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Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9

® Random variable X counts empty bins

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = L yBin i is empty} for i € [n]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

® Let X; = ]l{Biniis empty?} for i ¢ [n] = X = Z?:l X;

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

® Let X; = ]l{Biniis empty?} for i ¢ [n] = X = Z?:l X;

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
1\ Kk
=n-(1-7)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)"
— 0| n
H_I

a ball falls into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)"
— 0| n
%_J

a ball does not fall into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
1\ Kk
=n-(1-7)

k balls do not fall into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)
— 0| n
~n-e k/n
n — o0

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k
—k/n

~ n-e
n— oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k
= Markov: —k/n

~ n-e
n— oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; = ]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[fj[j_;]ﬁ A~ o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; = ]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j;]ﬁ = 1_1@[)?]:{5& mn o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; = ]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j;]ﬁ = 1_1@[)?]:{5& mn o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9

® Random variable X counts empty bins X1=0 Xo=1 X3=0 X4=1 Xs=0 Xe=0
mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k

: E[X] _ 1 5/k  n—o o
= Markov: Pr[X > E[X] + 5vk] < x5 F — LT EX s VR -1 X —k/n

~ n-e
n — oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

m Concentration: Pr[X > E[X] + 5v/k] —n-(1- 1)’<
= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j_;]\/ﬁ — 1_E[X5]\-|{§\/F = I S
= Chebychev: tedious... x n — 0o

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = ]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

m Concentration: Pr[X > E[X] + 5v/k] —n-(1- 1)’<
= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j_;]\/ﬁ — 1_E[X5]\-|{§\/F = I S
= Chebychev: tedious... x n — 0o

a Chernoff; ?

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; = ]l{Biniis empty} for i € [n] = X = Z?:l X E[X] — 27:1 E[X,] =n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)g[j—;]\/ﬁ — 1_1@[)?]]{5\/; D X km

= Chebychev: tedious... x n — oo

® Chernoff: X (our Bernoulli random variables are not independent)
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Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, =1 Y, — 3 Y, — 4

® Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball
= X =f(Y1, ... Yk) = Zie[n] L¢gj.v.=i} (summands not independent, but the Y; are)
= 2 icn MaXjek] {2 — {Y], i}[} (‘not”a sum Bernoulli random variables)

Can we show concentration for some arbitrary function of independent random variables?
... under certain conditions!
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Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much

Method of Bounded Differences
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Method of Bounded Differences A“(IT

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value How dowe measure this?
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Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F( X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.
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® short chain: incl. max. chain of length <k = exactly products in short chains unscanned
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Expectation of X’
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box i and k closest
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Expectation of X’ (for nlarge enough)

EXT =325 EXi - Y]

(law of total expectation) — j{:_(;l
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box i and k closest
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L E[X; | Ex(i) = 4] = 2 < 2log log(n) <k

m' > ————loglog(n)

— log log(n)

1 n
(for n large enough) > 2 log log(n)
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® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i
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~

< Pr[“Exists an empty box among k + 1”]
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Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) = ]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

1 n
<2k (1-7)
e
a product hits a given box
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Expectation of X’ (for nlarge enough)

Karlsruhe Institute of Technology
Ao

E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \
V i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — eio E[Xi : YI.' ’ Ek(i) — Z] : Pr[Ek(i) — [] o X' =Y XY
B , _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] ® E,(7), number empty boxes in

k : _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< Z?:l 2 loglog(n) - Pr[Ex(i) = {]
= 2loglog(n) >_,_, PrlEx(i) = 4]
< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[*A given box is empty”]
<2k(1-4)"

%_J. .
a product does not hit a given box
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Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ’ Ek(ll) _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) = ]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~N

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

<2k (1- )"

none of the n prod[Jcts hit a given box

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) = ]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

<2k (1- )"
=2k(1-%)"
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Expectation of X’ (for nlarge enough)
k+1

Karlsruhe Institute of Technology

EXT =325 EXi - Y] L el e |

(law of total expectation) i j{:_(;l ]E[X,- . Yi, ‘ Ek(l') = Z] . Pr[Ek(i) — é]
= 3 4o BIXi - Y/ | Ex(i) = £] - Pr[Ex(i) = 4]
= 3o BIX | Ex(i) = 4 - PriE()) = ]

® n products

® m=n/k boxes, k=loglog(n)

a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

® Y/, indicator Ex(i) > 0

\_

~

<Y o1 2loglog(n) - PrEx(i) = 4
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

< 2k (1 - %)n (1+x <€)
=2k (1—%)" <2k.e*
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Expectation of X’ (for nlarge enough)
k+1

