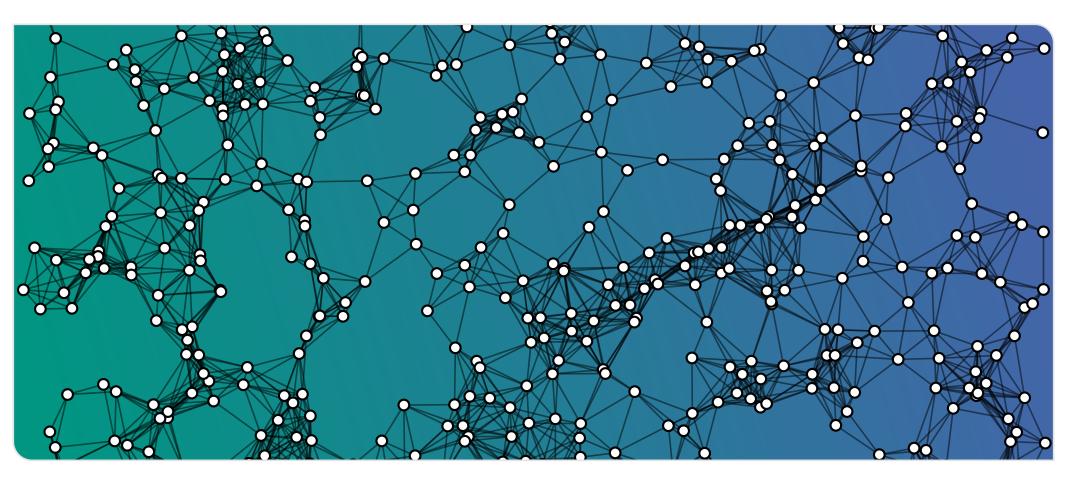


Parametrisierte Algorithmen

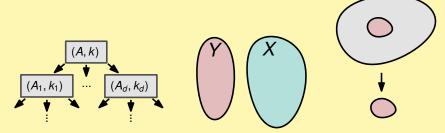
Iterative Kompression: Feedback Vertex Set



Inhalt

Basic Toolbox

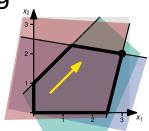
- beschränkte Suchbäume
- iterative Kompression
- Kernbildung

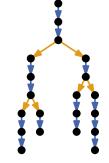


Erweiterte Toolbox

- lineare Programme
- Branch-and-Reduce
- Color Coding





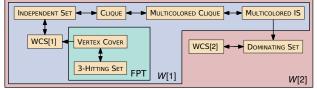


Baumweite

- dynamischeProgramme
- chordale & planare Graphen
- CourcellesTheorem

Untere Schranken

- parametrisierte Reduktionen
- boolesche Schaltkreise und die W-Hierarchie
- ETH und SETH

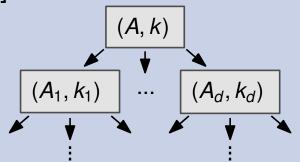


Wiederholung: Grundlegende Techniken

Beschränkter Suchbaum

(Bounded Search Tree)

- für eine Instanz (A, k) bilde, in Zeit n^c , $(A_1, k_1), ..., (A_d, k_d)$, sodass: (A, k) ist lösbar $\Leftrightarrow (A_i, k_i)$ ist lösbar für ein $i \in [1, d]$
- beschränke d durch eine Funktion $f_1(k)$
- beschränke Verzweigungstiefe durch $f_2(k)$ (Beispiel: Parameter wird in jedem Schritt kleiner)
- ⇒ FPT-Algo mit Laufzeit $O(f_1(k)^{f_2(k)}n^c)$



Kernbildung

(Kernelization)

- wende sukzessive sichere Reduktionsregeln an
- zeige: übrig bleibt ein Kern, dessen Größe nur von k abhängt

Iterative Kompression

(Iterative Compression)

- Kompressionsalgo: löst das Problem unter der Annahme eine etwas zu große Lösung zu kennen
- vergrößere Instanz schrittweise und halte initiale Lösung durch wiederholte Kompression klein

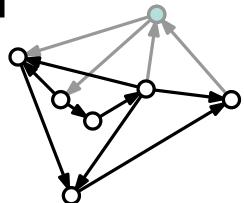
FEEDBACK VERTEX SET und Turniergraphen

Problem: FEEDBACK VERTEX SET

Gegeben sei ein gerichteter Graph G = (V, E) und ein Parameter k. Gibt es ein Feedback Vertex Set der Größe k?

