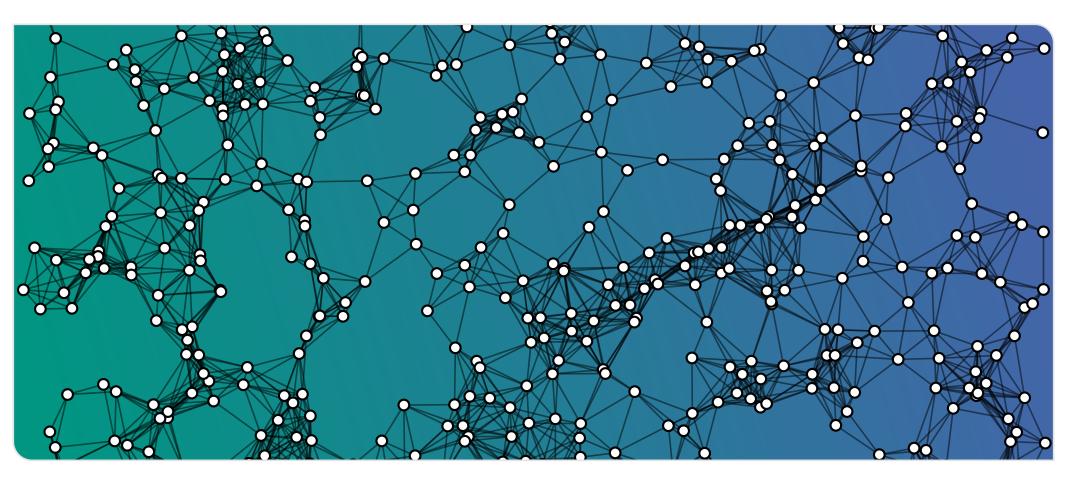


Parametrisierte Algorithmen

Baumweite: Berechnung einer Baumzerlegung & planare Graphen

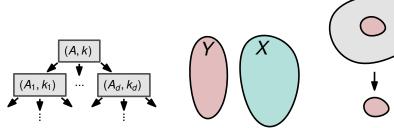


Inhalt

Basic Toolbox

- beschränkte Suchbäume
- iterative Kompression

Kernbildung

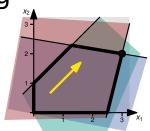


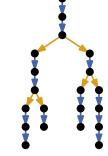
Erweiterte Toolbox

- lineare Programme
- Branch-and-Reduce

Color Coding





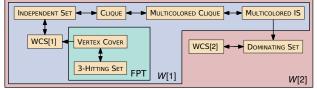


Baumweite

- dynamischeProgramme
- chordale & planare Graphen
- CourcellesTheorem

Untere Schranken

- parametrisierte Reduktionen
- boolesche Schaltkreise und die W-Hierarchie
- ETH und SETH



Problem

- FPT-Algorithmen mit Baumweite als Parameter nehmen an, dass eine entsprechende Baumzerlegung gegeben ist
- Baumweite für einen Graphen G ausrechnen ist NP-schwer

Problem

- FPT-Algorithmen mit Baumweite als Parameter nehmen an, dass eine entsprechende Baumzerlegung gegeben ist
- Baumweite für einen Graphen G ausrechnen ist NP-schwer

Theorem

3

Thomas Bläsius - Parametrisierte Algorithmen

Es gibt einen Algorithmus, der in $k^{O(k^3)} \cdot n$ Zeit eine Baumzerlegung der Weite k berechnet oder entscheidet, dass tw(G) > k.

Problem

- FPT-Algorithmen mit Baumweite als Parameter nehmen an, dass eine entsprechende Baumzerlegung gegeben ist
- Baumweite für einen Graphen G ausrechnen ist NP-schwer

Theorem

Es gibt einen Algorithmus, der in $k^{O(k^3)} \cdot n$ Zeit eine Baumzerlegung der Weite k berechnet oder entscheidet, dass tw(G) > k.

- FPT-Algorithmus
- lineare Laufzeit in *n* Beweis: nicht hier

Problem

- FPT-Algorithmen mit Baumweite als Parameter nehmen an, dass eine entsprechende Baumzerlegung gegeben ist
- Baumweite für einen Graphen G ausrechnen ist NP-schwer

Theorem

Es gibt einen Algorithmus, der in $k^{O(k^3)} \cdot n$ Zeit eine Baumzerlegung der Weite k berechnet oder entscheidet, dass tw(G) > k.

- FPT-Algorithmus
- lineare Laufzeit in n
 Beweis: nicht hier

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Problem

- FPT-Algorithmen mit Baumweite als Parameter nehmen an, dass eine entsprechende Baumzerlegung gegeben ist
- Baumweite für einen Graphen G ausrechnen ist NP-schwer

Theorem

Es gibt einen Algorithmus, der in $k^{O(k^3)} \cdot n$ Zeit eine Baumzerlegung der Weite k berechnet oder entscheidet, dass tw(G) > k.

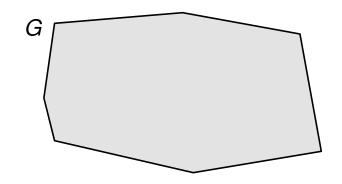
- FPT-Algorithmus
- lineare Laufzeit in n
 Beweis: nicht hier

Theorem

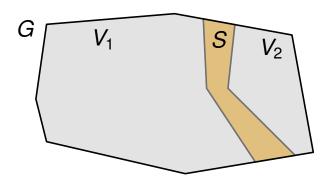
Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

- approximativer FPT-Algorithmus
- lacktriangle quadratisch in n, dafür bessere Laufzeit in k
- Beweis: gleich

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören

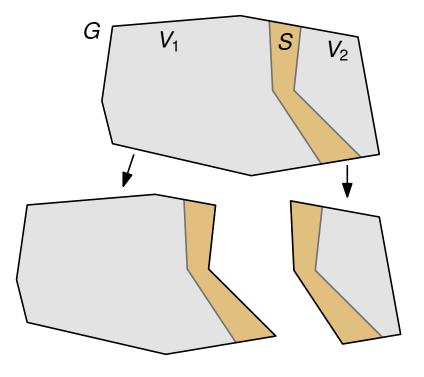


Grobe Idee

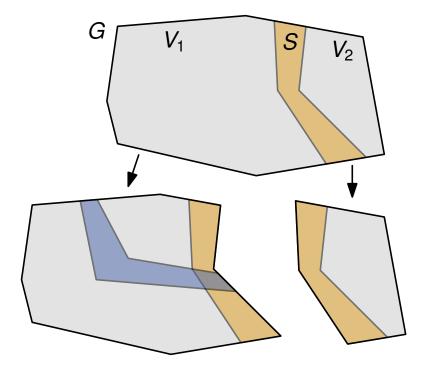
■ Separator S zerlegt G in V_1 und V_2

Thomas Bläsius - Parametrisierte Algorithmen

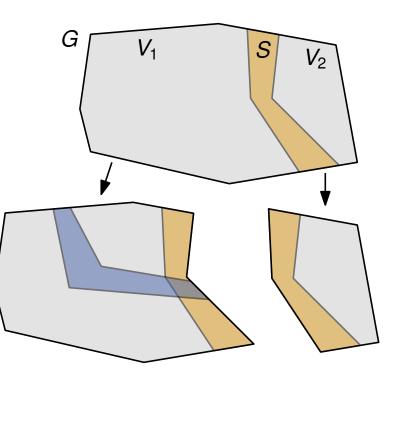
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



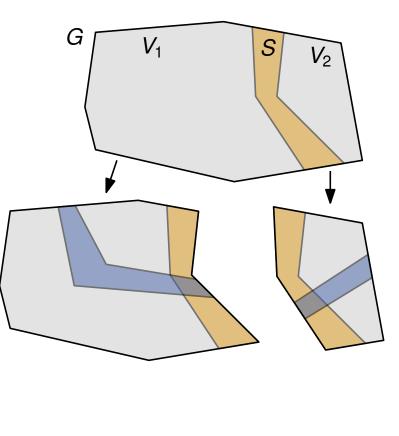
- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



