
Minimum Linear Arrangement revisited

Master’s thesis of

Michael Zündorf

At the Department of Informatics
Institute of Theoretical Informatics

Reviewer: Jun.-Prof. Dr. Thomas Bläsius
Second reviewer: PD Dr. Torsten Ueckerdt
Advisor: Marcus Wilhelm, M.Sc.

September 30, 2021 – March 30, 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I hereby declare that this document has been composed by myself and describes my own work,
unless stated otherwise in the text. I also declare that I have read and obeyed the Satzung zur
Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für Technologie (KIT).

Karlsruhe, 30.03.2022

. .
(Michael Zündorf)

Abstract

The Minimum Linear Arrangement (MinLA) problem is a classical combinatorial optimization
problem that has been studied for many years. In this work, we revisit the lower bound
introduced by Adolphson and Hu which is based on Gomory-Hu trees. Additionally, we
introduce a new heuristic upper bound to solve the MinLA problem which is also based on the
Gomory-Hu trees. On the way, we introduce a restricted MinLA problem for weighted trees
and solve this problem optimally. This also yields a new heuristic for the standard MinLA
problem on weighted trees.

In addition to this, we take a closer look on the state-of-the-art algorithms to generate lower
bounds. The currently best algorithms in terms of quality of the computed bounds are based on
Linear Programs (LP). In this work, we introduce new constraints which can be combined with
the existing algorithms. Additionally, we pair one LP approach with a community detection
algorithm to get bounds of good quality in much shorter time. This enables us to compute
lower bounds for instances of the MinLA problem which were unfeasible before. Finally, we
evaluate our proposed approach on a large set of graphs and compare it with the original LP.

Zusammenfassung

Das Minimum Linear Arrangement (MinLA) Problem ist ein klassisches kombinatorisches
Optimierungsproblem, das schon seit vielen Jahren untersucht wird. In dieser Arbeit schauen
wir uns eine untere Schranke an, die von Adolphson und Hu vorgestellt wurde und auf
Gomory-Hu Bäumen basiert. In diesem Zusammenhang stellen wir eine neue Heuristik vor,
um das MinLA Problem zu lösen, die ebenfalls auf Gomory-Hu Bäumen basiert. Dafür führen
wir zuerst ein eingeschränktes MinLA Problem für gewichtete Bäume ein, das wir optimal
lösen. Diese Lösung kann ebenfalls als Heuristik verwendet werden, um das Standard MinLA
Problem für gewichtete Bäume zu lösen.

Zusätzlich schauen wir uns aktuelle Algorithmen zur Bestimmung von unteren Schranken
an. Die derzeit besten Algorithmen in Bezug auf die Qualität der berechneten Schranke
basieren auf Linearen Programmen (LP). In dieser Arbeit führen wir neue Bedingungen ein, die
mit den bestehenden Algorithmen kombiniert werden können. Darüber hinaus kombinieren
wir ein LPmit einemAlgorithmus zur community detection, um gute Schranken in kürzerer Zeit
zu berechnen. Dieser Ansatz ermöglicht es uns, untere Schranken für Instanzen zu berechnen,
für die dies vorher nicht möglich war. Ebenfalls werten wir diesen Ansatz auf einem großen
Datensatz auf echten Graphen aus und vergleichen es mit dem ursprünglichen LP.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2
1.3 Related Work . 2

2 Preliminaries 5
2.1 Graph Theory . 5
2.2 Linear Arrangements . 6
2.3 Gomory-Hu Tree . 7

3 Gomory-Hu Tree Bounds 9
3.1 Lower Bound . 9
3.2 Upper Bound . 9
3.3 Weighted Trees . 10
3.4 Gomory-Hu Tree Heuristic . 11

4 Linear Program 15
4.1 Decorous Lower Bounds . 15
4.2 Betweenness Variables . 16
4.3 Maximum Linear Arrangement . 17
4.4 Linear Program with Community Detection 20

5 Evaluation 23
5.1 Upper Bound . 25
5.2 Lower Bound . 26

6 Conclusion 31
6.1 Future Work . 31

Bibliography 33

iii

1 Introduction

In this work, we want to revisit the Minimum Linear Arrangement problem. We take a look
at the existing literature and the state-of-the-art algorithms. We try to �nd new approaches
and improve the existing ones with a focus on optimization for real world graph inputs.

1.1 Motivation

Graph layout problems have been studied over the past 50 years, since they naturally arise in
di�erent contexts. In theoretical works, the Linear Arrangement problem is one fo the prob-
lems to be considered most often. In this problem, a graph is arranged along a linear line such
that certain properties of the drawing are optimized. One of the most natural optimization
criteria is the total edge length which has �rst been considered by Harper in 1964 [Har64].
The problem of minimizing this total edge length is called the Minimum Linear Arrangement
(MinLA) problem.

This is not only a theoretically interesting problem but solving it also helps with designing
error correcting codes [Har64]. Some more obvious applications include the creation of
e�cient peer-to-peer overlay networks or the design of circuits where the track length is
minimized [RH08 | BS87]. Additionally, linear arrangements help to analyze and visualize
various models arising in studies of gene structures or nervous activity in the cortex.

Unfortunately, solving the MinLA problem appears to be hard in practice. Harper has
already proved in 1964 that the problem is N P-hard in general. Later on, it has been shown
that the problem remains N P-complete even when restricted to unweighted bipartite graphs
or unweighted interval graphs, for which many other problems become easier [Eve75 |Coh+06].
To �nd instances that can be solved in polynomial time, we have to look at even more

restricted graph classes like trees, rectangular grids, proper interval graphs or outer-planar
graphs. And even for these classes, only the unweighted problem is solved and the algorithms
are fairly complex.

For many interesting graph classes, either no polynomial time algorithm exists or at least
none is known. Therefore, in most cases, the only way to solve this problem exactly is
either with a Dynamic Program (DP) [KH02] or with an Integer Linear Program (ILP) [Cou16].
However, this is highly infeasible in practice, since both algorithms are too slow to solve
instances with only hundreds of vertices in feasible time. Therefore, in practice, we have to
rely on heuristic algorithms. These may not �nd the optimal solution, but at least they �nd a
solution in a feasible time.

1

1 Introduction

1.2 Outline

In Chapter 2, we introduce the notations used for this work and elaborate some basic graph
theory which we use later.
In Chapter 3, we take a closer look on the relation between Gomory-Hu trees and the

MinLA problem. This yields a new heuristic for the MinLA problem but more importantly we
�nd an algorithm that solves some easier MinLA related problems on weighted trees optimally
on that way. In particular, we can solve the MinLA problem on weighted trees under the
restriction that sub-trees have to be embedded consecutively.
The main results of this work, however, are presented in Chapter 4. There, we revisit the

state-of-the-art lower bound algorithms and try to improve them. Since these algorithms are
based on Linear Programs (LP), we introduce new constraints and present a new approach
to �nd violated constraints of some types. Furthermore, we introduce the �rst approach
that uses community detection in context of the MinLA problem. Our approach enables us
to compute lower bounds in much shorter time which may again can be used to improve
pruning in heuristic upper bounds. Additionally, good lower bounds enable us to evaluate the
quality of the heuristic upper bounds.

In Chapter 5, we evaluate the aforementioned approaches on a set of well-known graphs in
the context of the MinLA problem and on a much larger set of real world graphs.

1.3 Related Work

As already mentioned, there are only a few graph classes that can be solved optimally and the
required algorithms are not simple. among the �rst graph classes on which theMinLA problem
was solved were trees. Goldberg et al. proposed an algorithm which could solve unweighted
trees in O

(
𝑛3
)
[GK76]. Later, this result was improved by Shiloach who found an O

(
𝑛2.2

)
algorithm [Shi79]. However, quite recently, Esteban and Ferrer-i-Cancho found and resolved
a mistake in Shiloach’s algorithm [EF17]. Chung observed that Shiloach’s algorithm could be
improved to O

(
𝑛2
)
but also proposed an even faster algorithm with a runtime in O

(
𝑛1.585

)
[Chu84]. To the best of our knowledge, no faster or simpler algorithm has been proposed. At
the same time, Adolphson and Hu developed an O(𝑛 log(𝑛)) algorithm for rooted trees and
proposed a non-trivial lower bound based on Gomory-Hu trees [AH73].

Other linear arrangement problems have also been solved on unweighted trees. For example,
the Min-cut Linear Arrangement (McLA) problem wants to minimize the largest cut instead of
the sum over all cuts and can be solved in polynomial time due to an algorithm by Yannakakis
[Yan85]. However, the same problem was shown to be N P-hard on weighted trees by Monien
and Sudborough [MS88]. Additionally, the Bandwidth Linear Arrangement (BwLA) problem,
which wants to minimize the length of the longest edge instead of the sum over all edges, has
been shown to remain N P-hard even on unweighted trees by Garey et al. [GGJK78].
Additionally, in the past 50 years, many heuristic algorithms have been proposed for the

MinLA problem since exact algorithms are infeasible. These heuristics yield valid solutions
which, however, may not be optimal. The best results among them are obtained by an algorithm
from Safro et al. which is based on multi-level weighted edge contraction [SRB06]. Another
good algorithm is introduced by Rodriguez et al. and uses simulated annealing [RHT08].
Besides the heuristic upper bounds, also some algorithms for lower bounds have been

proposed. These lower bounds, do not yield valid solutions but help to get insights of the
problem instance and can be used to improve heuristics. The �rst lower bounds were based

2

1.3 Related Work

on basic graph properties like the number of edges and the degree sequence of a graph. Albeit
their simplicity, those are the only bounds applicable on large graphs. The best lower bounds
so far have been achieved by Linear Programs. However, they have a rather high complexity
and could therefore not be used on graphs with more than one thousand vertices.
All these algorithms have been evaluated on a small test suite of 22 graphs composed of

uniform random graphs, geometric random graphs, graphs with known optima and graphs
from real world applications like VLSI design and graph drawing competitions [Pet03b].
Additionally, the algorithms have been tested on a few larger graphs which arise in �nite
element discretization and were �rst used by Koren and Harel [KH02]. However, to the best
of our knowledge, none of the algorithms have been tested on larger real world networks or
larger Geometric Inhomogeneous Random Graphs (GIRG).

3

2 Preliminaries

In the following sections, we de�ne basic concepts of graph theory and computational com-
plexity theory. Additionally, we de�ne notations that are used in this work. In particular, we
de�ne linear arrangements and Gomory-Hu trees.

2.1 Graph Theory

Graphs are combinatorial objects that are extensively studied in discrete mathematics and
theoretical computer science. An undirected simple graph 𝐺 = (𝑉 , 𝐸) is a tuple of a set of
vertices 𝑉 = {1, 2, . . . , 𝑛} and a set of edges 𝐸 ⊆

{
{𝑢,v}

�� 𝑢,v ∈ 𝑉 and 𝑢 ≠ v
}
. In this work,

we are only interested in this type of graphs. Therefore, we omit the words undirected and
simple from now on.
We call two vertices 𝑢 and v independent if the edge 𝑒 = {𝑢,v} is not in 𝐸. Contrarily, we

call 𝑢 and v adjacent if 𝑒 is in 𝐸. Based on this, we de�ne the neighborhood of the vertex v as
the set of vertices that are adjacent to v and denote this with 𝑁 (v). Further, we de�ne the
degree deg(v) of v as the size of its neighborhood.

Further, we denote the complement of a graph as 𝐺 . Two vertices in 𝐺 are adjacent if they
are independent in 𝐺 and are independent in 𝐺 if they are adjacent in 𝐺 .

