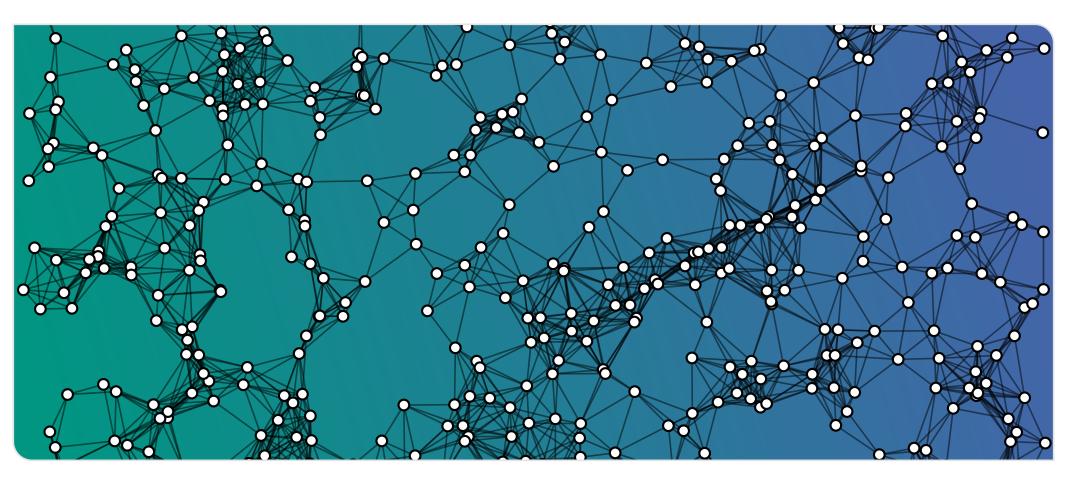


# **Parametrisierte Algorithmen**

Lineare Programme: Dualität und Lenstras Theorem



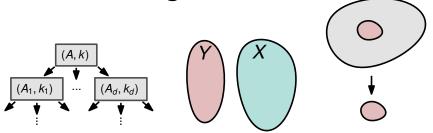
## Inhalt



## **Basic Toolbox**

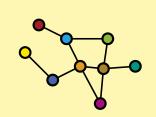
- beschränkte Suchbäume
- iterative Kompression

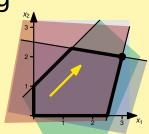
Kernbildung

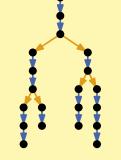


## **Erweiterte Toolbox**

- lineare Programme
- Branch-and-Reduce
- Color Coding







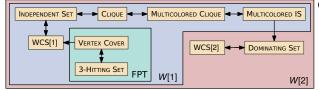
## **Baumweite**

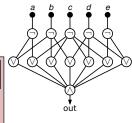
- dynamischeProgramme
- chordale & planare Graphen
- CourcellesTheorem



## **Untere Schranken**

- parametrisierte Reduktionen
- boolesche Schaltkreise und die W-Hierarchie
- ETH und SETH





# Beispiel: Ausgewogen und Billig



#### **Problem**

- Burger entsprechen nicht den offiziellen Ernährungsrichtlinien
- pro Gericht fehlen 0,5 mg Vitamin A, 15 mg Vit. C, 4 g Ballaststoffe
- Ziel: Behebung dieses Problems bei möglichst geringen Kosten
- nutze dazu Karotten, Weißkohl und Gewürzgurken

|                     | Karotten | Weißkohl | Gewürzgurken |                                                                                    |
|---------------------|----------|----------|--------------|------------------------------------------------------------------------------------|
| Vitamin A (mg/kg)   | 35       | 0,5      | 0,5          | and when Rabbid said, "Honey or con-                                               |
| Vitamin C (mg/kg)   | 60       | 300      | 10           | densed milk with your bread?" he was so excited that he said, "Both," and then, so |
| Ballaststoffe (g/kg | ) 30     | 20       | 10           | as not to seem greedy, he added, "But don't                                        |
| Preis (€kg)         | 0,75     | 0,5      | 0, 15        | bother about the bread, please." A. A. Milne, Winnie the Pooh                      |

