

Probability & Computing

Bounded Differences & Geometric Inhomogeneous Random Graphs

Markov: X non-negative, a > 0:

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- $\Pr[X > a] < \mathbb{E}[X]/a.$
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- Today: similarly strong but beyond sums of independent Bernoulli random variables k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let $X_i = \mathbb{1}_{\{\text{Bin } i \text{ is empty}\}}$ for $i \in [n] \Rightarrow X = \sum_{i=1}^n X_i$ $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = n \cdot \Pr[X_i = 1]$ $= n \cdot \left(1 - \frac{1}{n}\right)^k$
- Concentration: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}]$
 - Markov: $\Pr[X \ge \mathbb{E}[X] + 5\sqrt{k}] \le \frac{\mathbb{E}[X]}{\mathbb{E}[X] + 5\sqrt{k}} = 1 \frac{5\sqrt{k}}{\mathbb{E}[X] + 5\sqrt{k}} \xrightarrow{n \to \infty} 1 \nearrow \infty n \cdot e^{-k/n}$ Chebychev: tedious... X
 - Chernoff: X (our Bernoulli random variables are not independent)

 $X_1 = 0$ $X_2 = 1$ $X_3 = 0$ $X_4 = 1$ $X_5 = 0$ $X_6 = 0$

 $n \rightarrow \infty$

Markov: X non-negative, a > 0:

 $\Pr[X > a] < \mathbb{E}[X]/a.$

Recall: Concentration

Concentration Inequalities

- Bound the probability for a random variable to deviate from its expectation
- Markov: generally applicable, but not very strong
- Chebychev: stronger, but requires knowledge about variance
- Chernoff: even stronger, but requires knowledge about moment generating functions (simpler variants work, e.g., for sums of independent random variables)

Example

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball
 - $\Rightarrow X = f(Y_1, ..., Y_k) = \sum_{i \in [n]} \mathbb{1}_{\{ \nexists j: Y_j = i\}} \text{ (summands not independent, but the } Y_j \text{ are)}$

 $= \sum_{i \in [n]} \max_{j \in [k]} \{2 - |\{Y_j, i\}|\}$ ("not" a sum Bernoulli random variables)

Today: similarly strong but beyond sums of independent Bernoulli random variables

 $V_{\cdot} = 1$

Can we show concentration for some arbitrary function of independent random variables? ... under certain conditions!

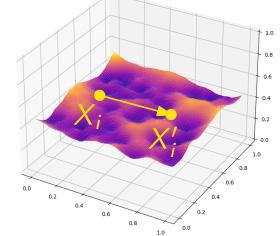
 $Y_2 - 3$

Method of Bounded Differences

Aka ... Bounded differences inequality, McDiarmid's inequality, Azuma-Hoeffding inequality **Idea** If changing one of the random inputs of $f(X_1, ..., X_k)$ does not change $f(\cdot)$ much then a lot has to go wrong for $f(\cdot)$ to deviate from its expected value

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **bounded differences condition** ("Lipschitz condition") with parameters Δ_i , if $|f(X_1, ..., X_i, ..., X_n) - f(X_1, ..., X'_i, ..., X_n)| \le \Delta_i$ for all $i \in [n]$ and $X_i, X'_i \in S$.

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*. Let $f: S^n \to \mathbb{R}$ satisfy the bounded differences condition with parameters Δ_i . Then, for $\Delta = \sum_{i \in [n]} \Delta_i^2$: $\Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-2t^2/\Delta}$. (write *f* for $f(X_1, ..., X_n)$)



Lemma: $\Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta}$.

Cor.
$$\mathbb{E}[f] \leq g(n)$$
: $\Pr[f \geq cg(n)] \leq e^{-2((c-1)g(n))^2/\Delta}$.

also for $\Pr[f \leq \mathbb{E}[f] - t]$

Application: Balls into Bins

- k balls distributed uniformly at random over n bins
- Random variable X counts empty bins
- Let independent $Y_j \sim \mathcal{U}([n])$ for $j \in [k]$ denote the bin of the *j*-th ball, and $X = f(Y_1, ..., Y_k)$

Bounded differences condition

- Intuition: How much can the number of empty bins change if we move a ball from one bin to another?
 - A ball is moved from an almost empty bin to...
 - ... an empty bin $\Rightarrow +1-1 \Rightarrow \Delta_i = 0$
 - ... a non-empty bin $\Rightarrow +1 \Rightarrow \Delta_i = 1$
 - A ball is moved from a not almost empty bin to... Δ_i
 - ... an empty bin $\Rightarrow -1 \Rightarrow \Delta_i = 1$
 - ... a non-empty bin $\Rightarrow \Delta_i = 0$

Concentration via bounded differences

 $\Delta = \sum_{i=1}^{k} \Delta_i^2 \le \sum_{i=1}^{k} 1^2 = k \quad \Rightarrow \Pr[f \ge \mathbb{E}[f] + 5\sqrt{k}] \le e^{-2(5\sqrt{k})^2/k} = e^{-50} \quad \begin{array}{c} \text{Much better than} \\ \text{Markov's} \to 1 \end{array}$

$$|f(\ldots,Y_i,\ldots)-f(\ldots,Y'_i,\ldots)| \leq \Delta_i$$

for all *i* and Y_i,Y'_i

$$\leq 1 \quad \begin{array}{l} \text{Function } f(Y_1, ..., Y_k):\\ \bullet \ Y_1, ..., Y_k \text{ independent} \\ \bullet \text{ bounded differences } \Delta_i \\ \bullet \ \Delta = \sum_{i=1}^k \Delta_i^2 \\ \text{Then } \Pr[f \geq \mathbb{E}[f] + t] \leq e^{-2t^2/\Delta} \end{array}$$

Carlsruhe Institute of Technology

k + 1

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

n products m = n/k boxes $k = \log \log(n)$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ Formalize
- chain: consecutive sequence of non-empty boxes
- short chain: incl. max. chain of length $\leq k \Rightarrow$ exactly products in short chains unscanned
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- Problem: Dependencies (between X_i 's, between X_i and Y_i)
- Solution: Relax dependencies and compute upper bound instead