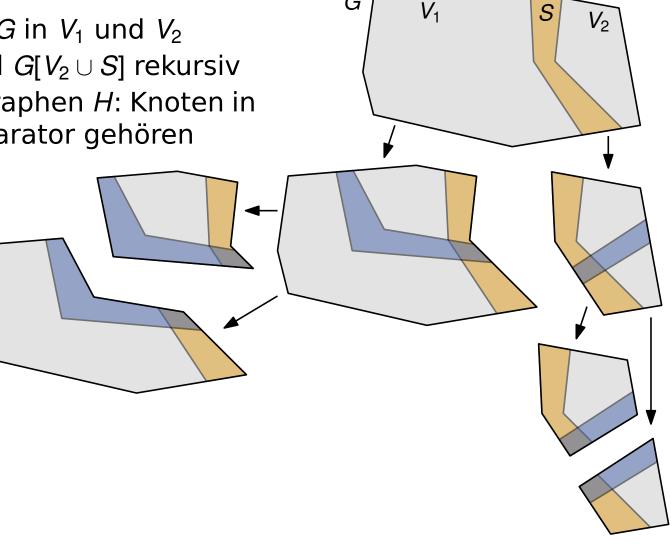
- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen *H*: Knoten in *H*, die zu einem Separator gehören



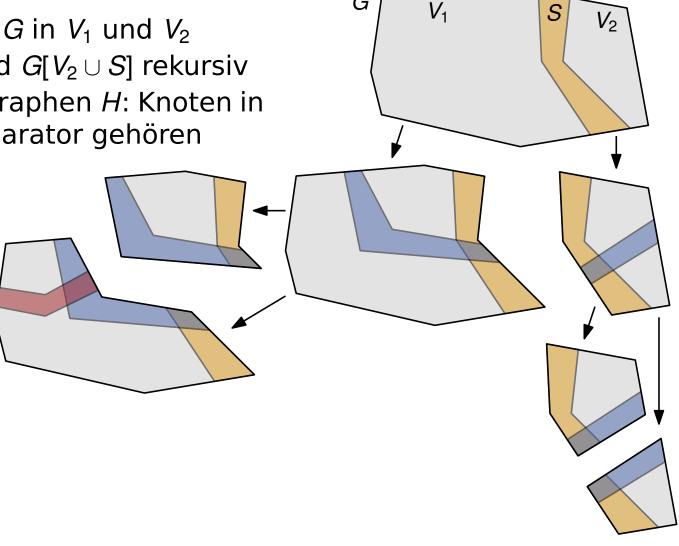
- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen *H*: Knoten in *H*, die zu einem Separator gehören

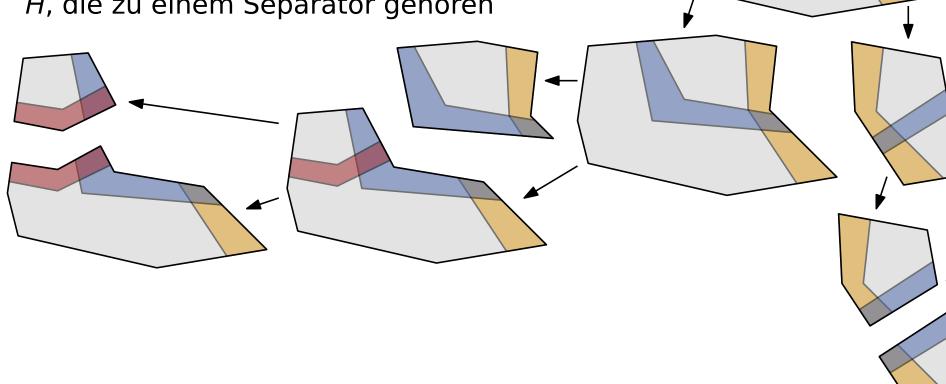


- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen *H*: Knoten in *H*, die zu einem Separator gehören



Grobe Idee

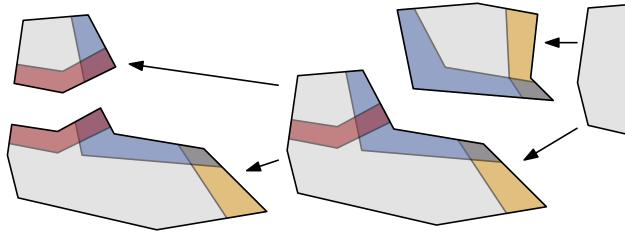
- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



 V_1

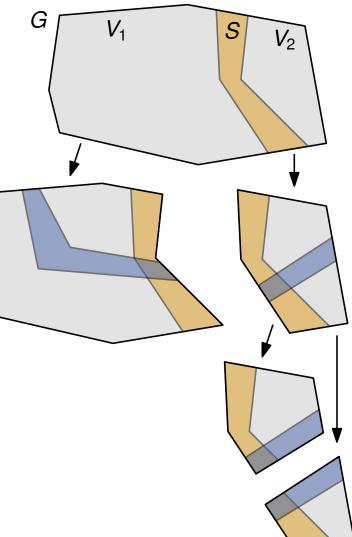
Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



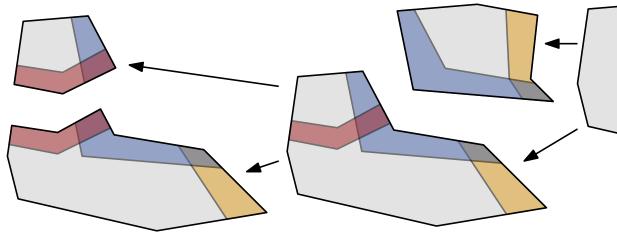
Baumzerlegung

rekursive Zerlegung liefert Baumstruktur



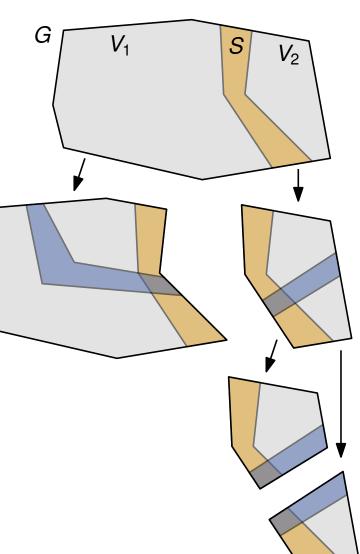
Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



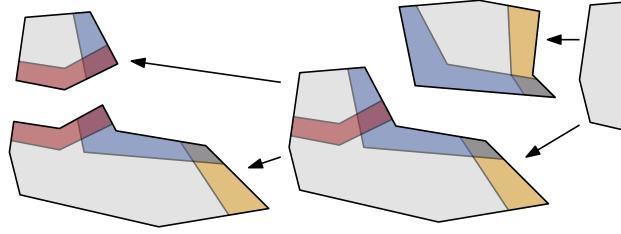
Baumzerlegung

- rekursive Zerlegung liefert Baumstruktur
- Bags: bisherige + aktuellen Separator



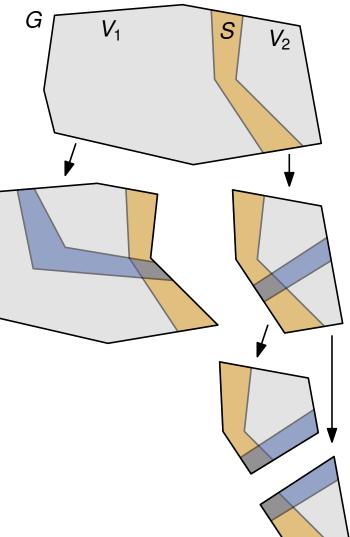
Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



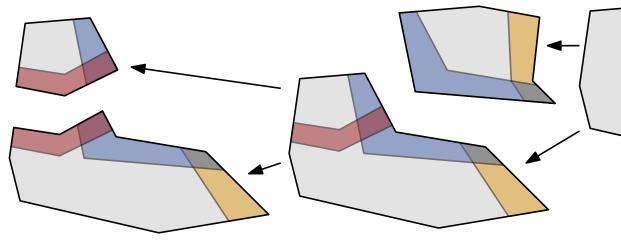
Probleme

kleine Separatoren finden



Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören

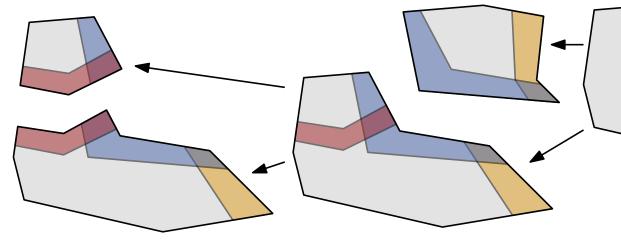


Probleme

- kleine Separatoren finden
- Separatoren müssen nicht balanciert sein ⇒ benutze Fluss

Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



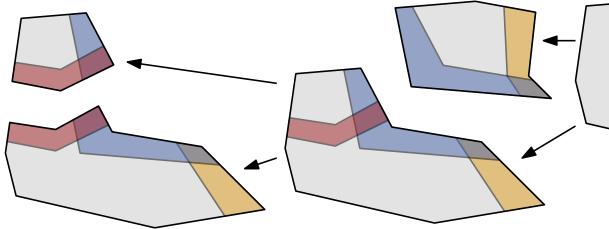
Probleme

Interfaces werden groß, auch wenn jeder Separator klein ist

 V_1

Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



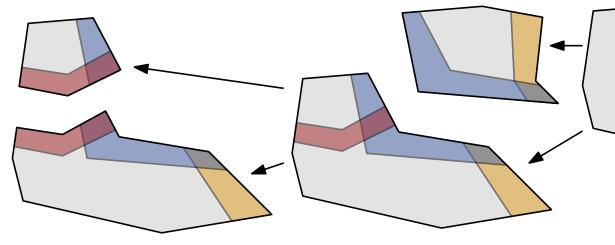
Probleme

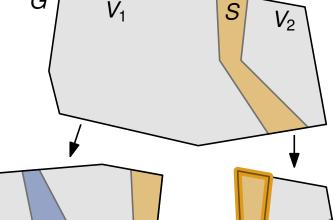
- Interfaces werden groß, auch wenn jeder Separator klein ist
- lacktriangle erzwinge, dass bisheriges Interface $\frac{2}{3}$ -balanciert zerlegt wird

 V_1

Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören



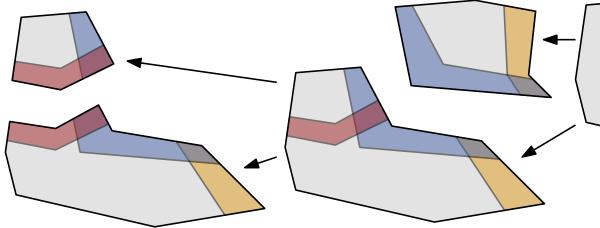


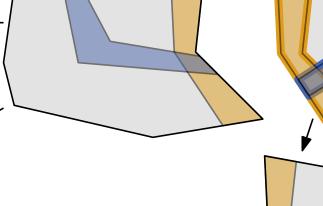
Probleme

- Interfaces werden groß, auch wenn jeder Separator klein ist
- lacktriangle erzwinge, dass bisheriges Interface $\frac{2}{3}$ -balanciert zerlegt wird
- Beispiel: bisheriges Interface: $\leq 3k + 3$

Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören





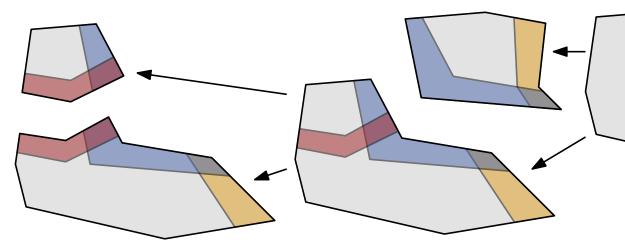
 V_1

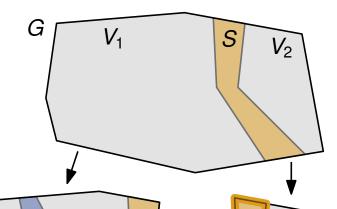
Probleme

- Interfaces werden groß, auch wenn jeder Separator klein ist
- lacktriangle erzwinge, dass bisheriges Interface $rac{2}{3}$ -balanciert zerlegt wird
- Beispiel: bisheriges Interface: $\leq 3k + 3$ aktueller Separator: $\leq k + 1$

Grobe Idee

- Separator S zerlegt G in V_1 und V_2
- zerlege $G[V_1 \cup S]$ und $G[V_2 \cup S]$ rekursiv
- Interface eines Teilgraphen H: Knoten in H, die zu einem Separator gehören





Probleme

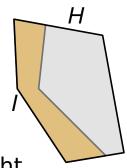
- Interfaces werden groß, auch wenn jeder Separator klein ist
- lacktriangle erzwinge, dass bisheriges Interface $rac{2}{3}$ -balanciert zerlegt wird
- Beispiel: bisheriges Interface: $\leq 3k + 3$ aktueller Separator: $\leq k + 1$

 \Rightarrow neues Interface: < 3k + 3

Baumweite ⇒ **Separator**

Wir wünschen uns einen Separator S

• sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$

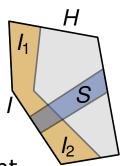


wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Baumweite ⇒ **Separator**

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$

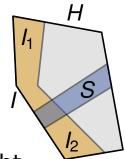


wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$
- $|S| \le k + 1$ soll gelten

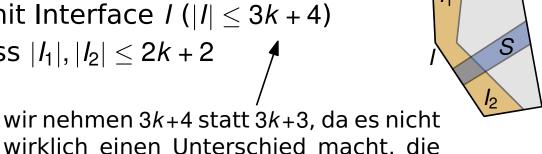
Thomas Bläsius - Parametrisierte Algorithmen



wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$
- $|S| \le k + 1$ soll gelten



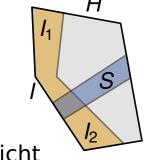
Laufzeitanalyse aber vereinfacht

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$
- $|S| \le k + 1$ soll gelten



wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Lemma

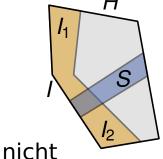
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

Plan im Folgenden

zeige: kleine Baumweite ⇒ kleine balancierte Separatoren

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$
- $|S| \le k + 1$ soll gelten



wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

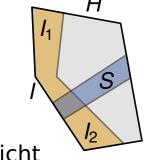
Plan im Folgenden

- zeige: kleine Baumweite ⇒ kleine balancierte Separatoren
- folgere daraus das Lemma

Baumweite ⇒ **Separator**

Wir wünschen uns einen Separator S

- sei H der aktuelle Teilgraph mit Interface $I(|I| \le 3k + 4)$
- S soll I in I_1 , I_2 zerlegen, sodass $|I_1|$, $|I_2| \le 2k + 2$
- $|S| \le k + 1$ soll gelten



wir nehmen 3k+4 statt 3k+3, da es nicht wirklich einen Unterschied macht, die Laufzeitanalyse aber vereinfacht

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

Plan im Folgenden

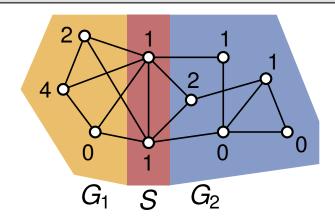
- zeige: kleine Baumweite ⇒ kleine balancierte Separatoren
- folgere daraus das Lemma
- formalisiere eben gesehene rekursive Strategie
- Laufzeitanalyse

Definition

Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \le \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

Beispiel



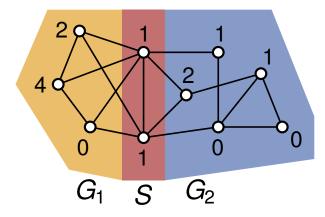
Definition

Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \le \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

Beispiel

- w(G) = 12
- $W(G_1) = 6$
- $W(G_2) = 4$



Definition

Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \leq \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

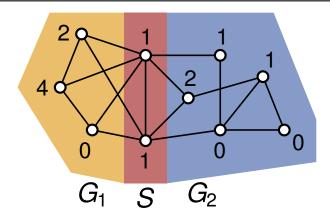
Beispiel

$$w(G) = 12$$

$$W(G_1) = 6$$

$$w(G_2) = 4$$

 $w(G_1) = 6$ $\Rightarrow \frac{1}{2}$ -balanciert



Definition

Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \le \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

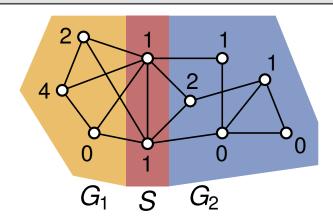
Beispiel

$$w(G) = 12$$

$$W(G_1) = 6$$

$$w(G_2) = 4$$

 $\Rightarrow \frac{1}{2}$ -balanciert



Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Definition

Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \le \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

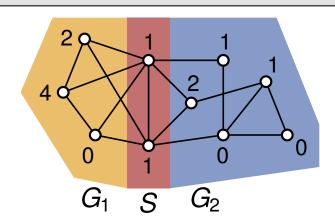
Beispiel

$$w(G) = 12$$

$$W(G_1) = 6$$

$$W(G_2) = 4$$

 $\Rightarrow \frac{1}{2}$ -balanciert



Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Folgerung

In jedem (gew.) Baum gibt einen $\frac{2}{3}$ -balancierten Separator der Größe 1.

