
1

Probability & Computing

Bounded Differences & Geometric Inhomogeneous Random Graphs

www.kit.eduKIT – The Research University in the Helmholtz Association

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variables

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
a ball falls into bin i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
a ball does not fall into bin i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
k balls do not fall into bin i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov:

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

1
n → ∞

✗

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

1
n → ∞

✗
Chebychev: tedious... ✗

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

1
n → ∞

✗
Chebychev: tedious... ✗

Chernoff: ?

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let Xi = 1{Bin i is empty} for i ∈ [n]

X1=0 X2=1 X3=0 X4=1 X5=0 X6=0

⇒ X =
Pn

i=1Xi E[X] =
Pn

i=1 E[Xi] = n · Pr[Xi = 1]

= n ·
`
1− 1

n

´k
≈ n · e−k=n

n → ∞

Concentration: Pr[X ≥ E[X] + 5
√
k]

Markov: Pr[X ≥ E[X] + 5
√
k] ≤ E[X]

E[X]+5
√
k
= 1− 5

√
k

E[X]+5
√
k

1
n → ∞

✗
Chebychev: tedious... ✗

Chernoff:

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

✗ (our Bernoulli random variables are not independent)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball
Y1 = 1 Y2 = 3 Y6 = 4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball
Y1 = 1 Y2 = 3 Y6 = 4

⇒ X = f (Y1; :::; Yk) =
P

i∈[n] 1{@j :Yj=i} (summands not independent, but the Yj are)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball
Y1 = 1 Y2 = 3 Y6 = 4

⇒ X = f (Y1; :::; Yk) =
P

i∈[n] 1{@j :Yj=i}

=
P

i∈[n] maxj∈[k] {2− |{Yj ; i}|}
(summands not independent, but the Yj are)

(“not” a sum Bernoulli random variables)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Recall: Concentration

Concentration Inequalities
Bound the probability for a random variable to deviate from its expectation
Markov: generally applicable, but not very strong
Chebychev: stronger, but requires knowledge about variance
Chernoff: even stronger, but requires knowledge about moment generating functions

(simpler variants work, e.g., for sums of independent random variables)
Today: similarly strong but beyond sums of independent Bernoulli random variablesExample

k balls distributed uniformly at random over n bins
Random variable X counts empty bins

Markov: X non-negative, a>0:
Pr[X ≥ a] ≤ E[X]=a.

Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball
Y1 = 1 Y2 = 3 Y6 = 4

⇒ X = f (Y1; :::; Yk) =
P

i∈[n] 1{@j :Yj=i}

=
P

i∈[n] maxj∈[k] {2− |{Yj ; i}|}
(summands not independent, but the Yj are)

(“not” a sum Bernoulli random variables)

Can we show concentration for some arbitrary function of independent random variables?
... under certain conditions!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value How do we measure this?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Definition: A function f : Sn → R satisfies the bounded
differences condition ("Lipschitz condition") with parameters ∆i ,
if |f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X

′
i ; :::; Xn)| ≤ ∆i for all i ∈ [n] and

Xi ; X
′
i ∈ S. Xi

X ′
i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Definition: A function f : Sn → R satisfies the bounded
differences condition ("Lipschitz condition") with parameters ∆i ,
if |f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X

′
i ; :::; Xn)| ≤ ∆i for all i ∈ [n] and

Xi ; X
′
i ∈ S.

Theorem: Let X1; :::; Xn be independent random variables taking
values in a set S. Let f : Sn → R satisfy the bounded differences
condition with parameters ∆i . Then, for ∆ =

P
i∈[n] ∆

2
i :

Pr[|f − E[f]| ≥ t] ≤ 2e−2t2=∆.

Xi
X ′
i

(write f for f (X1; :::; Xn))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Definition: A function f : Sn → R satisfies the bounded
differences condition ("Lipschitz condition") with parameters ∆i ,
if |f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X

′
i ; :::; Xn)| ≤ ∆i for all i ∈ [n] and

Xi ; X
′
i ∈ S.

Theorem: Let X1; :::; Xn be independent random variables taking
values in a set S. Let f : Sn → R satisfy the bounded differences
condition with parameters ∆i . Then, for ∆ =

P
i∈[n] ∆

2
i :

Pr[|f − E[f]| ≥ t] ≤ 2e−2t2=∆.

Lemma: Pr[f ≥ E[f] + t] ≤ e−2t2=∆.

Xi
X ′
i

(write f for f (X1; :::; Xn))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Definition: A function f : Sn → R satisfies the bounded
differences condition ("Lipschitz condition") with parameters ∆i ,
if |f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X

′
i ; :::; Xn)| ≤ ∆i for all i ∈ [n] and

Xi ; X
′
i ∈ S.

Theorem: Let X1; :::; Xn be independent random variables taking
values in a set S. Let f : Sn → R satisfy the bounded differences
condition with parameters ∆i . Then, for ∆ =

P
i∈[n] ∆

2
i :

Pr[|f − E[f]| ≥ t] ≤ 2e−2t2=∆.