 $(F \subseteq V \text{ ist ein } Feedback \ Vertex \ Set, \ wenn \ G - F \ azyklisch \ ist)$

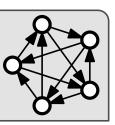
Beispiel



- nicht azyklisch
- 🖿 alle gerichteten Kreise enthalten 🔘
- { } ist Feedback Vertex Set der Größe 1

Definition

Ein G = (V, E) ist ein **Turniergraph**, wenn für je zwei unterschiedliche Knoten $u, v \in V$ entweder $uv \in E$ oder $vu \in E$.



Ziel

- FPT-Algorithmus für Feedback Vertex Set in Turniergraphen
- nutze dazu iterative Kompression

Kompressionsproblem

Problem: FEEDBACK VERTEX SET COMPRESSION

Gegeben sei ein gerichteter Graph G = (V, E), ein Parameter k und ein FVS der Größe k + 1. Gibt es ein FVS der Größe k?

Annahme

• wir können das Kompressionsproblem in $f(k) \cdot n^c$ Zeit lösen

LÖSE FEEDBACK VERTEX SET wie folgt Gegeben sei ein gerichteter Grau

• sei $V_i = \{v_1, ..., v_i\}$ und $G_i = G[V_i]$

Gegeben sei ein gerichteter Graph G = (V, E) und ein Parameter k. Gibt es ein Feedback Vertex Set der Größe k? $(F \subseteq V \text{ ist ein } Feedback \ Vertex \ Set, \ wenn \ G - F \ azyklisch \ ist)$

- lacktriangle Ziel: berechne FVS der Größe maximal k für G_i
 - falls $i \leq k$, dann ist V_i eine gültige Lösung
 - sonst, berechne rekursiv FVS F_{i-1} in G_{i-1} , sodass $|F_{i-1}| \leq k$
 - $F_{i-1} \cup \{v_i\}$ ist FVS der Größe k+1 für G_i
 - benutze Kompressionsalgo um FVS der Größe k zu bestimmen (gibt es keins, so können wir abbrechen, da es dann auch keins für G gibt)

Lemma

Wenn wir Feedback Vertex Set Compression in $f(k) \cdot n^c$ Zeit lösen können, dann können wir Feedback Vertex Set in $O(f(k) \cdot n^{c+1})$ Zeit lösen.

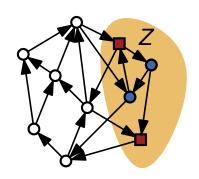
Disjunkte Lösungen

Problem: Feedback Vertex Set Compression

Gegeben sei ein gerichteter Graph G = (V, E), ein Parameter k und ein FVS Z der Größe k + 1. Gibt es ein FVS der Größe k?

Idee

- rate Teilmenge $X \subseteq Z$; $Y = Z \setminus X$
- gibt es FVS Z' mit $|Z'| \leq k$ und $Z' \cap Z = X$?
- äquivalent: gibt es FVS F in G X mit $|F| \le k |X|$ und $F \cap Y = \emptyset$?
- beachte: Y ist ein FVS der Größe k |X| + 1 in G X



Problem: DISJOINT FEEDBACK VERTEX SET

Gegeben sei ein gerichteter Graph G, ein Parameter k und ein FVS Y der Größe k + 1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Lemma

Wenn wir Disjoint FVS in $f(k) \cdot n^c$ Zeit lösen können, dann können wir FVS Compression in $O\left(\sum_{i=0}^k \binom{k+1}{i} f(k-i) \cdot n^c\right)$ Zeit lösen.

Einschub: spezielle Laufzeiten

Lemma

Wenn wir Disjoint FVS in $f(k) \cdot n^c$ Zeit lösen können, dann können wir FVS Compression in $O\left(\sum_{i=0}^k \binom{k+1}{i} f(k-i) \cdot n^c\right)$ Zeit lösen.