Definition

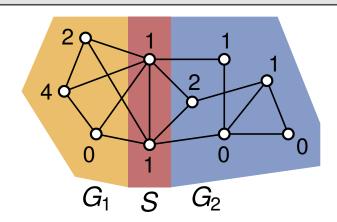
Sei G = (V, E) ein Graph mit Gewichten $w: V \to \mathbb{N}$. Ein Separator S, der G in G_1 und G_2 zerlegt, ist α -balanciert, wenn $w(G_1)$, $w(G_2) \le \alpha w(G)$.

(w(H) = Gesamtgewicht der Knoten im Teilgraph H)

Beispiel

- w(G) = 12
- $W(G_1) = 6$
- $W(G_2) = 4$

 $\Rightarrow \frac{1}{2}$ -balanciert



Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Folgerung

In jedem (gew.) Baum gibt einen $\frac{2}{3}$ -balancierten Separator der Größe 1.

Warum folgt das?

Warum $\frac{2}{3}$ und nicht $\frac{1}{2}$?

Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Beweis

7

■ wähle $v \in V$, sodass $w(T_v) \ge \frac{1}{2}w(T)$ und v hat maximale Distanz zur Wurzel r (T_v ist der Teilbaum unter v)

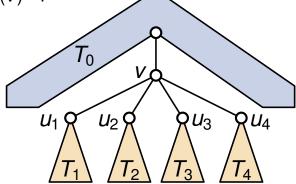
Lemma

In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Beweis

wähle $v \in V$, sodass $w(T_v) \ge \frac{1}{2}w(T)$ und v hat maximale Distanz zur Wurzel r (T_v ist der Teilbaum unter v)

■ T - v hat deg(v) - 1 Kindkomponenten $T_1, ..., T_{deg(v)-1}$ und eine Elternkomponente T_0



Lemma

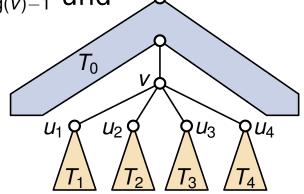
In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Beweis

wähle $v \in V$, sodass $w(T_v) \ge \frac{1}{2}w(T)$ und v hat maximale Distanz zur Wurzel r (T_v ist der Teilbaum unter v)

■ T - v hat deg(v) - 1 Kindkomponenten $T_1, ..., T_{deg(v)-1}$ und eine Elternkomponente T_0

■ für $1 \le i < \deg(v)$: $w(T_i) \le \frac{1}{2}w(T)$ (sonst wäre u_i statt v gewählt worden)



Lemma

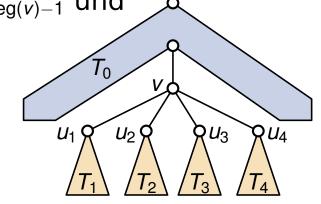
In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Beweis

wähle $v \in V$, sodass $w(T_v) \ge \frac{1}{2}w(T)$ und v hat maximale Distanz zur Wurzel r (T_v ist der Teilbaum unter v)

■ T - v hat deg(v) - 1 Kindkomponenten $T_1, ..., T_{deg(v)-1}$ und eine Elternkomponente T_0

- für $1 \le i < \deg(v)$: $w(T_i) \le \frac{1}{2}w(T)$ (sonst wäre u_i statt v gewählt worden)
- außerdem: $w(T_0) = w(T) w(T_v) \le \frac{1}{2}w(T)$



Lemma

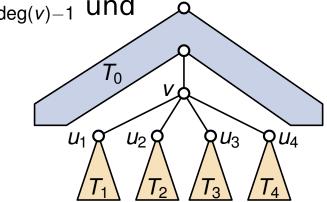
In jedem (gew.) Baum T = (V, E) gibt es eine Menge $S \subseteq V$ mit |S| = 1, sodass $w(T_i) \le \frac{1}{2}w(T)$ für jede Komponente T_i von T - S.

Beweis

wähle $v \in V$, sodass $w(T_v) \ge \frac{1}{2}w(T)$ und v hat maximale Distanz zur Wurzel r (T_v ist der Teilbaum unter v)

■ T - v hat deg(v) - 1 Kindkomponenten $T_1, ..., T_{deg(v)-1}$ und eine Elternkomponente T_0

- für $1 \le i < \deg(v)$: $w(T_i) \le \frac{1}{2}w(T)$ (sonst wäre u_i statt v gewählt worden)
- außerdem: $w(T_0) = w(T) w(T_v) \le \frac{1}{2}w(T)$



Lemma

7

In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

Beweis: analog

Lemma

In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

Folgerung

In jedem (gew.) Graphen mit Baumweite k gibt einen $\frac{2}{3}$ -balancierten Separator mit maximal k+1 Knoten.

Lemma

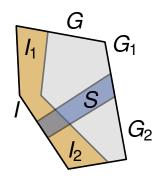
In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

Folgerung

In jedem (gew.) Graphen mit Baumweite k gibt einen $\frac{2}{3}$ -balancierten Separator mit maximal k+1 Knoten.

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.



Lemma

In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

Folgerung

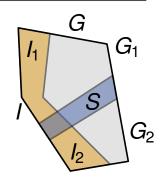
In jedem (gew.) Graphen mit Baumweite k gibt einen $\frac{2}{3}$ -balancierten Separator mit maximal k+1 Knoten.

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

Beweis

■ setze w(v) = 1 für $v \in I$ und w(v) = 0 sonst



Lemma

In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

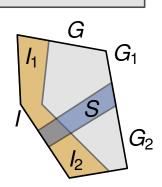
Folgerung

In jedem (gew.) Graphen mit Baumweite k gibt einen $\frac{2}{3}$ -balancierten Separator mit maximal k+1 Knoten.

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

- setze w(v) = 1 für $v \in I$ und w(v) = 0 sonst
- sei S ein $\frac{2}{3}$ -balancierter Separator mit $|S| \le k+1$, der G in G_1 und G_2 , sowie I in I_1 und I_2 zerlegt



Lemma

In jedem (gew.) Graph G = (V, E) mit Baumweite k gibt es eine Menge $S \subseteq V$ mit $|S| \le k + 1$, sodass $w(G_i) \le \frac{1}{2}w(G)$ für jede Komp. G_i von G - S.

Folgerung

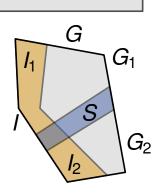
In jedem (gew.) Graphen mit Baumweite k gibt einen $\frac{2}{3}$ -balancierten Separator mit maximal k+1 Knoten.

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$.

- setze w(v) = 1 für $v \in I$ und w(v) = 0 sonst
- sei S ein $\frac{2}{3}$ -balancierter Separator mit $|S| \le k+1$, der G in G_1 und G_2 , sowie I in I_1 und I_2 zerlegt

$$\Rightarrow |I_1| = w(G_1), |I_2| = w(G_2) \le \frac{2}{3}w(G) = \frac{2}{3}|I| \le \frac{2}{3}(3k+4) \le 2k+2$$



Lemma

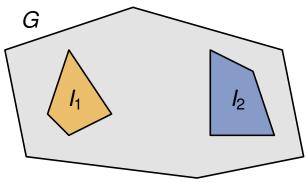
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

■ probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.

