

Probability & Computing

Bounded Differences & Geometric Inhomogeneous Random Graphs

Concentration Inequalities

Bound the probability for a random variable to deviate from its expectation

Karlsruhe Institute of Technology

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables

(simpler variants work, e.g., for sums of independent random variables)

k balls distributed uniformly at random over n bins

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables

k balls distributed uniformly at random over n bins

Random variable X counts empty bins

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

(simpler variants work, e.g., for sums of independent random variables) Today: similarly strong but beyond sums of independent Bernoulli random variables

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n]$

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- (simpler variants work, e.g., for sums of independent random variables) Today: similarly strong but beyond sums of independent Bernoulli random variables
- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- (simpler variants work, e.g., for sums of independent random variables) Today: similarly strong but beyond sums of independent Bernoulli random variables
- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$

(simpler variants work, e.g., for sums of independent random variables)

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ X_1 = 0 & X_2 = 1 & X_3 = 0 & X_4 = 1 & X_5 = 0 & X_6 = 0 \\ \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1] \\ = n \cdot \left(1 - \frac{1}{n}\right)^k \end{array}$$

(simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ X_1 = 0 & X_2 = 1 & X_3 = 0 & X_4 = 1 & X_5 = 0 & X_6 = 0 \\ \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1] \\ = n \cdot \left(1 - \frac{1}{n}\right)^k \\ \text{a ball falls into bin } i \end{array}$$

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ X_1 = 0 & X_2 = 1 & X_3 = 0 & X_4 = 1 & X_5 = 0 & X_6 = 0 \\ \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1] \\ = n \cdot \left(1 - \frac{1}{n}\right)^k \end{array}$$

(simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

a ball does not fall into bin i

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- k balls distributed uniformly at random over n bins \lfloor
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ X_1 = 0 & X_2 = 1 & X_3 = 0 & X_4 = 1 & X_5 = 0 & X_6 = 0 \\ \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1] \\ = n \cdot \left(1 - \frac{1}{n}\right)^k \end{array}$$

(simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

k balls do not fall into bin i

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$

$$\sum_{X_1=0}^{n} X_2 = 1 \quad X_3 = 0 \quad X_4 = 1 \quad X_5 = 0 \quad X_6 = 0$$
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$$
$$= n \cdot \left(1 - \frac{1}{n}\right)^k$$
$$\approx n \cdot e^{-k/n}$$
$$n \to \infty$$

(simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$
- Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$

$$\sum_{X_1=0}^{n} X_2 = 1 \quad X_3 = 0 \quad X_4 = 1 \quad X_5 = 0 \quad X_6 = 0$$
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$$
$$= n \cdot \left(1 - \frac{1}{n}\right)^k$$
$$\approx n \cdot e^{-k/n}$$
$$n \to \infty$$

2 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$
- Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$
 - Markov:

Markov: X non-negative, a > 0: Pr[$X \ge a$] $\le \mathbb{E}[X]/a$.

$$\sum_{X_1=0}^{n} X_2 = 1 \quad X_3 = 0 \quad X_4 = 1 \quad X_5 = 0 \quad X_6 = 0$$
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$$
$$= n \cdot \left(1 - \frac{1}{n}\right)^k$$
$$\approx n \cdot e^{-k/n}$$

 $n \rightarrow \infty$

()

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Example

2

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$
- Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$
 - Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}}$

Markov: X non-negative, a > 0: Pr[$X \ge a$] $\le \mathbb{E}[X]/a$.

$$\sum_{X_1=0}^{n} X_2 = 1 \quad X_3 = 0 \quad X_4 = 1 \quad X_5 = 0 \quad X_6 = 0$$
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$$
$$= n \cdot \left(1 - \frac{1}{n}\right)^k$$
$$\approx n \cdot e^{-k/n}$$

Markov: X non-negative, a > 0:

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- $\Pr[X > a] < \mathbb{E}[X]/a.$
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$ Random variable X counts empty bins • Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$ • Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$ $= n \cdot \left(1 - \frac{1}{n}\right)^k$ • Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 - \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}}$ $\approx n \cdot e^{-k/n}$ $n \rightarrow \infty$

Markov: X non-negative, a > 0:

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- $\Pr[X > a] < \mathbb{E}[X]/a.$
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$ Random variable X counts empty bins • Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$ • Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$ $= n \cdot \left(1 - \frac{1}{n}\right)^k$ • Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 - \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}}$ $n \stackrel{\textbf{alpha}}{\to \infty} n \cdot e^{-k/n}$

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- **Markov**: X non-negative, a > 0: $\Pr[X > a] < \mathbb{E}[X]/a.$
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$ Random variable X counts empty bins • Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$ • Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$ $= n \cdot \left(1 - \frac{1}{n}\right)^k$ • Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 - \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}} \xrightarrow{n \to \infty} 1 \nearrow \approx n \cdot e^{-k/n}$

Markov: X non-negative, a > 0:

 $\Pr[X > a] < \mathbb{E}[X]/a.$

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

k balls distributed uniformly at random over *n* bins
Random variable X counts empty bins
Let X_i = 1_{Bin i is empty} for i ∈ [n] ⇒ X = ∑_{i=1}ⁿ X_i
Concentration: Pr[X ≥ E[X] + 5√k]
Markov: Pr[X ≥ E[X] + 5√k] ≤ $\frac{E[X]}{E[X]+5\sqrt{k}} = 1 - \frac{5\sqrt{k}}{E[X]+5\sqrt{k}} \xrightarrow{n \to \infty} 1 \times \infty = n \cdot (1 - \frac{1}{n})^k$

Today: similarly strong but beyond sums of independent Bernoulli random variables

Chebychev: tedious... ×

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- **Markov**: X non-negative, a > 0: $\Pr[X > a] < \mathbb{E}[X]/a.$

 $= n \cdot \left(1 - \frac{1}{n}\right)^k$

Chernoff: even stronger, but requires knowledge about moment generating functions

Example

- Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$ Random variable X counts empty bins
 - Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$
 - Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$
 - Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}} \xrightarrow{n \to \infty} 1 \nearrow n \cdot e^{-k/n}$ Chebychev: tedious... X
 - Chernoff: ?

(simpler variants work, e.g., for sums of independent random variables)

Markov: X non-negative, a > 0:

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- $\Pr[X > a] < \mathbb{E}[X]/a.$
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$ $= n \cdot \left(1 - \frac{1}{n}\right)^k$
- Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$
 - Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}} \xrightarrow{n \to \infty} 1 \nearrow n \cdot e^{-k/n}$ Chebychev: tedious... X
 - Chernoff: X (our Bernoulli random variables are not independent)

 $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$

 $n \rightarrow \infty$

Markov: X non-negative, a > 0:

 $\Pr[X > a] < \mathbb{E}[X]/a.$

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball
 - $\Rightarrow X = f(Y_1, ..., Y_k) = \sum_{i \in [n]} \mathbb{1}_{\{ \nexists j: Y_j = i\}}$ (summands not independent, but the Y_j are)

$$\Pr[X \ge a] \le \mathbb{E}[X]/a.$$

Markov: X non-negative. a > 0:

 $V_2 = 3$

Markov: X non-negative, a > 0:

 $\Pr[X > a] < \mathbb{E}[X]/a.$

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- $Y_1 = 1$ $Y_2 = 3$ • Let independent $Y_i \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the j-th ball

$$\Rightarrow X = f(Y_1, ..., Y_k) = \sum_{i \in [n]} \mathbb{1}_{\{ \nexists j : Y_j = i\}}$$
 (summands not independent, but the Y_j are)

 $= \sum_{i \in [n]} \max_{j \in [k]} \{2 - |\{Y_j, i\}|\}$ ("not" a sum Bernoulli random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

Markov: X non-negative, a > 0:

 $\Pr[X > a] < \mathbb{E}[X]/a.$

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball
 - $\Rightarrow X = f(Y_1, ..., Y_k) = \sum_{i \in [n]} \mathbb{1}_{\{ \nexists j: Y_j = i\}} \text{ (summands not independent, but the } Y_j \text{ are)}$

 $= \sum_{i \in [n]} \max_{j \in [k]} \{2 - |\{Y_j, i\}|\}$ ("not" a sum Bernoulli random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

 $V_{\cdot} = 1$

Can we show concentration for some arbitrary function of independent random variables? ... under certain conditions!

 $Y_2 - 3$

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value How do we measure this?

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*. Let $f: S^n \to \mathbb{R}$ satisfy the bounded differences condition with parameters Δ_i . Then, for $\Delta = \sum_{i \in [n]} \Delta_i^2$: $\Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-2t^2/\Delta}$. (write *f* for $f(X_1, ..., X_n)$)

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*. Let $f: S^n \to \mathbb{R}$ satisfy the bounded differences condition with parameters Δ_i . Then, for $\Delta = \sum_{i \in [n]} \Delta_i^2$: $\Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-2t^2/\Delta}$. (write *f* for $f(X_1, ..., X_n)$)

Lemma: $\Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta}$.

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*. Let $f: S^n \to \mathbb{R}$ satisfy the bounded differences condition with parameters Δ_i . Then, for $\Delta = \sum_{i \in [n]} \Delta_i^2$: $\Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-2t^2/\Delta}$. (write *f* for $f(X_1, ..., X_n)$)

Lemma: $\Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta}$.

also for $\Pr[f \leq \mathbb{E}[f] - t]$

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*. Let $f: S^n \to \mathbb{R}$ satisfy the bounded differences condition with parameters Δ_i . Then, for $\Delta = \sum_{i \in [n]} \Delta_i^2$: $\Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-2t^2/\Delta}$. (write *f* for $f(X_1, ..., X_n)$)

Lemma: $\Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta}$.