Karlsruhe Institute of Technology

EXT =325 EXi - Y] L el e |

(law of total expectation) i j{:_(;l ]E[X,- . Yi, ‘ Ek(l') = Z] . Pr[Ek(i) — é]
= 3 4o BIXi - Y/ | Ex(i) = £] - Pr[Ex(i) = 4]
= 3o BIX | Ex(i) = 4 - PriE()) = ]

® n products

® m=n/k boxes, k=loglog(n)

a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

® Y/, indicator Ex(i) > 0

\_

~

<Y o1 2loglog(n) - PrEx(i) = 4
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

< 2k (1 - %)n (1+x <€)
=2k (1—%)" <2k.e*

Maximilian Katzmann, Stefan Walzer — Probability & Computing

__ A~loglog(n)
=2 log(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Expectation of X’ (for nlarge enough) %(IT

k+1

ogy

E[XT =X ELX - Y] | Jls’sl e | |®nproducts
v k . ® m=n/k boxes, k=loglog(n)
(law of total expectation) — + ]E[X Y’ ‘ Ek( ) — e] Pr[Ek( ) — [] o X' =Y X;-Y/
, _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] Q0 Ek(i), number empty boxes in

k ) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

~

<Y, 2loglog(n) - PrlEx(i) = ]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Expectation of X' (for nlarge enough) \“(IT

of Technolo

k+1

ogy

E[XT =X ELX - Y] | Jls’sl e | |®nproducts
v k . ® m=n/k boxes, k=loglog(n)
(law of total expectation) — + ]E[X Y’ ‘ Ek( ) — e] Pr[Ek( ) — [] o X' =Y X;-Y/
, _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] Q0 Ek(i), number empty boxes in

k ) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

~

<Y, 2loglog(n) - PrlEx(i) = ]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

log log(n)?
log(n)

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithm
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Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k / ) ] ® X;, products in box i
— ZZ:O E[X" ' Y/ | Ek(’) — Z] ' Pr[Ek(’) — Z] ® E,(i), number empty boxes in

k : _ box i and k closest
=2 o1 E[Xi [ Ex(i) = €] - PrlEx(i) = 4] = v/, indicator E,(i) > 0

<Y, 2loglog(n) - PrlEx(i) = ]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

__ loglog(n)?
=4 log(n)

\/

no_ m log log(n)?
E[X] — Zizl 4 log(n)

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms
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Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k ] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 loglog(n)

log(n)
a1 loglog(n)?
=4 log(n)
v
m log log(n)? log log(n)?
E[X,] — Zizl 4 glog%rg)) =m-4 g|0g%f(7))

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



6

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32, E[Xi - Y] L el e |

oo EIX; Y/ | Ex(i) = 4] - Pr[Ex(i) = 4]
=3 ¢ o EIX; V! | Ex(i) = 4] - PrEx(i) = 4]
=3 o1 B[X; | Ex(i) = €] - PrEx(i) = 4]

<> ¢4 2loglog(n) - PrlE(i) = {]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

(law of total expectation) —

log log(n
< 2loglog(n) - 2|8<;)Tgn())
_ loglog(n)’
=4 log(n)
\/
"o m log log(n)? _ loglog(n)? n _ log log(n)?
E[X] — Zizl 4 log(n) m -4 log(n) ~ loglog(n) log(n)

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~
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Expectation of X’ (for nlarge enough)
k+1
E[X'] =32, E[Xi - Y] L el e |

oo EIX; Y/ | Ex(i) = 4] - Pr[Ex(i) = 4]
=3 ¢ o EIX; V! | Ex(i) = 4] - PrEx(i) = 4]
=3 o1 B[X; | Ex(i) = €] - PrEx(i) = 4]

<> ¢4 2loglog(n) - PrlE(i) = {]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

(law of total expectation) —

log log(n
< 2loglog(n) - 2|8<;>Tgn())
. Ioglog(n)2
=4 log(n)
v
m log log(n)? log log(n)? n log log(n)?
E[X’] — Zizl4 glog%rg)) =m-4 glog%rg)) o n 4 glog%l(v))

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~
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Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k ] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 log log(n)

log(n)
__ g loglog(n)?
=4 log(n)
E[X’] ; Zm 4|0g log(n)® - m- 4|0g log(n)? _ n _4Iog log(n)? —n. 4|og log(n)
i=1 log(n) log(n) lo n log(n) log(n)
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Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k ] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 loglog(n)

log(n)
__ loglog(n)?
=4 log(n)
\J
m log log(n)>? log log(n)? n log log(n)? log log(n
EX =2 214 ?Tog%,(’)) =m-4 glog%rg)) — o A glog%'(v)) =n-4 E>g(%;7()) =o(n) v
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(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'egleln)

log(n)
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(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