In some occasions, we augment a graph with aweight function𝑤 (𝑒) : 𝐸 → R+ which assigns
a positive real value to each edge in 𝐸. Such a graph is referred to as a weighted graph.

A path from vertex v1 to v𝑛 is an 𝑛 tuple of vertices 𝑃 = (v1, . . . ,v𝑛). We call a path valid if
any two adjacent vertices in the tuple are also adjacent in the graph. If not stated otherwise
we will only talk about valid paths and omit the word valid from now on. Further, we call a
path simple if each vertex occurs at most once in the tuple.
Based on this, we say that two vertices are connected if and only if there exists a path

between them. Note that a path with 𝑛 = 1 is always valid and thus the connection relation
is re�exive. Further, since our graphs are undirected, the relation is also symmetric and
transitive. Thus, the connected relation is an equivalence relation and we say that two vertices
belong to the same connected component if they are in the same equivalence class i.e. they are
connected by a path.
In case of a weighted graph, we also want to de�ne the length of a path as the sum over

the weights of all 𝑛 − 1 edges along the path. Additionally, we de�ne the shortest path as the
path whose length is minimal among all possible paths connecting two vertices. Note that
our weight functions assigns only positive weights. Thus, there exists at least one shortest
path between any two connected vertices.

We de�ne a cut as a partition of the vertex set of𝐺 into two disjoint subsets. An edge {𝑢,v}
crosses the cut if 𝑢 and v do not belong to the same subset. The cut-set corresponding to a cut
is the set of all edges that cross the given cut and the size of a cut is the size of the cut-set. In
case of a weighted graph, the size of the cut is de�ned as the sum of weights over all edges in
the cut-set.

5

2 Preliminaries

2.1.1 Graph Classes

In addition to the above de�nitions we also want to name some speci�c graph classes. We
call a graph an independent set if all pairs of vertices are pairwise independent. Contrarily, we
call the graph where all vertices are pairwise adjacent a clique.
A cycle is a connected graph in which all vertices have degree 2. Further, we say that a

graph is a tree if it is connected and contains no cycle. This implies, that for any pair of
vertices there exists exactly one simple path connecting them. In this case, we call all verticesv
with deg(v) ≤ 1 leaves. If all but one vertex in the tree are leaves, we may also call it a star
and say that the remaining vertex is its center. In some occasions, we talk about rooted trees.
In this case some vertex is called the root and all edges are implicitly directed away from
the root. This implies that each vertex v that is not the root has exactly one incoming edge.
The vertex at the origin of the incoming edge is called the parent pv of v . This also enables
us to de�ne a sub-tree for each vertex v where the sub-tree consists of all vertices that can
be reached from v without pv . Further, we denote the number of vertices in such a sub-tree
with size(v).

We call a graph bipartite if its vertices can be partitioned into two independent sets and we
say that a graph is split graph if its vertices can be partitioned into an independent set and a
clique.

2.2 Linear Arrangements

Linear Arrangement problems are a class of combinatorial optimization problems where the
vertices of a graph 𝐺 are to be ordered along a line, such that each vertex has an integer
position and some cost function 𝑐 is optimized. In this work, we are interested in theMinimum
Linear Arrangement (MinLA) problem, which is sometimes also referred to as Optimal Linear
Arrangement Problem or Optimal Linear Ordering Problem. In this optimization problem, we
want to minimize the total edge length of an arrangement of 𝐺 . This version of the problem
was �rst formulated by Harper [Har64] and was proven to be N P-complete by Garey Johnson
and Stockmeyer [GJS74].
Formally, let 𝜋 be a permutation of the vertices i.e. a bijective mapping from the vertex

set to the set of integer positions {1, . . . , |𝑉 |}. We refer to this permutation as arrangement
or embedding. The length of an edge {𝑢,v} ∈ 𝐸 for a �xed arrangement 𝜋 is the distance
between 𝑢 and v in 𝜋 , i.e. |𝜋 (𝑢) − 𝜋 (v) |. The cost 𝑐 (𝜋,𝐺) of a Linear Arrangement is simply
the sum of the edge lengths over all edges.

Let cut (𝜋,𝐺, 𝑖) (for 1 ≤ 𝑖 < |𝑉 |) denote the cut that separates the vertices with positions less
than or equal to 𝑖 in 𝜋 from those with positions greater than 𝑖 . Then, the cost 𝑐 (𝜋,𝐺) is equal
to the sum over cut (𝜋,𝐺, 𝑖) for all 𝑖 , since an edge with length 𝑥 belongs to exactly 𝑥 cut-sets,
which gives us another view on the Optimal Linear Arrangement Problem. A visualization of
both of these views on the cost function is shown in Figure 2.1. The cost function 𝑐 can be
formalized in the following two ways:

cut (𝜋,𝐺, 𝑖) =
{
{𝑢,v}

�� 𝑢,v ∈ 𝑉 and 𝜋 (𝑢) ≤ 𝑖 and 𝜋 (v) > 𝑖
}

𝑐 (𝜋,𝐺) =
∑︁

{𝑢,v }∈𝐸

��𝜋 (𝑢) − 𝜋 (v)
�� = |𝑉 |−1∑︁

𝑖=1

��cut (𝜋,𝐺, 𝑖)�� .
6

2.3 Gomory-Hu Tree

1 2

3 4 5

2 3 3 2

1 23 4 5

Figure 2.1: On the left, a graph 𝐺 with 5 vertices and 7 edges is drawn. On the right, the
same graph is embedded on a line with order 𝜋 = (3, 5, 1, 2, 4). The embedding
contains 3 edges of length 2 and 4 edges with length 1, thus, the total cost of this
embedding is 10. Additionally, the 4 cuts and their sizes are shown in gray. The
total sum of the cut-sizes is also 10.

Since we also want to handle weighted graphs, we need to adjust the de�nition of 𝑐 to include
the weight of an edge. If we look at the sum of the edge lengths, then the natural generalization
in this context is to multiply the length of each edge with its weight before summing these
values up. Thus, changing the length of an edge 𝑒 by one changes the cost of the arrangement
by𝑤 (𝑒). On the other side, we can naturally generalize the size of a cut as the sum of weights
of edges in the cut-set instead of the amount of edges in the cut-set. Both generalizations lead
to the same cost for a �xed arrangement which we will denote with 𝑐 (𝜋,𝐺,𝑤).

If the weight of an edge 𝑒 is an integer, then it can also be seen as the number of multi-edges
which connect two vertices. Therefore, the cost of an unweighted graph is equivalent to the
cost of a graph where all weights are equal to 1. The generalized cost function of a linear
arrangement for a weighted graph can be stated as:

𝑐 (𝜋,𝐺,𝑤) =
∑︁

{𝑢,v }∈𝐸
𝑤
(
{𝑢,v}

)
·
��𝜋 (𝑢) − 𝜋 (v)

�� = |𝑉 |−1∑︁
𝑖=1

∑︁
𝑒∈cut (𝜋,𝐺,𝑖)

𝑤 (𝑒) .

2.3 Gomory-Hu Tree

1

2

3

4

5

2

3
3

2

1

2

3

4

5

2
2

3
3

Figure 2.2: Two Gomory-Hu
trees with their edge
weights. Both trees
belong to the graph in
Figure 2.1.

We call a weighted tree a Gomory-Hu tree𝑇𝐺 of a graph𝐺
if both 𝑇𝐺 and 𝐺 have the same vertex set and further,
each edge 𝑒 = {𝑠, 𝑡} in 𝑇𝐺 corresponds to a minimal
𝑠-𝑡-cut of size𝑤 (𝑒) in𝐺 . Formally, the two components
of 𝑇𝐺 \ 𝑒 must correspond to the two partitions of a
minimal cut in 𝐺 . Therefore, for any two vertices in 𝑇𝐺 ,
each edge on the path between them corresponds to a
cut that separates them.

The Gomory-Hu tree was introduced by Gomory and
Hu, who also proposed an e�cient algorithm to gener-
ate 𝑇𝐺 from 𝐺 [GH61]. A simpler algorithm was later
presented by Gus�eld [Gus90].
Note that even though a Gomory-Hu tree exists for

every graph, the requirements do not necessarily de�ne
a unique Gomory-Hu tree for every graph. Therefore,
the same graph 𝐺 can have multiple non-isomorphic
Gomory-Hu trees as shown in Figure 2.2.

7

3 Gomory-Hu Tree Bounds

The Gomory-Hu tree has various applications. Among them is a lower bound for the minimum
linear arrangement problem that was proposed by Adolphson and Hu [AH73]. In the following
sections, we investigate the relation between Gomory-Hu trees and the MinLA problem. Then
we take a look at the MinLA problem on weighted trees and �nally, we combine these to
introduce a new heuristic upper bound based on an arrangement of a Gomory-Hu tree.

3.1 Lower Bound

Theorem 3.1 (Adolphson and Hu [AH73]): The sum of all edge weights in 𝑇𝐺 is a lower bound
for the value of the minimum linear arrangement problem for 𝐺 .

Even though this gives us a lower bound of theoretical value, this approach does not perform
well in practice. Petit tested several lower bounds for the MinLA problem [Pet03b]. However,
he observed that this bound has the same quality as bounds that are computed only from
the number of edges or the degree sequence, despite that the Gomory-Hu tree approach is
computationally more complex and takes the actual structure of the graph into account.

3.2 Upper Bound

Theorem 3.2: For a Gomory-Hu tree 𝑇𝐺 from 𝐺 and a fixed permutation 𝜋 , the cost 𝑐 (𝜋,𝐺) is
always less than or equal to the cost 𝑐 (𝜋,𝑇𝐺).

Proof. Let us denote the set of edges in 𝐺 with 𝐸 and the set of edges in 𝑇𝐺 with 𝐸𝑇 . Further,
let 𝜎 B 𝜋−1. Given an edge 𝑒 = {𝑢,v} in 𝐸 with 𝜎 (𝑢) < 𝜎 (v), we know that this edge
contributes 1 to each cut in the interval

[
𝜎 (𝑢) . . . 𝜎 (v)

)
. In 𝐸𝑇 , the edge 𝑒 may not be present,

but𝑢 andv are still connected by a unique simple path 𝑃 in𝑇𝐺 . By de�nition of the Gomory-Hu
tree, we also know that each edge in 𝑃 represents a cut between 𝑢 and v in 𝐺 . Obviously, 𝑒
belongs to any cut which separates 𝑢 and v in 𝐺 , since it connects them. Therefore, 𝑒
contributes 1 to the weight of each edge in 𝑃 .

Since 𝑃 connects 𝑢 and v , it still has to span across all cuts in
[
𝜎 (𝑢) . . . 𝜎 (v)

)
. In conclusion

this implies that if 𝑒 contributes to a cut in 𝐺 , then it also contributes the same amount to the
same cut in 𝑇𝐺 . Since this is true for all edges in 𝐸, we know that cut (𝜎,𝐺, 𝑖) ≤ cut (𝜎,𝑇𝐺 , 𝑖)
for each cut 𝑖 . Which, in turn, implies that 𝑐 (𝜋,𝐺) ≤ 𝑐 (𝜋,𝑇𝐺), since 𝑐 (𝜋,𝐺) and 𝑐 (𝜋,𝑇𝐺) are
just the sum of the |𝑉 | − 1 cuts.

Since Theorem 3.2 yields an upper bound for the cost of a �xed arrangement 𝜋 , it also yields an
upper bound on the minimal cost for an arrangement of𝐺 . However, it is worth noting that the
upper bound is not tight, i.e., the cost for an optimal arrangement of𝑇𝐺 can be greater than the
minimal cost required to arrange 𝐺 . Therefore, it is preferable to �nd a good arrangement 𝜋
for𝑇𝐺 and then evaluate the costs 𝑐 (𝜋,𝐺) to get a better upper bound. Unfortunately, even this
approach is not tight, since the arrangement 𝜋 that minimizes 𝑐 (𝜋,𝑇𝐺) and the arrangement 𝜋 ′

that minimizes 𝑐 (𝜋 ′,𝑇𝐺) are normally not the same as seen in Figure 3.1.