Cor.
$$\mathbb{E}[f] \leq g(n)$$
: $\Pr[f \geq cg(n)] \leq e^{-2((c-1)g(n))^2/\Delta}$.

also for $\Pr[f \leq \mathbb{E}[f] - t]$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- $Y_1 = 1$ $Y_2 = 3$ $Y_6 = 4$ • Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the j-th ball, and $X = f(Y_1, ..., Y_k)$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins

• Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

Bounded differences condition

Intuition: How much can the number of empty bins change if we move a ball from one bin to another?

$$= 1 Y_2 = 3 Y_6 = 4$$

e *j*-th ball, and $X = f(Y_1, ..., Y_k)$
$$= |f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ...)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...

$$Y_2 = 3$$
 $Y_6 = 4$
j-th ball, and $X = f(Y_1, ..., Y_k)$
 $|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$
for all *i* and Y_i, Y'_i

Karlsruhe Institute of Technology

Application: Balls into Bins

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin

 $|f(\ldots, Y_i, \ldots) - f(\ldots, Y'_i, \ldots)| \le \Delta_i$ for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1 1$

$$|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1 1 \Rightarrow \Delta_i = 0$

$$|f(\ldots, Y_i, \ldots) - f(\ldots, Y'_i, \ldots)| \leq \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin

$$Y_1 = 1$$

$$Y_2 = 3$$

$$Y_6 = 4$$
of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

$$|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$

4

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ...$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin

$$Y_{1} = 1$$

$$Y_{2} = 3$$

$$Y_{6} = 4$$

$$Y_{6} = 4$$

$$Y_{6} = 4$$

$$Y_{1} = 1$$

$$Y_{1} = 1$$

$$Y_{2} = 3$$

$$Y_{6} = 4$$

$$Y_{1} = 1$$

 $||f(..., Y_i, ...) - f(..., Y'_i, ...)| \leq \Delta_i$ for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ...)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin $\Rightarrow -1$

$$= 1 \qquad \stackrel{\uparrow}{Y_2} = 3 \qquad \stackrel{\uparrow}{Y_6} = 4$$

e *j*-th ball, and $X = f(Y_1, ..., Y_k)$
$$|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y: Y'

4 Maximilian Katzmann, Stefan Walzer – Probability & Computing

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1 1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$

$$|f(\ldots, Y_i, \ldots) - f(\ldots, Y'_i, \ldots)| \leq \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

$$= 1 \qquad Y_{2} = 3 \qquad Y_{6} = 4$$

ne *j*-th ball, and $X = f(Y_{1}, ..., Y_{k})$
$$= \left[\begin{array}{c} |f(..., Y_{i}, ...) - f(..., Y_{i}', ...)| \leq \Delta_{i} \\ \text{for all } i \text{ and } Y_{i} \ Y_{i}' \end{array} \right]$$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to... $\Delta_i \leq 1$
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

$$|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

Concentration via bounded differences

Maximilian Katzmann, Stefan Walzer - Probability & Computing

4

$$\begin{array}{c} f_{1} = 1 \\ he \\ j-th \\ ball, and \\ X = f(Y_{1}, ..., Y_{k}) \\ \hline for all \\ i \\ and \\ Y_{i}, Y_{i}' \\ \end{array}$$

Function
$$f(Y_1, ..., Y_k)$$
:
 $Y_1, ..., Y_k$ independent
bounded differences Δ_i
 $\Delta = \sum_{i=1}^k \Delta_i^2$
Then $\Pr[f \ge \mathbb{E}[f] + t] \le e^{-2t^2/\Delta}$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ...$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to...
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

Concentration via bounded differences

 $\Delta = \sum_{i=1}^{k} \Delta_i^2 \leq \sum_{i=1}^{k} 1^2 = k$

$$= 1 Y_2 = 3 Y_6 = 4$$

e *j*-th ball, and $X = f(Y_1, ..., Y_k)$
$$= |f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

Function
$$f(Y_1, ..., Y_k)$$
:
 $Y_1, ..., Y_k$ independent
bounded differences Δ_i
 $\Delta = \sum_{i=1}^k \Delta_i^2$
Then $\Pr[f \ge \mathbb{E}[f] + t] \le e^{-2t^2/\Delta}$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_n)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to... Δ_i
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

Concentration via bounded differences

 $\Delta = \sum_{i=1}^{k} \Delta_i^2 \le \sum_{i=1}^{k} 1^2 = k \quad \Rightarrow \Pr[f \ge \mathbb{E}[f] + 5\sqrt{k}] \le e^{-2(5\sqrt{k})^2/k}$

 V_{i}

$$|f(...,Y_{i},...) - f(...,Y'_{i},...)| \le \Delta_{i}$$

for all *i* and Y_{i},Y'_{i}

$$\leq 1 \begin{vmatrix} \mathsf{Function} \ f(Y_1, \dots, Y_k) :\\ \bullet \ Y_1, \dots, Y_k \text{ independent} \\ \bullet \text{ bounded differences } \Delta_i \\ \bullet \ \Delta = \sum_{i=1}^k \Delta_i^2 \\ \mathsf{Then} \ \mathsf{Pr}[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta} \end{vmatrix}$$

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_i \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the j-th ball, and $X = f(Y_1, ..., Y_k)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1 1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to... Δ_i
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

Concentration via bounded differences

 $\Delta = \sum_{i=1}^{k} \Delta_i^2 \le \sum_{i=1}^{k} 1^2 = k \implies \Pr[f \ge \mathbb{E}[f] + 5\sqrt{k}] \le e^{-2(5\sqrt{k})^2/k} = e^{-50}$

$$|f(..., Y_i, ...) - f(..., Y'_i, ...)| \le \Delta_i$$

for all *i* and Y_i, Y'_i

$$\leq 1 \quad \begin{array}{l} \text{Function } f(Y_1, ..., Y_k):\\ \bullet \ Y_1, ..., Y_k \text{ independent} \\ \bullet \text{ bounded differences } \Delta_i \\ \bullet \ \Delta = \sum_{i=1}^k \Delta_i^2 \\ \text{Then } \Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta} \end{array}$$

Much better than Markov's
$$\rightarrow 1$$

Products are distributed uniformly at random over boxes on a conveyor belt

Products are distributed uniformly at random over boxes on a conveyor belt

$$m = n/k$$
 boxes $k = \log \log(n)$

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

k+1

n products m = n/k boxes $k = \log \log(n)$

• A camera scans k+1 consecutive boxes simultaneously

• Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

Karlsruhe Institute of Technology

Application: The Factory

• Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

Karlsruhe Institute of

Application: The Factory

Karlsruhe Institute of Technol

k+1

Application: The Factory

• A camera scans k+1 consecutive boxes simultaneously

n products m = n/k boxes $k = \log \log(n)$

• Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

k + 1

n products m = n/k boxes $k = \log \log(n)$ A camera scans k+1 consecutive boxes simultaneously

• Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

Karlsruhe Institute of Technology

k+1

Application: The Factory

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
 Question: How many products avoid quality assurance?

k + 1

Application: The Factory

n products m = n/k boxes $k = \log \log(n)$ • A camera scans k+1 consecutive boxes simultaneously • Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

• Question: How many products avoid quality assurance? Show: o(n) with prob. $1 - O(\frac{1}{n})$
k + 1

Application: The Factory

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1-O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- *short chain*: incl. max. chain of length $\leq k \Rightarrow$ *exactly* products in short chains unscanned
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain

• Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- Problem: Dependencies (between X_i 's, between X_i and Y_i)

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- Problem: Dependencies (between X_i 's, between X_i and Y_i)
- Solution: Relax dependencies and compute upper bound instead

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i)$ = number of empty boxes in box *i* and *k* closest (assuming *k* even)

 $k \stackrel{.}{+} 1$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

• A camera scans k+1 consecutive boxes simultaneously

• Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned

• Question: How many products avoid quality assurance? Show: o(n) with prob. $1 - O(\frac{1}{n})$ **Relax and bound**

- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)

 $E_{k}(i) = 1$

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)
 - └► Box *i* in short chain $\Rightarrow E_k(i) > 0$

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)

► Box *i* in short chain $\Rightarrow E_k(i) > 0$

• Y'_i = indicator whether $E_k(i) > 0 \Rightarrow Y_i \le Y'_i$

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)
 - Box *i* in short chain $\Rightarrow E_k(i) > 0$

•
$$Y'_i$$
 = indicator whether $E_k(i) > 0 \Rightarrow Y_i \le Y'_i$

 $L = \sum_{i=1}^{m} X_i \cdot Y_i \leq \sum_{i=1}^{m} X_i \cdot Y'_i =: X'$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$

n products *m*=*n*/*k* boxes, *k*=log log(*n*) *X'* = $\sum X_i \cdot Y'_i$ *X_i*, products in box *i E_k(i)*, number empty boxes in box *i* and *k* closest *Y'_i*, indicator *E_k(i)* > 0

