AT

Karlsruhe Institute of Technology

Probability & Computing

Bounded Differences & Geometric Inhomogeneous Random Graphs

KIT — The Research University in the Helmholtz Association www.kit.edu

AT

Recall: Concentration

Concentration Inequalities
® Bound the probability for a random variable to deviate from its expectation

2 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Recall: Concentration

Concentration Inequalities
® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong

2 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Recall: Concentration

Concentration Inequalities
® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong
m Chebychev: stronger, but requires knowledge about variance

2 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

2 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variables

2 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo L | (oo | | [o8] [o9

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9

® Random variable X counts empty bins

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; = L yBin i is empty} for i € [n]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

® Let X; =]l{Biniis empty?} for i ¢ [n] = X = Z?:l X;

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

® Let X; =]l{Biniis empty?} for i ¢ [n] = X = Z?:l X;

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
1\ Kk
=n-(1-7)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)"
— 0| n
H_I

a ball falls into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)"
— 0| n
%_J

a ball does not fall into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
1\ Kk
=n-(1-7)

k balls do not fall into bin i

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
=n-(1-3)
— 0| n
~n-e k/n
n — o0

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation
® Markov: generally applicable, but not very strong

m Chebychev: stronger, but requires knowledge about variance

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k
—k/n

~ n-e
n— oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k
= Markov: —k/n

~ n-e
n— oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; =]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[fj[j_;]ﬁ A~ o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; =]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j;]ﬁ = 1_1@[)?]:{5& mn o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; =]l{Biniis empty} for i e [n] = X = Z?:l X E[X] — 27:1 E[X,] = n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j;]ﬁ = 1_1@[)?]:{5& mn o—k/n

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9

® Random variable X counts empty bins X1=0 Xo=1 X3=0 X4=1 Xs=0 Xe=0
mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]
m Concentration: Pr[X > E[X] + 5v/k] n-(1- 1)k

: E[X] _ 1 5/k n—o o
= Markov: Pr[X > E[X] + 5vk] < x5 F — LT EX s VR -1 X —k/n

~ n-e
n — oo

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

m Concentration: Pr[X > E[X] + 5v/k] —n-(1- 1)’<
= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j_;]\/ﬁ — 1_E[X5]\-|{§\/F = I S
= Chebychev: tedious... x n — 0o

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0

mlet X; =]l{Biniis empty?} fori e [n] = X = Z?:l X; E[X] — 27:1 E[X,] =n- PF[X,' = 1]

m Concentration: Pr[X > E[X] + 5v/k] —n-(1- 1)’<
= Markov: Pr[X > E[X] + 5vk] < E[)ﬁ[j_;]\/ﬁ — 1_E[X5]\-|{§\/F = I S
= Chebychev: tedious... x n — 0o

a Chernoff; ?

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
® k balls distributed uniformly at random over n bins Lo Ll (oo | | [o8] [o9
® Random variable X counts empty bins X1=0 X2=1 X3=0 X4=1 Xs=0 Xs=0
mlet X; =]l{Biniis empty} for i € [n] = X = Z?:l X E[X] — 27:1 E[X,] =n- PF[X,' = 1]
= Concentration: Pr[X > E[X] + 5v/k] —n-(1-21)"

= Markov: Pr[X > E[X] + 5vk] < E[)g[j—;]\/ﬁ — 1_1@[)?]]{5\/; D X km

= Chebychev: tedious... x n — oo

® Chernoff: X (our Bernoulli random variables are not independent)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, =1 Y, — 3 Y, — 4

® Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, =1 Y, — 3 Y, — 4

® Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball
= X =f(Y1, ... Yk) = Zie[n] Lsz7.vi=iy (summands not independent, but the Y; are)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, =1 Y, — 3 Y, — 4

® Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball
= X =f(Y1, ... Yk) = Zie[n] L¢gj.v.=i} (summands not independent, but the Y; are)
= 2 icn MaXjek] {2 — {Y], i}[} (‘not”a sum Bernoulli random variables)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

2

AT

Recall: Concentration

Concentration Inequalities

® Bound the probability for a random variable to deviate from its expectation

® Markov: generally applicable, but not very strong LMarkov: X non-negative, a>o;1
= Chebychev: stronger, but requires knowledge about variance Prix 2 o] < BIXl/=

® Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example Today: similarly strong but beyond sums of independent Bernoulli random variables
m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, =1 Y, — 3 Y, — 4

® Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball
= X =f(Y1, ... Yk) = Zie[n] L¢gj.v.=i} (summands not independent, but the Y; are)
= 2 icn MaXjek] {2 — {Y], i}[} (‘not”a sum Bernoulli random variables)

Can we show concentration for some arbitrary function of independent random variables?
... under certain conditions!

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

AT

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much

Method of Bounded Differences

3 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

Method of Bounded Differences

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

AT

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

AT

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

AT

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

Method of Bounded Differences A“(IT

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of (X, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value How dowe measure this?

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F(X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.

3 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F(X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.

Theorem: Let X3, ..., X, be independent random variables taking
valuesinaset S. Let f: S” — R satisfy the bounded differences

condition with parameters A;. Then, for A =%, A%
Pr[|f — E[f]| > t] < 2e2E/A. (write £ for £(X, ..., Xa)

\

3 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F(X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.

Theorem: Let X3, ..., X, be independent random variables taking
valuesinaset S. Let f: S” — R satisfy the bounded differences

condition with parameters A;. Then, for A =%, A%
Pr[|f — E[f]| > t] < 2e2E/A. (write £ for £(X, ..., Xa)

\

Lemma: Pr(f > E[f] + t] < e 2/, |

3 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F(X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.

Theorem: Let X3, ..., X, be independent random variables taking
valuesinaset S. Let f: S” — R satisfy the bounded differences

condition with parameters A;. Then, for A =%, A%
Pr[|f — E[f]| > t] < 2e2E/A. (write £ for £(X, ..., Xa)

Lemma: Pr(f > E[f] + t] < e 2/, |
also for Pr[f < E[f] — t]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

3

Karlsruhe Institute of Technology

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Idea If changing one of the random inputs of (X1, ..., Xx) does not change f(-) much
then a lot has to go wrong for f(-) to deviate from its expected value

~N

Method of Bounded Differences

Definition: A function f: S” — R satisfies the bounded
differences condition ("Lipschitz condition") with parameters A;,
if (X1, ..., Xi, ooy Xn) — F(X1, ..., X1, o, Xp)| < A forall i € [n] and
X;, XI’ e S.

Theorem: Let X3, ..., X, be independent random variables taking
valuesinaset S. Let f: S” — R satisfy the bounded differences

condition with parameters A;. Then, for A =%, A%
Pr[|f — E[f]| > t] < 2e2E/A. (write £ for £(X, ..., Xa)

\

Lemma: Pr[f > E[f] + t] < e_ztz/A.1 Cor. E[f] < g(n): Pr[f > cg(n)] < e_2((c_1)g(”))2/A.1
also for Pr[f < E[f] — t]

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_;_| L L; o || |.';J o 0]
® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_;_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
forall i and Y;, Y/

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_;_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins @ L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins @ L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin = +1-1

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins @ L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+41—-1=A;=0

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

)

m k balls distributed uniformly at random over n bins |_;_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0
= ... a hon-empty bin

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

A

m k balls distributed uniformly at random over n bins |_;_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0
= ... a non-empty bin =41 = A;=1

4 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0
= ... a non-empty bin =41 =A;=1
® A ball is moved from a not almost empty bin to...

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_$_| |_f|-\L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =4+1—-1=A;=0
= ... a non-empty bin =41 =A;=1

® A ball is moved from a not almost empty bin to...
= ... an empty bin

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_$_| |_f|-\L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0

= ... a non-empty bin =41 =A;=1
® A ball is moved from a not almost empty bin to...
= ... an empty bin = —1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Application: Balls into Bins A“(IT

m k balls distributed uniformly at random over n bins |_$_| |_f|-\L; ol | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0

= ... a non-empty bin =41 =A;=1
® A ball is moved from a not almost empty bin to...
= ... an empty bin =—-1=A;=1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Application: Balls into Bins A“(IT

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?
= A ball is moved from an almost empty bin to...

= ... an empty bin =+4+1—-1=A;=0

= ... a non-empty bin =41 =A;=1

® A ball is moved from a not almost empty bin to...
= ... an empty bin = —-1=A;=1
= ... a hon-empty bin = A; =0

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Application: Balls into Bins A“(IT

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

= A ball is moved from an almost empty bin to...
.

= ... an empty bin =4+1—-1=A;=0
= ... a non-empty bin =41 =A;=1
= A ball is moved from a not almost empty bin to... f A; <1
= ... an empty bin = —-1=A;=1
= ... a hon-empty bin = A; =0 J

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Karlsruhe Institute of Technology

Application: Balls into Bins

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

= A ball is moved from an almost empty bin to...
.

= ... an empty bin = +1-1=A;=0 Suiailion A, o))
= ... a non-empty bin =+l =A;=1 ® Y, ..., Y independent
= A ball is moved from a not almost empty bin to... r Ai < 1| mbounded differences A;
= ... an empty bin = —-1=A;=1 BA=Y A 2
= ... a non-empty bin = A; =0) Then Prlf > E[f] +¢] < e /"

Concentration via bounded differences

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Karlsruhe Institute of Technology

Application: Balls into Bins

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

= A ball is moved from an almost empty bin to...
.

= ... an empty bin = +1-1=A;=0 Suiailion A, o))
= ... a non-empty bin =+l =A;=1 ® Y, ..., Y independent
= A ball is moved from a not almost empty bin to... r Ai < 1| mbounded differences A;
= ... an empty bin = —-1=A;=1 BA=Y A 2
= ... a non-empty bin = A; =0) Then Prlf > E[f] +¢] < e /"

Concentration via bounded differences
A= Zf';l A,? < Zf';l 1° = k

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Karlsruhe Institute of Technology

Application: Balls into Bins

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

= A ball is moved from an almost empty bin to...
.

= ... an empty bin = +1-1=A;=0 Suiailion A, o))
= ... a non-empty bin =+l =A;=1 ® Y, ..., Y independent
= A ball is moved from a not almost empty bin to... r Ai < 1| mbounded differences A;
= ... an empty bin = —-1=A;=1 BA=Y A 2
= ... a non-empty bin = A; =0) Then Prlf > E[f] +¢] < e /"

Concentration via bounded differences
A=Y A2 <YK 12=k = Prlf >E[f] +5Vk] < e 2BVK)/k

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

4

Karlsruhe Institute of Technology

Application: Balls into Bins

00

m k balls distributed uniformly at random over n bins |_$_| L L; o | | |.';J o 0]

® Random variable X counts empty bins Y, — 1 Y, — 3 Yo — 4

m Let independent Y; ~ U([n]) for j € [k] denote the bin of the j-th ball, and X = (Y1, ...Yx)

Bounded differences condition LV(""YI')= LY) < A;}
® Intuition: How much can the number of empty bins change |foralliandY;, Y/

if we move a ball from one bin to another?

= A ball is moved from an almost empty bin to...
.

= ... an empty bin = +1-1=A;=0 Suiailion A, o))
= ... a non-empty bin =+l =A;=1 ® Y, ..., Y independent
= A ball is moved from a not almost empty bin to... r Ai < 1| mbounded differences A;
= ... an empty bin = —-1=A;=1 BA=Y A 2
= ... a non-empty bin = A; =0) Then Prlf > E[f] +¢] < e /"

Concentration via bounded differences Much better th
A = Zf'(zl A7 < Zf';l 12 = k = Pr[f > E[f] +5Vk] < e—2(5Vk)*/k — g=50 IL\J/ICarkoev’ser—> 1an

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

AT

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

AT

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt

m=n/k boxes k=loglog(n) L I I Jl JL JL JL I J J JL JL |

2 2 2 2 2 2 2 2 2 2 2 O

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

AT

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt

n products ‘m=n/k boxes k=loglog(n)|__llsel e | |l e | e |lee]e]| o] |eses] |

2 2 2 2 2 2 2 2 2 2 2 2 O

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory AT

Karlsruhe Institute of Technology

® Products are distributed uniformly at random over boxes on a conveyor belt #
[[o
n products m=n/k boxes k=loglog(n) | _[ee][e | [e[e[ee][e|e]| [eefes] |
Q2 2 2 2 2 2 2 2 2 2 C 2 2)5)
® A camera scans k + 1 consecutive boxes simultaneously k1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
[[o
n products m=n/k boxes k=loglog(n) | _[ee][e | [e[e[ee][e|e]| [eefes] |
Q2 2 2 2 2 2 2 2 2 2 C 2 2)5)
® A camera scans k + 1 consecutive boxes simultaneously k1

® Problem: Empty box in view = reflection blinds camera, products remain unscanned

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
[[[
n products m=n/k boxes k=Iloglog(n) | llee[e] o] ejeele]|e]| [eos]e -I«/
Q2 2 2 2 2 2 2 2 2 2 C 2 2)5)
® A camera scans k + 1 consecutive boxes simultaneously k1

® Problem: Empty box in view = reflection blinds camera, products remain unscanned

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #

[[o
n products m=n/k boxes k=Iloglog(n) | |eef o] |[o] ofoee]e|e] [oe .
D B B B S B S S R R R oS

® A camera scans k + 1 consecutive boxes simultaneously k+1 E
® Problem: Empty box in view = reflection blinds camera, products remain unscanned

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #

[[
n products m=n/k boxes k=Iloglog(n) | |eo] o] |[o] ofoeefe] o] |
D R B B B B B S S S S S S—m e

