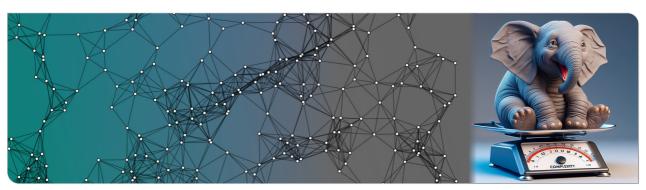


Probability and Computing – Randomised Complexity Classes

Stefan Walzer, Maximilian Katzmann, (Thomas Worsch) | WS 2023/2024



Outline & Script

The Second Half of the Semester

- Randomised Complexity Classes
- Game Theory and Yao's Principle

- Randomised Approximation
- Streaming Algorithms
- Randomised Data Structures
 - Hash Functions
 - application: linear probing hash table
 - application: linear chaining hash table
 - Bloom Filters
 - Cuckoo Hashing
 - The Peeling Algorithm
 - Applications of Peeling

What are you missing?

The lecture by Thomas Worsch also covered

- routing in hypercubes
- an expected $\mathcal{O}(n)$ -time randomised MST algorithm
- online algorithms
- random walks
- Markov chains and Metropolis-Hastings
- pseudorandom number generation

Today: Decision Problems Only

- approximation algorithms
- average case analysis
- data structures
- function problems
- decision problems
 - for some language L such as L = PRIMES
 - decide for input x the question "is $x \in L$?"
 - can you do it in polynomial time?
 - does randomisation help?

Turing machines

(Non-) deterministic Turing machine

- S: finite state set
- B: finite tape alphabet including blank symbol \Box
- $A \subseteq B \{\Box\}$: input alphabet
- one tape, one head
- transition functions
 - deterministic: one $\delta: S \times B \rightarrow (S \cup \{YES, NO\}) \times B \times \{-1, 0, 1\}$
 - non-deterministic two (or more) $\delta_0, \delta_1: S \times B \rightarrow (S \cup \{YES, NO\}) \times B \times \{-1, 0, 1\}$ (alternatively: general transition relation)
 - in states YES and NO: "T halts"
- accepted language $L(T) = \{ w \in A^+ \mid \exists YES$ -computation for $w \}$

Probabilistic Turing machine

- definition like non-deterministic TM
- uses δ_0 or δ_1 with probability 1/2 in each step
- output T(w) is random variable
- difference to NTM:
 - quantified non-determinism
 - can study e.g. probability of acceptance

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

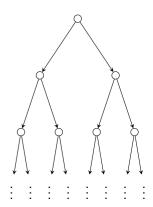
When is a PTM polynomial time?

Annoying

Running time for input x is random variable $T(x) \in \mathbb{N} \cup \{\infty\}$.

Simplification for Today: PTM in normal form

- For all inputs of length n, the PTM halts and does so after the same number of steps t(n). \hookrightarrow this is without loss of generality under weak conditions
- computation tree of a PTM in normal form is complete binary tree of depth t(n).
- \blacksquare call t(n) the running time
- PTM runs in *polynomial time*, if $t(n) \le p(n)$ for a polynomial p(n).
- acceptance probability is the number of accepting computations, divided by 2^{t(n)}.



Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes

WS 2023/2024

"Classic" Complexity Classes

class $\mathcal C$	class $\mathcal C$ requirement for $L \in \mathcal C$			
P NP PSPACE	polynomial time DTM can decide L polynomial time NTM can decide L polynomial space TM can decide L			

Complement Classes

For class C let $co-C = \{L \mid \overline{L} \in C\} = \{\overline{L} \mid L \in C\}$, e.g.

- $\mathbf{P} = \mathbf{co} \mathbf{P}$
- $P \subseteq NP \cap co-NP$
- relationship between NP and co-NP unknown
- $NP \cup co-NP \subseteq PSPACE$

Polynomial time reduction from L_1 to L_2

- in polynomial time computable function $f: A^+ \to A^+$, such that
- $\forall w \in A^+$: $w \in L_1 \iff f(w) \in L_2$.
- \hookrightarrow then e.g. $L_2 \in \mathbf{NP}$ implies $L_1 \in \mathbf{NP}$.

Hardness

- A language H is C-hard, if every language $L \in \mathcal{C}$ can be reduced to H in polynomial time.
- A language is \mathcal{C} -complete, if it is \mathcal{C} -hard and in \mathcal{C} .