# Lösung

 $x_1, x_2, x_3$  repräsentieren die Menge an Karotten, Kohl und Gurken

| minimiere:        | $0,75x_1+0,5x_2+0,15x_3$             |
|-------------------|--------------------------------------|
| Nebenbedingungen: | $35x_1 + 0, 5x_2 + 0, 5x_3 \ge 0, 5$ |
|                   | $60x_1 + 300x_2 + 10x_3 \ge 15$      |
|                   | $30x_1 + 20x_2 + 10x_3 \ge 4$        |
|                   | $x_i \geq 0$                         |

- optimale Lösung:
  - 9,5g Karotten
  - 38 g Kohl
  - 290 g Gurken

# **Lineare Programme - Trivia**



- wurden bereits in den 40er Jahren verwendet (und manuell gelöst)
- "Programm" ist ein militärischer Begriff für verschiedene Arten von Plänen (z.B. Versorgungsplan, Verlegungsplan für Truppen etc.)
- erstes großes LP, das mit dem Simplex-Algorithmus gelöst wurde
  - optimiere Kosten für ausgewogene Ernährung
  - 77 Variablen, 9 Nebenbedingungen
  - Simplex-Methode (per Hand in 1947): 120 Personentage
- etwas später (mittels Computer): George Dantzig versucht seine eigene Ernährung zu optimieren
  - erster Versuch: mehrere Liter Essig pro Tag
  - zweiter Versuch: 200 Brühwürfel pro Tag
  - ⇒ ein sinnvolles LP zu formulieren ist nicht immer trivial

# **Lineare Programme**



# Finde Reellwertige Belegung für Variablen $x_1, \ldots, x_n$

- lineare Funktion in  $x_1, ..., x_n$  wird maximiert (minimiert)
- eingeschränkt durch lineare Nebenbedingungen (Ungleichungen)

## Beispiel

maximiere:  $\frac{X_1 + X_2}{X_1 + X_2}$ 

sodass:  $x_1 \ge 0$ 

$$x_1 \ge 0$$

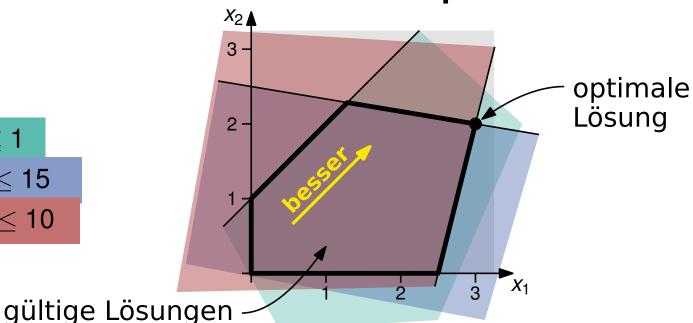
$$x_2 \geq 0$$

$$x_2 - x_1 \leq 1$$

$$x_1 + 6x_2 \le 15$$

$$4x_1 - x_2 \le 10$$

# **Geometrische Interpretation**



# Lösbarkeit

- LP ist unlösbar (infeasible), wenn es keine gültige Lösung gibt
- LP ist unbeschränkt (unbounded), wenn es beliebig gute gültige Lösungen gib (Optimierungsfunktion wird beliebig groß)

# Matrixschreibweise



max.: 
$$2x_1 + x_2$$
  $2x_1 + 1x_2$   $2x_1 + 1x_2$   $2x_1 + 1x_2$  sodass:  $x_1 \ge 0$   $1x_1 + 0x_2 \ge 0$   $0x_1 + 1x_2 \ge 0$   $0x_1 + 1x_2 \ge 0$   $0x_1 + 1x_2 \le 1$   $0x_1 + 1x_2 = 1$   $0x_$ 

## Matrizen und Vektoren

$$c = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ -1 & 1 \\ 1 & 6 \\ 4 & -1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 15 \\ 10 \end{pmatrix}$$
 finde  $x \in \mathbb{R}^2$  das  $c^T x$  maximiert mit  $Ax \le b$ 

- lacksquare allgemein:  $x, c \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$
- LPs sind häufig in dieser Form gegeben
- jedes LP lässt sich in diese Form bringen