7

Concentration of X (for nlarge enough)
Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



AT

Concentration of X (for nlarge enough)

Bounded Differences = n products )

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

/ )
(.. Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

® Bounded differences condition:

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

Bounded Differences = n products )
® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n g 2E

/ )
(s Zgy ) — F(n Z0, )| < A
for all j and Z;, Z;

® Bounded differences condition:
= Worst change in number of products in short chains
when moving a single product from one box to another

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



7

(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/ )
(... Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

L J

oo © o0
L I [ Il |eelee]e]| ofeef [ | | |
oo > > > > > > > > > > > > O

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/ )
(... Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

L J

oo O o0
L Il [ Il |eellee]oe]| ofeef [ | | |
oo > > > > > > > > > > > > O
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(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/ )
(... Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

L J

oo O o0
L Il [ Il |eellee]e| oeef [ | | |
oo > > > > > > > > > > > > O
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(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

Bounded Differences = n products )
® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another \E[X] <E[X'] < 4n ig(gn)

» Consider chain of 2k + 1 boxes containing all n products o Z )= Zh ) <)
oz L2 )| < A
and one box contains only one of them L ’

for all j and Z;, Z;

L J

oo O o0
L Il [ Il |eellee]e| oeef [ | | |
oo > > > > > > > > > > > > O

= X = 0, since no short chain and, thus, no products in short chains
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AT

Concentration of X (for nlarge enough)

Bounded Differences = n products )

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products ,;r( Z V- Z ) <A
oz L2 )| < A
and one box contains only one of them L ’

for all j and Z;, Z;

°

oo © m o0

L LIl ||ee|ee| e]| e |eef | [ | |
Q. 2 2 2 2 2 2 2 2 2 2 2 2 2 0

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box
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AT

Concentration of X (for nlarge enough)

Bounded Differences = n products )

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products Lf( Z V- Z ) <A

and one box contains only one of them

oo O e OO0
L Il [ Il |eellee] | ojeef [ | | |
oo > > > > > > > > > > > > O

for all j and Z;, Z;

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box
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AT

Concentration of X (for nlarge enough)

Bounded Differences = n products )

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products Lf( Z V- Z ) <A

and one box contains only one of them

oo O e OO0
L Il [ Il |eellee] | ojeef [ | | |
oo > > > > > > > > > > > > O

for all j and Z;, Z;

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box
= X = n, since all products in short chains now
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Bounded Differences = n products )

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain
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/ )
(.. Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

® Bounded differences condition: A; < n
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® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY
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® Y;, indicator / in short chain
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for all j and Z;, Z;

(s Zjy o) — F( Z0 )| < A

Pr[f > cg(n)] < e 2((c—Ds(m)* /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]
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® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
0 Bounded differences inequality:
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Concentration of X (for nlarge enough) g

Bounded Differences ® n products
m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

: e ® X;, products in box i
= Bounded differences condition: A; < n a v, indicator i in short chain

0 Bounded differences inequality: log |
n og log(n E Xl < EIX'l < 4n>& og(n)
ZJ 1A2<Zj:1 n2 — n3 g(n):4n% [X] < E[X'] < el

A S )
log | — loz (1 oraIIJandZ Z’
Pr| X > can'8 og(n)] <exp | — : og(n) | :
log(n) n Function (21, ..., Z»):
® 74, ..., Z, independent
log Iog(n)2 ® bounded differences A;
= exp (—@ ( nlog(n)? )> BA=Y" A
® g(n) > E[f]
Pr[f > cg(n)] < e 2((c=Ds(m) /A,
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— = g(n) > E[f]
= o(1) Pr[f > cg(n)] < e 2((c=Ds(m) /A,

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



AT

Concentration of X (for nlarge enough) g

Bounded Differences ® n products
m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

: e ® X;, products in box i
= Bounded differences condition: A; < n a v, indicator i in short chain

0 Bounded differences inequality: log |
n og log(n E Xl < EIX'l < 4n>& og(n)
ZJ 1A2<Zj:1 n2 — n3 g(n):4n% [X] < E[X'] < el

o1 () [aada s @ IES

log | — oz(n oraIIJandZ Z’

Pr| X > can'8 og(n)] <exp | — : log(n) | :
log(n) n Function (21, ..., Z»):

® 74, ..., Z, independent
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. n 2
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- ® g(n) > E[f]
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Bounded Differences = n products )

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n'egleln)

= Bounded differences condition: A; <'n
® Bounded differences inequality:

. n 2 n 2 3 . log lo |
A=Y M <Y] P=n g(n)=4n L 0
2 (o Zj) = F(n Z0 ) < A
2 log log(n) ~J ; J J
Pr| X > can'28 Iog(”)] < exp el <4" log(n) ) el jent 2, Z,
N log(n) | — n3 Function f(Zs, ..., Z»): )
® 74, ..., Z, independent
. . 2 i .
Th;sir?(?eucv%rlztisaeslgss, oo (_@ (Ioglog(n) )> oo, :bAOLindZesl dggrences A,
changes are too big nlog(n)? = =15
- ® g(n) > E[f] )
= o(1) Pr[f > cg(n)] < e 2(c=De(m)7/A
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Concentration of X (for nlarge enough)

Bounded Differences
® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; <'n
® Bounded differences inequality:

A=3] 07<Y] n=n g(n)=4n LEP

log(n)
o o (n) 2(C o 1)2 <4nloig Iog(n))2
Pr| X >c4dn 596 <exp | — s
log(n) fis
This bound is useless, 2
since worst-case — exp (—@ (Iog log(n) ))H—Oo> 1
changes are too big nlog(n)?

(& J
¥ Y

But this case (all products in few boxes) is super unlikely...
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® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

/ )
(.. Zj,..) — (... Z;, )| < A4
for all j and Z;, Z;

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]

Pr[f > cg(n)] < e 2((c=Ds(m) /A,
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Method of Typical Bounded Differences

Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S" and
m parameters A2 < A, for i € [n],
if 1F( X1, o0 Xiy oo X)) — F( X1, o, X3, Xp)| <

{Af‘, if (X1, ..., Xiv ooy Xn) € A,
forall i € [n] and X;, X! € S.

A;, otherwise
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Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S" and

m parameters A2 < A, for i € [n],

if F( X1, oo, Xy, X)) — F(Xq, oo, XE, o, X)) <
forall i € [n] and X;, X! € S.

= A7 is worst-case change, assuming A held before the change

Af‘, if (X1,.... X;, ..., Xn) € A
A;, otherwise
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Method of Typical Bounded Differences

~N

Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S” and
= parameters A < A; for i € [n], )

it (X1, ..., X, ..., Xp) € A
- . _ X <o P
|f ‘f(X]_y --.1X17 ---,Xn) f(X]_, 1Xl’ ’Xn)| — {A i OtthWlse
forall i € [n] and X;, X! € S.

= A7 is worst-case change, assuming A held before the change

Theorem: Let X3, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A2 < A;. Then, for g(n) > E[f], for all ; € (0, 1] and

A=Y (DA + (A — — AA))2: Prif > cg(n)] < e—(c=De(m)?/(A) | pr-A] S

i€[n] s,

\

N
Coro”ary Of L“On the Method of Typical Bounded Differences”, Warnke, Comb. Probab. Comput. 2015
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Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 (A +ei(A - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

i€[n] e,

.
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m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change

m But we have to pay for the mitigation!
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® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change
m But we have to pay for the mitigation!

= With the probability that the good event A does not occur
= Multiplied with the inverse mitigators

Method of Typical Bounded Differences
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Method of Typical Bounded Differences

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cin(AF + (A - — AP Pr[f > cg(n)] < e~((c=De(m)/(28) 4 pr[-A]'S

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change

= But we have to pay for the mitigation! The more we need to mitigate,

i icel
= With the probability that the good event A does not occur N?ti:éggsé ti?j\?:f,g;y

= Multiplied with the inverse mitigators likely to occur!

i€[n] e,
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product
= Bounded differences condition: A; < n
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® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N
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where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
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E[Bj] = & = —1— = loglog(n)

m log log(n)
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
a When all n products fall into 2k + 1 = O(log log(n)) boxes
® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 3 ;%7 E[B;] = O(log log(n)?)

Karlsruhe Institute of Technology
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® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N

» So typically a sequence should contain way fewer than n products
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» So typically a sequence should contain way fewer than n products
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = ¥ 71" E[Bi] = O(log log(n)?)
» So typically a sequence should contain way fewer than n products

m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 357" E[Bi] = O(log log(n)?)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 +€)g(n)] < e~ /38"
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® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 4+ ¢)g(n)] < e—€/3g(n) — g—&/3-8log(n)
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 + €)g(n)] < e~ /38(n) = g=¢"/34log(n) — p=5¢°/3
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = Y X' E[B;] = O(log log(n)?) < &log(n) =: g(n) (forany § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
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L
for a single sequence
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz )
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 + £)g(n)] < e /38(n) = g=¢"/3-8log(n) — p—38¢°/3
= Union bound over < n sequences: Pr[—A] < n=%/3t1 < p= (for arbitrarily large )
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary )
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary )

m Typical bounded differences condition:

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Karlsruhe Institute of Technology
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® n products

