Probability \& Computing

Bounded Differences \& Geometric Inhomogeneous Random Graphs

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables

- k balls distributed uniformly at random over n bins

- Random variable X counts empty bins
- Let $X_{i}=\mathbb{1}_{\{\text {Bin } i \text { is empty }\}}$ for $i \in[n] \Rightarrow X=\sum_{i=1}^{n} X_{i}$
$\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n \cdot \operatorname{Pr}\left[X_{i}=1\right]$
- Concentration: $\operatorname{Pr}[X \geq \mathbb{E}[X]+5 \sqrt{k}]$
$=n \cdot\left(1-\frac{1}{n}\right)^{k}$
- Markov: $\operatorname{Pr}[X \geq \mathbb{E}[X]+5 \sqrt{k}] \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]+5 \sqrt{k}}=1-\frac{5 \sqrt{k}}{\mathbb{E}[X]+5 \sqrt{k}} \xrightarrow{n \rightarrow \infty} 1 X$
- Chebychev: tedious... X

- Chernoff: X (our Bernoulli random variables are not independent)

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions
(simpler variants work, e.g., for sums of independent random variables)

Example

Today: similarly strong but beyond sums of independent Bernoulli random variables

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins

- Let independent $Y_{j} \sim \mathcal{U}([n])$ for $j \in[k]$ denote the bin of the j-th ball

$$
\begin{aligned}
\Rightarrow X=f\left(Y_{1}, \ldots, Y_{k}\right) & =\sum_{i \in[n]} \mathbb{1}_{\left\{\nexists j: Y_{j}=i\right\}} \text { (summands not independent, but the } Y_{j} \text { are) } \\
& =\sum_{i \in[n]} \max _{j \in[k]}\left\{2-\left|\left\{Y_{j}, i\right\}\right|\right\} \text { ("not" a sum Bernoulli random variables) }
\end{aligned}
$$

Can we show concentration for some arbitrary function of independent random variables? ... under certain conditions!

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality Idea If changing one of the random inputs of $f\left(X_{1}, \ldots, X_{k}\right)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value
Definition: A function $f: S^{n} \rightarrow \mathbb{R}$ satisfies the bounded differences condition ("Lipschitz condition") with parameters Δ_{i}, if $\left|f\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{i}^{\prime}, \ldots, X_{n}\right)\right| \leq \Delta_{i}$ for all $i \in[n]$ and $X_{i}, X_{i}^{\prime} \in S$.

Theorem: Let X_{1}, \ldots, X_{n} be independent random variables taking values in a set S. Let $f: S^{n} \rightarrow \mathbb{R}$ satisfy the bounded differences
 condition with parameters Δ_{i}. Then, for $\Delta=\sum_{i \in[n]} \Delta_{i}^{2}$:

$$
\operatorname{Pr}[|f-\mathbb{E}[f]| \geq t] \leq 2 e^{-2 t^{2} / \Delta} . \quad\left(\text { write } f \text { for } f\left(X_{1}, \ldots, X_{n}\right)\right)
$$

Lemma: $\operatorname{Pr}[f \geq \mathbb{E}[f]+t] \leq e^{-2 t^{2} / \Delta}$.
Cor. $\mathbb{E}[f] \leq g(n): \operatorname{Pr}[f \geq c g(n)] \leq e^{-2((c-1) g(n))^{2} / \Delta}$

Application: Balls into Bins

- Let independent $Y_{j} \sim \mathcal{U}([n])$ for $j \in[k]$ denote the bin of the j-th ball, and $X=f\left(Y_{1}, \ldots Y_{k}\right)$

Bounded differences condition

- Intuition: How much can the number of empty bins change

$$
\begin{aligned}
& \left|f\left(\ldots, Y_{i}, \ldots\right)-f\left(\ldots, Y_{i}^{\prime}, \ldots\right)\right| \leq \Delta_{i} \\
& \text { for all } i \text { and } Y_{i}, Y_{i}^{\prime}
\end{aligned}
$$ if we move a ball from one bin to another?

- A ball is moved from an almost empty bin to...

$$
\begin{array}{lr}
\text { - } \ldots \text { an empty bin } \quad \Rightarrow+1-1 \Rightarrow \Delta_{i}=0 \\
\text { - } \ldots \text { a non-empty bin } \quad \Rightarrow+1 \Rightarrow \Delta_{i}=1
\end{array}
$$

- A ball is moved from a not almost empty bin to...
- ... an empty bin

$$
\begin{aligned}
\Rightarrow-1 & \Rightarrow \Delta_{i}=1 \\
& \Rightarrow \Delta_{i}=0
\end{aligned}
$$

```
Function f(Y, ,., , Yk):
```

- Y_{1}, \ldots, Y_{k} independent
$\Delta_{i} \leq 1$
- bounded differences Δ_{i}
- $\Delta=\sum_{i=1}^{k} \Delta_{i}^{2}$

Then $\operatorname{Pr}[f \geq \mathbb{E}[f]+t] \leq e^{-2 t^{2} / \Delta}$

Concentration via bounded differences

$$
\Delta=\sum_{i=1}^{k} \Delta_{i}^{2} \leq \sum_{i=1}^{k} 1^{2}=k \quad \Rightarrow \operatorname{Pr}[f \geq \mathbb{E}[f]+5 \sqrt{k}] \leq e^{-2(5 \sqrt{k})^{2} / k}=e^{-50} \begin{aligned}
& \text { Much better than } \\
& \text { Markov's } \rightarrow 1
\end{aligned}
$$