Lemma: Pr[f ≥ E[f] + t] ≤ e−2t2=∆.
also for Pr[f ≤ E[f]− t]

Xi
X ′
i

(write f for f (X1; :::; Xn))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid’s inequality, Azuma-Hoeffding inequality
Idea If changing one of the random inputs of f (X1; :::; Xk) does not change f (·) much

then a lot has to go wrong for f (·) to deviate from its expected value

Definition: A function f : Sn → R satisfies the bounded
differences condition ("Lipschitz condition") with parameters ∆i ,
if |f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X

′
i ; :::; Xn)| ≤ ∆i for all i ∈ [n] and

Xi ; X
′
i ∈ S.

Theorem: Let X1; :::; Xn be independent random variables taking
values in a set S. Let f : Sn → R satisfy the bounded differences
condition with parameters ∆i . Then, for ∆ =

P
i∈[n] ∆

2
i :

Pr[|f − E[f]| ≥ t] ≤ 2e−2t2=∆.

Lemma: Pr[f ≥ E[f] + t] ≤ e−2t2=∆.
also for Pr[f ≤ E[f]− t]

Cor. E[f] ≤ g(n): Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Xi
X ′
i

(write f for f (X1; :::; Xn))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
i

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

∆i ≤ 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

∆i ≤ 1

Function f (Y1; :::; Yk):
Y1; :::; Yk independent
bounded differences ∆i

∆ =
Pk

i=1 ∆
2
i

Then Pr[f ≥ E[f] + t] ≤ e−2t2=∆

Concentration via bounded differences

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

∆i ≤ 1

Function f (Y1; :::; Yk):
Y1; :::; Yk independent
bounded differences ∆i

∆ =
Pk

i=1 ∆
2
i

Then Pr[f ≥ E[f] + t] ≤ e−2t2=∆

Concentration via bounded differences
∆ =

Pk
i=1 ∆

2
i ≤

Pk
i=1 1

2 = k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

∆i ≤ 1

Function f (Y1; :::; Yk):
Y1; :::; Yk independent
bounded differences ∆i

∆ =
Pk

i=1 ∆
2
i

Then Pr[f ≥ E[f] + t] ≤ e−2t2=∆

Concentration via bounded differences
⇒ Pr[f ≥ E[f] + 5

√
k] ≤ e−2(5

√
k)2=k∆ =

Pk
i=1 ∆

2
i ≤

Pk
i=1 1

2 = k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Application: Balls into Bins

k balls distributed uniformly at random over n bins
Random variable X counts empty bins
Let independent Yj ∼ U([n]) for j ∈ [k] denote the bin of the j-th ball, and X = f (Y1; :::Yk)

Y1 = 1 Y2 = 3 Y6 = 4

Bounded differences condition |f (:::; Yi ; :::) − f (:::; Y ′
i ; :::)| ≤ ∆i

for all i and Yi ; Y ′
iIntuition: How much can the number of empty bins change

if we move a ball from one bin to another?
A ball is moved from an almost empty bin to...

... an empty bin ⇒ +1− 1 ⇒ ∆i = 0

... a non-empty bin ⇒ +1 ⇒ ∆i = 1

A ball is moved from a not almost empty bin to...
... an empty bin ⇒ −1 ⇒ ∆i = 1

... a non-empty bin ⇒ ∆i = 0

∆i ≤ 1

Function f (Y1; :::; Yk):
Y1; :::; Yk independent
bounded differences ∆i

∆ =
Pk

i=1 ∆
2
i

Then Pr[f ≥ E[f] + t] ≤ e−2t2=∆

Concentration via bounded differences
⇒ Pr[f ≥ E[f] + 5

√
k] ≤ e−2(5

√
k)2=k∆ =

Pk
i=1 ∆

2
i ≤

Pk
i=1 1

2 = k = e−50 Much better than
Markov’s → 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

m=n=k boxes k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes
short chain: incl. max. chain of length ≤k ⇒ exactly products in short chains unscanned

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes
short chain: incl. max. chain of length ≤k ⇒ exactly products in short chains unscanned
Xi = number of products in box i , Yi = indicator whether box i is in a short chain

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes
short chain: incl. max. chain of length ≤k ⇒ exactly products in short chains unscanned
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes
short chain: incl. max. chain of length ≤k ⇒ exactly products in short chains unscanned
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Problem: Dependencies (between Xi ’s, between Xi and Yi)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Formalize
chain: consecutive sequence of non-empty boxes
short chain: incl. max. chain of length ≤k ⇒ exactly products in short chains unscanned
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Problem: Dependencies (between Xi ’s, between Xi and Yi)
Solution: Relax dependencies and compute upper bound instead

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Ek(i) = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Ek(i) = 0

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Ek(i) = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Box i in short chain ⇒ Ek(i) > 0

Ek(i) = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Box i in short chain ⇒ Ek(i) > 0

Y ′
i = indicator whether Ek(i) > 0 ⇒ Yi ≤ Y ′

i

Ek(i) = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m=n=k boxes

A camera scans k +1 consecutive boxes simultaneously

k=log log(n)

Problem: Empty box in view ⇒ reflection blinds camera, products remain unscanned
k + 1

Question: How many products avoid quality assurance? Show : o(n) with prob. 1−O(1
n
)

Relax and bound
Xi = number of products in box i , Yi = indicator whether box i is in a short chain
Then X =

Pm
i=1Xi · Yi is the number of unscanned products

Ek(i) = number of empty boxes in box i and k closest (assuming k even)