® A camera scans k + 1 consecutive boxes simultaneously k1
® Problem: Empty box in view = reflection blinds camera, products remain unscanned ®

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleCell o]l e e]|@ -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned

K
i

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #

Q2 2 2 2 2 2 2 2 2 2 2 O

n products m=n/k boxes k=Iloglog(n) ool el e e @ 0|| o || o IQ/

® A camera scans k + 1 consecutive boxes simultaneously k+1 E
® Problem: Empty box in view = reflection blinds camera, products remain unscanned —
® Question: How many products avoid quality assurance? ‘;

i

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleCell o]l e e]|@ -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

i

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleCell o]l e e]|@ -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Formalize [
® chain: consecutive sequence of non-empty boxes

5 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleCell o]l e e]|@ -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Formalize [
® chain: consecutive sequence of non-empty boxes

® short chain: incl. max. chain of length <k = exactly products in short chains unscanned

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleCell o]l e e]|@ -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Formalize [
® chain: consecutive sequence of non-empty boxes

® short chain: incl. max. chain of length <k = exactly products in short chains unscanned
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

AT

Application: The Factory oo

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) |_llesll el e e sle)lele K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;

Formalize [
® chain: consecutive sequence of non-empty boxes

® short chain: incl. max. chain of length <k = exactly products in short chains unscanned
® X; = number of products in box /, Y; = indicator whether box i is in a short chain
mThen X =5, X; - Y; is the number of unscanned products

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

AT

Application: The Factory oo

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | ool] e e ||o -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Formalize [
® chain: consecutive sequence of non-empty boxes

® short chain: incl. max. chain of length <k = exactly products in short chains unscanned
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =5, X; - Y; is the number of unscanned products

® Problem: Dependencies (between X;’s, between X; and Y;)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Karlsruhe Institute of Technology

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) |_llesll el e e sle)lele K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Formalize [
® chain: consecutive sequence of non-empty boxes

® short chain: incl. max. chain of length <k = exactly products in short chains unscanned
® X; = number of products in box /, Y; = indicator whether box i is in a short chain
mThen X =5, X; - Y; is the number of unscanned products

® Problem: Dependencies (between X;’s, between X; and Y;)
m Solution: Relax dependencies and compute upper bound instead

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory \“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) |_llesll el e e sle)lele K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory \“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | ool] e e ||o -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory \“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) N [I ||o -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory \“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) | JleTele] e e ||o -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory \“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
n products m=n/k boxes k=Iloglog(n) lje’ell o || e | e ||o -II ° II ° I«/
® A camera scans k + 1 consecutive boxes simultaneously k+1 E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Application: The Factory A“(IT

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) lie’sll e |l e e sfe)le]e K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

L. Box i in short chain = Ex(i) > 0

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Karlsruhe Institute of Technology

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) lie’sll e |l e e sfe)le]e K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

L. Box i in short chain = Ex(i) > 0
® Y/ = indicator whether Ex (i) >0=Y; <Y/

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5

Karlsruhe Institute of Technology

Application: The Factory

® Products are distributed uniformly at random over boxes on a conveyor belt #
nproducts m=n/k boxes k=loglog(n) lie’sll e |l e e sfe)le]e K/
® A camera scans k + 1 consecutive boxes simultaneously) k+1 ’ E
e o

® Problem: Empty box in view = reflection blinds camera, products remain unscanned
= Question: How many products avoid quality assurance? Show: o(n) with prob. 1—O(2) ‘;‘

Relax and bound [
® X; = number of products in box /, Y; = indicator whether box i is in a short chain

mThen X =3 ", X;-Y; is the number of unscanned products
® £, (i) = number of empty boxes in box i and k closest (assuming k even)

L. Box i in short chain = Ex(i) > 0
® Y/ = indicator whether Ex (i) >0=Y; <Y/

e X =Y X Vi< T XY = X

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k]t 1
| ||...|| o | ® n products
® m=n/k boxes, k=loglog(n)
X' =Y XY/
® X;, products in box i
® E, (i), number empty boxes in

box i and k closest
. Y/, indicator Ex(i/) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k i 1

]E[X’] — 27;1]E[Xi ' Y,/] |r ||.'.|| .] ® n products |

® m=n/k boxes, k=loglog(n)

a X'=5% X; Y/

® X;, products in box i

® E, (i), number empty boxes in

box i and k closest
. Y/, indicator Ex(i/) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \
v ki ® m=n/k boxes, k=loglog(n)
(law of total expectation) — 4=0 E[X,' - Yi, ’ Ek(ll) — 1{] : Pr[Ek(i) = é] a X'=5% X; Y/
® X;, products in box i
® E, (i), number empty boxes in

box i and k closest
. Y/, indicator Ex(i/) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

EX pectat i o n Of X , Karlsruhe Institute of Technology
k+1
n_ N m .y Al k+1empty r < N N
BIXT =2 i BXi Y " gox rempty = x;, =0 '8l e | |%nproducts

v K1 . _ ® m=n/k boxes, k=loglog(n)
(law of total expectation) = » ", 1 E[X,' - Yi, ’ Ek(l) = Z] : Pr[Ek(l) = é] a X'=5% X; Y/
® X;, products in box i
® E, (i), number empty boxes in
box i and k closest
. Y/, indicator Ex(i/) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k jt 1
]E[X,] — Zlnll {E[Xi ' Y,/]J |r ||...|| .\| ® n products |
| v K41 _ _ ® m=n/k boxes, k=loglog(n)
(law of total expectation) = » , E[Xi : YI.' ’ Ek(’) — e] : PI’[Ek(I) — [] o X' =Y X;-Y/
K _ _ ® X;, products in box i
=2 oo E[Xi - Y/ | Ex(i) = 4] - Pr[Ex(i) = {] ® £, (i), number empty boxes in

box i and k closest
. Y/, indicator Ex(i/) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k jt 1
]E[X,] — Zlnll {E[Xi ' Y,/]J |r ||...|| .\| ® n products |
| v K41 _ _ ® m=n/k boxes, k=loglog(n)
(law of total expectation) = » , E[Xi : YI.' ’ Ek(’) — e] : PI’[Ek(I) — [] o X' =Y X;-Y/
K _ _ ® X;, products in box i
= > 0o E[Xi - Y/ | Ex(i) = 4] - Pr[Ex(i) = {] ® £, (i), number empty boxes in

No empty box = Y/ =0 box i and k closest
’ = Y/, indicator Ex(i) > 0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ \ et
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

; k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y' ’ Ek() — Z] Pr[Ek() = K] a X' =% X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] 0 Ek(i), number empty boxes in

k) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ \ et
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

; k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y' ‘ Ek() — Z] Pr[Ek() = Z] a X' =% X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] 0 Ek(i), number empty boxes in

k) _ box i and k closest
— ZezlgE[X,- | Ex(i) = el' PrlEx(i) = ¢ = Y/, indicator E(i) >0

ExYpected number of products in box i,
knowing that exactly £ boxes are empty

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’
k jt 1
E[X'] = Zfll {E[Xi ' Y,/]J |r @ ®| .\| ® n products)
| v K41 _ _ ® m=n/k boxes, k=loglog(n)
(law of total expectation) = » , E[Xi : YI.' ‘ Ek(’) — Z] : PI’[Ek(I) — [] o X' =Y X;-Y/
K _ _ ® X;, products in box i
=2 oo E[Xi - Y/ | Ex(i) = 4] - Pr[Ex(i) = {] ® E,(i), number empty boxes in

k : _ box i and k closest
= 2 41 EIXi | Ex(i) = 4] - Pr[Ex(i) =] = v/, indicator E,(i) > 0

ExYpected number of products in box i,
knowing that exactly £ boxes are empty

m Box/iempty? = X; =0

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ \ et
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

v k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y’ ‘ Ek() — Z] Pr[Ek() — [] o X' =Y X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi Y | Ek(’) — Z] ' Pr[Ek(/) = f] 0 Ek(i), number empty boxes in
box i and k closest

— ZLQE[X:' | Ex(i) = 4] - PriE(i) = ¢ = Y/, indicator E(i) > 0
ExYpected number of products in box i,
knowing that exactly £ boxes are empty
m Box/iempty? = X; =0
m Else: n products distributed u.a.r. over m" = m — £ boxes

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ \ et
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

v k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y’ ‘ Ek() — Z] Pr[Ek() — [] o X' =Y X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi Y | Ek(’) — Z] ' Pr[Ek(/) = f] 0 Ek(i), number empty boxes in
box i and k closest

— ZLQE[X:' | Ex(i) = 4] - PriE(i) = ¢ = Y/, indicator E(i) > 0
ExYpected number of products in box i,
knowing that exactly £ boxes are empty
m Box iempty? = X; =0
® Else: n products distributed u.a.r. over m' = m — E boxes
< k

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’

AT

e of Technology

k+1
A N ~N

EXT =325 EXi - Y] i

||...|| o | ® n products

v
(law of total expectation) = k+1]E[X Y' ‘ Ek() — Z] Pr[Ek() = Z] a X' =% X;-Y/

— Zgzo E[X;i-Y! | Ex(i) =4] - PrlEx(i) =4] |= Ex(i), number empty boxes in
= 1 EIXi | Ex(i) = 4] - PriEx(i

® m=n/k boxes, k=loglog(n)

® X;, products in box i

box i and k closest
) = {] = Y/, indicator Ex(i) > 0

ExYpected number of products in box i,
knowing that exactly £ boxes are empty

m Box iempty? = X; =0
® Else: n products distributed u.a.r. over m' = m — E boxes

Maximilian Katzmann, Stefan Walzer — Probability & Computing

<k

! —log log(n)

m' 2> log Iog(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)

EXT =325 EXi - Y]

(law of total expectation) — j{:_(;l

— ZLO E[Xi-Y/ | Ex(i) = €] - PrlEx(i) = €] |m Ex(i), number empty boxes in
= ZLQE[X,- | Ex(i) = Zl- PrlEx(i) = {] ® Y/, indicator E(i) > 0

AT

Karlsruhe Institute of Technology

r

k+1
||...|| .\| ® n products)

E[X, . Yi, ‘ Ek(l.) = Z] - PI’[Ek(I) = K] m X = ZX,. : y,.’

® m=n/k boxes, k=loglog(n)

® X;, products in box i

box i and k closest

ExYpected number of products in box i,
knowing that exactly £ boxes are empty

m Box/iempty? = X; =0
m Else: n products distributed u.a.r. over m' = m — £ boxes

Maximilian Katzmann, Stefan Walzer — Probability & Computing

()
< k
/ n
M’ 2 TogTog(n) ~'08 08(7)
(for nlarge enough) > %W

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)

EXT =325 EXi - Y]

(law of total expectation) — é:_(;l

— ZLO E[Xi-Y/ | Ex(i) = €] - PrlEx(i) = €] |m Ex(i), number empty boxes in
= ZLQE[X,- | Ex(i) = Zl- PrlEx(i) = {] ® Y/, indicator E(i) > 0

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology
Ao

r N .
| ||o.¢|| ° | ® n products

® m=n/k boxes, k=loglog(n)
E[X, . Yi, ‘ Ek(l.) = Z] - PI’[Ek(I) = K] m X = ZX,. : y,.’

® X;, products in box i

box i and k closest

Expected number of products in box i,

knowing that exactly £ boxes are empty

m Box/iempty? = X; =0

m Else: n products distributed u.a.r. over m' = m — £ boxes

L E[X; | Ex(i) = 4] = 2 < 2log log(n) <k

m' > ————loglog(n)

— log log(n)

1 n
(for n large enough) > 2 log log(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ (for nlarge enough) \ oo
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

; k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y' ’ Ek() — Z] Pr[Ek() = K] a X' =% X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] 0 Ek(i), number empty boxes in

k) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

<Y, 2loglog(n) - PrlEx(i) =]

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expectation of X’ (for nlarge enough) \ oo
k+1
E[X'] =25 EIX - Y] | Jls’sl e | |®nproducts \

; k 1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) = +]E[X Y' ’ Ek() — Z] Pr[Ek() = K] a X' =% X;-Y/
, _ _ = X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] 0 Ek(i), number empty boxes in

k) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

< 341 2loglog(n) - PrlE,(i) = 4
= 2log log(n) Zéf:l Pr[Ex(i) = {]

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

<2k (1-3)"

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

1 n
<2k (1-7)
e
a product hits a given box

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)

Karlsruhe Institute of Technology
Ao

E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \
V i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — eio E[Xi : YI.' ’ Ek(i) — Z] : Pr[Ek(i) — [] o X' =Y XY
B , _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] ® E,(7), number empty boxes in

k : _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< Z?:l 2 loglog(n) - Pr[Ex(i) = {]
= 2loglog(n) >_,_, PrlEx(i) = 4]
< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[*A given box is empty”]
<2k(1-4)"

%_J. .
a product does not hit a given box

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ’ Ek(ll) _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~N

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

<2k (1-)"

none of the n prod[Jcts hit a given box

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32 E[Xi - Y] L el e |

(law of total expectation) i é:_(;l E[Xi , Yi, ‘ Ek(l') _ e] . Pr[Ek(,’) — []
=3 s oBIX; - Y/ | Ex(i) = €] - Pr[Ex(i) = {]
= Y o EIXi | Ex(i) = 4 - Pr[Ex(i) =]
<Y 41 2loglog(n) - PrlE(i) = 4]
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)

a X' =% XY/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

<2k (1-)"
=2k(1-%)"

