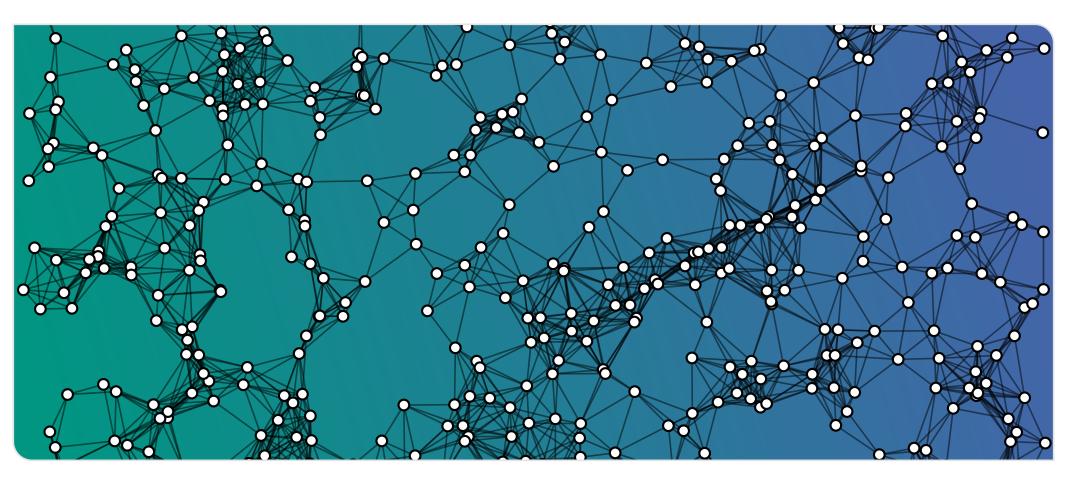


Parametrisierte Algorithmen

Branch and Reduce: Above Lower Bound

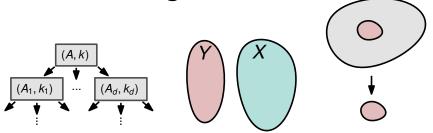


Inhalt

Basic Toolbox

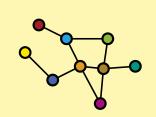
- beschränkte Suchbäume
- iterative Kompression

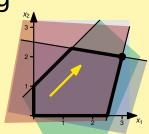
Kernbildung

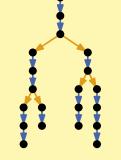


Erweiterte Toolbox

- lineare Programme
- Branch-and-Reduce
- Color Coding





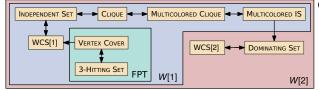


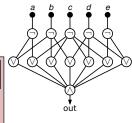
Baumweite

- dynamischeProgramme
- chordale & planare Graphen
- CourcellesTheorem

Untere Schranken

- parametrisierte Reduktionen
- boolesche Schaltkreise und die W-Hierarchie
- ETH und SETH





Wiederholung: Kernbildung

Reduktionsregel

■ löse die LP-Relaxierung $\rightarrow (x_v)_{v \in V}$

• falls $\sum_{v \in V} x_v > k \Rightarrow \text{NEIN-Instanz}$

minimiere: $\sum_{v \in V} X_v$

sodass: $0 \le x_v \le 1 \text{ für } v \in V$

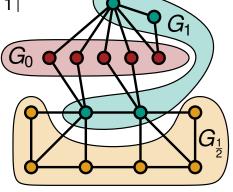
 $x_u + x_v \ge 1$ für $uv \in E$

■ sonst wähle V_1 , lösche $V_0 \cup V_1$ und verringere k um $|V_1|$

Lemma: Die Reduktionsregel ist sicher.

Theorem

Für Vertex Cover kann ein Kern mit maximal 2k Knoten in O(??) Zeit berechnet werden.