Box i in short chain ⇒ Ek(i) > 0

Y ′
i = indicator whether Ek(i) > 0 ⇒ Yi ≤ Y ′

i

X =
Pm

i=1Xi · Yi ≤
Pm

i=1Xi · Y ′
i =: X

′

Ek(i) = 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n products

Y ′
i , indicator Ek(i) > 0

k + 1

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

Y ′
i , indicator Ek(i) > 0

k + 1

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

k + 1

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

k + 1
All k + 1 empty
⇒ Box i empty ⇒ Xi = 0

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

No empty box ⇒ Y ′
i = 0

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

Else: n products distributed u.a.r. over m′ = m − ‘ boxes

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

Else: n products distributed u.a.r. over m′ = m − ‘ boxes
≤ k

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

Else: n products distributed u.a.r. over m′ = m − ‘ boxes
≤ k

m′≥ n
log log(n)

log log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

Else: n products distributed u.a.r. over m′ = m − ‘ boxes
≤ k

m′≥ n
log log(n)

≥ 1
2

n
log log(n)

(for n large enough)

log log(n)

(for n large enough)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Expected number of products in box i ,
knowing that exactly ‘ boxes are empty

Box i empty? ⇒ Xi = 0

Else: n products distributed u.a.r. over m′ = m − ‘ boxes
≤ k

m′≥ n
log log(n)

≥ 1
2

n
log log(n)

(for n large enough)

E[Xi | Ek(i) = ‘] = n
m′ ≤ 2 log log(n)

log log(n)

(for n large enough)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”](union bound)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
a product hits a given box

(union bound)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
a product does not hit a given box

(union bound)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n
none of the n products hit a given box

(union bound)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n ≤ 2k · e−k
(1 + x ≤ ex)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ Pr[“Exists an empty box among k + 1”]
≤ (k + 1) · Pr[“A given box is empty”]
≤ 2k

`
1− 1

m

´n(union bound)

= 2k
`
1− k

n

´n ≤ 2k · e−k
(1 + x ≤ ex)

= 2 log log(n)
log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n) = n
log log(n) · 4

log log(n)2

log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n) = n
log log(n) · 4

log log(n)2

log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n) = n
log log(n) · 4

log log(n)2

log(n) = n · 4 log log(n)
log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Expectation of X ′

Xi , products in box i
Ek(i), number empty boxes in
box i and k closest

X ′ =
P
Xi · Y ′

i

n productsE[X ′] =
Pm

i=1 E[Xi · Y ′
i]

=
Pk+1

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

Y ′
i , indicator Ek(i) > 0

(law of total expectation)

=
Pk

‘=0 E[Xi · Y ′
i | Ek(i) = ‘] · Pr[Ek(i) = ‘]

k + 1

=
Pk

‘=1 E[Xi | Ek(i) = ‘] · Pr[Ek(i) = ‘]

(for n large enough)

≤
Pk

‘=1 2 log log(n) · Pr[Ek(i) = ‘]

= 2 log log(n)
Pk

‘=1 Pr[Ek(i) = ‘]

≤ 2 log log(n) · 2 log log(n)
log(n)

= 4 log log(n)2

log(n)

E[X ′] =
Pm

i=1 4
log log(n)2

log(n) = m · 4 log log(n)2

log(n)
= o(n) ✓= n

log log(n) · 4
log log(n)2

log(n) = n · 4 log log(n)
log(n)

m=n=k boxes, k=log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

not X ′

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box
⇒ X = n, since all products in short chains now

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

Worst change in number of products in short chains
when moving a single product from one box to another

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

Consider chain of 2k + 1 boxes containing all n products
and one box contains only one of them

k k
⇒ X = 0, since no short chain and, thus, no products in short chains
Move product to next box
⇒ X = n, since all products in short chains now

∆j ≤ n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

n → ∞
1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

n → ∞
1

This bound is useless,
since worst-case

changes are too big

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Concentration of X (for n large enough)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

Bounded Differences
View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition:

|f (:::; Zj ; :::) − f (:::; Z′
j ; :::)| ≤ ∆j

for all j and Zj ; Z′
j

∆j ≤ n

Function f (Z1; :::; Zn):

Pr[f ≥ cg(n)] ≤ e−2((c−1)g(n))2=∆.

Bounded differences inequality:
∆ =

Pn
j=1 ∆

2
j ≤

Pn
j=1 n

2 = n3 g(n) = 4n log log(n)
log(n)

Z1; :::; Zn independent
bounded differences ∆j

∆ =
Pn

j=1 ∆
2
j

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
2(c − 1)2

“
4n log log(n)

log(n)

”2
n3

1CA
= exp

„
−Θ

„
log log(n)2

n log(n)2

««
= o(1)

n → ∞
1

This bound is useless,
since worst-case

changes are too big

But this case (all products in few boxes) is super unlikely...

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

Definition: A function f : Sn → R satisfies the typical bounded differences condition
with respect to

an event A ⊆ Sn and
parameters ∆A

i ≤ ∆i for i ∈ [n],

|f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X
′
i ; :::; Xn)| ≤

ȷ
∆A
i ; if (X1; :::; Xi ; :::; Xn) ∈ A;

∆i ; otherwiseif
for all i ∈ [n] and Xi ; X ′

i ∈ S.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

Definition: A function f : Sn → R satisfies the typical bounded differences condition
with respect to

an event A ⊆ Sn and
parameters ∆A

i ≤ ∆i for i ∈ [n],

|f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X
′
i ; :::; Xn)| ≤

ȷ
∆A
i ; if (X1; :::; Xi ; :::; Xn) ∈ A;

∆i ; otherwiseif
for all i ∈ [n] and Xi ; X ′

i ∈ S.