# Beispiel: Eis für ein ganzes Jahr



# Probleme bei der Eisproduktion

- $\blacksquare$  der Eisverbrauch  $d_i$  hängt stark von dem aktuellen Monat i ab
- schwankende Produktionsmengen verursachen Kosten:
   50€ pro Tonne Veränderung von Monat i zu Monat i + 1
- Lagerung kostet Geld: 20€ pro Tonne Überschuss am Ende jeden Monats



# Formulierung als LP

- lacktriangle  $x_i$  repräsentiert die Produktionsmenge im Monat i
- lacktriangle  $s_i$  repräsentiert den Überschuss nach Monat i
- ausreichend Eis im Monat i:  $x_i + s_{i-1} \ge d_i$
- neuer Überschuss nach Monat i:  $s_i = x_i + s_{i-1} d_i \Leftrightarrow x_i + s_{i-1} s_i = d_i$
- minimiere Kosten: min.:  $20 \sum_{i=1}^{12} s_i + 50 \sum_{i=1}^{12} |x_i x_{i-1}|$
- Lösung mittels Hilfsvariable  $a_i$ :  $a_i \ge x_i x_{i-1}$   $a_i \ge x_{i-1} x_i$
- in minimaler Lösung ist  $a_i$  das Maximum aus  $x_i x_{i-1}$  und  $x_{i-1} x_i$

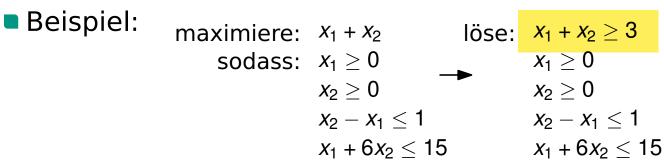
7

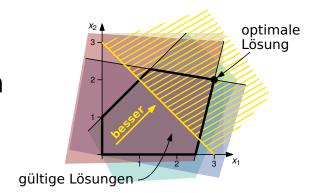
# Gültig vs. Optimal



# **Gültige Lösung** → **Optimum**

- gegeben: Algo, der eine gültige Lösung findet
- beschränke Optimierungsfunktion durch festen Wert → binäre Suche





# **Optimierung** → **gültige Lösung**

- gegeben: Algo, der gültige Lösung verbessert, bis sie optimal ist
- Idee: erlaube Verletzung der Ungleichungen; minimiere den Fehler

 $4x_1 - x_2 < 10$   $4x_1 - x_2 < 10$ 

Beispiel: 
$$l\ddot{o}se: x_1 + 3x_2 - 2x_3 \le -2$$
  
 $-2x_1 + x_2 + x_3 \le -5$   
 $x_1, x_2, x_3 > 0$ 

minimiere: 
$$\delta_1 + \delta_2$$
  
sodass:  $x_1 + 3x_2 - 2x_3 - \delta_1 \le -2$   
 $-2x_1 + x_2 + x_3 - \delta_2 \le -5$   
 $x_1, x_2, x_3, \delta_1, \delta_2 > 0$ 

Initiallösung:  $x_1, x_2, x_3 = 0, \delta_1 = 2, \delta_2 = 5$ 

# Algorithmen für LPs

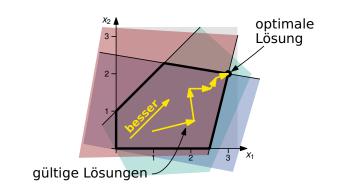


#### Effizient lösbar in der Praxis

- Simplex-Verfahren
  - verbessert Lösung schrittweise
  - läuft auf dem Rand des Polytops
- Innere-Punkte-Verfahren
  - verbessert Lösung schrittweise
  - läuft im Inneren des Polytop

## Effizient lösbar in der Theorie

- Innere-Punkte-Verfahren
  - polynomielle Laufzeit
- Ellipsoidmethode
  - findet eine gültige Lösung (wenn sie existiert)
  - kreist den Lösungsraum Schritt für Schritt weiter ein (mit Ellipsen)
  - polynomielle Laufzeit (aber langsam in der Praxis)
- Simplex-Verfahren
  - exponentielle worst-case Laufzeit
  - average-case: polynomiell
  - "smoothed analysis"



