
by Thomas Bläsius

pictures stolen from the Internet

How (not) to do
Introductions



Warning
This presentation contains

• few facts,

• some bold claims,

• many unproven conjectures,

• maybe even some barefaced lies.

Feel free to disagree and discuss.



Claim
Writing a good introduction/paper is not really a writing skill.

It is mainly a reading skill.

Warning
This presentation contains

• few facts,

• some bold claims,

• many unproven conjectures,

• maybe even some barefaced lies.

Feel free to disagree and discuss.



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

1. Introduction



We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.



We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Do you like this Intro?
And if so, why not?

10

min



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

the problem is not defining anything

you are defining the problem



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

the problem is not defining anything

you are defining the problem is this really an implication?



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

the problem is not defining anything

you are defining the problem is this really an implication?

not the problem is unrealistic,

the instances are



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

maybe a bit over the top



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

maybe a bit over the top

be specific: Station Cover is NP-hard



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

maybe a bit over the top

it is actuall just two rules

be specific: Station Cover is NP-hard



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

is this relevant here?



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.
Fact
The intro is typically less formal. Does not

mean, you can write whatever you want.

is this relevant here?



Conjecture
The introduction is lacking structure/there is no golden thread.



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?
we consider an important problem



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is hard (theory)

we consider an important problem



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is hard (theory)

we consider an important problem

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

the problem is easy (practice)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

the problem is easy (practice)

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

would be cool to close the gap

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

list of results

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

the problem is hard (theory)

we consider an important problem

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

the problem is easy (practice)

realistic instances are easier

would be cool to close the gap

we consider setting 𝑥



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying? My suggestion
Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying? My suggestion
Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

list of results

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)



Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying? My suggestion
Real-world data can often be modeled as a graph, e.g., social networks, biological

networks, or infrastructure networks. Covering problems on such networks are often

NP-hard. We consider infrastructure networks coming from public transit systems.

Solving covering problems in such graphs can potentially help to let these systems

run properly, which is important for a reliable, fast, and safe transport of passengers.

Weihe [1] considered the problem StationCover that defines connections (e.g., trains

or buses) as paths in a graph of stations. His algorithm selects the minimum number

of vertices, such that every path contains at least one selected vertex. Despite the fact

that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,

the algorithm uses the fact that the NP-hardness is usually based on an unrealistic

variant of the problem, while real-world instances typically have certain structural

properties that make them easier.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance. On real-world instances, apply-

ing the reduction rules typically leads to a surprisingly small core. This raises the

question, why these reduction rules are so effective. One approach to explain this, is

to consider parameterized algorithms that exploit structural properties of the input.

Such an algorithm can run in time 𝑓 (𝑘)𝑛𝑂 (1)
, where 𝑘 is a parameter that is assumed

to be small for realistic instances. Understanding why the reduction rules are so ef-

fective is important to close the gap between theory and practice and can help to get

more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

Weihe’s algorithmworks by first applying a simple set of reduction rules and running

a brute-force algorithm on the remaining instance.

list of results

would be cool to close the gap

the algorithm is easy

realistic instances are easier

the problem is easy (practice)

we consider an important problem

we consider problem 𝑥

the problem is hard (theory)

Claim
The introduction is actually

lacking a motivation.



Claim
The introduction is actually lacking a motivation.

When one motivation is not enough

would be cool to close the gap

we consider an important problem• we motivate the problem

• we motivate the research question



Claim
The introduction is actually lacking a motivation.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

When one motivation is not enough

would be cool to close the gap

we consider an important problem• we motivate the problem

• we motivate the research question

• we don’t tell the reader, how our results answer it



Claim
The introduction is actually lacking a motivation.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for

every graph, there exists an instance that is completely solved by the reduction rules.

On the other hand, there is an instance for every graphwhere the reduction rules only

lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for

graphs of treewidth 3. We observe that real-world instances are heterogeneous and

have high clustering. Thus, we run experiments on generated instances with varying

heterogeneity and clustering. We observe that both properties help the reduction

rules to be effective but the clustering appears to be the deciding factor.

When one motivation is not enough

would be cool to close the gap

we consider an important problem• we motivate the problem

• we motivate the research question

• we don’t tell the reader, how our results answer it