∆A
i is worst-case change, assuming A held before the change

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2:Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Definition: A function f : Sn → R satisfies the typical bounded differences condition
with respect to

an event A ⊆ Sn and
parameters ∆A

i ≤ ∆i for i ∈ [n],

|f (X1; :::; Xi ; :::; Xn)− f (X1; :::; X
′
i ; :::; Xn)| ≤

ȷ
∆A
i ; if (X1; :::; Xi ; :::; Xn) ∈ A;

∆i ; otherwiseif
for all i ∈ [n] and Xi ; X ′

i ∈ S.

∆A
i is worst-case change, assuming A held before the change

“On the Method of Typical Bounded Differences”, Warnke, Comb. Probab. Comput. 2015Corollary of

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

Function of independent random variables as before

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before
We still consider general worst-case changes as before

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before
We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

And focus on the worst-case changes, assuming A held before the change

We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2: Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]

P
i∈[n]

1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

And focus on the worst-case changes, assuming A held before the change

We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2:

But we have to pay for the mitigation!

Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]
P

i∈[n]
1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

And focus on the worst-case changes, assuming A held before the change

We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2:

But we have to pay for the mitigation!
With the probability that the good event A does not occur

Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]
P

i∈[n]
1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

And focus on the worst-case changes, assuming A held before the change

We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2:

But we have to pay for the mitigation!
With the probability that the good event A does not occur
Multiplied with the inverse mitigators

Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]
P

i∈[n]
1
"i

.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Method of Typical Bounded Differences

A is the good, typical event that should be very likely to occur
Function of independent random variables as before

∆ is sum of squared worst-case changes as before

And focus on the worst-case changes, assuming A held before the change

We still consider general worst-case changes as before
But we can use the "i to mitigate the worst-case effects

Theorem: Let X1; :::; Xn be independent random variables taking values in a set S, let
A ⊆ Sn be an event, and let f : Sn → R satisfy the typical bounded differences condition
w.r.t. A and parameters ∆A

i ≤ ∆i . Then, for g(n) ≥ E[f], for all "i ∈ (0; 1] and
∆ =

P
i∈[n](∆

A
i + "i (∆i −∆A

i))
2:

But we have to pay for the mitigation!
With the probability that the good event A does not occur
Multiplied with the inverse mitigators

Pr[f ≥ cg(n)] ≤ e−((c−1)g(n))2=(2∆) + Pr[¬A]
P

i∈[n]
1
"i

.

The more we need to mitigate,
the higher the price!

Not too bad if A is very
likely to occur!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

≤ ‹ log(n) =: g(n) (for any ‹ > 0 and suffciently large n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

≤ ‹ log(n) =: g(n) (for any ‹ > 0 and suffciently large n)

= e−"
2=3·‹ log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

≤ ‹ log(n) =: g(n) (for any ‹ > 0 and suffciently large n)

= e−"
2=3·‹ log(n) = n−‹"

2=3

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

≤ ‹ log(n) =: g(n) (for any ‹ > 0 and suffciently large n)

= e−"
2=3·‹ log(n) = n−‹"

2=3

for a single sequence

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n

When all n products fall into 2k + 1 = O(log log(n)) boxes
But expected number of products in a single box i :
E[Bi] = n

m
= n

n
log log(n)

= log log(n)

And, thus, expected number in sequence of 2k + 1 boxes
E[S] =

P2k+1
i=1 E[Bi] = O(log log(n)2)

So typically a sequence should contain way fewer than n products
Typical event A = {“Every sequence of 2k + 1 boxes contains O(log(n)) products”}

See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
Chernoff: For g(n) ≥ E[S]: Pr[S ≥ (1 + ")g(n)] ≤ e−"

2=3·g(n)

≤ ‹ log(n) =: g(n) (for any ‹ > 0 and suffciently large n)

= e−"
2=3·‹ log(n) = n−‹"

2=3

Union bound over ≤ n sequences: Pr[¬A] ≤ n−‹"
2=3+1 ≤ n−– (for arbitrarily large –)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

Moving one product empties at most one box

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

Moving one product empties at most one box ⇒ at most two new short chains

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

contain O(log(n)) products

Moving one product empties at most one box ⇒ at most two new short chains
Assuming A, these short chains combined contain O(log(n)) products

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition:
Worst change in f when moving a product from one box
to another, assuming A held before the move

k k

contain O(log(n)) products

Moving one product empties at most one box ⇒ at most two new short chains
Assuming A, these short chains combined contain O(log(n)) products⇒∆A

j =O(log(n))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

≤
Pn

j=1(O(log(n)) + "jn)
2

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

≤
Pn

j=1(O(log(n)) + "jn)
2

Mitigators, arbitrary ∈ (0; 1]!

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

≤
Pn

j=1(O(log(n)) + "jn)
2

Mitigators, arbitrary ∈ (0; 1]!