9

# Wie lang ist die Pause?



min.: 
$$P + a + u + s + e$$

sodass: 
$$P + e \ge 2$$
  
 $a - u \ge 2$   
 $2u + s \ge 1$ 

# **Optimale Lösung (Wert 5):**

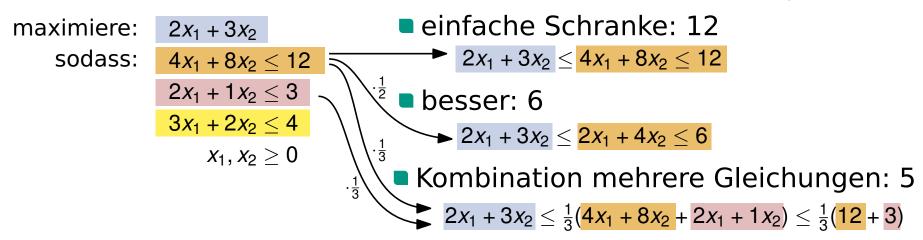
$$P = 1$$
,  $a = 2.5$ ,  $u = 0.5$ ,  $s = 0$ ,  $e = 1$ 

# Warum kann es keine bessere Lösung geben?

# **Oberer Schranken**



# Ziel: finde obere Schranken für die optimale Lösung



# Systematische Kombination mehrerer Gleichungen

- bestimme möglichst gute Faktoren  $y_1$ ,  $y_2$  und  $y_3$  für die Gleichungen
- wir erhalten:  $y_1(4x_1 + 8x_2) + y_2(2x_1 + 1x_2) + y_3(3x_1 + 2x_2) \le 12y_1 + 3y_2 + 4y_3$
- umgestellt:  $(4y_1 + 2y_2 + 3y_3)x_1 + (8y_1 + 1y_2 + 2y_3)x_2 \le 12y_1 + 3y_2 + 4y_3$   $\ge 2$  (damit es eine Schranke liefert)
- also: minimiere:  $12y_1 + 3y_2 + 4y_3$  sodass:  $4y_1 + 2y_2 + 3y_3 \ge 2$

$$8y_1 + 1y_2 + 2y_3 \ge 3$$
warum  $y_1, y_2, y_3 \ge 0$ ?
$$y_1, y_2, y_3 > 0$$

# **Duales Programm**

findet kleinste obere Schranke, die man so erhalten kann

# Matrixschreibweise



# **Primales Programm**

maximiere: 
$$2x_1 + 3x_2$$

sodass: 
$$4x_1 + 8x_2 \le 12$$

$$2x_1 + 1x_2 \le 3$$

$$3x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

# maximiere (2 3) mit $\begin{pmatrix} 4 & 8 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le \begin{pmatrix} 12 \\ 3 \\ 4 \end{pmatrix}$ und $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

allg.: maximiere  $c^T x$  mit  $Ax \leq b$  und  $x \geq 0$ 

# **Duales Programm**

minimiere: 
$$12y_1 + 3y_2 + 4y_3$$

sodass: 
$$4y_1 + 2y_2 + 3y_3 \ge 2$$

$$8y_1 + 1y_2 + 2y_3 \ge 3$$

$$y_1, y_2, y_3 \geq 0$$

minimiere (12 3 4) 
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

mit 
$$\begin{pmatrix} 4 & 2 & 3 \\ 8 & 1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \ge \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 und  $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ 

allg.: minimiere  $b^T y$  mit  $A^T y \geq c$  und  $y \geq 0$ 

## **Beachte**

- das duale vom dualen ist das primale Programm
- $\blacksquare$  die Forderung  $x \ge 0$  ist keine echte Einschränkung

Warum?

duales Programm liefert eine obere Schranke (untere bei Minimierung)

## **Dualitätssatz**



#### **Theorem**

Für die linearen Programme

maximiere 
$$c^T x$$
 mit  $Ax < b$  und  $x > 0$  und (P)

minimiere 
$$b^T y$$
 mit  $A^T y \ge c$  und  $y \ge 0$  (D)

gilt genau eine der folgenden Aussagen:

- Weder (P) noch (D) hat eine gültige Lösung.
- (P) ist unbeschränkt und (D) hat keine gültige Lösung.
- (P) hat keine gültige Lösung und (D) ist unbeschränkt.
- (P) und (D) sind gültig und beschränkt. Das Maximum von (P) ist dann gleich dem Minimum von (D).