Application: The Factory

- Products are distributed uniformly at random over boxes on a conveyor belt n products $m=n / k$ boxes $k=\log \log (n)$

- A camera scans $k+1$ consecutive boxes simultaneously

$$
\overline{k+1}
$$

- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. 1-O($\frac{1}{n}$) Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned
- $X_{i}=$ number of products in box $i, Y_{i}=$ indicator whether box i is in a short chain
- Then $X=\sum_{i=1}^{m} X_{i} \cdot Y_{i}$ is the number of unscanned products
- Problem: Dependencies (between X_{i} 's, between X_{i} and Y_{i})
- Solution: Relax dependencies and compute upper bound instead

Application: The Factory

- Products are distributed uniformly at random over boxes on a conveyor belt

- A camera scans $k+1$ consecutive boxes simultaneously

$$
\stackrel{*}{k+1}
$$

- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. 1-O($\frac{1}{n}$) Relax and bound
- $X_{i}=$ number of products in box $i, Y_{i}=$ indicator whether box i is in a short chain
- Then $X=\sum_{i=1}^{m} X_{i} \cdot Y_{i}$ is the number of unscanned products
- $E_{k}(i)=$ number of empty boxes in box i and k closest (assuming k even)
\rightarrow Box i in short chain $\Rightarrow E_{k}(i)>0$
- $Y_{i}^{\prime}=$ indicator whether $E_{k}(i)>0 \Rightarrow Y_{i} \leq Y_{i}^{\prime}$
$\longrightarrow X=\sum_{i=1}^{m} X_{i} \cdot Y_{i} \leq \sum_{i=1}^{m} X_{i} \cdot Y_{i}^{\prime}=: X^{\prime}$

Expectation of \boldsymbol{X}^{\prime} (for n large enough)

$$
\begin{aligned}
&\mathbb{E}\left[X^{\prime}\right]=\sum_{i=1}^{m} \underbrace{}_{\text {(law of total expectation) }}=\sum_{\ell=0}^{k+1} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime}\right] \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
&=\sum_{\ell=0}^{k} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
&=\sum_{\ell=1}^{k} \underbrace{\mathbb{E}\left[X_{i} \mid E_{k}(i)=\ell\right]} \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right]
\end{aligned}
$$

- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X^{\prime}=\sum X_{i} \cdot Y_{i}^{\prime}$
- X_{i}, products in box i
- $E_{k}(i)$, number empty boxes in box i and k closest
- Y_{i}^{\prime}, indicator $E_{k}(i)>0$

Expected number of products in box i, knowing that exactly ℓ boxes are empty

- Box i empty? $\Rightarrow X_{i}=0$
- Else: n products distributed u.a.r. over $m^{\prime}=m-\ell$ boxes
$\longrightarrow \mathbb{E}\left[X_{i} \mid E_{k}(i)=\ell\right]=\frac{n}{m^{\prime}} \leq 2 \log \log (n)$ $m^{\prime} \geq \frac{n}{\log \log (n)}-\log \log (n)$ (for n large enough) $\geq \frac{1}{2} \frac{n}{\log \log (n)}$

Expectation of \boldsymbol{X}^{\prime} (for n large enough)

$$
\begin{aligned}
& \mathbb{E}\left[X^{\prime}\right]=\sum_{i=1}^{m} \underbrace{\mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime}\right]}_{\text {(law of total expectation) })}=\sum_{l=0}^{k+1} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
&=\sum_{l=0}^{k} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
&=\sum_{\ell=1}^{k} \mathbb{E}\left[X_{i} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& \leq \sum_{\ell=1}^{k} 2 \log \log (n) \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
&=2 \log \log (n) \sum_{l=1}^{k} \operatorname{Pr}\left[E_{k}(i)=\ell\right]
\end{aligned}
$$

$$
\leq \operatorname{Pr}[" E x i s t s \text { an empty box among } k+1 \text { "] }
$$

$$
\text { (union bound) } \leq(k+1) \cdot \operatorname{Pr}[\text { "A given box is empty"] }
$$

$$
\leq 2 k\left(1-\frac{1}{m}\right)^{n} \sigma^{\left(1+x \leq e^{x}\right)}
$$

$$
=2 k\left(1-\frac{k}{n}\right)^{n} \leq 2 k \cdot e^{-k}=2 \frac{\log \log (n)}{\log (n)}
$$

Expectation of \boldsymbol{X}^{\prime} (for n large enough)

$$
\begin{aligned}
& \mathbb{E}\left[X^{\prime}\right]=\sum_{i=1}^{m} \underbrace{\mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime}\right]} \\
& \text { (law of total expectation })=\sum_{i=0}^{k+1} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& =\sum_{\ell=0}^{k} \mathbb{E}\left[X_{i} \cdot Y_{i}^{\prime} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& =\sum_{\ell=1}^{k} \mathbb{E}\left[X_{i} \mid E_{k}(i)=\ell\right] \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& \leq \sum_{\ell=1}^{k} 2 \log \log (n) \cdot \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& =2 \log \log (n) \sum_{\ell=1}^{k} \operatorname{Pr}\left[E_{k}(i)=\ell\right] \\
& \leq 2 \log \log (n) \cdot 2 \frac{\log \log (n)}{\log (n)} \\
& =4 \frac{\log \log (n)^{2}}{\log (n)} \\
& \mathbb{E}\left[X^{\prime}\right]=\sum_{i=1}^{m} 4 \frac{\log \log (n)^{2}}{\log (n)}=m \cdot 4 \frac{\log \log (n)^{2}}{\log (n)}=\frac{n}{\log \log (n)} \cdot 4 \frac{\log \log (n)^{2}}{\log (n)}=n \cdot 4 \frac{\log \log (n)}{\log (n)}=0(n) \sqrt{n}
\end{aligned}
$$