® m=n/k boxes, k=loglog(n)
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

.
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. = 5
. : . ® n products
where Z; fgrj e [n] denote.s. the box of the j-th product & m=n/k boxes, k=loglog(1)
® Bounded differences condition: A; < n =X =Y XV
= Typical event A = {“Every sequence of 2k + 1 boxes = X;, products in box i
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary ) ® Y;, indicator i in short chain
= Typical bounded differences condition: E[X] < EB[X'] < 4n" g

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

= Moving one product empties at most one box
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. “_’_’_’_’_’_’_’_’_’_’_’_’_’_’_"’d : 5
. : . ® n products
where Z; fgrj e [n] denote.s. the box of the j-th product & m=n/k boxes, k=loglog(1)
® Bounded differences condition: A; < n =X =Y XV
= Typical event A = {“Every sequence of 2k + 1 boxes = X;, products in box i
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary ) ® Y;, indicator i in short chain
= Typical bounded differences condition: E[X] < EB[X'] < 4n" g

.

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

= Moving one product empties at most one box = at most two new short chains
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® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary )

m Typical bounded differences condition:

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

(- _J
Y

contain O(log(n)) products
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® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

= Moving one product empties at most one box = at most two new short chains
= Assuming A, these short chains combined contain O(log(n)) products
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where Z; for j € [n] denotes the box of the j-th product
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m Typical event A = {“Every sequence of 2k 4+ 1 boxes
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to another, assuming A held before the move
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aX=> XY

® X;, products in box i
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= Moving one product empties at most one box = at most two new short chains
= Assuming A, these short chains combined contain O(log(n)) products = A7 =0O(log(n))
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Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary )

= Typical bounded differences condition: A7=0(log(n))
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® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary )

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:
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.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ
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® typical event A
log log(n) ou | ® bounded differences A# < A;
Prl X > < og log(n) )) n
Xy | = o (2("5)) " A= 57,8 +e(d - )Y
N O(l/n) ® g(n) > E[f]
+ProA Pr[f > cg(n)] < e~ 1)g(n))2/(2A)
A Z -1 EJJ v +Pr[-A] > L sJ

<n
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Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG i
® n independent vertices
® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® 4, v adjacent iff
dist(xy, x,) < AH
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= We want to compute E[deg(v) | w, ] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_) ) fore e (2.3

deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "
; dj t iff
E[deg(v) ‘ WV] — ZUEV\{V} E[XU | WV] - lei(iufitiné I)\Wu'Wv
—(n—1)-Pr[{u,v} € E | w,] \ -
N
= O(n)
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Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w, ] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_) ) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T — )w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

= O(nPrl{u, v} e E|w]) \
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(n Pr[iu, v} € EJ | wy])

u e |N(v)
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GIRG

® n independent vertices

" x, ~U([0,1])

®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "

® y, v adjacent iff
dist(xy, x,) < AH

~N

w.l.o.g x, = % VT/
A

N(v)
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Expected Degree (d = 1)
m Consider vertex v with weight w, GIRG )
= We want to compute E[deg(v) | wy] ® n independent vertices

m Consider X, for v € V' \ {v} indicating whether {u, v} € E :);.,va:%g[:)(}l]_) 1,1) for T € (2,3)

deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "
® y, v adj tiff
Eldeg(v) | m] = ¥ ev vy EWXu | W] G ldacent
= O(nPr[{u, v} € E | w,]) wlogx =3 ~
C . J A
ue|N(v) N(v)
(. ~ _J
This is not the area of the|shape
since weights are not distributed uniformly!
o
- T
0 1 1
2

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



AT

Expected Degree (d = 1)
m Consider vertex v with weight w, GIRG )
= We want to compute E[deg(v) | wy] ® n independent vertices

m Consider X, for v € V' \ {v} indicating whether {u, v} € E :);.,va:%g[:)(}l]_) 1,1) for T € (2,3)

deg(v) = 2 vy Xu fuy (W) = (7~ 1w
® y, v adjacent iff
Eldeg(v) | w] = > evgvy ElXu | wi] dist(xp x,) < A
uc N(v) N(v)
(. ~ _J
This is not the area of the|shape
since weights are not distributed uniformly!
= Use law of total probability to account for that
o
- T
0 1 1

2

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

= O(n [[Prlue N(v)|wy=w, w,|fy,|w, (w)dw)
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GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

®w, ~ Par(t —1,1) for r € (2, 3)

~N

w.l.o.g x, = % VT/
A
N(v)
°
T
0 % 1
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

= O(n [Prlue N(v)|w,=w, WV]fWU|WV(W)JdW)