#### **Beachte**

- das duale Programm liefert also eine perfekte obere Schranke
- das LP muss nicht in der obigen Form vorliegen

# **ILPs**

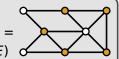


# **Ganzzahliges lineares Programm (ILP)**

- lacksquare genauso, wie LP, nur dass  $x\in\mathbb{Z}^n$  gesucht wird, statt  $x\in\mathbb{R}^n$
- macht das Problem NP-schwer

#### **Problem: Vertex Cover**

Finde ein minimales Vertex Cover in einem Graphen G = (V, E). (Knotenmenge  $V' \subseteq V$  mit  $e \cap V' \neq \emptyset$  für alle  $e \in E$ ) of



# **Beispiel: Vertex Cover**

- Variablen:  $x_v$  für jeden Knoten  $v \in V$
- Bedeutung:  $x_v = 1 \Leftrightarrow v \in V'$  (und  $x_v = 0$  sonst)

ILP:

minimiere:  $\sum_{v \in V} x_v$ 

sodass:  $0 \le x_v \le 1 \text{ für } v \in V \quad (\Leftrightarrow x_v \in \{0, 1\})$ 

 $x_u + x_v \ge 1$  für  $uv \in E$ 

# **LP-Relaxierung**

- fasst man ein ILP als LP auf, so spricht man von der LP-Relaxierung
- die LP-Lösung (und auch zug. duale Lösung) liefert Schranke für ILP (insbesondere nützlich bei Approximation)
- manchmal liefert die LP-Relaxierung sogar die optimale Lösung

## **Lenstras Theorem**



## **Theorem (ohne Beweis)**

Für  $A \in \mathbb{Z}^{m \times n}$  und  $b \in \mathbb{Z}^m$  kann die Frage, ob es ein  $x \in \mathbb{N}^n$  mit  $Ax \leq b$  gibt in  $O(n^{2,5n}|A,b|)$  entschieden werden, wobei |A,b| die Länge der Binärkodierung für die Instanz bezeichnet.

# **Folgerungen**

- ILP (als Entscheidungsproblem) mit Parameter n = Anzahl der Variablen, auch *Dimension* genannt, ist in FPT
- Anzahl der Ungleichungen geht nur polynomiell in Laufzeit ein
- Größe der Zahlen geht nur logarithmisch in Laufzeit ein

#### Metatheorem

Ein parametrisiertes Problem mit Parameter k, dass sich als ILP mit f(k) vielen Variablen darstellen lässt, ist in FPT.

# Zusammenfassung



# **Lineare Programme**

- einfache Modellierung anderer Probleme
- verschiedene Arten der Normalisierung möglich
- manchmal helfen zusätzliche Variablen
- geometrische Interpretation
- gültige Lösungen vs. Optimalität

#### **Dualität**

- systematische Berechnung oberer Schranken
- Dualitätssatz (ohne Beweis)

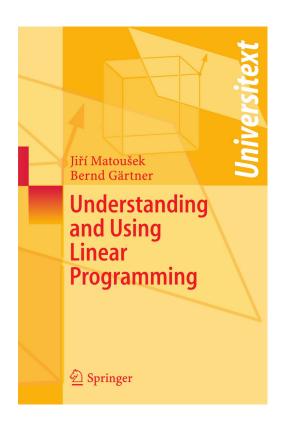
#### **ILP**

- kann viele NP-harte Probleme modellieren
- Metatheorem für FPT aus Satz von Lenstra (ohne Beweis)

## Literaturhinweise



[2019]



## **Anmerkungen**

- hervorragend geschrieben und schön kompakt
- aus dem Uninetz kostenlos abrufbar

link.springer.com/book/10.1007/978-3-540-30717-4

## Integer Programming in Parameterized Complexity: Three Miniatures

- Tomás Gavenciak, Dusan Knop, Martin Koutecký
- guter Überblick über ILPs in der parametrisierten Welt, mit vielen Referenzen

drops.dagstuhl.de/opus/volltexte/2019/10222/