Karlsruhe Institute of Technology

 $\dot{k+1}$

Application: The Factory

Products are distributed uniformly at random over boxes on a conveyor belt

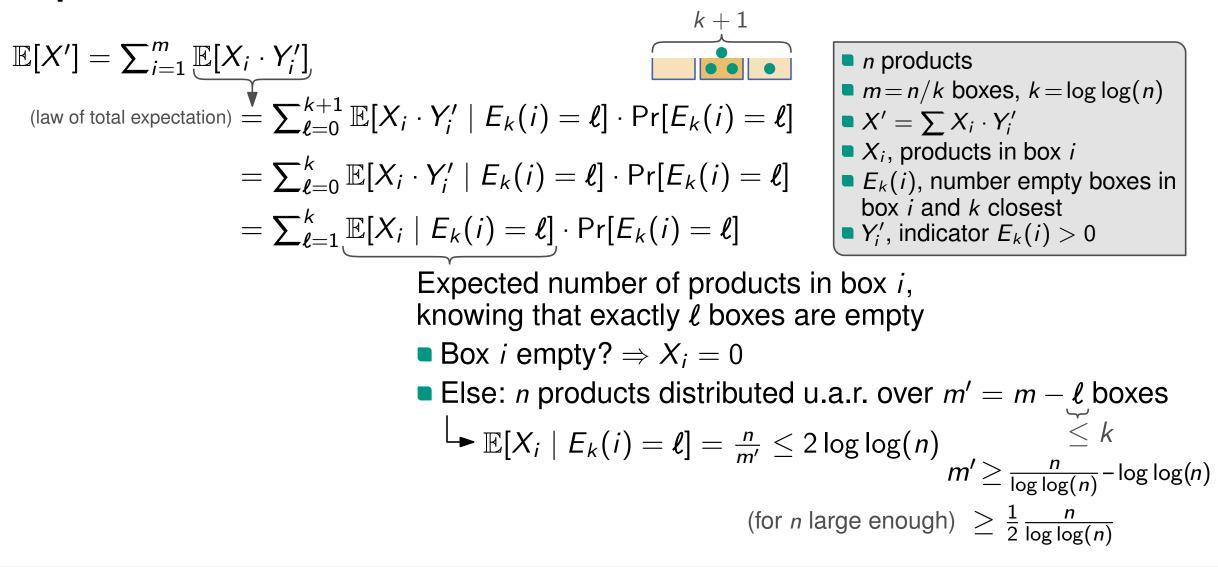
n products m = n/k boxes $k = \log \log(n)$ $E_k(i) = 1$

- A camera scans k+1 consecutive boxes simultaneously
- Problem: Empty box in view \Rightarrow reflection blinds camera, products remain unscanned
- Question: How many products avoid quality assurance? Show: o(n) with prob. $1 O(\frac{1}{n})$ **Relax and bound**
- X_i = number of products in box *i*, Y_i = indicator whether box *i* is in a short chain
- Then $X = \sum_{i=1}^{m} X_i \cdot Y_i$ is the number of unscanned products
- $E_k(i) =$ number of empty boxes in box *i* and *k* closest (assuming *k* even)
 - Box *i* in short chain $\Rightarrow E_k(i) > 0$

•
$$Y'_i$$
 = indicator whether $E_k(i) > 0 \Rightarrow Y_i \le Y'_i$

 $L = \sum_{i=1}^{m} X_i \cdot Y_i \leq \sum_{i=1}^{m} X_i \cdot Y'_i =: X'$

Expectation of X' (for *n* large enough)



6

Expectation of X' (for *n* large enough)

 $\mathbb{E}[X'] =$

$$E[X'] = \sum_{i=1}^{m} \mathbb{E}[X_i \cdot Y_i']$$
(law of total expectation)
$$\sum_{k=0}^{k+1} \mathbb{E}[X_i + Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=0}^{k} \mathbb{E}[X_i \cdot Y_i' \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

$$= \sum_{\ell=1}^{k} \mathbb{E}[X_i \mid E_k(i) = \ell] \cdot \Pr[E_k(i) = \ell]$$

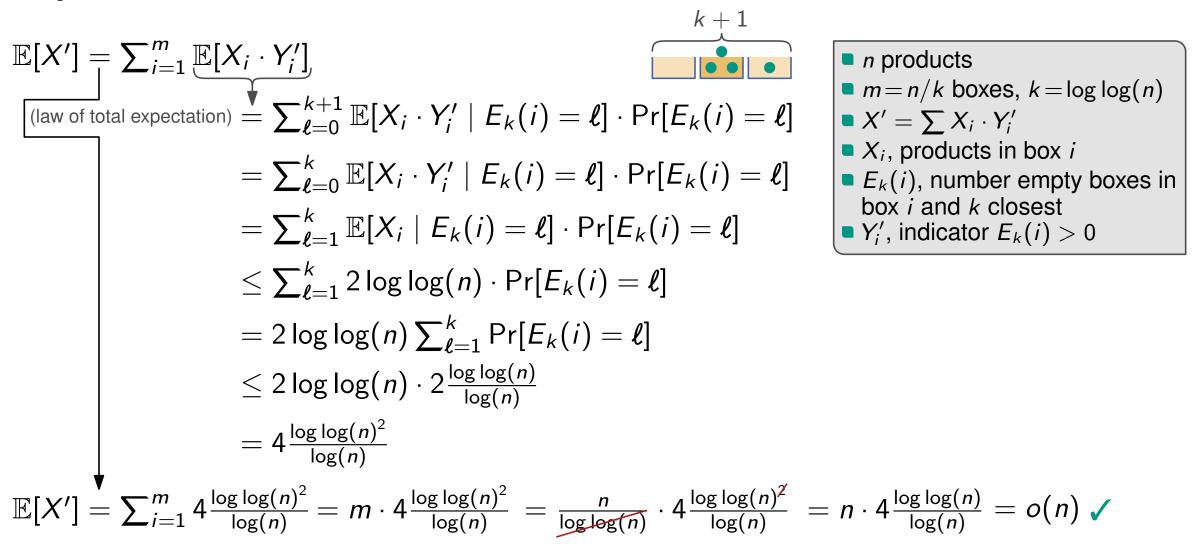
$$\leq \sum_{\ell=1}^{k} 2 \log \log(n) \cdot \Pr[E_k(i) = \ell]$$

$$= 2 \log \log(n) \sum_{\ell=1}^{k} \Pr[E_k(i) = \ell]$$
(union bound)
$$\leq (k+1) \cdot \Pr[\text{``A given box is empty'']}$$

$$\leq 2k \left(1 - \frac{1}{n}\right)^n \leq 2k \cdot e^{-k} = 2 \frac{\log \log(n)}{\log(n)}$$

 $k \perp 1$

Expectation of X' (for *n* large enough)



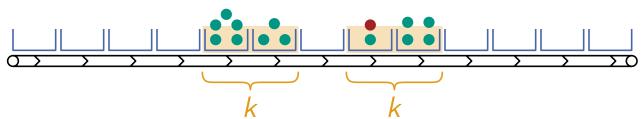
Concentration of X (for *n* large enough)

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var.

where Z_j for $j \in [n]$ denotes the box of the *j*-th product

- Bounded differences condition:
 - Worst change in number of products in short chains when moving a single product from one box to another
 - Consider chain of 2k + 1 boxes containing all n products and one box contains only one of them



