This lecture’s content is covered in Thomas Worsch’s notes from 2019.
Content

1. What is Randomised Approximation?

2. Approximately counting satisfying assignments for Boolean formulas
Randomised Approximate Counting

Definition

A randomised algorithm A approximates a quantity $f(x)$ if for any input x the output $A(x)$ satisfies:

$$\Pr[|A(x) - f(x)| \leq \varepsilon \cdot f(x)] \geq 1 - \delta.$$

The parameters are the relative error ε and the failure probability δ.

Remark: Related Complexity Classes

PRAS. Problems admitting A with running time polynomial in $|x|$, but not necessarily in $\frac{1}{\varepsilon}$ (for $\delta = 1/4$).

FPRAS. Problems admitting A with running time polynomial in $|x|$ and $\frac{1}{\varepsilon}$ (for $\delta = 1/4$).

Note: Also defined where $f(x)$ is not a number. For instance: Want to compute a vertex cover with a size close to optimal.
A counting problem

For Boolean formula $B(x_1, \ldots, x_n)$ let $\#B$ be the number of satisfying assignments:

$$\#B = |\{(x_1, \ldots, x_n) \in \{0, 1\}^n \mid B(x_1, \ldots, x_n) = 1\}|.$$

Example

$$B = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3)$$
$$\#B = |\{(0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)\}| = 4$$

Assume A satisfies $\Pr[|A(B) - \#B| \leq \varepsilon(\#B)] \leq 1 - \delta$ for $\varepsilon = \frac{1}{2}$ and $\delta = \frac{1}{4}$. Then

$$B \text{ is UNSAT } \iff \#B = 0 \iff \Pr[|A(B) - 0| \leq \frac{1}{2} \cdot 0] \geq \frac{3}{4} \Rightarrow \Pr[A(B) = 0] \geq \frac{3}{4}$$

$$B \text{ is SAT } \iff \#B > 0 \iff \Pr[|A(B) - \#B| \leq \frac{1}{2} \cdot \#B] \geq \frac{3}{4} \Rightarrow \Pr[A(B) > 0] \geq \frac{3}{4}$$

If A is polynomial time then A is BPP algorithm for SAT.

Then SAT \in BPP and NP \subseteq BPP. Hard to believe...
What could be a tractable special case?

Relative error $\varepsilon < 1$ requires distinguishing:

$$\text{UNSAT} \iff \#B = 0 \quad \text{from} \quad \text{SAT} \iff \#B \geq 1.$$

An asymmetry for CNF formulas

- B is called TAUTology if $\#B = 2^n$.
- “is B TAUT?” is easy to decide:
 Only empty CNF-formula is TAUT.
 (assuming x_i and \bar{x}_i never in the same clause)
- Try approximating unsatisfying assignments?
 $$f(x) := 2^n - \#B.$$

Consider DNF!

$$B' = \bar{B} = (\bar{x}_1 \land x_2 \land x_{42}) \lor \ldots \lor (\bar{x}_1 \land \bar{x}_3 \land x_{37})$$

- $\#B' = 2^n - \#B$.
- “B' is SAT” is easy to decide
 (only empty DNF-formula is UNSAT.)

CNF is hopeless

$$B = (x_1 \lor \bar{x}_2 \lor \bar{x}_{42}) \land \ldots \land (\bar{x}_1 \lor x_3 \lor \bar{x}_{37})$$

deciding SAT is NP-hard for clause size 3.
Intuition: Approximating π

Requirements for estimating area of disk (and hence π):

- Know formula for area of square
- Sample uniformly from square
- decide for $x, y \in [-1, 1]$ if (x, y) in disk: $x^2 + y^2 \leq 1$
Approximate $|S|$ for $S \subseteq D$ by naive sampling

Algorithm approxSetSize($1 \cdot \mathbb{1}_S, D$):

- \text{hits} \leftarrow 0
- \text{for} \ i = 1 \text{ to } N \text{ do}
 - \text{sample } x \sim \mathcal{U}(D)
 - \text{hits} \leftarrow \text{hits} + \mathbb{1}_{x \in S}
- \text{return } \frac{\text{hits}}{N} \cdot |D|

Simple Theorem

Let D be a finite set and $S \subseteq D$ such that we can efficiently
- compute $|D|
- sample uniformly from D
- decide for given $x \in D$ whether $x \in S$

Let $p = |S|/|D|$. Then approxSetSize with $N = \frac{3 \log(2/\delta)}{\varepsilon^2 p}$ approximates $|S|$ with relative error ε and failure probability δ.