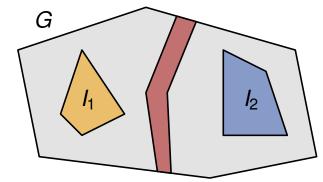


Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt



Thomas Bläsius - Parametrisierte Algorithmen

Lemma

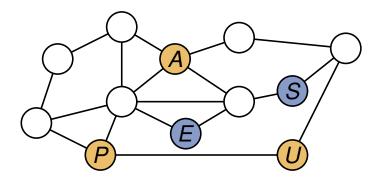
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

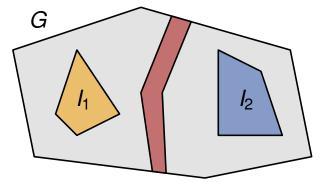
Beweis

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt

Beispiel

 $I_1 = \{P, A, U\} \text{ und } I_2 = \{S, E\}$





Lemma

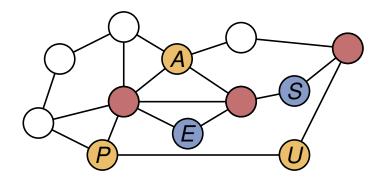
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

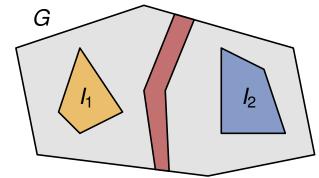
Beweis

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt

Beispiel

 $I_1 = \{P, A, U\} \text{ und } I_2 = \{S, E\}$





Lemma

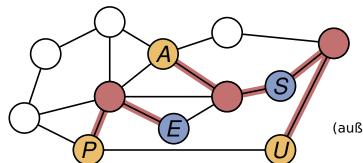
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

- **probiere** jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- \blacksquare berechne min. Separator (\equiv Knotenschnitt), $der I_1$ und I_2 trennt

Beispiel

 $I_1 = \{P, A, U\} \text{ und } I_2 = \{S, E\}$



besser geht nicht: es gibt drei Knotendisjunkte Pfade

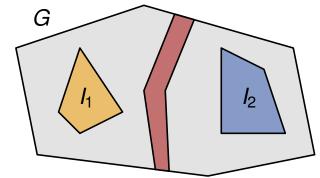
(außer, wenn man erlaubt Knoten aus I₁ oder I₂ zu löschen)

9

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt
 - Flussberechnung mittels Ford-Fulkerson

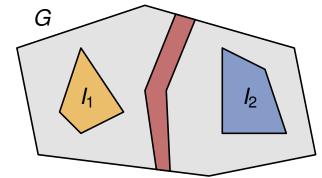


Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt
 - Flussberechnung mittels Ford-Fulkerson
 - finde knotendisjunkte erhöhende Wege (≡ Knotenkapazitäten 1)

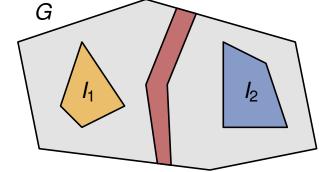


9

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt
 - Flussberechnung mittels Ford-Fulkerson
 - finde knotendisjunkte erhöhende Wege (≡ Knotenkapazitäten 1)
 - maximal k + 1 erhöhende Wege nötig (sonst wird |S| > k + 1)



Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

- probiere jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (\equiv Knotenschnitt), der I_1 und I_2 trennt
 - Flussberechnung mittels Ford-Fulkerson
 - finde knotendisjunkte erhöhende Wege (≡ Knotenkapazitäten 1)

- maximal k + 1 erhöhende Wege nötig (sonst wird |S| > k + 1)
- O(n+m) pro erhöhenden Weg (BFS), wobei $m \le kn$

9

Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k + 4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k + 1$, $|I_1|, |I_2| \le 2k + 2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Beweis

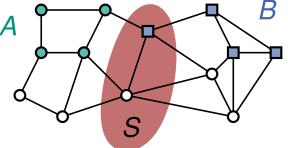
- **probiere** jede mögliche Aufteilung von I in I_1 und $I_2 \rightarrow 2^{3k+4}$ Mögl.
- berechne min. Separator (= Knotenschnitt), der I_1 und I_2 trennt
 - Flussberechnung mittels Ford-Fulkerson
 - finde knotendisjunkte erhöhende Wege (≡ Knotenkapazitäten 1)

- O(n+m) pro erhöhenden Weg (BFS), wobei $m \leq kn$
- $\blacksquare \Rightarrow O(k^2n)$ pro Aufteilung

9

Situation

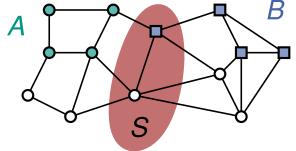
- gegeben: Graph G = (V, E) und zwei Knotenmengen $A, B \subseteq V$ $(A \cap B = \emptyset)$
- finde kleinen Separator S in G, der A und B trennt
- S darf Knoten aus A und B enthalten



Situation

- gegeben: Graph G = (V, E) und zwei Knotenmengen $A, B \subseteq V$ $(A \cap B = \emptyset)$
- finde kleinen Separator *S* in *G*, der *A* und *B* trennt
- S darf Knoten aus A und B enthalten

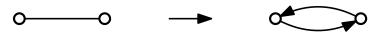
Schritt 1: betrachte gerichteten Graphen



Situation

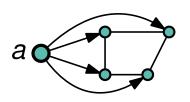
- gegeben: Graph G = (V, E) und zwei Knotenmengen $A, B \subseteq V$ $(A \cap B = \emptyset)$
- finde kleinen Separator *S* in *G*, der *A* und *B* trennt
- S darf Knoten aus A und B enthalten

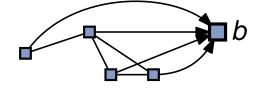
Schritt 1: betrachte gerichteten Graphen



A

Schritt 2: Superquelle und -senke für A und B

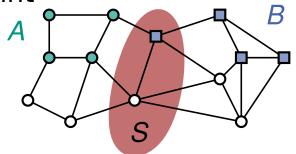




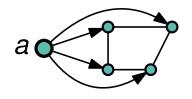
Situation

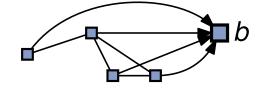
- gegeben: Graph G = (V, E) und zwei Knotenmengen $A, B \subseteq V$ $(A \cap B = \emptyset)$
- finde kleinen Separator *S* in *G*, der *A* und *B* trennt
- S darf Knoten aus A und B enthalten

Schritt 1: betrachte gerichteten Graphen

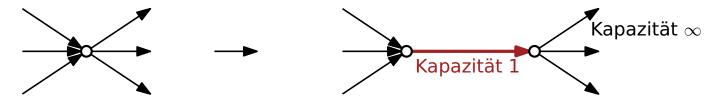


Schritt 2: Superquelle und -senke für *A* und *B*





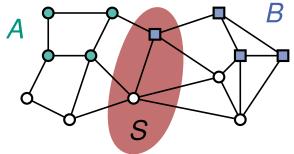
Schritt 3: Knotenkapazitäten durch Aufspaltung jedes Knotens in zwei



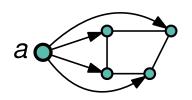
Situation

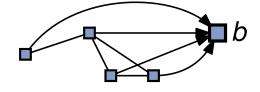
- gegeben: Graph G = (V, E) und zwei Knotenmengen $A, B \subseteq V$ $(A \cap B = \emptyset)$
- finde kleinen Separator *S* in *G*, der *A* und *B* trennt
- S darf Knoten aus A und B enthalten

Schritt 1: betrachte gerichteten Graphen

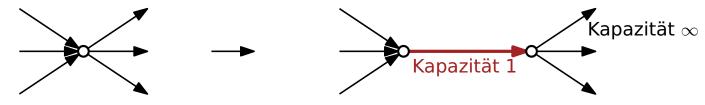


Schritt 2: Superquelle und -senke für *A* und *B*





Schritt 3: Knotenkapazitäten durch Aufspaltung jedes Knotens in zwei

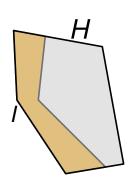


Schritt 4: maximaler *ab*-Fluss (minimaler *ab*-Schnitt)

Ziel der Methode decomp (H, I)

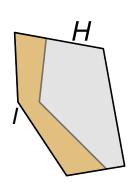
- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält / Weite der Zerlegung $\leq 4k + 4$



Ziel der Methode decomp (H, I)

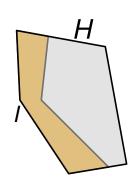
- berechnet Baumzerlegung von H, sodass
 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$
- lacktriangle oder entscheide, dass tw(H) > k



Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass
 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k

Invariante: $|I| \le 3k + 3$



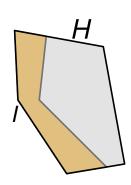
Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k

Umsetzung decomp (H, I)

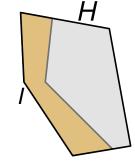
• fertig, falls $|V(H)| \leq 3k + 3$



Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k



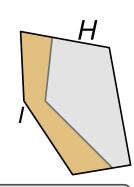
Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$ (vereinfacht die Laufzeitanalyse)

Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass
 - Wurzelbag enthält /
- Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k



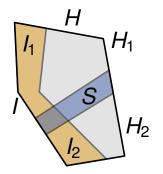
Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)

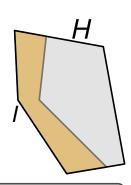
Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k+4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k+1$, $|I_1|, |I_2| \le 2k+2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.



