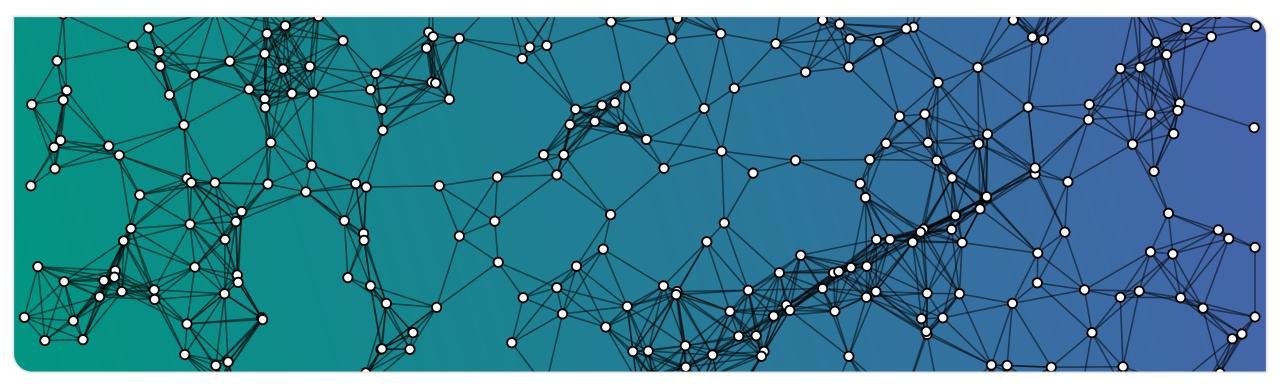


Algorithmen 1

Kürzeste Wege: negative Kanten und APSP



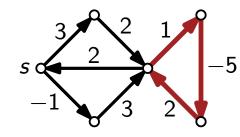
Kürzeste Pfade mit negativen Kantenlängen

Problem: Single-Source Shortest Path (SSSP)

Gegen einen gerichteten Graphen G = (V, E), Kantenlängen len: $E \to \mathbb{Z}$ und $s \in V$, berechne dist(s, t) für alle $t \in V$.

Negative Kreise

- Pfad kann mehrfach im Kreis läuft
- beliebig kleine Länge möglich (Distanzen $-\infty$?)



Möglichkeit 1

- erlaube nur einfache Pfade, die keine Knoten mehrfach besuchen
- Problem Hamilton-Pfad als Spezialfall

(vermutlich kein polynomieller Algorithmus möglich, siehe TGI nächstes Semester)

Möglichkeit 2

- erkenne negative Kreise
- Abbruch, wenn negativer Kreis gefunden

diese Variante betrachten wir im Folgenden (daher auch gerichtete Graphen)

Erinnerung: Dijkstras Algorithmus

Grundsätzliches Vorgehen

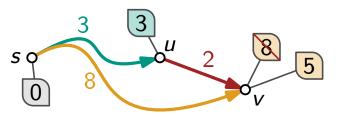
- speichere d[v] für jeden Knoten v: Länge des kürzesten bekannten sv-Pfades
- Relaxierung der Kante (u, v): wenn $\frac{d[v]}{d[v]} > \frac{d[u]}{d[u]} + \text{len}(u, v)$, setze $\frac{d[v]}{d[v]} = \frac{d[u]}{d[u]} + \text{len}(u, v)$

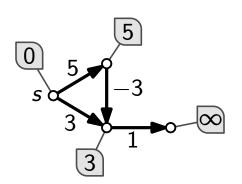
Reihenfolge der Relaxierungen bei Dijkstra

- Exploriere Knoten *u*: relaxiere alle ausgehenden Kanten von *u*
- \blacksquare exploriere Knoten aufsteigend nach d[u]
- Korrektheit: beim Explorieren gilt d[u] = dist(s, u)

Mit negativen Kantenlängen

- Problem: d[u] könnte später wegen negativem Pfad noch kleiner werden
- Hoffnung: einfach weiter relaxieren bis sich nichts mehr ändert führt zum Ziel