1. 1

knowing that exactly ℓ boxes are empty

• Else: *n* products distributed u.a.r. over $m' = m - \ell$ boxes

$$m' \ge \frac{n}{\log \log(n)} - \log \log(n)$$

 $\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$ (law of total expectation) $\stackrel{}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$ $= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$ $= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$ $\leq \sum_{\ell=1}^{k} 2\log\log(n) \cdot \Pr[E_k(i) = \ell]$ $= 2\log\log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
(law of total expectation) $\stackrel{k=1}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2\log\log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2\log\log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

n products *m*=n/k boxes, k=log log(n)
X' = ∑ X_i ⋅ Y'_i
X_i, products in box *i*E_k(*i*), number empty boxes in box *i* and k closest

•
$$Y'_i$$
, indicator $E_k(i) > 0$

 \leq Pr["Exists an empty box among k + 1"]

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y_i']$$
(law of total expectation)
$$\stackrel{k}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{``Exists an empty box among } k + 1'']$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{``A given box is empty''}]$$

i and k closest

 $\mathbb{E}[X'] =$

$$E[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
(law of total expectation)
$$E[X_i \cdot Y'_i | E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i | E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i | E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i | E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2\log\log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2\log\log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{"Exists an empty box among } k + 1"]$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{"A given box is empty"}]$$

$$\leq 2k \left(1 - \frac{1}{m}\right)^{n}$$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
(law of total expectation)
$$= \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{``Exists an empty box among } k + 1'']$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{``A given box is empty''}]$$

$$\leq 2k \left(1 - \frac{1}{m}\right)^n$$
a product hits a given box

 $k \mid 1$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
(law of total expectation) $\stackrel{k}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2\log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2\log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{"Exists an empty box among } k + 1"]$$
(union bound) $\leq (k+1) \cdot \Pr[\text{"A given box is empty"}]$

$$\leq 2k \left(1 - \frac{1}{m}\right)^n$$
a product does not hit a given box

in box *i*

 $E_{k}(i) > 0$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y_i']$$
(law of total expectation) $\stackrel{}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{"Exists an empty box among } k + 1"]$$
(union bound) $\leq (k+1) \cdot \Pr[\text{"A given box is empty"}]$

$$\leq 2k \left(1 - \frac{1}{m}\right)^{n}$$
none of the *n* products hit a given box

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
(law of total expectation)
$$\stackrel{\bullet}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} 2\log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2\log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq \Pr[\text{"Exists an empty box among } k + 1"]$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{"A given box is empty"}]$$

$$\leq 2k \left(1 - \frac{1}{m}\right)^n$$

$$= 2k \left(1 - \frac{k}{n}\right)^n$$

 $k \mid 1$

 $\mathbb{E}[X'] =$

$$E[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y_i']$$
(law of total expectation)
$$\sum_{k=0}^{k+1} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{``A given box is empty'']}$$

$$\leq 2k \left(1 - \frac{1}{n}\right)^n \sum_{\ell=1}^{n} (1 + x \le e^x)$$

 $k \mid 1$

 $\mathbb{E}[X'] =$

$$E[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y_i']$$
(law of total expectation)
$$\sum_{k=0}^{k+1} \mathbb{E}[X_i + Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{``A given box is empty'']}$$

$$\leq 2k \left(1 - \frac{1}{n}\right)^n \leq 2k \cdot e^{-k} = 2 \frac{\log \log(n)}{\log(n)}$$

 $k \mid 1$

 $\mathbb E$

$$[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i]$$
Haw of total expectation)
$$= \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq 2 \log \log(n) \cdot 2 \frac{\log \log(n)}{\log(n)}$$

$$\mathbb{E}[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y'_i],$$
(law of total expectation) $\stackrel{}{=} \sum_{\ell=0}^{k+1} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y'_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$\leq \sum_{\ell=1}^{k} 2\log\log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2\log\log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$

$$\leq 2\log\log(n) \cdot 2\frac{\log\log(n)}{\log(n)}$$

$$= 4\frac{\log\log(n)^2}{\log(n)}$$

n products

 $X' = \sum X_i \cdot Y'_i$

• X_i , products in box *i*

box *i* and *k* closest Y'_i , indicator $E_k(i) > 0$

• m = n/k boxes, $k = \log \log(n)$

• $E_k(i)$, number empty boxes in

 $\blacksquare E_k(i)$, number empty boxes in

box *i* and *k* closest

n products *m*=*n*/*k* boxes, *k*=log log(*n*) *X* = $\sum X_i \cdot Y_i$ *X_i*, products in box *i Y_i*, indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition:

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another

n products *m* = *n*/*k* boxes, *k* = log log(*n*) *X* = ∑ *X_i* · *Y_i X_i*, products in box *i Y_i*, indicator *i* in short chain
E[X] ≤ E[X'] ≤ 4n \frac{\log \log(n)}{\log(n)} *f*(..., *Z_j*, ...) - *f*(..., *Z'_i*, ...)| ≤ Δ_j

for all *j* and Z_i, Z'_i

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing *all n* products and one box contains only one of them

n products *m*=*n*/*k* boxes, *k*=log log(*n*) *X* = $\sum X_i \cdot Y_i$ *X_i*, products in box *i Y_i*, indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ *f*(..., *Z_i*, ...) - *f*(..., *Z'_i*, ...)| < Δ_i

$$|f(..., Z_j, ...) - f(..., Z_j, ...)| \leq \Delta_j$$

for all *j* and Z_j, Z'_j

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all *n* products and one box contains only one of them

Image of the i

$$|f(..., \mathbb{Z}_j, ...) - f(..., \mathbb{Z}_j, ...)| \leq \Delta_j$$

for all *j* and Z_j, Z'_j

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

n products $m = n/k \text{ boxes, } k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ $X_i, \text{ products in box } i$ $Y_i, \text{ indicator } i \text{ in short chain}$ $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

for all j and
$$Z_j, Z'_j$$
, Z'_j, Z'_j

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

n products *m*=*n*/*k* boxes, *k*=log log(*n*) *X* = $\sum X_i \cdot Y_i$ *X_i*, products in box *i Y_i*, indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

$$|f(..., Z_j, ...) - f(..., Z'_j, ...)| \le \Delta_j$$

for all j and Z_j, Z'_j

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

n products *m* = *n*/*k* boxes, *k* = log log(*n*) *X* = ∑ *X_i* · *Y_i X_i*, products in box *i Y_i*, indicator *i* in short chain
E[X] ≤ E[X'] ≤ 4n \frac{\log \log(n)}{\log(n)}

$$|f(..., Z_j, ...) - f(..., Z'_j, ...)| \le \Delta_j$$

for all j and Z_j, Z'_j

 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

Move product to next box

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

n products *m*=*n*/*k* boxes, *k*=log log(*n*) *X* = $\sum X_i \cdot Y_i$ *X_i*, products in box *i Y_i*, indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

$$|f(..., \mathbf{Z_j}, ...) - f(..., \mathbf{Z'_j}, ...)| \le \Delta_j$$

for all j and Z_j, Z'_j

 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

Move product to next box

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

- Move product to next box
 - $\Rightarrow X = n$, since all products in short chains now

n products
m=*n*/*k* boxes, *k*=log log(*n*)
X =
$$\sum X_i \cdot Y_i$$
X_i, products in box *i Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
f(..., *Z_i*, ...) - *f*(..., *Z'_i*, ...)| < Δ_i

$$|f(..., Z_j, ...) - f(..., Z'_j, ...)| \le \Delta_j$$

for all j and Z_j, Z'_j

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them

 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

- Move product to next box
 - $\Rightarrow X = n$, since all products in short chains now

n products

 $\bullet X = \sum X_i \cdot Y_i$

for all *j* and Z_i, Z'_i

• X_i , products in box *i*

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

 $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$

 $\Delta_j \leq n$

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

• Bounded differences condition: $\Delta_j \leq n$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition: $\Delta_j \leq n$
- Bounded differences inequality:

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ \mathbf{X}_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all *j* and Z_i, Z'_i Function $f(Z_1, ..., Z_n)$: \blacksquare Z₁, ..., Z_n independent • bounded differences Δ_i

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition: $\Delta_i \leq n$
- Bounded differences inequality:

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ X_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all *j* and Z_i, Z'_i Function $f(Z_1, \ldots, Z_n)$: \blacksquare $Z_1, ..., Z_n$ independent

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition: $\Delta_j \leq n$
- Bounded differences inequality:

• *n* products
•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box *i*
• Y_i , indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
| $f(..., Z_j, ...) - f(..., Z'_j, ...)| \leq \Delta_j$
for all *j* and Z_j, Z'_j
Function $f(Z_1, ..., Z_n)$:
• $Z_1, ..., Z_n$ independent
• bounded differences Δ_j
• $\Delta = \sum_{j=1}^n \Delta_j^2$
• $g(n) \geq \mathbb{E}[f]$
Pr $[f \geq cg(n)] \leq e^{-2((c-1)g(n))^2/\Delta}$.