Ziel der Methode decomp(H, I)

- berechnet Baumzerlegung von H, sodass
 - Wurzelbag enthält /
- Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k



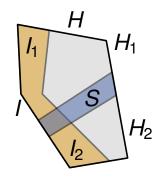
Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)
- erstelle Wurzel mit Bag $B = S \cup I$; $|B| \le 4k + 5$

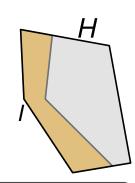
Lemma

Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k+4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k+1$, $|I_1|, |I_2| \le 2k+2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.



Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass
 - Wurzelbag enthält /
- Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k



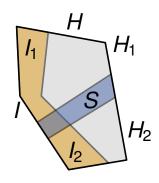
Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \le 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)
- erstelle Wurzel mit Bag $B = S \cup I$; $|B| \le 4k + 5$
- zwei Kinder: decomp(H_1 , $I_1 \cup S$) und decomp(H_2 , $I_2 \cup S$)

Lemma

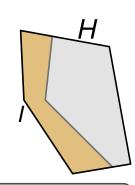
Sei G = (V, E) ein Graph mit $tw(G) \le k$ und sei $I \subseteq V$ mit $|I| \le 3k+4$. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k+1$, $|I_1|$, $|I_2| \le 2k+2$. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.



Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$
- oder entscheide, dass tw(H) > k



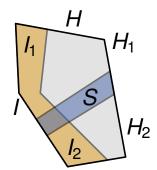
Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)
- erstelle Wurzel mit Bag $B = S \cup I$; $|B| \le 4k + 5$
- zwei Kinder: decomp(H_1 , $I_1 \cup S$) und decomp(H_2 , $I_2 \cup S$)

Lemma

Sei G = (V, E) ein Graph mit tw(G) < k und sei $I \subset V$ mit |I| < 3k+4. Dann gibt es einen Separator S in G, der I in I_1 und I_2 zerlegt, sodass $|S| \le k+1$, $|I_1|, |I_2| \le$ 2k + 2. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.



Laufzeit

pro Aufruf wird mindestens ein Knoten zum Interface hinzugefügt

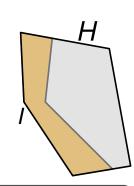
Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$

Lemma

• oder entscheide, dass tw(H) > k



Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)
- erstelle Wurzel mit Bag $B = S \cup I$; $|B| \le 4k + 5$
- zwei Kinder: decomp(H_1 , $I_1 \cup S$) und decomp(H_2 , $I_2 \cup S$)

2k + 2. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Laufzeit

- pro Aufruf wird mindestens ein Knoten zum Interface hinzugefügt
- lacktriangle das passiert jedem Knoten maximal ein Mal \Rightarrow O(n) Aufrufe

Sei G = (V, E) ein Graph mit tw(G) < k und sei $I \subset V$ mit |I| < 3k+4. Dann gibt es einen Separator S in G,

der I in I_1 und I_2 zerlegt, sodass |S| < k + 1, $|I_1|$, $|I_2| < k + 1$

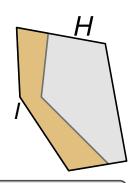
Ziel der Methode decomp (H, I)

- berechnet Baumzerlegung von H, sodass

 - Wurzelbag enthält I Weite der Zerlegung $\leq 4k + 4$

Lemma

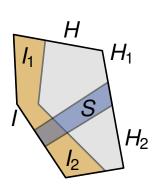
• oder entscheide, dass tw(H) > k



Invariante: $|I| \le 3k + 3$

Umsetzung decomp (H, I)

- fertig, falls $|V(H)| \leq 3k + 3$
- füge beliebigen Knoten aus H zu I hinzu $\Rightarrow |I| \leq 3k + 4$
- berechne S, wie im Lemma (tw(H) > k, falls das scheitert)
- erstelle Wurzel mit Bag $B = S \cup I$; $|B| \le 4k + 5$
- zwei Kinder: decomp(H_1 , $I_1 \cup S$) und decomp(H_2 , $I_2 \cup S$)



Laufzeit

- pro Aufruf wird mindestens ein Knoten zum Interface hinzugefügt
- das passiert jedem Knoten maximal ein Mal $\Rightarrow O(n)$ Aufrufe
- Laufzeit: $O(2^{3k+4}k^2n^2) = O(8^kk^2n^2)$

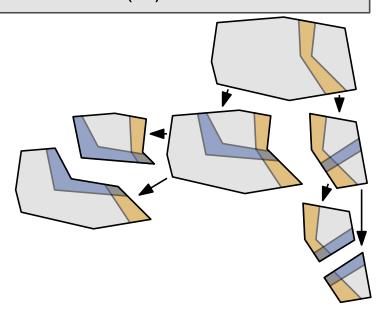
Sei G = (V, E) ein Graph mit tw(G) < k und sei $I \subset V$ mit |I| < 3k+4. Dann gibt es einen Separator S in G,

der I in I_1 und I_2 zerlegt, sodass |S| < k + 1, $|I_1|$, $|I_2| < k + 1$

2k + 2. Er kann in $O(2^{3k+4}k^2n)$ berechnet werden.

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

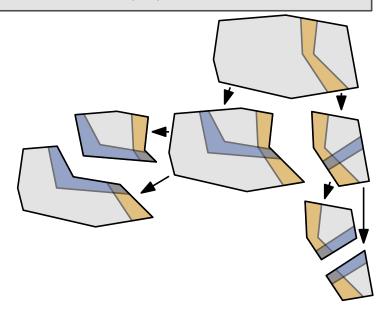


Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit



Theorem

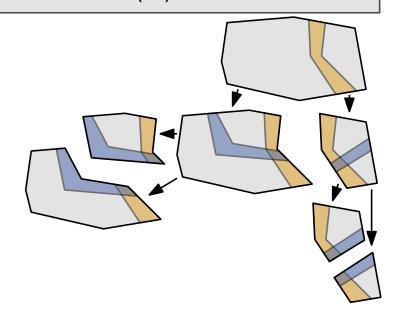
Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

Ergebnis ist Baumzerlegung

jeder Knoten in einem Bag enthalten



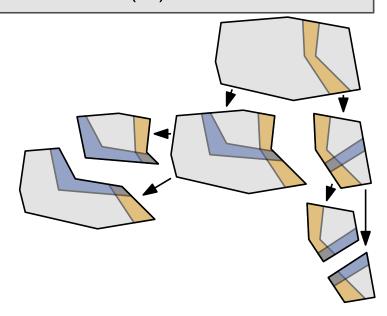
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert



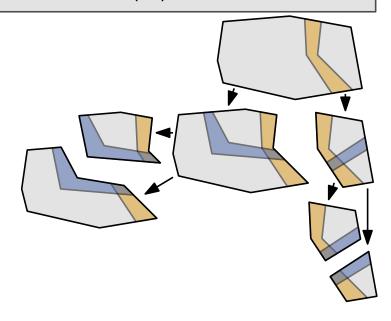
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert
 - $\mathbf{u}v \in E \Rightarrow u$ und v werden nie separiert