Bounded Differences

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition:
- Worst change in number of products in short chains when moving a single product from one box to another
- Consider chain of $2 k+1$ boxes containing all n products and one box contains only one of them
- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain
$\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$
$\left|f\left(\ldots, Z_{j}, \ldots\right)-f\left(\ldots, Z_{j}^{\prime}, \ldots\right)\right| \leq \Delta_{j}$ for all j and Z_{j}, Z_{j}^{\prime}

k
$\Rightarrow X=0$, since no short chain and, thus, no products in short chains
- Move product to next box
$\Rightarrow X=n$, since all products in short chains now

Bounded Differences

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition: $\Delta_{j} \leq n$
- Bounded differences inequality:

$$
\Delta=\sum_{j=1}^{n} \Delta_{j}^{2} \leq \sum_{j=1}^{n} n^{2}=n^{3} \quad g(n)=4 n \frac{\log \log (n)}{\log (n)}
$$

- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain
$\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$

$$
\operatorname{Pr}\left[x \geq c 4 n \frac{\log \log (n)}{\log (n)}\right] \leq \exp \left(-\frac{2(c-1)^{2}\left(4 n \frac{\log \log (n)}{\log (n)}\right)^{2}}{n^{3}}\right)
$$

This bound is useless, since worst-case changes are too big

$$
=\exp (-\Theta(\underbrace{\frac{\log \log (n)^{2}}{n \log (n)^{2}}})) \xrightarrow{n \rightarrow \infty} 1
$$

$\left|f\left(\ldots, Z_{j}, \ldots\right)-f\left(\ldots, Z_{j}^{\prime}, \ldots\right)\right| \leq \Delta_{j}$ for all j and Z_{j}, Z_{j}^{\prime}

Function $f\left(Z_{1}, \ldots, Z_{n}\right)$:

- Z_{1}, \ldots, Z_{n} independent
- bounded differences Δ_{j}
- $\Delta=\sum_{j=1}^{n} \Delta_{j}^{2}$
- $g(n) \geq \mathbb{E}[f]$
$\operatorname{Pr}[f \geq c g(n)] \leq e^{-2((c-1) g(n))^{2} / \Delta}$.
But this case (all products in few boxes) is super unlikely...

Method of Typical Bounded Differences

Definition: A function $f: S^{n} \rightarrow \mathbb{R}$ satisfies the typical bounded differences condition with respect to

- an event $A \subseteq S^{n}$ and
- parameters $\Delta_{i}^{A} \leq \Delta_{i}$ for $i \in[n]$,
if $\quad\left|f\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right)-f\left(X_{1}, \ldots, X_{i}^{\prime}, \ldots, X_{n}\right)\right| \leq\left\{\begin{array}{l}\Delta_{i}^{A}, \text { if }\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right) \in A, \\ \Delta_{i}, \text { otherwise }\end{array}\right.$
for all $i \in[n]$ and $X_{i}, X_{i}^{\prime} \in S$.
- Δ_{i}^{A} is worst-case change, assuming A held before the change

Theorem: Let X_{1}, \ldots, X_{n} be independent random variables taking values in a set S, let $A \subseteq S^{n}$ be an event, and let $f: S^{n} \rightarrow \mathbb{R}$ satisfy the typical bounded differences condition w.r.t. A and parameters $\Delta_{i}^{A} \leq \Delta_{i}$. Then, for $g(n) \geq \mathbb{E}[f]$, for all $\varepsilon_{i} \in(0,1]$ and
$\Delta=\sum_{i \in[n]}\left(\Delta_{i}^{A}+\varepsilon_{i}\left(\Delta_{i}-\Delta_{i}^{A}\right)\right)^{2}: \operatorname{Pr}[f \geq c g(n)] \leq e^{-((c-1) g(n))^{2} /(2 \Delta)}+\operatorname{Pr}[\neg A] \sum_{i \in[n]} \frac{1}{\varepsilon_{i}}$.

Method of Typical Bounded Differences

Theorem: Let X_{1}, \ldots, X_{n} be independent random variables taking values in a set S, let $A \subseteq S^{n}$ be an event, and let $f: S^{n} \rightarrow \mathbb{R}$ satisfy the typical bounded differences condition w.r.t. A and parameters $\Delta_{i}^{A} \leq \Delta_{i}$. Then, for $g(n) \geq \mathbb{E}[f]$, for all $\varepsilon_{i} \in(0,1]$ and $\Delta=\sum_{i \in[n]}\left(\Delta_{i}^{A}+\varepsilon_{i}\left(\Delta_{i}-\Delta_{i}^{A}\right)\right)^{2}: \operatorname{Pr}[f \geq c g(n)] \leq e^{-((c-1) g(n))^{2} /(2 \Delta)}+\operatorname{Pr}[\neg A] \sum_{i \in[n]} \frac{1}{\varepsilon_{i}}$.

