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Abstract

KIRA is a recently developed routing architecture for communication networks. In the routing
tier, KIRA implements the routing protocol 𝑅2/𝐾𝑎𝑑 , which uses a virtual overlay network
to find paths between different nodes of the network. Nodes of the overlay network are
addressed by randomly assigned IDs, and the existence of virtual links between nodes heavily
depends on the chosen IDs. As a consequence, the overlay network is completely independent
of the underlying topology, which seems to be very advantageous. Experiments on different
types of networks suggest that KIRA is highly scalable and robust. Despite that each node
only has a very local view of the network (and thus, requires little memory), KIRA finds short
paths in most of the evaluated networks.
In this thesis, we analyze properties of KIRA from a graph-theoretical perspective, where

we focus on connectivity and stretch of the paths found by KIRA. We show that KIRA
implements several mechanisms that are crucial to establish connectivity in certain networks.
However, there are topologies that KIRA cannot connect with constant probability. Further, we
investigate how modifications to the algorithm may improve the ability of KIRA to establish
connectivity. To obtain a lower bound for the stretch of found paths, we construct a graph
with random ID assignment, where KIRA finds a path that has Θ(log(𝑛)) stretch with at least
constant probability.

Zusammenfassung

KIRA ist eine neu entwickelte Routingarchitektur auf Kommunikationsnetzwerken. In der
Routingschicht verwendet KIRA das Routingprotokoll 𝑅2/𝐾𝑎𝑑 , das mit Hilfe eines virtuellen
Overlay-Netzwerks Pfade zwischen verschiedenen Knoten des Netzwerks findet. Knoten des
Overlay-Netzes werden durch zufällig gewählte IDs adressiert, wobei die virtuellen Links
stark von diesen IDs abhängen. Dadurch ist das Overlay-Netzwerk vollkommen unabhängig
von der darunter liegenden Topologie, was viele Vorteile mitzubringen scheint. Experimente
auf verschiedenen Netzwerktypen legen nahe, dass KIRA skalierbar und robust ist. Obwohl
jeder Knoten nur eine sehr lokale Sicht auf das Netzwerk hat (wodurch KIRA nur wenig
Speicher benötigt), findet KIRA kurze Pfade in den meisten evaluierten Netzwerken.
In dieser Arbeit analysieren wir Eigenschaften von KIRA aus einer graphtheoretischen

Perspektive. Hierbei beschäftigen wir uns mit der Konnektivität und dem Stretch von Pfaden,
die durch KIRA gefunden werden. Wir zeigen, dass KIRA einige Mechanismen implementiert,
die für manche Netzwerke notwendig sind, um Konnektivität herzustellen. Allerdings gibt es
Topologien, für die KIRA mit konstanter Wahrscheinlichkeit keine Konnektivität herstellen
kann. Außerdem untersuchen wir, wie sich verschiedene Änderungen am Algorithmus auf
die Konnektivität auswirken. Für eine untere Schranke zum Stretch der gefundenen Pfade
konstruieren wir einen Graphen mit zufällig gewählten IDs, auf dem KIRA mit mindestens
konstanter Wahrscheinlichkeit einen Pfad mit Θ(log(𝑛)) Stretch findet.
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1 Introduction

Communication networks today get increasingly larger and more dynamic. With this, the
demand for faster and more robust routing protocols on networks grows. One common
approach is to separate the view on the network from its underlying topology so that a
change in the physical network does not affect the virtual network. This is the idea of many
Distributed Hash Tables (DHT), which are mostly used to store resources in a decentralized
manner, for example in a peer-to-peer network. To locate the node of the network that stores
some specific resource, the idea is to repeatedly get “closer” to it in the virtual network.
Distances in the virtual network are usually independent of the physical network and are
defined differently for different implementations of DHTs. The most widely used DHT is
Kademlia, which was introduced in 2002 by Maymounkov and Mazières [MM02]. Nodes are
uniquely addressed by IDs, which are chosen randomly for each node. Two IDs are closer to
each other if the bitwise XOR interpreted as an integer is smaller.
Although DHTs are not originally designed for routing in networks, many routing pro-

tocols employ ideas that are based on DHTs. KIRA (Kademlia-directed ID-based Routing
Architecture) is a routing architecture for networks based on Kademlia that was developed in
2022 by Bless et al. [BZDH22]. It consists of a routing tier and a forwarding tier, where the
routing tier is responsible for establishing connectivity in the control plane and for finding
paths between nodes of the network. The forwarding tier forwards data packets according
to the paths determined by the routing tier. In this thesis, we only focus on the routing tier,
which implements the routing protocol 𝑅2/𝐾𝑎𝑑 . This protocol is based on R/Kademlia, a
recursive variant of Kademlia that was introduced by Heep [Hee10]. As for Kademlia, each
node has a randomly chosen ID and a node is found by recursively routing closer to its ID.
An advantage of KIRA is that it is zero-touch, which means that nodes do not have to be
manually configured if they join the network. In particular, routing tables, in which each
node stores its virtual neighbors, are initially empty and filled over time. As these routing
tables are limited in size, nodes only have a local view of the network, which makes KIRA
very space efficient. Further, KIRA seems to be highly scalable and robust against both node
and link failures. Experiments suggest that KIRA can establish connectivity in many cases
and is able to find reasonably short paths between different nodes of the network [BZDH22].
On the evaluated network types, KIRA performs well, but it is interesting to see if this is

also transferred to other network types and maybe even arbitrary graphs. Especially if KIRA
aims to be standardized at some point in the future, guarantees on the quality of the algorithm
for arbitrary graphs would be very useful. Although Kademlia and other Kademlia-based
routing protocols have been extensively studied using simulations, there are only few works
that analyze them from a theoretical perspective. In this thesis, we aim to understand certain
properties of KIRA better, mainly focusing on the two aspects connectivity and the length of
found paths. Both aspects are essential for most routing protocols, especially being able to
establish connectivity is a minimum requirement for any routing protocol. After introducing
basic concepts used in this thesis and describing the functionality of KIRA in detail in Chapter 2,
we study how and if KIRA can establish connectivity in Chapter 3. We show in Section 3.2 that
there are graphs which are not connectable by KIRA. In Section 3.3, we analyze how different
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1 Introduction

mechanisms implemented in KIRA contribute to establishing connectivity in a network.
Further, we discuss in Section 3.4 how some modified versions of KIRA can connect both
arbitrary graphs in certain scenarios and paths as a restricted graph class.

Finding short paths is also an important quality of routing protocols, as shorter paths can
reduce network traffic and delay, among other advantages. Chapter 4 deals with the length of
paths between different nodes found by KIRA, where we provide bounds for both worst case
ID assignments (Section 4.2) and random ID assignments (Section 4.3).

1.1 Related Work

The routing protocol 𝑅2/𝐾𝑎𝑑 that is implemented in the routing tier of KIRA is based on
Kademlia. Kademlia is a peer-to-peer Distributed Hash Table (DHT) and was introduced in
2002 by Maymounkov and Mazières [MM02]. DHTs are used to store data in a decentralized
manner, for example to facilitate file sharing in peer-to-peer networks. Like usual hash
tables, data objects can be retrieved and stored using their corresponding keys. However, in a
distributed hash table, each node is responsible for storing different parts of the data, where
the key of an object determines its storage location in the network. In other words, DHTs
define a mapping of objects to nodes in the network. To retrieve data, the storage location
must first be found. To locate nodes in the network, Kademlia sets up an overlay network on
top of the actual network. In the overlay network, each node is uniquely identified by an ID
that is chosen uniformly at random. Additionally, Kademlia defines an ID-based metric in the
overlay graph which uses the XOR-operator. Formally, the distance between two IDs 𝑥 and 𝑦
is the integer interpretation of the bitwise XOR of the two IDs.

The routing algorithm of KIRA is based on the algorithm of Kademlia for locating IDs in the
network. Each node of the network stores its neighbors of the overlay network in its routing
table. The neighbors of a node are not distributed evenly across the ID space, instead, a node
has more neighbors in closer distance ranges than in ranges that are further away in the ID
space. If a node requests a path to another node with a certain ID, it iteratively forwards the
request to nodes that are closer to the target in the ID space until the target is found, or no
closer node is known. A more formal and detailed description of the algorithm as it is used
for KIRA can be found in Section 2.3. Note that Kademlia simply assumes connectivity of
the underlying network and is only responsible for finding a path in the overlay network.
How the paths in the underlay graph between different nodes are found, is not specified in
the protocol. As a consequence, it depends on a routing protocol that additionally provides
connectivity in the underlay graph.
Kademlia is used in many networks, and it has been extensively analyzed using measure-

ments and simulations [SR06 | OHKY10 | BS07]. For other implementations of DHTs such as
Chord [Sto+03] and CAN [Rat+01], there are analytical approaches to study resilience and
routing distances in networks [LCW05 |WXZ05]. However, there is only a limited number
of works that study Kademlia from a theoretical perspective. In the original Kademlia paper,
Maymounkov and Mazières [MM02] state that Kademlia is able to find a path between any
pair of nodes in at most log(𝑛) steps, where 𝑛 is the number of vertices in the graph, but they
do not provide a rigorous proof. In 2013, Cai and Devroye [CD13] analyzed the number of
steps to locate a given ID by interpreting a network with its IDs as a random graph. They
introduced two different models in their work, namely a deterministic ID model and a random
ID model. In the deterministic ID model, the IDs are fixed and not randomly chosen. Note
that even though the IDs are fixed, the number of needed steps is still a random variable since
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1.1 Related Work

they assumed that the neighbors of a vertex are randomly chosen. For this model, they proved
that the worst expected number of steps to route from a certain node to another node is
𝑐 · ln(𝑛) for a constant 𝑐 ≤ 1/ln(2), thereby decreasing the upper bound given in the original
Kademlia paper. Further, they obtained similar results for a fixed requesting vertex. In the
random model, the IDs of the nodes are assumed to be chosen uniformly at random. Similar
to the deterministic model, they showed that 𝑐 · ln(𝑛) steps are sufficient to locate a node in
the network with high probability [CD15]. In both models, the constant 𝑐 only depends on 𝑘 ,
a parameter that is fixed for a Kademlia-system.

However, Cai and Devroye only considered worst cases for the expected number of needed
steps to locate a node in the overlay network. This gap is targeted by Roos et al. [RSS13],
who introduced a theoretical framework to determine the hop count distribution of a given
Kademlia-system without the need of simulations. They modeled routing in a Kademlia-
system with certain given parameters as aMarkov chain, where a state is a vector that consists
of the contacted vertices that are closest to the target. They proposed an algorithm that
provides both lower and upper bounds on the hop count distribution of a given Kademlia-
system. Further, they proved that computing such a hop count distribution is efficient in
both space and time. Although they assumed a network in a steady state (with no failures)
for their initial model, they additionally introduced an extended model that also considers
non-responding nodes and incomplete routing tables. Based on the results from this model,
Salah et al. [SRS14a | SRS14b] suggest a new neighbor selection strategy to diversify the IDs
of the neighbors, aiming to improve lookup performance of Kademlia.

The previously mentioned works mostly consider the connectivity of the overlay graph as
given and assume that each node in the network knows sufficiently many neighbors in the
overlay network. However, failing nodes and links, as well as new nodes joining the network,
may lead to a change in the connectivity of a Kademlia-system. Heck et al. [HKW17] analyze
the connection resilience of the overlay in the Kademlia against attackers and failures. They
define the network connectivity as the minimum number of node-disjoint paths between any
pair of nodes in the connectivity graph. In the connectivity graph, a directed edge (𝑢, 𝑣) exists if
node 𝑢 knows 𝑣 as a neighbor in the overlay. For different simulated scenarios, they evaluated
how the network connectivity of the overlay graph changes over time. Further, they state that
a Kademlia-system with network connectivity 𝜅 is still connected (i.e., Kademlia is able to find
a path between any two nodes) if at most 𝜅 −1 nodes are compromised. However, it is possible
that there are two nodes between which Kademlia cannot find a route, even though they are
connected in the connectivity graph. Kong et al. [KBR08] take this problem into account
and introduce the reachable component method as a framework to analyze performances of
different DHTs. This is used to determine the expected number of nodes that are reachable
from a specific source using Kademlia if nodes are compromised with a certain probability.
Apart from KIRA, there are several other routing protocols that are based on DHTs and

which rely on a Kademlia-like overlay network such as UIP [For04], Virtual Ring Routing
[Cae+06] and VIRO [JCZ11]. These routing protocols mainly differ in the topology of the
overlay graph and how paths between consecutive overlay hops are found. For example,
Virtual Ring Routing sets up an overlay graph where vertices are arranged in a cyclic fashion
and connected by virtual links. Malkhi et al. [Mal+09] analyzed the expected path length on
2-dimensional grids and proved that it is at most log(𝑛) · diam(𝐺), where diam(𝐺) denotes
the diameter of a graph 𝐺 . For 𝑑-dimensional grids, they further gave a lower bound for the
expected path length. As for Kademlia, there are very few works that analyze the routing
algorithms previously mentioned from a theoretical perspective.
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2 Preliminaries

In this chapter, we introduce some basic definitions and notations for graph and probability
theory that are used throughout this thesis. We mostly follow the notation for graph and
probability theory by Diestel [Die12] and Mitzenmacher et al. [MU05], respectively. Further,
we give a detailed description of KIRA as we use it in this thesis.