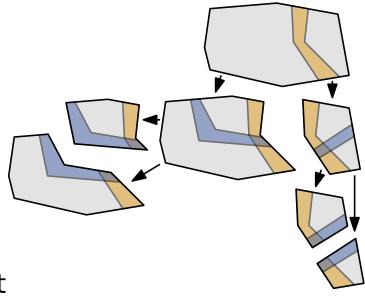
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert
 - $\mathbf{u}v \in E \Rightarrow u$ und v werden nie separiert
 - und v teilen sich ein Bag in einem Blatt



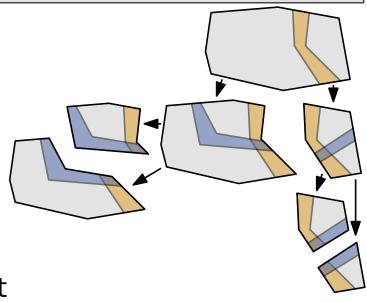
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert
 - $\mathbf{u}v \in E \Rightarrow u$ und v werden nie separiert
 - *u* und *v* teilen sich ein Bag in einem Blatt
- Bags jedes Knotens induzieren Teilbaum



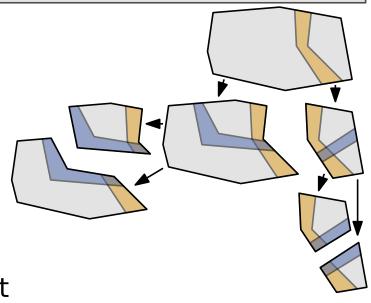
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert
 - $\mathbf{u}v \in E \Rightarrow u$ und v werden nie separiert
 - *u* und *v* teilen sich ein Bag in einem Blatt
- Bags jedes Knotens induzieren Teilbaum
 - betrachte Bag B mit $v \in B$, sodass B möglichst nah an der Wurzel



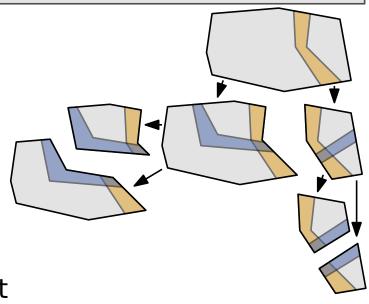
Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

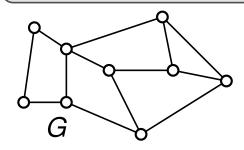
Bisher bewiesen

- Weite ist maximal 4k + 4
- Laufzeit

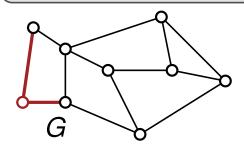
- jeder Knoten in einem Bag enthalten
- jede Kante wird repräsentiert
 - $\mathbf{u}v \in E \Rightarrow u$ und v werden nie separiert
 - *u* und *v* teilen sich ein Bag in einem Blatt
- Bags jedes Knotens induzieren Teilbaum
 - betrachte Bag B mit $v \in B$, sodass B möglichst nah an der Wurzel
 - für Nachfolger B' von B gilt: entweder $v \in B'$ oder $v \notin B''$ für jeden Nachfolger B'' von B'



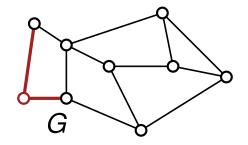
Definition

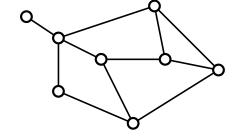


Definition

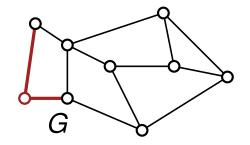


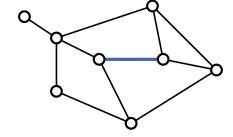
Definition



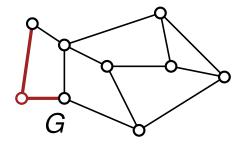


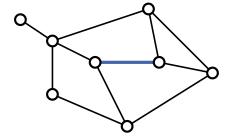
Definition

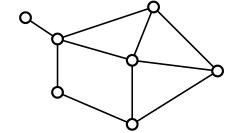




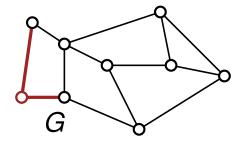
Definition

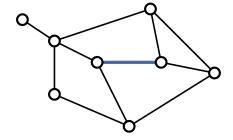


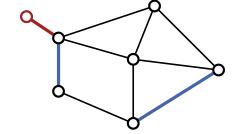




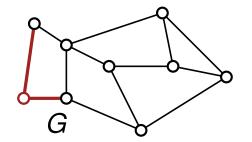
Definition

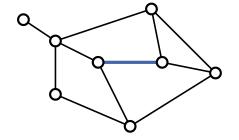


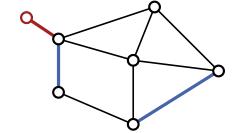


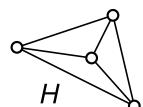


Definition



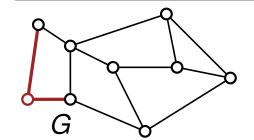


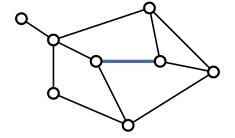


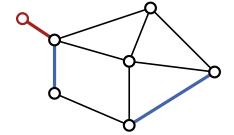


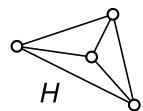
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.







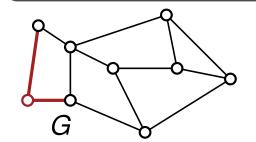


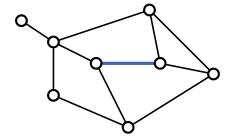
Was hat das mit Baumweite zu tun?

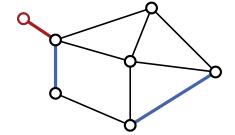
Baumweite ist monoton bezüglich Minorenbildung

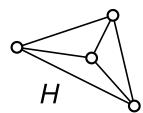
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.







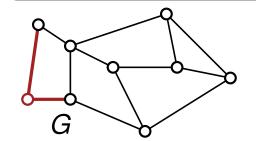


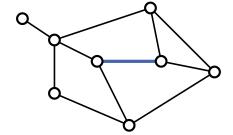
Was hat das mit Baumweite zu tun?

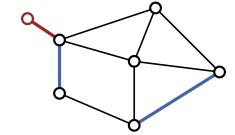
- Baumweite ist monoton bezüglich Minorenbildung
- große Clique als Minor ⇒ große Baumweite

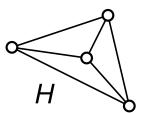
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.







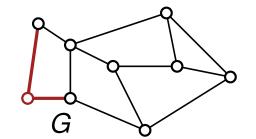


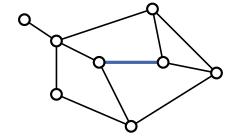
Was hat das mit Baumweite zu tun?

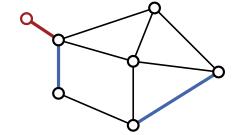
- Baumweite ist monoton bezüglich Minorenbildung
- große Clique als Minor ⇒ große Baumweite
- Umkehrung gilt leider nicht

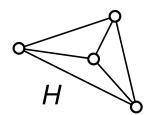
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.







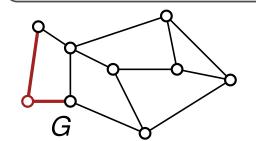


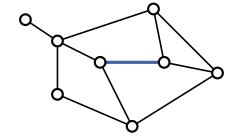
Was hat das mit Baumweite zu tun?

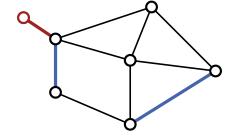
- Baumweite ist monoton bezüglich Minorenbildung
- große Clique als Minor ⇒ große Baumweite
- Umkehrung gilt leider nicht
- aber: große Baumweite ⇒ großes Gitter als Minor

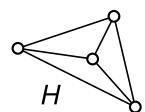
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.









Was hat das mit Baumweite zu tun?

