

Seminar Algorithmentechnik

Thomas Bläsius, Adrian Feilhauer, Sascha Gritzbach, Paul Jungeblut Torsten Ueckerdt, Marcus Wilhelm, Matthias Wolf, Tim Zeitz

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Practice writing

- scientific writing
- understandable but formally correct proofs
- concise presentation

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Practice writing

- scientific writing
- understandable but formally correct proofs
- concise presentation

Practice reviewing

- spot mistakes in other's reports
- give constructive feedback

	amount of work
Contentlearn something about recent research in algorithms	10h
see some interesting proofs and proof techniques	
Practice reading	
reading mathy scientific texts	40h
searching for additional literature/material	
Practice presenting	
teaching proofs to others	
making complicated things easy to understand	30h
engaging and fun presentation	
improving tool skills	
Practice writing	
scientific writing	
understandable but formally correct proofs	30h
concise presentation	
Practice reviewing	10h
spot mistakes in other's reports	
give constructive feedback	120h≘4LP

Schedule

22.10.	Introduction
29.10.	[lpe tutorial]
5.11.	
12.11.	Short presentations (5 min)
19.11.	
26.11.	Your Presentations (35+5 min)
3.12.	
10.12.	
17.12.	
7.1.	
• • •	

28.1.	First submission of written document
18.2.	Submission of reviews
18.3.	Final submission of written document

Course of Action

Today

select a topic

Course of Action

Today

select a topic

In three weeks (12.11.)

- short presentations (5 min)
 - advertise main presentation
 - motivate topic and intuitively explain highlights

Course of Action

Today

select a topic

In three weeks (12.11.)

- short presentations (5 min)
 - advertise main presentation
 - motivate topic and intuitively explain highlights

Two weeks before your presentation (at last)

- you should have
 - read and understood your chapter in detail
 - performed a literature review
 - thought about what to present and how to present it

One week before your presentation (or earlier)

- you should have
 - finished your slides for the presentation
 - send them to your advisor
- meet your advisor to discuss you slides

One week before your presentation (or earlier)

- you should have
 - finished your slides for the presentation
 - send them to your advisor
- meet your advisor to discuss you slides

First document submission deadline (28.1.)

- submit your document (at most 10 pages)
- receive two documents to review

One week before your presentation (or earlier)

- you should have
 - finished your slides for the presentation
 - send them to your advisor
- meet your advisor to discuss you slides

First document submission deadline (28.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (18.2.)

submit your reviews, receive other's reviews

One week before your presentation (or earlier)

- you should have
 - finished your slides for the presentation
 - send them to your advisor
- meet your advisor to discuss you slides

First document submission deadline (28.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (18.2.)

submit your reviews, receive other's reviews

Final document submission deadline (18.3.)

submit your final revised document

One week before your presentation (or earlier)

- you should have
 - finished your slides for the presentation
 - send them to your advisor
- meet your advisor to discuss you slides

First document submission deadline (28.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (18.2.)

submit your reviews, receive other's reviews

Final document submission deadline (18.3.)

submit your final revised document

Grading

- Quality of main presentation
- Quality of final written document

Title: Finding Cliques in Social Networks: A New Distribution-Free Model

Definition: (v, w) bad pair if $|N(v) \cap N(w)| > c$

Title: Finding Cliques in Social Networks: A New Distribution-Free Model

Definition: (v, w) bad pair if $|N(v) \cap N(w)| > c$

G c-closed: no bad pair

Title: Finding Cliques in Social Networks: A New Distribution-Free Model

Definition: (v, w) bad pair if $|N(v) \cap N(w)| > c$

G c-closed: no bad pair

G weakly *c*-closed: ordering v_1, \ldots, v_n s.t. v_i forms no bad pair in $G[v_i, \ldots, v_n]$

Title: Finding Cliques in Social Networks: A New Distribution-Free Model

Definition: (v, w) bad pair if $|N(v) \cap N(w)| > c$

G c-closed: no bad pair

G weakly *c*-closed: ordering v_1, \ldots, v_n s.t. v_i forms no bad pair in $G[v_i, \ldots, v_n]$

Result: FPT algorithm with parameter c to enumerate all maximal cliques

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

 $tw \approx size of separators$

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

Title: Finding Optimal Triangulations Parameterized by Edge Clique Cover

Context: treewidth algorithms using minimal separators and potential maximal cliques

Contribution: upper bounds for minimal separators and potential maximal cliques using edge clique cover

Topic 3: Treewidth approximation

Title: A Single-Exponential Time 2-Approximation Algorithm for Treewidth

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

Contribution:

- first known 2-approximation with running time $2^{O(k)} \cdot n$
- relatively simple idea:

Lemma: Assume $tw(G) \le k$. If $|W| \ge 2k + 3$, then W is splittable.

Topic 4: Flows Over Time

Problem:

- Route flow from s to t
- Traversing edges takes time

Results:

- Temporally repeated flows
- Generalized cut-flow duality

Problem:

- Generalized stable marriage problem
- Matchings under vertex preferences
- No better matching for any vertex

Results:

- Stable allocations and flows exist
- Integral capacities → integral flow

Topic 6: (Single-Source) Unsplittable Flow Problem

Finde Fluss-Pfade von t_i zu s (unter Kapazitätsbedingungen).

→ Verschiedene Zielfunktionen

Als Seminarthema:

Geeignete Auswahl von Approximationsalgorithmen und Techniken aus [0].

[0] Kleinberg, Jon M. "Single-source unsplittable flow." Processings of 37th Conference on Foundations of Computer Science. IEEE, 1996.