2.1 Graph Theory

A graph 𝐺 = (𝑉 , 𝐸) consists of a vertex set 𝑉 and an edge set 𝐸 ⊆ 𝑉 ×𝑉 . We use 𝑉 (𝐺) and
𝐸 (𝐺) to denote the vertex and edge set of a graph 𝐺 , respectively. We differ between directed
and undirected graphs. In a directed graph, an edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) is a tuple and goes from
𝑢 to 𝑣 , whereas in an undirected graph, 𝐸 (𝐺) is symmetric, i.e., (𝑢, 𝑣) ∈ 𝐸 (𝐺) if and only if
(𝑣,𝑢) ∈ 𝐸 (𝐺). For both kinds, we denote an edge from 𝑢 to 𝑣 by 𝑢𝑣 . Further, we assume that
graphs are simple, i.e., there is at most one edge between any two distinct vertices, and the
graph contains no self-loops. Two vertices 𝑢 and 𝑣 are adjacent if they are connected by an
edge 𝑢𝑣 ∈ 𝐸. The neighborhood 𝑁 (𝑣) of a vertex 𝑣 ∈ 𝑉 (𝐺) denotes the set of vertices that are
adjacent to 𝑣 , i.e., it is 𝑁 (𝑣) = {𝑢 ∈ 𝑉 (𝐺) | 𝑣𝑢 ∈ 𝐸 (𝐺)}.
A path is a sequence of vertices 𝑃 = (𝑣1, . . . , 𝑣𝑝) with 𝑝 ∈ ℕ where consecutive vertices

are adjacent to each other, i.e., 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 (𝐺) for all 𝑖 ∈ {1, . . . , 𝑝 − 1}. The vertices 𝑣1 and 𝑣𝑝
are called the endpoints of path 𝑃 . The length of a path is the number of edges it consists of,
which is equal to 𝑝 − 1. If not stated otherwise, we assume that paths are simple, i.e., vertices
in a path are pairwise disjoint. A vertex 𝑢 ∈ 𝑉 (𝐺) is connected to some vertex 𝑣 ∈ 𝑉 (𝐺) if
there exists a path in𝐺 with endpoints 𝑢 and 𝑣 . If every pair of vertices (𝑢, 𝑣) ∈ 𝑉 (𝐺) ×𝑉 (𝐺)
is connected, we say that 𝐺 is connected. A directed graph with this property is also called
strongly connected. If vertex 𝑢 is connected to vertex 𝑣 , then the length of the shortest path
from𝑢 to 𝑣 is the distance dist(𝑢, 𝑣) between𝑢 and 𝑣 . The diameter of an undirected, connected
graph is the greatest distance between any two vertices.

2.2 Probability Theory

A sample space Ω is the set of all possible outcomes, which we call elementary events. The
union bound is often helpful to determine a lower bound for the probability of the union of
multiple events. For a finite or countably number of events 𝐸1, 𝐸2, . . ., it is

Pr [𝐸1 ∪ 𝐸2 ∪ . . .] ≤
∑︁
𝑖=1

Pr [𝐸𝑖] . (2.1)

For mutually disjoint events, equality holds in the equation above. Two events 𝐴, 𝐵 ∈ Ω
are independent of each other if and only if Pr [𝐴 ∩ 𝐵] = Pr [𝐴] · Pr [𝐵]. We denote the
conditional probability that some event 𝐴 occurs given that event 𝐵 occurs by Pr [𝐴 | 𝐵]. For
any two events 𝐴 and 𝐵 with Pr [𝐵] > 0, it is Pr [𝐴 | 𝐵] · Pr [𝐵] = Pr [𝐴 ∩ 𝐵]. Let the events
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2 Preliminaries

𝐸1, . . . , 𝐸𝑛 be a partition of the sample space Ω, i.e., 𝐸1 ∪ . . . ∪ 𝐸𝑛 = Ω and 𝐸𝑖 ∩ 𝐸 𝑗 = ∅ for all
𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 ≠ 𝑗 . The law of total probability states that the probability for some
event 𝐵 can be rewritten as

Pr [𝐵] =
𝑛∑︁
𝑖=1

Pr [𝐵 ∩ 𝐸𝑖] =
𝑛∑︁
𝑖=1

Pr [𝐵 | 𝐸𝑖] · Pr [𝐸𝑖] (2.2)

using the formula for conditional probability. A random variable is a function 𝑋 : Ω → ℝ,
where Ω ≠ ∅ is a sample space. The expected value of a discrete random variable 𝑋 : Ω → ℕ

is defined as
𝔼 [𝑋 ] =

∑︁
𝑘∈ℕ

Pr [𝑋 = 𝑘] · 𝑘.

Expectations are linear, i.e., for random variables 𝑋1, . . . , 𝑋𝑛 it is

𝔼

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
=

𝑛∑︁
𝑖=1

𝔼 [𝑋𝑖] ,

regardless of whether the random variables are independent or not. Similarly to conditional
probability, we define conditional expectation. For two random variables 𝑌 : Ω → ℕ and
𝑍 : Ω → ℕ, it is

𝔼 [𝑌 | 𝑍 = 𝑧] =
∑︁
𝑦∈ℕ

𝑦 · Pr [𝑌 = 𝑦 | 𝑍 = 𝑧] .

We use 𝔼 [𝑌 | 𝑍 ] to denote a random variable that depends on 𝑍 with value 𝔼 [𝑌 | 𝑍 = 𝑧]
for 𝑍 = 𝑧. It is often useful to bound the probability that the value of a random variable is
far from its expected value. The following theorem is a much used variation of the original
Chernoff bounds [Che52] that gives a bound for the multiplicative lower and upper tail.

Theorem 2.1 (Chernoff Bounds): Let𝑋1, . . . , 𝑋𝑛 be independent random variables taking values
in {0, 1}. Let 𝑋 B ∑𝑛

𝑖=1𝑋𝑖 be the sum of the random variables and 𝜇 B 𝔼 [𝑋 ] the expected
value of 𝑋 . Then, for any 𝛼 ≥ 0, we have

Pr [𝑋 ≤ (1 − 𝛼) · 𝜇] ≤ 𝑒
−𝛼2 ·𝜇

2 (2.3)

and
Pr [𝑋 ≥ (1 + 𝛼) · 𝜇] ≤ 𝑒

−𝛼2 ·𝜇
2+𝛼 . (2.4)

2.3 Introduction to KIRA

In this section, we introduce KIRA [BZDH22] and its variants as we use it in this thesis. Note
that in this thesis, log(𝑥) denotes the logarithm to the base of 2, whereas ln(𝑥) denotes the
natural logarithm of 𝑥 . KIRA has two different views on the same network: The underlay
graph represents the actual network, where edges model physical links between two nodes.
The overlay graph consists of the same vertices as the underlay graph, but edges represent
logical connections. An edge between two vertices 𝑢 and 𝑣 in the overlay graph corresponds
to a simple, unique path in the underlay graph between the same vertices, which is stored
along with the edge. In this thesis, the underlay graph is always an undirected graph, whereas
the overlay graph is always directed. The overlay graph is initially empty, and vertices may
add edges by discovering paths to other vertices in the underlay graph. Newly discovered
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2.3 Introduction to KIRA

Figure 2.1: The underlay graph (in the lower half) represents the actual network, while the
overlay graph (in the upper half) is a virtualized view on the graph constructed by KIRA. In
this example, a path is found in the overlay graph from the green to the red vertex that goes
over the overlay hops in orange. Each edge of the path corresponds to a unique path in the
underlay graph.

vertices are then stored in the routing table of each vertex. The main idea of KIRA is to find a
path in the overlay graph first, and then, to obtain the corresponding path in the underlay
graph. An example can be seen in Figure 2.1, where a path is found in the overlay graph
between the red and the green vertex, which goes over two overlay hops. In the underlay
graph, each overlay edge of the found path is unpacked to the corresponding underlay path.

ID Space In the underlay graph, KIRA uses the usual distance metric on graphs, i.e., two
vertices are closer in the underlay graph if the shortest path between them is shorter. In the
overlay graph, IDs are used to define distances. Let 𝐵 ∈ ℕ be the number of bits in each ID.
Then, the ID space {0, 1}𝐵 consists of 𝑁 B 2𝐵 distinct IDs. Initially, each vertex chooses its ID
from the ID space independently and uniformly at random. We choose the size of the ID space
large enough such that it is reasonable to assume that each vertex can be uniquely identified
by its ID. This is closely related to the birthday problem which asks how likely it is that from
a set of 𝑛 randomly chosen people, two share the same birthday.

Lemma 2.2: [STKT06] Suppose that there are 𝑞 balls and𝑚 buckets, and a bucket is chosen
uniformly at random for each ball. The probability that each bucket only contains one ball is at
least

1 − 𝑞 · (𝑞 − 1)
2𝑚

.

With 𝑞 B 𝑛 and𝑚 B 𝑁 , where 𝑛 is the number of vertices, this lemma implies that if we
choose 𝑁 ∈ 𝜔 (𝑛2), then IDs are unique with high probability. In this thesis, we assume that
the ID space is sufficiently large, for example 𝑁 B 𝑛3.

The function ID : 𝑉 (𝐺) → {0, 1}𝐵 returns the ID of each vertex. As for Kademlia, two IDs
𝑥 and 𝑦 are closer to each other in the ID space if they share a longer prefix. Formally, we
define the prefix bit distance dist𝑝 (𝑥,𝑦) B 𝐵 − lcp(𝑥,𝑦), where lcp(𝑥,𝑦) denotes the length of
the longest common prefix of 𝑥 and 𝑦. For the prefix bit distance of two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺),
we use the same notation dist𝑝 (𝑢, 𝑣) B dist𝑝 (ID(𝑢), ID(𝑣)). As this operation is symmetric,
positive definite and satisfies the triangular inequality, it indeed defines a metric on the ID
space. Note that the XOR metric used by Kademlia is finer than the prefix bit distance.
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0 1

0 1 0 1
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depth 2

depth 1

depth 0

Figure 2.2: A trie with 𝐵 = 3, where each vertex in the network corresponds to a leaf in the
trie. Note that since not all IDs of the ID space are assigned, not every leaf has a corresponding
vertex. The boxes represent the buckets of different depths in which contacts of the green
vertex are stored. The overlay graph consists of directed edges between leaves. In this example,
KIRA routes from the vertex with ID 001 to the vertex with ID 100 via the IDs 111, 101, and
100 by correcting bits one by one, starting with the most significant bit.

The overlay neighbors of a vertex 𝑣 are stored in its routing table, where they are sorted by
their prefix bit distance to 𝑣 into 𝐵 buckets of equal size. Roughly speaking, the existence of an
edge between two vertices 𝑢 and 𝑣 in the overlay graph depends on the prefix bit distance of
the respective IDs. More specifically, such an edge exists with higher probability if the IDs are
closer to each other in the ID space, i.e., each vertex is supposed to have more neighbors in the
overlay graph that are close in the ID space. Note that this is independent of the underlying
topology and only depends on the chosen IDs.