Algorithmus von Bellman und Ford

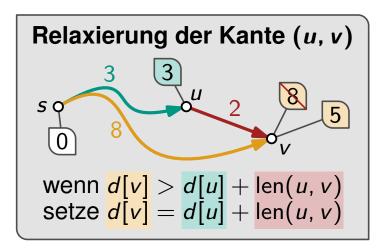
Grober Plan

- relaxiere jede Kante einmal
- iteriere, bis sich keines der d[v] mehr ändert

Problemfall negative Kreise

- Pfade werden immer kürzer, je länger man im Kreis läuft
- terminiert nicht

$\begin{array}{c|c} 4 & -4 & 0 \\ \hline 5 & 1 \\ \hline -2 & -3 & 1 \end{array}$



Ohne negative Kreise

- in jeder Iteration wird die Gesamtsumme der d[v] um mindestens 1 kleiner
- lacktriangle die Gesamtsumme der finalen Lösung ist von unten beschränkt ($eq -\infty$)
- also: Terminierung nach endlich vielen Iterationen

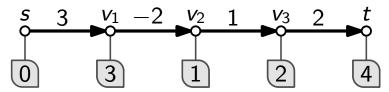
Ziel im Folgenden

- beweise obere Schranke für die Anzahl Iterationen
- Erkennung negativer Kreise

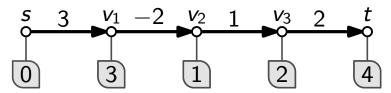
Wie viele Iterationen sind nötig?

Betrachte einen kürzesten st-Pfad

- Best-Case: wir relaxieren von vorne nach hinten
- sind nach einer Iteration schon fertig



- Problem: wir wissen vorher nicht, welche Reihenfolge gut ist
- Worst-Case: wir relaxieren von hinten nach vorne



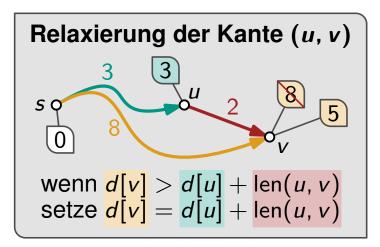
- nach i Iterationen: korrekte Distanz bis v_i
- kürzester st-Pfad besteht aus k Kanten \Rightarrow höchstens k Iterationen

$\Rightarrow n-1$ Iterationen sollten ausreichen

(werden wir im Folgenden noch formal beweisen)

Algorithmus

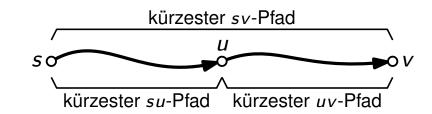
- relaxiere jede Kante einmal
- iteriere, bis sich kein d[v] ändert



Beweis: n-1 Iterationen genügen

Beobachtung

Teilpfade kürzester Pfade sind kürzeste Pfade.

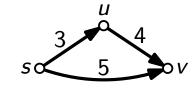


Begründung

- wenn es einen kürzeren su-Pfad gäbe
- dann wäre dieser zusammen mit dem uv-Pfad auch ein kürzerer sv-Pfad

Achtung: Umkehrung gilt nicht

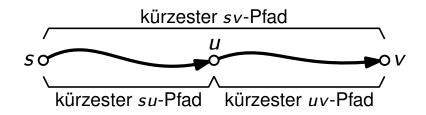
- kürzeste su- und uv-Pfade bilden zusammen nicht zwangsweise einen kürzesten sv-Pfad
- das gilt nur, wenn *u* auch auf dem kürzesten *sv*-Pfad liegt



Beweis: n-1 Iterationen genügen

Beobachtung

Teilpfade kürzester Pfade sind kürzeste Pfade.