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- Δ is sum of squared worst-case changes as before
- We still consider general worst-case changes as before
- But we can use the ε_{i} to mitigate the worst-case effects
- And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!
- With the probability that the good event A does not occur
- Multiplied with the inverse mitigators

The more we need to mitigate,
the higher the price!
Not too bad if A is very
likely to occur!

Application: The Factory (2nd Try)

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition: $\Delta_{j} \leq n$
- When all n products fall into $2 k+1=O(\log \log (n))$ boxes
- But expected number of products in a single box i :

$$
\mathbb{E}\left[B_{i}\right]=\frac{n}{m}=\frac{n}{\log \log (n)}=\log \log (n)
$$

- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain $\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$
- And, thus, expected number in sequence of $2 k+1$ boxes $\mathbb{E}[S]=\sum_{i=1}^{2 k+1} \mathbb{E}\left[B_{i}\right]=O\left(\log \log (n)^{2}\right) \leq \delta \log (n)=: g(n)$ (for any $\delta>0$ and suffciently large n)
- So typically a sequence should contain way fewer than n products
- Typical event $A=\{$ "Every sequence of $2 k+1$ boxes contains $O(\log (n))$ products" $\}$
- See S as sum of independent Bernoulli rand. var. (whether j-th product is in sequence)
- Chernoff: For $g(n) \geq \mathbb{E}[S]: \operatorname{Pr}[S \geq(1+\varepsilon) g(n)] \leq e^{-\varepsilon^{2} / 3 \cdot g(n)}=e^{-\varepsilon^{2} / 3 \cdot \delta \log (n)}=n^{-\delta \varepsilon^{2} / 3}$
- Union bound over $\leq n$ sequences: $\operatorname{Pr}[\neg A] \leq n^{-\delta \varepsilon^{2} / 3+1} \leq n^{-\lambda}$ (for arbitrarily large λ)

Application: The Factory (2nd Try)

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition: $\Delta_{j} \leq n$
- Typical event $A=\{$ "Every sequence of $2 k+1$ boxes contains $O(\log (n))$ products" $\}, \operatorname{Pr}[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
- Worst change in f when moving a product from one box
- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain $\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$ to another, assuming A held before the move

- Moving one product empties at most one box \Rightarrow at most two new short chains
- Assuming A, these short chains combined contain $O(\log (n))$ products $\Rightarrow \Delta_{j}^{A}=O(\log (n))$

Application: The Factory (2nd Try)

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition: $\Delta_{j} \leq n$
- Typical event $A=\{$ "Every sequence of $2 k+1$ boxes contains $O(\log (n))$ products" $\}, \operatorname{Pr}[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_{j}^{A}=O(\log (n))$
- Typical bounded differences inequality:

$$
\begin{aligned}
\Delta & =\sum_{j=1}^{n}\left(\Delta_{j}^{A}+\varepsilon_{j}\left(\Delta_{j}-\Delta_{j}^{A}\right)\right)^{2} \quad \varepsilon_{j}=\frac{1}{n} \\
& \leq \sum_{j=1}^{n}\left(\Delta_{j}^{A}+\varepsilon_{j} \Delta_{j}\right)^{2} \sqrt{ } \text { Mitigators, arbitrary } \in(0,1]! \\
& \leq \sum_{j=1}^{n}\left(O(\log (n))+\varepsilon_{j} n\right)^{2} \\
& =\sum_{j=1}^{n}(O(\log (n))+1)^{2} \\
& =O\left(n \log (n)^{2}\right) \text { Much better than } n^{3} \text { from before! }
\end{aligned}
$$

- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain $\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$

Function $f\left(Z_{1}, \ldots, Z_{n}\right)$:

- Z_{1}, \ldots, Z_{n} independent
- typical event A
- bounded differences $\Delta_{j}^{A} \leq \Delta_{j}$
- $\Delta=\sum_{j=1}^{n}\left(\Delta_{j}^{A}+\varepsilon_{j}\left(\Delta_{j}-\Delta_{j}^{A}\right)\right)^{2}$
- $g(n) \geq \mathbb{E}[f]$
$\operatorname{Pr}[f \geq c g(n)] \leq e^{-((c-1) g(n))^{2} /(2 \Delta)}$
$+\operatorname{Pr}[\neg A] \sum_{j=1}^{n} \frac{1}{\varepsilon_{j}}$

Application: The Factory (2nd Try)

- View X as a function $f\left(Z_{1}, \ldots, Z_{n}\right)$ of independent rand. var. where Z_{j} for $j \in[n]$ denotes the box of the j-th product
- Bounded differences condition: $\Delta_{j} \leq n$
- Typical event $A=\{$ "Every sequence of $2 k+1$ boxes contains $O(\log (n))$ products" $\}, \operatorname{Pr}[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_{j}^{A}=O(\log (n))$
- Typical bounded differences inequality:

$$
\Delta=O\left(n \log (n)^{2}\right) \quad g(n)=4 n \frac{\log \log (n)}{\log (n)} \quad \varepsilon_{j}=\frac{1}{n}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[X \geq c 4 n \frac{\log \log (n)}{\log (n)}\right] \leq & \underbrace{\exp \left(-\Omega\left(n \frac{\log \log (n)^{2}}{\log (n)^{4}}\right)\right)}_{=O(1 / n)} \\
& +\underbrace{\operatorname{Pr}[\neg A] \sum_{j=1}^{n} \frac{1}{\varepsilon_{j}}}_{\leq n^{-\lambda} \cdot n^{2}=O(1 / n) \text { for } \lambda=3})
\end{aligned}
$$