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

"j =
1
n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

≤
Pn

j=1(O(log(n)) + "jn)
2

Mitigators, arbitrary ∈ (0; 1]!

=
Pn

j=1(O(log(n)) + 1)2

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

"j =
1
n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

≤
Pn

j=1(∆
A
j + "j∆j)

2

≤
Pn

j=1(O(log(n)) + "jn)
2

Mitigators, arbitrary ∈ (0; 1]!

=
Pn

j=1(O(log(n)) + 1)2

= O(n log(n)2)

Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Much better than n3 from before!

"j =
1
n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

"j =
1
n

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””
"j =

1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””
= O(1=n)

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””
= O(1=n)

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””
= O(1=n)

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””

≤ n−– · n2 = O(1=n) for – = 3

= O(1=n)

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

Application: The Factory (2nd Try)

Xi , products in box i
X =

P
Xi · Yi

m=n=k boxes, k=log log(n)
n products

Yi , indicator i in short chain

E[X] ≤ E[X ′] ≤ 4n log log(n)
log(n)

View X as a function f (Z1; :::; Zn) of independent rand. var.
where Zj for j ∈ [n] denotes the box of the j-th product
Bounded differences condition: ∆j ≤ n
Typical event A = {“Every sequence of 2k + 1 boxes
contains O(log(n)) products”}, Pr[¬A] ≤ n−– (for arbitrary –)

Typical bounded differences condition: ∆A
j =O(log(n))

Function f (Z1; :::; Zn):

Pr[f ≥cg(n)] ≤ e−((c−1)g(n))2=(2∆)

Typical bounded differences inequality:

+Pr[¬A]
Pn

j=1
1
"j

∆ = O(n log(n)2) Z1; :::; Zn independent
typical event A
bounded differences ∆A

j ≤ ∆j

∆ =
Pn

j=1(∆
A
j + "j(∆j −∆A

j))
2

g(n) ≥ E[f]

Pr

»
X≥c4n log log(n)

log(n)

–
≤ exp

0B@−
(c − 1)2

“
4n log log(n)

log(n)

”2
O(n log(n)2)

1CA
+Pr[¬A]

Pn
j=1

1
"j

“
−Ω

“
n log log(n)2

log(n)4

””

≤ n−– · n2 = O(1=n) for – = 3

= O(1=n)

✓

"j =
1
n

g(n) = 4n log log(n)
log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

(most vertices small degree)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

(most vertices small degree)
(few vertices very high degree)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

(most vertices small degree)
(few vertices very high degree)

“Scale-free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

Realistic representation: power-law distribution

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

(most vertices small degree)
(few vertices very high degree)

“Scale-free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

Realistic representation: power-law distribution

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise

Pareto distribution: X ∼ Par(¸; xmin)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Geometric Inhomogeneous Random Graphs

Motivation
Average-case analysis: analyze models that represent the real world
Models seen so far

Erdős-Rényi random graphs: simple but no locality
Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks
konect.cc/plot/degree.a.youtube-links.full.png

YouTube

(most vertices small degree)
(few vertices very high degree)

“Scale-free networks well done”, Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

Realistic representation: power-law distribution

fX(x) =

ȷ
¸x¸min · x−(¸+1); if x ≥ xmin

0; otherwise

Pareto distribution: X ∼ Par(¸; xmin)

Idea
Add Pareto distribution to RGGs

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight x = dist(xu; xv)y = wu;

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

xv

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

xv

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

xv

y = wu

xux

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

xv

y = wu

xux

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

The lower wv , the steeper the wedge
The lower the degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Geometric Inhomogeneous Random Graphs

Definition
Consider n vertices
For each vertex v independently:

Draw a position xv uniformly on Td
Draw a weight wv from Par(fi − 1; 1) for fi ∈ (2; 3) ⇒ fwv (w) = (fi − 1)w−fi

“Power-Law Exponent”

wv

0 1
T

Connect u and v with an edge, iff

dist(xu; xv) ≤
`
–wu ·wv

n

´1=d
L∞-norm const. controls the avg. degree

For d = 1, linear relation between distance
and weight

x ≤ –wv ·y
n

x = dist(xu; xv)y = wu;

⇔ y ≥ n
–wv

x

The lower wv , the steeper the wedge
The lower the degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
n independent vertices
xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv]

This is a random variable

n independent vertices
xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv]

This is a random variable

n independent vertices
xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]
=(n−1) · Pr[{u; v} ∈ E | wv]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]
=(n−1) · Pr[{u; v} ∈ E | wv]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w

u ∈ N(v) N(v)

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w

u ∈ N(v)

This is not the area of the shape,
since weights are not distributed uniformly!

N(v)

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w

u ∈ N(v)

This is not the area of the shape,
since weights are not distributed uniformly!