Lemma

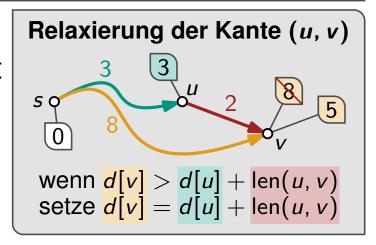
Wenn es einen kürzesten sv-Pfad gibt, der aus k Kanten besteht, dann gilt d[v] = dist(s, v) nach k Iterationen.

Beweis: Induktion über *k*

- k = 1: Kante (s, v) ist kürzester Pfad \Rightarrow eine Iteration genügt
- k > 1: betrachte Vorgänger u von v auf kürzestem sv-Pfad
- lacktriangle es gibt kürzesten su-Pfad mit k-1 Kanten
- I.V. \Rightarrow d[u] = dist(s, u) nach k 1 Iterationen
- Relaxierung von (u, v) in kter Iteration setzt d[v] = dist(s, v)

Algorithmus

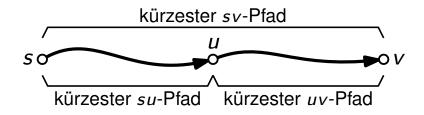
- relaxiere jede Kante einmal
- iteriere, bis sich kein d[v] ändert



Beweis: n-1 Iterationen genügen

Beobachtung

Teilpfade kürzester Pfade sind kürzeste Pfade.



Lemma

Wenn es einen kürzesten sv-Pfad gibt, der aus k Kanten besteht, dann gilt d[v] = dist(s, v) nach k Iterationen.

Beachte

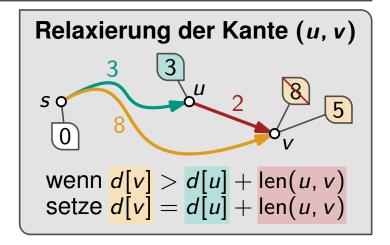
- lacktriangle kürzester Pfad hat höchstens *n* Knoten und n-1 Kanten
- (vorausgesetzt, wir haben keine negativen Kreise)

Theorem

Wenn der Graph keine negativen Kreise hat, so gilt nach n-1 Iterationen für alle Knoten v, dass d[v] = dist(s, v).

Algorithmus

- relaxiere jede Kante einmal
- \blacksquare iteriere, bis sich kein d[v] ändert



Erkennung von negativen Kreisen

Theorem

Wenn der Graph keine negativen Kreise hat, so gilt nach n-1 Iterationen für alle Knoten v, dass $d[v] = \operatorname{dist}(s, v)$.

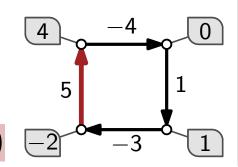
Situation: nach n-1 Iterationen

Wenn es keinen negativen Kreis gibt

- weitere Relaxierungen ändern nichts mehr
- für jede Kante $(u, v) \in E$ gilt: $\frac{d[v]}{d[v]} \leq \frac{d[u]}{d[v]} + \text{len}(u, v)$

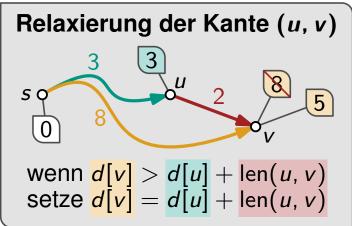
Wenn es negativen Kreis gibt

- man kann immer kürzere Pfade finden
- Relaxierungen haben weiterhin Effekt
- es gibt $(u, v) \in E$ mit: d[v] > d[u] + len(u, v)



Algorithmus

- relaxiere jede Kante einmal
- \blacksquare iteriere, bis sich kein d[v] ändert



Test auf negativen Kreis: überprüfe ob $d[v] \le d[u] + \text{len}(u, v)$ für alle $(u, v) \in E$