- n products
- $m=n / k$ boxes, $k=\log \log (n)$
- $X=\sum X_{i} \cdot Y_{i}$
- X_{i}, products in box i
- Y_{i}, indicator i in short chain $\mathbb{E}[X] \leq \mathbb{E}\left[X^{\prime}\right] \leq 4 n \frac{\log \log (n)}{\log (n)}$

Function $f\left(Z_{1}, \ldots, Z_{n}\right)$:

- Z_{1}, \ldots, Z_{n} independent
- typical event A
- bounded differences $\Delta_{j}^{A} \leq \Delta_{j}$
- $\Delta=\sum_{j=1}^{n}\left(\Delta_{j}^{A}+\varepsilon_{j}\left(\Delta_{j}-\Delta_{j}^{A}\right)\right)^{2}$
- $g(n) \geq \mathbb{E}[f]$

$$
\begin{aligned}
\operatorname{Pr}[f \geq c g(n)] \leq & e^{-((c-1) g(n))^{2} /(2 \Delta)} \\
& +\operatorname{Pr}[\neg A] \sum_{j=1}^{n} \frac{1}{\varepsilon_{j}}
\end{aligned}
$$

Geometric Inhomogeneous Random Graphs

Motivation

- Average-case analysis: analyze models that represent the real world
- Models seen so far
- Erdős-Rényi random graphs: simple but no locality
- Random geometric graphs: locality but no heterogeneity, (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

- Realistic representation: power-law distribution
"Scale-free networks well done", Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019
- Pareto distribution: $X \sim \operatorname{Par}\left(\alpha, x_{\text {min }}\right)$
$f_{X}(x)= \begin{cases}\alpha x_{\text {min }}^{\alpha} \cdot x^{-(\alpha+1)}, & \text { if } x \geq x_{\text {min }} \\ 0, & \text { otherwise }\end{cases}$
Idea
- Add Pareto distribution to RGGs
konect.cc/plot/degree.a. youtube-links.full.png

(few vertices very high degree)

Geometric Inhomogeneous Random Graphs

Definition

- Consider n vertices
- For each vertex v independently:
- Draw a position x_{v} uniformly on \mathbb{T}^{d}
- Draw a weight w_{v} from $\operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3) \Rightarrow f_{w_{v}}(w)=(\tau-1) w^{-\tau}$
- Connect u and v with an edge, iff $\underbrace{\operatorname{dist}\left(x_{u}, x_{v}\right)}_{L_{\infty} \text {-norm }} \leq\left(\begin{array}{c}\left.\lambda \frac{w_{u} \cdot w_{v}}{4} \begin{array}{c}\text { const. contr }\end{array}\right)^{1 / d} \\ \text { cond }\end{array}\right.$
- For $d=1$, linear relation between distance and weight $y=w_{u}, x=\operatorname{dist}\left(x_{u}, x_{v}\right)$

$$
x \leq \lambda \frac{w_{v} \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_{v}} x
$$

-

Geometric Inhomogeneous Random Graphs

Definition

- Consider n vertices
- For each vertex v independently:
- Draw a position x_{v} uniformly on \mathbb{T}^{d}

```
"Power-Law Exponent'
```

- Draw a weight w_{v} from $\operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3) \Rightarrow f_{w_{v}}(w)=(\tau-1) w^{-\tau}$
- Connect u and v with an edge, iff $\underbrace{\operatorname{dist}\left(x_{u}, x_{v}\right)}_{L_{\infty} \text {-norm }} \leq\left(\begin{array}{c}\left.\lambda \frac{w_{u} \cdot w_{v}}{4} \begin{array}{c}\text { const. contr }\end{array}\right)^{1 / d} \\ \text { cond }\end{array}\right.$
- For $d=1$, linear relation between distance and weight $y=w_{u}, x=\operatorname{dist}\left(x_{u}, x_{v}\right)$

$$
x \leq \lambda \frac{w_{v} \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_{v}} x
$$

Geometric Inhomogeneous Random Graphs

Definition

- Consider n vertices
- For each vertex v independently:
- Draw a position x_{v} uniformly on \mathbb{T}^{d}
- Draw a weight w_{v} from $\operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3) \Rightarrow f_{w_{v}}(w)=(\tau-1) w^{-\tau}$
- Connect u and v with an edge, iff $\underbrace{\operatorname{dist}\left(x_{u}, x_{v}\right)}_{L_{\infty} \text {-norm }} \leq\left(\begin{array}{c}\left.\lambda \frac{w_{u} \cdot w_{v}}{4} \begin{array}{c}\text { const. contr }\end{array}\right)^{1 / d} \\ \text { cond }\end{array}\right.$
- For $d=1$, linear relation between distance and weight $y=w_{u}, x=\operatorname{dist}\left(x_{u}, x_{v}\right)$

$$
x \leq \lambda \frac{w_{v} \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_{v}} x
$$

- The lower w_{v}, the steeper the wedge \longrightarrow The lower the degree

Expected Degree ($d=1$)

- Consider vertex v with weight w_{v}
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right] & =\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right] \\
& =\Theta(n \underbrace{}_{u \in \underbrace{\operatorname{Pr}[\underbrace{\{u, v\} \in E}} \mid w_{v}]})
\end{aligned}
$$