Beweis

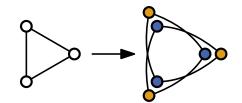
- wir können annehmen, dass $\sum_{v \in V} x_v \le k$ (sonst: triviale Nein-Instanz)
- $\blacksquare \Rightarrow \frac{1}{2} |V_{\frac{1}{2}}| \leq \sum_{v \in V} x_v \leq k \Rightarrow |V_{\frac{1}{2}}| \leq 2k$

Laufzeit: dominiert durch lösen des LPs

Nachtrag: Verbesserte Laufzeit

Konstruktion einen Hilfsgraphen

- spalte jeden Knoten v auf in v_q (gelb) und v_b (blau)
- übernehme Kanten aber nur zwischen gelb und blau
- lacktriangle resultierender bipartiter Graph: H mit Knotenmenge $V_q \cup V_b$



minimiere: $\sum_{v \in V} X_v$ sodass: $0 \le x_v \le 1$ für $v \in V$

 $x_u + x_v \ge 1$ für $uv \in E$

Behauptung

■ VC S in H liefert Lösung fürs LP mit $x_v \in \{0, \frac{1}{2}, 1\}$ und umgekehrt, sodass $\frac{1}{2}|S| = \sum X_V$

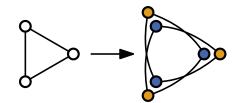
VC → **LP-Lösung**

- für VC S in H: setze $x_v = \frac{1}{2} |\{v_g, v_b\} \cap S|$ für alle $v \in V$
- klar: $\frac{1}{2}|S| = \sum x_v$
- außerdem: $\{u,v\} \in E$ impliziert $|\{u_g,u_b,v_g,v_b\} \cap S| \geq 2 \Rightarrow x_u + x_v \geq 1$

Nachtrag: Verbesserte Laufzeit

Konstruktion einen Hilfsgraphen

- spalte jeden Knoten v auf in v_a (gelb) und v_b (blau)
- übernehme Kanten aber nur zwischen gelb und blau
- lacktriangle resultierender bipartiter Graph: H mit Knotenmenge $V_q \cup V_b$



minimiere: $\sum_{v \in V} x_v$ sodass: $0 \le x_v \le 1$ für $v \in V$

 $x_{u} + x_{v} > 1$ für $uv \in E$

Behauptung

■ VC S in H liefert Lösung fürs LP mit $x_v \in \{0, \frac{1}{2}, 1\}$ und umgekehrt, sodass $\frac{1}{2}|S| = \sum X_V$

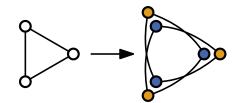
LP-Lösung → **VC**

- für LP-Lösung $(x_v)_{v \in V}$ definiere $S: v_g \in S \Leftrightarrow x_v \ge \frac{1}{2}$ und $v_b \in S \Leftrightarrow x_v = 1$
- klar: $\frac{1}{2}|S| = \sum x_{v}$
- \blacksquare außerdem: $x_u + x_v \ge 1$ sorgt dafür, dass jede Kante abgedeckt wird

Nachtrag: Verbesserte Laufzeit

Konstruktion einen Hilfsgraphen

- spalte jeden Knoten v auf in v_g (gelb) und v_b (blau)
- übernehme Kanten aber nur zwischen gelb und blau
- lacktriangle resultierender bipartiter Graph: H mit Knotenmenge $V_g \cup V_b$



minimiere: $\sum_{v \in V} X_v$

sodass: $0 \le x_v \le 1 \text{ für } v \in V$

 $x_u + x_v \ge 1$ für $uv \in E$

Behauptung

■ VC S in H liefert Lösung fürs LP mit $x_v \in \{0, \frac{1}{2}, 1\}$ und umgekehrt, sodass $\frac{1}{2}|S| = \sum_{v \in V} x_v$

Lemma

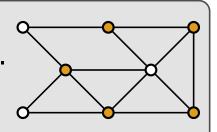
Das LP kann gelöst werden, indem man ein VC in einem bipartiten Graphen ausrechnet. Dies geht in $O(m\sqrt{n})$.