 $\Rightarrow X = 0$, since no short chain and, thus, no products in short chains

Move product to next box

 $\Rightarrow X = n$, since all products in short chains now

n products

•
$$m = n/k$$
 boxes, $k = \log \log(n)$
• $X = \sum X_i \cdot Y_i$
• X_i , products in box i
• Y_i , indicator i in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
 $|f(..., \mathbb{Z}_j, ...) - f(..., \mathbb{Z}'_j, ...)| \leq \Delta_j$
for all j and Z_i, Z'_i

 $\Delta_i \leq n$

Concentration of X (for *n* large enough)

Bounded Differences

• View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product

Bounded differences condition: $\Delta_j \leq n$ Bounded differences inequality:

$$\Delta = \sum_{j=1}^{n} \Delta_j^2 \le \sum_{j=1}^{n} n^2 = n^3 \qquad g(n) = 4n \frac{\log \log(n)}{\log(n)}$$

$$\Pr\left[X \ge c4n \frac{\log \log(n)}{\log(n)}\right] \le \exp\left(-\frac{2(c-1)^2 \left(4n \frac{\log \log(n)}{\log(n)}\right)^2}{n^3}\right)$$

$$This \text{ bound is useless, since worst-case changes are too big} = \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} 1$$

$$\mathbb{E}[X] \le \mathbb{E}[X'] \le 4n \frac{\log \log(n)}{\log(n)}$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$Function f(Z_1, \dots, Z_n):$$

$$= Z_1, \dots, Z_n \text{ independent}$$

$$= \text{ bounded differences } \Delta_j$$

$$= \exp\left(-\Theta\left(\frac{\log \log(n)^2}{n \log(n)^2}\right)\right) \xrightarrow{n \to \infty} 1$$

$$\mathbb{E}[X] \le \mathbb{E}[X'] \le 4n \frac{\log \log(n)}{\log(n)}$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$[f(\dots, Z_j, \dots) - f(\dots, Z'_j, \dots)] \le \Delta_j$$

$$= Z_1, \dots, Z_n \text{ independent}$$

$$= \text{ bounded differences } \Delta_j$$

$$= C_1 + C_2 +$$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

Definition: A function $f: S^n \to \mathbb{R}$ satisfies the **typical bounded differences condition** with respect to

- an event $A \subset S^n$ and
- parameters $\Delta_i^A \leq \Delta_i$ for $i \in [n]$,
- $|f(X_1, ..., X_i, ..., X_n) f(X_1, ..., X'_i, ..., X_n)| \le \begin{cases} \Delta_i^A, \text{ if } (X_1, ..., X_i, ..., X_n) \in A, \\ \Delta_i, \text{ otherwise} \end{cases}$ if for all $i \in [n]$ and $X_i, X'_i \in S$.

• Δ_i^A is worst-case change, assuming A held before the change

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set S, let $A \subseteq S^n$ be an event, and let $f: S^n \to \mathbb{R}$ satisfy the typical bounded differences condition w.r.t. A and parameters $\Delta_i^A \leq \Delta_i$. Then, for $g(n) \geq \mathbb{E}[f]$, for all $\varepsilon_i \in (0, 1]$ and $\Delta = \sum_{i \in [n]} (\Delta_i^A + \varepsilon_i (\Delta_i - \Delta_i^A))^2 \cdot \Pr[f \ge cg(n)] \le e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{i \in [n]} \frac{1}{\varepsilon_i}$

Corollary of "On the Method of Typical Bounded Differences", Warnke, Comb. Probab. Comput. 2015

Theorem: Let $X_1, ..., X_n$ be independent random variables taking values in a set *S*, let $A \subseteq S^n$ be an event, and let $f: S^n \to \mathbb{R}$ satisfy the typical bounded differences condition w.r.t. *A* and parameters $\Delta_i^A \leq \Delta_i$. Then, for $g(n) \geq \mathbb{E}[f]$, for all $\varepsilon_i \in (0, 1]$ and $\Delta = \sum_{i \in [n]} (\Delta_i^A + \varepsilon_i (\Delta_i - \Delta_i^A))^2$: $\Pr[f \geq cg(n)] \leq e^{-((c-1)g(n))^2/(2\Delta)} + \Pr[\neg A] \sum_{i \in [n]} \frac{1}{\varepsilon_i}$.

- Function of independent random variables as before
- A is the good, typical event that should be very likely to occur
- \blacksquare Δ is sum of squared worst-case changes as before
 - We still consider general worst-case changes as before
 - But we can use the ε_i to mitigate the worst-case effects
 - And focus on the worst-case changes, assuming A held before the change
- But we have to pay for the mitigation!
 - With the probability that the good event A does not occur
 - Multiplied with the inverse mitigators

The more we need to mitigate, the higher the price! Not too bad if *A* is very likely to occur!

• m = n/k boxes, $k = \log \log(n)$

• Y_i , indicator *i* in short chain

 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$

n products

 $X = \sum X_i \cdot Y_i$

 X_i , products in box *i*

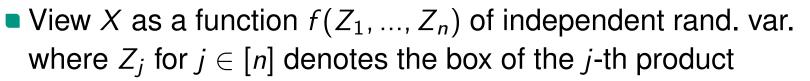
- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
 - When all *n* products fall into $2k + 1 = O(\log \log(n))$ boxes
 - But expected number of products in a single box i:

$$\mathbb{E}[B_i] = \frac{n}{m} = \frac{n}{\frac{n}{\log\log(n)}} = \log\log(n)$$

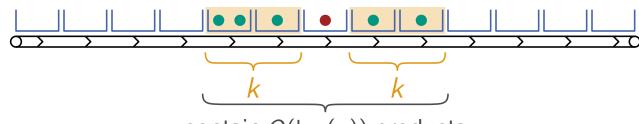
• And, thus, expected number in sequence of 2k + 1 boxes

 $\mathbb{E}[S] = \sum_{i=1}^{2k+1} \mathbb{E}[B_i] = O(\log \log(n)^2) \le \delta \log(n) =: g(n) \text{ (for any } \delta > 0 \text{ and suffciently large } n)$

- So typically a sequence should contain way fewer than n products
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$
 - See *S* as sum of independent Bernoulli rand. var. (whether *j*-th product is in sequence)
 - Chernoff: For $g(n) \geq \mathbb{E}[S]$: $\Pr[S \geq (1 + \varepsilon)g(n)] \leq e^{-\varepsilon^2/3 \cdot g(n)} = e^{-\varepsilon^2/3 \cdot \delta \log(n)} = n^{-\delta \varepsilon^2/3}$
 - Union bound over $\leq n$ sequences: $\Pr[\neg A] \leq n^{-\delta \varepsilon^2/3+1} \leq n^{-\lambda}$ (for arbitrarily large λ)