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)
k+1

Karlsruhe Institute of Technology

EXT =325 EXi - Y] L el e |

(law of total expectation) i j{:_(;l]E[X,- . Yi, ‘ Ek(l') = Z] . Pr[Ek(i) — é]
= 3 4o BIXi - Y/ | Ex(i) = £] - Pr[Ex(i) = 4]
= 3o BIX | Ex(i) = 4 - PriE()) =]

® n products

® m=n/k boxes, k=loglog(n)

a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

® Y/, indicator Ex(i) > 0

_

~

<Y o1 2loglog(n) - PrEx(i) = 4
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

< 2k (1 - %)n (1+x <€)
=2k (1—%)" <2k.e*

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)
k+1

Karlsruhe Institute of Technology

EXT =325 EXi - Y] L el e |

(law of total expectation) i j{:_(;l]E[X,- . Yi, ‘ Ek(l') = Z] . Pr[Ek(i) — é]
= 3 4o BIXi - Y/ | Ex(i) = £] - Pr[Ex(i) = 4]
= 3o BIX | Ex(i) = 4 - PriE()) =]

® n products

® m=n/k boxes, k=loglog(n)

a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

® Y/, indicator Ex(i) > 0

_

~

<Y o1 2loglog(n) - PrEx(i) = 4
= 2log log(n) LZéf:l Pr[Ex(i) = ZJ]

< Pr[“Exists an empty box among k + 1”]
(union bound) < (k + 1) - Pr[“A given box is empty”]

< 2k (1 - %)n (1+x <€)
=2k (1—%)" <2k.e*

Maximilian Katzmann, Stefan Walzer — Probability & Computing

__ A~loglog(n)
=2 log(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X’ (for nlarge enough) %(IT

k+1

ogy

E[XT =X ELX - Y] | Jls’sl e | |®nproducts
v k . ® m=n/k boxes, k=loglog(n)
(law of total expectation) — +]E[X Y’ ‘ Ek() — e] Pr[Ek() — [] o X' =Y X;-Y/
, _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] Q0 Ek(i), number empty boxes in

k) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

~

<Y, 2loglog(n) - PrlEx(i) =]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expectation of X' (for nlarge enough) \“(IT

of Technolo

k+1

ogy

E[XT =X ELX - Y] | Jls’sl e | |®nproducts
v k . ® m=n/k boxes, k=loglog(n)
(law of total expectation) — +]E[X Y’ ‘ Ek() — e] Pr[Ek() — [] o X' =Y X;-Y/
, _ _ ® X;, products in box i
— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = Z] Q0 Ek(i), number empty boxes in

k) _ box i and k closest
=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = Y/, indicator E(i) >0

~

<Y, 2loglog(n) - PrlEx(i) =]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

log log(n)?
log(n)

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithm

S

Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k /)] ® X;, products in box i
— ZZ:O E[X" ' Y/ | Ek(’) — Z] ' Pr[Ek(’) — Z] ® E,(i), number empty boxes in

k : _ box i and k closest
=2 o1 E[Xi [Ex(i) = €] - PrlEx(i) = 4] = v/, indicator E,(i) > 0

<Y, 2loglog(n) - PrlEx(i) =]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

_~loglog(n)
< 2loglog(n) 2=t

__ loglog(n)?
=4 log(n)

\/

no_ m log log(n)?
E[X] — Zizl 4 log(n)

6 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 loglog(n)

log(n)
a1 loglog(n)?
=4 log(n)
v
m log log(n)? log log(n)?
E[X,] — Zizl 4 glog%rg)) =m-4 g|0g%f(7))

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32, E[Xi - Y] L el e |

oo EIX; Y/ | Ex(i) = 4] - Pr[Ex(i) = 4]
=3 ¢ o EIX; V! | Ex(i) = 4] - PrEx(i) = 4]
=3 o1 B[X; | Ex(i) = €] - PrEx(i) = 4]

<> ¢4 2loglog(n) - PrlE(i) = {]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

(law of total expectation) —

log log(n
< 2loglog(n) - 2|8<;)Tgn())
_ loglog(n)’
=4 log(n)
\/
"o m log log(n)? _ loglog(n)? n _ log log(n)?
E[X] — Zizl 4 log(n) m -4 log(n) ~ loglog(n) log(n)

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough)
k+1
E[X'] =32, E[Xi - Y] L el e |

oo EIX; Y/ | Ex(i) = 4] - Pr[Ex(i) = 4]
=3 ¢ o EIX; V! | Ex(i) = 4] - PrEx(i) = 4]
=3 o1 B[X; | Ex(i) = €] - PrEx(i) = 4]

<> ¢4 2loglog(n) - PrlE(i) = {]

= 2log log(n) Zéf:l Pr[Ex(i) = {]

(law of total expectation) —

log log(n
< 2loglog(n) - 2|8<;>Tgn())
. Ioglog(n)2
=4 log(n)
v
m log log(n)? log log(n)? n log log(n)?
E[X’] — Zizl4 glog%rg)) =m-4 glog%rg)) o n 4 glog%l(v))

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
a X' =% X;-Y/

® X;, products in box i

® E,(7), number empty boxes in
box i and k closest

. Y/, indicator Ex(i/) > 0

~

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 log log(n)

log(n)
__ g loglog(n)?
=4 log(n)
E[X’] ; Zm 4|0g log(n)® - m- 4|0g log(n)? _ n _4Iog log(n)? —n. 4|og log(n)
i=1 log(n) log(n) lo n log(n) log(n)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

6

Expectation of X’ (for nlarge enough) A“(IT
k+1
E[X] =32 EIX: - Y] | Jis’sl e | |®nproducts \

; i1 ® m=n/k boxes, k=loglog(n)
(law of total expectation) — ZIO E[Xi : YI.' ‘ Ek(l.) — Z] : Pr[Ek(,’) — [] X' =Y XY/

k , _ _ = X;, products in box i

— Ze:o IE‘Z[Xi ' Y, | Ek(’) — Z] ' Pr[Ek(/) = f] ® E,(7), number empty boxes in
k] _ box i and k closest

=2 o1 E[Xi | Ex(i) = 4] - Pr[Ex(i) = {] = v/, indicator E,(i) > 0

< 3 41 2loglog(n) - PriEk(i) = 4

= 2log log(n) Zéf:l Pr[Ex(i) = {]

< 2loglog(n) - 0 loglog(n)

log(n)
__ loglog(n)?
=4 log(n)
\J
m log log(n)>? log log(n)? n log log(n)? log log(n
EX =2 214 ?Tog%,(’)) =m-4 glog%rg)) — o A glog%'(v)) =n-4 E>g(%;7()) =o(n) v

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'egleln)

log(n)

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

Concentration of X (for nlarge enough)
Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

/)
(.. Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

® Bounded differences condition:

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

Bounded Differences = n products)
® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n g 2E

/)
(s Zgy) — F(n Z0,)| < A
for all j and Z;, Z;

® Bounded differences condition:
= Worst change in number of products in short chains
when moving a single product from one box to another

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/)
(... Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

L J

oo © o0
L I [Il |eelee]e]| ofeef [| | |
oo > > > > > > > > > > > > O

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/)
(... Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

L J

oo O o0
L Il [Il |eellee]oe]| ofeef [| | |
oo > > > > > > > > > > > > O

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

(for n large enough)

Concentration of X

Bounded Differences
® View X as a function (24, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product
® Bounded differences condition:

= Worst change in number of products in short chains
when moving a single product from one box to another

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

= Consider chain of 2k 4+ 1 boxes containing all n products
and one box contains only one of them L

/)
(... Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

L J

oo O o0
L Il [Il |eellee]e| oeef [| | |
oo > > > > > > > > > > > > O

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

(for n large enough) A“(IT

Karlsruhe Institute of Technology

Concentration of X

Bounded Differences = n products)
® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another \E[X] <E[X'] < 4n ig(gn)

» Consider chain of 2k + 1 boxes containing all n products o Z)= Zh) <)
oz L2)| < A
and one box contains only one of them L ’

for all j and Z;, Z;

L J

oo O o0
L Il [Il |eellee]e| oeef [| | |
oo > > > > > > > > > > > > O

= X = 0, since no short chain and, thus, no products in short chains

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products ,;r(Z V- Z) <A
oz L2)| < A
and one box contains only one of them L ’

for all j and Z;, Z;

°

oo © m o0

L LIl ||ee|ee| e]| e |eef | [| |
Q. 2 2 2 2 2 2 2 2 2 2 2 2 2 0

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products Lf(Z V- Z) <A

and one box contains only one of them

oo O e OO0
L Il [Il |eellee] | ojeef [| | |
oo > > > > > > > > > > > > O

for all j and Z;, Z;

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products Lf(Z V- Z) <A

and one box contains only one of them

oo O e OO0
L Il [Il |eellee] | ojeef [| | |
oo > > > > > > > > > > > > O

for all j and Z;, Z;

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box
= X = n, since all products in short chains now

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

® View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i

® Bounded differences condition: S Moot £ A el de

= Worst change in number of products in short chains log log(n)
when moving a single product from one box to another | EIX] < E[X'] < 4n=56s=

» Consider chain of 2k + 1 boxes containing all n products Lf(Z V- Z) <A

and one box contains only one of them

oo O e OO0
L Il [Il |eellee] | ojeef [| | |
oo > > > > > > > > > > > > O

for all j and Z;, Z;

= X = 0, since no short chain and, thus, no products in short chains
= Move product to next box A;<n
= X = n, since all products in short chains now

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X] < 4n' 580

/)
(.. Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

® Bounded differences condition: A; < n

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences
® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
® Bounded differences inequality:

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n g 2E

for all j and Z;, Z;

(s Zjy o) — F(Z0)| < A

Pr[f > cg(n)] < e 2((c—Ds(m)* /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences
® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
® Bounded differences inequality:

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n g 2E

for all j and Z;, Z;

(s Zjy o) — F(Z0)| < A

Pr[f > cg(n)] < e 2((c—Ds(m)* /A,

Function f(Z1, ..., Z»):
® 7/, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences
® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
® Bounded differences inequality:

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n g 2E

for all j and Z;, Z;

(s Zjy o) — F(Z0)| < A

Pr[f > cg(n)] < e 2((c—Ds(m)* /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
0 Bounded differences inequality:

ZJ 1A2 < Z_/r',zl n2 — n3

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X] < 4n%

(o Zjso) = £ 25 < A

for aIIJ and Z; Z’

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;

— Zj:l AJ?
 g(n) > E[f]

Pr[f > cg(n)] < e 2((c—Ds(m)* /A,

Concentration of X (for nlarge enough)

Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
0 Bounded differences inequality:

n log log(n
=Y A<y =0 g(n)= 4n|gngn())

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X] < 4n%

for aIIJ and Z; Z’

(o Zjso) = £ 25 < A

Pr[f > cg(n)] < e 2(c—Ds(m)* /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;

— Zj:l AJ?
 g(n) > E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
0 Bounded differences inequality:

n log log(n
=Y A<y =0 g(n)= 4n|gngn())

2 log log(n) \ °
2(c — 1) <4n € log()

log log(n)
log(n)

Pr| X >c4n <exp | —

n3

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X] < 4n%

for aIIJ and Z; Z’

(o Zjso) = £ 25 < A

Pr[f > cg(n)] < e 2((c=Ds(m) /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
— Zj:l AJ?
w g(n) = E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration of X (for nlarge enough)

Bounded Differences

® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

® Bounded differences condition: A; < n
0 Bounded differences inequality:

n log log(n
=Y A<y =0 g(n)= 4n|gngn())

2 log log(n) \ °
2(c — 1) <4n € log()

log log(n)
log(n)

Pr| X >c4n <exp | —

n3

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X] < 4n%

for aIIJ and Z; Z’

(o Zjso) = £ 25 < A

Pr[f > cg(n)] < e 2((c=Ds(m) /A,

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
— Zj:l AJ?
w g(n) = E[f]

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough) g

Bounded Differences ® n products
m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

: e ® X;, products in box i
= Bounded differences condition: A; < n a v, indicator i in short chain

0 Bounded differences inequality: log |
n og log(n E Xl < EIX'l < 4n>& og(n)
ZJ 1A2<Zj:1 n2 — n3 g(n):4n% [X] < E[X'] < el

A S)
log | — loz (1 oraIIJandZ Z’
Pr| X > can'8 og(n)] <exp | — : og(n) | :
log(n) n Function (21, ..., Z»):
® 74, ..., Z, independent
log Iog(n)2 ® bounded differences A;
= exp (—@ (nlog(n)?)> BA=Y" A
® g(n) > E[f]
Pr[f > cg(n)] < e 2((c=Ds(m) /A,

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough) g

Bounded Differences ® n products
m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

: e ® X;, products in box i
= Bounded differences condition: A; < n a v, indicator i in short chain

0 Bounded differences inequality: log |
n og log(n E Xl < EIX'l < 4n>& og(n)
ZJ 1A2<Zj:1 n2 — n3 g(n):4n% [X] < E[X'] < el

o1 () [aada s @ IES
log | — loz (1 oraIIJ andZ Z’
Pr| X > can'8 og(n)] <exp | — : og(n) | :
log(n) n Function (21, ..., Z»):
w7, ..., Z, independent
log log(n)? ® bounded differences A;
= exp (—@ (nlog(n)?)> BA=Y" A
— = g(n) > E[f]
= o(1) Pr[f > cg(n)] < e 2((c=Ds(m) /A,

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough) g

Bounded Differences ® n products
m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product BX=2 XY