Pseudocode und Laufzeit

BellmanFord(*Graph G*, *Node s*)

```
d := Array of size n initialized with \infty
d[s] := 0
for n-1 iterations do
  for Edge(u, v) \in E do
     if d[v] > d[u] + len(u, v) then
        d[v] := d[u] + \operatorname{len}(u, v)
// test for negative cycle
for Edge(u, v) \in E do
  if d[v] > d[u] + len(u, v) then
     return negative cycle
return d
```

Laufzeit

- n mal über alle Kanten iterieren
- damit: $\Theta(n \cdot m)$

Abbrechen, wenn alle d[v] gleich bleiben

- in der Praxis sinnvoll
- hilft im Worst-Case nicht asymptotisch

Geschickte Wahl der Kantenreihenfolge

- kann konstante Faktoren sparen
- hilft im Worst-Case nicht asymptotisch

Weitere Anmerkungen zu Laufzeit

- kein asymptotisch besserer Algo bekannt
- sehr langsam verglichen mit $\Theta(n \log n + m)$ (Dijkstras Algo für nicht-negative Kantenlängen)

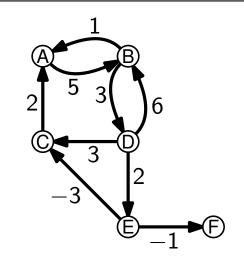
All Pair Shortest Path

Problem: All-Pair Shortest Path (APSP)

Gegen einen gerichteten Graphen G = (V, E) mit Kantenlängen len: $E \to \mathbb{Z}$. Berechne dist(s, t) für alle Knotenpaare $s, t \in V$.

Anmerkungen

- Distanzmatrix als Ausgabe
- Ausgabe ist bereits quadratisch groß
- wir nehmen erstmal an, dass es keine negativen Kreise gibt

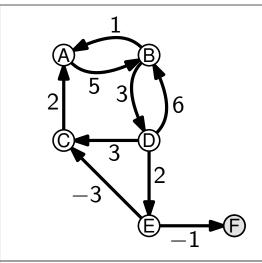


Α	0	5	7	8	10	9
В	1	0	2	3	5	4
С	2	7	0	10	12	11
D	1	6	-1	0	2	1
Ε	-1	4	-3	7	0	-1
F	∞	∞	∞	∞	∞	0
	Α	В	С	D	Е	F

Zwischenknoten

- Pfad $\langle v_1, v_2, \ldots, v_k \rangle$
- v_1 ist Startknoten, v_k Endknoten
- alle anderen sind Zwischenknoten