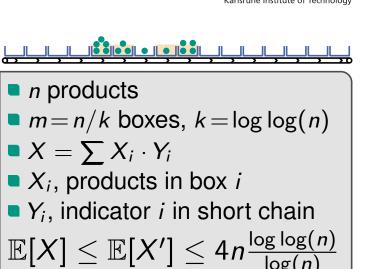


- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition:
 - Worst change in *f* when moving a product from one box to another, assuming *A* held before the move



contain $O(\log(n))$ products

- Moving one product empties at most one box \Rightarrow at most two new short chains
- Assuming A, these short chains combined contain $O(\log(n))$ products $\Rightarrow \Delta_i^A = O(\log(n))$



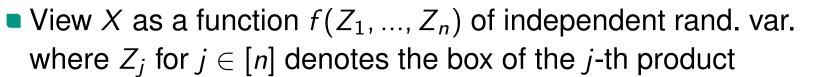
- View X as a function $f(Z_1, ..., Z_n)$ of independent rand. var. where Z_j for $j \in [n]$ denotes the box of the *j*-th product
- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}$, $\Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\begin{split} \Delta &= \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} (\Delta_{j} - \Delta_{j}^{A}))^{2} \qquad \varepsilon_{j} = \frac{1}{n} \\ &\leq \sum_{j=1}^{n} (\Delta_{j}^{A} + \varepsilon_{j} \Delta_{j})^{2} \qquad \text{Mitigators, arbitrary} \in (0, 1) \\ &\leq \sum_{j=1}^{n} (O(\log(n)) + \varepsilon_{j} n)^{2} \\ &= \sum_{j=1}^{n} (O(\log(n)) + 1)^{2} \\ &= O(n \log(n)^{2}) \text{ Much better than } n^{3} \text{ from before!} \end{split}$$

• *n* products
• *m*=*n/k* boxes, *k*=log log(*n*)
• *X* =
$$\sum X_i \cdot Y_i$$

• *X_i*, products in box *i*
• *Y_i*, indicator *i* in short chain
 $\mathbb{E}[X] \leq \mathbb{E}[X'] \leq 4n \frac{\log \log(n)}{\log(n)}$
Function $f(Z_1, ..., Z_n)$:
• *Z*₁, ..., *Z_n* independent
• typical event *A*
• bounded differences $\Delta_j^A \leq \Delta_j$
• $\Delta = \sum_{j=1}^n (\Delta_j^A + \varepsilon_j (\Delta_j - \Delta_j^A))^2$
• $g(n) \geq \mathbb{E}[f]$
 $\Pr[f \geq cg(n)] \leq e^{-((c-1)g(n))^2/(2\Delta)}$
 $+ \Pr[\neg A] \sum_{j=1}^n \frac{1}{\varepsilon_j}$

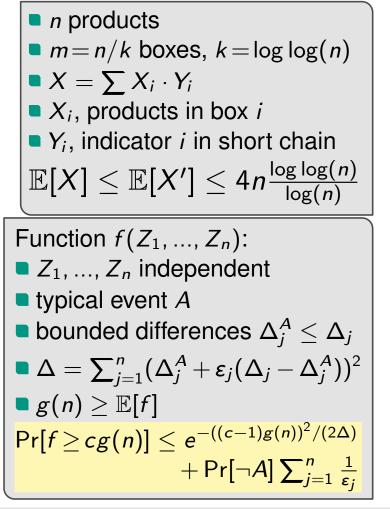
11



- Bounded differences condition: $\Delta_j \leq n$
- Typical event $A = \{$ "Every sequence of 2k + 1 boxes contains $O(\log(n))$ products" $\}, \Pr[\neg A] \leq n^{-\lambda}$ (for arbitrary λ)
- Typical bounded differences condition: $\Delta_i^A = O(\log(n))$
- Typical bounded differences inequality:

$$\Delta = O(n \log(n)^2)$$
 $g(n) = 4n \frac{\log \log(n)}{\log(n)}$ $\varepsilon_j = \frac{1}{n}$

$$\Pr\left[X \ge c4n \frac{\log\log(n)}{\log(n)}\right] \le \exp\left(-\Omega\left(n \frac{\log\log(n)^2}{\log(n)^4}\right)\right) + \Pr\left[\neg A\right] \sum_{j=1}^{n} \frac{1}{\varepsilon_j} \le n^{-\lambda} \cdot n^2 = O(1/n) \text{ for } \lambda = 3$$



Motivation

Average-case analysis: analyze models that represent the real world

- Models seen so far
 - Erdős-Rényi random graphs: simple but no locality
 - Random geometric graphs: locality but no heterogeneity (all vertices roughly same degree)

Not realistic: celebrities are very-high-degree vertices in social networks

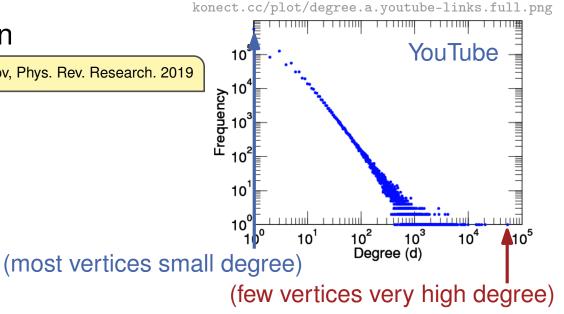
Realistic representation: power-law distribution

"Scale-free networks well done", Voitalov, van der Hoorn, van der Hofstad, Krioukov, Phys. Rev. Research. 2019

• Pareto distribution: $X \sim Par(\alpha, x_{min})$

$$f_X(x) = egin{cases} lpha x^lpha_{\min} \cdot x^{-(lpha+1)}, & ext{if } x \geq x_{\min} \ 0, & ext{otherwise} \end{cases}$$

IdeaAdd Pareto distribution to RGGs



Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

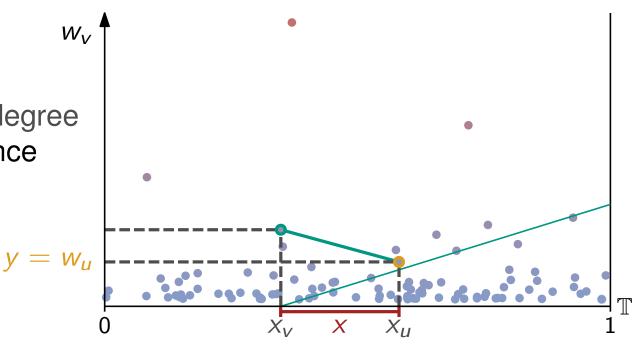
"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\underbrace{\lambda \frac{w_u \cdot w_v}{n}}_{n} \right)^{1/d}$$
const. controls the avg. degree
For $d = 1$, linear relation between distance

and weight $y = w_u$, $x = dist(x_u, x_v)$

$$x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow \frac{y}{\lambda} \geq \frac{n}{\lambda w_v} x$$



Definition

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a *weight* w_v from $Par(\tau 1, 1)$ for $\tau \in (2, 3) \Rightarrow f_{w_v}(w) = (\tau 1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

$$\underbrace{\operatorname{dist}(x_u, x_v)}_{L_{\infty}-\operatorname{norm}} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