9

3 Gomory-Hu Tree Bounds

1 2

3 4 5 12 34 5

12

3 4

52

2 3

3 12 34 5

2 2

3 3

Figure 3.1: On the left, a graph𝐺 and a Gomory-Hu tree𝑇𝐺 are given. On the right,𝐺 and𝑇𝐺
are arranged with 𝜋 = (2, 4, 1, 5, 3). Even though the arrangement is optimal
for 𝑇𝐺 , the cost for𝐺 is 4 higher then necessary. An optimal solution can be seen
in Figure 2.1

3.3 Weighted Trees

Many polynomial algorithms have been proposed to optimally arrange unweighted trees in
respect to the total edge length [GK76 | Shi79 |Chu84]. Goldberg and Klipker observed that
in the minimal linear arrangement 𝜋 of a tree, the simple path between the �rst and the last
vertex in the arrangement is monotone, i.e., either all vertices on the path have increasing
values of 𝜋 or decreasing values. This property is the basis for all of the aforementioned
algorithms. However, this property is not true for weighted trees, as can be seen in Figure 3.2.
This counter example shows that the path between the �rst and last vertex may need to take
multiple turns even though the depicted arrangement is optimal. Thus, unfortunately, none
of those approaches can be generalized to solve the problem on weighted trees. Further, it is
not known whether the MinLA problem for weighted trees can be solved in polynomial time
or if it is N P-complete.
Adolphson and Hu proposed an algorithm which handles rooted weighted trees [AH73].

However, their algorithm only arranges a tree optimally under the restriction that each vertex
has to be placed to the right of its parent. Obviously, this requirement increases the cost of
the arrangement. However, we were not able to �nd a tree for which the costs of such an
arrangement increases by more than a factor two which leads us to the following conjecture.

Conjecture 3.3: Arranging a rooted tree such that each vertex is placed to the right of its parent
costs at most twice as much as arranging the tree optimally in terms of total edge length.

If Conjecture 3.3 is true, then it would imply that the algorithm proposed by Adolphson and
Hu gives a 2-approximation for the MinLA problem on weighted trees. Thus, it yields both
an upper and a lower bound. Note that for general graphs, it was proven that no constant
approximation for the MinLA problem exists [DKSV06 |AMS07]. Further, we assume that
MinLA problem for a weighted tree itself is hard as stated in Conjecture 3.4. We believe this,
since even graphs with simple structures as shown in Figure 3.2 have a complicated layout.

Conjecture 3.4: Given a tree 𝑇 with edge weights polynomialy bounded in the number of
vertices, it is N P-complete to decide if there exists a linear arrangement with total edge weight
less than 𝑐 . The corresponding MinLA problem for 𝑇 is N P-hard.

10

3.4 Gomory-Hu Tree Heuristic

1 39 2 4 5 6 7 8∞ ∞ ∞ ∞ ∞
𝑒 (0)

𝑒 (1)

𝑔(0)

1 39 272 4 81026 ∞ 𝑒 (0)

𝑒 (1)

𝑒 (2)

𝑔(0)𝑔(1)

Figure 3.2: In the picture we can see a counter example for the monotone property of optimal
embedding of a weighted tree. Let 𝑒 (𝑖) B 9−𝑖 and 𝑔(𝑖) B 3−𝑖 , then the given
arrangements are optimal. However, the paths between the �rst and the last
vertex in the arrangements are not monotone. Note that ∞ only needs to be
su�ciently large and can e.g. be replaced by |𝑉 |2 · 𝑒 (0). Additionally, note that all
weights can be multiplied by a large enough power of 3 to make them integers.
Thus, these counter examples also work with only integer weights which are
polynomial in |𝑉 |. Further, this example can be generalized to �nd a larger counter
examples.

3.4 Gomory-Hu Tree Heuristic

We propose a new heuristic algorithm that shares some similarities with Shiloach’s algorithm
for unweighted trees. Our algorithm can arrange a weighted rooted tree𝑇 optimally under the
restriction that all vertices in a sub-tree have to be arranged consecutively. In combination
with Theorem 3.2 this yields an upper bound since this allows us to arrange the Gomory-Hu
tree af a given graph. However, to do this, we �rst solve a simpler problem with the following
lemma.

Lemma 3.5: Let 𝑟 be the root vertex, and 𝑐𝑖 ∈ 𝑁 (𝑟) be a child of 𝑟 . Further, let size(𝑐𝑖) denote
the size of the sub-tree rooted at 𝑐𝑖 . If sub-trees have to be arranged consecutively and each vertex
has to be placed to the right of its parent, then the sub-trees of 𝑟 have to be sorted by the ratio
of size(𝑐𝑖) to𝑤

(
{𝑟, 𝑐𝑖}

)
in non-decreasing order in the optimal arrangement.

Proof. We prove this by contradiction. Assume we have an optimal arrangement 𝜋 and a pair
of sub-trees 𝑐𝑖 and 𝑐 𝑗 where 𝑐 𝑗 appears directly before 𝑐𝑖 in 𝜋 , but they are not sorted correctly.
Then the di�erence of weighted sizes 𝑐𝑖 and 𝑐 𝑗 is negative:

size(𝑐𝑖)
𝑤
(
{𝑟, 𝑐𝑖}

) <
size(𝑐 𝑗)

𝑤
(
{𝑟, 𝑐 𝑗 }

)
=⇒ size(𝑐𝑖) ·𝑤

(
{𝑟, 𝑐 𝑗 }

)
< size(𝑐 𝑗) ·𝑤

(
{𝑟, 𝑐𝑖}

)
=⇒ size(𝑐𝑖) ·𝑤

(
{𝑟, 𝑐 𝑗 }

)
− size(𝑐 𝑗) ·𝑤

(
{𝑟, 𝑐𝑖}

)
< 0 .

11

3 Gomory-Hu Tree Bounds

However, by moving the sub-tree 𝑐 𝑗 behind 𝑐𝑖 the edge {𝑟, 𝑐 𝑗 } gets exactly size(𝑐𝑖) longer,
whereas the edge {𝑟, 𝑐𝑖} gets size(𝑐 𝑗) shorter. Thus, the cost changes to:

size(𝑐𝑖) ·𝑤
(
{𝑟, 𝑐 𝑗 }

)
− size(𝑐 𝑗) ·𝑤

(
{𝑟, 𝑐𝑖}

)
.

Since this amount is negative, the initial assumption has to be wrong. Considering that the
required order is total, this also implies that non adjacent sub-trees have to be sorted correctly,
which proves the lemma.

Since sub-trees need to be arranged consecutively, a recursive algorithm can solve the problem.
The algorithm �rst appends the root to the result, then sorts its sub-trees according to
Lemma 3.5 and, �nally, calls itself for each sub-tree.

3.4.1 Algorithm

Now, we want to solve the problem without the restriction that each vertex has to be placed
to the right of its parent. This can also be done with a recursive algorithm, since sub-trees
still need to be arranged consecutively. However, this time we need to decide which sub-tree
is placed at which side of the root, This can be decided optimally with a Dynamic Program
(DP). Note that this is su�cient since the order of the sub-trees on both sides is still implied
by Lemma 3.5.

Let 𝑟 be the root vertex, and 𝑐𝑖 ∈ 𝑁 (𝑟) for 𝑖 ∈
{
1, . . . , deg(𝑟)

}
be the root of the 𝑖-th sub-tree

if all sub-trees are sorted according to Lemma 3.5. Further, let dp𝑖, 𝑗 (for 0 ≤ 𝑗 < size(𝑟))
denote the minimal cost of arranging the �rst 𝑖 sub-trees such that 𝑗 vertices are placed to
the right of 𝑟 . Note that dp𝑖, 𝑗 ignores the cost to arrange the sub-trees themselves, since this
cost is independent of the placement of the sub-tree. To calculate dp𝑖, 𝑗 , two cases need to
be considered. If the 𝑖-th sub-tree is placed on the right side, then we need to arrange the
previous 𝑖 − 1 sub-trees optimally, under the restriction that exactly 𝑗 − size(𝑐𝑖) vertices have
to be placed on the right side. If the 𝑖-th sub-tree is placed on the left instead, we require
that 𝑗 vertices from the previous 𝑖 − 1 trees have to be placed on the right. In both cases, we
additionally need to consider the cost of the edge {𝑟, 𝑐𝑖} which is stretched depending on the
number of vertices which were already placed on the same side. The �nal dp relation looks as
follows:

dp0,0 = 0
dp0, 𝑗 = ∞ if 𝑗 ≠ 0

dp𝑖, 𝑗 = ∞ if 𝑗 < 0

dp𝑖, 𝑗 = min


dp𝑖−1, 𝑗−size (𝑐𝑖) +

(
𝑗 − size(𝑐𝑖)

)
·𝑤

(
{𝑟, 𝑐𝑖}

)
,

dp𝑖−1, 𝑗 +
(
𝑖−1∑
𝑘=1

size(𝑐𝑘)
)
·𝑤

(
{𝑟, 𝑐𝑖}

)  .

When arranging the sub-trees of a vertex without a parent, i.e., the root of the complete tree,
we just want to �nd the minimal dpdeg (𝑟), 𝑗 over all 𝑗 and place the sub-trees according to the
DP. For any other sub-tree, let p denote the parent of its root. In this case, we additionally
need to consider the cost of the edge {p, 𝑟 } which is stretched depending on the number of
vertices that are placed between 𝑟 and p. Thus, we need to minimize dpdeg (𝑟), 𝑗 + 𝑗 ·𝑤

(
{p, 𝑟 }

)
in this case. Note that the cost of the edge {p, 𝑟 } is shared between the sub-tree and its parent.

12

3.4 Gomory-Hu Tree Heuristic

𝑟 1 2 𝑤𝑖∞
𝑤𝑖

𝑟𝑎 − 𝑎′𝑎′ 𝑏 − 𝑏 ′ 𝑏 ′

𝑎′ 𝑏 ′

Figure 3.3: On the left, we see the sub-tree constructed for each weight of a partition instance.
On the right, we see how swapping the outermost sub-trees a�ects the cost of
the linear arrangement. Only the edges marked in red change their length.

3.4.2 Runtime

Lemma 3.6: The DP can be evaluated for each vertex in a total running time of O
(
|𝑉 |2

)
.

Proof. For a sub-tree rooted in vertex 𝑐 , it takes deg(𝑐) · size(𝑐) time to evaluate the DP,
since any state can be evaluated in constant time and no vertex needs to be placed further
than size(𝑐) away from 𝑐 in an optimal arrangement. Considering that 𝑐 contributes 1 to size(p)
for any direct or indirect parent p of 𝑐 , we can see that 𝑐 contributes at most 2 · |𝐸 | to the
total runtime. Since our graph is a tree, we know that there are |𝑉 | − 1 edges and |𝑉 | vertices.
Thus, the total running time is bounded by 2 · |𝑉 |2 which proves the lemma.

Lemma 3.6 directly implies that the complete tree can be arranged optimally in O
(
|𝑉 |2

)
.

Further, the DP only has at most deg(v) · |𝑉 | states for a root vertex v . Thus, the calculation
for the optimal arrangement requires at most O(Δ(𝑇) · |𝑉 |) memory, where Δ(𝑇) denotes
the maximum degree for any vertex in 𝑇 .
Let dp𝑖 denote the DP values dp𝑖, 𝑗 for all 𝑗 . We also refer to dp𝑖 as the 𝑖-th row of the DP.