We obtain another view on the ID space by interpreting IDs as leaves of a binary trie with
depth 𝐵. Tries are data structures that are usually used to store and process strings. A binary
trie is a rooted, balanced tree, where each inner vertex has exactly two children, which are
labeled with 0 and 1, respectively. By following a path from the root to a leaf, we obtain the
ID that corresponds to the leaf. The prefix bit distance of two leaves is 𝐵 − 𝑑 , where 𝑑 is the
depth of the lowest common ancestor. The lowest common ancestor is defined to be the root of
the smallest subtrie that contains both leaves. Each vertex in the original graph corresponds
to a leaf, and edges in the overlay graph connect leaves of the trie.

The idea of the routing algorithm is to find a requested ID in the overlay graph by greedily
decreasing the prefix bit distance to the target at each overlay hop. In the trie, this means
that a request is forwarded to a leaf whose lowest common ancestor with the requested ID is
deeper than for the current leaf. At each overlay hop, the request gets closer to the requested
ID, in the sense that the size of the smallest subtrie that contains both the current overlay hop
and the requested ID decreases. A sketch of a trie with 𝐵 = 3 can be seen in Figure 2.2.

It is possible that in some situations, there are multiple candidates for the next overlay hop.
For instance, this may happen if several vertices would improve the prefix bit distance by
the same number of bits. To uniquely choose the next overlay hop, a tie-breaking metric is

8



2.3 Introduction to KIRA

used. The bit distance between two IDs 𝑥 and 𝑦 is defined as dist𝑏 (𝑥,𝑦) = 𝑥 ⊕ 𝑦, where the
operator ⊕ denotes the bitwise exclusive or (XOR). Note that dist𝑏 (𝑤, 𝑥) > dist𝑏 (𝑦, 𝑧) holds
for IDs 𝑤, 𝑥,𝑦 and 𝑧 if dist𝑝 (𝑤, 𝑥) > dist𝑝 (𝑦, 𝑧). Further, for an ID 𝑥 and each bit distance
𝑑 ∈ {0, . . . , 2𝐵}, there is exactly one ID 𝑦 with dist𝑏 (𝑥,𝑦) = 𝑑 .

Routing Table The neighbors in the overlay graph of a vertex are called contacts, which are
managed by each vertex in its routing table. Additionally, a corresponding underlay path is
stored for each contact such that each vertex knows how to reach its contacts in the underlay
graph. Contacts of a vertex are sorted by their prefix bit distance to the vertex in buckets of
different depths. Each routing table consists of 𝐵 buckets, where contacts in the bucket of
depth 𝑖 ∈ {0, . . . , 𝐵 − 1} of some vertex 𝑣 have prefix bit distance 𝐵 − 𝑖 to 𝑣 . Thus, for every
vertex 𝑣 and every ID 𝑥 , there is exactly one bucket in the routing table of 𝑣 in which a vertex
with ID 𝑥 would be stored in. We denote this bucket by 𝐵𝑣 (𝑥). Each bucket can only store a
fixed number 𝑘 of contacts, which we assume to be the same for all vertices and buckets. We
further assume that 𝑘 is independent of both the size of the ID space and the size of the graph
if not stated otherwise. However, at some points, we use 𝑘 ∈ Θ(log(𝑛)) instead of a constant.
This increases the space needed to store a routing table by a factor of Θ(log(𝑛)). In practice,
the number of contacts that can be stored in a bucket may vary for each vertex independently
to improve performance. In the implementation of KIRA, 20 is usually used as a default value
for 𝑘 . Initially, the routing tables are empty, and they are filled with contacts over time. In the
beginning, each vertex discovers its 3-hop-vicinity, which consists of the vertices that have
distance at most 3 in the underlay graph. All vertices in the 3-hop-vicinity of a vertex are
then added to its routing table, with corresponding underlay paths. Routing table entries are
continuously added, updated and replaced using certain mechanisms and strategies, which
are explained in the Subsections 2.3.1, 2.3.2, and 2.3.3.

Path Request Like Kademlia, KIRA uses greedy routing by recursively forwarding a request
to a contact that improves the bit distance to the requested ID in the ID space. The high level
idea is to route to the requested ID by “correcting” bits in the ID of the requesting vertex one
by one, starting with the most significant bit, until the requested ID is reached. Assume that
some vertex 𝑣 requests ID 𝑥 . Vertex 𝑣 sends the request to a contact in its routing table whose
ID is bitwise closer to 𝑥 than its own ID. It first tries to improve the prefix bit distance to the
requested ID if possible. The contacts that are prefix-wise closer to 𝑥 than 𝑣 are exactly the
contacts that are stored in the bucket 𝐵𝑣 (𝑥) since this is the bucket that stores all contacts of
𝑣 which share a longer prefix with 𝑥 than 𝑣 . If this bucket is not empty, 𝑣 chooses one contact
using a pre-defined routing strategy as the next overlay hop. If the bucket is empty, the prefix
bit distance to the requested ID cannot be improved. In this case, 𝑣 uses the XOR metric as
a tie-breaker and selects the contact that is bitwise closest to the requested ID as the next
overlay hop. The current overlay hop 𝑣 then forwards the request to the chosen contact via
the corresponding underlay path that is stored in the routing table entry. The next overlay
hop then repeats this procedure and again sends the request to a contact that is bitwise closer
to the requested ID. The taken underlay path of the request so far is forwarded along with the
request and appended at each overlay hop. An example of the path of such a request can be
seen in Figure 2.2, where the algorithm routes from ID 011 over the IDs 111 and 101 to the ID
100, correcting bits one by one.
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Termination of Request If an overlay hop does not know a contact that is bitwise closer
to the requested ID, the request terminates. This is naturally the case if the current overlay
hop is assigned the requested ID, but it may also happen if the requested ID is not assigned to
any vertex in the graph or if the algorithm could not find the requested ID. The final overlay
hop then sends information back to the source of the request using the reversed underlay
path. The information at least contains the path from the source to the final underlay hop.

2.3.1 Routing Strategies

A routing strategy is needed to uniquely select the next overlay hop if there are several
candidates, which is the case if there are multiple contacts that improve the prefix bit distance.
If there are no contacts that improve the prefix distance, the XOR metric is used to select the
contact that is bitwise closest to the requested ID. In this thesis, we assume Proximity Routing
is used if not stated otherwise. This is also the routing strategy used by the original algorithm.

Proximity Routing This strategy always chooses a contact with the shortest corresponding
underlay path among the candidates which improve the prefix bit distance. If there are again
multiple possible contacts, the XOR metric is used to uniquely select the candidate that is
bitwise closest to the requested ID. This strategy is motivated by the desire to keep the
underlay path to the target as short as possible by choosing a contact as the next overlay hop
that is “close by” in the underlay graph.

ID Routing This strategy is not used by KIRA but is the usual routing strategy in Kademlia.
It always chooses the (unique) contact that is bitwise closest to the target ID. This attempts
to minimize the number of overlay hops on the path to the target since it tries to improve
prefix-wise as much as possible. Further, the chosen contact from a bucket depends on the
requested ID, which is not the case when using Proximity Routing. However, other than with
Proximity Routing, the underlay paths between consecutive overlay hops might be longer.

2.3.2 Finding New Contacts

To establish connectivity, it is important to fill and improve routing tables. KIRA implements
differentmechanisms to find new vertices. Self-requests and probing describe different variants
of requests, whereas closest-𝑘-responses and path overhearing describe how vertices can
learn new vertices using responses to requests. In the original variant of KIRA, self-requests,
random probing, closest-𝑘-responses and path overhearing is used.

Self-Requests The goal of each vertex is to fill its routing table as much as possible. Since
fewer vertices belong to a deeper bucket of a vertex 𝑣 , it is less likely that such a vertex is
discovered by 𝑣 and added as a contact. As a consequence, it seems that deeper buckets are
harder to fill. To counter this issue, KIRA implements self-requests, where vertices repeatedly
request their own IDs to find their closest neighbors in the ID space. Since the source equals
the target in a self-request, the source itself is ignored at each overlay hop. The first overlay
hop of a self-request is the bitwise closest contact of the requesting vertex. Necessarily, it is
always bitwise further away from the target than the source. However, since after the first
overlay hop, the bit distance to the requested ID strictly decreases at each overlay hop, a
self-request always terminates.
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Random Probing The goal of random probing is to discover new areas of the graph.
In addition to vertices requesting their own IDs, vertices are also able to request random
IDs. For random probing, each vertex requests randomly chosen IDs to fill its buckets and
to test for connectivity in a later stage. Each ID of the ID space is chosen with the same
probability. Vertices handle such a random probe exactly like a usual path request. In the
original algorithm, each vertex repeatedly sends random probes with a fixed frequency.

Deterministic Probing Instead of probing randomly, vertices may also probe certain IDs
deterministically by requesting a specific ID. For deterministic probing, it is important to be
aware of the degree of knowledge vertices have. Originally, vertices have a local view of the
network and therefore can only choose specific IDs based on their routing tables for probing.
For instance, vertices can probe IDs that belong to buckets that are empty at the time of the
probe without having to know more than their own routing table. However, at some points
we assume that vertices know more about the graph than the information stored in their
routing tables, and that they can request specific IDs arbitrarily. Since this is not realistic, it
only serves a theoretical purpose, but is not useful in practice.

Via-Probing Via-probing is an enhancement of random and deterministic probing. With
via-probing, a vertex that requests an ID can arbitrarily choose a contact to be the first overlay
hop. Similar to self-requests, the first overlay hop might be bitwise further away from the
requested ID than the source of the request, and the source is ignored at each overlay hop.

Closest-𝒌-Response In DHTs, objects are stored at nodes whose IDs are closest to the
object ID in the ID space. Thus, if an object ID is requested, the nodes with the closest IDs
need to be found. KIRA, as it is implemented, differs between exact and inexact requests.
Suppose that a request for ID 𝑥 terminates at some vertex 𝑣 . For an exact request, the response
contains just the vertex 𝑣 if it has ID 𝑥 , otherwise an error is sent back to the source of the
request since the requested ID was not found. For an inexact request, 𝑣 sends back 𝑘 contacts
from its routing table that are bitwise closest to the requested ID 𝑥 . In this thesis, we assume
that all requests are inexact and that the final overlay hop of some request always responds
with 𝑘 contacts that are bitwise closest to the requested ID. If the final overlay hop does not
know 𝑘 contacts, it responds with all its contacts.

Path Overhearing With path overhearing, vertices can use any information which they
forward in the underlay graph to update their routing tables. This information includes all
vertices in the underlay path of the request and possibly more vertices from the response if
closest-𝑘-response is used. Path overhearing may be used to learn new contacts as well as to
improve existing entries in the routing table.

2.3.3 Storing New Contacts

Suppose that a vertex 𝑣 learns of a new vertex 𝑢. If the bucket 𝐵𝑣 (𝑢) is not full yet and if it
does not already contain 𝑢, then 𝑢 is simply added to the bucket along with a corresponding
underlay path from 𝑣 to 𝑢. However, if 𝐵𝑣 (𝑢) is already full, then 𝑣 may replace another
contact in 𝐵𝑣 (𝑢) with 𝑢 according to some replacement strategy. If no replacement strategy is
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used, then 𝑢 is discarded. The default replacement strategy used in this thesis is Proximity
Neighbor Selection, which is also the strategy used by the original algorithm. Further, newly
learned information can be used to improve existing entries in routing tables, for instance, if
a shortcut to a contact is learned.

Proximity Neighbor Selection This strategy keeps the contacts with the shorter cor-
responding underlay path. Like the Proximity Routing strategy, this aims to minimize the
underlay path lengths between two overlay hops. For tie-breaking, the XOR metric is used.