Prelimilaries

Probabilistic Turing Machines

Complexity Classes nonno

Probabilistic Complexity Classes

A language L is in class P/RP/PPP, if there exists a probabilistic polynomial time turing machine T such that...

class	name	requirement	visualisation	
P	polynomial time	$\forall w \notin L : \Pr[T(w) = YES] = 0$ $\forall w \in L : \Pr[T(w) = YES] = 1$	∉ L ∈ L	no error
RP	randomised poly- nomial time	$\forall w \notin L : \Pr[T(w) = \text{YES}] = 0$ $\forall w \in L : \Pr[T(w) = \text{YES}] \ge 1/2$	$\notin L \longrightarrow L$	one-sided error
BPP	bounded-error probabilistic polynomial time	$\forall w \notin L : \Pr[T(w) = \text{YES}] < 1/4$ $\forall w \in L : \Pr[T(w) = \text{YES}] > 3/4$	$\notin L \ge \in L$	two-sided error
PP	probabilistic poly- nomial time	$\forall w \notin L : \Pr[T(w) = YES] \le 1/2$ $\forall w \in L : \Pr[T(w) = YES] > 1/2$	$\notin L \lesssim \in L$	two-sided error
		zero error probabilistic polynomial time achines, one for RP, one for co-RP.	0 1	

We say a polynomial time PTM is an RP-PTM, BPP-PTM or PP-PTM if it is of the corresponding form.

Prelimilaries

Probabilistic Turing Machines

Complexity Classes ○●○○○○

Probability Amplification

Theorem

Instead of "1/2" we can use "1 $-2^{-q(n)}$ " in the definition of RP without affecting the class.

Proof.

Let *T* be the Turing machine witnessing $L \in \mathbf{RP}$.

By running T independently q(n) times the error probability is $2^{-q(n)}$.

Running time increases by polynomial factor q(n).

for
$$i = 1$$
 to $q(n)$ do
if $T(w) = YES$ then
return YES

return NO

Prelimilaries

Probabilistic Turing Machines

Complexity Classes 000000

Probability Amplification (2)

Theorem

Instead of "1/4" and "3/4" we can use " $2^{-q(n)}$ " and "1 $-2^{-q(n)}$ " in the definition of **BPP** without affecting the class.

Proof.

Recommended (Bonus) Exercise.

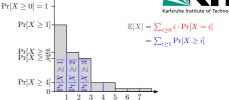
 \hookrightarrow solution in lecture notes by Thomas Worsch

ZPP: Zero-Error-Probabilistic Polynomial Time

Theorem: $L \in \mathbf{ZPP} \Rightarrow \mathsf{Las-Vegas} \ \mathsf{Algorithm} \ \mathsf{for} \ L$

If $L \in \mathbb{Z}PP := \mathbb{R}P \cap \operatorname{co} - \mathbb{R}P$ then there exists a PTM that

- decides L with no error
- has expected polynomial running time



Proof

Let T be an **RP**-PTM for L with running time p(n).

 \hookrightarrow never errs for $x \notin L$

Let \bar{T} be an **RP**-PTM for \bar{L} with running time p(n).

 \hookrightarrow never errs for $x \notin \bar{L}$

- repeat
 - $r_1 \leftarrow T(w)$ $r_2 \leftarrow \mathsf{not}\bar{T}(w)$
- until $r_1 = r_2$ return r1

- T and \overline{T} never both answer incorrectly \Rightarrow we always answer correctly.
- Every round gives $r_1 = r_2$ with probability > 1/2.

$$\mathbb{E}[\text{running time}] \leq 2\rho(|w|) \cdot \mathbb{E}[\text{\#rounds}] \leq 2\rho(n) \cdot \sum_{i \geq 1} \Pr[\text{\#rounds} \geq i] \leq 2\rho(n) \cdot \sum_{i \geq 1} 2^{-(i-1)} = 2\rho(n) \cdot \sum_{i \geq 0} 2^{-i} = 4\rho(n). \quad \Box$$

Prelimilaries

Probabilistic Turing Machines

Complexity Classes 0000000

Complete Problems?

Remark

The classes RP, co-RP and BPP are not believed to have complete problems unless, e.g. BPP = P. Underlying issue: "T is a BPP-PTM" is undecidable.

Prelimilaries

11/17

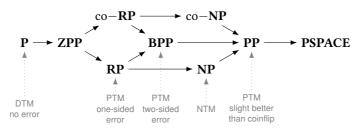
Probabilistic Turing Machines

Complexity Classes 00000

Content

- 1. Prelimilaries
- 2. Probabilistic Turing Machines
- 3. Complexity Classes
- 4. Relationships between Complexity Classes

Beziehungen zwischen Komplexitätsklassen



Theorems

- $ightharpoonup P \subset ZPP$
- $ZPP \subseteq RP$ and $ZPP \subseteq co-RP$
- $\mathbf{RP} \subseteq \mathbf{NP}$ and $\mathbf{co} \mathbf{RP} \subseteq \mathbf{co} \mathbf{NP}$
- $\mathbf{RP} \subseteq \mathbf{BPP}$ and $\mathbf{co} \mathbf{RP} \subseteq \mathbf{BPP}$
- \blacksquare BPP \subseteq PP

proved in the following (rest is exercise):

- NP \subseteq PP and co-NP \subseteq PP
- \blacksquare **PP** \subseteq **PSPACE**

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

"Typecasting" Turing Machines

DTM as NTM

Given DTM T with transition function δ , consider NTM T' with transition functions $\delta_0 = \delta_1 = \delta$.

 \hookrightarrow No change in behaviour: $T(w) = YES \Leftrightarrow T'(w) = YES$.

