \\
& =\frac{1}{n}+\operatorname{Pr}\left[Y_{1}=d \wedge Y_{2}=d \wedge X_{2}=1 \mid X<0\right]+\operatorname{Pr}\left[X_{1}=1\right] \leq \frac{1}{n}+\operatorname{Pr}\left[X_{2}=1\right]+\operatorname{Pr}\left[X_{1}=1\right]
\end{aligned}
$$

Application: ER - Degree Distribution

Theorem: Consider a $G(n, p)$ with $p=c / n$ for constant $c>0$. For $\lambda=-n \log (1-p)$, let $X \sim \operatorname{Pois}(\lambda)$. Then for all $d>0$ and every $\varepsilon>0$ we have $\quad \lambda=c+O(1 / n) \rightarrow c$ for $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\operatorname{Pr}[X=d]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right]=0 .
$$

Proof

- Step 1: $\operatorname{Pr}[X=d]$ is close to the expectation of $\frac{1}{n} N_{d} \lim _{n \rightarrow \infty}\left|\operatorname{Pr}[X=d]-\mathbb{E}\left[\frac{1}{n} N_{d}\right]\right|=0 \checkmark$
- Step 2: $\frac{1}{n} N_{d}$ is concentrated (via Chebychev) $\quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\mathbb{E}\left[\frac{1}{n} N_{d}\right]-\frac{1}{n} N_{d}\right| \geq \varepsilon\right]=0 \checkmark$

Concentration Bounds So Far

Definition: A concentration inequality bounds the probability of a random variable to deviate from a given value (typically its expectation) by a certain amount.

Markov

- based on expectation (first moment)
- X non-negative random variable and $a>0$

$$
\operatorname{Pr}[X \geq a] \leq \mathbb{E}[X] / a
$$

- tight

Chebychev

- based on variance (second moment)
- X random variable with finite variance and $b>0$
$\operatorname{Pr}[|X-\mathbb{E}[X]| \geq b] \leq \operatorname{Var}[X] / b^{2}$
- tight (stated without proof)

Can we utilize higher-order moments for even stronger bounds?

Another Moment Please

- The n-th raw moment of a random variable X is $\mathbb{E}\left[X^{n}\right]$
- We can capture all moments of X using a single function

Definition: For a random variable X the moment generating function is $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$

- Where the name comes from: For the n-th derivative $M_{X}^{(n)}(t)$ we have $M_{X}^{(n)}(0)=\mathbb{E}\left[X^{n}\right]$ (assuming the function exists in a neighborhood around 0)
Theorem: For independent random variables $X, Y: M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)$.
Proof $M_{X+Y}(t)=\mathbb{E}\left[e^{t(X+Y)}\right]=\mathbb{E}\left[e^{t X} \cdot e^{t Y}\right]=\mathbb{E}\left[e^{t X}\right] \cdot \mathbb{E}\left[e^{t Y}\right]=M_{X}(t) \cdot M_{Y}(t)$
Concentration Inequality Had his footh birthay in 2023! Thought the bound (now named a afer him) to "A conversation with Heerman Chernoff?"
Theorem (Chernoff Bounds): Let X be a random variable and $a>0$.
Then, $\operatorname{Pr}[X \geq a] \leq \min _{t>0} \mathbb{E}\left[e^{t X}\right] / e^{t a}$ and $\operatorname{Pr}[X \leq a] \leq \min _{t<0} \mathbb{E}\left[e^{t X}\right] / e^{t a}$.
Proof for all $t>0$: $\operatorname{Pr}[X \geq a]=\operatorname{Pr}\left[e^{t X} \geq e^{t a}\right] \leq \mathbb{E}\left[e^{t X}\right] / e^{t a}$
for all $t<0$: analogous.
Get bounds for specific random variables by finding a good t !

Application: Binomial Distribution

Theorem: Let $X \sim \operatorname{Bin}(n, p)$. Then for any $\varepsilon>0$

$$
\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq\left(\frac{e^{\varepsilon}}{(1+\varepsilon)^{(1+\varepsilon)}}\right)^{\mathbb{E}[X]}
$$

Proof Consider X as the sum of independent $X_{i} \sim \operatorname{Ber}(p)$

$$
\begin{aligned}
& M_{X_{i}}(t)=\mathbb{E}\left[e^{t X_{i}}\right]=\operatorname{Pr}\left[X_{i}=0\right] \cdot e^{t \cdot 0}+\operatorname{Pr}\left[X_{i}=1\right] \cdot e^{t \cdot 1} \\
&=(1-p)+p e^{t}=1+\left(e^{t}-1\right) p \leq e^{\left(e^{t}-1\right) p} \\
& M_{X}(t)=M_{\sum X_{i}}(t)=\prod_{i=1}^{n} M_{X_{i}}(t) \leq \prod_{i=1}^{n} e^{\left(e^{t}-1\right) p}=e^{\left(e^{t}-1\right) \cdot n p}
\end{aligned}
$$

Chernoff: Random variable X and $a>0$: $\operatorname{Pr}[X \geq a] \leq \min _{t>0} \mathbb{E}\left[e^{t X}\right] / e^{t a}$.

Mom. Gen. Function: $M_{X}(t)=\mathbb{E}\left[e^{t X}\right]$
Moment Addition: Independent X, Y :
$M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)$.

- Sum of 20 unfair $\{0,1\}$-coin tosses: $X \sim \operatorname{Bin}\left(20, \frac{1}{5}\right), \mathbb{E}[X]=4$
- $\operatorname{Pr}[X \geq 16]=\operatorname{Pr}[X \geq(1+3) \mathbb{E}[X]] \leq\left(\frac{e^{3}}{(1+3)^{1+3}}\right)^{4}=\frac{e^{12}}{4^{4^{4}}} \approx 0.00003789$

Markov: ≤ 0.25
Chebychev: 00.022
Actual: $\quad \approx 0.0000000138$

Chernoff - Simpler Versions

Theorem: Let $X \sim \operatorname{Bin}(n, p)$. Then for any $\varepsilon>0$

$$
\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq\left(\frac{e^{\varepsilon}}{(1+\varepsilon)^{(1+\varepsilon)}}\right)^{\mathbb{E}[X]}
$$

Chernoff: Random variable X and $a>0$:
$\operatorname{Pr}[X \geq a] \leq \min _{t>0} \mathbb{E}\left[e^{t X}\right] / e^{t a}$.
Corollary: Let $X \sim \operatorname{Bin}(n, p)$. Then for any $t \geq 6 \mathbb{E}[X], \operatorname{Pr}[X \geq t] \leq 2^{-t}$.
Corollary: Let $X \sim \operatorname{Bin}(n, p)$. Then for any $\varepsilon \in(0,1], \operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} / 3 \cdot \mathbb{E}[X]}$.
Corollary: Let $X \sim \operatorname{Bin}(n, p)$. Then for any $\varepsilon \in(0,1), \operatorname{Pr}[X \leq(1-\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} / 2 \cdot \mathbb{E}[X]}$.

- In fact, these also work when the X_{i} are Bernoulli random variables with different success probabilities

Conclusion

Concentration

- Is a random variable likely to yield values close to the expectation?
- Concentration inequalities bound the probability for a random variable to deviate from its expectation

Moments

- Used to characterize the shape of a distribution
- First moment: expected value

- Second moment: variance
- Moment generating functions to determine higher-order moments

Concentration Inequalities

- Markov: Based on first moment
- Chebychev: Squaring within Markov (utilizing second moment)

d
- Chernoff: Exponentiating within Markov (utilizing moment generating functions)
- Examples: Sum of coin flips, empirical degree distribution of ER graphs

