

Übungsblatt 13 - Aktivsession

Randomisierte Algorithmik - Wintersemester 2023/2024

Folgende Aufgaben werden in der Aktiv-Session am 1.2.2024 gemeinsam bearbeitet. Gib eine Lösung zu einer der beiden Aufgaben (deine Wahl) wie gewohnt bis zum 8.2.2024 über Ilias ab.

Aufgabe 1 - Schnitte Schätzen mit Bloomfiltern

Seien $n, m, k \in \mathbb{N}$. Alice und Bob wollen abschätzen, wie ähnlich ihr Musikgeschmack ist. Seien X die n Lieblingslieder von Alice und Y die n Lieblingslieder von Bob. Zu schätzen ist $\gamma := \frac{|X \cap Y|}{n} \in [0, 1]$. Beide gehen folgendermaßen vor.

- Alice konstruiert einen Bloomfilter $A[1..m] \in \{0,1\}^m$ für X unter Verwendung von k Hashfunktionen h_1, \ldots, h_k .
- Bob konstruiert einen Bloomfilter $B[1..m] \in \{0,1\}^m$ für Y unter Verwendung derselben k Hashfunktionen.
- Alice und Bob tauschen ihre Filter aus und berechnen $\delta := \frac{|\{i \in [m] | A[i] \neq B[i]\}|}{m}$.
- Alice und Bob berechnen basierend auf δ eine Schätzung $\bar{\gamma}$ für γ .

Löse folgende Teilaufgaben:

- (a) Diskutiere: Welche Vor- und Nachteile könnte das Verfahren im Vergleich zum direkten Austausch von *X* und *Y* haben?
- (b) Gewinne Intuition: Welche Werte von δ erwartest du (in etwa) für die Extremfälle, in denen $\gamma = 1$ bzw. $\gamma = 0$ gilt? **Hinweis:** Du darfst hier und im Folgenden davon ausgehen, dass den Bloomfiltern
 - eine "optimale" Konfiguration mit $\alpha k = \ln(2)$ zugrundegelegt wurde.
- (c) Berechne $\mathbb{E}[\delta]$ als Funktion von γ . Du darfst hierbei Terme niederer Ordnung unter den Tisch fallen lassen, also z.B. $(1-\frac{1}{m})^m \approx e^{-1}$ schreiben, ohne ein o(1) mitzuführen. **Hinweis:** Zunächst scheint es, als könnten andere Parameter (z.B. $n, m, k, \alpha, \varepsilon$) auch eine Rolle spielen. Deren Einfluss verschwindet aber in Termen niederer Ordnung.
- (d) Diskutiere: Welche Konzentrationsschranke eignet sich, um zu beweisen, dass δ mit hoher Wahrscheinlichkeit nahe an $\mathbb{E}[\delta]$ liegt?
- (e) Stelle die Gleichung aus (c) um, sodass ersichtlich wird, wie eine Schätzung $\bar{\gamma}$ für γ aus δ berechnet werden kann.
- (f) Spekuliere: Welche Rolle spielt die Wahl von k (bzw. von ε) im vorliegenden Kontext?

Aufgabe 2 - Cuckoo Hashing: Verwandte Fragen und Modelle

Aus mathematischer Sicht ist es oft nebensächlich und ablenkend Cuckoo Hashing mit zwei getrennten Tabellen aufzuziehen. Betrachten wir daher stattdessen folgende Variante:

Es gibt *eine* Tabelle der Größe m, es gibt zwei Hashfunktionen $h_0, h_1 : D \to [m]$ und ein Schlüssel $x \in D$ darf entweder in $h_0(x)$ oder in $h_1(x)$ platziert werden.

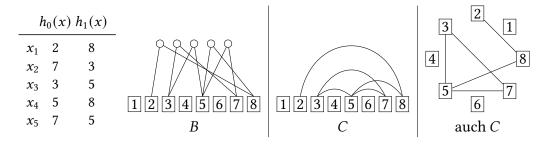
(a) Passe die insert-Methode aus der Vorlesung auf diese Variante an. Welcher Nachteil ergibt sich für die Anzahl der nötigen Hashfunktionsevaluationen?

Betrachte den bipartiten Graphen $B=(V_0,V_1,E_B)$ und den gewöhnlichen Graphen C=(V,E), die für eine gegebene Schlüsselmenge $S\subseteq D$ folgendermaßen definiert sind.

$$B = (S, [m], \{(x, h_0(x)) \mid x \in S\} \cup \{(x, h_1(x)) \mid x \in S\})$$

$$C = ([m], \{\{h_0(x), h_1(x)\} \mid x \in S\})$$

Beachte: In C sind sowohl Multikanten als auch Schleifen möglich. Beispiel: Für eine Schlüsselmenge $S = \{x_1, \dots, x_5\}$ und Hashwerte wie folgt ergeben sich für B und C die Graphen wie illustriert.



- (b) Zeige dass folgende Aussagen äquivalent sind.
 - (i) Alle Schlüssel aus S können in der Hashtabelle platziert werden.
 - (ii) Es gibt ein Matching der Größe n = |S| in B.
 - (iii) *C* ist ein Pseudowald.
 - (iv) Man kann jede Kante aus C mit einer Richtung versehen, sodass jeder Knoten im entstandenen gerichteten Graphen \vec{C} Eingangsgrad höchstens 1 hat.

Hinweis: Zur Definition eines Pseudowalds siehe https://en.wikipedia.org/wiki/Pseudoforest

Sei $G_{m,n}$ ein Zufallsgraph im Erdős-Renyi Modell mit m Knoten und n Kanten. Das heißt unter allen $\binom{m}{2}$ Graphen mit Knotenmenge [m] und n Kanten ist $G_{m,n}$ uniform zufällig gewählt. Der Graph C hat große Ähnlichkeiten mit $G_{m,n}$.

(c) Mache dir die feinen Unterschiede zwischen der Verteilung von $G_{m,n}$ und C klar. Überlege dir zum Beispiel Urnenmodelle für die beiden Verteilungen. Wieviele Bälle sind in der Urne? Was bedeuten sie? Sampeln wir mit oder ohne Zurücklegen?