This is not the area of the shape, since weights are not distributed uniformly! \Rightarrow Use law of total probability to account for that

Expected Degree ($d=1$)

- Consider vertex v with weight w_{v}
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$
$\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right]$

$$
\begin{aligned}
& =\Theta\left(n \operatorname{Pr}\left[\{u, v\} \in E \mid w_{v}\right]\right) \quad \text { w.l.o.g } x_{v}=\frac{1}{2} \\
& =\Theta\left(n \int_{1}^{\infty} \operatorname{Pr}\left[u \in N(v) \mid w_{u}=w, w_{v}\right] f_{w_{u}}(w) \mathrm{d} w\right)
\end{aligned}
$$

Case 1: $w \leq \frac{n}{2 \lambda w_{v}} \Rightarrow \lambda \frac{w \cdot w_{v}}{n} \leq \frac{1}{2} \longrightarrow=2 \lambda \frac{w \cdot w_{\nu}}{n}=\Theta\left(\frac{w \cdot w_{\nu}}{n}\right)$

GIRG

- n independent vertices
- $x_{v} \sim \mathcal{U}([0,1])$
- $w_{v} \sim \operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3)$ $f_{w_{v}}(w)=(\tau-1) w^{-\tau}$
- u, v adjacent iff $\operatorname{dist}\left(x_{u}, x_{v}\right) \leq \lambda \frac{w_{u} \cdot w_{v}}{n}$

$$
=\operatorname{Pr}\left[x_{u} \in\left[\frac{1}{2}-\lambda \frac{w \cdot w_{v}}{n}, \frac{1}{2}+\lambda \frac{w \cdot w_{v}}{n}\right]\right]
$$

Expected Degree ($d=1$)

- Consider vertex v with weight w_{v}
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$
$\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right]$

$$
\begin{aligned}
& =\Theta\left(n \operatorname{Pr}\left[\{u, v\} \in E \mid w_{v}\right]\right) \quad \text { w.l.o.g } x_{v}=\frac{1}{2} \\
& =\Theta\left(n \int_{1}^{\infty} \operatorname{Pr}\left[u \in N(v) \mid w_{u}=w, w_{v}\right] f_{w_{u}}(w) \mathrm{d} w\right)
\end{aligned}
$$

Case 1: $w \leq \frac{n}{2 \lambda w_{v}} \Rightarrow \lambda \frac{w \cdot w_{v}}{n} \leq \frac{1}{2} \longrightarrow \begin{aligned} & \overline{\operatorname{Pr}}\left[x_{u} \in\left[\frac{1}{2}-\lambda \frac{w \cdot w_{v}}{n}, \frac{1}{2}+\lambda\right.\right. \\ & \text { Case 2: } w>\frac{n}{2 \lambda w_{v}} \Rightarrow \lambda \frac{w \cdot w_{v}}{n}>\frac{1}{2} \longrightarrow 2 \lambda \frac{w \cdot w_{v}}{n}=\Theta\left(\frac{w \cdot w_{v}}{n}\right) \\ & \end{aligned}$ =1

GIRG

- n independent vertices
- $x_{v} \sim \mathcal{U}([0,1])$
- $w_{v} \sim \operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3)$ $f_{w_{v}}(w)=(\tau-1) w^{-\tau}$
- u, v adjacent iff $\operatorname{dist}\left(x_{u}, x_{v}\right) \leq \lambda \frac{w_{u} \cdot w_{v}}{n}$

Expected Degree ($d=1$)

- Consider vertex v with weight w_{v}
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\left\{\begin{array}{l}\Theta(n) \text {, if } w_{v} \geq \frac{n}{2 \lambda}\end{array}\right.$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$
$\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right]$

$$
\begin{aligned}
& =\Theta\left(n \operatorname{Pr}\left[\{u, v\} \in E \mid w_{v}\right]\right) \quad \text { w.l.o.g } x_{v}=\frac{1}{2} \\
& =\Theta\left(n \int_{1}^{\infty} \operatorname{Pr}\left[u \in N(v) \mid w_{u}=w, w_{v}\right] f_{w_{u}}(w) \mathrm{d} w\right)
\end{aligned}
$$

$$
=\Theta(n(\underbrace{\left.\frac{n}{\int_{1}^{2 \lambda w_{v}} w w_{w}} \sqrt{n}\right) \mathrm{d} w}+\underbrace{\int_{\frac{n}{2 \lambda w_{v}}}^{\infty} 1 \cdot f_{w_{u}}(w) \mathrm{d} w}))
$$

$$
\begin{aligned}
& =\Theta(n) \quad \text { If } w_{v} \geq \frac{n}{2 \lambda} \text {, then } \frac{n}{2 \lambda w_{v}} \leq 1
\end{aligned} \begin{aligned}
& =\operatorname{Pr}\left[w_{u} \geq \frac{n}{2 \lambda w_{v}}\right] \\
& =\operatorname{Pr}\left[w_{u} \geq 1\right]=1
\end{aligned}
$$

Expected Degree ($d=1$)