Note that the DP state (𝑖, 𝑗) only depends on the states (𝑖 − 1, 𝑘) for some 𝑘 ≤ 𝑗 . Thus, the
𝑖-th row of the dp only depends on the previous row. This allow us to evaluate the minimal
cost of the DP with only O(|𝑉 |) memory. However, we also want to reconstruct the optimal
solution. To do this, we need to �nd all states that contributed to the minimal cost. This can
be done with backtracking without increasing the running time asymptotically. Unfortunately,
we have to traverse the DP states in reverse order during the backtracking. Since we cannot
reconstruct the previous row of the DP from a given one we have to store all rows to allow an
e�cient reconstruction. The observation that all following states can be calculated from a
given row can, however, still be used to reduce the memory consumption. On the other hand,
this would increase the total running time.

3.4.3 Complexity Results

We now want to reason a elaborate further about the running time of our algorithm. To do
this, we �rst need to introduce the partition problem. In this problem 𝑛 integer weights𝑤𝑖

are given with a total weight of𝑊 . The problem asks if it is possible to partition the weights
into two disjoint sets such that both sets have a total weight of𝑊/2. Deciding this problem is
known to be weakly N P-hard. To the best of our knowledge, the fastest algorithm to solve the
partition problem is a pseudo-polynomial DP which has a running time of O(𝑛 ·𝑊) [GJ79].
In Theorem 3.7, we show that any algorithm that can decide which sub-tree has to be

arranged on which side of the root in 𝑜 (deg(𝑟) · |𝑉 |) would yield an algorithm that is faster
than the aforementioned DP. Therefore, we assume that even the restricted problem where
sub-trees have to be arranged consecutively, cannot be solved more e�ciently than with our
algorithm. Further, Theorem 3.7 shows that any greedy algorithm to solve this problem will
likely fail, since this would imply a greedy algorithm for the partition problem.

13

3 Gomory-Hu Tree Bounds

Theorem 3.7: Let 𝑃 = {𝑤1, . . . ,𝑤𝑛} be a partition instance. Further, let𝑊 be the total weight
of all𝑤𝑖 . Then, 𝑃 can be encoded in a rooted weighted tree 𝑇 with𝑊 + 1 vertices, such that any
optimal linear arrangement corresponds to a solution to the partition problem, should it exist.

Proof. Let 𝑟 be the root of the tree we want to construct. For each 𝑤𝑖 , we add a path of
length𝑤𝑖 . The path is connected to 𝑟 with an edge with of𝑤𝑖 . The other weights along the
path are assumed to be in�nite, as shown in Figure 3.3. Note that the in�nite weight can be
modeled as𝑊 3, since stretching all other edges to their maximum can cost no more than𝑊 3

in total. Further, note that this high weight enforces that all sub-trees of 𝑟 have to be arranged
consecutively.

We prove the theorem by contradiction. Suppose that the partition instance has a solution
but there exists an optimal arrangementwhere𝑎 vertices are placed to the left of 𝑟 and𝑏 =𝑊−𝑎
to the right of 𝑟 with 𝑎 < 𝑏. Note that the ordering of the sub-trees on each side has no
in�uence on the cost of the arrangement, since all sub-trees have the same size to weight ratio.
Therefore, we can assume that the given solution and a partition solution only di�er in the
outermost sub-trees. This implies that the arrangement can be transformed into a partition
by swapping some of the leftmost and rightmost sub-trees. Let 𝑎′ be the number of vertices
which move from left to right and 𝑏 ′ be the number of vertices which move from right to left.
Since the resulting arrangement should be a partition, we know that 𝑎 − 𝑎′ + 𝑏 ′ = 𝑏 − 𝑏 ′ + 𝑎′.
If we swap the sub-trees of size 𝑎′ and 𝑏 ′, then the cost of the linear arrangement changes by:

−𝑎′ · (𝑎 − 𝑎′) + 𝑎′ · (𝑏 − 𝑏 ′) − 𝑏 ′ · (𝑏 − 𝑏 ′) + 𝑏 ′ · (𝑎 − 𝑎′) .

Since we move 𝑎′ vertices from left to right, we change the length of some edges whose total
weight is also 𝑎′. Previously, those edges had to span over 𝑎−𝑎′ vertices to reach the sub-trees.
After the change, those edges need to span over 𝑏 − 𝑏 ′ vertices. Note that we ignore some
of the cost to connect the sub-trees to 𝑟 since it does not change. Similarly, the cost for the
sub-trees which move from right to left change. The edges which change during the swap are
also highlighted in Figure 3.3.
We now simplify the formula for the change of the cost:

− 𝑎′ · (𝑎 − 𝑎′) + 𝑎′ · (𝑏 − 𝑏 ′) − 𝑏 ′ · (𝑏 − 𝑏 ′) + 𝑏 ′ · (𝑎 − 𝑎′)
= (𝑏 ′ − 𝑎′) · (𝑎 − 𝑎′) + (𝑎′ − 𝑏 ′) · (𝑏 − 𝑏 ′)
= (𝑏 ′ − 𝑎′) · (𝑎 − 𝑎′ + 𝑏 ′ − 𝑏)
= (𝑏 ′ − 𝑎′) · (𝑏 − 𝑏 ′ + 𝑎′ − 𝑏) Since 𝑎 − 𝑎′ + 𝑏 ′ = 𝑏 − 𝑏 ′ + 𝑎′

= (𝑏 ′ − 𝑎′) · (𝑎′ − 𝑏 ′)
= −(𝑏 ′ − 𝑎′)2

< 0 .

Since the change of cost is always negative, the initial arrangement could not be optimal. This
proves that only a partition solution is optimal.

14

4 Linear Program

It seems like Linear Programs are the most promising approach to �nding good lower bounds
for the MinLA problem [Pet13]. In the current literature, two approaches proposed by Caprara
et al. can be found which use a similar set of constraints [CLS11 |Cap+11]. In Section 4.1
and Section 4.2, we revisit both proposed approaches. After that, we brie�y discuss a third
approach in Section 4.3 and introduce some new constraints which can be combined with all
three approaches. In the last section, we try to improve the �rst approach with the help of
community detection.

4.1 Decorous Lower Bounds

The �rst linear program proposed by Caprara et al. uses O(𝑚) real-valued variables. Each
variable corresponds to the length of one edge. This idea is very natural but requires many
constraints to yield good results. In the following, we take at look at the constrains proposed
by Caprara et al.

Rank Constraints Given a subgraph 𝐻 in 𝐺 , the sum over all variables which correspond
to edges in 𝐻 has to be at least as large as the cost for the minimum linear arrangement of 𝐻 .
These types of constraints are called rank constraints and each subgraph 𝐻 corresponds to
exactly one rank constraint. Adding all possible rank constraints would trivially give a perfect
lower bound since 𝐺 itself is also a subgraph of 𝐺 . However, this is obviously not feasible
since there are too many possible subgraphs and the constraints themselves would require us
to know the cost of the minimum linear arrangement.

Projected Rank Constraints It is hard to �nd good rank constraints since 𝐻 has to be a
subgraph of 𝐺 and one needs to be able to solve the MinLA problem for 𝐻 . The projected
rank constraints try to overcome the �rst drawback by introducing a projection operation
which allows us to add valid constraints for any graph 𝐻 as long as we can solve the MinLA
problem for 𝐻 . First, one calculates the shortest path between any pair of vertices in terms of
total edge length. Then, the projected rank constraint consists of the sum over all shortest
𝑎-𝑏-paths for each edge {𝑎, 𝑏} in 𝐻 . This means that the constraint ensures that the sum over
all shortest paths has to be at least as large as the cost of the minimum linear arrangement
of 𝐻 . Caprara et al. showed that these constraints are valid even though some edges appear
multiple times in the constraint since an edge can be part of multiple shortest paths [CLS11].
Note that this also implies that the projected rank constraints are a super-set of the set of
rank constraints.

Path Constraints To further improve projected rank constraints, one should observe that
a shortest 𝑎-𝑏-path in 𝐺 is not allowed to be shorter than the corresponding edge {𝑎, 𝑏} in 𝐺
if it exists. For each edge where this requirement is violated, a path constraint can be added.

15

4 Linear Program

4.1.1 Algorithm

Caprara et al. propose an iterative branch-and-cut algorithm which consists of two steps that
are repeated. First, they �nd a valid assignment of edge lengths that does not violate any of
the current constraints. In the second step, they search new projected rank constraints that
are violated by the solution and add them. Since the projected rank constraints still require the
MinLA cost for the corresponding subgraph𝐻 , Caprara et al. decided to only search for graphs
from graph classes where the optimal solution is either known or an optimal algorithm was
proposed. Namely, they use projected rank constraints based on the following graph classes:

I. Stars
II. Cliques
III. Circuits
IV. Complete Bipartite Graphs
V. Trees

Note that for each of these graph classes at least 2 |𝑉 | constraints can be found. This is true
since for each possible subset of vertices at least one graph per graph classes exists. For all
classes besides cliques there actually exist multiple graphs per subset. Therefore, we cannot
simply try all possible subgraphs belonging to one of the aforementioned graph classes to
�nd violated constraints. Thus, the second step needs some work to be e�cient. For stars,
Caprara et al. proposed a polynomial algorithm that �nds some violated star constraints
should there exist one. For the four other graph classes, they proved that �nding violated
constraints is N P-hard and proposed some simple heuristics to �nd violated constraints.
Note that Caprara et al. used rank constraints based on trees and unfortunately decided

to use Shiloach’s algorithm to calculate the MinLA cost for the trees. This is a problem
since Esteban and Ferrer-i-Cancho found an error in Shiloach’s paper [EF17]. Since we have
no access to the original implementation by Caprara et al., we do not know how exactly
they evaluated the MinLA cost for trees. If they used Shiloach’s algorithm to generate a
permutation, they likely used invalid constraints since permutation is not optimal and thus,
not a lower bound for the tree constraint. However, since they found a tight lower bound for
the complete binary tree of ten levels and Shiloach’s algorithm can directly calculate the cost,
it is more likely that they used these costs. In this case, the added constraints seem to be valid
but not as tight as possible.

4.2 Betweenness Variables

The second approach was proposed by Caprara et al. and can be seen as a re�nement of the
previous one [Cap+11]. This approach needs |𝑉 | − 2 binary variables for each edge 𝑒 = {𝑢,v}.
Each such variable states whether or not a vertex 𝑏 lies between 𝑢 and v , hence the name
betweenness variable. The length of an edge can then be formulated as one plus the sum over
all |𝑉 | − 2 variables corresponding to that edge. Since the formula for the edge length is linear
any constraint from the previous approach can be restated as a constraint for this approach.
This simply requires us to replace the variable of an edge with the mentioned formula.
However, the extended set of variables allows to express the following additional constraints.

Triangle constraints For any three vertices which are pairwise connected by edges, the
sum over the three betweenness variables has to be 1, since exactly one vertex is in the middle
of the other two. Note that for these constraints, a projected version can also be introduced.
In this case, the sum over the three shortest paths has to be at least 1.

16

4.3 Maximum Linear Arrangement

Feasibility constraints The biggest advantage of this approach is that it can be used to
�nd a tight lower bound and even allows the reconstruction of an optimal permutation of the
vertices. Let𝑀 be the |𝐸 |× |𝑉 |matrix with𝑀𝑒,v being 1 if and only if there exists a betweenness
variable for 𝑒 and v that is assigned the value 1. Each row of this matrix corresponds to one
edge and each column corresponds to one vertex. We can observe that𝑀 corresponds to a
permutation if and only if the matrix has the consecutive ones property for rows.