: e ® X;, products in box i
= Bounded differences condition: A; < n a v, indicator i in short chain

0 Bounded differences inequality: log |
n og log(n E Xl < EIX'l < 4n>& og(n)
ZJ 1A2<Zj:1 n2 — n3 g(n):4n% [X] < E[X'] < el

o1 () [aada s @ IES

log | — oz(n oraIIJandZ Z’

Pr| X > can'8 og(n)] <exp | — : log(n) | :
log(n) n Function (21, ..., Z»):

® 74, ..., Z, independent
log log(n)? ® bounded differences A;
:exp(_@(g g())>n—>oo . J

. n 2
nlog(n)? =2 =18
- ® g(n) > E[f]
= o(1) Pr[f > cg(n)] < e 2((c=Ds(m) /A,

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Concentration of X (for nlarge enough)

Bounded Differences = n products)

m View X as a function f(Z1, ..., Z,) of independent rand. var. |® m=n/k boxes, k=log log(n)
where Z; for j € [n] denotes the box of the j-th product X=XV

® X;, products in box i
® Y;, indicator / in short chain

E[X] < E[X'] < 4n'egleln)

= Bounded differences condition: A; <'n
® Bounded differences inequality:

. n 2 n 2 3 . log lo |
A=Y M <Y] P=n g(n)=4n L 0
2 (o Zj) = F(n Z0) < A
2 log log(n) ~J ; J J
Pr| X > can'28 Iog(”)] < exp el <4" log(n)) el jent 2, Z,
N log(n) | — n3 Function f(Zs, ..., Z»):)
® 74, ..., Z, independent
. . 2 i .
Th;sir?(?eucv%rlztisaeslgss, oo (_@ (Ioglog(n))> oo, :bAOLindZesl dggrences A,
changes are too big nlog(n)? = =15
- ® g(n) > E[f])
= o(1) Pr[f > cg(n)] < e 2(c=De(m)7/A

7 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

7

Concentration of X (for nlarge enough)

Bounded Differences
® View X as a function f(Z, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; <'n
® Bounded differences inequality:

A=3] 07<Y] n=n g(n)=4n LEP

log(n)
o o (n) 2(C o 1)2 <4nloig Iog(n))2
Pr| X >c4dn 596 <exp | — s
log(n) fis
This bound is useless, 2
since worst-case — exp (—@ (Iog log(n)))H—Oo> 1
changes are too big nlog(n)?

(& J
¥ Y

But this case (all products in few boxes) is super unlikely...

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

Karlsruhe Institute of Technology

® n products

® m=n/k boxes, k=loglog(n)
B X =3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'Eloz(n)

/)
(.. Zj,..) — (... Z;,)| < A4
for all j and Z;, Z;

Function f(Z1, ..., Z»):
® 7, ..., Z, independent

® bounded differences A;
BA= Zj:l AJ?
w g(n) = E[f]

Pr[f > cg(n)] < e 2((c=Ds(m) /A,

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Method of Typical Bounded Differences

Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S" and
m parameters A2 < A, for i € [n],
if 1F(X1, o0 Xiy oo X)) — F(X1, o, X3, Xp)| <

{Af‘, if (X1, ..., Xiv ooy Xn) € A,
forall i € [n] and X;, X! € S.

A;, otherwise

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Method of Typical Bounded Differences

Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S" and

m parameters A2 < A, for i € [n],

if F(X1, oo, Xy, X)) — F(Xq, oo, XE, o, X)) <
forall i € [n] and X;, X! € S.

= A7 is worst-case change, assuming A held before the change

Af‘, if (X1,.... X;, ..., Xn) € A
A;, otherwise

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Method of Typical Bounded Differences

~N

Definition: A function f: S” — R satisfies the typical bounded differences condition
with respect to

manevent AC S” and
= parameters A < A; for i € [n],)

it (X1, ..., X, ..., Xp) € A
- . _ X <o P
|f ‘f(X]_y --.1X17 ---,Xn) f(X]_, 1Xl’ ’Xn)| — {A i OtthWlse
forall i € [n] and X;, X! € S.

= A7 is worst-case change, assuming A held before the change

Theorem: Let X3, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A2 < A;. Then, for g(n) > E[f], for all ; € (0, 1] and

A=Y (DA + (A — — AA))2: Prif > cg(n)] < e—(c=De(m)?/(A) | pr-A] S

i€[n] s,

\

N
Coro”ary Of L“On the Method of Typical Bounded Differences”, Warnke, Comb. Probab. Comput. 2015

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 (A +ei(A - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

i€[n] e,

.

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A =3 cm(Af +ei(Di— — AP Pr[f > cg(n)] < e~((c=De(m)/(2A) 4 pr[-A] S

i€[n] e,

.

® Function of independent random variables as before

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A =3 cm(Af +ei(Di— — AP Pr[f > cg(n)] < e~((c=De(m)/(2A) 4 pr[-A] S

i€[n] e,

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 (A +ei(A - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 (A +ei(A; - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before

= We still consider general worst-case changes as before

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cn(AF +ei(A; - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before

= We still consider general worst-case changes as before

= But we can use the ¢g; to mitigate the worst-case effects

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Method of Typical Bounded Differences A“(IT

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cin(AF + (A - — AP Pr[f > cg(n)] < e~((c=De(m)/(28) 4 pr[-A]'S

\

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before

= We still consider general worst-case changes as before

= But we can use the ¢g; to mitigate the worst-case effects

®= And focus on the worst-case changes, assuming A held before the change

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cn(AF +ei(A; - — AR): Pr[f > cg(n)] < e~(c=De(n)?/(2A) 4 pr-A] S

\

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change

m But we have to pay for the mitigation!

Method of Typical Bounded Differences

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cin(AF + (A - — AP Pr[f > cg(n)] < e~((c=De(m)/(28) 4 pr[-A]'S

\

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change
m But we have to pay for the mitigation!
= With the probability that the good event A does not occur

Method of Typical Bounded Differences

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cin(AF + (A - — AP Pr[f > cg(n)] < e~((c=De(m)/(28) 4 pr[-A]'S

\

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change
m But we have to pay for the mitigation!

= With the probability that the good event A does not occur
= Multiplied with the inverse mitigators

Method of Typical Bounded Differences

i€[n] e,

8 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

8

Karlsruhe Institute of Technology

Method of Typical Bounded Differences

Theorem: Let X1, ..., X,, be independent random variables taking values in a set S, let
A C S" be an event, and let f: S" — R satisfy the typical bounded differences condition
w.r.t. A and parameters A? < A;. Then, for g(n) > E[f], for all ¢; € (0, 1] and

A=3 cin(AF + (A - — AP Pr[f > cg(n)] < e~((c=De(m)/(28) 4 pr[-A]'S

.

® Function of independent random variables as before
m A is the good, typical event that should be very likely to occur
® A is sum of squared worst-case changes as before
= We still consider general worst-case changes as before
= But we can use the ¢g; to mitigate the worst-case effects
®= And focus on the worst-case changes, assuming A held before the change

= But we have to pay for the mitigation! The more we need to mitigate,

i icel
= With the probability that the good event A does not occur N?ti:éggsé ti?j\?:f,g;y

= Multiplied with the inverse mitigators likely to occur!

i€[n] e,

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product
= Bounded differences condition: A; < n

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

Karlsruhe Institute of Technolo

o

9y

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
= When all n products fall into 2k + 1 = O(log log(n)) boxes

Maximilian Katzmann, Stefan Walzer — Probability & Computing

SKIT

stitute of Technolo

o

9

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
= When all n products fall into 2k + 1 = O(log log(n)) boxes

® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

Maximilian Katzmann, Stefan Walzer — Probability & Computing

SKIT

stitute of Technolo

o

9

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

log(n)

E[X] < E[X'] < 4n'ogleln)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
a When all n products fall into 2k + 1 = O(log log(n)) boxes
® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 3 ;%7 E[B;] = O(log log(n)?)

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
a When all n products fall into 2k + 1 = O(log log(n)) boxes
® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 3 ;%7 E[B;] = O(log log(n)?)

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

~N

» So typically a sequence should contain way fewer than n products

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
= When all n products fall into 2k + 1 = O(log log(n)) boxes

® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 3 ;%7 E[B;] = O(log log(n)?)

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
= When all n products fall into 2k + 1 = O(log log(n)) boxes

® But expected number of products in a single box i:
E[Bj] = & = —1— = loglog(n)

m log log(n)

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 3 ;%7 E[B;] = O(log log(n)?)

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = ¥ 71" E[Bi] = O(log log(n)?)
» So typically a sequence should contain way fewer than n products

m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = 357" E[Bi] = O(log log(n)?)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 +€)g(n)] < e~ /38"

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 +€)g(n)] < e~ /38"

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 4+ ¢)g(n)] < e—€/3g(n) — g—&/3-8log(n)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 + €)g(n)] < e~ /38(n) = g=¢"/34log(n) — p=5¢°/3

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = Y X' E[B;] = O(log log(n)?) < &log(n) =: g(n) (forany § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
a Chernoff: For g(n) > E[S]: Pr[S > (1 + €)g(n)] < e~ /38(n) = g=¢"/3-8log(n) — p—6¢"/3

L
for a single sequence

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. dt 8
. : . ® n products
where Z; foU e [n] denote.s. the box of the j-th product a m—n/k boxes, k=log log(n)
= Bounded differences condition: A; < n =X =Y XV
= When all n products fall into 2k + 1 = O(log log(n)) boxes |= X;, products in box i
= But expected number of products in a single box i: ® Y;, indicator 7 in ShOftl Chlaifz)
n n / og log(n
E[BI] —m Ioglgg(n) ~ |Og |Og(n) \E[X] S E[X] S 4nW

= And, thus, expected number in sequence of 2k + 1 boxes
E[S] = leg'l E[B;] = O(loglog(n)?) < dlog(n) =: g(n) (for any § > 0 and suffciently large n)
» So typically a sequence should contain way fewer than n products
m Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}
® See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
= Chernoff: For g(n) > E[S]: Pr[S > (1 + £)g(n)] < e /38(n) = g=¢"/3-8log(n) — p—38¢°/3
= Union bound over < n sequences: Pr[—A] < n=%/3t1 < p= (for arbitrarily large)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

stitute of Technolo

o

9y

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

m Typical bounded differences condition:

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

stitute of Technolo

o

9y

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

m Typical bounded differences condition:

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'ogleln)

log(n)

.

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. = 5
. : . ® n products
where Z; fgrj e [n] denote.s. the box of the j-th product & m=n/k boxes, k=loglog(1)
® Bounded differences condition: A; < n =X =Y XV
= Typical event A = {“Every sequence of 2k + 1 boxes = X;, products in box i
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary) ® Y;, indicator i in short chain
= Typical bounded differences condition: E[X] < EB[X'] < 4n" g

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

= Moving one product empties at most one box

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Karlsruhe Institute of Technology

o

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var. “_’_’_’_’_’_’_’_’_’_’_’_’_’_’_"’d : 5
. : . ® n products
where Z; fgrj e [n] denote.s. the box of the j-th product & m=n/k boxes, k=loglog(1)
® Bounded differences condition: A; < n =X =Y XV
= Typical event A = {“Every sequence of 2k + 1 boxes = X;, products in box i
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary) ® Y;, indicator i in short chain
= Typical bounded differences condition: E[X] < EB[X'] < 4n" g

.

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

= Moving one product empties at most one box = at most two new short chains

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

m Typical bounded differences condition:

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

(- _J
Y

contain O(log(n)) products

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

= Moving one product empties at most one box = at most two new short chains
= Assuming A, these short chains combined contain O(log(n)) products

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

m Typical bounded differences condition:

= Worst change in f when moving a product from one box
to another, assuming A held before the move

Q2 2 2 2 2 2 2 2 2 2 2 2 2 O

(- _J
Y

contain O(log(n)) products

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

~N

= Moving one product empties at most one box = at most two new short chains
= Assuming A, these short chains combined contain O(log(n)) products = A7 =0O(log(n))

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: A7=0(log(n))

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=loglog(n)

B X=3 XY
® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n

log log(n)
log(n)

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7/, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
® bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

=3 (A% 4 g(A; - AY))

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +g(D; - AN

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

=Y L (A +gi(A; =A&T))?
<Y (A 4 giA)

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +g(D; - AN

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

=Y L (A +gi(A; =A&T))?
<Y (A 4 gA)

9 Maximilian Katzmann, Stefan Walzer — Probability & Computing

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +g(D; - AN

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

A=Y7 (A + (A =&
<Y (A 4 gA)

<> 21(O(log(n)) + &;n)?

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o
~

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +g(D; - AN

® g(n) > E[f]

Pr[f > cg(n)] < e~ ((c=D&(n)*/(22)
n 1

== Pr[—lA] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

A =37 (A% + (D) =AT))
<3 (Af SJAJ)2ﬁMitigators, arbitrary € (0, 1]!
<3/ 1(O(log(n)) + g;n)?

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +g(D; - AN

® g(n) > E[f]

Pr[f > cg(n)] < e~ ((c=D&(n)*/(22)
n 1

== Pr[—lA] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

A =3 1(AF + (D) =AT)) &=+
<3 (Af SJAJ)2ﬁMitigators, arbitrary € (0, 1]!
<3/ 1(O(log(n)) + g;n)?