⇒ Use law of total probability to account for that

N(v)

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu |wv (w)dw) N(v)

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu |wv (w)dw) N(v)

Density of wu conditional on wv but
weights are drawn independently

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w

w.l.o.g xv = 1
2

1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w

w.l.o.g xv = 1
2

1
2

1
2
−–w ·wv

n
1
2
+–w ·wv

n

= Pr[xu ∈ [1
2
− –w ·wv

n
; 1
2
+ –w ·wv

n
]]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w

w.l.o.g xv = 1
2

1
2

1
2
−–w ·wv

n
1
2
+–w ·wv

n

= Pr[xu ∈ [1
2
− –w ·wv

n
; 1
2
+ –w ·wv

n
]]

Case 1: w ≤ n
2–wv

⇒ –w ·wv
n

≤ 1
2

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w

w.l.o.g xv = 1
2

1
2

1
2
−–w ·wv

n
1
2
+–w ·wv

n

= Pr[xu ∈ [1
2
− –w ·wv

n
; 1
2
+ –w ·wv

n
]]

Case 1: w ≤ n
2–wv

⇒ –w ·wv
n

≤ 1
2

= 2–w ·wv
n

= Θ(w ·wv
n

)

–w ·wv
n

–w ·wv
n

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w.l.o.g xv = 1
2

1
2

= Pr[xu ∈ [1
2
− –w ·wv

n
; 1
2
+ –w ·wv

n
]]

Case 2: w > n
2–wv

⇒ –w ·wv
n

> 1
2

w

Case 1: w ≤ n
2–wv

⇒ –w ·wv
n

≤ 1
2

= 2–w ·wv
n

= Θ(w ·wv
n

)

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

0 1
T

w
N(v)= Θ(n

R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

wv

w.l.o.g xv = 1
2

1
2

= Pr[xu ∈ [1
2
− –w ·wv

n
; 1
2
+ –w ·wv

n
]]

Case 2: w > n
2–wv

⇒ –w ·wv
n

> 1
2

w

Case 1: w ≤ n
2–wv

⇒ –w ·wv
n

≤ 1
2

= 2–w ·wv
n

= Θ(w ·wv
n

)

= 1

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw +

R∞
n

2–wv

1 · fwu(w)dw
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw +

R∞
n

2–wv

1 · fwu(w)dw
””

= Pr[wu ≥ n
2–wv

]

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw +

R∞
n

2–wv

1 · fwu(w)dw
””

= Pr[wu ≥ n
2–wv

]
If wv ≥ n

2–
, then n

2–wv
≤ 1

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw +

R∞
n

2–wv

1 · fwu(w)dw
””

= Pr[wu ≥ n
2–wv

]
If wv ≥ n

2–
, then n

2–wv
≤ 1

= Pr[wu ≥ 1] = 1

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw +

R∞
n

2–wv

1 · fwu(w)dw
””

= Pr[wu ≥ n
2–wv

]
If wv ≥ n

2–
, then n

2–wv
≤ 1

= Pr[wu ≥ 1] = 1= Θ(n)

=
Θ(n), if wv ≥ n

2–

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

=
`

n
2–wv

´−(fi−1)
(via CDF of Par)

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

=
`

n
2–wv

´−(fi−1)
(via CDF of Par)

=
`
2–wv
n

´fi−1

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

=
`

n
2–wv

´−(fi−1)
(via CDF of Par)

=
`
2–wv
n

´fi−1

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

< 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

=
`

n
2–wv

´−(fi−1)
(via CDF of Par)

=
`
2–wv
n

´fi−1

= O(wv
n
)

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

< 1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

= Θ

„
wv

h
1

−(fi−2)w
−(fi−2)

i n
2–wv

1

«
+O(wv)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

= Θ

„
wv

h
1

−(fi−2)w
−(fi−2)

i n
2–wv

1

«
+O(wv)

=Θ
“
wv
ˆ
w−(fi−2)

˜1
n

2–wv

”
+ O(wv)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

= Θ

„
wv

h
1

−(fi−2)w
−(fi−2)

i n
2–wv

1

«
+O(wv)

=Θ
“
wv
ˆ
w−(fi−2)

˜1
n

2–wv

”
+ O(wv)

=Θ

„
wv

„
1−

“
n

2–wv

”−(fi−2)
««

+O(wv)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

= Θ

„
wv

h
1

−(fi−2)w
−(fi−2)

i n
2–wv

1

«
+O(wv)

=Θ
“
wv
ˆ
w−(fi−2)

˜1
n

2–wv

”
+ O(wv)

=Θ

„
wv

„
1−

“
n

2–wv

”−(fi−2)
««

+O(wv)

< 1 and O(1)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Expected Degree (d = 1)

Consider vertex v with weight wv
We want to compute E[deg(v) | wv] n independent vertices

xv ∼ U([0; 1])

dist(xu; xv) ≤ –wu ·wv
n

u, v adjacent iff

GIRG

Consider Xu for u ∈ V \ {v} indicating whether {u; v} ∈ E
deg(v) =

P
u∈V \{v}Xu

E[deg(v) | wv] =
P

u∈V \{v} E[Xu | wv]

= Θ(n
R∞
1

Pr[u∈N(v) |wu=w;wv]fwu (w)dw)

w.l.o.g xv = 1
2

=
Θ(n), if wv ≥ n

2–

If wv < n
2–

= Θ
“
n
“R n

2–wv
1

w ·wv
n
fwu(w)dw + Pr[wu ≥ n

2–wv
]
””

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= Θ
“
n
R n

2–wv
1

w ·wv
n
fwu (w)dw

”
+ O(wv)

= Θ
“
nwv
n

R n
2–wv
1 w · (fi − 1)w−fidw

”
+ O(wv)

fwv (w) = (fi − 1)w−fi

= Θ
“
wv
R n

2–wv
1 w−(fi−1)dw

”
+ O(wv)