7

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition: $\Delta_j \leq n$
- Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3$$

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ X_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all j and Z_i, Z'_i Function $f(Z_1, ..., Z_n)$: \blacksquare Z₁, ..., Z_n independent • bounded differences Δ_i $g(n) \geq \mathbb{E}[f]$ $\Pr[f \ge cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition: $\Delta_j \leq n$
- Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \le \sum_{j=1}^{n} n^2 = n^3 \quad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ X_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all j and Z_i, Z'_i Function $f(Z_1, ..., Z_n)$: \blacksquare Z₁, ..., Z_n independent • bounded differences Δ_i $g(n) \geq \mathbb{E}[f]$ $\Pr[f \ge cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \geq c4n \frac{\log \log(n)}{\log(n)}\right] \leq \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$

• *n* products
•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box *i*
• Y_i , indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
 $|f(..., Z_j, ...) - f(..., Z'_j, ...)| \leq \Delta_j$
for all *j* and Z_j, Z'_j
Function $f(Z_1, ..., Z_n)$:
• $Z_1, ..., Z_n$ independent
• bounded differences Δ_j
• $\Delta = \sum_{j=1}^n \Delta_j^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-2((c-1)g(n))^2/\Delta}$.

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \geq c4n \frac{\log \log(n)}{\log(n)}\right] \leq \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ X_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all j and Z_i, Z'_i Function $f(Z_1, ..., Z_n)$: \blacksquare Z₁, ..., Z_n independent • bounded differences Δ_i $g(n) \geq \mathbb{E}[f]$ $\Pr[f \ge cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \le \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$
$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right)$$

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ X_i , products in box *i* • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$ for all j and Z_i, Z'_i Function $f(Z_1, ..., Z_n)$: $Z_1, ..., Z_n$ independent • bounded differences Δ_i $g(n) \geq \mathbb{E}[f]$ $\Pr[f \ge cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \geq c4n \frac{\log \log(n)}{\log(n)}\right] \leq \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$
$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right)$$
$$= o(1)$$

• *n* products
•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box *i*
• Y_i , indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
 $|f(..., Z_j, ...) - f(..., Z'_j, ...)| \leq \Delta_j$
for all *j* and Z_j, Z'_j
Function $f(Z_1, ..., Z_n)$:
• $Z_1, ..., Z_n$ independent
• bounded differences Δ_j
• $\Delta = \sum_{j=1}^n \Delta_j^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-2((c-1)g(n))^2/\Delta}$.

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3 \quad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \geq c4n \frac{\log \log(n)}{\log(n)}\right] \leq \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$
$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} = \sum_{j=0}^{n} \frac{1}{2}$$

n products

 $X = \sum X_i \cdot Y_i$

for all j and Z_i, Z'_i

 $g(n) \geq \mathbb{E}[f]$

Function $f(Z_1, ..., Z_n)$:

 \blacksquare Z₁, ..., Z_n independent

• bounded differences Δ_i

 $\Pr[f \ge cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

 X_i , products in box *i*

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

 $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \leq \sum_{j=1}^{n} n^2 = n^3 \quad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$
$$\Pr\left[X \geq c4n \frac{\log \log(n)}{\log(n)}\right] \leq \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$
$$\frac{1}{n^3}$$
This bound is useless, since worst-case changes are too big
$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} 1$$

n products

 $X = \sum X_i \cdot Y_i$

for all j and Z_i, Z'_i

 $g(n) \geq \mathbb{E}[f]$

Function $f(Z_1, ..., Z_n)$:

 \blacksquare Z₁, ..., Z_n independent

• bounded differences Δ_i

 X_i , products in box *i*

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

 $|f(\ldots, Z_j, \ldots) - f(\ldots, Z'_j, \ldots)| \leq \Delta_j$

 $\Pr[f > cg(n)] \le e^{-2((c-1)g(n))^2/\Delta}$

Concentration of X (for *n* large enough)

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \le \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$

$$This \text{ bound is useless, since worst-case changes are too big} = \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} 1$$

$$\mathbb{E}[X] \le \mathbb{E}[X'] \le 4n \frac{\log \log(n)}{\log(n)}$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$Function f(Z_1, \dots, Z_n):$$

$$= Z_1, \dots, Z_n \text{ independent}$$

$$= \text{ bounded differences } \Delta_j$$

$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} 1$$

$$\mathbb{E}[X] \le \mathbb{E}[X'] \le 4n \frac{\log \log(n)}{\log(n)}$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$= Z_1, \dots, Z_n \text{ independent}$$

$$= \text{ bounded differences } \Delta_j$$

$$= C_1 + C_2 +$$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

Method of Typical Bounded Differences

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **typical bounded differences condition** with respect to • an event $A \subset S^n$ and

■ parameters
$$\Delta_i^A \leq \Delta_i$$
 for $i \in [n]$,
if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \leq \begin{cases} \Delta_i^A, \text{ if } (X_1, ..., X_i, ..., X_n) \in A, \\ \Delta_i, \text{ otherwise} \end{cases}$
for all $i \in [n]$ and $X_i, X'_i \in S$.

Method of Typical Bounded Differences

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **typical bounded differences condition** with respect to

- an event $A \subseteq S^n$ and
- parameters $\Delta_i^A \leq \Delta_i$ for $i \in [n]$,
- if $|f(X_1, ..., X_i, ..., X_n) f(X_1, ..., X'_i, ..., X_n)| \le \begin{cases} \Delta_i^A, \text{ if } (X_1, ..., X_i, ..., X_n) \in A, \\ \Delta_i, \text{ otherwise} \end{cases}$ for all $i \in [n]$ and $X_i, X'_i \in S$.

• Δ_i^A is worst-case change, assuming A held before the change

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **typical bounded differences condition** with respect to

- an event $A \subset S^n$ and
- parameters $\Delta_i^A \leq \Delta_i$ for $i \in [n]$,
- $|f(X_1, ..., X_i, ..., X_n) f(X_1, ..., X'_i, ..., X_n)| \le \begin{cases} \Delta_i^A, \text{ if } (X_1, ..., X_i, ..., X_n) \in A, \\ \Delta_i, \text{ otherwise} \end{cases}$ if for all $i \in [n]$ and $X_i, X'_i \in S$.

• Δ_i^A is worst-case change, assuming A held before the change

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set S, let $A \subseteq S^n$ be an event, and let $f: S^n \to \mathbb{R}$ satisfy the typical bounded differences condition w.r.t. A and parameters $\Delta_i^A \leq \Delta_i$. Then, for $g(n) \geq \mathbb{E}[f]$, for all $\varepsilon_i \in (0, 1]$ and $\Delta = \sum_{i \in [n]} (\Delta_i^A + \varepsilon_i (\Delta_i - \Delta_i^A))^2 \cdot \Pr[f \ge cg(n)] \le e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{i \in [n]} \frac{1}{\varepsilon_i}$

Corollary of "On the Method of Typical Bounded Differences", Warnke, Comb. Probab. Comput. 2015

Function of independent random variables as before

Function of independent random variables as before

A is the good, typical event that should be very likely to occur

Function of independent random variables as before

• A is the good, typical event that should be very likely to occur

 $\square \Delta$ is sum of squared worst-case changes as before

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- Δ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- $\blacksquare \Delta$ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- $\blacksquare \Delta$ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- $\blacksquare \Delta$ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- \blacksquare Δ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!
 - With the probability that the good event A does not occur

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- \blacksquare Δ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!
 - With the probability that the good event A does not occur
 - Multiplied with the inverse mitigators

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- \blacksquare Δ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!
 - With the probability that the good event A does not occur
 - Multiplied with the inverse mitigators

The more we need to mitigate, the higher the price! Not too bad if *A* is very likely to occur!

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

 $\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$

• *n* products
•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box *i*
• Y_i , indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

$$\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$$

Image: A state of the state

- t Note: n products $m = n/k \text{ boxes, } k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ $X_i, \text{ products in box } i$ $Y_i, \text{ indicator } i \text{ in short chain}$ $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

$$\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$$

• So *typically* a sequence should contain way fewer than *n* products

- boxes $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$

• So typically a sequence should contain way fewer than n products

• Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$

- nd. var. uct n products $m = n/k \text{ boxes}, k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ $X_i, \text{ products in box } i$ $Y_i, \text{ indicator } i \text{ in short chain}$ $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$

• So typically a sequence should contain way fewer than n products

• Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$

- So typically a sequence should contain way fewer than n products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)

n products
m=*n*/*k* boxes, *k*=log log(*n*)
X =
$$\sum X_i \cdot Y_i$$
X_i, products in box *i Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2)$

- So typically a sequence should contain way fewer than n products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)}$

n products
m = *n*/*k* boxes, *k* = log log(*n*)
X =
$$\sum X_i \cdot Y_i$$
X_i, products in box *i Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So *typically* a sequence should contain way fewer than *n* products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \epsilon)g(n)] \leq e^{-\epsilon^2/3 \cdot g(n)}$

Image: n products
Image: m = n/k boxes, k = log log(n)
Image: X =
$$\sum X_i \cdot Y_i$$
Image: X_i, products in box i
Image: Y_i, indicator i in short chain
Image: E[X] $\leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So *typically* a sequence should contain way fewer than *n* products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)} = e^{-\varepsilon^2/3 \cdot \delta \log(n)}$

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So *typically* a sequence should contain way fewer than *n* products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)} = e^{-\varepsilon^2/3 \cdot \delta \log(n)} = n^{-\delta \varepsilon^2/3}$

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So *typically* a sequence should contain way fewer than *n* products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See S as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)} = e^{-\varepsilon^2/3 \cdot \delta \log(n)} = n^{-\delta \varepsilon^2/3}$

for a single sequence

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So typically a sequence should contain way fewer than n products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See S as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)} = e^{-\varepsilon^2/3 \cdot \delta \log(n)} = n^{-\delta \varepsilon^2/3}$
 - Union bound over $\leq n$ sequences: $\Pr[\neg A] \leq n^{-\delta \varepsilon^2/3+1} \leq n^{-\lambda}$ (for arbitrarily large λ)