For $d = 1$, linear relation between distance and weight $y = w_u, x = \operatorname{dist}(x_u, x_v)$

 $x \leq \lambda \frac{w_v \cdot y}{n} \Leftrightarrow y \geq \frac{n}{\lambda w_v} x$

. 3.24

Consider n vertices

- For each vertex *v* independently:
 - Draw a *position* x_v uniformly on \mathbb{T}^d
 - Draw a weight w_v from $\mathsf{Par}(\tau-1,1)$ for $\tau \in (2,3) \Rightarrow f_{w_v}(w) = (\tau-1)w^{-\tau}$

"Power-Law Exponent"

Connect *u* and *v* with an edge, iff

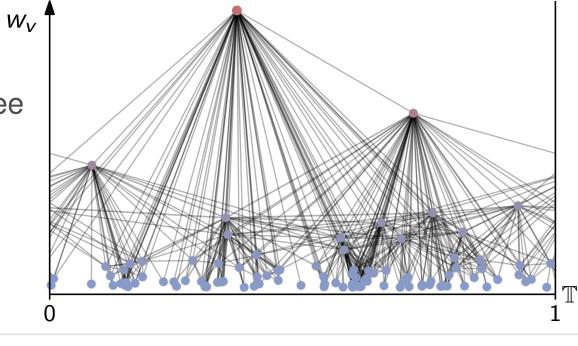
$$\underbrace{\operatorname{dist}(x_u, x_v)}_{q} \leq \left(\lambda \frac{w_u \cdot w_v}{n} \right)^{1/d}$$

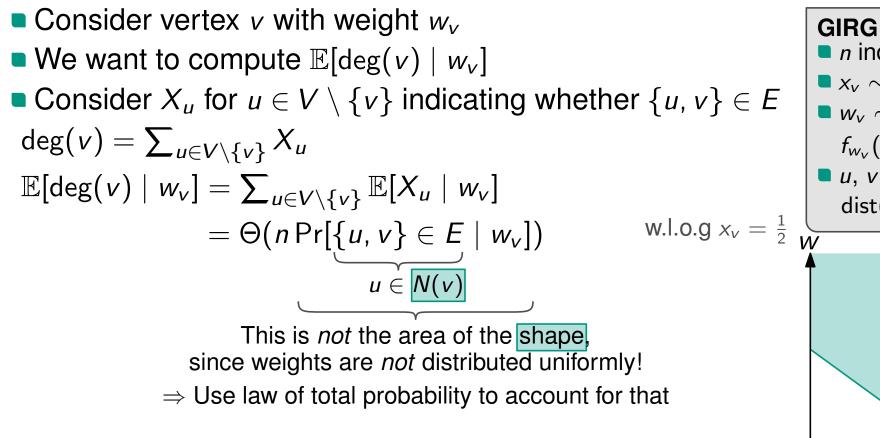
 L_{∞} -norm const. controls the avg. degree

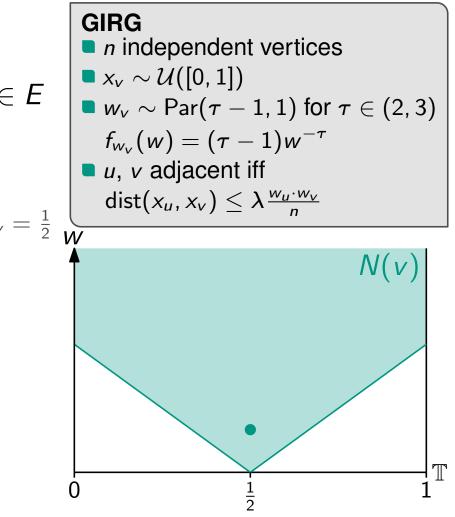
• For d = 1, linear relation between distance and weight $y = w_u, x = dist(x_u, x_v)$

 $x \leq \lambda rac{w_v \cdot y}{n} \Leftrightarrow y \geq rac{n}{\lambda w_v} x$

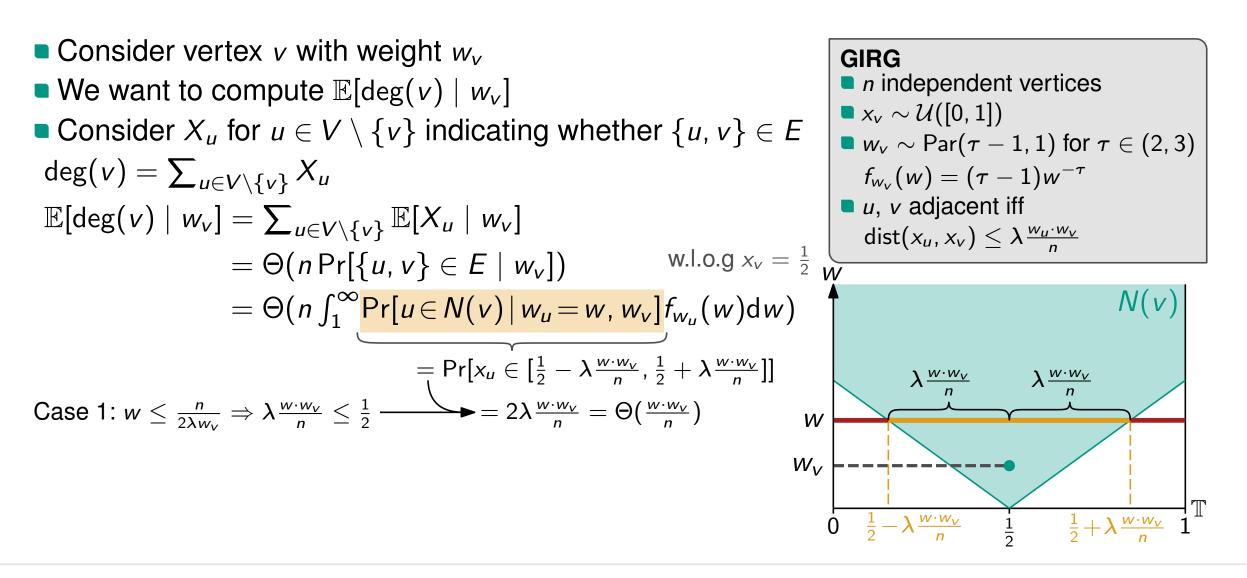
• The lower w_v , the steeper the wedge \downarrow The lower the degree