Density of w, conditional on w, but
weights are drawn independently
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GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)
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= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])
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fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH
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~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w, ] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_) ) fore e (2.3

deg(v) = 2_uev\{vy Xo fu () = (T = Dw "
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [ Prlue N(v)|wy,=w, w,|f,, (w)dw) 1 N(v)

T
1

1
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

Karlsruhe Institute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

~N

1 L
2w
A

= O(n [ Prlue N(v)|wy,=w, w,|f,, (w)dw) N(v)
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Expected Degree (d = 1)

m Consider vertex v with weight w,

= We want to compute E[deg(v) | w, ]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu

Eldeg(v) | wi] = X uev\ vy ElXu [ wi]

= O(nPr[{u,v} € E|w])
= O(n [ Prlue N(v)|wy,=w, w,

-
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GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

~N

1 L
2w
A

[fw, (w)dw) N(v)

T R
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w, ]
® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E|w]) wlogx, =3 &
A

= O(n [Prlue N(v)|w,=w, WVLfWu(W)dW)

-

Y

T R

Case 1:w < - = A% < 1

2wy, n

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH
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Expected Degree (d = 1) g

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w, ] : n indcza}c)(e[(r)ldle];]t vertices
Xy ~ ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

deg(v) = 2_uev\{vy Xo fu () = (T = Dw "
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:PF[XL,E[ — A 1—|—>\""‘”""]]

)\ :
$:2>\W,\;vv: W,‘;Vv) W : x - n :

Case 1:w < 550~ = A% <

<
<
I
I
[
[
[
[
I
I
1
1
<
=
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Expected Degree (d = 1) g
® Consider vertex v with weight w, GIRG )
a We want to compute E[deg(v) | w,] :)': irfzp(?(;‘dﬁ;‘t vertices
® Consider X, for v € V'\ {v} indicating whether {u,v} € E | g _ Par(r — 1,1) for € (2,3)
deg(v) = 2_,ev\fvy Xu fur (W) = (7 = 1)w™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:Pr[xug[ — N, 1+,\WWv]]

Case 1: w < 5t = A < 3 = 2\ = Q( M)
Case 2: w > 5t = A" > 3

1
2
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Expected Degree (d = 1) g
m Consider vertex v with weight w, GIRG )
a We want to compute E[deg(v) | w,] :)': iTZp(ngﬁ?t vertices
® Consider X, for v € V'\ {v} indicating whether {u,v} € E | g _ Par(r — 1,1) for € (2,3)
deg(v) = 2_ v\ g3 Xu fur, (W) = (7 = L)w™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

— O(nPr[{u, v} € E | w)]) wlogx =3~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:Pr[xug[ — N, 1+,\WWv]]

Case 1: w < 5t = A < 3 = 2\ — (i)
Case 2: w > 5t = A" > 3 =1

1
2
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Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w, ] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_) ) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T — )w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

1

= O(nPr[{u,v} € E| w]) wlogx =3 %
= O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (JP 22 fy (w)dw + %1+ oy, (w)dw) )

2wy,
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [ wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (S 22 fy (w)dw + %1+ oy, (w)dw) )

g 2wy, p

= Prlw, > 2>\”WV]
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GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH
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~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w, ] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_) ) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T — )w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

1

= O(nPr[{u,v} € E| w]) wlogx =3 %
= O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (S 2 fy, (w)dw + [T 1 oy, (w)dw) )

g 2wy, p

= Prlw, > 50.-]

If w, > 5%, then 2A’;Vv <1
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Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [ wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

:@(n(flmvv ' w)dw + [, 1-fWu(W)dW))

g 2wy,

> J
- [ n
n n = Pr[w, > 2}\Wv]
If w, > 5%, then T <1 |
= Prlw, > 1] =1
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GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH
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Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [ wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

:@(n(flmvv ' w)dw + [, 1-fWu(W)dW))

g 2wy,

> _J
— Pr:WU Z 2}\nw ]
Ifwv>2f;,then2;;w<1< 0
f@(n) = Prlw, > 1] =1
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® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH
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~N

Expected Degree (d = 1)

= We want to compute E[deg(v) | w,] = : n i”dzp(ngﬁ;t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

deg(v) = 2_,ev\{v3 Xu fuo (W) = (T = L)w ™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

= O(nPr[{u,v} € E|w]) w.l.o.gx =3 \ —
Ifw, < & = O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

n

= © (n (flm e, (w)dw + Priw, > 2>‘an]))
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Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
If w, < % :@(nfloOPF[UGN(V)|Wu:W’ Wv]fwu(W)dW)
— 0 (n (flm %fwu(w)dw _|_LPr[WU > 2>\nwvl))

—(t—1)
)