This property states that the columns can be rearranged such that the ones in each row are
consecutive. If we rearrange the matrix with the permutation 𝜋 such that the ones in each
row are consecutive, then the matrix corresponds to a valid arrangement of 𝐺 , since each
edge can be embedded exactly as required by the matrix with the exact same cost as for that
row plus one. Thus, the LP yields a lower bound that is equal to the upper bound of the cost
of the arrangement 𝜋 .

Fortunately, such matrices with the consecutive ones property for rows can be fully charac-
terized by a set of forbidden sub-matrices. This implies that we can introduce constraints that
prohibit these sub-matrices and ensure that the matrix is valid.

4.2.1 Algorithm

These constraints directly lead to a branch-and-cut algorithm to solve the MinLA problem.
If the solution to the LP is not integral, then a cutting plane is added to remove the non-
integral solution. Otherwise, the consecutive ones property of𝑀 is checked with an algorithm
proposed by Booth and Lueker [BL76]. If the property is violated, then a new feasibility
constraint is introduced. After this, a new solution of the LP is calculated. However, if at some
point no new constraint can be added, then the solution is optimal and a permutation can be
reconstructed.

This basic algorithm can be further sped up with additional constraints. Namely, by adding
the projected triangle constraints and any projected constraint from the previous model. The
algorithm from Caprara et al. reused path and star constraints since these constraints can be
e�ciently checked if they are violated [Cap+11]. The resulting algorithm yields better results
than the �rst Linear Program. Note that this new algorithm is also able to optimally solve the
problem with enough computation time. However, it converges much slower than the �rst
Linear Program and thus, is not competitive on larger graphs.

4.3 Maximum Linear Arrangement

We now want to propose a completely new approach that is based on the Maximum Linear
Arrangement (MaxLA) problem. In the MaxLA problem, we want to arrange the vertices such
that the sum over all edges is maximized. These two problems are closely related. The optimal
permutation for the MinLA of 𝐺 is equal to the optimal permutation for the MaxLA of 𝐺
where 𝐺 denotes the complement graph of 𝐺 . Further, the sum over the optimal cost for the
MinLA of 𝐺 and the MaxLA of 𝐺 is equal to

(|𝑉 |+1
3

)
. This relation has already been used in

N P-completeness proofs by Garey et al. and by Even and Shiloach [GJS74 | Eve75].
We tried to create a Linear Program for the MaxLA approach with a variable for each pair of

vertices. If a pair of vertices is not connected by an edge in𝐺 , then the corresponding variable
contributes to the objective function, which we want to maximize. This results in a drawback,
since a huge amount of variables is required to formulate the LP. However, this could also be
an advantage since the complement graph is much denser. Thus, rank constraints are tighter

17

4 Linear Program

since fewer edges are considered that do not directly contribute to the objective function.
Unfortunately, not many results for the MaxLA problem are known and thus, we could only
test a limited amount of constraints which we will describe in the following.

Edge Length Constraint There can be at most one edge with length |𝑉 | − 1 and at most
two edges with length |𝑉 | − 2 or, in general, at most 𝑘 edges with length |𝑉 | − 𝑘 . Thus, we
have an upper bound we can apply on any set of edges. To easily �nd a set of edges that
violate this requirement, we sort all edges belonging to𝐺 in non-ascending order and check
for each pre�x by increasing length if it violates this constraint. In this case, we add the new
constraint. This can be done in O

(
𝑛2 log(𝑛)

)
and ensures that we reach the trivial bound of

zero for the MinLA problem.

Star Constraint For any star, we can add a rank constraint. The optimal MaxLA arrange-
ment of a star has its center at the leftmost position and all children at the rightmost positions.
Thus, a star with 𝑘 children can contribute at most

∑𝑘
𝑖=1

(
|𝑉 | − 𝑖

)
= 𝑘 · |𝑉 | −

(
𝑘+1
2
)
to the

total cost of an arrangement. To �nd a violated star constraint with center v , we can sort all
edges {𝑢,v} in 𝐺 in non-ascending order and again check all pre�xes. If we do this for all
possible root vertices, then we again have a running time of O

(
𝑛2 log(𝑛)

)
.

Further, we can also add the MinLA star constraints for the edges not in 𝐺 . This ensures
that those edges cannot become too short which in itself has no e�ect on the result but in
combination with other constraints results in better bounds.

Complete Bipartite Graph Constraints Further, we can add a rank constraint for any
complete bipartite subgraph. To calculate the maximal cost for a complete bipartite graph
with ℓ vertices in one partition and 𝑟 vertices in the other partition, we �rst solve the simpler
case where ℓ + 𝑟 = |𝑉 |. In this case, we can simply look at the minimal cost to embed the
complement and subtract this from the cost for a clique on ℓ+𝑟 vertices. The complement of the
graph would be one clique on 𝑙 and another on 𝑟 vertices. To solve the case with ℓ +𝑟 ≤ |𝑉 |, we
need to observe how we the total cost changes. Since the additional vertices are independent,
they can only contribute to the cost by enlarging other edges. Thus, each additional vertex can
only increase the cost by the size of the maximum cut. For a bipartite graph, any edge belongs
to the maximum cut and thus, the total cost grows by ℓ · 𝑟 for any vertex not belonging to the
bipartite graph. In total, we get that the maximal cost for a bipartite graph is:

(
ℓ + 𝑟 + 1

3

)
−
(
ℓ + 1
3

)
−
(
𝑟 + 1
3

)
+ ℓ · 𝑟 ·

(
|𝑉 | − ℓ − 𝑟

)
= |𝑉 | · ℓ · 𝑟 − 𝑟 · ℓ2 + ℓ · 𝑟 2

2
.

We can use the same heuristic to �nd bipartite graphs with large cost that Caprara et al. used
to �nd bipartite graphs with small cost [CLS11]. Note that �nding a violated bipartite graph
constraint is N P-hard and thus a heuristic is needed[CLS11].

18

4.3 Maximum Linear Arrangement

Complete Split Graph Constraint A complete split graph 𝐺𝑛,𝑘 is a clique of size 𝑛 and 𝑘
independent vertices connected to each vertex in the clique. If we only consider split graphs
with 𝑛 + 𝑘 = |𝑉 |, then the graph is the complement of a clique. Thus, the maximal cost of an
arrangement is:(

|𝑉 | + 1
3

)
−
(
𝑘 + 1
3

)
.

Finding a violated split graph constraint is N P-hard, since we are basically searching an
independent set of size 𝑘 with minimal cost which in turn is N P-hard for edge weights
in {0, 1} [GJ78]. Therefore, we use a heuristic to �nd violated constraints. To be exact, we use
the heuristic proposed by Caprara et al. to �nd cliques [CLS11].
Note that the constraint 𝑛 + 𝑘 = |𝑉 | is not necessary, i.e., we could also search for other

violated split graph constraints. However, this would be more time consuming and the cost
formula would be more complex. Therefore, we decided to only use the simpli�ed version.

Clique Constraint The cost for a clique of size 𝑘 is bounded by the cost to embed the
clique on integers from 1 to 𝑘 plus the cost for |𝑉 | − 𝑘 times the maximum cut. Since the
maximum cut splits the graph into two parts of almost equal size, the total cost is:(

𝑘 + 1
3

)
+
⌊
𝑘

2

⌋
·
⌈
𝑘

2

⌉
·
(
|𝑉 | − 𝑘

)
.

Finding a violated clique constraint is again N P-hard [CLS11]. However, we can use the
heuristic proposed by Caprara et al. as we did before [CLS11].
Note that this also implies that we can introduce a complete split graph constraint to the

MinLA LP, since it is the complement of a clique. Thus, for a complete split graph 𝑛, 𝑘 the
MinLA cost would be:(

𝑛 + 𝑘 + 1
3

)
−
(
𝑘 + 1
3

)
−
⌊
𝑘

2

⌋
·
⌈
𝑘

2

⌉
· 𝑛 .

However we restrict ourselves to only use complete split graphs with 𝑛 + 𝑘 = |𝑉 |. In this case,
the heuristic to �nd a clique can be reused to �nd violated constraints.

4.3.1 Algorithm

We use an iterative branch-and-cut algorithm which consists of two steps that are repeated,
in a similar fashion as the �rst Linear Program proposed by Caprara et al.. First, we �nd a
currently valid assignment of edge lengths. Then, we search for violated constraints in the
aforementioned fashion. Every violated constraint we �nd is added to the Linear Program.
The MaxLA approach could also be combined with betweenness variables. However, this

would require evenmore variables which would further slow down the approach. The pre-tests
of this algorithm already showed that the explained approach is not even competitive with the
�rst Linear Program and thus, we did not implement a MaxLA algorithm with betweenness
variables.

19

4 Linear Program

4.4 Linear Program with Community Detection

So far, this work aimed at improving the quality of lower bounds by introducing new con-
straints and developing a new approach based on the MaxLA problem with the goal of
providing better bounds. However, the results show that there is not much room for improve-
ment on the proposed lower bounds. Therefore, we focus on reducing the time complexity of
the approaches without reducing the quality of the resulting lower bounds in the following
sections.
The �rst step in this process is to improve the running time by reducing the number of

di�erent constraints. Caprara et al. already mentioned that the projected Star and Clique con-
straints in combination with Path constraints are the most important ones [CLS11]. Therefore,
we will limit ourselves to these constraints and focus on speeding up the algorithms used to
�nd violated constraints of these three types.

4.4.1 Path Constraints

To �nd violated path constraints, we originally solved the All Pairs Shortest Paths (APSP)
problem in the �rst step by calculating the shortest path tree starting in each vertex. Since
our graphs are sparse, we use Dijkstra's algorithm which results in a total running time
in O(𝑛 · (𝑛 +𝑚) log(𝑛)) to �nd all 𝑛 shortest path trees [Dij59]. Using the shortest paths to
add violated path constraints takes at most O(𝑚 · 𝑛) time and thus, the running time of this
whole step is dominated by Dijkstra’s algorithm.

The running time of this step can be reduced by limiting the total size of all calculated
shortest path trees i.e. by limiting the output size of the �rst step. In our implementation, we
compute all shortest path trees in parallel and stop after we found 𝑐 ·𝑚 shortest paths where 𝑐
is a constant which we set to 10. In total, the shortest path trees can contain at most 𝑛 + 𝑐 ·𝑚
vertices instead of the 𝑛2 vertices contained in the solution of the APSP problem.

The running time now strongly depends on the structure of the graph since the number of
paths Dijkstra’s algorithm considers does not directly depend on the output size. However,
since we are mostly interested in real world graphs that are sparse, we expect this step to
become faster. The main reason to reduce the output size is not to speed up this stage but to
reduce the number of edges which have to be considered for star and clique constraints. Thus,
speeding up this stage will help us to speed up later stages which are more time consuming
in general. On the other hand, this can reduce the quality of the result since we do not look at
all possible path constraints and also look at fewer constraints later.

4.4.2 Star Constraints

We simplify this step by just searching for the largest violated star constraint for each vertex
while only considering edges which we found in the previous stage. Finding the biggest
violated star constraint for a single vertex can be done in O(𝑛 · log(𝑛)), since we only need to
sort all outgoing edges. The running time of this step is, however, dominated by the previous
step, since each path only contributes to two stars and all paths were already built in the
previous stage. Thus, this stage does not worsen our time complexity at all.