NTM as PTM

Given NTM T, we can reinterpret it as a PTM T':

$$T(w) = YES : \Leftrightarrow \exists YES$$
-computation for T and $w \Leftrightarrow Pr[T'(w) = YES] > 0$

$$T(w) = NO : \Leftrightarrow \nexists YES$$
-computation for T and $w \Leftrightarrow Pr[T'(w) = YES] = 0$

PTM as DTM

Given PTM T, we can view it as DTM T' with random bitstring $b = b_1 b_2 \dots$ as additional input. In step *i* transition function δ_{b_i} is used.

$$\Pr[T(w) = YES] = \Pr_{b_1, b_2, \dots \sim Ber(1/2)}[T'(w, b) = YES].$$

Probabilistic Turing Machines Prelimilaries

Complexity Classes

Theorem: NP \subseteq PP (analogously $co-NP \subseteq PP$)

i.e. show that each $L \in NP$ satisfies $L \in PP$

Have: NTM T certifying that $L \in \mathbf{NP}$

 $w \in L \Leftrightarrow \exists YES$ -computation for T and w

Use the NTM T as a PTM T':

 $\forall w \notin L : \Pr[T'(w) = YES] = 0$ $\forall w \in L : \Pr[T'(w) = YES] > 0$

Prelimilaries

Probabilistic Turing Machines

Want: PTM T'' certifying that $L \in \mathbf{PP}$

 $\forall w \notin L : \Pr[T''(w) = YES] \leq 1/2$ $\forall w \in L : \Pr[T''(w) = YES] > 1/2$

T" achieves this shift with a simple trick

 $r \leftarrow T'(w) // T'$ is T as PTM if r = YES then

return YES

else

sample $b \sim \mathcal{U}(\{YES, NO\})$ // coinflip return b

Complexity Classes

Theorem: $PP \subseteq PSPACE$

i.e. show that each $L \in PP$ satisfies $L \in PSPACE$

Proof

- Let T a PP-PTM for L with running time p(n).
- Consider DTM T' that simulates T for given w and random choices $b_1 b_2 \dots b_{p(n)}$.
- Consider DTM T" that for input w runs $T'(w, b_1b_2 \dots b_{p(n)})$ for all $2^{p(n)}$ possible $b_1b_2 \dots b_{p(n)}$. Return YES if T' returns YES in majority of cases.
- space complexity:
 - p(n) bits for counter a
 - p(n) bits for b_1, \ldots, b_k
 - \circ $\mathcal{O}(p(n))$ space for simulating T (can only use p(n) space in its p(n) steps)

 $\hookrightarrow T''$ decides L in space $\mathcal{O}(p(n))$ (and time $\Omega(2^{p(n)})$).

```
n \leftarrow |w|
k \leftarrow p(n)
a \leftarrow 0 // k-bit counter
for b_1 \dots b_k \leftarrow 00 \dots 0 to 11 \dots 1 do
    r \leftarrow T'(w, b_1 \dots b_k)
    if r = YES then
         a \leftarrow a + 1
if a > 2^{k-1} then
     return YES
else
```

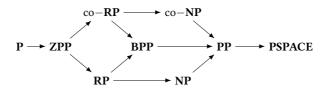
return NO

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Conclusion



What we learned – not much

- Only "obvious" inclusions known
- since $P \stackrel{?}{=} PSPACE$ is unsolved, none of the inclusions are known to be strict.
- Remark: History of PRIMES:
 - obviously: in co-NP.
 - 1976: in co-RP (Rabin).
 - 1987: in **RP**, hence in **ZPP** (Adleman, Huang).
 - 2002: in P (Agrawal, Kayal, Saxena).

Probabilistic Turing Machines

A boring topic?

- People believe BPP = P
- PP is somewhat esoteric
 - → no interesting randomised classes remain?
- quantum computing may change the story. People suspect $NP \nsubseteq BQP \nsubseteq NP$
 - → https://en.wikipedia.org/wiki/BQP

Complexity Classes

Anhang: Mögliche Prüfungsfragen

- Definiere: Was ist eine PTM? Was ist der Unterschied zu einer NTM?
- Definiere die Komplexitätsklassen RP, co−RP BPP, PP, ZPP.
- Inwiefern spielen die Konstanten von $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$, die in den Definitionen vorkommen, einen Rolle? Inwiefern sind sie egal?
- Inwiefern steht die Klasse ZPP mit dem Konzept eines Las-Vegas Algorithmus in Verbindung? Wie sehen die Umwandlungen in die eine Richtung (Vorlesung) und in die andere Richtung (Übung) aus?
- Welche Inklusionsbeziehungen zwischen diesen Komplexitätsklassen sind bekannt?
- Begründe jede dieser Inklusionsbeziehungen. (In der tatsächlichen Prüfung würde man sich aus Zeitgründen nur eine oder zwei herausgreifen.)
- Gibt es Inklusionsbeziehungen von denen man weiß, dass sie strikt sind? Gibt es Klassen, von denen Experten vermuten, dass sie in Wirklichkeit identisch sind?

18/17