- Consider vertex v with weight $w_{v},\left\{\begin{array}{l}\Theta(n) \text {, if } w_{v} \geq \frac{n}{2 \lambda}\end{array}\right.$
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\left\{\begin{array}{l}\end{array}\right.$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$
$\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right]$

$$
\text { w.l.o.g } x_{v}=\frac{1}{2}
$$

$$
\begin{aligned}
& \text { If } w_{v}<\frac{n}{2 \lambda} \quad=\Theta\left(n \int_{1}^{\infty} \operatorname{Pr}\left[u \in N(v) \mid w_{u}=w, w_{v}\right] f_{w_{u}}(w) \mathrm{d} w\right) \\
& \left.\left.\begin{array}{rl}
=\Theta\left(n \left(\int_{1}^{\frac{n}{2 \lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) \mathrm{d} w\right.\right. & +\underbrace{\operatorname{Pr}\left[w_{u}\right.} \geq \\
\text { (via CDF of Par) } & =\left(\frac{n}{2 \lambda w_{v}}\right]
\end{array}\right)\right) \\
& \\
& =(\underbrace{\frac{n}{2 \lambda w_{v}}}_{<1})^{-(\tau-1)} \\
& \\
& =O\left(\frac{2 \lambda w_{v}}{n}\right)^{\tau-1}
\end{aligned}
$$

Expected Degree ($d=1$)

- Consider vertex v with weight $w_{v},\left\{\begin{array}{l}\Theta(n) \text {, if } w_{v} \geq \frac{n}{2 \lambda}\end{array}\right.$
- We want to compute $\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right]=\left\{\begin{array}{l}\Theta\left(w_{v}\right) \text {, otherwise }\end{array}\right.$
- Consider X_{u} for $u \in V \backslash\{v\}$ indicating whether $\{u, v\} \in E$ $\operatorname{deg}(v)=\sum_{u \in V \backslash\{v\}} X_{u}$

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{deg}(v) \mid w_{v}\right] & =\sum_{u \in V \backslash\{v\}} \mathbb{E}\left[X_{u} \mid w_{v}\right] \\
& =\Theta\left(n \operatorname{Pr}\left[\{u, v\} \in E \mid w_{v}\right]\right) \quad \text { w.I.o.g } x_{v}=\frac{1}{2} \\
\text { If } w_{v}<\frac{n}{2 \lambda} \quad & =\Theta\left(n \int_{1}^{\infty} \operatorname{Pr}\left[u \in N(v) \mid w_{u}=w, w_{v}\right] f_{w_{u}}(w) \mathrm{d} w\right)
\end{aligned}
$$

$$
=\Theta\left(n \frac{w_{v}}{n} \int_{1}^{\frac{n}{2 \lambda w_{v}}} w \cdot(\tau-1) w^{-\tau} \mathrm{d} w\right)+O\left(w_{v}\right)
$$

$$
\begin{aligned}
\rightarrow & =\Theta\left(w_{v}\left[\frac{1}{-(\tau-2)} w^{-(\tau-2)}\right]_{1}^{\frac{n}{2 \lambda w_{v}}}\right)+O\left(w_{v}\right) \\
& =\Theta\left(w_{v}\left[w^{-(\tau-2)}\right]_{\frac{n}{2 \lambda w_{v}}}^{1}\right)+O\left(w_{v}\right) \\
& =\Theta\left(w_{v}\left(1-\left(\frac{n}{2 \lambda w_{v}}\right)^{-(\tau-2)}\right)\right)+O\left(w_{v}\right) \\
& =\Theta\left(w_{v}\right)
\end{aligned}
$$

GIRG

- n independent vertices
- $x_{v} \sim \mathcal{U}([0,1])$
- $w_{v} \sim \operatorname{Par}(\tau-1,1)$ for $\tau \in(2,3)$

$$
f_{w_{v}}(w)=(\tau-1) w^{-\tau}
$$

- u, v adjacent iff $\operatorname{dist}\left(x_{u}, x_{v}\right) \leq \lambda \frac{w_{u} \cdot w_{v}}{n}$

$$
=\Theta\left(n\left(\int_{1}^{\frac{n}{2 \lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) \mathrm{d} w+\operatorname{Pr}\left[w_{u} \geq \frac{n}{2 \lambda w_{v}}\right]\right)\right)
$$

$$
=\Theta\left(n \int_{1}^{\frac{n}{2 \lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) \mathrm{d} w\right)+O\left(w_{v}\right)
$$

$$
=\Theta\left(w_{v} \int_{1}^{\frac{n}{2 w_{v}}} w^{-(\tau-1)} \mathrm{d} w\right)+O\left(w_{v}\right)
$$

Are GIRGs Realistic?

Structural Properties

- Heterogeneity: $\operatorname{deg}(v) \approx w_{v}, w_{v} \sim \operatorname{Par}(\tau-1,1) \rightsquigarrow$ power-law degree distribution \checkmark - Locality (not seen here) (also works with other weight distributions)
Algorithmic Properties "On the External Validify of Average-Case Analyses of Graph Algorithms", Blasisus, Fischbeck, ACM Trans. Algorithms 2023
- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)

Are GIRGs Realistic?

Structural Properties

- Heterogeneity: $\operatorname{deg}(v) \approx w_{v}, w_{v} \sim \operatorname{Par}(\tau-1,1) \rightsquigarrow$ power-law degree distribution \checkmark
- Locality (not seen here) (also works with other weight distributions)
Algorithmic Properties "On the Exernal Validity of Average-Case Analyses of Graph Algorithms", Blasisus, Fischbeck, ACM Trans. Algorithms 2023
- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
- Bidirectional breadth-first-search
- Diameter computation via BFS
- Vertex cover kernel size
- Louvain clustering algorithm
- Number of maximal cliques
\& rather structural property ${ }^{\wedge}$
- Chromatic number kernel size

Use GIRGs for average-case analysis!