Laufzeit: siehe Übung

Wiederholung: Beschränkter Suchbaum

Problem: Vertex Cover

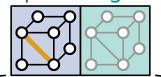
Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe k? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



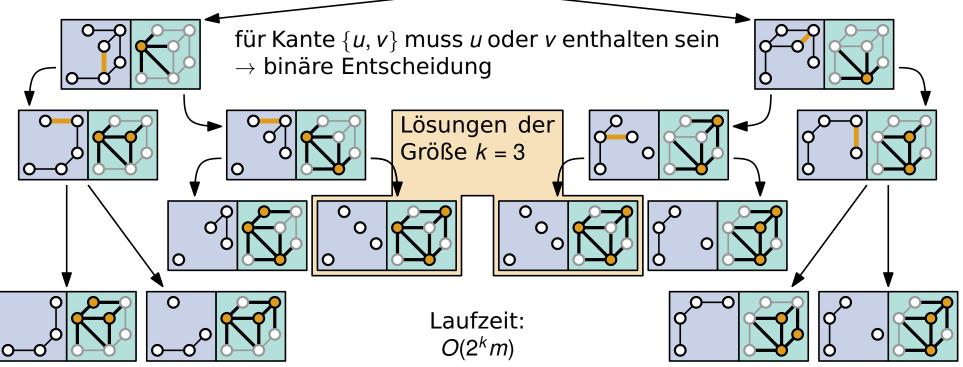
noch zu überdeckender Teilgraph

gewählte Knoten & überdeckte Kanten

Jede Kante muss noch überdeckt werden → wähle eine beliebige



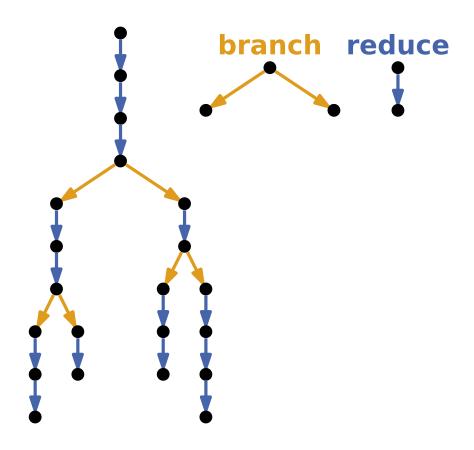
Gibt es ein Vertex Cover mit maximal k = 3 Knoten?



Kernbildung und Suchbäume

Branch-and-Reduce

- wende Reduktionsregeln so lange wie möglich an
- keine Regel anwendbar: verzweige einmal



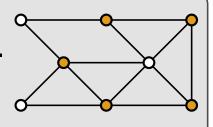
Untere Schranken und Parameter

Bessere Parameter als Lösungsgröße

- lacktriangle sei $\ell(G)$ Untere Schranke für das minimale Vertex Cover in G
- \bullet $\ell(G)$ sollte effizient berechenbar sein
- Beispiel: $\ell_{LP}(G)$ = optimale Lösung der LP-Relaxierung

Problem: Vertex Cover above LP

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe $\ell_{LP}(G) + k$? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Heute

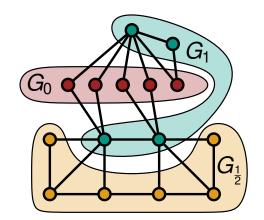
- FPT-Algorithmus für Vertex Cover above LP
- beachte: vc(G) (bisheriger Parameter) ist meist deutlich größer als $vc(G) \ell_{LP}(G)$ (neuer Parameter)

Reduktionsregel

wenn die LP-Relaxierung eine Lösung hat, bei der nicht $|V_{\frac{1}{2}}| = n$, dann reduziere auf $G_{\frac{1}{2}}$

Verzweigungsregel

• für eine Kante uv, betrachte die Instanzen G - u und G - v



Wie muss der Parameter angepasst werden?