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \le n^{-\lambda}$ (for arbitrary λ)

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \le n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
 - Worst change in *f* when moving a product from one box to another, assuming *A* held before the move

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
 - Worst change in *f* when moving a product from one box to another, assuming *A* held before the move

Moving one product empties at most one box

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
 - Worst change in *f* when moving a product from one box to another, assuming *A* held before the move

• Moving one product empties at most one box \Rightarrow at most two new short chains

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
 - Worst change in *f* when moving a product from one box to another, assuming *A* held before the move

contain $O(\log(n))$ products

- Moving one product empties at most one box \Rightarrow at most two new short chains
- Assuming A, these short chains combined contain $O(\log(n))$ products

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:

9

 Worst change in *f* when moving a product from one box to another, assuming *A* held before the move

contain $O(\log(n))$ products

- Moving one product empties at most one box \Rightarrow at most two new short chains
- Assuming A, these short chains combined contain $O(\log(n))$ products $\Rightarrow \Delta_i^A = O(\log(n))$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products"}, $\Pr[\neg A] \le n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

 $\Delta = \sum_{j=1}^n (\Delta_j^{\mathcal{A}} + arepsilon_j (\Delta_j - \Delta_j^{\mathcal{A}}))^2$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$egin{aligned} \Delta &= \sum_{j=1}^n (\Delta_j^{\mathcal{A}} + arepsilon_j (\Delta_j - \Delta_j^{\mathcal{A}}))^2 \ &\leq \sum_{j=1}^n (\Delta_j^{\mathcal{A}} + arepsilon_j \Delta_j)^2 \end{aligned}$$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$egin{aligned} \Delta &= \sum_{j=1}^n (\Delta_j^{\mathcal{A}} + arepsilon_j (\Delta_j - \Delta_j^{\mathcal{A}}))^2 \ &\leq \sum_{j=1}^n (\Delta_j^{\mathcal{A}} + arepsilon_j \Delta_j)^2 \end{aligned}$$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2}$$

$$\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2}$$

$$\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2}$$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2}$$

$$\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2} \quad \text{Mitigators, arbitrary} \in (0, 1]!$$

$$\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2}$$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2} \qquad \varepsilon_{j} = \frac{1}{n}$$

$$\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2} \qquad \text{Mitigators, arbitrary} \in (0, 1]$$

$$\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2}$$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\begin{split} \Delta &= \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2} \qquad \varepsilon_{j} = \frac{1}{n} \\ &\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2} \qquad \text{Mitigators, arbitrary} \in (0, 1] \\ &\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2} \\ &= \sum_{j=1}^{n} (O(\log(n)) + 1)^{2} \end{split}$$

• *n* products
• *m* = *n/k* boxes, *k* = log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2} \qquad \varepsilon_{j} = \frac{1}{n}$$

$$\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2} \qquad \text{Mitigators, arbitrary} \in (0, 1)$$

$$\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2}$$

$$= \sum_{j=1}^{n} (O(\log(n)) + 1)^{2}$$

$$= O(n \log(n)^{2}) \qquad \text{Much better than } n^{3} \text{ from before!}$$

n products • m = n/k boxes, $k = \log \log(n)$ $X = \sum X_i \cdot Y_i$ \bullet X_i, products in box i • Y_i , indicator *i* in short chain $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$ Function $f(Z_1, ..., Z_n)$: \square $Z_1, ..., Z_n$ independent typical event A • bounded differences $\Delta_i^A \leq \Delta_j$ $\Delta = \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2}$ $g(n) \geq \mathbb{E}[f]$ $\Pr[f \ge cg(n)] \le e^{-((c-1)g(n))^2/(2\Delta)}$ $+ \Pr[\neg A] \sum_{i=1}^{n} \frac{1}{\varepsilon_i}$

1

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{\text{"Every sequence of } 2k + 1 \text{ boxes contains } O(\log(n)) \text{ products"} \}, \Pr[\neg A] \leq n^{-\lambda} \text{ (for arbitrary } \lambda)$
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $\varepsilon_j = \frac{1}{n}$

• *n* products
•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box *i*
• Y_i , indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• $Z_1, ..., Z_n$ independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2) \quad g(n) = 4n \frac{\log \log(n)}{\log(n)} \quad \varepsilon_j = \frac{1}{n}$$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(\frac{-\left(c-1\right)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{O(n \log(n)^2)}\right) + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2) \quad g(n) = 4n \frac{\log \log(n)}{\log(n)} \quad \varepsilon_j = \frac{1}{n}$$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(\frac{-\left(c-1\right)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{O(n \log(n)^2)} + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}\right)$$

• *n* products
• *m* = *n/k* boxes, *k* = log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
Pr[$f \geq cg(n)$] $\leq e^{-((c-1)g(n))^2/(2\Delta)}$
 $+ \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log \log(n)^2}{\log(n)^4}\right)\right) + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log\log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log\log(n)^2}{\log(n)^4}\right)\right) + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$$

- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{\text{"Every sequence of } 2k + 1 \text{ boxes contains } O(\log(n)) \text{ products"} \}, \Pr[\neg A] \leq n^{-\lambda} \text{ (for arbitrary } \lambda)$
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log\log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log\log(n)^2}{\log(n)^4}\right)\right) + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log\log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log\log(n)^2}{\log(n)^4}\right)\right) + \Pr[\neg A] \sum_{j=1}^{n} \frac{1}{\varepsilon_j}$$

• *n* products
• *m* = *n/k* boxes, *k* = log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_j^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log \log(n)^2}{\log(n)^4}\right)\right) \\ = O(1/n) \\ + \Pr[\neg A] \sum_{j=1}^{n} \frac{1}{\varepsilon_j} \\ \le n^{-\lambda} \cdot n^2 = O(1/n) \text{ for } \lambda = 3$$

• *n* products
• *m* = *n/k* boxes, *k* = log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
Pr[$f \geq cg(n)$] $\leq e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log\log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log\log(n)^2}{\log(n)^4}\right)\right) + \Pr\left[\neg A\right] \sum_{j=1}^{n} \frac{1}{\varepsilon_j} \le n^{-\lambda} \cdot n^2 = O(1/n) \text{ for } \lambda = 3$$

• *n* products
• *m* = *n/k* boxes, *k* = log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
Pr[$f \geq cg(n)$] $\leq e^{-((c-1)g(n))^2/(2\Delta)}$
 $+ \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

konect.cc/plot/degree.a.youtube-links.full.png

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Realistic representation: power-law distribution

"Scale-free networks well done", Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Realistic representation: power-law distribution

"Scale-free networks well done", Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

• Pareto distribution: $X \sim Par(\alpha, x_{min})$

$$f_X(x) = egin{cases} lpha x^lpha_{\min} \cdot x^{-(lpha+1)}, & ext{if } x \geq x_{\min} \ 0, & ext{otherwise} \end{cases}$$

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Realistic representation: power-law distribution

"Scale-free networks well done", Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

• Pareto distribution: $X \sim Par(\alpha, x_{min})$

$$f_X(x) = egin{cases} lpha x^{lpha}_{\min} \cdot x^{-(lpha+1)}, & ext{if } x \geq x_{\min} \ 0, & ext{otherwise} \end{cases}$$

Idea

Add Pareto distribution to RGGs

Definition

Consider *n* vertices

Definition

- Consider *n* vertices
- For each vertex *v* independently:

Definition

- Consider *n* vertices
- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d

Definition

Consider *n* vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d

Definition

- Consider *n* vertices
- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d

Definition

Consider *n* vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Definition

Consider *n* vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau-1,1)$ for $\tau \in (2,3) \Rightarrow f_{w_v}(w) = (\tau-1)w^{-\tau}$

"Power-Law Exponent"

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\operatorname{dist}(x_u, x_v) \leq \left(\lambda \frac{w_u \cdot w_v}{n}\right)^{1/d}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}\text{-norm}} \leq \left(\lambda \tfrac{w_u \cdot w_v}{n}\right)^{1/d}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\underbrace{\lambda \frac{w_u \cdot w_v}{n}}_{\operatorname{const.}} \right)^{1/d}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{l \to n} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

• For d = 1, linear relation between distance and weight

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\underbrace{\lambda \frac{w_u \cdot w_v}{n}}_{n} \right)^{1/d}$$
const. controls the avg. degre
For $d = 1$, linear relation between distance

and weight $y = w_u, x = dist(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \frac{y}{\lambda} \geq \frac{n}{\lambda w_v} x$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\underbrace{\lambda \frac{w_u \cdot w_v}{n}}_{n} \right)^{1/d}$$
const. controls the avg. degree
For $d = 1$, linear relation between distance

and weight $y = w_u$, $x = dist(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \frac{y}{\lambda} \geq \frac{n}{\lambda w_v} x$$

Consider *n* vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \mathbf{y} \geq \frac{n}{\lambda w_v} \mathbf{x}$$

Consider *n* vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau-1,1)$ for $au \in (2,3) \Rightarrow f_{w_v}(w) = (\tau-1)w^{- au}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \mathbf{y} \geq \frac{n}{\lambda w_v} \mathbf{x}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a *weight* w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \mathbf{y} \geq \frac{n}{\lambda w_v} \mathbf{x}$$

Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a *weight* w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

 W_{V}

0

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

const. controls the avg. degree
For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

 $x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Definition

11

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a *weight* w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

 $x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

For $d = 1$, linear relation between distance
and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a *weight* w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{l} \leq \left(\lambda \frac{w_u \cdot w_v}{n}\right)^{1/d}$$

L_∞-norm const. controls the avg. degree For d = 1, linear relation between distance and weight $y = w_{\mu}, x = \text{dist}(x_{\mu}, x_{\nu})$

 $x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \mathbf{y} \geq \frac{n}{\lambda w_v} \mathbf{x}$

The lower w_v , the steeper the wedge \downarrow The lower the degree

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau-1,1)$ for $\tau \in (2,3) \Rightarrow f_{w_v}(w) = (\tau-1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{q} \leq \left(\lambda \frac{w_u \cdot w_v}{n}\right)^{1/d}$$

 L_{∞} -norm const. controls the avg. degree

• For d = 1, linear relation between distance and weight $y = w_u, x = dist(x_u, x_v)$

 $x \leq \lambda rac{w_v \cdot y}{n} \Leftrightarrow y \geq rac{n}{\lambda w_v} x$

• The lower w_v , the steeper the wedge \downarrow The lower the degree

• Consider vertex v with weight w_v

Karlsruhe Institute of Technology

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv

Consider vertex v with weight wv
 We want to compute E[deg(v) | wv
 This is a random variable

Karlsruhe Institute of Technology

Expected Degree (d = 1)

Consider vertex v with weight wv
 We want to compute E[deg(v) | wv].
 This is a random variable

- Consider vertex v with weight w_v
- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

- Consider vertex v with weight w_v
- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

 $\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

- Consider vertex v with weight w_v
- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

 $deg(v) = \sum_{u \in V \setminus \{v\}} X_u$ $\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

- Consider vertex v with weight w_v
- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$deg(v) = \sum_{u \in V \setminus \{v\}} X_u$$
$$\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$$
$$= (n-1) \cdot \Pr[\{u, v\} \in E \mid w_v]$$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

• Consider vertex v with weight w_v

• We want to compute $\mathbb{E}[\deg(v) \mid w_v]$

• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$deg(v) = \sum_{u \in V \setminus \{v\}} X_u$$
$$\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$$
$$= \underbrace{(n-1)}_{= \Theta(n)} \cdot \Pr[\{u, v\} \in E \mid w_v]$$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

- Consider vertex v with weight w_v
- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

 $deg(v) = \sum_{u \in V \setminus \{v\}} X_u$ $\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$ $= \Theta(n \Pr[\{u, v\} \in E \mid w_v])$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

• Consider vertex v with weight w_v

• We want to compute $\mathbb{E}[\deg(v) \mid w_v]$

• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$deg(v) = \sum_{u \in V \setminus \{v\}} X_u$$
$$\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$$
$$= \Theta(n \Pr[\{u, v\} \in E \mid w_v])$$
$$u \in N(v)$$

12

N(v)

Karlsruhe Institute of Technology

Expected Degree (d = 1)

• Consider vertex v with weight w_v

- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$deg(v) = \sum_{u \in V \setminus \{v\}} X_u$$

$$\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$$

$$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v =$$

$$= \Theta(n \int_1^\infty \Pr[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw)$$

$$= \Theta\left(n \left(\int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \int_{\frac{n}{2\lambda w_v}}^\infty 1 \cdot f_{w_u}(w) dw\right)\right)$$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet \ n \ \text{independent vertices} \\ \bullet \ x_v \sim \mathcal{U}([0,1]) \\ \bullet \ w_v \sim \operatorname{Par}(\tau-1,1) \ \text{for} \ \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet \ u, \ v \ \text{adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

Expected Degree (d = 1)

• Consider vertex v with weight w_v

- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$deg(v) = \sum_{u \in V \setminus \{v\}} X_u$$

$$\mathbb{E}[deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$$

$$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v =$$

$$= \Theta(n \int_1^\infty \Pr[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw)$$

$$= \Theta\left(n \left(\int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \int_{\frac{2\lambda w_v}{2\lambda w_v}}^{\infty} 1 \cdot f_{w_u}(w) dw\right)\right)$$

$$= \Pr[w_u \ge \frac{n}{2\lambda w_v}]$$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

Expected Degree (d = 1)

• Consider vertex v with weight w_v

- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$\begin{aligned} \deg(v) &= \sum_{u \in V \setminus \{v\}} X_u \\ \mathbb{E}[\deg(v) \mid w_v] &= \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v] \\ &= \Theta(n \operatorname{Pr}[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \\ &= \Theta(n \int_1^\infty \operatorname{Pr}[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw] \\ &= \Theta\left(n \left(\int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \int_{\frac{n}{2\lambda w_v}}^{\infty} 1 \cdot f_{w_u}(w) dw\right)\right) \\ &= \operatorname{Pr}[w_u \ge \frac{n}{2\lambda w_v}] \end{aligned}$$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

Expected Degree (d = 1)

• Consider vertex v with weight w_v

- We want to compute $\mathbb{E}[\deg(v) \mid w_v]$
- Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$

$$\begin{aligned} \deg(v) &= \sum_{u \in V \setminus \{v\}} X_u \\ \mathbb{E}[\deg(v) \mid w_v] &= \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v] \\ &= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \\ &= \Theta(n \int_1^\infty \Pr[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw) \\ &= \Theta\left(n \left(\int_1^{\frac{2}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_v}(w) dw + \int_{\frac{n}{2\lambda w_v}}^\infty 1 \cdot f_{w_u}(w) dw\right)\right) \\ &= \Pr[w_u \ge \frac{n}{2\lambda w_v}] \\ &= \Pr[w_u \ge \frac{n}{2\lambda w_v}] \\ &= \Pr[w_u \ge 1] = 1 \end{aligned}$$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet \ n \ \text{independent vertices} \\ \bullet \ x_v \sim \mathcal{U}([0,1]) \\ \bullet \ w_v \sim \operatorname{Par}(\tau-1,1) \ \text{for} \ \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet \ u, \ v \ \text{adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

Consider vertex v with weight
$$w_v$$
We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \left\{ \Theta(n), \text{ if } w_v \geq \frac{n}{2\lambda} \right\}$
Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
 $\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
 $\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
 $= \Theta(n \Pr[\{u, v\} \in E \mid w_v])$
W.l.o.g $x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$
 $= \Theta(n \int_1^{\infty} \Pr[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw)$
 $= \Theta\left(n \left(\int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \Pr[w_u \geq \frac{n}{2\lambda w_v}]\right)\right)$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet \ n \ \text{independent vertices} \\ \bullet \ x_v \sim \mathcal{U}([0,1]) \\ \bullet \ w_v \sim \operatorname{Par}(\tau-1,1) \ \text{for} \ \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet \ u, \ v \ \text{adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

Consider vertex v with weight w_v We want to compute $\mathbb{E}[\deg(v) | w_v] = \begin{cases} \Theta(n), \text{ if } w_v \ge \frac{n}{2\lambda} \\ \end{bmatrix}$ • Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$ $\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$ $\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$ $= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$ If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) | w_u = w, w_v] f_{w_u}(w) dw$ $= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$ (via CDF of Par) = $\left(\frac{n}{2\lambda w_{v}}\right)^{-(\tau-1)}$

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) \mid w_u = w, w_v] f_{w_u}(w) dw)$
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$
(via CDF of Par) = $\left(\frac{n}{2\lambda w_v}\right)^{-(\tau-1)}$
$= \left(rac{2\lambda w_v}{n} ight)^{ au-1}$

$$\begin{array}{|c|c|} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $\frac{w_v < \frac{n}{2\lambda}}{w_v < \frac{n}{2\lambda}} = \Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw$
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$
(via CDF of Par) = $\left(\frac{n}{2\lambda w_v}\right)^{-(\tau-1)}$
$=\left(\frac{2\lambda w_{v}}{n}\right)^{\tau-1}$
< 1

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$
$=\Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}}\frac{w \cdot w_{v}}{n}f_{w_{u}}(w)dw + \Pr[w_{u} \geq \frac{n}{2\lambda w_{v}}]\right)\right)$
(via CDF of Par) = $\left(\frac{n}{2\lambda w_v}\right)^{-(\tau-1)}$
$=\left(\underbrace{\frac{2\lambda w_{v}}{n}}_{<1}\right)^{\tau-1}$
$=O(\frac{w_v}{n})$

GIRG
• *n* independent vertices
•
$$x_v \sim \mathcal{U}([0, 1])$$

• $w_v \sim \operatorname{Par}(\tau - 1, 1)$ for $\tau \in (2, 3)$
• $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
• u, v adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$
Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$
$= \Theta\left(n \int_{c}^{\frac{n}{2\lambda_{W_{v}}}} \frac{w \cdot w_{v}}{w \cdot w_{v}} f_{w}\left(w\right) dw\right) + O(w_{v})$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet n \text{ independent vertices} \\ \bullet x_v \sim \mathcal{U}([0,1]) \\ \bullet w_v \sim \operatorname{Par}(\tau-1,1) \text{ for } \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet u, v \text{ adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$
$= \Theta\left(n\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) \mathrm{d}w\right) + O(w_{v})$
$= \Theta\left(n\frac{w_{v}}{n}\int_{1}^{\frac{n}{2\lambda w_{v}}} w \cdot (\tau - 1)w^{-\tau} dw\right) + O(w_{v})$

$$\begin{array}{l} \textbf{GIRG} \\ \bullet \ n \ \text{independent vertices} \\ \bullet \ x_v \sim \mathcal{U}([0,1]) \\ \bullet \ w_v \sim \operatorname{Par}(\tau-1,1) \ \text{for} \ \tau \in (2,3) \\ f_{w_v}(w) = (\tau-1)w^{-\tau} \\ \bullet \ u, \ v \ \text{adjacent iff} \\ \operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n} \end{array}$$