= Θ(nPr[{u; v} ∈ E | wv])

= Θ

„
wv

h
1

−(fi−2)w
−(fi−2)

i n
2–wv

1

«
+O(wv)

=Θ
“
wv
ˆ
w−(fi−2)

˜1
n

2–wv

”
+ O(wv)

=Θ

„
wv

„
1−

“
n

2–wv

”−(fi−2)
««

+O(wv)

< 1 and O(1)= Θ(wv)

Θ(wv), otherwise
✓

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

(also works with other weight distributions)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓ (also works with other weight distributions)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality

What we considered just now

(each dot is a graph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality

What we considered just now

GIRGs without geometry / ER with weights

(each dot is a graph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality

What we considered just now

GIRGs without geometry / ER with weights

Basically random geometric graphs

(each dot is a graph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search search space nx : x=

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS

nr. BFS nx : x=

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size
Louvain clustering algorithm

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size
Louvain clustering algorithm
Number of maximal cliques

rather structural property

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size
Louvain clustering algorithm
Number of maximal cliques

rather structural property
Chromatic number kernel size

kernel size nx : x=

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Are GIRGs Realistic?

Structural Properties
Heterogeneity: deg(v) ≈ wv , wv ∼ Par(fi − 1; 1) power-law degree distribution ✓

Locality (not seen here) ✓

Algorithmic Properties “On the External Validity of Average-Case Analyses of Graph Algorithms”, Bläsius, Fischbeck, ACM Trans. Algorithms 2023

(also works with other weight distributions)

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
Measure algorithmic properties on GIRGs and real graphs

Bidirectional breadth-first-search
Diameter computation via BFS
Vertex cover kernel size
Louvain clustering algorithm
Number of maximal cliques

rather structural property
Chromatic number kernel size

kernel size nx : x=

Use GIRGs for average-case analysis!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

NP-complete

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Vertex Cover Approximation

Vertex Cover
Given undirected graph G = (V; E)

Find a smallest S ⊆ V such that G[V \ S] is edgeless
(induced subgraph)

Vertex Cover Approximation
NP-complete

Find a small vertex cover S′ fast
Approximation ratio: r = |S′|=|S|
NP-hard to approximate with r <

√
2

Believed to be NP-hard for r < 2− " for const. "
Practice

Simple approximation algorithm repeatedly
takes/deletes vertex of largest degree
Close to optimal ratios on real graphs

“Vertex Cover on Complex Networks”, Da Silva, Gimenez-Lugo, Da Silva, IJMPC 2013

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree
Greedy algorithm picks vertices at random

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

Improve quality by solving small separated
components exactly

Greedy algorithm picks vertices at random

log log(n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

Improve quality by solving small separated
components exactly

Greedy algorithm picks vertices at random

log log(n)
Two variants

Search and solve small components
after each greedily taken vertex

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

Improve quality by solving small separated
components exactly

Greedy algorithm picks vertices at random

log log(n)
Two variants

Search and solve small components
after each greedily taken vertex
Take greedy until red line, solve small
components exactly, take rest greedy too

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms15

Analsysis on GIRGs
“Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry”, Bläsius, Friedrich, K., Algorithmica 2023(based on)

Keep it simple
Consider vertices in order of decreasing degree in original graph
Consider vertices in order of decreasing weight

wv

0 1
T

Learn from the Model
Once high-degree vertices are
taken/removed, remaining vertices have
roughly equal weight/degree

Improve quality by solving small separated
components exactly

Greedy algorithm picks vertices at random

log log(n)
Two variants

Search and solve small components
after each greedily taken vertex
Take greedy until red line, solve small
components exactly, take rest greedy too

This variant yields an upper bound on the
quality of the other

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

with probability 1− o(1)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

with probability 1− o(1)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely. (not shown today)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

Proof Approximation Ratio
Differentiate greedily taken vertices S′

g from
ones in exactly solved components S′

e
wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

Proof Approximation Ratio
Differentiate greedily taken vertices S′

g from
ones in exactly solved components S′

e

For each small component, the optimal solution
S cannot contain fewer vertices than S′

e does
⇒ |S′

e | ≤ |S|

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

Proof Approximation Ratio
Differentiate greedily taken vertices S′

g from
ones in exactly solved components S′

e

For each small component, the optimal solution
S cannot contain fewer vertices than S′

e does
⇒ |S′

e | ≤ |S|

⇒ r = |S′|
|S| =

|S′
e |+|S′

g |
|S| ≤ |S|+|S′

g |
|S| = 1 +

|S′
g |

|S|

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms16

Analysis on GIRGs – Approximation Ratio

Proof Approximation Ratio
Differentiate greedily taken vertices S′

g from
ones in exactly solved components S′

e

For each small component, the optimal solution
S cannot contain fewer vertices than S′

e does
⇒ |S′

e | ≤ |S|

⇒ r = |S′|
|S| =

|S′
e |+|S′

g |
|S| ≤ |S|+|S′

g |
|S| = 1 +

|S′
g |

|S|

|S| = Ω(n) with prob 1− o(1)
“Greed is Good for Deterministic Scale-Free Networks”, Chauhan et al. FSTTCS 2016

Remains to show : |S′
g | = o(n)

wv

0 1
T

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex
cover S′ of G can be computed in time O(m log(n)) such that the approximation ratio is
(1 + o(1)) asymptotically almost surely.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)
Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t] =
P

v∈V E[Xv] = nPr[wv ≥ t]

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)
Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t] =
P

v∈V E[Xv] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)
Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t] =
P

v∈V E[Xv] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= o(n)(t = !(1); fi ∈ (2; 3))

Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms17

Analysis on GIRGs – Greedy Vertices ≥ t

wv

0 1
T

(via CDF of Par)

Lemma: Let G be a GIRG with n vertices, let t = !(1), and let Nw≥t be the number of
vertices with weight at least t. Then, Nw≥t = o(n) with probability 1− O(1=n).