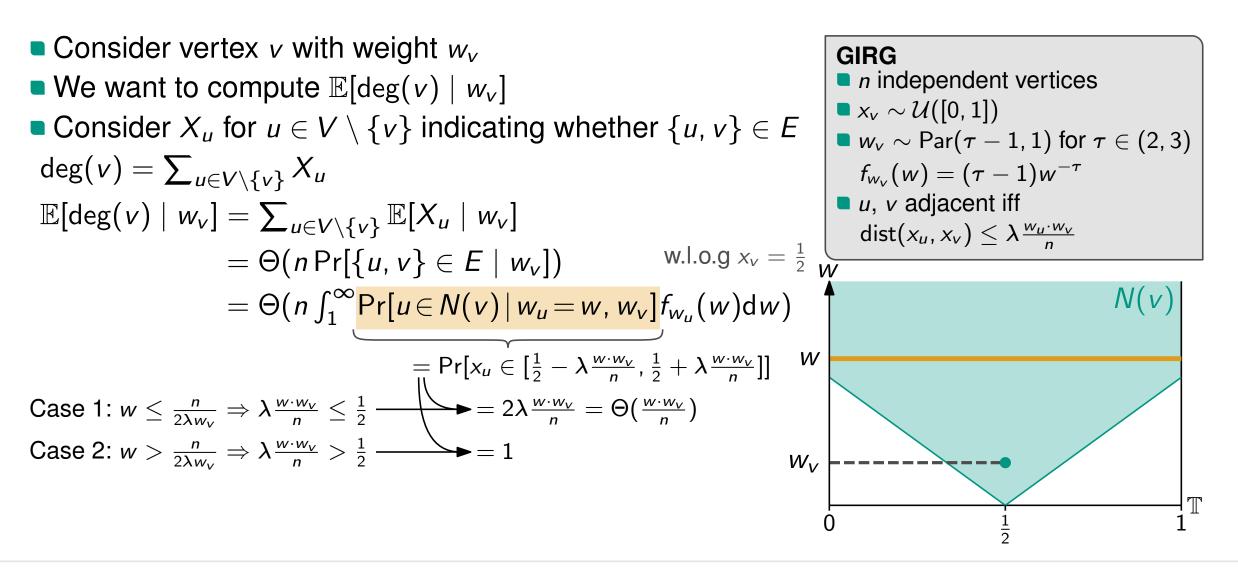


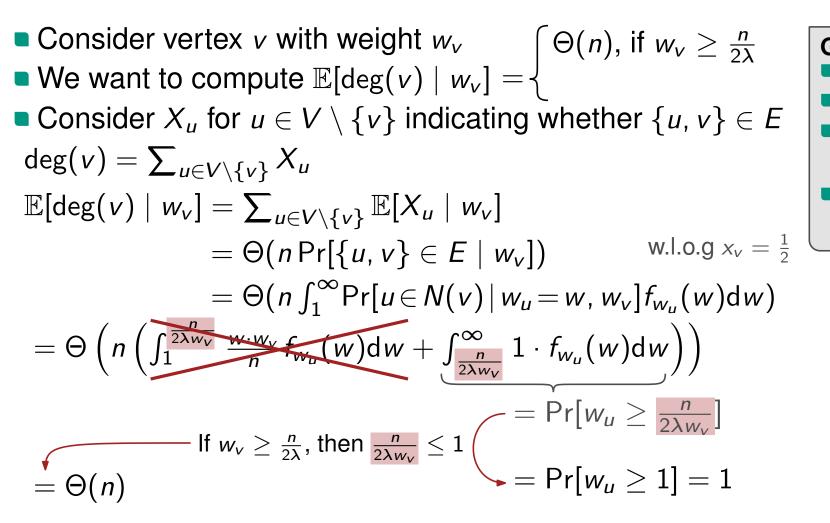


Karlsruhe Institute of Technology



Karlsruhe Institute of Technology



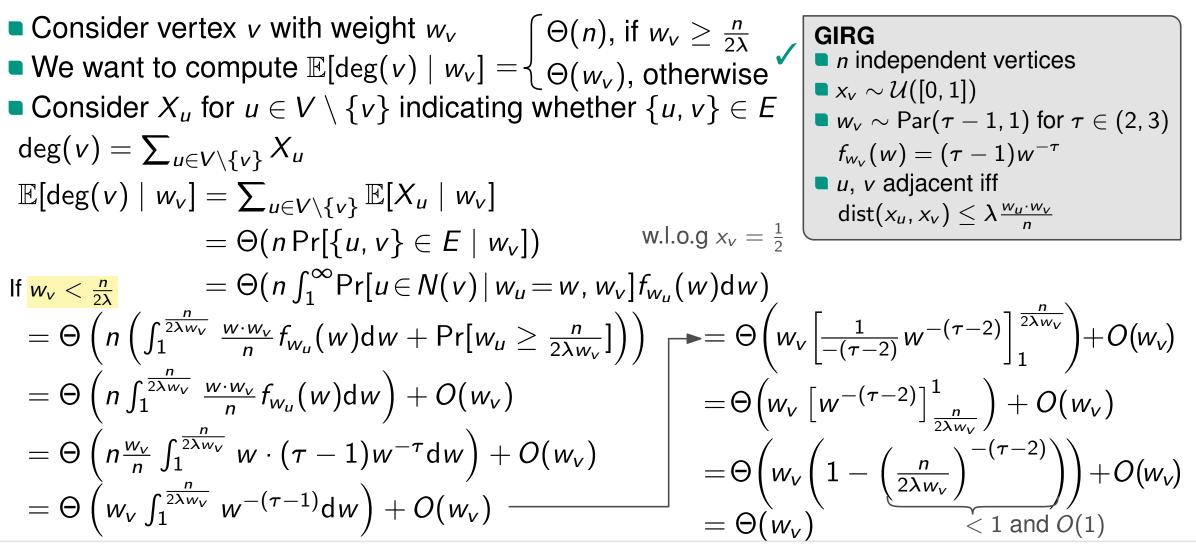


$$\begin{array}{l} \textbf{GIRG} \\ \bullet \ n \ \text{independent vertices} \\ \bullet \ x_{v} \sim \mathcal{U}([0,1]) \\ \bullet \ w_{v} \sim \operatorname{Par}(\tau-1,1) \ \text{for} \ \tau \in (2,3) \\ f_{w_{v}}(w) = (\tau-1)w^{-\tau} \\ \bullet \ u, \ v \ \text{adjacent iff} \\ \operatorname{dist}(x_{u},x_{v}) \leq \lambda \frac{w_{u} \cdot w_{v}}{n} \end{array}$$