20

4.4 Linear Program with Community Detection

4.4.3 Clique Constraints

The heuristic to �nd violated clique constraints, proposed by Caprara et al., is the most time
consuming part of the original algorithm. Adding a single clique constraint takes up to O

(
𝑛3
)

time since the clique contains O
(
𝑛2
)
projected edges, and each of these edges can consist of

up to 𝑛 − 1 real edges. Therefore, we decided to try a completely new approach to �nd clique
constraints based on community detection.
A community in a graph is a set of vertices which are densely connected internally and

loosely connected to other parts of the graph. In case of a weighted graph, the edges inside a
community should additionally be short while connections to other parts of the graph should
contain edges with larger weights.
Our approach to �nd clique constraints is to use the weighted graph from the �rst step

to detect communities within it and add a clique constraint for each community. The idea
behind this approach is that the sum over all projected edges in the community are expected
to be small since they are well connected. Thus, we assume that the gap between the current
costs and the required costs to embed a clique is large which in turn should increase the lower
bound. In our algorithm, we use the Leiden Algorithm proposed by Traag, Waltman and Van
Eck [TWV19] and the implementation provided by NetworKit [SSM15]. We used the algorithm
as a black box and with its default parameters set in NetworKit, the only change we applied
was to set a �ag to make its behavior deterministic and reproducible.

To actually build the constraint from a given community, we need to �nd shortest paths
between all vertices within the community. To implement this step e�ciently, we �rst build a
shortest path tree for each vertex in the community which connects it to every other vertex
in the community. This is done by applying Dijkstra’s algorithm on the original graph and
stopping as soon as all vertices from the community have been visited. Afterwards, we count
on how many shortest paths each edge lies, since this is equal to the contribution of this
edge to the clique constraint. This can be done in linear time on the shortest path tree with
a simple depth-�rst search which accumulates the number of vertices below an edge in the
shortest path tree. Thus, the complexity of this stage only depends on the complexity of the
community detection algorithm and the time to build the shortest path trees.

Note that the computation of the shortest path trees could be sped up by restricting Dijkstra’s
algorithm to vertices within the same community. However, this would decrease the quality
of the calculated constraint. We performed some initial experiments and observed that this
optimization yields an insigni�cant speedup.

4.4.4 Algorithm

The resulting algorithm is an iterative branch-and-cut algorithm which works as described in
this section. We generate an initial solution by adding a star constraint for each vertex with
all its neighbors and solving the corresponding linear program. This initial constraints ensure
that the result will be at least as good as the trivial degree lower bound from Petit [Pet03b].
After that we will iteratively search for violated constraints and then add them to the LP. We
then solve the LP to generate a new solution for which we repeat the previous step. However,
we additionally restrict the number of constraints which we add in each such iteration.

We noticed that the LP becomes much slower if we add too many constraints at once.
Therefore, we only consider a limited amount of constraints to add. To be precise, we only
add a constant amount 𝑐1 of constraints. In our case we chose 𝑐1 = 1000. We choose the 𝑐1
best constraints ranked by the absolute di�erence of the left hand side and right hand side

21

4 Linear Program

in the inequality of the constraint. This metric is chosen since it is simple to compute and
corresponds to the maximum change of the LP bound if we add the given constraint. From
the constraints which we did not add, we again choose a constant amount 𝑐2 that we consider
again in the next iteration, in our case we keep 𝑐2 = 4000 constraints. Thus, in total, our
algorithm only needs to store 𝑐1 + 𝑐2 = 5000 constraints during the �rst step of each iteration.
Further, we noticed that the bottleneck with the worst running time depending on the

number of vertices is the computation of clique constraints. Therefore, we decided to limit the
size of the clique constraints we compute. In our implementation, we ignore all communities
found by the Leiden algorithm that contain more than 𝑐3 = 500 vertices. This ensures that an
iteration will not consume too much time.

22

5 Evaluation

In this chapter, we compare our algorithms with state-of-the-art algorithms for the MinLA
problem. Our main focus lies on the lower bounds produced by the combination of the Linear
Program with the Leiden algorithm for community detection.

5.0.1 Environment

All tests were performed on a machine operating on openSUSE Leap 15.2 (kernel 5.3.18). The
machine has two Intel Xeon Gold 6144 CPUs, each with eight cores clocked at 3.5GHz and
8 × 64KB of L1 cache, 8 × 1MB of L2 cache and 24.75MB of shared L3 cache. Note that all
our algorithms and libraries are implemented and used in a strict non parallel way, albeit
that most parts allow trivial parallelization. We decided to do this to be more comparable to
previous work. Further, the machine was used exclusively for one experiment at a time.
Our algorithms were implemented in C++ and compiled with g++ version 10.3.0 and

optimization level 2. Further, we used the following third party libraries: Gurobi 9.5 to solve
our Linear Programs [Gur22], NetworKit’s implementation of the Leiden Algorithm to �nd
communities [SSM15] and the maximum �ow implementation from Bläsius, Friedrich and
Weyand to compute Gomory-Hu trees [BFW20].

5.0.2 Benchmark Instances

We consider two sets of benchmark instances. The �rst was established by Petit [Pet03b]
but contains just 22 graphs. However, these graphs have been used for evaluating MinLA
algorithms since then and can therefore be used to compare our work with older results. More
information about the actual graphs can be found in [Pet03b | Pet03a]. In Table 5.1, we give an
overview over some basic graph properties of the benchmark instances. Further, we display
the best known upper bounds and a more detailed list of various lower bounds computed so
far. To the best of our knowledge, the table shows the results of all MinLA related papers
published.

Additionally, we consider real world graphs published by Rossi and Ahmed [RA15]. Some
of the basic properties of this set of graphs are visualized in Figure 5.1. These benchmark
instances have been used for various algorithms but, to the best of our knowledge, not in
the context of Minimum Linear Arrangements. Some graphs are part of both test cases,
since the network repository is a collection of various graphs and Petit also included some
graphs used in di�erent �elds. At least the graph drawing (gd) instances and the �nite
element graphs are also part of the network repository. Further, we did not use the network
repository graphs as is, but pre-processed them by only considering the largest connected
component and only including graphs with at most 106 edges. Note that the MinLA problem
is solved for connected components separately. Additionally, we also consider some geometric
inhomogeneous random graphs generated by Bläsius et al. [Blä+19].

23

5 Evaluation

Table 5.1: This table contains the best known lower and upper bounds for the 22 benchmark
instances introduced by Petit [Pet03b]. Note that the lower bounds obtained by
Petit are the best results of various algorithms partially proposed by other authors
[Pet03b |AH73 | JM92]. The best lower bound for each graph is highlighted in bold.
The upper bound is the optimum chosen from various other works and should
correspond to the best known upper bound [RHT08 | SRB06 | RHT05 | Pet03b |KH02].

Name |𝑉 | |𝐸 | LB[Pet03b] LB[CLS11] LB[Cap+11] UB

randomA1 1 000 4 974 140 634 - - 866 968
randomA2 1 000 24 738 4 429 294 - - 6 522 206
randomA3 1 000 49 820 11 463 259 - - 14 194 583
randomA4 1 000 8 177 601 130 - - 1 717 176
randomG4 1 000 8 173 39 972 - - 140 211

bintree10 1 023 5 120 1 277 3 696 - 3 696
hc10 1 024 2 112 349 525 - - 523 776
mesh33x33 1 089 1 022 31 680 20 042 - 31 680

3elt 4 720 13 722 44 785 - - 217 220
airfoil1 4 253 12 289 40 221 - - 272 931
crack 10 240 30 380 95 347 - - 1 489 266
whitaker3 9 800 28 989 144 854 - - 1 143 645

c1y 828 1 749 14 101 59 971 - 62 230
c2y 980 2 102 17 842 76 253 - 78 757
c3y 1 327 2 844 23 417 113 801 - 123 145
c4y 1 366 2 915 21 140 106 942 - 114 936
c5y 1 202 2 557 19 217 88 741 - 96 850

gd95c 62 144 292 443 506 506
gd96a 1 076 1 676 5 155 77 860 - 95 242
gd96b 111 193 702 1 281 1 404 1 416
gd96c 65 125 241 402 519 519
gd96d 180 228 595 2 021 1 578 2 391

100 101 102 103 104 105 106
100

101

102

103

Number of vertices |𝑉 |

Av
er
ag
e
D
eg
re
e

100 101 102 103
0

1

2

3

4

Average Degree

N
um

be
ro

fg
ra
ph

s
[10

3]

Figure 5.1: On the left, we see a point for each benchmark instance. The instances from
Petit are highlighted in red. On the right, we can see the accumulated degree
distribution. A point (𝑥,𝑦) along the curve tells us that there are 𝑦 benchmark
instances with an average degree not less than 𝑥 . This shows that most of the
instances have a small average degree.

24

5.1 Upper Bound

100 101 102 103 104 105 106
10−2

10−1

100

101

102

103

Number of edges |𝐸 |

G
om

or
y-
H
u
U
B
/G

RA
SP

U
B

Figure 5.2: Results of the Gomory-Hu tree based upper bound compared with a GRASP based
approach. A point (𝑥,𝑦) corresponds to a result on an instance with 𝑥 edges where
the ratio of the Gomory-Hu bound to the GRASP bound is 𝑦. The 22 instances
provided by Petit are marked in red, all others are marked blue. For every point
above the marked axis 𝑦 = 1, the Gomory-Hu bound performs worse than the
GRASP approach. Above the axis are 2877 out of 3559 instances. Additionally, 96
instances could not be solved and are not included in the plot.

5.1 Upper Bound

In this section, we evaluate the Gomory-Hu tree based upper bound. Note that more advanced
heuristics are known [RHT08 | SRB06 | RHT05 | Pet03b |KH02]. However, no implementation
of those algorithms is available and implementing them is outside the scope of this work.
Thus, we implemented a simple algorithm: the Greedy randomized adaptive search procedure
(GRASP) [FR89]. The results on random instances provided by Petit suggest that the GRASP
approach does not perform too bad on random graphs compared to the best known algorithms
as can be seen in Table 5.2. Thus, it is reasonable to compare the Gomory-Hu tree approach
with the GRASP approach.

Our GRASP algorithm tries to �nd an initial solution by always appending some vertex
to an existing solution which increases the costs as little as possible, starting with an empty
solution. After that, it tries to swap single vertices inside the solution to locally improve the
result. We did this local search on 105 di�erent initial solutions and took the optimum.

In Table 5.2 and Figure 5.2, we can see that even the simple GRASP algorithm yields better
results in most cases on real world instances and the benchmark instances provided by Petit.
Also, note that the GRASP method is faster in practice and has better asymptotic runtime
than the Gomory-Hu based approach. Therefore, the Gomory-Hu bound for general graphs is
only of theoretical interest and not competitive with the state-of-the-art. We can also see in
Table 5.2 that the GRASP approach is not much worse than the best known upper bound (less
than a factor of two) on the random graphs. Therefore, we expect it to perform well as well
on the larger test set of real world graphs that is displayed in Figure 5.2.
However, the algorithm can still be useful to �nd solutions for weighted trees since to

the best of our knowledge, no other algorithm was developed for this problem. Further, the
instance bintree10 shows that the algorithm performs quite well for this tree.

25

5 Evaluation

Table 5.2: This table contains the upper bounds known for the 22 benchmark instances
introduced by Petit [Pet03b]. As before, the column labeled with UB is the optimum
of various other works [RHT08 | SRB06 | RHT05 | Pet03b |KH02]. We can see that the
Gomory-Hu tree approach does not perform well. The only case where it yields
good results was the instance bintree10 which is a binary tree.