Disjoint-(Problem) in polynomieller Zeit lösbar (nc)

- es gilt: $\sum_{i=0}^{k} {k+1 \choose i} = 2^{k+1} 1$
- resultierende Laufzeit: $O\left(\sum_{i=0}^{k} \binom{k+1}{i} \cdot n^{c}\right) = O(2^{k} \cdot n^{c})$

DISJOINT-(PROBLEM) in $\alpha^k \cdot n^c$ lösbar

- es gilt: $\sum_{i=0}^{k} {k+1 \choose i} \alpha^{k-i} \leq (k+1) \cdot \sum_{i=0}^{k} {k \choose i} \alpha^{k-i}$
- resultierende Laufzeit: $O(k(1 + \alpha)^k \cdot n^c)$

Erinnerung: $(a+b)^k = \sum_{i=0}^k {k \choose i} a^i b^{k-i}$

Aktueller Stand

Problem: DISJOINT FEEDBACK VERTEX SET

Gegeben sei ein gerichteter Graph G, ein Parameter k und ein FVS Y der Größe k + 1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Lemma

Wenn wir Disjoint FVS in $f(k) \cdot n^c$ Zeit lösen können, dann können wir FVS Compression in $O\left(\sum_{i=0}^k \binom{k+1}{i} f(k-i) \cdot n^c\right)$ Zeit lösen.

Lemma

Wenn wir Feedback Vertex Set Compression in $f(k) \cdot n^c$ Zeit lösen können, dann können wir Feedback Vertex Set in $O(f(k) \cdot n^{c+1})$ Zeit lösen.

Ziel

- FPT-Algorithmus für Feedback Vertex Set in Turniergraphen
- ausreichend: FPT-Algorithmus für Dısjoınт FVS in Turniergraphen

Beachte

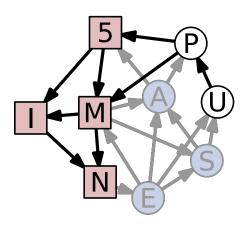
- bisher nicht genutzt, dass G ein Turniergraph ist
- jeder induzierte Teilgraph eines Turniergraphen ist ein Turniergraph

Finde ein minimales FVS ohne Y

Problem: DISJOINT FEEDBACK VERTEX SET

Gegeben sei ein gerichteter Graph G, ein Parameter k und ein FVS Y der Größe k + 1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

$$Y = \{ [5], [I], [M], [N] \}$$



Lösung

- A muss gewählt werden (wegen dem Dreieck 5MA)
- E muss gewählt werden (wegen dem Dreieck *MNE*)
- außerdem muss noch *P*, *U* oder *S* gewählt werden

DISJOINT FVS in Turniergraphen

Situation

- wähle Knoten aus X und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch

Beobachtung

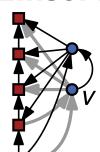
- X muss ebenfalls ein FVS sein (sonst: nein-Instanz) $\Rightarrow G[Y]$ ist azyklisch

azyklische Turniergraphen definieren totale Ordnungen

Idee

- sortiere möglichst viele Knoten aus X in die Ordnung auf Y ein
- daraus resultierende Ordnung auf X darf der durch G[X] gegebenen Ordnung nicht widersprechen

Einsortieren eines einzelnen Knotens

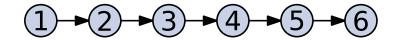


- wenn G[Y] + v zyklisch \Rightarrow lösche v und verringere k um 1
- sonst: eingehende/ausgehende Kanten sind konsekutiv
- Position von v eindeutig festgelegt
- Konflikt, wenn Nachfolger von v vor v einsortiert wird

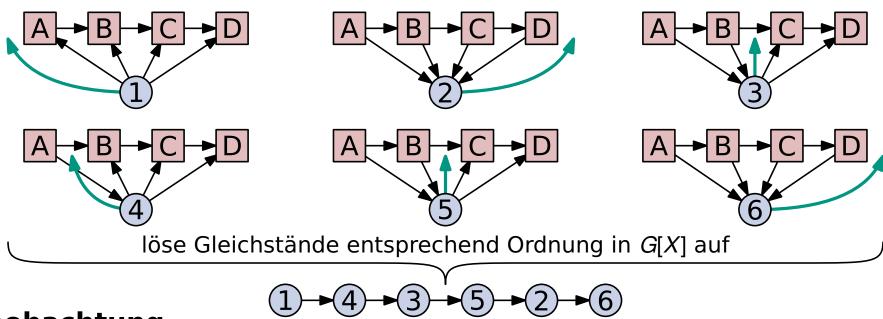
Zwei Ordnungen

Beispiel

Ordnung auf X gegeben durch G[X]