Consider vertex v with weight w_v We want to compute $\mathbb{E}[\deg(v) w_v] = \begin{cases} \Theta(n), \text{ if } w_v \ge \frac{n}{2\lambda} \\ \end{bmatrix}$
• Consider X_u for $u \in V \setminus \{v\}$ indicating whether $\{u, v\} \in E$
$\deg(v) = \sum_{u \in V \setminus \{v\}} X_u$
$\mathbb{E}[\deg(v) \mid w_v] = \sum_{u \in V \setminus \{v\}} \mathbb{E}[X_u \mid w_v]$
$= \Theta(n \Pr[\{u, v\} \in E \mid w_v]) \qquad \text{w.l.o.g } x_v = \frac{1}{2}$
If $\frac{w_v < \frac{n}{2\lambda}}{w_v < \frac{n}{2\lambda}} = \Theta(n \int_1^\infty \Pr[u \in N(v) w_u = w, w_v] f_{w_u}(w) dw)$
$= \Theta\left(n\left(\int_{1}^{\frac{n}{2\lambda w_{v}}} \frac{w \cdot w_{v}}{n} f_{w_{u}}(w) dw + \Pr[w_{u} \ge \frac{n}{2\lambda w_{v}}]\right)\right)$ (via CDF of Par) = $\left(\frac{n}{2\lambda w_{v}}\right)^{-(\tau-1)}$
(via CDF of Par) = $\left(\frac{n}{2\lambda w_v}\right)^{-(\tau-1)}$
$= \left(\underbrace{\frac{2\lambda w_{v}}{n}}_{< 1}\right)^{\tau - 1}$
$=O(\frac{w_v}{n})$

GIRG
• *n* independent vertices
•
$$x_v \sim \mathcal{U}([0, 1])$$

• $w_v \sim \operatorname{Par}(\tau - 1, 1)$ for $\tau \in (2, 3)$
• $f_{w_v}(w) = (\tau - 1)w^{-\tau}$
• u, v adjacent iff
 $\operatorname{dist}(x_u, x_v) \leq \lambda \frac{w_u \cdot w_v}{n}$



Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

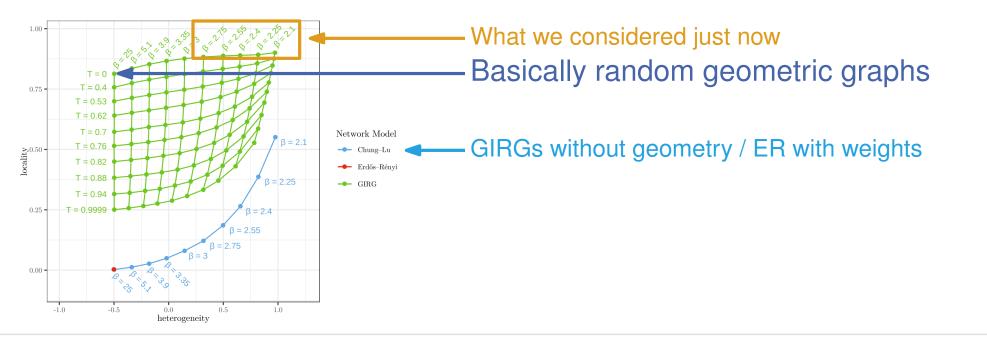
• Heterogeneity: deg(v) $\approx w_v$, $w_v \sim Par(\tau - 1, 1) \rightarrow power-law$ degree distribution \checkmark (also works with other weight distributions)

Locality (not seen here)

Algorithmic Properties

"On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023

Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)



13 Maximilian Katzmann, Stefan Walzer – Probability & Computing

– Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Are GIRGs Realistic?

Structural Properties

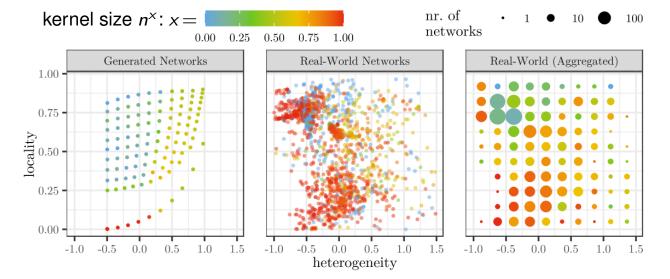
• Heterogeneity: deg(v) \approx w_v, w_v \sim Par(au - 1, 1) \rightsquigarrow power-law degree distribution \checkmark

Locality (not seen here)

Algorithmic Properties

- "On the External Validity of Average-Case Analyses of Graph Algorithms", Bläsius, Fischbeck, ACM Trans. Algorithms 2023
- Setup: GIRGs with varying degrees of heterogeneity and locality (each dot is a graph)
- Measure algorithmic properties on GIRGs and real graphs
 - Bidirectional breadth-first-search
 - Diameter computation via BFS
 - Vertex cover kernel size
 - Louvain clustering algorithm
 - Number of maximal cliques
 rather structural property
 - Chromatic number kernel size

Use GIRGs for average-case analysis!



(also works with other weight distributions)

Karlsruhe Institute of Technology

Vertex Cover Approximation

Vertex Cover

- Given undirected graph G = (V, E) (induced subgraph)
- Find a smallest $S \subseteq V$ such that $\overline{G[V \setminus S]}$ is edgeless
- NP-complete

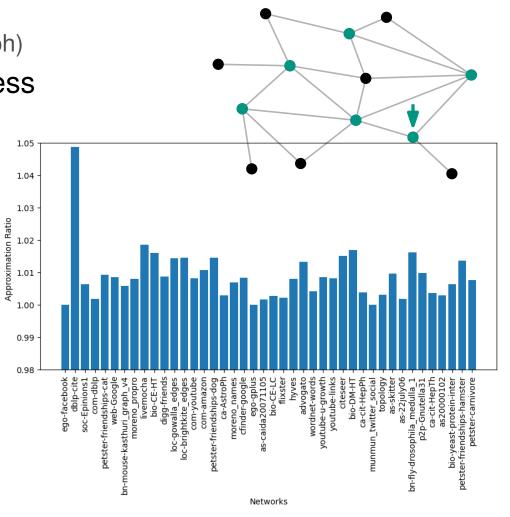
Vertex Cover Approximation

- Find a small vertex cover S' fast
- Approximation ratio: r = |S'|/|S|
- NP-hard to approximate with $r < \sqrt{2}$
- Believed to be NP-hard for $r < 2 \varepsilon$ for const. ε

Practice

- Simple approximation algorithm repeatedly takes/deletes vertex of largest degree
- Close to optimal ratios on real graphs

"Vertex Cover on Complex Networks", Da Silva, Gimenez-Lugo, Da Silva, IJMPC 2013



- roughly equal weight/degree
- Greedy algorithm picks vertices at random
- Improve quality by solving small separated components exactly $\log \log(n)$
- - Search and solve small components after each greedily taken vertex
 - Take greedy until red line, solve small components exactly, take rest greedy too

Analsysis on GIRGs

(based on)

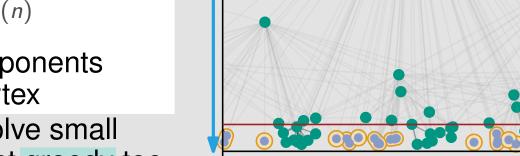
"Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry", Bläsius, Friedrich, K., Algorithmica 2023

Keep it simple

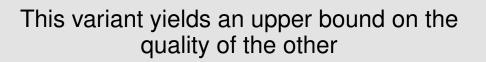
- Consider vertices in order of decreasing degree in original graph
- Consider vertices in order of decreasing weight

Learn from the Model

- Once high-degree vertices are taken/removed, remaining vertices have
- Two variants



 $\mathbf{A} W_{V}$



Theorem: Let *G* be GIRG with *n* vertices and *m* edges. Then, an approximate vertex cover *S'* of *G* can be computed in time $O(m \log(n))$ such that the approximation ratio is (1 + o(1)) asymptotically almost surely.