Reduktionsregel

- es werden |V₁| Knoten zum VC hinzugefügt
- $\bullet \ell_{\mathsf{LP}}(G_{\frac{1}{2}}) = \ell_{\mathsf{LP}}(G) |V_1|$
- *G* hat VC der Größe $\ell_{LP}(G) + k \Leftrightarrow G_{\frac{1}{2}}$ hat VC der Größe $\ell_{LP}(G) + k |V_1| = \ell_{LP}(G_{\frac{1}{2}}) + k$

⇒ der Parameter wird nicht verändert

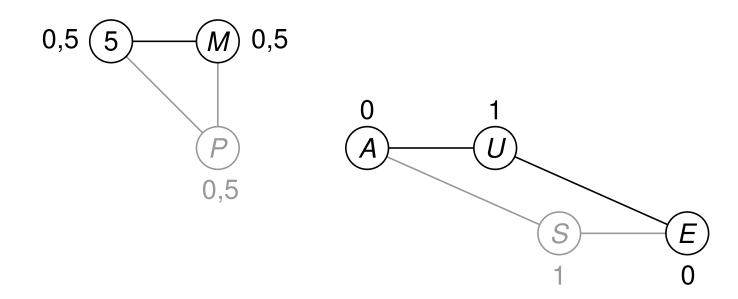
Verzweigungsregel

- ein Knoten zum VC hinzugefügt
- aber wie verändert sich $\ell_{LP}(G)$?

Problem: Vertex Cover above LP

Untere Schranken

Wie groß ist $\ell_{LP}(G)$? Wie verändert es sich beim Branching?



untere Schranke: 1,5

nach Branching: 1

Wie groß ist $\ell_{LP}(G-v)$?

Lemma

Die LP-Lösung, die alles auf $\frac{1}{2}$ setzt ist die einzige Lösung genau dann, wenn $\ell_{LP}(G-v)=\ell_{LP}(G)-\frac{1}{2}$ für alle $v\in V$.

Beweis

alles auf $\frac{1}{2}$ ist die einzige Lösung $\Leftarrow \ell_{LP}(G - v) = \ell_{LP}(G) - \frac{1}{2}$ für alle $v \in V$

- angenommen, es gibt eine Lösung mit $x_v = 1$ für einen Knoten v
- lacktriangle die gleichen Werte (abgesehen von x_{v}) liefern Lösung für G-v
- also hat G v eine Lösung der Größe $\ell_{LP}(G) 1$

alles auf $\frac{1}{2}$ ist die einzige Lösung $\Rightarrow \ell_{LP}(G - v) = \ell_{LP}(G) - \frac{1}{2}$ für alle $v \in V$

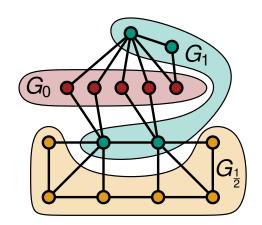
- klar: $\ell_{LP}(G v) \le \ell_{LP}(G) \frac{1}{2}$ (lösche v aus Lösung für G)
- lacksquare angenommen, $\ell_{\mathsf{LP}}(G-v)<\ell_{\mathsf{LP}}(G)-rac{1}{2}$
- lacktriangle dann gibt es Lösung für G-v mit Wert maximal $\ell_{\mathsf{LP}}(G)-1$
- hinzufügen von v mit x_v = 1 liefert optimale Lösung für G

Reduktionsregel

- wenn die LP-Relaxierung eine Lösung hat, bei der nicht $|V_{\frac{1}{2}}| = n$, dann reduziere auf $G_{\frac{1}{2}}$
- Parameter bleibt unverändert

Reduktionsregel ist sicher

- siehe Beweis zur Kernbildung in letzter Vorlesung
- Parameter unverändert lassen ist korrekt: vorhin gesehen



Problem: Vertex Cover above LP

Reduktionsregel

- wenn die LP-Relaxierung eine Lösung hat, bei der nicht $|V_{\frac{1}{2}}| = n$, dann reduziere auf $G_{\frac{1}{2}}$
- G_0

Parameter bleibt unverändert

Verzweigungsregel

Wie muss der Parameter angepasst werden?