Vertex Cover Approximation

Vertex Cover

- Given undirected graph $G=(V, E)$ (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overparen{G[V \backslash S]}$ is edgeless
- NP-complete

Vertex Cover Approximation

- Find a small vertex cover S^{\prime} fast
- Approximation ratio: $r=\left|S^{\prime}\right| /|S|$
- NP-hard to approximate with $r<\sqrt{2}$
- Believed to be NP-hard for $r<2-\varepsilon$ for const. ε

Practice

- Simple approximation algorithm repeatedly takes/deletes vertex of largest degree
- Close to optimal ratios on real graphs

Analsysis on GIRGs

$$
\text { (based on) "Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica } 2023
$$

Keep it simple

- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

Learn from the Model

- Once high-degree vertices are taken/removed, remaining vertices have roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly
- Two variants
- Search and solve small components after each greedily taken vertex
- Take greedy until red line, solve small components exactly, take rest greedy too

This variant yields an upper bound on the quality of the other

Analysis on GIRGs - Approximation Ratio

Theorem: Let G be GIRG with n vertices and m edges. Then, an approximate vertex cover S^{\prime} of G can be computed in time $O(m \log (n))$ such that the approximation ratio is $(1+o(1))$ asymptotically almost surely.

Proof Approximation Ratio

- Differentiate greedily taken vertices S_{g}^{\prime} from ones in exactly solved components S_{e}^{\prime}
- For each small component, the optimal solution S cannot contain fewer vertices than S_{e}^{\prime} does $\Rightarrow\left|S_{e}^{\prime}\right| \leq|S|$
$\Rightarrow r=\frac{\left|S^{\prime}\right|}{|S|}=\frac{\left|S_{e}^{\prime}\right|+\left|S_{g}^{\prime}\right|}{|S|} \leq \frac{|S|+\left|S_{g}^{\prime}\right|}{|S|}=1+\frac{\left|S_{g}^{\prime}\right|}{|S|}$
- $|S|=\Omega(n)$ with prob $1-o(1)$
"Greed is Good for Deterministic Scale-Free Networks", Chauhan et al. FSTTCS 2016
Remains to show: $\left|S_{g}^{\prime}\right|=o(n)$

Analysis on GIRGs - Greedy Vertices $\geq t$

Lemma: Let G be a GIRG with n vertices, let $t=\omega(1)$, and let $N_{w \geq t}$ be the number of vertices with weight at least t. Then, $N_{w \geq t}=o(n)$ with probability $\overline{1}-O(1 / n)$.

Proof

- Consider random variable $X_{v}=\mathbb{1}_{\left\{w_{v} \geq t\right\}}$
- $N_{w \geq t}$ is the sum of independent Bernoulli random variables

$$
N_{w \geq t}=\sum_{v \in V} X_{v}
$$

- Expectation

$$
\begin{aligned}
\mathbb{E}\left[N_{w \geq t}\right]=\sum_{v \in V} \mathbb{E}\left[X_{v}\right] & =n \operatorname{Pr}\left[w_{v} \geq t\right] \\
(t=\omega(1), \tau \in(2,3)) & =o(n)
\end{aligned}
$$

- Since there is a $g(n) \in o(n) \cap \Omega(\log (n))$ with $g(n) \geq \mathbb{E}\left[N_{w \geq t}\right]$, Chernoff gives concentration

Analysis on GIRGs - Greedy Vertices <t

- After (the $o(n))$ vertices with weight $\geq t$ are removed, the graph decomposes into several components
- Components of size $\leq \log \log (n)$ are solved exactly
- Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

Idea

- Discretize ground space into cells such that edges cannot span empty cells
- Use empty cells as delimiters between components
- Regard chains of non-empty cells as one component
- Count all vertices that are in chains containing $>\log \log (n)$ vertices
- When does a chain contain too many vertices?

Analysis on GIRGs - Greedy Vertices $<t$

- After (the $o(n)$) vertices with weight $\geq t$ are removed, the graph decomposes into several components
- Components of size $\leq \log \log (n)$ are solved exactly
- Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
Case 1 Too many cells in long chains, say $>k$ cells
- Unlikely, if cells are small
- Proof via method of bounded differences!

Total number of cells in long chains does not change much $(\leq 2 k+1)$ when one cell moves from empty to non-empty (or vice versa)

- Use Poissonization to get rid of dependencies t

Analysis on GIRGs - Greedy Vertices <t

- After (the $o(n)$) vertices with weight $\geq t$ are removed, the graph decomposes into several components
- Components of size $\leq \log \log (n)$ are solved exactly
- Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
Case 2 Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of typical bounded differences!
- Imagine cells as boxes on conveyor belt
- Imagine vertices as products
- Typically not many vertices in few cells \leadsto w.h.p., o(n) vertices in large components \checkmark

Conclusion

Method of Bounded Differences

- Concentration for function of independent random variables
- Bounded differences ("Lipschitz") condition
- What is the worst that can happen when changing one input?
- Chernoff-like bound, weakened by sum of squared worst changes
- Useless if worst changes are too large

Method of Typical Bounded Differences

- Define typical event, distinguish worst changes depending on whether event occurred
- Use mitigators to weaken impact of general worst changes
- Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs

- Pretty realistic graph model (heterogeneity, locality)
- Not too hard to analyze
(not discussed in lecture)
- Used for average-case analysis (e.g. vertex cover approximation)

