How (not) to do
Introductions

INTRODUCTIONS

Should always start with a handshake

by Thomas Blasius

I'MNOT, A NOHMM PERSON,
PLEASED TO MEET YOU

pictures stolen from the Internet

Warning
This presentation contains

. few facts,

« some bold claims,

e many unproven conjectures,
- maybe even some barefaced lies.

Feel free to disagree and discuss.

Warning
This presentation contains

. few facts,

« some bold claims,

e many unproven conjectures,

- maybe even some barefaced lies.

Feel free to disagree and discuss.

Claim
Writing a good introduction/paper is not really a writing skill.
It is mainly a reading skill.

1. Introduction

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTioN CoVER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

Do you like this Intro?
And if so, why not?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTioN CovER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective iS important to Close the gap l\a-l- \\\\\\ thaovyi and nvactica and can bhaln +a cat
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Real-world data can often be modeled as a graph, e.g., social networks, biological
ering problems on such networks are often
vorks coming from public transit systems.
- can potentially help to let these systems
run properly, which is importan._ for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StAaTioN CovER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

the problem is not defining anythmg
you are defining the problem

fectlve IS Important to Close the gap l\a-l- \\\\\\ thaovyi and nvactica and can bhaln +a cat
more efficient algorithms, also for ot Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Real-world data can often be modeled as a graph, e.g., social networks, biological

ering problems on such networks are often
the problem is not defining anythmg 5P
Vorks Comlr\n' from nithlic trancit cvetoamec

you are defining the problem can poten iS this really an implication?

run properly, which is importan_ for a reliable, fast, and safe transport of passenge
Weihe [1] considered the problem StATiION COVER that defines connections (e.g., trail
or buses) as paths in a graph of stations. His algorithm selects the minimum numb
of vertices, such that every path contains at least one selected vertex. Despite the fac:
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap heatuwan thonevand neacticaand can haln ta cat
more efficient algorithms, also for ot Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Real-world data can often be modeled as a graph, e.g., social networks, biological

' DT L . ering problems on such networks are often
the problem is not defining anything =& P . .
Vorks comingo froam nithlic trancit cvvetemc

you are defining the problem can poten iS this really an implication?

run properly, which is importan_ for a reliable, fast, and safe transport of passenge
Weihe [1] considered the problem StATiION COVER that defines connections (e.g., trail
or buses) as paths in a graph of stations. His algorithm selects the minimum numb
of vertices, such that every path contains at least one selected vertex. Despite the fac:
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
pr{ 2erties that make them easier.

\ voalaarithosavaclc b fivct applying a simple set of reduction rules and running
not the problem is unrealistic, 'maining instance. On real-world instances, apply-
the instances are leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap fpatuacn thoor: and neactica and can haln to ant
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

™ 1 1 1 - .

maybe a bit over the tOp € modeled as a grapn, e.g., soclal networks, biologica

networks. Covering problems on such networks are often
NF hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTioN COVER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap fpatuacn thoor: and neactica and can haln to ant
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

™ 1 1 1 - .

maybe 1 bit over the top be modeled as a graph, e.g., social networks, biological

networks. Covering problems on such networks are often
NF hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StAaTioN COVER that defines connections (e.g., trains

be specific: STATION COVER Is NP-hard is algorithm selects the minimum number
OT VEITI_2s, sucn tnat every patn contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.
Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap fpatuacn thoor: and neactica and can haln to ant
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

™ 1 1 1 - .

maybe a bit over the tOp € modeled as a grapn, e.g., soclal networks, biologica

networks. Covering problems on such networks are often
NF hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StAaTioN COVER that defines connections (e.g., trains

be specific: STATION COVER Is NP-hard is algorithm selects the minimum number
OT VEITI_2s, sucn tnat every patn contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instan it is actuall just two rules ural
properties that make them easier.
Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap fpatuacn thoor: and neactica and can haln to ant
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks/ Covering problems on such networks are often
NP-hard. We consider infra s this relevant here? 3 from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTioN CovER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective iS important to Close the gap l\a-l- \\\\\\ thaovyi and nvactica and can bhaln +a cat
more efficient algorithms, also for ot| Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks/ Covering problems on such networks are often
NP-hard. We consider infra jc this relevant here? 3 from public transit systems.
Solving covering problems in such gr is can potentially help to let these systems
run properly, which is important for ¢ iable, fast, and safe transport of passengers.
Weihe [1] considered the problem StTA N CovEeRr that defines connections (e.g., trains
or buses) as paths in a graph of statio His algorithm selects the minimum number
of vertices, such that every path contz s at least one selected vertex. Despite the fact
that covering problems are typically N -hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the " P-hardness is usually based on an unrealistic
variant of the problem, while real-w 'ld instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first app! ’ing a simple set of reduction rules and running
a brute-force algorithm on the rema ning instance. On real-world instances, apply-
ing the reduction rules typically leals to a surprisingly small core. This raises the
question, why these reduction rules ‘ire so effective. One approach to explain this, is
to consider parameterized algorithns that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-

fective iS important to Close the gap l\a-l- \\\\\\ thoovvi nnd nvactica annd can bhaln +a ant

more efficient algorithms, also for ot Fact
The intro is typically less formal. Does NOT

mean, you can write whatever you want.

Conjecture
The introduction is lacking structure/there is no golden thread.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem

the problem is hard (theory)

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)
we consider setting x

we consider an important problem

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem

we consider problem x

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

the problem is easy (practice)

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

the problem is easy (practice)

would be cool to close the gap

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. F®JaF ==t SeTE0 FIa =l e =100
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

the problem is easy (practice)
would be cool to close the gap

realistic instances are easier

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. F®JaF ==t SeTE0 FIa =l e =100
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

the problem is easy (practice)
would be cool to close the gap

realistic instances are easier

would be cool to close the gap

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. F®JaF ==t SeTE0 FIa =l e =100
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

we consider an important problem
the problem is hard (theory)

we consider setting x

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

the algorithm is easy

the problem is easy (practice)
would be cool to close the gap

realistic instances are easier

would be cool to close the gap

list of results

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying? My suggestion

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

My suggestion

we consider an important problem
we consider problem x
the problem is hard (theory)

the problem is easy (practice)

the algorithm is easy

realistic instances are easier

would be cool to close the gap

list of results

Conjecture

The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. F®JaF ==t SeTE0 FIa =l e =100
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n°", where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

My suggestion

we consider an important problem
we consider problem x

the problem is hard (theory)

the problem is easy (practice)

the algorithm is easy

realistic instances are easier

would be cool to close the gap

list of results

Claim
The introduction is actually
lacking a motivation.

Claim
The introduction is actually lacking a motivation.

When one motivation is not enough
« we motivate the problem we consider an important problem

« we motivate the research question would be cool to close the gap

Claim
The introduction is actually lacking a motivation.

When one motivation is not enough

- we motivate the research question would be cool to close the gap

« we don’t tell the reader, how our results answer it

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.

Claim
The introduction is actually lacking a motivation.

When one motivation is not enough
« we motivate the problem we consider an important problem
- we motivate the research question would be cool to close the gap

« we don’t tell the reader, how our results answer it

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only

lead tO i) e TP © 2V DT) T S J R B JR R B SRy A [N) T PR | aven for
graphs - . A Tewe A © vou conener N]2US and
have hi WRITING (ST GN' WHAT YOU oRpS: e e Wvarying

MEAN BY WRMNG. TECHNCALLY M .
heterog duction
rules to

:
i
3

Wi PHRCOMICS, COM