Proof Approximation Ratio

- Differentiate greedily taken vertices S'_g from ones in exactly solved components S'_e
- For each small component, the optimal solution S cannot contain fewer vertices than S'_e does

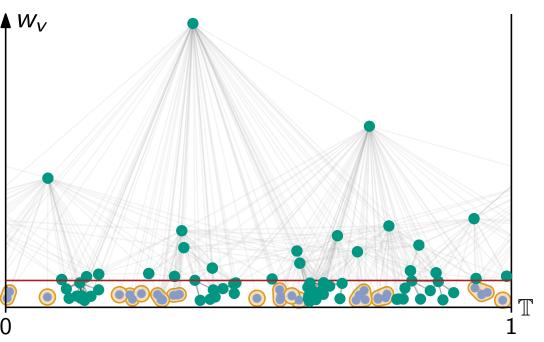
$$\Rightarrow |S'_e| \le |S|$$

$$\Rightarrow r = \frac{|S'|}{|S|} = \frac{|S'_e| + |S'_g|}{|S|} \le \frac{|S| + |S'_g|}{|S|} = 1 + \frac{|S'_g|}{|S|}$$

• $|S| = \Omega(n)$ with prob 1 - o(1)

"Greed is Good for Deterministic Scale-Free Networks", Chauhan et al. FSTTCS 2016

Remains to show: $|S'_g| = o(n)$



Lemma: Let *G* be a GIRG with *n* vertices, let $t = \omega(1)$, and let $N_{w \ge t}$ be the number of vertices with weight at least *t*. Then, $N_{w \ge t} = o(n)$ with probability 1 - O(1/n).

Proof

- Consider random variable $X_v = \mathbb{1}_{\{w_v \ge t\}}$
- N_{w≥t} is the sum of independent Bernoulli random variables

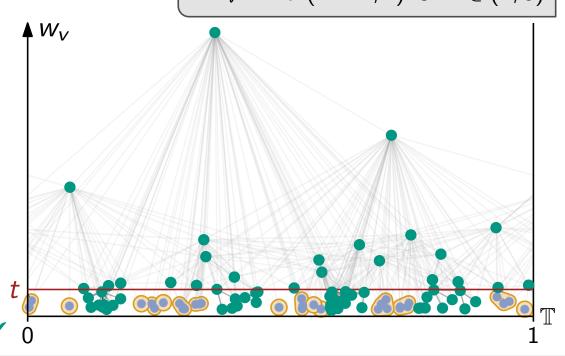
$$N_{w\geq t} = \sum_{v\in V} X_v$$

Expectation

$$\mathbb{E}[N_{w \ge t}] = \sum_{v \in V} \mathbb{E}[X_v] = n \Pr[w_v \ge t]$$
(via CDF of Par) = $nt^{-(\tau-1)}$
 $(t = \omega(1), \tau \in (2, 3)) = o(n)$

Since there is a $g(n) \in o(n) \cap \Omega(\log(n))$ with $g(n) \ge \mathbb{E}[N_{w \ge t}]$, Chernoff gives concentration

GIRG *n* independent vertices $w_v \sim Par(\tau - 1, 1)$ for $\tau \in (2, 3)$



Analysis on GIRGs – Greedy Vertices < t

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close

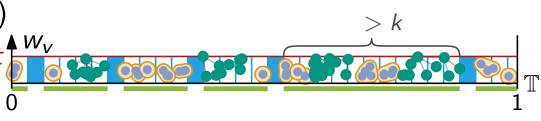
Idea

- Discretize ground space into cells such that edges cannot span empty cells
- Use empty cells as delimiters between components
- Regard chains of non-empty cells as one component
- Count all vertices that are in chains containing $> \log \log(n)$ vertices (also potentially counting small components)

When does a chain contain too many vertices?

Analysis on GIRGs – Greedy Vertices < t

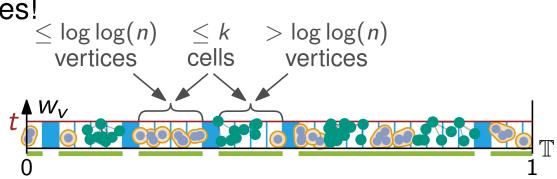
- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 1** Too many cells in long chains, say > k cells
- Unlikely, if cells are small
- Proof via method of bounded differences!
 - Total number of cells in long chains does not change much ($\leq 2k + 1$) when one cell moves from empty to non-empty (or vice versa) > k
- Use Poissonization to get rid of dependencies $t = \frac{W_V}{V}$



Analysis on GIRGs – Greedy Vertices < t

- After (the o(n)) vertices with weight ≥ t are removed, the graph decomposes into several components
 - Components of size $\leq \log \log(n)$ are solved exactly
 - Larger components are assumed to be taken greedily (need to show: these are o(n))
- Hard to determine how likely it is for a vertex to be in a large component
- Make use of geometry! Overestimate components by counting how many vertices are geometrically very close
- **Case 2** Short chains ($\leq k$ cells) contain too many vertices
- Unlikely, if cells are small
- Proof via method of *typical* bounded differences!
 - Imagine cells as boxes on conveyor belt
 - Imagine vertices as products
 - Typically not many vertices in few cells

 \rightsquigarrow w.h.p., o(n) vertices in large components \checkmark



Bounded differences ("Lipschitz") condition What is the worst that can happen when

What is the worst that can happen when changing one input?
 Chernoff-like bound, weakened by sum of squared worst changes

Concentration for function of independent random variables

Useless if worst changes are too large

Method of Bounded Differences

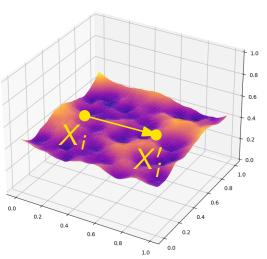
Method of Typical Bounded Differences

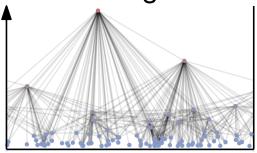
- Define typical event, distinguish worst changes depending on whether event occurred
- Use mitigators to weaken impact of general worst changes
- Pay with probability that typical event does not occur, multiplied with inverse mitigators

Geometric Inhomogeneous Random Graphs

- Pretty realistic graph model (heterogeneity, locality)
- Not too hard to analyze
- Used for average-case analysis (e.g. vertex cover approximation)

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms





(not discussed in lecture)