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +g(D; - AN

® g(n) > E[f]

Pr[f > cg(n)] < e~ ((c=D&(n)*/(22)
n 1

== Pr[—lA] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

A=3" (A% + (D) —AT))? g =1
< ZJL(AJA + SJAJ)2ﬁMitigators, arbitrary € (0, 1]
<> 71(O(log(n)) +gjn)?
=3 ;_1(O(log(n)) + 1)°

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +g(D; - AN

® g(n) > E[f]

Pr[f > cg(n)] < e~ ((c=D&(n)*/(22)
n 1

== Pr[—lA] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Af‘ —0(log(n))
= Typical bounded differences inequality:

A =30 (AF + (D) A7) gj =1
< ZJL(AJA + SJAJ)2ﬁMitigators, arbitrary < (0, 1]!
<3 _1(O(log(n)) +gjn)?
=3 1(0(log(n)) + 1)?
= O(nlog(n)?) Much better than n® from before!

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +g(D; - AN

® g(n) > E[f]

Pr[f > cg(n)] < e~ ((c=D&(n)*/(22)
n 1

== Pr[—lA] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: A7=0(log(n))

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

= Typical bounded differences inequality:
A = O(nlog(n)?) g =1

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +g(D; - AN

u g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: A7=0(log(n))

o

AT

e of Technology

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n'°&leln)

log(n)

~N

= Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n|°i§(g;()n) g =1

.

Function f(Z;,

en Zn):

® 7, ..., Z, independent
® typical event A
= bounded differences A < A,

BA=Y" (A +gi(; - AM))

® g(n) > E[f]

Prf > cg(n)] < e~ (== 1)g(n))2/(2A)

+ Pr[—lA] Z 1 sJ

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n|°i§(g;()n) g =1

(_ (c —1)2 (4n%)2
\ O(nlog(n)?)

-+ PI’ﬁA] ijl é

log log(n)

Pr| X >c4n
log(n)

] < exp

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n=g 28

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

® g(n) > E[f]

Pr[f > cg(n)] < e~(c—De(m)*/@2a)
n 1

o PI’[—|A] Zj

:1€_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[-A] < n™ (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n|°i§(g;()n) g =1

(_ (c —1)2 (4n%)2
\ O(nlog(n)?)

-+ PI’ﬁA] ijl é

log log(n)

Pr| X >c4n
log(n)

] < exp

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o

~N

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n=g 28

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

® g(n) > E[f]

Pr[f > cg(n)] < e~(c—De(m)*/@2a)
n 1

o PI’[—|A] Zj

:1€_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Z4, ...,
where Z; for j € [n] denotes the box of the -t

= Bounded differences condition: A; < n
m Typical event A = {*
contains O(log(n)) products™}, Pr[-A] < n—*

» Typical bounded differences condition: AJA —
m Typical bounded differences inequality:

A =O(nlog(n)?) g(n)=4ngEn ¢ 1

] < exp (—Q (n

)
+ Pr[=A] Z —1 gJ

log log(n)
log(n)

log log(n)
log(n)*

Pr| X >c4n

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Every sequence of 2k + 1 boxes
(for arbitrary)

Karlsruhe Institute of Technology

o

Z,) of independent rand. var. 5

® n products

® m=n/k boxes, k=
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

h product log log(n)

O(log(n))

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

® g(n) > E[f]

Pr[f > cg(n)] < e~ 1)g(n))2/(2A)
+ PI’[—|A] Z 4 sJ

.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Z4, ...,

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {*
contains O(log(n)) products™}, Pr[-A] < n—*

» Typical bounded differences condition: AJA —
m Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n'elstn) . _ 1

log(n)

log log(n)?
log(n)*

= O(l/n
-+ PI’[ﬁA] Z 1 sj

Pr|i X >

log log(n)
c4n gog(gn)] <exp((

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Every sequence of 2k + 1 boxes
(for arbitrary)

O(log(n))

Karlsruhe Institute of Technology

o

Z,) of independent rand. var. 5

® n products

® m=n/k boxes, k=
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

log log(n)

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Pr[f>cg(n)] < e~ ((c=1)g(n))? /(2A)
+Pr[-A[XL, SJ

.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Z4, ...,

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {*
contains O(log(n)) products™}, Pr[-A] < n=*

» Typical bounded differences condition: AJA —
m Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n'elstn) . _ 1

log(n)

log log(n)?
log(n)*

= O(l/n
-+ PI’[—|A] Z 1 sj

Pr|i X >

log log(n)
c4n gog(gn)] <exp((

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Every sequence of 2k + 1 boxes
(for arbitrary \)

O(log(n))

Karlsruhe Institute of Technology

o

Z,) of independent rand. var. 5

® n products

® m=n/k boxes, k=
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4nkeloe(t)

log log(n)

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

u g(n) > E[f]

Pr[f>cg(n)] < e~ ((c=1)g(n))? /(2A)
+Pr[-A[XL, SJ

.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Z4, ...,
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[=A] < n= (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

_ 2 L log log(n)
A = O(nlog(n)*) g(n)=4n ig(gn) g =1
log log(n) on |
Pr| X >c4dn < exp ((og Og('Z)))
log(n) log(n)*)),
= O(l/n

+ Pr[=A] Z —1 gJ

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Z,) of independent rand. var.

Karlsruhe Institute of Technology

o

® n products

® m=n/k boxes, k=
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n

log log(n)

log(n)

log log(n)

~N

.

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

A= Zj:l

® g(n) > E[f]

Pr[chg(n)] < e ((c—1)g(n))? /(2A)
-+ PI’[—|A] Z 1 sJ

(A} + (A — AF))?

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Zy, ..., Z,) of independent rand. var.
where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {“Every sequence of 2k 4+ 1 boxes
contains O(log(n)) products”}, Pr[=A] < n= (for arbitrary)

= Typical bounded differences condition: Aj‘ = 0(log(n))
= Typical bounded differences inequality:

A = O(nlog(n)?) g(n) = 4n|°i§(g;()n) g =+

log | 2
Pr| X > can—2 Og(”)] < exp <_Q (nloglog(n)))

log(n) C log(n)*
~0(1/n)
+ PI’[—|A] Zn 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

o
~

® n products

® m=n/k boxes, k=loglog(n)
aX=> XY

® X;, products in box i

® Y;, indicator / in short chain

E[X] < E[X'] < 4n=g 28

.

N

Function f(Z1, ..., Z»):

® 7, ..., Z, independent

® typical event A

= bounded differences A < A,

BA=Y" (A +gi(; - AM))

® g(n) > E[f]

Pr[f > cg(n)] < e~(c—De(m)*/@2a)
n 1

o PI’[—|A] Zj

:15_J.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

9

Application: The Factory (2nd Try)

® View X as a function f(Z4, ...,

where Z; for j € [n] denotes the box of the j-th product

= Bounded differences condition: A; < n
m Typical event A = {*

Every sequence of 2k + 1 boxes
contains O(log(n)) products™}, Pr[-A] < n=*

Karlsruhe Institute of Technology

o

Z,) of independent rand. var. 5

® n products

® m=n/k boxes, k=
B X=3 XY

® X;, products in box i

® Y;, indicator / in short chain

log log(n)

(for arbitrary \)

= Typical bounded differences condition: A7=0(log(n)) E[X] < E[X'] < 4n%
= Typical bounded differences inequality: — 3
, log log(n) " Function f(Zi, ..., Z,):
A = O(nlog(n)*) g(n)=4n og(n) £ = = ® 7;, ..., Z, independent
® typical event A
log log(n) ou | ® bounded differences A# < A;
Prl X > < og log(n))) n
Xy | = o (2("5)) " A= 57,8 +e(d -)Y
N O(l/n) ® g(n) > E[f]
+ProA Pr[f > cg(n)] < e~ 1)g(n))2/(2A)
A Z -1 EJJ v +Pr[-A] > L sJ

<n

Maximilian Katzmann, Stefan Walzer — Probability & Computing

O(i/n)forx=3 \

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very-high—degree vertices in social networks

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Geometric Inhomogeneous Random Graphs A“(IT

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very-high—degree vertices in social networks

E T T T T T T T T T T T TS
sk -
10% YouTube -
F . 3
>10 S - =
O = =
5. i
3
2 10 =
o = 3
ofF -
10 =
F -
10 . =
o v vvnd vl T Tl

-y
o
o

—
o
w

10" 10° 10° 10*
Degree (d)

-
o

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very—high—degree vertices in social networks

RRLLL B R AL AL B AL
YouTube -
g . s
[} =
C -
G .
o =
o .
w —=
: E
10°1— WRTIT AR ATTTY AR hwvrr AR ARt Y lILHi
1h° 10 10? 10° 10° 10°
Degree (d)

(most vertices small degree)

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very—h@h—degree vertices in social networks

T

it

IHIHHl THIHII[IIHI[H| NIIIHIII TTTT

YouTube

Frequency

\\Ilm IIIII[IJ] JIIIILIJ] II[II[II| IIII|IJJJ 111

100 Covod vl 0 T 1':|'1'||u1| Ll
1h° 10 10° 10° 10°
. Degree (d)
(most vertices small degree)
(few vertices very high degree)

—
o
w

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very—h@h—degree vertices in social networks

T

it

IHIHHl THIHII[IIHI[H| NIIIHIII TTTT

Realistic representation: power-law distribution YouTube

L“Scale—free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019]

Frequency

\\Ilm IIIII[IJ] JIIIILIJ] II[II[II| IIII|IJJJ 111

100 Covod vl 0 T 1':|'1'||u1| Ll
1h° 10 10° 10° 10°
. Degree (d)
(most vertices small degree)
(few vertices very high degree)

—
o
w

10 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

10

AT

Geometric Inhomogeneous Random Graphs

Motivation
® Average-case analysis: analyze models that represent the real world

® Models seen so far
® Erdos-Rényi random graphs: simple but no locality

= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very—high—degree vertices in social networks

» Realistic representation: power-law distribution B \|(ouTu'|be
L“Scale—free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019] " E?

m Pareto distribution: X ~ Par(a, Xmin) 1 E
i () x> cx—@tD) i x> X = =
X) = . :

X 0, otherwise e E
ool ol o Tt el

—
o
w

100 0 1 2 3 n
1h° 10 10 50" 10
' egree
(most vertices small degree) gree (d)
(few vertices very high degree)

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

10

AT

Geometric Inhomogeneous Random Graphs

Motivation

® Average-case analysis: analyze models that represent the real world

® Models seen so far

® Erdos-Rényi random graphs: simple but no locality
= Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)
Not realistic: celebrities are very-high—degree vertices in social networks

m Realistic representation: power-law distribution

T HIHHl T HIHII[I IHHH[T IIIIHII T TTTITH

YouTube

L“Scale—free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019]

m Pareto distribution: X ~ Par(a, xm;n)

a | y—(a+1) if x > :
ax X , T X 2 Xmin
f)((X) { min

0, otherwise

Idea
w Add Pareto distribution to RGGs

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Frequency

\\Ilm IIIII[H] \IIIILIJ] II[I][II| IIII|IJJJ

100 Covod vl 0 T x':|'1'|nu| Ll
1h° 10 10° 10° 10°
. Degree (d)
(most vertices small degree)
(few vertices very high degree)

—
o
w

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
® Consider n vertices

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢

; T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢

: T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢

= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7

“Power-Law Exponent”

: T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
A

“Power-Law Exponent”

Wy

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A

WV
dist(x,, x,) < (AM)l/d

n

“Power-Law Exponent”

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢

= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7

“Power-Law Exponent”

® Connect v and v with an edge, iff ' .
Ldist(xu, XV)J < (A%)l/d
Loo-ﬁorm
T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

11

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight

T
0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

11

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

T
0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

x < N\
- n

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > hox

Aw,,

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

XSA%@)/Z o x mmmmmmeee -0

Aw,,

T
0 Xy 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

XSA%@)/Z B x mmmmmmeeee -0

Aw,,

T
0 Xy 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > o x

Aw,,

T

0 X:V XX:L, 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > o x

Aw,,

T

0 X:V XX:L, 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

w,, -y n
XS)\T@_)/Z >\WVX O\

0 1

T

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A r

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

W, -y n
XSATE Sy 2 Rn \

T
0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A r

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > o x

w, \
\ \ "

0 1

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A r

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > o x

Aw,,

T

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

SKIT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A r

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > o x

Aw,,

T

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

11

Karlsruhe Institute of Technology

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A .

Wy
kdist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

x <AL oy>Ax pmmmmmmeeees

Aw,,

® The lower w,, the steeper the wedge = [el “ °6 o o s00 5§
Ls- The lower the degree 0 8

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

11

AT

Geometric Inhomogeneous Random Graphs

Definition
m Consider n vertices
m For each vertex v independently:
= Draw a position x, uniformly on T¢
= Draw a weight w, from Par(t —1,1)forT € (2,3) = f,, (w) = (T — L)w™ 7
® Connect v and v with an edge, iff A

Wy
fjist(Xu,Xv)J < ()\M)l/d

n

“Power-Law Exponent”

Loo—ﬁorm const. controls the avg. degree

® For d = 1, linear relation between distance
and weight y = w,, x = dist(x,, x,)

X <AL &y > X

Aw,,

m The lower w,, the steeper the wedge , a2 RN AR ,
Ls The lower the degree 0 8

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG i
® n independent vertices
® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® 4, v adjacent iff
dist(xy, x,) < AH

-

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG)

= We want to compute E[deg(v) | w,] : n indcza}c)(e[(r)ldle];]t vertices
Xy v ,

®w, ~ Par(t —1,1) for r € (2, 3)
fWV(W) = ('T — 1)W_T

® y, v adjacent iff
dist(xy, x,) < AH

_

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

= Consider vertex v with weight w, GIRG)
= We want to compute E[deg(v) | wy] ® n independent vertices
: = x, ~U([0, 1])
This is a random variable ®w, ~ Par(t —1,1) for 7 € (2,3)

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

-

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

= Consider vertex v with weight w, GIRG)
= We want to compute E[deg(v) | wy] ® n independent vertices
i W R = x, ~ U([0, 1])
This is a random variable ®w, ~ Par(t —1,1) for 7 € (2,3)

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

-

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indcza}c)(e[(r)ldle];]t vertices
Xy ~ ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)
fu (W) = (1 —)w

® y, v adjacent iff
dist(xy, X,) < AZe

.