Name |𝑉 | |𝐸 | UB GRASP UB Gomory-Hu UB

randomA1 1 000 4 974 866 968 1 223 388 1 442 158
randomA2 1 000 24 738 6 522 206 7 468 809 7 833 556
randomA3 1 000 49 820 14 194 583 15 558 135 15 890 126
randomA4 1 000 8 177 1 717 176 2 216 171 2 440 958
randomG4 1 000 8 173 140 211 260 066 2 132 095

bintree10 1 023 5 120 3 696 112 382 4 608
hc10 1 024 2 112 523 776 2 396 811 551 141 435
mesh33x33 1 089 1 022 31 680 45 766 210 345

3elt 4 720 13 722 217 220 904 128 7 826 492
airfoil1 4 253 12 289 272 931 19 064 719 461 500 798
crack 10 240 30 380 1 489 266 2 165 917 96 868 833
whitaker3 9 800 28 989 1 143 645 1 335 544 33 581 891

c1y 828 1 749 62 230 220 600 357 054
c2y 980 2 102 78 757 280 590 504 157
c3y 1 327 2 844 123 145 442 458 872 796
c4y 1 366 2 915 114 936 377 936 964 572
c5y 1 202 2 557 96 850 330 250 757 007

gd95c 62 144 506 782 807
gd96a 1 076 1 676 95 242 250 909 454 936
gd96b 111 193 1 416 2 245 1 960
gd96c 65 125 519 688 1 294
gd96d 180 228 2 391 5 039 3 841

5.2 Lower Bound

In this section, we evaluate the Linear Program which utilizes community detection with
Leiden’s algorithm. In Table 5.3, we can see the results of our algorithm on the benchmark
instances introduced by Petit [Pet03b]. The table shows that our algorithm performs well
for real world graphs even though it was given only 10 minutes of computation time per
instance. The lower bounds obtained by Petit had unlimited computation time [Pet03b] and
the lower bounds obtained by Caprara et al. were calculated in up to 24 hours [CLS11 |Cap+11].
However, take these times with a grain of salt since the algorithms were executed on di�erent
hardware and with a di�erent LP solver. Still, 10 minutes are much less computation time
than in the previous works.
On the other hand, Table 5.3 also shows that for graphs like hc10, mesh33x33 or the

Erdős-Rényi random graphs, the results are quite poor. These graphs do not have a natural
community structure like most real world graphs. Thus, the Leiden algorithm will not �nd
communities which yield good clique constraints.
To compare our algorithm on all instances in our large test set, we re-implemented the

decorous lower bound proposed by Caprara et al. [CLS11]. We did, however, exclude the tree
constraints. We argue that this does not make a huge di�erence since Caprara et al. already

26

5.2 Lower Bound

Table 5.3: This table contains the best lower bounds for the benchmark instances introduced
by Petit [Pet03b]. Note that the lower bounds obtained by Petit are the best results
of various algorithms partially proposed by other authors [Pet03b |AH73 | JM92].
The best lower bound for each graph is highlighted in bold. We can see that our
algorithm improved the bound for the geometric random graph randomG4 and is
not far o� for the real world graphs in comparison with the decorous lower bound
by Caprara et al [CLS11], even though our algorithm had less computation time.

Name |𝑉 | |𝐸 | [Pet03b] [CLS11] [Cap+11] Our

randomA1 1 000 4 974 140 634 - - 82 336
randomA2 1 000 24 738 4 429 294 - - 1 610 485
randomA3 1 000 49 820 11 463 259 - - 2 465 981
randomA4 1 000 8 177 601 130 - - 197 591
randomG4 1 000 8 173 39 972 - - 64 250

bintree10 1 023 5 120 1 277 3 696 - 2 847
hc10 1 024 2 112 349 525 - - 77 947
mesh33x33 1 089 1 022 31 680 20 042 - 12 769

3elt 4 720 13 722 44 785 - - 42 090
airfoil1 4 253 12 289 40 221 - - 39 825
crack 10 240 30 380 95 347 - - 67 415
whitaker3 9 800 28 989 144 854 - - 63 438

c1y 828 1 749 14 101 59 971 - 28 597
c2y 980 2 102 17 842 76 253 - 33 783
c3y 1 327 2 844 23 417 113 801 - 42 313
c4y 1 366 2 915 21 140 106 942 - 34 221
c5y 1 202 2 557 19 217 88 741 - 35 470

gd95c 62 144 292 443 506 417
gd96a 1 076 1 676 5 155 77 860 - 26 853
gd96b 111 193 702 1 281 1 404 1 258
gd96c 65 125 241 402 519 365
gd96d 180 228 595 2 021 1 578 1 965

reported that their e�ect is insigni�cant. For the comparison, both algorithms were only
given 10 minutes per instance since the test set contains a huge number of graphs and we
opted for a same computation time comparison. Note that we also reevaluated the Linear
Program proposed by Caprara et al. on the instances introduced by Petit with the time limit.

The results of the equal time comparison are visualized in Figure 5.3. We can see that our
approach performs better for almost all instances. Especially for larger graphs, our approach
tends to perform better or is able to solve them at all. The main reason for this is that our
approach is able to do much more iterations as seen in Figure 5.4. Even for the largest graphs
in our test set, our algorithm is able to perform multiple iterations within the given time
whereas the decorous Linear Program takes too long even for middle sized graphs.

We also observe that some design choices of our implementation can be seen in Figure 5.4.
The plot shows that for graphs with more than roughly 104 edges, the number of iterations
starts to have a greater variance. We assume that around this point the Leiden algorithm
starts to �nd communities that are larger than the threshold value 𝑐3 for which we calculate
clique constraints.

27

5 Evaluation

100 101 102 103 104 105 106

100

100.2

100.4

Number of edges |𝐸 |

N
or
m
al
iz
ed

lo
w
er

bo
un

d

Figure 5.3: Results of our Linear Program compared with the Linear Program proposed by
Caprara et al. [CLS11]. A point (𝑥,𝑦) corresponds to a result on an instance
with 𝑥 edges where the ratio of the decorous lower bound to our lower bound
is 𝑦. The 22 instances provided by Petit are marked in red, all others are marked
blue. For every point above the marked axis 𝑦 = 1, our approach performs better
than the decorous approach. Below the axis are only 403 out of 3559 instances.
Additionally, 2636 instances could not be solved by the decorous Linear Program
and are not included in the plot at all.

100 101 102 103 104 105 106
100

101

102

103

104

105

Number of edges |𝐸 |

Ite
ra
tio

ns

100 101 102 103 104 105 106
100

101

102

103

104

105

Number of edges |𝐸 |

Ite
ra
tio

ns

Figure 5.4: Results of our Linear Program compared with the Linear Program proposed by
Caprara et al. [CLS11]. Number of iterations for both Linear Programs. On the
left, we see the plot for the decorous lower bound by Caprara et al. [CLS11].
On the right, we see the plot for our approach. For graphs with few edges, we
can observe that the Linear Program converges within a few iterations and then
aborts. For larger graphs, we can see that our approach is able to do signi�cantly
more iterations. Note that the left plot only contains graphs where the decorous
Linear Program �nished at least one iteration. Therefore, 2636 graphs are omitted.

28

5.2 Lower Bound

0 50 100 150 200 250 300 350 400 450 500 550
0

500

1,000

1,500

Time in seconds [𝑠]

Lo
w
er

bo
un

d

Decorous Linear Program
Our Linear Program

0 50 100 150 200 250 300 350 400 450 500 550
0

1,000

2,000

Time in seconds [𝑠]

Lo
w
er

bo
un

d

Decorous Linear Program
Our Linear Program

Figure 5.5: The results of the decorous lower bound algorithm by Caprara et al. [CLS11] in
comparison to our algorithm, plotted over time. The �rst plot corresponds to
the graph gd96d with 228 edges on 180 vertices. The second plot corresponds to
the graph reptilia-tortoise-network-bsv with 373 edges on 134 vertices. We can
see that our algorithm performs better initially since it can do more iterations in
the same time. However, it will eventually get overtaken by the decorous lower
bound if the later has enough time. In the second diagram, the decorous LP did
not have enough time to overtake our approach since the iterations took too long
for this graph.

Figure 5.5 also shows that our algorithm performs well if only a short amount of time is
available while being worse in the long run. This is no big surprise since our main goal was to
improve the speed of one iteration. In particular, we can see that our algorithm needs multiple
iterations to improve the bound by the same amount as one iteration of the original LP does.
For larger graphs, this results in better lower bounds by our algorithm since the decorous
lower bound is not able to perform nearly enough iterations to converge. Note that the two
graphs chosen for Figure 5.5 were chosen arbitrarily but the diagrams for other graphs of our
test set look similar. Interestingly, our algorithm seems to perform better on the larger graph
reptilia-tortoise-network-bsv than on the smaller graph gd96d. We assume that this comes
from the fact that the second graph has a good average clustering coefficient i.e. it has a rather
natural community structure. On one hand, this property improves the runtime of the Leiden
algorithm but it also seems to improve the quality of our algorithm. Luckily, many real world
graphs yield a community structure from which our algorithm bene�ts.

29

6 Conclusion

In this work, we took a closer look at the state-of-the-art algorithms on the MinLA problem
with a focus on lower bounds. As mentioned before, the number of exact results is limited
to very few graph classes which do not appear in practice. Therefore, there is still a need
for algorithms which can be used on large real word graphs. For upper bounds, the current
state-of-the-art algorithms are already able to solve graphs with millions of edges in short
time. For lower bounds, on the other hand, the current algorithms need days for graphs with
just a few thousand edges. In this work, we improved the runtime of one of the best lower
bound algorithms while sacri�cing only a little bit of quality of the bounds. This improved
algorithm enabled us to compute lower bounds for graphs with millions of edges in just a
few minutes. Especially promising is that we were able to improve the lower bound for the
geometric random graph randomG4 which was provided by Petit [Pet03a]. Since geometric
random graphs share many properties with real world graphs, we expect our algorithm to
perform well on real world graphs as well.

6.1 Future Work

We already made some claims in the previous chapters which need to be proven. Additionally,
our work can be improved and extended in some ways. More precisely these are the parts
which look most promising.

Weighted Trees How hard is the minimum linear arrangement problem on weighted trees?
Is it N P-hard as we suspect in Conjecture 3.4? Also, an interesting question is if the algorithm
proposed by Adolphson and Hu is an approximation as formulated in Conjecture 3.4.

Constraints Can our approach be improved by including more constraints? Especially,
are there more e�cient ways to �nd constraints based on bipartite graphs or split graphs to
include them in our algorithm without losing too much performance?

Leiden algorithm For now we used the Leiden algorithm as a black box. Which a�ect
does the resolution parameter of the Leiden algorithm have on the quality of of the lower
bound i.e. can we improve the results by �nding communities of other sizes?

Dynamic Program Can the faster lower bound in combination with dynamic programming
be used to build a branch-and-bound algorithm which solves the MinLA problem for real
world graphs?

31

Bibliography

[AH73] D. Adolphson and Tien Chung Hu. “Optimal linear ordering”. In: SIAM Journal on
Applied Mathematics Volume 25.3 (1973), pp. 403–423. URL: https://doi.org/10.1137 /
0125042.

[AMS07] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. “Inapproximability
results for sparsest cut, optimal linear arrangement, and precedence constrained
scheduling”. In: 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS07). IEEE. 2007, pp. 329–337. URL: https://doi.org/10.1109/FOCS.2007.40.

[BFW20] Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. “E�ciently comput-
ing maximum �ows in scale-free networks”. In: arXiv preprint arXiv:2009.09678
(2020).

[BL76] Kellogg S Booth and George S Lueker. “Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms”. In: Journal of
computer and system sciences Volume 13.3 (1976), pp. 335–379. URL: https://doi.org/
10.1016/S0022-0000(76)80045-1.