- ⊳ polygonal region P
- ⊳ place k guards surveying P
- ⊳ minimize *k*

- guards at irrational points in every optimal solution

- ⊳ polygonal region P
- ⊳ place k guards surveying P
- ⊳ minimize *k*

- p guards at irrational points in every optimal solution

- \triangleright finite set X, family of subsets \mathcal{R}
- \triangleright *Y* shattered: subsets captured by \mathcal{R}
- \triangleright VC-dim(\mathcal{R}) = max |Y|, Y shattered
- $\triangleright \mathcal{R}^{\cup k}$, $\mathcal{R}^{\cap k}$ k-fold union/intersection

- \triangleright construction of points in \mathbb{R}^p and half-spaces
- $ho \ \mathsf{VC} ext{-dim}(\mathcal{R}^{\cup k}) = \Omega\left(\mathsf{VC} ext{-dim}(\mathcal{R})\cdot k\log k\right)$

- \triangleright finite set X, family of subsets \mathcal{R}
- \triangleright *Y* shattered: subsets captured by \mathcal{R}
- \triangleright VC-dim(\mathcal{R}) = max |Y|, Y shattered
- $\triangleright \mathcal{R}^{\cup k}$, $\mathcal{R}^{\cap k}$ k-fold union/intersection

- \triangleright construction of points in \mathbb{R}^p and half-spaces
- $ho \ \mathsf{VC} ext{-dim}(\mathcal{R}^{\cup k}) = \Omega\left(\mathsf{VC} ext{-dim}(\mathcal{R})\cdot k\log k\right)$

Topic 9: The Utility of Untangling

setting

- ▷ straightline drawing D with crossings
- > move few vertices to get planar
- $\triangleright \operatorname{fix}(D) = |V| \min \# \operatorname{moves}$

- □ upper and lower bounds
- applications:univ. point sets, column planarity

Topic 9: The Utility of Untangling

setting

- ▷ straightline drawing D with crossings
- > move few vertices to get planar
- $\triangleright \operatorname{fix}(D) = |V| \min \# \operatorname{moves}$

- □ upper and lower bounds
- □ applications: univ. point sets, column planarity

Topic 10: Dynamic Algorithms for Graph Coloring

setting

- dynamic graph with edge insertions and edge deletions
- maintain proper vertex coloring
- > minimize # colors and update time

- \triangleright random $\Delta + 1$ colors, $O(\log \Delta)$ updates
- \triangleright determ. $\Delta + o(\Delta)$ colors, $O(polylog\Delta)$ updates

Topic 10: Dynamic Algorithms for Graph Coloring

setting

- by dynamic graph with edge insertions and edge deletions
- maintain proper vertex coloring
- > minimize # colors and update time

- \triangleright random $\Delta + 1$ colors, $O(\log \Delta)$ updates
- \triangleright determ. $\Delta + o(\Delta)$ colors, $O(polylog\Delta)$ updates

Topics: overview

Reading

• first look through the paper, then read thoroughly

- first look through the paper, then read thoroughly
- establish overview of related work

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know why things are done the way they are done?

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know why things are done the way they are done?

Presentation

Timing: roughly 35 min talk + 5 min discussion

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know why things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know why things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content
 - Target group: CS graduate students

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know why things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content
 - Target group: CS graduate students
- Slides: we recommend to use lpe

More comments

Presentation

Is the introduction gentle, smooth and easy to follow?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?
- Can some arguments be simplified?

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?
- Can some arguments be simplified?
- Is your presentation fun? Interactive?

Written Document

Structure:

- Structure:
 - short and clear abstract
 - introduction, related work, (applications)
 - selected topics in detail
 - summary / conclusion
 - complete references (BibTeX)

- Structure:
 - short and clear abstract
 - introduction, related work, (applications)
 - selected topics in detail
 - summary / conclusion
 - complete references (BibTeX)
- General writing advice:
 - do not copy text: express in your own words
 - avoid too long sentences, paragraphs
 - use pictures
 - cite and specify all sources correctly
 - check grammar and spelling!

- Structure:
 - short and clear abstract
 - introduction, related work, (applications)
 - selected topics in detail
 - summary / conclusion
 - complete references (BibTeX)
- General writing advice:
 - do not copy text: express in your own words
 - avoid too long sentences, paragraphs
 - use pictures
 - cite and specify all sources correctly
 - check grammar and spelling!

- regularly read what you just wrote
 - check correctnes, clarity
 - what is the purpose of a sentence / paragraph?
- should sentences / paragraphs be rearranged?

Even more comments

Mutual Reviews

- written statement (form provided)
- optionally: annotations
- Structure:
 - short summary of the content
 - strengths and weaknesses of the work
 - review of the text (comprehensibility, structure, accuracy, language, topic coverage, ambiguities, ...)
- be constructive: detailed comments and correction instructions
- as detailed as you would like to get review for your work
- objective and fair

Organization

Website

- https://scale.iti.kit.edu/teaching/2021ws/seminar
- you find these slides there
- other information like dates of the talks
- slides of all participants

Next week: Ipe tutorial

- install ipe and make sure it works
 - get and install ipe: ipe.otfried.org
 - make sure LATEX is installed
 - open Ipe and check whether LaTEX works: press "\ell"; click somewhere in the drawing area; insert some text; click Ok; check whether it nicely rendered your text (it might be necessary to press "Ctrl+\ell" to make sure it renders correctly)
- bring a laptop and a mouse