\leftrightarrow Special Case $\varepsilon, \delta = \Theta(1)$: Need $N = \Omega(1/p)$ samples.

Application to $\#B$

- $S =$ satisfying assignments of B
- $D = \{0, 1\}^n$
- $p = \frac{|S|}{|D|} = \frac{\#B}{2^n}$
- We may have $p = 1/2^n$
- $N = \Omega(2^n)$ required
- \therefore
Of course this didn’t work
Did not exploit that B is in DNF.
Approximating \(\#B \) for \(B \) in DNF

Assume \(B = C_1 \lor \ldots \lor C_m \)

where \(C_i \) contains \(\ell_i \) literals.

- \(D_i := \{ x \in \{0, 1\}^n \mid C_i(x) = 1 \} \) (satisfying assignments of \(C_i \))
- \(D := \{(i, x) \mid i \in [m], x \in D_i \} \) (\(= D_1 \cup \ldots \cup D_m \))
- \(S := \{(i, x) \mid i \in [m], x \in D_i, x \notin D_1 \cup \ldots \cup D_{i-1} \} \)

Observations

- \(|S| = \#B \)
- \(|D_i| = 2^{n-\ell_i} \) and we can efficiently sample from \(\mathcal{U}(D_i) \):
 - set variables appearing in \(C_i \) as required, others from \(\text{Ber}(1/2) \).
- We can efficiently compute \(|D| = \sum_{i=1}^m |D_i| \) and sample \((I, X) \sim \mathcal{U}(D) \):
 - First sample \(I \) such that \(\Pr[I = i] = \frac{|D_i|}{|D|} \).
 - Then sample \(X \sim \mathcal{U}(D_i) \).
 - Yields \(\Pr[(I, X) = (i, x)] = \frac{|D_i|}{|D|} \cdot \frac{1}{|D_i|} = \frac{1}{|D|} \) for all \((i, x) \in D \).
- We can efficiently decide “is \((i, x) \in S \)” (in time \(O(mn) \))
- \(p = \frac{|S|}{|D|} \) satisfies \(p \geq \frac{1}{m} \).
Theorem

If B is in DNF, then we can approximate $\#B$ in polynomial time (using $N = m \cdot \frac{3 \log(2/\delta)}{\varepsilon^2}$ samples) with relative error ε and failure probability δ.

Intuition: Why did this work?

Naive strategy:

Problem: $|S|/|\{0, 1\}^n|$ may be exponentially small

Improved strategy:

Advantage: $|S|/|D|$ is $\Omega(1/m)$.
Randomised Approximation is Powerful

For B in DNF:

- Computing $\#B$ exactly is $\#P$-complete.
- no deterministic approximation algorithm for such problems is known
- we analysed an efficient randomised approximation algorithm
Anhang: Mögliche Prüfungsfragen

- Was ist ein randomisierter Approximationsalgorithmus (für ein Zählproblem)?
- Wir haben das Zählproblem \(\#B \) für Boolesche Formeln betrachtet. Hatten wir im allgemeinen Fall Erfolg? Warum nicht?
- Welchen Spezialfall haben wir uns vorgenommen? Wieso tritt dort nicht das selbe Problem auf wie im allgemeinen Fall?
- Wir haben einen Algorithmus gesehen der für zwei Mengen \(S \subseteq D \) die Größe von \(|S| \) schätzt.
 - Unter welchen Annahmen ist dieser anwendbar?
 - Wie hat der Algorithmus funktioniert?
 - Wie hängt die Anzahl der nötigen samples von \(|S| \) und \(|D| \) ab?
- Um \(\#B \) für DNF Formel \(B \) zu schätzen haben wir einen schlaueren Ansatz kennengerlernt.
 - Wie hat dieser funktioniert?
 - Wie vermeidet dieser das Problem das naiven Ansatzes?