Ordnung auf X gegeben durch G[Y]



Beobachtung

■ F ist ein FVS \Leftrightarrow beide Ordnungen sind gleich auf $X \setminus F$

Ziel

■ finde möglichst große Teilmenge von X, für die beide Ordnungen übereinstimmen \rightarrow Longest Common Subsequence

LONGEST COMMON SUBSEQUENCE

Problem: Longest Common Subsequence

Gegeben seien zwei Folgen $a_1, ..., a_p$ und $b_1, ..., b_q$. Gesucht ist die längste Folge, die Teilfolge beider Folgen ist.

Beobachtung

- falls $a_p = b_q$
 - finde längste gem. Teilfolge von a_1, \dots, a_{p-1} und b_1, \dots, b_{q-1}
 - hänge $a_p = b_q$ an diese Teilfolge an
- falls $a_p \neq b_q$
 - \blacksquare lösche entweder a_p oder b_q
 - berechne längste gem. Teilfolgen von $a_1, ..., a_p$ und $b_1, ..., b_{q-1}$ sowie von $a_1, ..., a_{p-1}$ und $b_1, ..., b_q \rightarrow$ wähle Maximum
- das liefert ein dynamisches Programm mit Laufzeit O(pq)

Lemma

Longest Common Subsequence für zwei Folgen der Länge p bzw. q kann in O(pq) Zeit gelöst werden.

FEEDBACK VERTEX SET auf Turniergraphen

DISJOINT FEEDBACK VERTEX SET: $O(n^2)$

(via Longest Common Subsequence)

Lemma

Wenn wir Disjoint FVS in $f(k) \cdot n^c$ Zeit lösen können, dann können wir FVS Compression in $O\left(\sum_{i=0}^k \binom{k+1}{i} f(k-i) \cdot n^c\right)$ Zeit lösen.

FEEDBACK VERTEX SET COMPRESSION: $O(2^k \cdot n^2)$

Lemma

Wenn wir Feedback Vertex Set Compression in $f(k) \cdot n^c$ Zeit lösen können, dann können wir Feedback Vertex Set in $O(f(k) \cdot n^{c+1})$ Zeit lösen.

Theorem

FEEDBACK VERTEX SET kann auf Turniergraphen in $O(2^k \cdot n^3)$ Zeit gelöst werden.

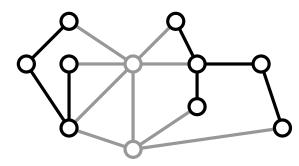
Nochmal Feedback Vertex Set

Problem: Feedback Vertex Set (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E) und ein Parameter k. Gibt es ein Feedback Vertex Set der Größe k?

($F \subseteq V$ ist ein *Feedback Vertex Set*, wenn G - F azyklisch ist)

Beispiel



- wir müssen alle Kreise erwischen
- mindestens zwei Knoten muss man löschen
- zwei reichen auch aus

Ziel: FPT-Algorithmus für Feedback Vertex Set

Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Liefert ein FPT-Algo für Disjoint FVS auch hier wieder einen FPT-Algo für FVS?

Ja!

Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

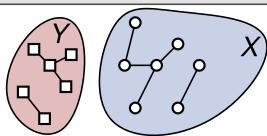
Situation

- wähle Knoten aus $X = V \setminus Y$ und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch
- lacksquare X ist ein FVS \Rightarrow G[Y] ist azyklisch (sonst gibt es keine Lösung)

- **b**etrachte einen Knoten $v \in X$
- lacktriangle Möglichkeit 1: wähle $v \in F$
- Möglichkeit 2: wähle v ∉ F

Möglichkeit 1

- v zu wählen verringert k um 1
- liefert potentiell einen Baum mit beschränkter Höhe



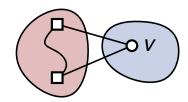
Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Situation

- \blacksquare wähle Knoten aus $X = V \setminus Y$ und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch
- $\blacksquare X$ ist ein FVS $\Rightarrow G[Y]$ ist azyklisch (sonst gibt es keine Lösung)