Eingeschränkte Menge an Zwischenknoten



ohne Zwischenknoten

Α	0	5	∞	∞	∞	∞
В	1	0	∞	3	∞	∞
С	2	∞	0	∞	∞	∞
D	∞	6	3	0	2	∞
Е	∞	∞	-3	∞	0	-1
F	∞	∞	∞	∞	∞	0
,	A	В	С	D	Е	F

Zwischenknoten: {A}

Α	0	5	∞	∞	∞	∞
В	1	0	∞	3	∞	∞
С	2	7	0	∞	∞	∞
D	∞	6	3	0	2	∞
Е	∞	∞	-3	∞	0	-1
F	∞	∞	∞	∞	∞	0
,	Α	В	С	D	Е	F

Zwischenknoten: {A, B}

Α	0	5	∞	8	∞	∞
В	1	0	∞	3	∞	∞
С	2	7	0	10	∞	∞
D	7	6	3	0	2	∞
Ε	∞	∞	-3	∞	0	-1
F	∞	∞	∞	∞	∞	0
,	Α	В	С	D	Е	F

Zwischenknoten: {A, B, C}

					-		_
Α	0	5	∞	8	∞	∞	
В	1	0	∞	3	∞	∞	
С	2	7	0	10	∞	∞	
D	5	6	3	0	2	∞	
Е	-1	4	-3	7	0	-1	
F	∞	∞	∞	∞	∞	0	
,	Α	В	C	D	E	F	,

Zwischenknoten: {A, B, C, D}

Α	0	5	11	8	10	∞
В	1	0	6	3	5	∞
С	2	7	0	10	12	∞
D	5	6	3	0	2	∞
Ε	-1	4	-3	7	0	-1
F	∞	∞	∞	∞	∞	0
,	Α	В	С	D	E	F

Zwischenknoten: {A, B, C, D, E}

Α	0	5	7	8	10	9
В	1	0	2	3	5	4
С	2	7	0	10	12	11
D	1	6	-1	0	2	1
Ε	-1	4	-3	7	0	-1
F	∞	∞	∞	∞	∞	0
,	Α	В	С	D	Е	F

alle Zwischenknoten

	Α	B	C	D	F	F
F	∞	00	∞	00	∞	0
Ε	-1	4	-3	7	0	-1
D	1	6	-1	0	2	1
С	2	7	0	10	12	11
В	1	0	2	3	5	4
Α	0	5	7	8	10	9

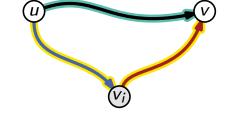
Umsetzung als Algorithmus

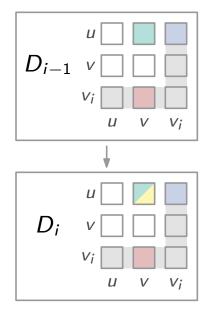
Teillösungen für die Distanzen

- ordne Knotenmenge $V = \{v_1, \dots, v_n\}$
- D_i : Distanzmatrix bezüglich Zwischenknoten aus $V_i = \{v_1, \ldots, v_i\} \rightarrow$ Endergebnis D_n
- $D_i[u][v]$: Länge eines kürzesten uv-Pfads der nur Zwischenknoten aus V_i verwendet

Algorithmus von Floyd und Warshall

- $lackbox{ } D_0$ ist leicht zu berechnen: quasi die Adjazenzmatrix
- berechne iterativ D_i aus D_{i-1}
 - v_i ist neuer erlaubter Zwischenknoten
 - Fall 1: kürzester uv-Pfad enthält v_i $\Rightarrow D_i[u][v] = D_{i-1}[u][v_i] + D_{i-1}[v_i][v]$
 - Fall 2: kürzester uv-Pfad enthält v_i nicht $\Rightarrow D_i[u][v] = D_{i-1}[u][v]$





• Entscheidung für den richtigen Fall: teste ob $D_{i-1}[u][v_i] + D_{i-1}[v_i][v] < D_{i-1}[u][v]$

Anmerkungen und Pseudocode

Beachte

- Korrektheit folgt direkt induktiv (mit der Fallunterscheidung der vorherigen Folie)
- Änderungen in Iteration i machen für diese Iteration nichts kaputt
 → eine Matrix für alle Di genügt
- Betrachtung aller Paare: für u = v, $u = v_i$ oder $v_i = v$ passiert nichts (Ausnahme: es gibt negativen Kreis \rightarrow stellt man so fest)

Laufzeit

- n Iterationen
- *n*² Knotenpaare pro Iteration
- $\Theta(n^3)$

FloydWarshall(Graph G)

```
D := n \times n \; Matrix \; \text{initialized with} \; \infty

for (u, v) \in E \; \text{do} \; D[u][v] := \text{len}(u, v)

for v \in V \; \text{do} \; D[v][v] := 0

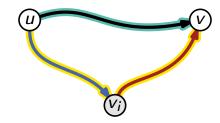
for i := 1, \ldots, n \; \text{do}

// compute D_i \; \text{from} \; D_{i-1}

for all pairs of nodes (u, v) \in V \times V \; \text{do}

| D[u][v] := \min(D[u][v], D[u][v_i] + D[v_i][v])

return D
```



Dynamische Programmierung (DP)

Algorithmische Technik

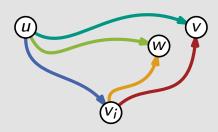
- definiere Teillösungen
- Berechnung größerer aus kleinen Teillösungen
- Wiederverwendung berechneter Teillösungen

