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Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.
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Pr[X ≥ a] ≤ E[X]=a.
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✗ (our Bernoulli random variables are not independent)
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Can we show concentration for some arbitrary function of independent random variables?
... under certain conditions!
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(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”](union bound)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
a product hits a given box

(union bound)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
a product does not hit a given box

(union bound)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
none of the n products hit a given box

(union bound)

m=n=k boxes, k=log log(n)
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Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n ≤ 2k · e−k
(1 + x ≤ ex )

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n ≤ 2k · e−k
(1 + x ≤ ex )

= 2 log log(n)
log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
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k + 1

=
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‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]
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log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
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=
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Y ′
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=
Pk
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k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
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= 4 log log(n)2
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E[X ′] =
Pm

i=1 4
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n) = n
log log(n) · 4

log log(n)2

log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk
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i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2
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log(n) = n
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n) = n
log log(n) · 4

log log(n)2

log(n) = n · 4 log log(n)
log(n)

m=n=k boxes, k=log log(n)
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Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i ]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n)
= o(n) ✓= n

log log(n) · 4
log log(n)2

log(n) = n · 4 log log(n)
log(n)

m=n=k boxes, k=log log(n)
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Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

not X ′
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Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
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X =
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Xi · Yi
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n products
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log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j
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Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box
⇒ X = n, since all products in short chains now



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box
⇒ X = n, since all products in short chains now

∆j ≤ n



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

n → ∞
1



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f ]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

n → ∞
1

This bound is useless,
since worst-case

changes are too big
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But this case (all products in few boxes) is super unlikely...
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Method of Typical Bounded Differences

Definition: A function f : Sn → R satisfies the typical bounded differences condition
with respect to

an event A ⊆ Sn and
parameters ∆A

i ≤ ∆i for i ∈ [n],

|f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X
′
i ; :::; Xn)| ≤

ȷ
∆A
i ; if (X1; :::; Xi ; :::; Xn) ∈ A;

∆i ; otherwiseif
for all i ∈ [n] and Xi ; X ′

i ∈ S.
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Method of Typical Bounded Differences

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f ], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i ))
2:Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Definition: A function f : Sn → R satisfies the typical bounded differences condition
with respect to

an event A ⊆ Sn and
parameters ∆A

i ≤ ∆i for i ∈ [n],

|f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X
′
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i ; if (X1; :::; Xi ; :::; Xn) ∈ A;

∆i ; otherwiseif
for all i ∈ [n] and Xi ; X ′

i ∈ S.

∆A
i is worst-case change, assuming A held before the change

“On the Method of Typical Bounded Differences”, Warnke, Comb. Probab. Comput. 2015Corollary of
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Method of Typical Bounded Differences
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The more we need to mitigate,
the higher the price!

Not too bad if A is very
likely to occur!
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Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
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Union bound over ≤ n sequences: Pr[¬A] ≤ n−‹"
2=3+1 ≤ n−– (for arbitrarily large –)
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Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

Moving one product empties at most one box ⇒ at most two new short chains



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

contain O(log(n)) products
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Assuming A, these short chains combined contain O(log(n)) products
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Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j ))
2

g(n) ≥ E[f ]
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Much better than n3 from before!

"j =
1
n
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Realistic representation: power-law distribution

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise

Pareto distribution: X ∼ Par(¸; xmin)

Idea
Add Pareto distribution to RGGs
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Expected Degree (d = 1)
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Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓
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Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality

What we considered just now

GIRGs without geometry / ER with weights

Basically random geometric graphs

(each dot is a graph)
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Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023
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Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS

nr. BFS nx : x=
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Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size
Louvain clustering algorithm
Number of maximal cliques

rather structural property
Chromatic number kernel size

kernel size nx : x=

Use GIRGs for average-case analysis!
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Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree
Close to optimal ratios on real graphs

“Vertex Cover on Complex Networks”, Da Silva, Gimenez-Lugo, Da Silva, IJMPC 2013
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Greedy algorithm picks vertices at random

log log(n)
Two variants

Search and solve small components
after each greedily taken vertex
Take greedy until red line, solve small
components exactly, take rest greedy too