- **b**etrachte einen Knoten $v \in X$
- lacktriangle Möglichkeit 1: wähle $v \in F$
- Möglichkeit 2: wähle $v \notin F$



Möglichkeit 2

- Idee: nimm an, dass v wenigstens zwei Nachbarn in Y hat
- Fall 1: Nachbarn sind verbunden ⇒ v muss gewählt werden
 ⇒ Möglichkeit 2 kann ignoriert werden

Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Situation

- wähle Knoten aus $X = V \setminus Y$ und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch
- lacksquare X ist ein FVS \Rightarrow G[Y] ist azyklisch (sonst gibt es keine Lösung)

- **b**etrachte einen Knoten $v \in X$
- Möglichkeit 1: wähle $v \in F$
- Möglichkeit 2: wähle $v \notin F$

Möglichkeit 2

- Idee: nimm an, dass v wenigstens zwei Nachbarn in Y hat
- Fall 2: Nachbarn sind nicht verbunden $\Rightarrow v$ verringert die Anzahl der Komponenten in Y um 1 (das kann höchstens k Mal passieren)

Zeige: wir finden immer einen Knoten, der \geq zwei Nachbarn in Y hat

Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Situation

- wähle Knoten aus $X = V \setminus Y$ und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch
- **X** ist ein FVS \Rightarrow G[Y] ist azyklisch (sonst gibt es keine Lösung)

Zeige: wir finden immer einen Knoten, der \geq zwei Nachbarn in Y hat

lacktriangle wähle $v \in X$ so, dass v in X nur einen Nachbar hat

Warum geht das?

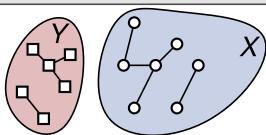
- Fall 1: v hat keinen Nachbar in Y
 - v liegt in G auf keinem Kreis und braucht daher nicht gewählt zu werden
 - Reduktionsregel: lösche *v*
- Fall 2: v hat nur einen Nachbarn in Y
 - v hat Grad 2 in $G \Rightarrow$ jeder Kreis durch v enthält seine Nachbarn
 - Reduktionsregel: ersetzte v durch eine Kante

Problem: DISJOINT FEEDBACK VERTEX SET (ungerichtet)

Gegeben sei ein ungerichteter Graph G = (V, E), ein Parameter k und ein FVS Y der Größe k+1. Gibt es ein FVS F der Größe k, sodass $F \cap Y = \emptyset$?

Situation

- wähle Knoten aus $X = V \setminus Y$ und keine aus Y
- Y ist ein FVS \Rightarrow G[X] ist azyklisch
- lacksquare X ist ein FVS \Rightarrow G[Y] ist azyklisch (sonst gibt es keine Lösung)



Verzweigungsregel

• betrachte einen Knoten $v \in X$

■ Möglichkeit 1: wähle $v \in F$

■ Möglichkeit 2: wähle v ∉ F

(mit mindestens zwei Nachbarn in Y)

(k wird kleiner)

(Anzahl Komponenten in Y wird kleiner)

Laufzeit

- Höhe des Baumes: maximal 2k
- $ightharpoonup \Rightarrow 4^k \cdot n^{O(1)}$

Theorem

FEEDBACK VERTEX SET (ungerichtet) kann in $5^k \cdot n^{O(1)}$ Zeit gelöst werden.

Zusammenfassung

Theorem

FEEDBACK VERTEX SET kann auf Turniergraphen in $O(2^k \cdot n^3)$ Zeit gelöst werden.

Theorem

FEEDBACK VERTEX SET (ungerichtet) kann in $5^k \cdot n^{O(1)}$ Zeit gelöst werden.

Technik: Iterative Kompression

- zeige: (Problem) lösbar ← (Problem)-Compression lösbar
- zeige: (Proвleм)-Сомресь соват соват соват соват соват соват править и править править и править п
- löse: Disjoint-(Problem) (das ist der schwierige Teil!)

Was macht Disjoint-(Problem) leichter als Problem?

- Lösung Y der Größe k + 1 ist bekannt
- neue Lösung muss disjunkt sein zu Y
- Komplement von Y ist eine Lösung