Propagation Propagation can be used instead of a replacement strategy and ensures that
newly learned vertices can still be reached even if they are not stored in the own routing table.
Suppose a vertex 𝑣 learns of a new vertex 𝑢, but 𝐵𝑣 (𝑢) is already full. Further, let𝑤 ∈ 𝐵𝑣 (𝑢)
be the contact to which 𝑣 would forward a request with target 𝑢. Note that𝑤 depends on the
routing strategy that is used. Then, 𝑣 propagates 𝑢 and a corresponding underlay path to 𝑢 to
𝑤 , which is now responsible for storing 𝑢 as a contact. The underlay path to 𝑢 is appended
appropriately after every propagation. This step is repeated recursively until 𝑢 is propagated
to a vertex 𝑧 that already knows 𝑢 or where 𝐵𝑧 (𝑢) is not full. In the latter case, the vertex 𝑧
stores 𝑢 as a contact with a corresponding underlay path. Note that this always terminates.
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In this chapter, we analyze the ability of KIRA to establish connectivity in the constructed
overlay graph and to find a path between every pair of vertices. We first introduce the concept
of KIRA-connectivity and study general properties of it. Then, we analyze KIRA with the
originally implemented mechanisms. We show that there are graphs with constant diameter
that are not KIRA-connectable with constant probability. For larger graphs, we prove that
the connectivity mechanisms random probing and path overhearing are needed for certain
instances to be able to establish connectivity. Further, we show that by slightly modifying
KIRA, it is able to establish connectivity in specific scenarios, for instance, if a new vertex
joins a KIRA-connected network. We end this chapter with studying paths specifically, for
which we propose a strategy to establish KIRA-connectivity with high probability.

As we are often only interested in the most significant bits in the ID of a vertex, we simplify
the notation by omitting irrelevant suffixes. More specifically, we say that some vertex 𝑣 is a
p-vertex for some bit string p if p is a prefix of ID(𝑣). Further, we use the canonical notation
for the concatenation of two bit strings. For example, for p = 10, a p1-vertex is a vertex whose
ID starts with the prefix 101.

3.1 Properties of KIRA-Connectivity

For KIRA to find a path between all pairs of vertices, it is not sufficient to have a strongly
connected overlay graph in the graph-theoretical sense since KIRA is only able to find paths
in the overlay graph where the bit distance to the target is decreased at each overlay hop.
Thus, we need a stronger concept of connectivity. Let 𝐺 be a graph and G the state of the
overlay graph with an ID distribution. We say that a vertex 𝑢 ∈ 𝑉 (𝐺) is KIRA-connected to a
vertex 𝑣 ∈ 𝑉 (𝐺) if KIRA finds an overlay path to 𝑣 when 𝑢 requests ID(𝑣). Further, the graph
𝐺 is KIRA-connected if every pair of vertices is KIRA-connected to each other, i.e., if KIRA
finds an overlay path between every pair of vertices. In this case, KIRA is always able to find
the vertex that is bitwise closest to some requested ID.

KIRA-connectivity behaves quite differently compared to the usual connectivity of graphs.
For instance, it is neither symmetric nor transitive. More formally, a relationR ⊆ 𝑉 (𝐺) ×𝑉 (𝐺)
is symmetric if (𝑢, 𝑣) ∈ R implies (𝑣,𝑢) ∈ R. It is transitive if for (𝑢, 𝑣) ∈ R and (𝑣,𝑤) ∈ R,
(𝑢,𝑤) is in R as well. Moreover, adding new edges to the overlay graph (i.e., a vertex
learns a new contact) can destroy the KIRA-connectivity for other vertices which were KIRA-
connected before. On a similar note, deleting edges in the overlay graph (if they are not
replaced) may establish KIRA-connectivity between some previously disconnected vertices.
Edges are deleted if some links in the network fail, or if the corresponding contact in the
overlay graph is non-responsive. The following lemma summarizes these properties.

Lemma 3.1: KIRA-connectivity is not symmetric and not transitive in general. Further, KIRA-
connectivity is not monotone under edge deletion.
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0 1

𝑣1 𝑣6𝑣2𝑣3𝑣4𝑣5

Figure 3.1: An example of an overlay graph, where KIRA-connectivity is neither symmetric
nor transitive. Leaves of the trie are vertices, and the black edges are edges in the underlay
graph. For the overlay graph, we assume that two vertices are adjacent if they have distance
at most 3. A request from 𝑣6 to 𝑣2 may follow the green path, while a request from 𝑣2 to 𝑣1 or
𝑣6 follows the orange path. However, 𝑣1 is unable to find 𝑣6.

Proof. We prove each part of the lemma by giving an example of an overlay graph where
KIRA-connectivity is neither symmetric nor transitive. Let 𝐺 be a path that consists of six
vertices 𝑣1, . . . , 𝑣6. Suppose that 𝑣1 and 𝑣6 are 1-vertices and that 𝑣2, . . . , 𝑣5 are 0-vertices.
Consider the state of the overlay graph immediately after the initial discovery of the 3-hop-
vicinity, i.e., each vertex knows exactly the vertices with at most distance 3 as contacts. This
situation is depicted in Figure 3.1. If 𝑣6 requests ID(𝑣2), then this request reaches 𝑣2 after one
overlay hop in between, thus, 𝑣6 is KIRA-connected to 𝑣2. However, if 𝑣2 requests ID(𝑣6), this
request is sent to 𝑣1, the only vertex in 𝐵𝑣2 (𝑣6). But since 𝑣1 does not know a vertex which is
bitwise closer to 𝑣6 than itself, the request terminates, and 𝑣2 is not connected to 𝑣6. Thus,
KIRA-connectivity is not symmetric.

Further, 𝑣6 and 𝑣1 are not KIRA-connected, even though 𝑣6 is KIRA-connected to 𝑣2 and 𝑣2
is KIRA-connected to 𝑣1. Thus, KIRA-connectivity is not transitive for these vertices. Note
that this example is independent of the chosen routing strategy.
Now, further assume that 𝑣5 is bitwise (but not prefix-wise) closer to 𝑣6 than 𝑣2. Then, by

deleting the overlay edge between 𝑣1 and 𝑣2, vertex 𝑣2 is now able to find a path to 𝑣6 via the
overlay hop 𝑣5, although it was previously not KIRA-connected to 𝑣6.

Despite these counter-intuitive properties of KIRA-connectivity, the following lemma shows
that global KIRA-connectivity is implied by another property that only depends on the number
of vertices in each bucket of each vertex. Suppose that every vertex 𝑣 of a graph 𝐺 has the
following property: For every 𝑖 ∈ {1, . . . , log(𝑁 )}, vertex 𝑣 knows a contact with prefix bit
distance 𝑖 if there is a vertex in the corresponding bit distance range, i.e., 𝐵𝑣 (𝑢) is not empty
for every 𝑢 ∈ 𝑉 (𝐺). We call an overlay graph with this property well-filled.

Lemma 3.2: Every well-filled graph 𝐺 is KIRA-connected.

Proof. We assume that 𝐺 is well filled, i.e., every vertex knows a contact with prefix bit
distance 𝑖 for each 𝑖 ∈ {1, . . . , log(𝑁 )} if there is such a vertex in the corresponding bit
distance range. Suppose that we want to route from some vertex 𝑣 to some vertex 𝑡 . Then,
𝐵𝑣 (𝑡) is not empty by assumption, and 𝐵𝑣 (𝑡) contains the contacts that are prefix-wise closer
to 𝑡 than 𝑣 . If 𝑡 is in 𝐵𝑣 (𝑡), then KIRA directly routes to 𝑡 , and the target is found. Otherwise,
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KIRA chooses another contact𝑤 ∈ 𝐵𝑣 (𝑡) and forwards the request to𝑤 , which improves the
prefix bit distance to 𝑡 by at least 1. By applying this argument inductively, we show that a
path from 𝑣 to 𝑡 is found.

Note that the previous lemma holds, regardless of the applied replacement and routing strategy.
Since for a well-filled overlay graph, the prefix bit distance to the requested ID decreases by
at least 1 at each overlay hop, the following holds.

Corollary 3.3: If a graph𝐺 is well filled, then KIRA finds a path between two vertices 𝑢 and 𝑣
in at most dist𝑝 (𝑢, 𝑣) overlay hops for any 𝑢, 𝑣 ∈ 𝑉 (𝐺).

The reverse implication of Lemma 3.2 is not true in general since the prefix does not have to
be improved at every overlay hop. It is possible that the bucket 𝐵𝑣 (𝑡) at some overlay hop 𝑣 is
empty, but that the request can be forwarded to a contact that is still bitwise closer to 𝑡 . As a
consequence, not every bucket needs to contain a contact to ensure KIRA-connectivity. Note
that in this case, if 𝑣 is KIRA-connected to 𝑡 , then the empty bucket 𝐵𝑣 (𝑡) can easily be filled
with 𝑡 as a contact if 𝑣 requests the ID of 𝑡 . However, the following lemma states a condition
that has to be satisfied if the graph is KIRA-connected.

Lemma 3.4: Let 𝐺 be a KIRA-connected graph. Then the following holds for all vertices 𝑢 and 𝑣 :
If 𝑣 is bitwise closer to 𝑢 than every other vertex in 𝐺 , then 𝑣 must be a contact of 𝑢.

Proof. Assume there are vertices 𝑢 and 𝑣 , where 𝑣 is the bitwise closest vertex to 𝑢 and where
𝑢 does not know 𝑣 as a contact. Then, KIRA cannot find a path from 𝑢 to 𝑣 since it only routes
to contacts that are bitwise closer to the target than the source.

3.2 Unconnectable Graph with Constant Diameter

In this section, we assume that KIRA uses the mechanisms self-request, path overhearing,
deterministic probing, and 𝑘-closest-response. Apart from using deterministic instead of
random probing, this is the original implementation of KIRA. In fact, we can even assume
a stronger variant of deterministic probing, where each vertex has global knowledge of the
graph. The results of this section are independent of the used replacement and routing
strategy. In the following, we show that there exists a graph 𝐺 with constant diameter which
is assigned an ID distribution with constant probability such that KIRA cannot establish
KIRA-connectivity for 𝐺 . The graph 𝐺 consists of two stars that are connected by a path.
It has two vertex sets 𝑉1 and 𝑉2 that are separated by a path 𝑃 of constant size ℓ ≥ 4 with
vertices 𝑝1, . . . 𝑝ℓ . The vertex sets 𝑉1 and 𝑉2 are independent sets, i.e., the subgraph induced
by 𝑉𝑖 contains no edge for 𝑖 ∈ {1, 2}. Further, the vertices in the vertex sets 𝑉1 and 𝑉2 are
adjacent to the endpoint 𝑝1 and the endpoint 𝑝ℓ of the path, respectively, forming one star at
each endpoint. An example for such a graph can be seen in Figure 3.2. We show that if the
IDs of 𝐺 satisfy certain conditions, then 𝐺 is not KIRA-connectable.

Lemma 3.5: If the path 𝑃 in graph 𝐺 only consists of 0-vertices and if both 𝑉1 and 𝑉2 contain at
least 𝑘 0-vertices and two 1-vertices each, then KIRA cannot establish connectivity for 𝐺 .

Proof. We prove that a 1-vertex in𝑉1 never learns of a 1-vertex in𝑉2 and vice versa by showing
that this invariant holds independently of the issued requests. With ℓ ≥ 4, this invariant
trivially holds after the discovery of the 3-hop vicinity. Consider some vertex 𝑢 ∈ 𝑉 (𝐺) that
requests an ID 𝑥 . We assume that the proposed invariant holds before the request and show
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Figure 3.2: A graph with an ID assignment that is not KIRA-connectable. The parts on both
ends of the path form a star. Each star contains at least two 1-vertices and 𝑘 0-vertices. The
bits indicate if a vertex is a 1-vertex or a 0-vertex. 1-vertices of the left star cannot learn of
1-vertices of the right star.

that it still holds after the request. As KIRA only finds simple paths, such a found path never
contains a vertex in𝑉1 or𝑉2 that is not the endpoint. Thus, if 𝑢 is a 0-vertex or if 𝑥 starts with
0, then the found path contains at most one 1-vertex, regardless of the requested ID and of
the type of the request (self-request or probe). In this case, a 1-vertex cannot learn of another
1-vertex by path overhearing. Further, we differ between the following three cases:

Case 0: 𝑢 is a 0-vertex.
If the requesting vertex is a 0-vertex, then path overhearing is the only mechanism that
may help with a 1-vertex learning another 1-vertex. However, we argued previously
that no 1-vertex learns of another 1-vertex using path overhearing with such a request.

Case 1: 𝑢 is a 1-vertex and ID 𝑥 starts with 0.
Again, no 1-vertex learns of another 1-vertex using path overhearing with such a request.
Further, since both 𝑉1 and 𝑉2 contain at least 𝑘 0-vertices and since 𝑃 only consists of
0-vertices, every vertex knows at least 𝑘 0-vertices or no 1-vertices. Thus, requesting
an ID that has 0 as its most significant bit always only gets 0-vertices as a response, and
no 1-vertex is learned.