This variant yields an upper bound on the
quality of the other
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Analysis on GIRGs – Approximation Ratio

with probability 1− o(1)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.
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with probability 1− o(1)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely. (not shown today)
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g from
ones in exactly solved components S′

e

For each small component, the optimal solution
S cannot contain fewer vertices than S′

e does
⇒ |S′

e | ≤ |S|

⇒ r = |S′|
|S| =

|S′
e |+|S′

g |
|S| ≤ |S|+|S′

g |
|S| = 1 +

|S′
g |

|S|
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Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.
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Analysis on GIRGs – Approximation Ratio

Proof Approximation Ratio
Differentiate greedily taken vertices S′

g from
ones in exactly solved components S′

e

For each small component, the optimal solution
S cannot contain fewer vertices than S′

e does
⇒ |S′

e | ≤ |S|

⇒ r = |S′|
|S| =

|S′
e |+|S′

g |
|S| ≤ |S|+|S′

g |
|S| = 1 +

|S′
g |

|S|

|S| = Ω(n) with prob 1− o(1)
“Greed is Good for Deterministic Scale-Free Networks”, Chauhan et al. FSTTCS 2016

Remains to show : |S′
g | = o(n)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.
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Analysis on GIRGs – Greedy Vertices ≥ t

wv
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Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

t
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Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

t
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Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
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Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t ] =
P

v∈V E[Xv ] = nPr[wv ≥ t]

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)
Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t
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(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t ] =
P

v∈V E[Xv ] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)
Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t
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wv
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(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t ] =
P

v∈V E[Xv ] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= o(n)(t = !(1); fi ∈ (2; 3))

Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t
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wv
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T

(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t ] =
P

v∈V E[Xv ] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= o(n)(t = !(1); fi ∈ (2; 3))

Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

Since there is a g(n) ∈ o(n) ∩ Ω(log(n)) with
g(n) ≥ E[Nw≥t ], Chernoff gives concentration

✓

t
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Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components
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Use empty cells as delimiters between components
Regard chains of non-empty cells as one component
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After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
Discretize ground space into cells such that edges cannot span empty cells
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t

Use empty cells as delimiters between components
Regard chains of non-empty cells as one component
Count all vertices that are in chains containing > log log(n) vertices

(also potentially counting small components)

When does a chain contain too many vertices?
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Case 1 Too many cells in long chains, say > k cells

> k
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Case 1 Too many cells in long chains, say > k cells
Unlikely, if cells are small

> k

Proof via method of bounded differences!
Total number of cells in long chains does not change much (≤ 2k + 1) when one cell
moves from empty to non-empty (or vice versa)
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After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close
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t

Case 1 Too many cells in long chains, say > k cells
Unlikely, if cells are small

> k

Proof via method of bounded differences!
Total number of cells in long chains does not change much (≤ 2k + 1) when one cell
moves from empty to non-empty (or vice versa)
Use Poissonization to get rid of dependencies
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Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices
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> log log(n)
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After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close
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Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Imagine cells as boxes on conveyor belt
Imagine vertices as products

 w.h.p., o(n) vertices in large components ✓

Typically not many vertices in few cells
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Conclusion

Method of Bounded Differences
Concentration for function of independent random variables
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Useless if worst changes are too large
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Method of Typical Bounded Differences
Define typical event, distinguish worst changes depending on whether event occurred
Use mitigators to weaken impact of general worst changes
Pay with probability that typical event does not occur, multiplied with inverse mitigators
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Conclusion

Xi
X ′
i

Method of Bounded Differences

Bounded differences (“Lipschitz”) condition
What is the worst that can happen when changing one input?

Concentration for function of independent random variables

Chernoff-like bound, weakened by sum of squared worst changes
Useless if worst changes are too large

Method of Typical Bounded Differences
Define typical event, distinguish worst changes depending on whether event occurred
Use mitigators to weaken impact of general worst changes
Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs
Pretty realistic graph model (heterogeneity, locality)
Not too hard to analyze
Used for average-case analysis (e.g. vertex cover approximation)

(not discussed in lecture)