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) = 2 Levigvr Xu) fwv(wgi = (Tt—.ﬁ1)w—7
u, v adjacent i
dist(xy, x,) < AH

.

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indcza}c)(e[(r)ldle];]t vertices
Xy ~ ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

deg(v) =2 ,evipny Xu o, (W) = (T —)w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

.

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T —)w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

=(n—1)-Pr[{u,v} € E | w] -

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "
; dj t iff
E[deg(v) ‘ WV] — ZUEV\{V} E[XU | WV] - lei(iufitiné I)\Wu'Wv
—(n—1)-Pr[{u,v} € E | w,] \ -
N
= O(n)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T —)w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

= O(nPrl{u, v} e E|w]) \

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(n Pr[iu, v} € EJ | wy])

u e |N(v)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

GIRG

® n independent vertices

" x, ~U([0,1])

®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "

® y, v adjacent iff
dist(xy, x,) < AH

~N

w.l.o.g x, = % VT/
A

N(v)

0

1
2

T
1

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)
m Consider vertex v with weight w, GIRG)
= We want to compute E[deg(v) | wy] ® n independent vertices

m Consider X, for v € V' \ {v} indicating whether {u, v} € E :);.,va:%g[:)(}l]_) 1,1) for T € (2,3)

deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "
® y, v adj tiff
Eldeg(v) | m] = ¥ ev vy EWXu | W] G ldacent
= O(nPr[{u, v} € E | w,]) wlogx =3 ~
C . J A
ue|N(v) N(v)
(. ~ _J
This is not the area of the|shape
since weights are not distributed uniformly!
o
- T
0 1 1
2

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Expected Degree (d = 1)
m Consider vertex v with weight w, GIRG)
= We want to compute E[deg(v) | wy] ® n independent vertices

m Consider X, for v € V' \ {v} indicating whether {u, v} € E :);.,va:%g[:)(}l]_) 1,1) for T € (2,3)

deg(v) = 2 vy Xu fuy (W) = (7~ 1w
® y, v adjacent iff
Eldeg(v) | w] = > evgvy ElXu | wi] dist(xp x,) < A
uc N(v) N(v)
(. ~ _J
This is not the area of the|shape
since weights are not distributed uniformly!
= Use law of total probability to account for that
o
- T
0 1 1

2

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

= O(n [[Prlue N(v)|wy=w, w,|fy,|w, (w)dw)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

®w, ~ Par(t —1,1) for r € (2, 3)

~N

w.l.o.g x, = % VT/
A
N(v)
°
T
0 % 1

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

= O(n [Prlue N(v)|w,=w, WV]fWU|WV(W)JdW)

Density of w, conditional on w, but
weights are drawn independently

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AT

stitute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

1 L
2 W
A

N(v)

0

1
2

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

~N

1 L
2 W
A

N(v)

0

1
2

T
1

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) = 2_uev\{vy Xo fu () = (T = Dw "
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [Prlue N(v)|wy,=w, w,|f,, (w)dw) 1 N(v)

T
1

1
2

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} X,
Eldeg(v) | wo] = 2 jev g3 ElXu | w1
= O(nPr[{u,v} € E|w])

Karlsruhe Institute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

~N

1 L
2w
A

= O(n [Prlue N(v)|wy,=w, w,|f,, (w)dw) N(v)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,

= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu

Eldeg(v) | wi] = X uev\ vy ElXu [wi]

= O(nPr[{u,v} € E|w])
= O(n [Prlue N(v)|wy,=w, w,

-

Karlsruhe Institute of Technology

GIRG
® n independent vertices

= x, ~ U([0, 1])

fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

w.l.o.g x, =

®w, ~ Par(t —1,1) for r € (2, 3)

~N

1 L
2w
A

[fw, (w)dw) N(v)

T R

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Y

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]
® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E|w]) wlogx, =3 &
A

= O(n [Prlue N(v)|w,=w, WVLfWu(W)dW)

-

Y

T R

Case 1:w < - = A% < 1

2wy, n

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

AT

Expected Degree (d = 1) g

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indcza}c)(e[(r)ldle];]t vertices
Xy ~ ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

deg(v) = 2_uev\{vy Xo fu () = (T = Dw "
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:PF[XL,E[— A 1—|—>\""‘”""]]

)\ :
$:2>\W,\;vv: W,‘;Vv) W : x - n :

Case 1:w < 550~ = A% <

<
<
I
I
[
[
[
[
I
I
1
1
<
=

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

AT

Expected Degree (d = 1) g
® Consider vertex v with weight w, GIRG)
a We want to compute E[deg(v) | w,] :)': irfzp(?(;‘dﬁ;‘t vertices
® Consider X, for v € V'\ {v} indicating whether {u,v} € E | g _ Par(r — 1,1) for € (2,3)
deg(v) = 2_,ev\fvy Xu fur (W) = (7 = 1)w™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

— O(nPr[{u,v} € E | w)]) wlogx =3 &~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:Pr[xug[— N, 1+,\WWv]]

Case 1: w < 5t = A < 3 = 2\ = Q(M)
Case 2: w > 5t = A" > 3

1
2

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

AT

Expected Degree (d = 1) g
m Consider vertex v with weight w, GIRG)
a We want to compute E[deg(v) | w,] :)': iTZp(ngﬁ?t vertices
® Consider X, for v € V'\ {v} indicating whether {u,v} € E | g _ Par(r — 1,1) for € (2,3)
deg(v) = 2_ v\ g3 Xu fur, (W) = (7 = L)w™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

— O(nPr[{u, v} € E | w)]) wlogx =3~ —

= O(n [Prlue N(v)|w,=w, WV]fWu(W)dW) 1 N(v)

:Pr[xug[— N, 1+,\WWv]]

Case 1: w < 5t = A < 3 = 2\ — (i)
Case 2: w > 5t = A" > 3 =1

1
2

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T —)w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

1

= O(nPr[{u,v} € E| w]) wlogx =3 %
= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (JP 22 fy (w)dw + %1+ oy, (w)dw))

2wy,

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (S 22 fy (w)dw + %1+ oy, (w)dw))

g 2wy, p

= Prlw, > 2>\”WV]

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

.

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

m Consider vertex v with weight w, GIRG

= We want to compute E[deg(v) | w,] : n indzpegdfnt vertices
= Consider X, for u € V' \ {v} indicating whether {u, v} € E |a " p(a[r(}]_)) fore e (2.3

deg(v) =2 ,evipny Xu o, (W) = (T —)w™"
_ ® y, v adjacent iff
Eldeg(v) | wi] = 2_,ev\ vy ElXu | W] st x,) < A2

1

= O(nPr[{u,v} € E| w]) wlogx =3 %
= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

=0 (n (S 2 fy, (w)dw + [T 1 oy, (w)dw))

g 2wy, p

= Prlw, > 50.-]

If w, > 5%, then 2A’;Vv <1

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w,
= We want to compute E[deg(v) | w,]

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

:@(n(flmvv ' w)dw + [, 1-fWu(W)dW))

g 2wy,

> J
- [n
n n = Pr[w, > 2}\Wv]
If w, > 5%, then T <1 |
= Prlw, > 1] =1

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

_

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

~

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2 ev\ gy Xu

Eldeg(v) | wv] = 2 sev\ vy ElXu [wi]
= O(nPr[{u,v} € E| w]) w.l.o.g x, =
= O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

:@(n(flmvv ' w)dw + [, 1-fWu(W)dW))

g 2wy,

> _J
— Pr:WU Z 2}\nw]
Ifwv>2f;,then2;;w<1< 0
f@(n) = Prlw, > 1] =1

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

_

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 —L)w™ "
® y, v adjacent iff
dist(xy, x,) < AH

~

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

= We want to compute E[deg(v) | w,] = : n i”dzp(ngﬁ;t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

deg(v) = 2_,ev\{v3 Xu fuo (W) = (T = L)w ™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

= O(nPr[{u,v} € E|w]) w.l.o.gx =3 \ —
Ifw, < & = O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

n

= © (n (flm e, (w)dw + Priw, > 2>‘an]))

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
If w, < % :@(nfloOPF[UGN(V)|Wu:W’ Wv]fwu(W)dW)
— 0 (n (flm %fwu(w)dw _|_LPr[WU > 2>\nwvl))

—(t—1)
)

(via CDF of Par) = (5%

Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

.

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
Fwe <55 = O(n [Prlue N(v) | wy =w, wy]f,, (w)dw)
=0 (n (S efu, (w)dw + Prlw, > 53 1))
(via CDF of Par) M (ZA"WV) —(r=1)
_ (M)T_l

Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

.

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
Ifw, < & = O(n flooPr[ue N(v)|w,=w, w,]f, (w)dw)
=06 (n (flﬁ %fwu(w)dw + Prw, > 2>\”WV]))
(via CDF;f Par) — (ZA”Wj)_(T_l)
= (Zue)™
<1

Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

.

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

12

Expected Degree (d = 1)

» Consider vertex v with weight w, o(n), if w, > A
a We want to compute E[deg(v) | w,] =

® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = Zuev\{v} Xy
Eldeg(v) [wv] = > yevy\fvy EIXu | wi]

= O(nPr[{u,v} € E| w]) w.l.o.g x, =
If wy, < =& = O(n flooPr[ue N(v)|w,=w, w,]f, (w)dw)

22
n

=© (n (flm o fu, (w)dw +LPr[W“ = 2>\nwvl))
(via CDF of Par) ;

Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

2

Karlsruhe Institute of Technology

.

GIRG
® n independent vertices

® x, ~U([0, 1])
®w, ~ Par(t —1,1) for € (2, 3)
fw, (W) = (7 = 1)w™"
® y, v adjacent iff
dist(xy, x,) < AH

~N

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Expected Degree (d = 1)

= We want to compute E[deg(v) | w,] = : n i”dzp(‘igdﬁ;‘t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

deg(v) = 2_,ev\{v3 Xu fuo (W) = (T = L)w ™"
Eldeg(v) | w] = > evgvy ElXu | wi] oo) < A

= O(nPr[{u,v} € E|w]) w.l.o.gx =3 \ —
Ifw, < & = O(n [Prlue N(v)|wy,=w, w,]fy, (w)dw)

_ 0 (n (f12>\’\7/vv wwe f (w)dw + Prw, > 2>\nwv]))

n

~0 (n R %fwu(w)dw) + O(wy)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w, O(n), if w, > L
= We want to compute E[deg(v) | w,] =
® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

- O(n [°Prlue N(v)|wy=w, wy]f, (w)dw)
S (n(e ot =)
= © (n [P wan, (W)dW) +0(w,)
(fl”wv (1 —1)w™ wa) + O(wy)

If w, <

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

1

= @(n Prl{u,v} € E | w,]) w.lo.gx = 3

.

GIRG
® n independent vertices

® x, ~U([0, 1])

®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 — 1)w™"

® y, v adjacent iff
dist(xy, x,) < AH

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Expected Degree (d = 1)

m Consider vertex v with weight w, O(n), if w, > L
= We want to compute E[deg(v) | w,] =
® Consider X, for u € V \ {v} indicating whether {u, v} € E

deg(v) = 2_,ev\fvy Xu
Eldeg(v) | wv] = 2 evfvy BIXu | wi/]

» O(n [°Prlue N(v) [wu=w, w]f, (w)dw)
=0 (r (ff“”v b P 2)
=0 (n [P et (w)dw) +O(w)
(fl”wv (T — 1w TdW) +0(w)
—0 (Wv ff*Wv W_(T_l)dW) + O(wy)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing

If w, <

Karlsruhe Institute of Technology

1

= @(n Prl{u,v} € E | w,]) w.lo.gx = 3

.