[Blä+19] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel
Penschuck, and Christopher Weyand. “E�ciently Generating Geometric Inhomo-
geneous and Hyperbolic Random Graphs”. In: 27th Annual European Symposium
on Algorithms (ESA 2019). Vol. 144. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, 21:1–21:14.
URL: https://doi.org/10.4230/LIPIcs.ESA.2019.21.

[BS87] JAYARAM BHASKER and SARTAJ SAHNI. “Optimal linear arrangement of circuit
components”. In: Journal of VLSI and computer systems Volume 2.1-2 (1987), pp. 87–
109.

[Cap+11] Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and Emil-
iano Traversi. “Optimal linear arrangements using betweenness variables”. In:
Mathematical Programming Computation Volume 3.3 (2011), p. 261. URL: https://
doi.org/10.1007 /s12532-011-0027-7 .

[Chu84] Fan-Rong King Chung. “On optimal linear arrangements of trees”. In: Computers
& mathematics with applications Volume 10.1 (1984), pp. 43–60. URL: https://doi.org/
10.1016/0898-1221(84)90085-3.

[CLS11] Alberto Caprara, Adam N Letchford, and Juan-José Salazar-González. “Decorous
lower bounds for minimum linear arrangement”. In: INFORMS Journal on Com-
puting Volume 23.1 (2011), pp. 26–40. URL: https://doi.org/10.1287 /ijoc.1100.0390.

[Coh+06] Johanne Cohen, Fedor Fomin, Pinar Heggernes, Dieter Kratsch, and Gregory
Kucherov. “Optimal linear arrangement of interval graphs”. In: International
Symposium on Mathematical Foundations of Computer Science. Springer. 2006,
pp. 267–279. URL: https://doi.org/10.1007 /11821069_24.

33

https://doi.org/10.1137/0125042
https://doi.org/10.1137/0125042
https://doi.org/10.1109/FOCS.2007.40
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1007/s12532-011-0027-7
https://doi.org/10.1007/s12532-011-0027-7
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1287/ijoc.1100.0390
https://doi.org/10.1007/11821069_24

Bibliography

[Cou16] David Coudert. “A note on Integer Linear Programming formulations for linear
ordering problems on graphs”. PhD thesis. Inria; I3S; Universite Nice Sophia
Antipolis; CNRS, 2016. URL: https://hal.inria.fr/hal-01271838/.

[Dij59] Edsger W. Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische Mathematik Volume 1.1 (1959), pp. 269–271. ISSN: 0945-3245. URL:
https://doi.org/10.1007 /BF01386390.

[DKSV06] Nikhil R Devanur, Subhash A Khot, Rishi Saket, and Nisheeth K Vishnoi. “In-
tegrality gaps for sparsest cut and minimum linear arrangement problems”. In:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing.
2006, pp. 537–546. URL: https://doi.org/10.1145/1132516.1132594.

[EF17] Juan Luis Esteban and Ramon Ferrer-i-Cancho. “A correction on Shiloach’s algo-
rithm for minimum linear arrangement of trees”. In: SIAM Journal on Computing
Volume 46.3 (2017), pp. 1146–1151. URL: https://doi.org/10.1137 /15M1046289.

[Eve75] Shimon Even. “NP-completeness of several arrangement problems”. In: Technical
Report; Department of computer Science Volume 43 (1975). URL: http: //www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1975/CS/CS0043.pdf .

[FR89] Thomas A Feo and Mauricio GC Resende. “A probabilistic heuristic for a computa-
tionally di�cult set covering problem”. In: Operations research letters Volume 8.2
(1989), pp. 67–71. URL: https://doi.org/10.1016/0167-6377(89)90002-3.

[GGJK78] Michael R. Garey, Ronald L. Graham, David S. Johnson, and Donald Ervin Knuth.
“Complexity results for bandwidth minimization”. In: SIAM Journal on Applied
Mathematics Volume 34.3 (1978), pp. 477–495. URL: https://doi.org/10.1137 /0134037 .

[GH61] Ralph E. Gomory and Tien Chung Hu. “Multi-terminal network �ows”. In: Journal
of the Society for Industrial and Applied Mathematics Volume 9.4 (1961), pp. 551–
570. URL: https://doi.org/10.1137 /0109047 .

[GJ78] Michael R Garey and David S Johnson. ““strong”np-completeness results: Moti-
vation, examples, and implications”. In: Journal of the ACM (JACM) Volume 25.3
(1978), pp. 499–508. URL: https://doi.org/10.1145/322077.322090.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability. Vol. 174.
freeman San Francisco, 1979, pp. 90–92.

[GJS74] Michael R. Garey, David S. Johnson, and Larry Stockmeyer. “Some simpli�ed
NP-complete problems”. In: Proceedings of the sixth annual ACM symposium on
Theory of computing. 1974, pp. 47–63. URL: https://doi.org/10.1145/800119.803884.

[GK76] M. K. Goldberg and I. A. Klipker. “An algorithm for minimal numeration of tree
vertices”. In Russian. In: Sakharth. SSR Mecn. Akad. Moambe Volume 81.3 (1976),
pp. 553–556. URL: https://www.cs.rpi.edu/~goldberg/publications/arrang.pdf .

[Gur22] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2022. URL: https://
www.gurobi.com.

[Gus90] Dan Gus�eld. “Very simple methods for all pairs network �ow analysis”. In: SIAM
Journal on Computing Volume 19.1 (1990), pp. 143–155. URL: https://doi.org/10.1137 /
0219009.

[Har64] Lawrence Hueston Harper. “Optimal assignments of numbers to vertices”. In:
Journal of the Society for Industrial and Applied Mathematics Volume 12.1 (1964),
pp. 131–135. URL: https://doi.org/10.1137 /0112012.

34

https://hal.inria.fr/hal-01271838/
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/1132516.1132594
https://doi.org/10.1137/15M1046289
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1975/CS/CS0043.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1975/CS/CS0043.pdf
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1137/0134037
https://doi.org/10.1137/0109047
https://doi.org/10.1145/322077.322090
https://doi.org/10.1145/800119.803884
https://www.cs.rpi.edu/~goldberg/publications/arrang.pdf
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1137/0219009
https://doi.org/10.1137/0219009
https://doi.org/10.1137/0112012

[JM92] Martin Juvan and Bojan Mohar. “Optimal linear labelings and eigenvalues of
graphs”. In: Discrete Applied Mathematics Volume 36.2 (1992), pp. 153–168. URL:
https://doi.org/10.1016/0166-218X(92)90229-4.

[KH02] Yehuda Koren and David Harel. “A multi-scale algorithm for the linear arrange-
ment problem”. In: International Workshop on Graph-Theoretic Concepts in Com-
puter Science. Springer. 2002, pp. 296–309. URL: https://doi.org/10.1007 /3-540-36379-
3_26.

[MS88] Burkhard Monien and Ivan Hal Sudborough. “Min cut is NP-complete for edge
weighted trees”. In: Theoretical Computer Science Volume 58.1-3 (1988), pp. 209–
229. URL: https://doi.org/10.1016/0304-3975(88)90028-X .

[Pet03a] Jordi Petit. “Benchmark instances for the minimum linear arrangement problem”.
In: 2003. URL: https://www.cs.upc.edu/~jpetit/MinLA/Experiments/jpetit-extra.tar.gz.

[Pet03b] Jordi Petit. “Experiments on the minimum linear arrangement problem”. In: Jour-
nal of Experimental Algorithmics (JEA) Volume 8 (2003). URL: https : //doi . org/
10.1145/996546.996554.

[Pet13] Jordi Petit. “Addenda to the survey of layout problems”. In: Bulletin of EATCS
Volume 3.105 (2013).

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with
Interactive Graph Analytics and Visualization”. In: AAAI. 2015. URL: https : //
networkrepository.com.

[RH08] Habib Rostami and Jafar Habibi. “Minimum linear arrangement of chord graphs”.
In: Applied Mathematics and Computation Volume 203.1 (2008), pp. 358–367. URL:
https://doi.org/10.1016/j.amc.2008.04.051.

[RHT05] Eduardo Rodriguez-Tello, Jin-Kao Hao, and Jose Torres-Jimenez. “Memetic algo-
rithms for the MinLA problem”. In: International Conference on Artificial Evolution
(Evolution Artificielle). Springer. 2005, pp. 73–84. URL: https : //doi .org/10 .1007 /
11740698_7 .

[RHT08] Eduardo Rodriguez-Tello, Jin-Kao Hao, and Jose Torres-Jimenez. “An e�ective
two-stage simulated annealing algorithm for the minimum linear arrangement
problem”. In: Computers & Operations Research Volume 35.10 (2008), pp. 3331–3346.
URL: https://doi.org/10.1016/j.cor.2007.03.001.

[Shi79] Yossi Shiloach. “A minimum linear arrangement algorithm for undirected trees”.
In: SIAM Journal on Computing Volume 8.1 (1979), pp. 15–32. URL: https://doi.org/
10.1137 /0208002.

[SRB06] Ilya Safro, Dorit Ron, and Achi Brandt. “Graph minimum linear arrangement by
multilevel weighted edge contractions”. In: Journal of Algorithms Volume 60.1
(2006), pp. 24–41. URL: https://doi.org/10.1016/j.jalgor.2004.10.004.

[SSM15] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit:
A Tool Suite for Large-scale Complex Network Analysis. 2015. arXiv: 1403.3005
[cs.SI]. URL: https://arxiv.org/abs/1403.3005.

[TWV19] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. “From Louvain to Leiden:
guaranteeingwell-connected communities”. In: Scientific reports Volume 9.1 (2019),
pp. 1–12. URL: https://doi.org/10.1038/s41598-019-41695-z.

35

https://doi.org/10.1016/0166-218X(92)90229-4
https://doi.org/10.1007/3-540-36379-3_26
https://doi.org/10.1007/3-540-36379-3_26
https://doi.org/10.1016/0304-3975(88)90028-X
https://www.cs.upc.edu/~jpetit/MinLA/Experiments/jpetit-extra.tar.gz
https://doi.org/10.1145/996546.996554
https://doi.org/10.1145/996546.996554
https://networkrepository.com
https://networkrepository.com
https://doi.org/10.1016/j.amc.2008.04.051
https://doi.org/10.1007/11740698_7
https://doi.org/10.1007/11740698_7
https://doi.org/10.1016/j.cor.2007.03.001
https://doi.org/10.1137/0208002
https://doi.org/10.1137/0208002
https://doi.org/10.1016/j.jalgor.2004.10.004
https://arxiv.org/abs/1403.3005
https://arxiv.org/abs/1403.3005
https://arxiv.org/abs/1403.3005
https://doi.org/10.1038/s41598-019-41695-z

Bibliography

[Yan85] Mihalis Yannakakis. “A polynomial algorithm for the min-cut linear arrangement
of trees”. In: Journal of the ACM (JACM) Volume 32.4 (1985), pp. 950–988. URL:
https://doi.org/10.1145/4221.4228.

36

https://doi.org/10.1145/4221.4228

	Introduction
	Motivation
	Outline
	Related Work

	Preliminaries
	Graph Theory
	Linear Arrangements
	Gomory-Hu Tree

	Gomory-Hu Tree Bounds
	Lower Bound
	Upper Bound
	Weighted Trees
	Gomory-Hu Tree Heuristic

	Linear Program
	Decorous Lower Bounds
	Betweenness Variables
	Maximum Linear Arrangement
	Linear Program with Community Detection

	Evaluation
	Upper Bound
	Lower Bound

	Conclusion
	Future Work

	Bibliography