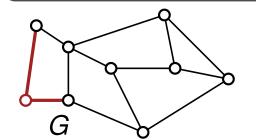
- Baumweite ist monoton bezüglich Minorenbildung
- große Clique als Minor ⇒ große Baumweite
- Umkehrung gilt leider nicht
- aber: große Baumweite ⇒ großes Gitter als Minor

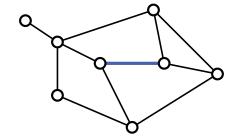
Theorem

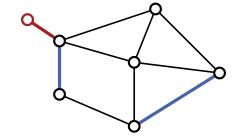
Es gibt eine Funktion $g(t) = O(t^{98+o(1)})$, sodass jeder Graph mit Baumweite über g(t) das Gitter Γ_t als Minor enthält.

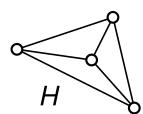
Definition

Ein Graph H ist ein **Minor** von G, wenn man H durch Subgraphbildung und Kantenkontraktion aus G erhalten kann.









Was hat das mit Baumweite zu tun?

- Baumweite ist monoton bezüglich Minorenbildung
- große Clique als Minor ⇒ große Baumweite
- Umkehrung gilt leider nicht
- aber: große Baumweite ⇒ großes Gitter als Minor

Theorem

Es gibt eine Funktion $g(t) = O(t^{98+o(1)})$, sodass jeder Graph mit Baumweite über g(t) das Gitter Γ_t als Minor enthält.

Baumweite muss sehr groß sein, um ein großes Gitter zu garantieren

Theorem

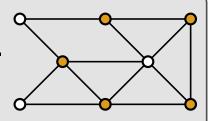
Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)

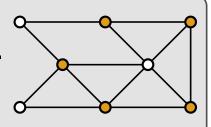


Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

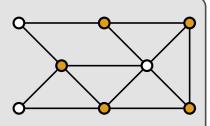
monoton bezüglich Minorenbildung (min. VC wird nur kleiner)

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

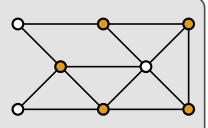
- monoton bezüglich Minorenbildung (min. VC wird nur kleiner)
- jedes VC in Γ_t hat Größe mindestens $\frac{1}{2}t^2$

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

- monoton bezüglich Minorenbildung (min. VC wird nur kleiner)
- jedes VC in Γ_t hat Größe mindestens $\frac{1}{2}t^2$

Algorithmus

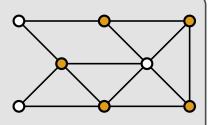
■ benutze Theorem mit $t = \sqrt{2k + 2}$

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

- monoton bezüglich Minorenbildung (min. VC wird nur kleiner)
- jedes VC in Γ_t hat Größe mindestens $\frac{1}{2}t^2$

Algorithmus

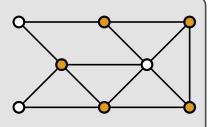
- benutze Theorem mit $t = \sqrt{2k + 2}$
- Fall 1: $\Gamma_{\sqrt{2k+2}}$ ist Minor von $G \Rightarrow$ es gibt kein VC der Größe k

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

- monoton bezüglich Minorenbildung (min. VC wird nur kleiner)
- jedes VC in Γ_t hat Größe mindestens $\frac{1}{2}t^2$

Algorithmus

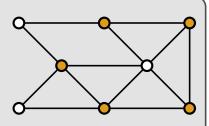
- benutze Theorem mit $t = \sqrt{2k + 2}$
- Fall 1: $\Gamma_{\sqrt{2k+2}}$ ist Minor von $G \Rightarrow$ es gibt kein VC der Größe k
- Fall 2: Baumzerl. der Weite $O(\sqrt{k}) \Rightarrow DP$ mit Laufzeit $2^{O(\sqrt{k})}n^{O(1)}$

Theorem

Jeder planare Graph G mit Baumweite $\geq \frac{9}{2}t$ enthält Γ_t als Minor. Für jedes $\varepsilon > 0$ gibt es einen $O(n^2)$ Algorithmus, der entweder eine Baumzerlegung der Weite $(\frac{9}{2} + \varepsilon)t$ oder einen Γ_t Minor von G konstruiert.

Problem: Vertex Cover

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Beobachtungen

- monoton bezüglich Minorenbildung (min. VC wird nur kleiner)
- jedes VC in Γ_t hat Größe mindestens $\frac{1}{2}t^2$

Algorithmus

- benutze Theorem mit $t = \sqrt{2k + 2}$
- Fall 1: $\Gamma_{\sqrt{2k+2}}$ ist Minor von $G \Rightarrow$ es gibt kein VC der Größe k
- Fall 2: Baumzerl. der Weite $O(\sqrt{k}) \Rightarrow DP$ mit Laufzeit $2^{O(\sqrt{k})}n^{O(1)}$

⇒ Win-Win

Planarität und Vertex Cover

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Planarität und Vertex Cover

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen (d.h. es gibt vermutlich keinen FPT-Algorithmus)

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen (d.h. es gibt vermutlich keinen FPT-Algorithmus)

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen (d.h. es gibt vermutlich keinen FPT-Algorithmus)

Erweiterung auf andere Probleme

entscheidende Eigenschaften:

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen
 (d.h. es gibt vermutlich keinen FPT-Algorithmus)

- entscheidende Eigenschaften:
 - monoton bezüglich Minorenbildung

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen
 (d.h. es gibt vermutlich keinen FPT-Algorithmus)

- entscheidende Eigenschaften:
 - monoton bezüglich Minorenbildung
 - optimale Lösung in Γ_t ist $\Omega(t^2)$ groß

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen
 (d.h. es gibt vermutlich keinen FPT-Algorithmus)

Erweiterung auf andere Probleme

- entscheidende Eigenschaften:
 - monoton bezüglich Minorenbildung
 - optimale Lösung in Γ_t ist $\Omega(t^2)$ groß

bidimensionales Problem

Theorem

Auf planaren Graphen kann Vertex Cover mit der Ergebnisgröße k als Parameter in $2^{O(\sqrt{k})} \cdot n^{O(1)}$ gelöst werden.

Bemerkenswert aus mehreren Gründen

- Baumzerlegung hilft hier, obwohl die Baumweite kein Parameter ist
- Laufzeit subexponentiell im Parameter
- funktioniert ähnlich mit z.B. Independent Set oder Dominating Set
- diese sind W[1]- bzw. W[2]-schwer auf allgemeinen Graphen
 (d.h. es gibt vermutlich keinen FPT-Algorithmus)

- entscheidende Eigenschaften:
 - monoton bezüglich Minorenbildung
 - optimale Lösung in Γ_t ist $\Omega(t^2)$ groß
- bidimensionales Problem
- effizienter Algorithmus auf einer Baumzerlegung vorhanden

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Einsichten

rechtfertigt die Annahme, dass wir eine Baumzerlegung kennen (Laufzeiten bleiben zumindest FPT)

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Einsichten

- rechtfertigt die Annahme, dass wir eine Baumzerlegung kennen (Laufzeiten bleiben zumindest FPT)
- Baumzerlegungen und Knotenseparatoren sind sehr verwandt

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Einsichten

- rechtfertigt die Annahme, dass wir eine Baumzerlegung kennen (Laufzeiten bleiben zumindest FPT)
- Baumzerlegungen und Knotenseparatoren sind sehr verwandt

Teil 2: Win-Win auf planaren Graphen

- die meisten NP-schweren Probleme bleiben auf planaren Graphen NPschwer (Max Cut ist mehr oder weniger die einzige bekannte Ausnahme)
- aber: viele W[1]-schwere Probleme sind auf planaren Graphen FPT

Theorem

Es gibt einen Algorithmus, der in $O(8^k k^2 \cdot n^2)$ Zeit eine Baumzerlegung der Weite 4k + 4 berechnet oder entscheidet, dass tw(G) > k.

Einsichten

- rechtfertigt die Annahme, dass wir eine Baumzerlegung kennen (Laufzeiten bleiben zumindest FPT)
- Baumzerlegungen und Knotenseparatoren sind sehr verwandt

Teil 2: Win-Win auf planaren Graphen

- die meisten NP-schweren Probleme bleiben auf planaren Graphen NPschwer (Max Cut ist mehr oder weniger die einzige bekannte Ausnahme)
- \blacksquare aber: viele W[1]-schwere Probleme sind auf planaren Graphen FPT
- Grund: große Baumweite ⇒ großes Gitter (als Minor)