GIRG
® n independent vertices

® x, ~U([0, 1])

®w, ~ Par(t —1,1) for r € (2, 3)
fw, (W) = (7 = 1)w™"

® y, v adjacent iff
dist(xy, x,) < AH

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Expected Degree (d = 1)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

= We want to compute E[deg(v) | w,] = : n i”dzp(‘igdﬁ;‘t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

deg(v) = 2_,ev\fvy Xu oy (W) = (T =)w™
, v adjacent iff
Eldeg(v) | wy] = ZueV\{v} E[Xy | wy] : Zlis‘;(iufitir; I)\M
= e(n Pri{u, v} e E|w]) wlogx, =3 \
Ifw, < 22 flooPr[UE N(v)|w,=w, w,]f,, (w)dw) n

6 (525 =t Pl 1) == 0o [))0t
=0 (n [P e, (w)dw)w(wv)

=0 (n% [w (7~ LwTdw) + O(w)
= (wv 7 w—“—”dw) +0(w,)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Expected Degree (d = 1)

= Consider vertex v with weight w, {@(n), if w, > 2% | GIRG

= We want to compute E[deg(v) | w,] = : n i”dzp(‘igdﬁ;‘t vertices
Xy ,

® Consider X, for u € V' \ {v} indicating whether {u,v} € E |, w, ~ Par(t —1,1) for 7 € (2, 3)

deg(v) = 2_,ev\fvy Xu oy (W) = (T =)w™
_ ® y, v adjacent iff
Eldeg(v) | wo] = 2 uevy gy BIXu [Wi | dist(x, x) < At
= @(n Prl{u,v} € E | w,]) wlogx, =3 &
Ifw, < 22 flooPr[UE N(v)|w,=w, w,]f,, (w)dw) n
=0 (n(ff“”v W;Vv fu (W)dw + Prlwy > 52])) o= e(wv w7 i*wv)w(wv)
(j‘12)\wv w- WV f (W)dW) —|— O(WV) :@(WV [W—(T_2)]1)) 4+ O(Wv)

(fl”WV (1 — Lw™ wa) + O(w,)
=0 (WV ffAWV W_(T_l)dW) + O(w,)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Expected Degree (d = 1)

m Consider vertex v with weight w, O(n), if w, > L GIRG |
= We want to compute E[deg(v) | w,] = . '”dzpegdf”t {Eliices
= Consider X, for u € V/\ {v} indicating whether {u,v} € E | oo oo
deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "

_ ® y, v adjacent iff
Eldeg(v) [v = 2 uev vy ELXu | W] | dist(x, x) < At

= @(n Prl{u,v} € E | w,]) wlogx, =3 &

Ifw, < 22 flooPr[UE N(v)|w,=w, w,]f,, (w)dw) n
((fleWV W,‘,’VV fw, (W)dw + Prlw, > 50—)) —=0 (WV [ﬁ W—('r—2)} 12””)4_O(WV)
(flzkwv Tt (W)dW) + O(wy) :@(WV [W_(T_2)]12A,V,VV) + O(w,)

— 0 EWV flflwww ('rTl)dBWJF j(“;/)v)ﬂt O(wy) :@< (1 _ (ZAWV>—<T_2))) +O(w)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Expected Degree (d = 1)

m Consider vertex v with weight w, O(n), if w, > L GIRG |
= We want to compute E[deg(v) | w,] = . '”dzpegdf”t {Eliices
= Consider X, for u € V/\ {v} indicating whether {u,v} € E | oo oo
deg(v) = 2_uev\{v3 Xu fuy (W) = (7 — D)w "

_ ® y, v adjacent iff
Eldeg(v) [v = 2 uev vy ELXu | W] | dist(x, x) < At

= @(n Prl{u,v} € E | w,]) wlogx, =3 &

Ifwy < 2% f1°°Pr[ueN(v)|Wu:W, wy] fw, (w)dw) i
((ff“”” W,YV” fw, (W)dw + Prlwy, > 570)) = @(wv [ﬁ W—<T—2>]12*WV)+0(WV)
(f12>\wv Wl f (W)dW) + O(w,) :@(WV [W—(T—2)]12Acv) +O(w)
(ff“”v (1 —1)w™ ‘fdw) +0(w,) :@< (1 B (DWV)V—(T—z))) O
=© (WV J W_(T_l)dw) +0(w) Z1and 0(1)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

m Consider vertex v with weight w, O(n), if w, > 3% GIRG)
a We want to compute E[deg(v) | w, | = ©(w,), otherwise : " indnggdﬁ;ﬂ vertices

= Consider X, for u € V' \ {v} indicating whether {u, v} € E 0 ;‘//\,: Par(’T —1,1) for 7 € (2, 3)
deg(v) = Y evigvy Xu fu (W) = (T — w™

® y, v adjacent iff

Expected Degree (d = 1)

Eldeg(v) | wy] = ZUGV\{V} E[Xy | w] dist(xu, x,) < AHLEv
:@(nPr[{u vieE | w)]) w.l.o.gx =3 \ —
Ifw, < 22 (n [Prlue N(v)|wy=w, w,]fy, (w)dw) n
((ff“”” Wr‘;"Vf w)dw + Prlw, > aw,)) (WV (T —W —(T— 2)]12AWV)+O(WV)
=0 (n [P wehy, (w)dw) +O(w,) —0(w, [w3]",) +0(w,)
2>\Wv _ T _ T—2
(f21 § _’Tl) L)w™ dw) + O(wy) (<1 B (szwv) ())) L O(w)
=© (Wv i w dW) +0(wy) = O(w,) < 1and O(1)

12 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT

Karlsruhe Institute of Technology

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT

Karlsruhe Institute of Technology

Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
(also works with other weight distributions)

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT

Karlsruhe Institute of Technology

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT

Karlsruhe Institute of Technology

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT
Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

m Locality (not seen here) v (also works with other weight distributions)
Algorithmic Properties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Bldsius, Fischbeck, ACM Trans. Algorithms 20231

m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Network Model
Chung-Lu
—o— Erdés Rényi

GIRG

0.0
heterogeneity

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT

Karlsruhe Institute of Technology

Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

m Locality (not seen here) v (also works with other weight distributions)
Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 2023]
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

—

Network Model
Chung-Lu
—o— Erdés Rényi

GIRG

0.0
heterogeneity

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

13

AT

Are GIRGs Realistic?

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

Algorithmic PrOpertieS L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

>

Network Model

s = GIRGs without geometry / ER with weights

—e— Erdés Rényi

locality

GIRG

0.0
heterogeneity

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

13

AT

Are GIRGs Realistic?

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

Algorithmic Properties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

o I

Basically random geometric graphs

Network Model

- o = GIRGS without geometry / ER with weights

—e— Erdés Rényi

locality

GIRG

0.0
heterogeneity

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic? A“(IT
Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

m Locality (not seen here) v (also works with other weight distributions)
Algorithmic Properties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blésius, Fischbeck, ACM Trans. Algorithms 2023]
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

® Measure algorithmic properties on GIRGs and real graphs

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Are GIRGs Realistic?

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
m Locality (not seen here) v (also works with other weight distributions)
Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 2023]
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search search space n*: x = n rof - 1 e 10 @

02 04 06 08 1.0 networks
Generated Networks Real-World Networks Real-World (Aggregated)
1.00 =
*. % y ; " . bt .
- S .

0.7) @
pe ’
= 0.50
o
2

0.25

0.00 -

L L) | 1 L) L) L) I 1 | L) I L] 1 |) L)
-1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 05 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

heterogeneity

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Are GIRGs Realistic?

Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

m Locality (not seen here) v (also works with other weight distributions)
Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 2023]
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search nr. BFS n*: x— » wof - 1 e 10 @ o
2 D t t t . BFS 0.25 0.0 0.75 1.00 networks
Iame er Compu a Ion Vla Generated Networks Real-World Networks Real-World (Aggregated)
1.00 ‘ .
0.75 o (3
b
= 0.50 1
3
0.25
P Ao »
0.00 4 - @
T T T T T T T T T T T T T T T T T T
-0 =05 00 05 1.0 15 -0 -05 00 05 10 15 -1.0 -05 00 05 10 1.5
heterogeneity

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Are GIRGs Realistic?

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231

m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search relative kernel size » wof .1 e 10 @ o
a Di ¢ t t : BFS 000 025 050 075 1.00 networks
Iame er Compu a Ion Vla Generated Networks Real-World Networks Real-World (Aggregated)
. 1.00
= \ertex cover kernel size :
0.75 -2 e
= 0.50 tees p o b
8 | seescl. ’2f g o]
—_:.. 'j' ‘,' % : [
0.25 VAL ™y, - @
U(](J- L]] |] |]] .‘I‘ .]] I]] : .I I 1 I 1
-1.0 -05 00 05 1.0 15 -0 -05 0.0 05 1.0 15 -1.0 -05 00 05 1.0 15
heterogeneity

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

13

Are GIRGs Realistic?

Structural Properties

AT

Karlsruhe Institute of Technology

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

® Locality (not seen here) v

(also works with other weight distributions)

Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231

m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search
= Diameter computation via BFS
= \ertex cover kernel size

= [ouvain clustering algorithm

locality

Maximilian Katzmann, Stefan Walzer — Probability & Computing

iterations N B nr. of 1 e 10 @ 100
310 30 100 300 networks
Generated Networks Real-World Networks Real-World (Aggregated)
o
@
[]
_ O
Qo
{ ®
: .
L]
T T T] T T T T T T T T T T T T T
1.0 -05 00 05 1.0 1.5 -1.0 -05 0.0 05 1.0 1.5 -1.0 =05 0.0 0.5 L0 1.5
heterogeneity

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

AT

Karlsruhe Institute of Technology

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
(also works with other weight distributions)

® Locality (not seen here) v

Algorith mic PrO perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231

m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search
= Diameter computation via BFS
= \ertex cover kernel size

= [ouvain clustering algorithm

= Number of maximal cliques

locality

Y rather structural property -4 0.25

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing

nr. cliques / m R | nr. of 1 @ 10 @ 100
0.25 050 0.75 1.00 networks
Generated Networks Real-World Networks Real-World (Aggregated)
= °
! . o o
NS ee00o0e - o
¢ ‘;- ALY e 0900000 ¢ o
ceo® :‘;.%f‘; - 00000 - -
.-Ji;.‘,i;.':q;" W N X N AR
. “'o. N N N N ECE "
1 _ I..
)]

T T T T
-0.5 0.0 0.5 1.0

heterogeneity

1
1.5

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Are GIRGs Realistic?

Structural Properties
® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v
N Loca“ty (not seen here) v (also works with other weight distributions)

Algorithmic Properties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 20231
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
® Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search kernel size n*: x = 2 wof - 1 e 10 @
. . . 000 025 050 075 1.00 networks
. Dlameter CompUtatlon Vla BFS Generated Networks Real-World Networks Real-World (Aggregated)
= Vertex cover kernel size e
: : : — by
= Louvain clustering algorithm A = i >
= Number of maximal cliques Fi o oo
Y rather structural property = 0.25 1 o %:3%:_: 00800
= Chromatic number kernel size ol et || CREERELS N | eeeete
-1.0 -05 0.0 0.5 1.0 1.5 -1.0 _(]‘.'uilet(‘ll{.)()ge[;i;ityl-“ 1.5 -1.0 -0.5 0.0 0 1.0 1

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Are GIRGs Realistic?

Structural Properties

® Heterogeneity: deg(v) ~ w,, w, ~ Par(7 — 1, 1) ~> power-law degree distribution v

m Locality (not seen here) v (also works with other weight distributions)
Algorith mic Pro perties L“On the External Validity of Average-Case Analyses of Graph Algorithms”, Blasius, Fischbeck, ACM Trans. Algorithms 2023]
m Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

@ Measure algorithmic properties on GIRGs and real graphs

= Bidirectional breadth-first-search kernel size n*: x— = ol .1 e 1 @ 10
a Di t t t . BFS 000 025 050 075 1.00 networks
Iame er Compu a Ion Vla Generated Networks Real-World Networks Real-World (Aggregated)
= Vertex cover kernel size e 5k
. . . — R
® [ouvain clustering algorithm o «* % *
= Number of maximal cliques g LI oo
L rather structural property—f 0.25 1 IR ‘o0 s
. . . .;fi:gm c 90000 .
= Chromatic number kernel size oo aeett | | AT TIT] |ce0@e ..
Use GIRGs for average-case analysis! o heteogenery

13 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Vertex Cover Approximation

Vertex Cover
= Given undirected graph G = (V, E)

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover
® Given undirected graph G = (V, E) (induced subgraph)

m Find a smallest S C V such that G[V' \ S] is edgeless

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .
® Given undirected graph G = (V, E) (induced subgraph) . *
r A) ‘
» Find a smallest S C V such that G|V \ S] is edgeless » °
@
° o
® o

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .
® Given undirected graph G = (V, E) (induced subgraph) . *
r A Al ‘
» Find a smallest S C V such that G|V \ S] is edgeless » °
@
a NP-complete o
® o

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .

= Given undirected graph G = (V, E) (induced subgraph) . . *

m Find a smallest S C V such that G[V' \ S] is edgeless » °
a NP-complete $ S
Vertex Cover Approximation o © .

® Find a small vertex cover S’ fast

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .

= Given undirected graph G = (V, E) (induced subgraph) . . *

m Find a smallest S C V such that G[V' \ S] is edgeless » °
a NP-complete $ S
Vertex Cover Approximation o © .

® Find a small vertex cover S’ fast
® Approximation ratio: r = |S’|/|S|

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .

= Given undirected graph G = (V, E) (induced subgraph) . . *

m Find a smallest S C V such that G[V' \ S] is edgeless » °
a NP-complete $ S
Vertex Cover Approximation o © .

® Find a small vertex cover S’ fast
® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° .

= Given undirected graph G = (V, E) (induced subgraph) . . *

m Find a smallest S C V such that G[V' \ S] is edgeless » °
a NP-complete $ S
Vertex Cover Approximation o © .