(via CDF of Par) = (5%
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GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH
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Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
Fwe <55 = O(n [ Prlue N(v) | wy =w, wy]f,, (w)dw)
=0 (n (S efu, (w)dw + Prlw, > 53 1) )
(via CDF of Par) M (ZA"WV ) —(r=1)
_ (M)T_l
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® y, v adjacent iff
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Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
Ifw, < & = O(n flooPr[ue N(v)|w,=w, w,]f, (w)dw)
=06 (n (flﬁ %fwu(w)dw + Prw, > 2>\”WV]))
(via CDF;f Par) — (ZA”Wj)_(T_l)
= (Zue)™
<1
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Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} Xy
Eldeg(v) [ wv] = > yevy\fvy EIXu | wi]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
If wy, < =& = O(n flooPr[ue N(v)|w,=w, w,]f, (w)dw)

22
n

=© (n (flm o fu, (w)dw +LPr[W“ = 2>\nwvl))
(via CDF of Par) ;
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fw, (W) = (7 = 1)w™"
® y, v adjacent iff
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~N

Expected Degree (d = 1)

= We want to compute E[deg(v) | w,] = : n i”dzp(‘igdﬁ;‘t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

deg(v) = 2_,ev\{v3 Xu fuo (W) = (T = L)w ™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo ) < A

= O(nPr[{u,v} € E|w]) w.l.o.gx =3 \ —
Ifw, < & = O(n [ Prlue N(v)|wy,=w, w,]fy, (w)dw)

_ 0 (n (f12>\’\7/vv wwe f (w)dw + Prw, > 2>\nwv]))

n

~0 (n R %fwu(w)dw) + O(wy)
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Expected Degree (d = 1)

m Consider vertex v with weight w, O(n), if w, > L
= We want to compute E[deg(v) | w,] =
® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

- O(n [°Prlue N(v)|wy=w, wy]f, (w)dw)
S (n( e ot = )
= © (n [P wan, (W)dW) +0(w,)
( fl”wv (1 —1)w™ wa) + O(wy)
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Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
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® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree
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Vertex Cover ° o

® Given undirected graph G = (V, E) (induced subgraph) <

® Find a smallest S C V such that G[V \ S is edgeless » °
a NP-complete 1 ¥
Vertex Cover Approximation
® Find a small vertex cover S’ fast
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a NP-hard to approximate with r < /2
= Believed to be NP-hard for r <2 — g forconst. ¢~ |

Practice

0.98 -

mmmmmmmmmmmmmmmmmmmmmmmmmmm

m Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree i TpeRlRT R e apehn
= Close to optimal ratios on real graphs ST
L“Vertex Cover on Complex Networks”, Da Silva, Gimenez-Lugo, Da Silva, IIMPC 20131 s Networks : :
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(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree
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. log log(n)
® Two variants
® Search and solve small components
after each greedily taken vertex
= Take greedy until red line, solve small
components exactly, take rest greedy too

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW,

1:; o:..;., ... .. 3._.3.‘0—-

0

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



15

Analsysis on GIRGs A“(IT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight
Learn from the Model
® Once high-degree vertices are
taken/removed, remaining vertices have AW,
roughly equal weight/degree

m Greedy algorithm picks vertices at random

® Improve quality by solving small separated o
components exactly o

. log log(n) o
@ Two variants
® Search and solve small components 4
after each greedily taken vertex

o
° e o ‘
o
= Take greedy until red line, solve small '4w—'*° ,;-t IS 21 ;‘—‘,... &

components exactly, take rest greedy too i

This variant yields an upper bound on the
quality of the other
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Analysis on GIRGs — Approximation Ratio
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cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio
(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex

IS

~N

with probability 1 — o(1)
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(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~

Proof Approximation Ratio

= Differentiate greedily taken vertices S, from
ones in exactly solved components S, A Wy *

- ...,.;., .
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Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is
(1+ o(1)) asymptotically almost surely.

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S’ § Wy ?

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

= |Sel < [5] i
[ ]

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1:; o:..;.’ ..' .. }‘_.t.‘o—l

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology
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Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S,

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

/
= |Se| < |S]
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(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S,

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

/
= |Se| < |S]

s IShIshl  isiHshl . 1Sk
= r=T15= "5 S e S 1tTS

a |S| = Q(n) with prob 1 — o(1)

L“Greed is Good for Deterministic Scale-Free Networks”, Chauhan et al. FSTTCS 2016]

Remains to show: |S;| = o(n)
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Analysis on GIRGs — Greedy Vertices > t
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Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of

vertices with weight at least t. Then, N,,>: = o(n) with probability 1 — O(1/n).
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Analysis on GIRGs — Greedy Vertices > t

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N,,~: = o(n) with probability 1 — O(1/n).