Case 2: 𝑢 is a 1-vertex and ID 𝑥 starts with 1.
We assume without loss of generalization that 𝑢 is in 𝑉1. Then, it does not know a
1-vertex in 𝑉2 by assumption, but knows at least one other 1-vertex in 𝑉1. Thus, the
bitwise closest contact to the target is always a 1-vertex in 𝑉1 and such a request can
only be forwarded to another 1-vertex in 𝑉1. Since, by assumption, no 1-vertex in 𝑉1
knows a 1-vertex in 𝑉2, no 1-vertex in 𝑉2 is learned from the response.

In all cases, the proposed invariant holds after a request. It remains to show that the graph is
indeed not KIRA-connectable. Let 𝑣 be a 1-vertex in 𝑉2 and let 𝑢 be the 1-vertex in 𝑉1 that is
bitwise closest to 𝑣 . Then, 𝐵𝑢 (𝑣) is empty since no 1-vertex in 𝑉1 knows a 1-vertex in 𝑉2. By
Lemma 3.4, 𝐺 is not be KIRA-connected.

We further show that the probability that 𝐺 is assigned an ID distribution such that 𝐺 is not
KIRA-connectable is constant if we choose 𝑉1 and 𝑉2 large enough.

Lemma 3.6: Let𝑚 ∈ ℕ. For |𝑉1 | = |𝑉2 | = 8𝑘 + 4𝑚, the probability that𝐺 has an ID distribution
such that 𝐺 is not KIRA-connectable is at least(

1
2

) ℓ
· (1 − 𝑒−𝑚)2 ·

(
1 −

(
1
2

)8𝑘+4𝑚+1)2
.
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3.2 Unconnectable Graph with Constant Diameter

Proof. For each vertex, the probability that it is a 0-vertex is 1
2 . As we assume that IDs are

chosen uniformly at random, the probability that 𝑃 consists of ℓ 0-vertices is
( 1
2
) ℓ . Further, we

determine the probability that there are at least 𝑘 0-vertices in𝑉1. Let 𝑋𝑖 be a random variable
that describes the number of 0-vertices in 𝑉𝑖 for 𝑖 ∈ {1, 2}. Then, the expected number of
0-vertices in 𝑉1 is 𝔼 [𝑋1] = |𝑉1 | · 1

2 = 4𝑘 + 2𝑚. Further, 𝑋1 can be written as the sum of |𝑉1 |
0-1-valued random variables 𝑋𝑣 for 𝑣 ∈ 𝑉𝑖+1, where 𝑋𝑣 indicates whether 𝑣 is a 0-vertex. By
assumption, these random variables are independently and identically distributed. Thus, we
can apply Chernoff’s bound (2.3) with 𝛼 B 1 − 2𝑘

2𝑘+𝑚 to get the following lower bound for the
probability:

Pr [𝑋1 ≥ 𝑘] = 1 − Pr [𝑋1 < 𝑘] = 1 − Pr [𝑋1 < (1 − 𝛼) · 𝔼 [𝑋1]]

≥ 1 − exp
(
−𝛼2 · 𝔼 [𝑋1]

2

)
= 1 − exp

(
−

(
1 − 2𝑘

2𝑘 +𝑚 + 4𝑘2

(2𝑘 +𝑚)2

)
· (2𝑘 +𝑚)

)
≥ 1 − exp(−(2𝑘 +𝑚 − 2𝑘)) = 1 − 𝑒−𝑚 .

The event that there are at least 𝑘 0-vertices in𝑉2 is independent of the event that 𝑋1 ≥ 𝑘 , and
it is Pr [𝑋2 ≥ 𝑘] = Pr [𝑋1 ≥ 𝑘]. Further, both 𝑉1 and 𝑉2 have to contain at least two 1-vertices
each, which is easily satisfied by choosing the sizes of 𝑉1 and 𝑉2 sufficiently large. More
specifically, the probability that 𝑉𝑖 for 𝑖 ∈ {1, 2} contains at least two 1-vertices is at least
1 −

( 1
2
) |𝑉𝑖 |+1. Multiplying these probabilities proves the statement of the lemma.

A consequence of the previous lemma is that the probability that KIRA cannot establish
connectivity for such a graph𝐺 tends to

( 1
2
) ℓ for large𝑚. Thus, this probability is constant

for constant ℓ . Further, for 𝑘 ∈ 𝑜 (𝑚), the probability is asymptotically independent of 𝑘 , the
size of the buckets and the number of vertices that are sent back in a response. This directly
implies that even if we choose 𝑘 to be non-constant, for example log(𝑛), it is still possible to
construct graphs that are not KIRA connectable with constant probability.

This example can be expanded to a certain extent by using a spider graph with 𝑐 ∈ ℕ “legs”
of length ℓ ∈ ℕ instead of a path and multiple independent sets 𝑉1, . . . ,𝑉𝑐 , each connected to
the endpoints of distinct legs. Again, we want the IDs to be distributed such that the ID of
each vertex of the spider graph has 0 as the most significant bit and such that there are at
least 𝑘 0-vertices and two 1-vertices in each independent set. With the same reasoning as for
Lemma 3.5, it is impossible for a 1-vertex to learn of 1-vertices that are adjacent to another
“leg”. Further, if we choose the sizes of the vertex sets 𝑉1, . . . ,𝑉𝑐 as in Lemma 3.6, then the
probability that we get an unconnectable ID distribution is(

1
2

)𝑐 ·ℓ
· (1 − 𝑒−𝑚)𝑐 ·

(
1 −

(
1
2

)8𝑘+4𝑚)𝑐
.

If 𝑐 and ℓ are both constant, then this probability tends to
( 1
2
)𝑐 ·ℓ for large𝑚, which is constant

as well.
A natural approach to generalize this construction would be to use the constructed graph

as a separator in a larger graph. For instance, it is possible to modify the vertex sets 𝑉1
and 𝑉2 by using arbitrary graphs, or by extending 𝑉1 and 𝑉2. However, such a graph is not
KIRA-unconnectable in general, even if the separator receives a “bad” ID distribution as in the
previous example. This is shown in Figure 3.3, where a few additional vertices are “glued” to
each side of the graph. Then, it is possible that this newly obtained graph is KIRA-connectable.
However, in the following section, we show that graphs that include a similar separator are
still harder to connect in some sense.
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3 KIRA-Connectivity
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𝑢 𝑤 𝑣

𝑉2𝑉1
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0
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Figure 3.3: The previously unconnectable graph with two extensions on each side. Suppose
that 𝑢 requests ID(𝑣), and KIRA finds the orange path from 𝑢 to 𝑣 by recursively routing to
the contact that is bitwise closest to 𝑣 . The underlay path contains 𝑤 as a vertex, which is
learned (and stored) by 𝑢 using path overhearing. Thus, the two sides are KIRA-connectable,
even though the subgraph separates them is not KIRA-connectable if we consider it without
the extensions.

3.3 Connectivity for Different Mechanisms

Experiments with different specific graph classes suggest that KIRA is able to establish
connectivity in many cases [BZDH22]. This is due to the mechanisms that KIRA implements,
which help with the discovery of new contacts. In the following, we analyze how these
mechanisms of KIRA contribute to establishing connectivity, and how KIRA behaves on
underlay graphs with non-constant diameter.
We show that both random probing and path overhearing are needed in a way that there

are graphs with certain ID distributions that cannot be KIRA-connected if the algorithm does
not use both mechanisms. More specifically, we construct a graph that is assigned a “bad” ID
distribution with constant probability such that KIRA is not able to establish connectivity if
either random probing or path overhearing is not used. The construction uses a similar idea
as the separating path of the example in Section 3.2 which is not KIRA-connectable if the ID
distribution has certain properties. Unlike before, the graph has non-constant diameter and
the parts that are attached to the separator are not stars.

The graph consists of two disjoint subgraphs𝐺1 and𝐺2, which are separated by a path-like
structure. We will show that this separator (if assigned a certain ID distribution) prevents the
discovery of underlay paths from one side of the separator to the other side if KIRA does not
use random probing or path overhearing.

To prevent 1-vertices on different sides of the separator from learning from each other, we
aim to have a path in the separator that only consists of 0-vertices. Analogously, the separator
contains a path that only consists of 1-vertices. Formally, a separator gadget 𝑆 consists of a
path with ten vertices and two stars in the middle. We denote the first five vertices on the
path by ℓ1, . . . , ℓ5 and the last five vertices by 𝑟5, . . . , 𝑟1. Further, there are two independent
sets 𝐿 and 𝑅 which consist of 𝑘 vertices each. The vertices in 𝐿 are adjacent to ℓ5 and the
vertices in 𝑅 are adjacent to 𝑟5. Only the endpoints of the path ℓ1 and 𝑟1 are connected to other
vertices in the graph. All other vertices in 𝑆 do not have further edges.

We call a separator gadget separating if the IDs in the separator have the following property.
The IDs of the vertices in {ℓ3, ℓ4, ℓ5} ∪ 𝐿 ∪ {𝑟1, 𝑟2} are 0-vertices, while all other vertices of the
gadgets are 1-vertices. In a separating gadget, we refer to the vertices ℓ3, ℓ4 and ℓ5 and the
vertices in 𝐿 as the 0-block of the separator. Analogously, the vertices 𝑟3, 𝑟4 and 𝑟5 and the
vertices in 𝑅 form the 1-block of the separator. Figure 3.4 shows such a separating gadget.
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3.3 Connectivity for Different Mechanisms

1 01 1 1

1

0

0

0 0

𝐺1 𝐺2

. . . . . .

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 𝑟5 𝑟4 𝑟3 𝑟2 𝑟1

𝑆

Figure 3.4: A separating gadget 𝑆 , where the bits indicate the most significant bit in each ID.

For constant 𝑘 , the size of the separator gadget is constant as well. Thus, if there is only
one separator gadget in the graph, then the probability that it is separating is 1

2
|𝑆 | , which is

constant. To increase this probability, we form a chain of sufficiently many separator gadgets
such that at least one gadget is separating with high probability. Then, the constructed
graph 𝐺 is a union of the subgraphs 𝐺1, 𝐺2 and the separators 𝑆1, . . . , 𝑆𝑡 , where each 𝑆𝑖 with
𝑖 ∈ {1, . . . , 𝑡} forms a separator gadget. Vertices in𝐺1 may only be adjacent to the left endpoint
of 𝑆1 and vertices in𝐺2 may only be adjacent to the right endpoint of 𝑆𝑡 . The separator gadgets
are chained together in a way that the right endpoint of 𝑆𝑖 is adjacent to the left endpoint
of 𝑆𝑖+1 for all 𝑖 ∈ {1, . . . , 𝑡 − 1}. Suppose that 𝐺 is assigned an ID distribution such that it
contains a separating gadget 𝑆∗. For better understanding, we call one side of 𝑆∗ the left part
of the graph, while the other side is the right part. More formally, the graph 𝐺 is partitioned
into two connected components by removing the edge {ℓ5, 𝑟5} in 𝑆∗. Then, the connected
component that contains the vertex set 𝐺1 is the left part, and analogously, the connected
component containing the vertex set 𝐺2 is the right part.

In the following, we show that a separating gadget indeed prevents vertices from one side of
the separator knowing vertices on the other side if either random probing or path overhearing
is not implemented. Further, we prove that 𝐺 has a separating gadget with high probability
for constant 𝑘 .

3.3.1 Without Random Probing

First, we assume that KIRA does not use random probing while trying to establish connec-
tivity. In other words, a vertex can only update its routing table by self-requests or by path
overhearing. The following lemma shows that if there is a separating gadget 𝑆 in 𝐺 , then
vertices in 𝑉 (𝐺) \𝑉 (𝑆) on opposite sides of 𝑆 do not know each other as contacts.

Lemma 3.7: Assume that KIRA does not use random probing to establish connectivity. Let 𝑆 be
a separator gadget as defined above and let𝐺 be a graph with an ID distribution that has 𝑆 as an
induced subgraph such that 𝑆 is a vertex separator in𝐺 . Assume that 𝑆 is separating, and let 𝑢
and 𝑣 be vertices in 𝑉 (𝐺) \𝑉 (𝑆). If 𝑢 and 𝑣 are not in the same connected component in 𝐺 \ 𝑆 ,
then 𝑢 does not know 𝑣 as a contact and vice versa.