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$	(
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$	
Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$	
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$	
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$	
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \qquad \text{w.l.o.g } x_v = \frac{1}{2}$	
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$	
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$	
$= \Theta\left(n\int_{1}^{\frac{n}{2\lambda_{w_{v}}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) \mathrm{d}w\right) + O(w_{v})$	
$= \Theta\left(n \frac{w_v}{n} \int_1^{\frac{n}{2\lambda w_v}} w \cdot (\tau - 1) w^{-\tau} d w\right) + O(w_v)$	
$=\Theta\left(w_{v}\int_{1}^{\frac{n}{2\lambda w_{v}}}w^{-(\tau-1)}dw\right)+O(w_{v})$	

GIRG
n independent vertices

$$x_v \sim \mathcal{U}([0, 1])$$

 $w_v \sim \operatorname{Par}(\tau - 1, 1)$ for $\tau \in (2, 3)$
 $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
u, *v* adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

• Consider vertex v with weight
$$w_v$$

• We want to compute $\mathbb{E}[\deg(v) | w_v] = \begin{cases} \Theta(n), \text{ if } w_v \ge \frac{n}{2\lambda} \\ 0 \le 2\lambda \end{cases}$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
 $\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
 $\mathbb{E}[\deg(v) | w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u | w_v]$
 $= \Theta(n \Pr[\{u, v\} \in E | w_v])$ w.i.o.g $x_v = \frac{1}{2}$
If $w_v < \frac{n}{2\lambda}$ $= \Theta(n \int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \Pr[w_u \ge \frac{n}{2\lambda w_v}])$
 $= \Theta\left(n \left(\int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw + \Pr[w_u \ge \frac{n}{2\lambda w_v}]\right)\right)$ $\Rightarrow \Theta\left(n \int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw\right) + O(w_v)$
 $= \Theta\left(n \int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw\right) + O(w_v)$
 $= \Theta\left(n \int_1^{\frac{n}{2\lambda w_v}} \frac{w \cdot w_v}{n} f_{w_u}(w) dw\right) + O(w_v)$
 $= \Theta\left(w_v \int_1^{\frac{n}{2\lambda w_v}} w \cdot (\tau - 1) w^{-\tau} dw\right) + O(w_v)$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$	GIRG
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \{$	n independent vertices
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$	
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$	$f_{w_v}(w) = (\tau - 1)w^{-\tau}$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$	• u, v adjacent iff dist $(x_u, x_v) < \lambda \frac{w_u \cdot w_v}{w_u \cdot w_v}$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$	(u, v) = n
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$	n
$=\Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}}\frac{w \cdot w_{v}}{n}f_{w_{u}}(w)dw + \Pr[w_{u} \geq \frac{n}{2\lambda w_{v}}]\right)\right) = \Theta\left(w_{u} \otimes \frac{w}{2\lambda w_{v}}\right)$	$V_{v}\left[\frac{1}{-(\tau-2)}W^{-(\tau-2)}\right]_{1}^{\frac{1}{2\lambda w_{v}}}+O(w_{v})$
$=\Theta\left(n\int_{1}^{\frac{n}{2\lambda w_{v}}}\frac{w \cdot w_{v}}{n}f_{w_{u}}(w)dw\right)+O(w_{v}) \qquad \qquad =\Theta\left(w_{v}\right)$	$\left[w^{-(\tau-2)}\right]_{\frac{n}{2\lambda w_{v}}}^{1} + O(w_{v})$
$= \Theta\left(n \frac{w_{v}}{n} \int_{1}^{\frac{n}{2\lambda w_{v}}} w \cdot (\tau - 1) w^{-\tau} \mathrm{d}w\right) + O(w_{v})$	
$=\Theta\left(w_{v}\int_{1}^{\frac{n}{2\lambda w_{v}}}w^{-(\tau-1)}\mathrm{d}w\right)+O(w_{v})$	

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$	GIRG
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \begin{cases} 2\pi \\ 2\pi$	n independent vertices
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$	$ \begin{array}{ } \bullet x_{v} \sim \mathcal{U}([0,1]) \\ \bullet w_{v} \sim Par(\tau-1,1) \text{ for } \tau \in (2,3) \end{array} $
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$	$f_{w_v}(w) = (\tau - 1)w^{-\tau}$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$	• u, v adjacent iff dist $(x_u, x_v) \le \lambda \frac{w_u \cdot w_v}{n}$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \qquad \text{w.l.o.g } x_v = \frac{1}{2}$	
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$	$n \rightarrow$
$=\Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}}\frac{w \cdot w_{v}}{n}f_{w_{u}}(w)dw + \Pr[w_{u} \geq \frac{n}{2\lambda w_{v}}]\right)\right) = \Theta\left(w_{u}\right)$	$ \sqrt{\left[\frac{1}{-(\tau-2)}w^{-(\tau-2)}\right]_{1}^{\frac{1}{2\lambda_{w_{v}}}}} + O(w_{v}) $
$=\Theta\left(n\int_{1}^{\frac{n}{2\lambda_{w_{v}}}}\frac{w\cdot w_{v}}{n}f_{w_{u}}(w)dw\right)+O(w_{v}) \qquad \qquad =\Theta\left(w_{v}\right)$	$\left[w^{-(\tau-2)}\right]^{1}_{\frac{n}{2\lambda w_{v}}} + O(w_{v})$
$=\Theta\left(n\frac{w_{v}}{n}\int_{1}^{\frac{n}{2\lambda w_{v}}}w\cdot(\tau-1)w^{-\tau}dw\right)+O(w_{v}) \qquad =\Theta\left(w_{v}\right)$	$\left(1-\left(\frac{n}{2\lambda w}\right)^{-(\tau-2)}\right)+O(w_{\nu})$
$=\Theta\left(w_{v}\int_{1}^{\frac{n}{2\lambda w_{v}}}w^{-(\tau-1)}\mathrm{d}w\right)+O(w_{v})$	

• Consider vertex v with weight $w_v \qquad \int \Theta(n)$, if $w_v \geq \frac{n}{2\lambda}$	GIRG
• We want to compute $\mathbb{E}[\deg(v) \mid w_v] = \begin{cases} 1 \\ 1 \\ 1 \\ 2 \\ 2$	n independent vertices
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$	$ \mathbf{x}_{v} \sim \mathcal{U}([0, 1]) $ $ \mathbf{w}_{v} \sim \operatorname{Par}(\tau - 1, 1) \text{ for } \tau \in (2, 3) $
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$	$f_{w_v}(w) = (au - 1)w^{- au}$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$	• u, v adjacent iff dist $(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{w_u \cdot w_v}$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$	
If $w_v < \frac{n}{2\lambda}$ = $\Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$	n
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right) = \Theta\left(\frac{1}{2\lambda w_{v}}\right)$	$W_{v}\left[\frac{1}{-(\tau-2)}W^{-(\tau-2)}\right]_{1}^{\frac{n}{2\lambda_{W_{v}}}}+O(W_{v})$
$=\Theta\left(n\int_{1}^{\frac{n}{2\lambda_{w_{v}}}}\frac{w\cdot w_{v}}{n}f_{w_{u}}(w)dw\right)+O(w_{v}) \qquad \qquad =\Theta\left(w_{v}\right)$	$W_{v}\left[W^{-(\tau-2)}\right]_{\frac{n}{2\lambda W_{v}}}^{1} + O(W_{v})$
$=\Theta\left(n\frac{w_{v}}{n}\int_{1}^{\frac{n}{2\lambda w_{v}}}w\cdot(\tau-1)w^{-\tau}dw\right)+O(w_{v})\qquad \qquad =\Theta\left(w_{v}\right)$	$v_{v}\left(1-\left(\frac{n}{2\lambda w_{v}}\right)^{-(\tau-2)}\right)+O(w_{v})$
$=\Theta\left(w_{v}\int_{1}^{2\lambda w_{v}}w^{-(\tau-1)}\mathrm{d}w\right)+O(w_{v})$	< 1 and O(1)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Structural Properties

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark

Structural Properties

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law degree distribution \checkmark$ (also works with other weight distributions)

Structural Properties

13

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark (also works with other weight distributions)

Locality (not seen here)

Maximilian Katzmann, Stefan Walzer - Probability & Computing

• Heterogeneity: $\deg(v) \approx w_v$, $w_v \sim \mathsf{Par}(\tau - 1, 1) \rightsquigarrow \mathsf{power-law}$ degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(τ - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

• Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

- What we considered just now

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: $\deg(v) \approx w_v$, $w_v \sim \mathsf{Par}(\tau - 1, 1) \rightsquigarrow \mathsf{power-law}$ degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Structural Properties

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark (also works with other weight distributions)

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Structural Properties

• Heterogeneity: $\deg(v) \approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightsquigarrow$ power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size

r – Probability & Computing Institute of The

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: $\deg(v) \approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightsquigarrow power-law degree distribution \checkmark$

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size
 - Louvain clustering algorithm

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size
 - Louvain clustering algorithm
 - Number of maximal cliques rather structural property

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

- "On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023
- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size
 - Louvain clustering algorithm
 - Number of maximal cliques rather structural property
 - Chromatic number kernel size

– Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

- "On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023
- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size
 - Louvain clustering algorithm
 - Number of maximal cliques
 rather structural property
 - Chromatic number kernel size

Use GIRGs for average-case analysis!