® Find a small vertex cover S’ fast
® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2
m Believed to be NP-hard for r < 2 — ¢ for const. ¢

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

[K o

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless °
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

| K o

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

AN

\

<

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

14

Vertex Cover Approximation

Vertex Cover

® Given undirected graph G = (V, E) (induced subgraph)
® Find a smallest S C V such that G[V \ S is edgeless
a NP-complete

Vertex Cover Approximation

® Find a small vertex cover S’ fast

® Approximation ratio: r = |S’|/|S|

» NP-hard to approximate with r < /2

m Believed to be NP-hard for r < 2 — ¢ for const. ¢

Practice
® Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer — Probability & Computing

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Vertex Cover Approximation A“(IT

Vertex Cover ° o

® Given undirected graph G = (V, E) (induced subgraph) <

® Find a smallest S C V such that G[V \ S is edgeless » °
a NP-complete 1 ¥
Vertex Cover Approximation
® Find a small vertex cover S’ fast

m Approximation ratio: r = |S’|/|S|
a NP-hard to approximate with r < /2
= Believed to be NP-hard for r <2 — g forconst. ¢~ |

Practice

0.98 -

mmmmmmmmmmmmmmmmmmmmmmmmmmm

m Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree i TpeRlRT R e apehn
= Close to optimal ratios on real graphs ST
L“Vertex Cover on Complex Networks”, Da Silva, Gimenez-Lugo, Da Silva, IIMPC 20131 s Networks : :

14 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Analsysis on GIRGs

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 20231

T

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Analsysis on GIRGs

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 20231
Keep it simple
m Consider vertices in order of decreasing degree in original graph

T

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs Q(IT

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph
m Consider vertices in order of decreasing weight

T

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs ﬂ(".

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph
m Consider vertices in order of decreasing weight

o <

AW,

T

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs A“(IT

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph
m Consider vertices in order of decreasing weight

AW, o

o <

/
THR 2
a % s) 2 A N W
. { 4§ { Y /! ; Vi, g

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs A“(IT

Karlsruhe Institute of Technology

(based on) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph
m Consider vertices in order of decreasing weight

AW, o

o @

/ 1 i
' N\ / e ! WV S§v, &\
') § : e " ’) >

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

AT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

AW,

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

AT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

m Greedy algorithm picks vertices at random

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW,

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

AT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

m Greedy algorithm picks vertices at random

® Improve quality by solving small separated

components exactly |0g|0'g(n)

15 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW,

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

15

Analsysis on GIRGs

AT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

m Greedy algorithm picks vertices at random

® Improve quality by solving small separated
components exactly o

. log log(n)
@ Two variants
® Search and solve small components
after each greedily taken vertex

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW,

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

15

Analsysis on GIRGs

AT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”,

Blasius, Friedrich, K., Algorithmica 2023]

Keep it simple

m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight

Learn from the Model

® Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

m Greedy algorithm picks vertices at random

® Improve quality by solving small separated
components exactly o

. log log(n)
® Two variants
® Search and solve small components
after each greedily taken vertex
= Take greedy until red line, solve small
components exactly, take rest greedy too

Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW,

1:; o:..;., 3._.3.‘0—-

0

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

15

Analsysis on GIRGs A“(IT

Karlsruhe Institute of Technology

(based On) L“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Blasius, Friedrich, K., Algorithmica 2023]
Keep it simple
m Consider vertices in order of decreasing degree in original graph

m Consider vertices in order of decreasing weight
Learn from the Model
® Once high-degree vertices are
taken/removed, remaining vertices have AW,
roughly equal weight/degree

m Greedy algorithm picks vertices at random

® Improve quality by solving small separated o
components exactly o

. log log(n) o
@ Two variants
® Search and solve small components 4
after each greedily taken vertex

o
° e o ‘
o
= Take greedy until red line, solve small '4w—'*° ,;-t IS 21 ;‘—‘,... &

components exactly, take rest greedy too i

This variant yields an upper bound on the
quality of the other

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology

cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio
(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex

IS

~N

with probability 1 — o(1)

AW, ®

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

ng_..:.;., ... o. 10_"0‘._.

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology

cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio
(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex

IS

~N

with probability 1 — o(1)

AW, ®

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

ng_..:.;., ... o. 10_"0‘._.

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology

(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~

Proof Approximation Ratio

= Differentiate greedily taken vertices S, from
ones in exactly solved components S, A Wy *

- ...,.;., .

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio A“(IT

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is
(1+ o(1)) asymptotically almost surely.

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S’ § Wy ?

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

= |Sel < [5] i
[]

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1:; o:..;.’ ..' .. }‘_.t.‘o—l

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology

(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S,

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

/
= |Se| < |S]

s IShIshl isiHshl . 1Sk
= r=T15= "5 S e S 1tTS

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW, o

- ...,.;.’ .

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Approximation Ratio

Karlsruhe Institute of Technology

(1+ o(1)) asymptotically almost surely.

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S’ of G can be computed in time O(mlog(n)) such that the approximation ratio is

~N

Proof Approximation Ratio
= Differentiate greedily taken vertices S, from
ones in exactly solved components S,

® For each small component, the optimal solution
S cannot contain fewer vertices than S; does

/
= |Se| < |S]

s IShIshl isiHshl . 1Sk
= r=T15= "5 S e S 1tTS

a |S| = Q(n) with prob 1 — o(1)

L“Greed is Good for Deterministic Scale-Free Networks”, Chauhan et al. FSTTCS 2016]

Remains to show: |S;| = o(n)

16 Maximilian Katzmann, Stefan Walzer — Probability & Computing

AW, o

- ...,.;.’ .

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices > t

Karlsruhe Institute of Technology

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of

vertices with weight at least t. Then, N,,>: = o(n) with probability 1 — O(1/n).

AW, o

t—w—"*.;.g .
0

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Analysis on GIRGs — Greedy Vertices > t

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N,,~: = o(n) with probability 1 — O(1/n).

Proof GIRG |
u Consider random variable X, = 1, >n ® nindependent vertices
= ®w, ~ Par(t—1,1) for T € (2,3)
AW, o
[
[]
o ° r
t 4w—l_..) s Py .. : 1 2 -
.’, O J‘o..‘ T
0 1

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices > t A“(IT

~N

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG |
= Consider random variable X, = 11,,>n ® n independent vertices
_ _ = ®w, ~ Par(t —1,1) for 7 € (2, 3)
m N, . is the sum of independent Bernoulli
= . AW, o
random variables
NWZt — ZVEV Xy
[
o
o
: .. o PS A o
[] ® Py -
t w ."’ ® jo‘o‘ T
0 1

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

17

Analysis on GIRGs — Greedy Vertices > t A“(IT

~N

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG
u Consider random variable X, = 1y, >4 ® nindependent vertices
_ _ . ®w, ~ Par(t—1,1) for T € (2,3)
o Ny is the.sum of independent Bernoulli w -
random variables Y
Ny>e = Zvev Xy
® Expectation .
E[Nu>el = ¥ ,cy EIX,] = nPrlw, > 1]
o
[
faou sty
‘ wl Y o’, 1 O 30_"0‘ ._.T
0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices > t A“(IT

~N

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG |
= Consider random variable X, = 11, >n : n '”degerzde”tl"elr)“fes .
- w, ~ Far\t — 1, orT ,
® N, > is the sum of independent Bernoulli w
random variables v A
NWZt — ZVEV Xv
® Expectation .
E[Nw>e] = 5 ,ey EX.] = nPriw, >
(via CDF of Par) = nt—(7—1) 2
° ° ® 45
o .. ® o
° ®
t w ."’ ‘ ® jo‘o‘ ._.T
0 1

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices > t A“(IT

~N

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIR.G |
u Consider random variable X, = 1y, >4 : n Indegerzdentlvir)tlfes o3
y w, ~ Par(t —1,1) for 7 ,

® N, > is the sum of independent Bernoulli w

random variables v A

NWZt — ZVEV Xv
® Expectation .

E[Nw>e] = 5 ,ey EX.] = nPriw, >

(via CDF of Par) = nt—{7—1) 2
(t=w(l), 7€ (2,3)) = o(n) X fi 0 o
o .. °® ([
® o
‘ w oS 1 o jo‘o‘ ._.T
0 1

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

~N

Analysis on GIRGs — Greedy Vertices > t

Lemma: Let G be a GIRG with n vertices, let t = w(1), and let N,,>; be the number of
vertices with weight at least t. Then, N, >: = o(n) with probability 1 — O(1/n).

Proof GIRG |
» Consider random variable X, = 1y, >n ® n independent vertices

_ _ _ ®w, ~ Par(t—1,1) for T € (2,3)
m N, . is the sum of independent Bernoulli

random variables A Wy .
NWZt — Zvev Xv
® Expectation)
E[Ny>¢] = Zvev E[X,] = nPr{w, > t]
(via CDF of Par) = nt—(7—1) o
(t=w(1), 7€ (23)) = o(n) i o °
= Since there is a g(n) € o(n) N Q(log(n)) with S T AL 94
g(n) > E[N,,>¢], Chernoff gives concentration) WP es Wt tAad s .

v 0 1

17 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices < t

AT

Karlsruhe Institute of Technology

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into

several components

AW,

‘o

o il dad o

0

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing

1

T

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Analysis on GIRGs — Greedy Vertices < t

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly

TR T LPNE T AT

0 1

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

Analysis on GIRGs — Greedy Vertices < t

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))

) Ve e Tl A e

0 1

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

Analysis on GIRGs — Greedy Vertices < t

t} e Wt WAl T S,

0 1

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

t} e Wt WAl T S,

0 1

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
m Discretize ground space into cells such that edges cannot span empty cells

"I RA e L8 B A v 9

0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
m Discretize ground space into cells such that edges cannot span empty cells

m Use lempty cells as delimiters between components
® Regard chains of non-empty cells as one component

20 515 QOID b (T2 12 1u% CO

0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
m Discretize ground space into cells such that edges cannot span empty cells

m Use lempty cells as delimiters between components
® Regard chains of non-empty cells as one component
® Count all vertices that are in chains containing > log log(n) vertices

(also potentially counting small components) tT:MI/\L‘H =T W
{ 1 { I T

= When does a chain contain too many vertices? 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells

20 515 QN0 b (B PP 1ak c

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small

20 B1'% GO0 Tudb (B LI IR L2

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small

® Proof via method of bounded differences!
Total number of cells in long chains does not change much (< 2k + 1) when one cell
moves from empty to non-empty (or vice versa) S k

20 515 QN0 b (B PP 1ak c

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Karlsruhe Institute of Technology

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 1 Too many cells in long chains, say > k cells
m Unlikely, if cells are small

® Proof via method of bounded differences!
Total number of cells in long chains does not change much (< 2k + 1) when one cell
moves from empty to non-empty (or vice versa) S k

® Use Poissonization to get rid of dependencies t% S0D € ol (T 20 1R O
{ | 1 1 T

0 1

Analysis on GIRGs — Greedy Vertices < t

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices

<loglog(n) < k > loglog(n)
vertices cells vertices

N N
t Y 1]
0 | | 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small

<loglog(n) < k > loglog(n)
vertices cells vertices

VS Ve

t Py ®

1 { I T
0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component
m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close
Case 2 Short chains (< k cells) contain too many vertices

m Unlikely, if cells are small
® Proof via method of typical bounded differences!
<loglog(n) <k > loglog(n)
vertices cells vertices

N N
t Y 1]
0 | | 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices

m Unlikely, if cells are small
® Proof via method of typical bounded differences!

| < log | <k >logl
= Imagine cells as boxes on conveyor belt < loglog(n) < og log(n)

vertices cells vertices

N N
t Y 1]
0 | | 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells vertices
= [magine vertices as products N N\

w
t 4 1~ |
| 1 { | T
0 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells vertices
= [magine vertices as products N N\

[] [} L] WV
= Typically not many vertices in few cells t = 5
1 | 1 1 T
0 1

18 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

18

Analysis on GIRGs — Greedy Vertices < t A“(IT

m After (the o(n)) vertices with weight > t are removed, the graph decomposes into
several components

= Components of size < loglog(n) are solved exactly
= | arger components are assumed to be taken greedily (need to show: these are o(n))
® Hard to determine how likely it is for a vertex to be in a large component

m Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close
Case 2 Short chains (< k cells) contain too many vertices
m Unlikely, if cells are small
® Proof via method of typical bounded differences!
: < loglog(n) <k > loglog(n)
= Imagine cells as boxes on conveyor belt vertices . cells vertices
= [magine vertices as products " N N\

= Typically not many vertices in few cells t = 5

{ I) 1
~~> wW.h.p., o(n) vertices in large components v/ ¢ 1

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

]
C o n CI u S I o n Karlsruhe Institute of Technology

Method of Bounded Differences
® Concentration for function of independent random variables

19 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

n
C o n CI u S I o n Karlsruhe Institute of Technology

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition
® What is the worst that can happen when changing one input?

19 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

AT

]
C o n CI u S I O n Karlsruhe Institute of Technology

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition

® What is the worst that can happen when changing one input?
m Chernoff-like bound, weakened by sum of squared worst changes

m Useless if worst changes are too large

19 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

19

Karlsruhe Institute of Technology

Conclusion

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition

® What is the worst that can happen when changing one input?
m Chernoff-like bound, weakened by sum of squared worst changes

m Useless if worst changes are too large

Method of Typical Bounded Differences |
m Define typical event, distinguish worst changes depending on whether event occurred

m Use mitigators to weaken impact of general worst changes
® Pay with probability that typical event does not occur, multiplied with inverse mitigators

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

19

Karlsruhe Institute of Technology

Conclusion

Method of Bounded Differences
® Concentration for function of independent random variables

® Bounded differences (“Lipschitz”) condition

® What is the worst that can happen when changing one input?
m Chernoff-like bound, weakened by sum of squared worst changes

m Useless if worst changes are too large

Method of Typical Bounded Differences |
m Define typical event, distinguish worst changes depending on whether event occurred

m Use mitigators to weaken impact of general worst changes
® Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs ! /R

= Pretty realistic graph model (heterogeneity, locality) b

= Not too hard to analyze (not discussed in lecture) X'{ K g
» Used for average-case analysis (e.g. vertex cover approximation) A VWA

Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