Proof. We show that the following, slightly stronger, invariant always holds if vertices only
issue self-requests. Without loss of generality, let 𝑢 be a vertex on the left side, and 𝑣 a vertex
on the right side of the graph. Note that 𝑢 and 𝑣 may be vertices in 𝑆 . Then, 𝑢 does not know
𝑣 as a contact and vice versa, unless 𝑢 is in the 3-hop-vicinity of 𝑣 . This exception is only
relevant for vertices in the 0-block and vertices in the 1-block of 𝐺 .
First, we observe that with the assumption that the invariant holds, the 𝑘 bitwise closest

contacts of a vertex are always on the same side as the vertex itself. For vertices which are
not in the 0-block or the 1-block, this property follows immediately from the invariant. As
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3 KIRA-Connectivity
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Figure 3.5: The left and the right part depict the first and second case of Lemma 3.7, respec-
tively. In case 1, the 0-vertex 𝑢 does not forward the request to the 1-vertex 𝑣 . In case 2, 𝑢′
does not forward the request to the 1-vertex 𝑣 ′ since it knows another 0-vertex.

each vertex in the 0-block has at least 𝑘 0-vertices in its 3-hop-vicinity by construction, the
𝑘 bitwise closest contacts of a vertex in the 0-block do not contain a 1-vertex. Since vertices
of the 0-block only know 1-vertices on the right side, the 𝑘 bitwise closest contacts must be
on the same side. For the vertices in the 1-block, the same reasoning applies by symmetry.
Moreover, we show that self-request are only forwarded within the same side, i.e., the

found path of such a request only consists of vertices of one side. Because of the skewed
symmetry, self-requests of 0-vertices from the left side behave like self-requests of 1-vertices
from the right side. Thus, we only consider 0-vertices issuing self-requests without loss of
generalization. We treat requests from the left and from the right side in two separate cases.
Both cases are depicted in Figure 3.5.

Case 1: Self-request of a 0-vertex from the left side.
Assume that the path found by the self-request contains a vertex on the right side. We
argue that this is impossible if the invariant holds. Let 𝑢 be the last overlay hop of
the path that is on the left side of the graph and 𝑣 the next overlay hop, which is on
the right side. Then, 𝑢 is a vertex of the 0-block, and 𝑣 is a vertex of the 1-block since
by assumption, vertices in the 0-block are the only vertices on the left side that know
vertices on the right side. As 𝑣 has another 0-vertex in its 3-hop-vicinity, the request
is not forwarded to a 1-vertex since either the bitwise closest contact is chosen as the
next overlay hop or the request terminates. Thus, 𝑢 cannot be on the right side, which
is a contradiction to our assumption.

Case 2: Self-request of a 0-vertex from the right side.
Again, we assume that the path found by the self-request contains a vertex on the left
side. Then, the path contains some vertex 𝑣 in the 1-block as an overlay hop since
vertices in the 1-block are the only vertices that know a vertex on the left side by
assumption. Let 𝑣 be the first overlay hop of the path that is in the 1-block of the graph.
We consider the previous overlay hop 𝑢 of 𝑣 . Since the request was issued by a 0-vertex,
𝑣 is not the requesting vertex and thus, cannot be the first overlay hop. Then, 𝑣 must
be a contact of 𝑢 and 𝑢 knows a corresponding underlay path to 𝑣 . Since 𝑣 is the first
overlay hop in the 1-block of the graph, such a path contains 𝑟1 or 𝑟2. We argue that 𝑢
then knows a 0-vertex as a contact. If 𝑢 is 𝑟1 or 𝑟2, it trivially knows another 0-vertex by
discovering its 3-hop-vicinity. Otherwise, 𝑢 learns of 𝑟1 and 𝑟2 using path overhearing,
and either stores these vertices or already knows 𝑘 other 0-vertices. Since a request
is only sent to vertices that are bitwise closest to the target, the overlay hop after 𝑢
cannot be a 1-vertex, which is a contradiction to our assumption.
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3.3 Connectivity for Different Mechanisms

As a consequence, vertices of the other side cannot be learned using path overhearing.
Moreover, since the 𝑘 bitwise closest contacts of a vertex are on the same side as the vertex
itself, it is impossible to learn a contact from the other side from the response to the self-
request. Thus, for both types of requests, the proposed invariant holds after the request which
proves the statement of the lemma.

This shows that there are graphs with non-constant diameter that have an ID distribution, for
which KIRA cannot establish connectivity without random probing. Note that if the graph
contains a separating gadget, it is impossible for KIRA without random probing to find a path
from the left to the right side of the separator, no matter which requests are issued in which
order.

3.3.2 Without Path Overhearing

Now, we assume that KIRA uses random probing and self-requests but not path overhearing.
In this case, we need an additional condition to make the separator work. We further assume
that every vertex knows at least 𝑘 vertices on the same side that have the same most significant
bit as the vertex itself. This is the case if the 𝑘 closest contacts of a vertex are not in the bucket
of depth 0. Based on the Lemma 3.7, we obtain a similar statement if KIRA does not use path
overhearing.

Lemma 3.8: Assume that KIRA does not use path overhearing to establish connectivity. Let 𝑆 be
a separator gadget as defined above and let𝐺 be a graph that has 𝑆 as an induced subgraph such
that 𝑆 is a vertex separator in 𝐺 . Further, assume that every vertex knows at least 𝑘 vertices with
the same most significant bit on the same side of the separator. Assume that 𝑆 is separating, and
let 𝑢 and 𝑣 be vertices in 𝑉 (𝐺) \𝑉 (𝑆) with the same most significant bit. If 𝑢 and 𝑣 are not in
the same connected component in 𝐺 \ 𝑆 , then 𝑢 does not know 𝑣 as a contact and vice versa.

Proof. We show that the following invariant holds. Let 𝑢 be a vertex on the left side and
𝑣 a vertex on the right side of the graph such that 𝑢 and 𝑣 share the same most significant
bit. Then, 𝑢 does not know 𝑣 as a contact and vice versa. Note that the invariant shown in
Lemma 3.7 is similar, but slightly stronger since there, 𝑢 and 𝑣 do not necessarily share the
most significant bit.
Again, we differ between different types of requests. By assumption, the 𝑘 closest contacts

of each vertex are on the same side as the vertex itself. Thus, for self-requests, we can argue
exactly as in the proof of Lemma 3.7. For requests from vertices in 𝑉 (𝐺) \ 𝑆 , the same holds
as for self-requests of those vertices, and they do not cross to the other side. The only type to
be considered are requests from vertices in the 0-block and vertices from the 1-block. Probes
for 0-vertices from the 0-block can be treated just as self-requests. The same holds for probes
for 1-vertices from the 1-block.

If a vertex in the 0-block requests a 1-vertex, this request may be forwarded to a vertex in
the 1-block, and the request terminates at some 1-vertex 𝑣 on the right side of the separator.
As we assume that 𝑣 knows at least 𝑘 1-vertices on the right side of the separator, 𝑣 only
returns 1-vertices, and the requesting vertex does not learn of a 0-vertex on the other side.
The case that a vertex in the 1-block requests a 0-vertex is symmetric.
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3 KIRA-Connectivity

𝐺1 𝐺2

0 1
1

10 𝑢
𝑤𝑣

𝑧

Figure 3.6: An example graph with an ID assignment such that both sides of a separating
gadget are KIRA-connectable if random probing and path overhearing are used. The boxes
represent the 0-block and the 1-block. Suppose that a vertex 𝑢 in the 1-block requests a
0-vertex 𝑣 , and KIRA finds a path from 𝑢 to 𝑣 . The underlay path contains𝑤 as a vertex, which
learns of 𝑢 using path overhearing. A request from𝑤 to 𝑧 may skip the 0-block now, routing
directly to 𝑢 and from there to 𝑧. Thus, a 1-vertex on one side of the separating gadget may
be KIRA-connected to a 1-vertex on the other side.

3.3.3 Probability of a Separating Gadget

In the following, we show that it is likely that𝐺 contains a separating gadget if 𝑛 B |𝑉 (𝐺) | is
sufficiently large. For this, we choose the sizes of 𝐺1 and 𝐺2 and the parameter 𝑡 depending
on 𝑘 and the total number of vertices 𝑛 such that the probability that there is a separating
gadget in 𝐺 is high, while the graphs 𝐺1 and 𝐺2 contain not too few vertices.

Lemma 3.9: Let 𝐺 be defined as above with𝑚 B |𝑉 (𝐺1) | + |𝑉 (𝐺2) | = 𝑛
2
3 and 𝑡 = 𝑛−𝑚

2𝑘+10 . Then,
𝐺 contains a separating gadget with high probability.

Proof. We first determine the probability that a separator gadget is separating. By definition,
a separator gadget 𝑆 is separating if the vertices in {ℓ1, ℓ2, ℓ3, ℓ4} ∪ 𝑈 are 0-vertices and if
the other vertices in 𝑆 are 1-vertices. Since we assume that IDs are distributed uniformly at
random, the probability that a single vertex is a b-vertex for some b ∈ {0, 1} is 1

2 . Then, the
probability that a single separator gadget is separating is

( 1
2
) |𝑆 |

=
( 1
2
)2𝑘+10. With 𝑡 separator

gadgets, the probability that there is at least one separating gadget is

1 −
(
1 −

(
1
2

)2𝑘+10)𝑡
= 1 −

(
1 −

(
1
2

)2𝑘+10) 𝑛−𝑛
2
3

2𝑘+10

≥ 1 − exp
(
−2−2𝑘−10

) 𝑛−𝑛
2
3

2𝑘+10

= 1 − exp
(
− 𝑛 − 𝑛 2

3

(2𝑘 + 10) · 22𝑘+10

)
by using the well-known inequality 1 − 𝑥 ≤ exp(−𝑥) for all 𝑥 ∈ ℝ. Since we assume that 𝑘 is
a constant, this proves the statement from the lemma.

Note that if we increase 𝑘 to log(𝑛), the probability that 𝐺 contains a separating gadget is
only constant. Thus, it may be reasonable not to choose 𝑘 as a constant in the algorithm but
to let it depend on the size of the graph.

3.3.4 With Path Overhearing and Random Probing

If KIRA implements both path overhearing and random probing, then there exist instances
with a separating gadget, where it is possible that a vertex on one side of the separator knows
a vertex on the other side of the separator. In this case, the invariants from Lemma 3.7 and
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3.4 Establishing KIRA-Connectivity

Lemma 3.8 do not hold. Figure 3.6 shows an example of such an instance. As we have seen in
two examples (Figure 3.3 and Figure 3.6), it is not sufficient for separators to have “bad” ID
assignments. It seems that ID assignments need to satisfy global conditions (instead of only
local ones) such that paths as in Figure 3.6 cannot be found by KIRA. Intuitively, if there is a
large number of paths in a graph that contain two vertices 𝑢 and 𝑣 , then it is more likely that
some other path is routed via these two vertices, and that one vertex learns of the other by
path overhearing. This leads us to the following conjecture.

Conjecture 3.10: Let 𝐺 be a graph, and suppose that every pair of vertices is contained in
a sufficiently large number of distinct paths in 𝐺 . Then, 𝐺 is KIRA-connectable with high
probability.

3.4 Establishing KIRA-Connectivity

In this section, we consider slightly modified versions of KIRA, and prove that these versions
are able to establish KIRA-connectivity in specific scenarios. First, we show that if a new
vertex joins a KIRA-connected graph, then KIRA can establish KIRA-connectivity for the new
graph as well. Then, we prove that a very specific version of KIRA is always able to establish
connectivity. Note that this specific version is not applicable in practice. Further, we study
KIRA-connectivity specifically on paths.

