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1. Introduction

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTioN CoVER that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.



We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.
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Such an algorithm can run in time f(k)n°Y, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
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Conjecture
The introduction is lacking structure/there is no golden thread.

What is each sentence actually saying?

Real-world data can often be modeled as a graph, e.g., social networks, biological
networks, or infrastructure networks. Covering problems on such networks are often
NP-hard. We consider infrastructure networks coming from public transit systems.
Solving covering problems in such graphs can potentially help to let these systems
run properly, which is important for a reliable, fast, and safe transport of passengers.
Weihe [1] considered the problem StaTion CoveRr that defines connections (e.g., trains
or buses) as paths in a graph of stations. His algorithm selects the minimum number
of vertices, such that every path contains at least one selected vertex. Despite the fact
that covering problems are typically NP-hard, his algorithm is surprisingly fast. Thus,
the algorithm uses the fact that the NP-hardness is usually based on an unrealistic
variant of the problem, while real-world instances typically have certain structural
properties that make them easier.

Weihe’s algorithm works by first applying a simple set of reduction rules and running
a brute-force algorithm on the remaining instance. On real-world instances, apply-
ing the reduction rules typically leads to a surprisingly small core. This raises the
question, why these reduction rules are so effective. One approach to explain this, is
to consider parameterized algorithms that exploit structural properties of the input.
Such an algorithm can run in time f(k)n®®, where k is a parameter that is assumed
to be small for realistic instances. Understanding why the reduction rules are so ef-
fective is important to close the gap between theory and practice and can help to get
more efficient algorithms, also for other covering problems.

We show that the reduction rules reduce the graph at least to its 2-core. Moreover, for
every graph, there exists an instance that is completely solved by the reduction rules.
On the other hand, there is an instance for every graph where the reduction rules only
lead to the 2-core. Beyond that, we show that the problem remains NP-hard even for
graphs of treewidth 3. We observe that real-world instances are heterogeneous and
have high clustering. Thus, we run experiments on generated instances with varying
heterogeneity and clustering. We observe that both properties help the reduction
rules to be effective but the clustering appears to be the deciding factor.
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