Anmerkung

- Berechnung ist meist eine Rekurrenz
- Korrektheit folgt meist induktiv
- rekursive Umsetzung: sehr teuer (meist exponentiell), da keine Wiederverwendung von Teillösungen

Beispiel: Floyd-Warshall

- $D_i[u][v]$: Distanz bzgl. Zwischenknoten aus $V_i = \{v_1, \ldots, v_i\}$
- $D_{i}[u][v] = \min(D_{i-1}[u][v], \\ D_{i-1}[u][v_{i}] + D_{i-1}[v_{i}][v])$
- $D_{i}[u][w] = \min(\frac{D_{i-1}[u][w]}{D_{i-1}[u][v_{i}] + D_{i-1}[v_{i}][w]})$



Hauptschwierigkeit: Definition geeigneter Teillösungen

- Welche Infos sind essentiell für eine Teillösung?
- X_i aus X_{i-1} berechnen ist schwierig, aber es geht, wenn ich zusätzlich Y_{i-1} kenne
- jetzt muss ich aber auch Y_i berechnen (aus X_{i-1} und Y_{i-1})

Dynamische Programmierung (DP) – Hinweise

Vergleich mit Teile und Herrsche

ähnlich: auch hier werden Teillösungen kombiniert

(typischerweise disjunkte Teilprobleme)

Besonderheit beim DP: Wiederverwendung von Teilergebnissen

(Teilprobleme nicht disjunkt)

Häufiger Fehler: Fokus auf Rekurrenz statt Definition von Teillösungen

- Knackpunkt: geeignete Definition der Teillösungen
- Aufschrieb eines DP: sollte immer mit Definition der Teillösungen beginnen
- Rekurrenz ist dann oft mehr oder weniger offensichtlich

Teillösungen iterativ aufbauen

- meist wird irgendetwas Schritt für Schritt vergrößert
- Floyd-Warshall: Menge der Zwischenknoten V_i
- Sprechweise: DP über Menge der Zwischenknoten (so, wie man von einer Induktion über i spricht)

Mentaler Shortcut: Wenn man mit DPs vertraut ist, dann kommt das einer vollständigen Beschreibung des Floyd-Warshall Algos gleich.

Zusammenfassung

SSSP mit negativen Kanten

- Bellman–Ford: $\Theta(nm)$
- Erkennung negativer Kreise
- ist im Prinzip ein DP über die Anzahl Kanten auf dem kürzesten Weg

APSP

- Floyd–Warshall: $\Theta(n^3)$
- DP über die Menge der Zwischenknoten $V_i = \{v_1, \ldots, v_i\}$

Dynamsiche Programmierung (DP)

- wichtige algorithmische Technik
- wir werden später noch weitere DPs kennenlernen

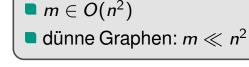
Bonus: APSP – Geht es besser als $\Theta(n^3)$?

(Möglicherweise) bessere Algorithmen

- *n* mal Dijkstra $\rightarrow \Theta(n^2 \log n + nm)$
- Pettie, Ramachandran: $\Theta(nm \log \alpha(m, n))$ $(\alpha(m, n))$: sehr langsam wachsende inverse Ackermannfunktion)
- Thorup: $\Theta(nm)$
- Williams: $n^3/2^{\Omega(\sqrt{\log n})}$

nicht-negative Kantenlängen

natürliche Kantenlängen



Beachte

- Johnson: Bellman–Ford + Längenanpassung + n Mal Dijkstra $\rightarrow \Theta(n^2 \log n + nm)$
- \blacksquare substantiell besser als n^3 bzw. nm geht vermutlich nicht

(Stichwort: Fine-Grained Complexity)

Warum lernen wir hier nur den langsamen Floyd-Warshall kennen?

- schön einfach
- Algorithmus der Wahl für dichte Graphen
- algorithmische Technik: dynamische Programmierung

Bild: Grumpy cat line art / XXspiritwolf2000XX / Creative Commons