3.4.1 Join New Vertex to Connected Graph

In the following, we assume that a graph 𝐺 is already KIRA-connected. We show that a
vertex 𝑣 that joins the network can be connected to the rest of the graph by at most 𝐵 requests,
where 𝐵 is the number of bits in the ID space, if we modify the algorithm slightly as follows.
Vertices are allowed to probe deterministically (without global knowledge of the graph), i.e.,
vertices can request paths to specific IDs. Particularly, a vertex requests IDs in distance ranges
in which the vertex does not know any contact. With the original algorithm, such a request
might immediately be discarded if it cannot be forwarded to a contact that improves the bit
distance to the target. We assume that in this case, via-probing is used, i.e., the requesting
vertex can choose a contact which is supposed to be the first overlay hop. Further, vertices
use path overhearing to add and update contacts.
For the newly added vertex 𝑣 , we describe the following strategy that results in the new

graph being KIRA-connected. The vertex 𝑣 starts with discovering the 3-hop-vicinity. Then, it
repeatedly requests IDs that belong to buckets which are still empty, starting with the deepest
bucket and its own ID. More specifically, it requests IDs that have minimal bit distance to 𝑣
for each empty bucket. The first overlay hop for the via-probe is chosen arbitrarily among its
contacts by 𝑣 for each request. With the responses and the corresponding paths, the vertex
fills its routing table. We show in the following lemma that after probing an ID of every empty
bucket once, the graph is KIRA-connected again.

Lemma 3.11: Let𝐺 be a graph that is already KIRA-connected. Assume that a new vertex 𝑣 with
empty routing tables is added to the graph. Using deterministic via-probing, there is a strategy
for 𝑣 to request IDs such that the new graph is KIRA-connected after at most 𝐵 requests.

Proof. Let bucket of depth 𝑖 ∈ {0, . . . , 𝐵−1} be the deepest bucket in the routing table of 𝑣 that
is empty after discovering the 3-hop-vicinity. The vertex then requests an ID 𝑥 that belongs
to this bucket and that has minimal bit distance to 𝑣 , i.e., 𝑥 is obtained from ID(𝑣) by flipping
the 𝑖-th bit. This request is forwarded to a contact 𝑢 of 𝑣 . Since the graph is KIRA-connected,
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the algorithm finds a path from 𝑢 to the vertex whose ID is bitwise closest to the requested
ID, which we denote by𝑤 . If𝑤 belongs in the empty bucket 𝐵𝑣 (𝑥), then 𝑣 stores𝑤 in 𝐵𝑣 (𝑥).
Otherwise, there is no vertex in the graph that belongs to 𝐵𝑣 (𝑥). In this case, the bucket
stays empty. After repeating this for every empty bucket, 𝐵𝑣 (𝑢) ≠ ∅ holds for every vertex
𝑢 ∈ 𝑉 (𝐺), i.e., every bucket of 𝑣 contains a vertex if the corresponding bit distance range is
not empty. By Lemma 3.2, 𝐺 ∪ {𝑣} is then KIRA-connected.

Further, we argue that the algorithm finds a path from every vertex in the graph to 𝑣 . Since
𝑣 attempted to fill every bucket of its routing table, it knows its bitwise closest vertex in 𝐺 .
This vertex also stores 𝑣 in a bucket since 𝑣 is the only vertex that belongs to that range.
Otherwise, there would be a vertex that is even closer to 𝑣 . Now, let 𝑢 be some vertex that
requests ID(𝑣). Either, 𝑢 knows 𝑣 as a contact, in which case it directly routes to 𝑣 , or it is
forwarded to a vertex that is bitwise closer to 𝑣 . Since 𝐺 is KIRA-connected, such a contact
must exist if the current vertex is not the bitwise closest. If it is the bitwise closest vertex, it
directly routes to 𝑣 .

However, generalizing this approach for multiple KIRA-connected components that are
connected via one vertex does not work. In particular, let𝐺 be a graph and 𝑣 ∈ 𝑉 (𝐺) a vertex
such that 𝐺 \ {𝑣} has two connected components 𝑉1 and 𝑉2. Suppose that both 𝑉1 and 𝑉2 are
KIRA-connected, but no vertex in 𝑉1 knows a vertex in 𝑉2 and vice versa. In other words, 𝑉1
and 𝑉2 are two disjoint KIRA-connected components. In this case, requests from 𝑣 may not be
sufficient to establish KIRA-connectivity for 𝐺 . More specifically, if 𝑣 requests an ID in 𝑉2 but
routes to a vertex in 𝑉1 first, it is not able to find the requested ID.

3.4.2 With Deterministic Via-Probing and Propagation

In this subsection, we consider a further modified algorithm with deterministic via-probing,
propagation, and path overhearing. In particular, every vertex is able to request a specific
ID and choose a specific via-contact to be the first overlay hop. Further, we modify the
replacement strategy of contacts in full buckets. In the original algorithm, contacts are
replaced using the Proximity Neighbor Selection policy, where contacts with the shorter
corresponding underlay path are preferred. This may result in a local optimum, where
contents in buckets do not change anymore, but the graph is not KIRA-connected. To prevent
this, we use propagation instead of a replacement strategy.
We show that with the modified algorithm, it is always possible for KIRA to establish

connectivity, no matter the current state of the routing tables. We say that a vertex 𝑢 has seen
some vertex 𝑣 if a request was issued that was routed via both 𝑢 and 𝑣 . Note that since the
order of the vertices does not matter, this relation is symmetric. Since KIRA employs path
overhearing, this is equivalent to 𝑢 knowing an underlay path to 𝑣 and vice versa. First, we
observe a useful property if propagation is used instead of a replacement strategy.

Lemma 3.12: Assume propagation is used instead of a replacement strategy for some graph 𝐺 .
Then, the following holds for all vertices𝑢 and 𝑣 in𝑉 (𝐺): If𝑢 has seen 𝑣 , then𝑢 is KIRA-connected
to 𝑣 . Moreover, 𝑢 stays KIRA-connected to 𝑣 , regardless of requests issued in the future.

Proof. Assume some vertex 𝑣 has seen 𝑢. If 𝐵𝑣 (𝑢) is not full, then 𝑣 stores 𝑢 as a contact and
is KIRA-connected to 𝑢. Since contacts are not replaced in the modified algorithm, future
requests do not affect the KIRA-connectivity from 𝑣 to 𝑢. On the other hand, if 𝐵𝑣 (𝑢) is full,
then 𝑢 is propagated until it reaches a vertex𝑤 , where 𝐵𝑤 (𝑢) is not full, and𝑤 stores 𝑢 as a
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contact. Since no replacement strategy is used, buckets that are already full never change.
Thus, if 𝑣 requests 𝑢, the request is routed to the same vertices as 𝑢 was propagated until it
reaches vertex𝑤 , which knows 𝑢 as a contact. In both cases, 𝑣 is KIRA-connected to 𝑢.

Using the original algorithm, KIRA-connectivity can be destroyed between two vertices if
new contacts are learned by Lemma 3.1. However, as a consequence of the previous lemma,
propagation guarantees that once a vertex has seen another vertex, KIRA can always find a
path between these vertices. The following lemma makes use of this property by iteratively
expanding the set of vertices that a vertex has already seen for every vertex in the graph.

Lemma 3.13: Assume propagation and deterministic via-probing are used for some graph 𝐺 .
Then, KIRA is always able to establish KIRA-connectivity.

Proof. For some vertex 𝑣 , consider the set of vertices 𝑠 (𝑣)
that vertex 𝑣 has already seen. Initially, this set only con-
tains vertices in the 3-hop-vicinity of 𝑣 . By Lemma 3.12, all
vertices in 𝑠 (𝑣) are KIRA-connected to 𝑣 and also stay so.
Assume 𝑠 (𝑣) does not consist of all vertices in 𝑉 (𝐺). Since
the overlay graph is strongly connected, there is a vertex
𝑤 ∉ 𝑠 (𝑣) that has a contact 𝑢 ∈ 𝑠 (𝑣). This is depicted in
Figure 3.7. Vertex𝑤 can now successfully request 𝑣 via its
contact 𝑢 and is then added to 𝑠 (𝑣). This is repeated until
𝑠 (𝑣) = 𝑉 (𝐺) for all vertices 𝑣 ∈ 𝑉 (𝐺). Then, 𝐺 is KIRA-
connected.

𝑠 (𝑣)

𝑣

𝑢

𝑤

Figure 3.7: The situation as
described in the proof.

Note that this is just a theoretical concept and is not applicable in practice since using
propagation instead of a replacement strategy creates an extremely large overhead of requests.
Further, vertices need to request very specific IDs for KIRA-connectivity to be established.
However, vertices do not have a global view on the graph and have no knowledge of which
IDs they should request, thus, the probability that these specific IDs are requested is small.

3.4.3 KIRA-Connectivity on Paths

In this section, we analyze KIRA-connectivity specifically on paths. We propose a deterministic
strategy using (partly modified) mechanisms implemented in KIRA that establishes KIRA-
connectivity if the ID assignment satisfies certain constraints. Further, we show that these
constraints are satisfied with high probability.

We first introduce some notation that we use in the following. Let G be the overlay graph
of some graph 𝐺 . There is an edge from 𝑢 to 𝑣 in G if 𝑢 knows 𝑣 as a contact. Recall that
each edge in the overlay graph corresponds to a unique path in the underlay graph. We
define a prefix graph G [p] for some bit string p ∈ {0, 1}∗ with length |p| to be the induced
subgraph of G that consists of all vertices in G, whose IDs start with p. More formally, it is
𝑉 (G [p]) B {𝑣 ∈ 𝑉 (G) | 𝑣 is a p-vertex}. Note that G [𝜀] is isomorphic to G, where 𝜀 is the
empty bit string.
For a graph G [p], we introduce the notion of p-connectivity. A vertex 𝑢 ∈ 𝑉 (G [p]) is

p-connected to a vertex 𝑣 ∈ 𝑉 (G [p]) if there is a path in G [p] from 𝑢 to 𝑣 . Further, we define
p-components that partition the vertices of G [p] into p0-components and p1-components.
Two p0-vertices 𝑢 and 𝑣 are in the same p0-component if and only if they are p0-connected
and if the corresponding underlay path does not contain a p1-vertex. Analogously, two p1-
vertices 𝑢 and 𝑣 are in the same p1-component if and only if they are p1-connected and if the
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p0 p1

Figure 3.8: An example for a prefix graph G [p]. The gray boxes represent p0-components
and p1-components. Vertices that are incident to edges that connect two vertices of different
subtries are border vertices. If the dashed orange edge between two p1-components is added,
then it acts as a bridge. We obtain the corresponding underlay path of the orange edge by
concatenating the corresponding underlay paths of the edges in G [p] that are highlighted in
orange.

corresponding underlay path does not contain a p0-vertex. A border vertex of a p0-component
𝑉0 of G [p] is a vertex in𝑉0 that knows a p1-vertex in some p1-component𝑉1 as a contact with
a corresponding underlay path that does not contain any p0-vertices as inner vertices. In this
case, we say that 𝑉0 and 𝑉1 are adjacent components. A newly added edge in G [p] is a bridge
if it connects two pb-components with b ∈ {0, 1} and if the corresponding underlay path does
not contain any pb-vertices as inner vertices. In this case, the two components are merged
into one. Figure 3.8 depicts an example of a prefix graph G [p]. If the underlay graph 𝐺 is a
path, we say that two p-vertices 𝑢 and 𝑣 with b ∈ {0, 1} are p-consecutive if the path from 𝑢 to
𝑣 in 𝐺 contains no p-vertices as inner vertices.

Modified KIRA We propose a strategy that uses modified mechanisms of KIRA to establish
KIRA-connectivity on a path. Let 𝐺 be a graph and G its initial overlay graph. We show
that this algorithm is able to establish connectivity for a graph 𝐺 if there are at most 𝑘 − 1
p-consecutive p0-vertices and at most 𝑘 − 1 p-consecutive p1-vertices in 𝐺 for every prefix p.
For simplicity, we assume that only the 1-hop-vicinity is discovered initially, i.e., the topology
of the initial overlay graph G is the same as 𝐺 .

The idea is to consider G [p] for all prefixes successively, sorted increasingly by length. For
each G [p], we want to bridge over each p0- and p1-component such that G [p0] and G [p1]
are connected. We refer to the current length of the prefix p as the current level ℓ . First, we
assume that each vertex in the network knows the value of ℓ . However, this is not possible in
practice, and we later argue that the algorithm can be modified such that each vertex 𝑣 stores
its own level ℓ𝑣 .