Proof GIRG |
u Consider random variable X, = 1, >n ® nindependent vertices
= ®w, ~ Par(t—1,1) for T € (2,3)
AW, o
[
[ ]
o ° r
t 4w—l_.. ) s Py .. : 1 2 -
.’, O J‘o..‘ T
0 1
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Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG |
= Consider random variable X, = 11,,>n ® n independent vertices
_ _ = ®w, ~ Par(t —1,1) for 7 € (2, 3)
m N, . is the sum of independent Bernoulli
= . AW, o
random variables
NWZt — ZVEV Xy
[
o
o
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~N

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG
u Consider random variable X, = 1y, >4 ® nindependent vertices
_ _ . ®w, ~ Par(t—1,1) for T € (2,3)
o Ny is the.sum of independent Bernoulli w -
random variables Y
Ny>e = Zvev Xy
® Expectation .
E[Nu>el = ¥ ,cy EIX,] = nPrlw, > 1]
o
[
faou sty
‘ wl Y o’, 1 O 30_"0‘ ._.T
0 1
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Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG |
» Consider random variable X, = 1y, >n ® n independent vertices

_ _ _ ®w, ~ Par(t—1,1) for T € (2,3)
m N, . is the sum of independent Bernoulli

random variables A Wy .
NWZt — Zvev Xv
® Expectation )
E[Ny>¢] = Zvev E[X,] = nPr{w, > t]
(via CDF of Par) = nt—(7—1) o
(t=w(1), 7€ (23)) = o(n) i o °
= Since there is a g(n) € o(n) N Q(log(n)) with S T AL 94
g(n) > E[N,,>¢], Chernoff gives concentration ) WP es Wt tAad s .
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into

several components
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
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= | arger components are assumed to be taken greedily (need to show: these are o(n))
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
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® Hard to determine how likely it is for a vertex to be in a large component
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m Discretize ground space into cells such that edges cannot span empty cells
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= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
m Discretize ground space into cells such that edges cannot span empty cells

m Use lempty cells as delimiters between components
® Regard chains of non-empty cells as one component

20 515 QOID b (T2 12 1u% CO

0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
m Discretize ground space into cells such that edges cannot span empty cells

m Use lempty cells as delimiters between components
® Regard chains of non-empty cells as one component
® Count all vertices that are in chains containing > log log(n) vertices

(also potentially counting small components) tT:MI/\L‘H =T W
{ 1 { I T

= When does a chain contain too many vertices? 1
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells

20 515 QN0 b (B PP 1ak c

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms




18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small

® Proof via method of bounded differences!
Total number of cells in long chains does not change much (< 2k + 1) when one cell
moves from empty to non-empty (or vice versa) S k
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small

® Proof via method of bounded differences!
Total number of cells in long chains does not change much (< 2k + 1) when one cell
moves from empty to non-empty (or vice versa) S k

® Use Poissonization to get rid of dependencies t% S0D € ol (T 20 1R O
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices

<loglog(n) < k > loglog(n)
vertices cells vertices
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= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
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m Unlikely, if cells are small
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= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component
m Make use of geometry! Overestimate components by counting how many vertices are
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices

m Unlikely, if cells are small
® Proof via method of typical bounded differences!

| < log | <k >logl
= Imagine cells as boxes on conveyor belt < loglog(n) < og log(n)

vertices cells vertices
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells  vertices
= [magine vertices as products N N\
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells  vertices
= [magine vertices as products N N\

[] [} L] WV
= Typically not many vertices in few cells t = 5
1 | 1 1 T
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m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close
Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells  vertices
= [magine vertices as products " N N\

= Typically not many vertices in few cells t = 5

{ I ) 1
~~> wW.h.p., o(n) vertices in large components v/ ¢ 1
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m Useless if worst changes are too large
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Conclusion

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition

® What is the worst that can happen when changing one input?
m Chernoff-like bound, weakened by sum of squared worst changes

m Useless if worst changes are too large

Method of Typical Bounded Differences |
m Define typical event, distinguish worst changes depending on whether event occurred

m Use mitigators to weaken impact of general worst changes
® Pay with probability that typical event does not occur, multiplied with inverse mitigators
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Conclusion

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition

® What is the worst that can happen when changing one input?
m Chernoff-like bound, weakened by sum of squared worst changes

m Useless if worst changes are too large

Method of Typical Bounded Differences |
m Define typical event, distinguish worst changes depending on whether event occurred

m Use mitigators to weaken impact of general worst changes
® Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs ! /R

= Pretty realistic graph model (heterogeneity, locality) b

= Not too hard to analyze (not discussed in lecture) X'{ K g
» Used for average-case analysis (e.g. vertex cover approximation) A VWA
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