- für eine Kante uv, betrachte die Instanzen G u und G v
- es wird ein Knoten zum VC hinzugefügt
- G hat VC der Größe $\ell_{LP}(G) + k \Leftrightarrow$

$$G-v$$
 hat VC der Größe $\ell_{LP}(G)+k-1=\ell_{LP}(G-v)+k-\frac{1}{2}$ oder

$$G-u$$
 hat VC der Größe $\ell_{LP}(G)+k-1=\ell_{LP}(G-u)+k-rac{1}{2}$

 \Rightarrow Parameter um $\frac{1}{2}$ verringern

Lemma

Die LP-Lösung, die alles auf $\frac{1}{2}$ setzt ist die einzige Lösung genau dann, wenn $\ell_{LP}(G-v)=\ell_{LP}(G)-\frac{1}{2}$ für alle $v\in V$.

Problem: Vertex Cover above LP

Reduktionsregel

- wenn die LP-Relaxierung eine Lösung hat, bei der nicht $|V_{\frac{1}{2}}| = n$, dann reduziere auf $G_{\frac{1}{2}}$
- Parameter bleibt unverändert

Verzweigungsregel

- für eine Kante uv, betrachte die Instanzen G u und G v
- verkleinere k um $\frac{1}{2}$ (in beiden Instanzen)

Laufzeit

- Verzweigungsbaum hat maximal 2k Level
- und damit maximal $2^{2k} = 4^k$ Blätter
- Reduktionsregel: polynomiell

Thomas Bläsius – Parametrisierte Algorithmen

Wie? → Nutze das Lemma!

Lemma

Die LP-Lösung, die alles auf $\frac{1}{2}$ setzt ist die einzige Lösung genau dann, wenn $\ell_{LP}(G-v) = \ell_{LP}(G) - \frac{1}{2}$ für alle $v \in V$.

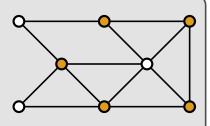
 G_0

Problem: Vertex Cover Above LP

Zusammenfassung

Problem: Vertex Cover above LP

Gegeben sind ein Graph G = (V, E) und ein Parameter k. Gibt es ein Vertex Cover der Größe $\ell_{LP}(G) + k$? (Knotenmenge $V' \subseteq V$ mit $e \cap V' \neq \emptyset$ für alle $e \in E$)



Theorem

Für Vertex Cover above LP gibt es einen FPT-Algo mit Laufzeit $4^k \cdot n^{O(1)}$.

Matching als untere Schranken

- die Größe $\ell_M(G)$ eines maximalen Matchings in G ist untere Schranke
- beachte: $\ell_{\mathsf{M}}(G) \leq \ell_{\mathsf{LP}}(G)$ (Dualität der linearen Programme)
- Algo von heute zeigt auch FPT für Vertex Cover above Matching

Bessere untere Schranke

- ightharpoonup $2\ell_{LP}(G) \ell_{M}(G)$ ist ebenfalls eine untere Schranke
- die Schranke ist stärker als $\ell_{LP}(G)$
- Vertex Cover above $2\ell_{\mathsf{LP}}(G) \ell_{\mathsf{M}}(G)$ ist FPT

Literaturhinweise

Raising The Bar For Vertex Cover: Fixed-parameter Tractability Above A Higher Guarantee

Shivam Garg, Geevarghese Philip

[2016]

- lacktriangle eben genanntes Ergebnis für Vertex Cover above $2\ell_{\mathsf{LP}}(G) \ell_{\mathsf{M}}(G)$
- enthält viele weitere Referenzen zum Thema

doi.org/10.1137/1.9781611974331.ch80

Branch-and-Reduce Exponential/FPT Algorithms in Practice: A Case Study of Vertex Cover

Takuya Akiba, Yoichi Iwata

[2016]

Branch-and-Reduce für Vertex Cover in der Praxis

doi.org/10.1016/j.tcs.2015.09.023

WeGotYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track

Demian Hespe, Sebastian Lamm, Christian Schulz, Darren Strash

[2020]

schneller Algo für Vertex Cover in der Praxis

doi.org/10.1137/1.9781611976229.1