Vertex Cover
Given undirected graph G = (V, E)

Vertex Cover

• Given undirected graph G = (V, E) (induced subgraph)

• Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless

Vertex Cover

• Given undirected graph G = (V, E) (induced subgraph)

• Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless

NP-complete

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

Find a small vertex cover S' fast

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

14

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

14

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

Karlsruhe Institute of Technology

Vertex Cover Approximation

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

- Simple approximation algorithm repeatedly takes/deletes vertex of largest degree
- Close to optimal ratios on real graphs

"Vertex Cover on Complex Networks", Da Silva, Gimenez-Lugo, Da Silva, IJMPC 2013

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karlsruhe Institute of Technology

Analsysis on GIRGs

(based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

Consider vertices in order of decreasing degree in original graph

(based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

(based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

(based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

(based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

Learn from the Model

Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree

uting Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

- Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

- Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly
 log log(n)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Analsysis on GIRGs

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

- Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly
 log log(n)
- Two variants
 - Search and solve small components after each greedily taken vertex

Stefan Walzer – Probability & Computing

Analsysis on GIRGs

(based on) "Eff

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

- Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly
 log log(n)
- Two variants
 - Search and solve small components after each greedily taken vertex
 - Take greedy until red line, solve small components exactly, take rest greedy too

Once high-degree vertices are

- taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly
- Two variants
 - Search and solve small components after each greedily taken vertex
 - Take greedy until red line, solve small components exactly, take rest greedy too

This variant yields an upper bound on the

Analsysis on GIRGs

(based on)

"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

Theorem: Let *G* be GIRG with *n* vertices and *m* edges. Then, an approximate vertex cover *S'* of *G* can be computed in time $O(m \log(n))$ such that the approximation ratio is (1 + o(1)) asymptotically almost surely.

with probability 1 - o(1)

Theorem: Let *G* be GIRG with *n* vertices and *m* edges. Then, an approximate vertex cover *S'* of *G* can be computed in time $O(m \log(n))$ such that the approximation ratio is (1 + o(1)) asymptotically almost surely. (not shown today)

with probability 1 - o(1)

Proof Approximation Ratio

Differentiate greedily taken vertices S'_g from ones in exactly solved components S'_e

Proof Approximation Ratio

- Differentiate greedily taken vertices S'_g from ones in exactly solved components S'_e
- For each small component, the optimal solution S cannot contain fewer vertices than S'_e does $\rightarrow |S'| < |S|$
 - $\Rightarrow |S'_e| \leq |S|$

Proof Approximation Ratio

- Differentiate greedily taken vertices S'_g from ones in exactly solved components S'_e
- For each small component, the optimal solution S cannot contain fewer vertices than S'_e does

$$\Rightarrow |S'_e| \leq |S|$$

$$\Rightarrow r = \frac{|S'|}{|S|} = \frac{|S'_e| + |S'_g|}{|S|} \le \frac{|S| + |S'_g|}{|S|} = 1 + \frac{|S'_g|}{|S|}$$

Proof Approximation Ratio

- Differentiate greedily taken vertices S'_g from ones in exactly solved components S'_e
- For each small component, the optimal solution S cannot contain fewer vertices than S'_e does

$$\Rightarrow |S'_e| \le |S|$$

$$\Rightarrow r = \frac{|S'|}{|S|} = \frac{|S'_e| + |S'_g|}{|S|} \le \frac{|S| + |S'_g|}{|S|} = 1 + \frac{|S'_g|}{|S|}$$

• $|S| = \Omega(n)$ with prob 1 - o(1)

"Greed is Good for Deterministic Scale-Free Networks", Chauhan et al. FSTTCS 2016

Remains to show: $|S'_g| = o(n)$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Proof

• Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

$$N_{w\geq t} = \sum_{v\in V} X_v$$

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

$$N_{w\geq t} = \sum_{v\in V} X_v$$

Expectation

$$\mathbb{E}[N_{w\geq t}] = \sum_{v\in V} \mathbb{E}[X_v] = n \Pr[w_v \geq t]$$

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

$$N_{w\geq t} = \sum_{v\in V} X_v$$

Expectation

$$\mathbb{E}[N_{w \ge t}] = \sum_{v \in V} \mathbb{E}[X_v] = n \Pr[w_v \ge t]$$
(via CDF of Par) = $nt^{-(\tau-1)}$

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

$$N_{w\geq t} = \sum_{v\in V} X_v$$

Expectation

$$\mathbb{E}[N_{w \ge t}] = \sum_{v \in V} \mathbb{E}[X_v] = n \Pr[w_v \ge t]$$

(via CDF of Par) = $nt^{-(\tau-1)}$
 $(t = \omega(1), \tau \in (2, 3)) = o(n)$

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

$$N_{w\geq t} = \sum_{v\in V} X_v$$

Expectation

$$\mathbb{E}[N_{w \ge t}] = \sum_{v \in V} \mathbb{E}[X_v] = n \Pr[w_v \ge t]$$
(via CDF of Par) = $nt^{-(\tau-1)}$
 $(t = \omega(1), \tau \in (2, 3)) = o(n)$

Since there is a $g(n) \in o(n) \cap \Omega(\log(n))$ with $g(n) \ge \mathbb{E}[N_{w \ge t}]$, Chernoff gives concentration

GIRG *n* independent vertices $w_v \sim Par(\tau - 1, 1)$ for $\tau \in (2, 3)$

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

Idea

Discretize ground space into cells such that edges cannot span empty cells

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

Idea

- Discretize ground space into cells such that edges cannot span empty cells
- Use empty cells as delimiters between components
- Regard chains of non-empty cells as one component

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

Idea

- Discretize ground space into cells such that edges cannot span empty cells
- Use empty cells as delimiters between components
- Regard chains of non-empty cells as one component
- Count all vertices that are in chains containing $> \log \log(n)$ vertices (also potentially counting small components)

When does a chain contain too many vertices?

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 1** Too many cells in long chains, say > k cells

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 1** Too many cells in long chains, say > k cells
- Unlikely, if cells are small

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 1** Too many cells in long chains, say > k cells
- Unlikely, if cells are small
- Proof via method of bounded differences!
 - Total number of cells in long chains does not change much ($\leq 2k + 1$) when one cell moves from empty to non-empty (or vice versa) > k

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 1** Too many cells in long chains, say > k cells
- Unlikely, if cells are small
- Proof via method of bounded differences!
 - Total number of cells in long chains does not change much ($\leq 2k + 1$) when one cell moves from empty to non-empty (or vice versa) > k
- Use Poissonization to get rid of dependencies $t = \frac{W_V}{V}$

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of typical bounded differences!

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of *typical* bounded differences!
 - Imagine cells as boxes on conveyor belt

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of *typical* bounded differences!
 - Imagine cells as boxes on conveyor belt
 - Imagine vertices as products

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of *typical* bounded differences!
 - Imagine cells as boxes on conveyor belt
 - Imagine vertices as products
 - Typically not many vertices in few cells

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of *typical* bounded differences!
 - Imagine cells as boxes on conveyor belt
 - Imagine vertices as products
 - Typically not many vertices in few cells

 \rightsquigarrow w.h.p., o(n) vertices in large components \checkmark

Conclusion

Method of Bounded Differences

Concentration for function of independent random variables

Conclusion

- Concentration for function of independent random variables
- Bounded differences ("Lipschitz") condition
 - What is the worst that can happen when changing one input?

Conclusion

Method of Bounded Differences

Concentration for function of independent random variables

- Bounded differences ("Lipschitz") condition
 - What is the worst that can happen when changing one input?
- Chernoff-like bound, weakened by sum of squared worst changes
- Useless if worst changes are too large

What is the worst that can happen when changing one input?

Conclusion

- Chernoff-like bound, weakened by sum of squared worst changes
- Useless if worst changes are too large

Method of Bounded Differences

Method of Typical Bounded Differences

Bounded differences ("Lipschitz") condition

- Define typical event, distinguish worst changes depending on whether event occurred
- Use mitigators to weaken impact of general worst changes
- Pay with probability that typical event does not occur, multiplied with inverse mitigators

Concentration for function of independent random variables

Bounded differences ("Lipschitz") condition What is the worst that can happen when changing one input?

Chernoff-like bound, weakened by sum of squared worst changes

Concentration for function of independent random variables

Useless if worst changes are too large

Method of Bounded Differences

Method of Typical Bounded Differences

- Define typical event, distinguish worst changes depending on whether event occurred
- Use mitigators to weaken impact of general worst changes
- Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs

- Pretty realistic graph model (heterogeneity, locality)
- Not too hard to analyze
- Used for average-case analysis (e.g. vertex cover approximation)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

(not discussed in lecture)