Proof
Consider random variable Xv = 1{wv≥t}

E[Nw≥t] =
P

v∈V E[Xv] = nPr[wv ≥ t]

= nt−(fi−1)

n independent vertices
GIRG

wv ∼ Par(fi − 1; 1) for fi ∈ (2; 3)

= o(n)(t = !(1); fi ∈ (2; 3))

Nw≥t is the sum of independent Bernoulli
random variables
Nw≥t =

P
v∈V Xv

Expectation

Since there is a g(n) ∈ o(n) ∩ Ω(log(n)) with
g(n) ≥ E[Nw≥t], Chernoff gives concentration

✓

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
Discretize ground space into cells such that edges cannot span empty cells

wv

0 1
T

t

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
Discretize ground space into cells such that edges cannot span empty cells

wv

0 1
T

t

Use empty cells as delimiters between components
Regard chains of non-empty cells as one component

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

Idea
Discretize ground space into cells such that edges cannot span empty cells

wv

0 1
T

t

Use empty cells as delimiters between components
Regard chains of non-empty cells as one component
Count all vertices that are in chains containing > log log(n) vertices

(also potentially counting small components)

When does a chain contain too many vertices?

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 1 Too many cells in long chains, say > k cells

> k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 1 Too many cells in long chains, say > k cells
Unlikely, if cells are small

> k

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 1 Too many cells in long chains, say > k cells
Unlikely, if cells are small

> k

Proof via method of bounded differences!
Total number of cells in long chains does not change much (≤ 2k + 1) when one cell
moves from empty to non-empty (or vice versa)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 1 Too many cells in long chains, say > k cells
Unlikely, if cells are small

> k

Proof via method of bounded differences!
Total number of cells in long chains does not change much (≤ 2k + 1) when one cell
moves from empty to non-empty (or vice versa)
Use Poissonization to get rid of dependencies

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Imagine cells as boxes on conveyor belt

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Imagine cells as boxes on conveyor belt
Imagine vertices as products

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Imagine cells as boxes on conveyor belt
Imagine vertices as products
Typically not many vertices in few cells

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms18

Analysis on GIRGs – Greedy Vertices < t

> log log(n)
vertices

After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into
several components

Components of size ≤ log log(n) are solved exactly
Larger components are assumed to be taken greedily (need to show: these are o(n))

Hard to determine how likely it is for a vertex to be in a large component
Make use of geometry! Overestimate components by counting how many vertices are
geometrically very close

wv

0 1
T

t

Case 2 Short chains (≤ k cells) contain too many vertices

≤ k
cells

≤ log log(n)
vertices

Unlikely, if cells are small
Proof via method of typical bounded differences!

Imagine cells as boxes on conveyor belt
Imagine vertices as products

 w.h.p., o(n) vertices in large components ✓

Typically not many vertices in few cells

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms19

Conclusion

Method of Bounded Differences
Concentration for function of independent random variables

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms19

Conclusion

Xi
X ′
i

Method of Bounded Differences

Bounded differences (“Lipschitz”) condition
What is the worst that can happen when changing one input?

Concentration for function of independent random variables

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms19

Conclusion

Xi
X ′
i

Method of Bounded Differences

Bounded differences (“Lipschitz”) condition
What is the worst that can happen when changing one input?

Concentration for function of independent random variables

Chernoff-like bound, weakened by sum of squared worst changes
Useless if worst changes are too large

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms19

Conclusion

Xi
X ′
i

Method of Bounded Differences

Bounded differences (“Lipschitz”) condition
What is the worst that can happen when changing one input?

Concentration for function of independent random variables

Chernoff-like bound, weakened by sum of squared worst changes
Useless if worst changes are too large

Method of Typical Bounded Differences
Define typical event, distinguish worst changes depending on whether event occurred
Use mitigators to weaken impact of general worst changes
Pay with probability that typical event does not occur, multiplied with inverse mitigators

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms19

Conclusion

Xi
X ′
i

Method of Bounded Differences

Bounded differences (“Lipschitz”) condition
What is the worst that can happen when changing one input?

Concentration for function of independent random variables

Chernoff-like bound, weakened by sum of squared worst changes
Useless if worst changes are too large

Method of Typical Bounded Differences
Define typical event, distinguish worst changes depending on whether event occurred
Use mitigators to weaken impact of general worst changes
Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs
Pretty realistic graph model (heterogeneity, locality)
Not too hard to analyze
Used for average-case analysis (e.g. vertex cover approximation)

(not discussed in lecture)