For each G [p] of some level ℓ , vertices only request p-vertices. In other words, requests in
G [p] stay within G [p] in the sense that all visited overlay hops are in G [p]. As a consequence,
we can consider each G [p] independently of each other (assuming that other requests are
forwarded in the underlay but ignored otherwise). Suppose now that G [p] is connected. In the
ID trie, the vertices of G [p] are located in some subtree𝑇 whose root has depth ℓ . This subtree
can be partitioned into two subtries 𝑇0 and 𝑇1, which contain vertices with the prefix p0 and
p1, respectively. The graphs G [p0] and G [p1] that correspond to𝑇0 and𝑇1, respectively, might
not be connected, and one goal of the algorithm is to make each graph connected. Further,
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each vertex in G [p0] should know a vertex in G [p1] and vice versa after level ℓ . Then, the
same procedure is repeated for the subtries in level ℓ + 1. By Lemma 3.2, the graph is then
KIRA-connected.

In the following, we describe the mechanisms that we partly modified. Requests are always
deterministic probes (without global knowledge) and stored vertices are never replaced. Let ℓ
be the current level. The main difference is that newly learned vertices (by path overhearing or
by closest-𝑘-response) are only stored under certain conditions, which depend on the current
level. Suppose that vertex 𝑣 ∈ G [p] for some p learns of a vertex 𝑢. If 𝐵𝑣 (𝑢) has depth at most
ℓ , then 𝑣 stores 𝑢 as a contact if 𝐵𝑣 (𝑢) is not full yet. The intuition behind this is that vertices
in lower depths do not matter to the algorithm anymore and thus, can be stored arbitrarily. If
𝐵𝑣 (𝑢) has depth more than ℓ , then 𝑣 stores 𝑢 if and only if the corresponding edge is a bridge
in G [p].

We denote the state of the overlay graph after level ℓ by Gℓ . Let ℓ be the current level and p a
bit string with length ℓ . Let𝑉0 ⊆ G [p] be the set of border vertices of p0-components in G [p].
By definition, each border vertex 𝑣 ∈ 𝑉0 knows at least one p1-vertex 𝑢 as a contact with a
corresponding path that does not contain any p0-vertices as inner vertices. The vertex 𝑣 then
requests vertex 𝑢. If it stores a newly learned p0-vertex, then 𝑣 does not send further requests
during level ℓ . Otherwise, it repeatedly sends requests for p1-contacts with a corresponding
underlay path without p0-vertices as inner vertices that have not been requested yet. We
show that in this case, a bridge is eventually found. Once all vertices in𝑉 (G) stopped sending
requests, the level ℓ is increased by one, and Gℓ+1 is set to the last state of Gℓ .

We show in the following that𝐺 is KIRA-connected after level 𝐵, where 𝐵 is the number of
bits in the ID space. For this, we first prove two useful invariants for the overlay graph after
each level.

Lemma 3.14: Let Gℓ be the overlay graph before level ℓ for some ℓ ∈ {0, . . . , 𝐵 − 1}. Suppose
that Gℓ has the following properties:

1 For every prefix p of length ℓ , the prefix graph Gℓ [p] is a path where the vertices are in the
same order as in the underlying path. Further, each component in Gℓ [p] has size at most
𝑘 − 1.

2 Each vertex has a contact of depth ℓ − 1 if ℓ > 0, and if a vertex that belongs in this bucket
exists.

Then, after level ℓ , the graph Gℓ+1 has the same properties (with ℓ + 1 instead of ℓ).

Proof. Suppose Gℓ has the properties as stated in the lemma before level ℓ . This situation
is shown in Figure 3.9 for Gℓ [p] for some prefix p. We show that the graphs Gℓ+1 [p0] and
Gℓ+1 [p1] form a path for every prefix p of length ℓ . As mentioned previously, each Gℓ [p] can
be analyzed independently of each other.
Assume that 𝑢 is a border vertex of some p0-component 𝑉0 in Gℓ [p] and that 𝑢 knows a

border vertex 𝑣 of an adjacent p1-component 𝑉1. Then, it repeatedly requests p1-vertices
which have not been requested yet. We prove that it finds a bridge, i.e., a p0-vertex with a
corresponding underlay path that contains no p0-vertices as inner vertices if such a vertex
exists. If 𝑉1 is adjacent to another p0-component 𝑉 ′

0 ≠ 𝑉0, then there exists a border vertex
𝑤 ∈ 𝑉1 that knows a p0-contact 𝑧 ∈ 𝑉 ′

0 . By repeatedly requesting p1-vertices, 𝑢 learns and
stores all vertices in 𝑉1 since 𝑉1 consists of at most 𝑘 − 1 vertices. In particular, 𝑢 requests
vertex𝑤 at some point, which responds with the 𝑘 closest contacts it knows. Since𝑤 only
knows two contacts in Gℓ [p], the response contains 𝑧 ∈ 𝑉 ′

0 . This vertex is then stored by 𝑢
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p0 p1

p10 p11

Figure 3.9: A possible overlay graph Gℓ [p] for |p| = ℓ that satisfies the invariants of
Lemma 3.14. The gray boxes represent p0-components and p1-components. Since we do
not differ between p10-vertices and p11-vertices in Gℓ [p], the graph contains exactly two
p1-components. The vertices in Gℓ [p] form a path. In the next step, the bridges colored in
orange are added to the graph. Note that both Gℓ+1 [p0] and Gℓ+1 [p1] are connected then. Then,
we use induction on both subgraphs. In particular, Gℓ+1 [p1] consists of two p10-components
and of one p11-component.

since the underlay path from 𝑢 to 𝑧 does not contain any p0-vertices as inner vertices. Further,
vertices in 𝑉1 learn of 𝑣 by path overhearing and store 𝑣 as a contact. If this is repeated for
all border vertices in Gℓ [p], then the p0-components are connected in Gℓ+1 [p0] and each
p0-vertex knows at most two other p0-vertices which are closest to it in the underlay graph.
The symmetric result holds for p1-vertices. Thus, the first part of the lemma also holds for
Gℓ+1. Since each p0-vertex learns of a p1-vertex and vice versa, the second part of the lemma
holds for Gℓ+1 as well.

Theorem 3.15: After level 𝐵, the graph is KIRA-connected.

Proof. By repeatedly applying Lemma 3.14 to each level, each vertex has at least one contact
in each bucket if such a contact exists after level 𝐵. Then, the graph is KIRA-connected by
Lemma 3.2.

In the previous proof, ℓ was treated as a global variable, for which all vertices know the
current value. However, this is not applicable in practice. If every vertex simply stores its
own level, it is possible that vertices that still have a lower level (i.e., they have may not have
filled deeper buckets) cannot find a bridge that goes over a vertex in a higher level. This can
be solved by ensuring that the level difference is not too high locally. In particular, a vertex in
the underlying graph only forwards a request if the level of the requesting vertex is at most
its own level. Otherwise, the request simply terminates.

Further, note that the number of requests needed for each level can be improved by storing
newly learned vertices less restrictively. Suppose 𝑣 learns of a new vertex 𝑢 in level ℓ . If 𝐵𝑣 (𝑢)
has depth ℓ , we assume without loss of generality that 𝑣 is a p0-vertex and 𝑢 is a p1-vertex.
Then, vertex 𝑢 is stored if 𝐵𝑣 (𝑢) is empty or if the corresponding underlay path from 𝑣 to 𝑢
does not contain a p0-vertex as an inner vertex. If 𝐵𝑣 (𝑢) has depth more than ℓ , we assume
without loss of generality that both 𝑣 and 𝑢 are p0-vertices. Then, vertex 𝑢 is stored if 𝐵𝑣 (𝑢) is
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empty and if the number of contacts of 𝑣 with depth more than ℓ is at most 𝑘 − 2 afterwards.
Additionally, 𝑢 is also stored by 𝑣 if the corresponding edge is a bridge. As a consequence,
the graph Gℓ [p] for some p with length ℓ is not necessarily a path. Thus, border vertices
may find a bridge faster between two p0-components by not having to request all vertices in
the p1-component in between. However, we have to ensure that each component in Gℓ [p]
for every prefix p and every level ℓ is still sufficiently small. To prove a similar result as
Lemma 3.14, more invariants are required.

Probability of Constraints In the previous part, we assumed there are at most 𝑘 − 1
p-consecutive p0-vertices and at most 𝑘 − 1 p-consecutive p1-vertices in G [p] for every prefix
p. We call the event that this condition on the ID assignment is satisfied 𝐴, and prove that the
probability 𝐴 occurs is high. In the following, we first consider the event that this condition
does not hold for each prefix separately, and then combine these results to obtain an upper
bound for the probability of 𝐴, the complementary event to 𝐴.

For a fixed prefix p, this is equivalent to flipping a fair coin |𝑉 (𝐺 [p]) | times and considering
the longest streak of the same bit, which has already been extensively studied in the past
[ER75 | Sch90]. For easier notation, we denote the number |𝑉 (𝐺 [p]) | of p-vertices in 𝐺 by 𝑛p.
As IDs are assigned randomly, 𝑛p is a random variable. Let 𝐸p be the event that there are more
than 𝑘 − 1 p-consecutive p0-vertices or p1-vertices in 𝐺 . The following lemma determines an
upper bound for 𝐸p given 𝑛p (see [MU05], exercise 1.09).

Lemma 3.16: For a prefix p, the probability that 𝐸p occurs given 𝑛p is

Pr
[
𝐸p

�� 𝑛p] = 𝑛p

2𝑘−1
.

Proof. We enumerate the p-vertices in 𝐺 canonically from 1 to 𝑛p, as they are ordered in 𝐺 .
The probability that a streak of 𝑘 p-consecutive vertices starts at the 𝑖-th p-vertex for some
𝑖 ∈ {1, . . . , 𝑛p − 𝑘} is 1

2 ·
1
2𝑘 . We denote this event by 𝐸𝑖p. Then, it is

Pr
[
𝐸p

�� 𝑛p] = Pr
[
𝐸1p ∪ 𝐸2p ∪ . . . ∪ 𝐸

𝑛p−𝑘
p

��� 𝑛p] ≤
𝑛p−𝑘∑︁
𝑖=1

2−𝑘+1 ≤
𝑛p

2𝑘−1
.

The upper bound is obtained using the union bound (2.1).

We can now write the event 𝐴 as a union of all 𝐸p given 𝑛p, and determine an upper bound
for the probability of 𝐴, which gives us a lower bound for the probability of 𝐴.

Lemma 3.17: The probability that 𝐴 occurs is

Pr [𝐴] = 1 − 𝑛 · 𝐵
2𝑘−1

.

Proof. It is 𝐴 =
⋃

p 𝐸p, and we again use the union bound (2.1) to obtain an upper bound for
Pr [𝐴]. Then, it is

Pr
[
𝐴

]
= Pr

[⋃
p

𝐸p

����� 𝑛p for all prefixes p
]
≤

∑︁
p

Pr
[
𝐸p

�� 𝑛p] .
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By sorting the summands by the length of the prefix, we rearrange the sum, and then, apply
the result from Lemma 3.16.

=

𝐵−1∑︁
𝑖=0

∑︁
p

|p |=𝑖

Pr
[
𝐸p

�� 𝑛p] ≤
𝐵−1∑︁
𝑖=0

∑︁
p

|p |=𝑖

𝑛p

2𝑘−1
.

Since the vertices in 𝑉 (𝐺) are partitioned using prefixes of length 𝑖 , the sum of all 𝑛p with
|p| = 𝑖 for some 𝑖 ∈ {1, . . . , 𝐵 − 1} is the total number of vertices. This gives us

=

𝐵−1∑︁
𝑖=0

𝑛

2𝑘−1
=
𝑛 · 𝐵
2𝑘−1

.

Then, the probability of 𝐴 is

Pr [𝐴] = 1 − Pr
[
𝐴

]
≥ 1 − 𝑛 · 𝐵

2𝑘−1
.

We assume that the ID space has size 𝑁 B 𝑛𝑐 for some constant 𝑐 > 2 (see Lemma 2.2), i.e.,
the number of bits 𝐵 is 𝑐 log(𝑛). Let 𝑘 ≥ 2 · log(𝑛) be the size of the buckets. Then,

Pr [𝐴] ≥ 1 − 𝑛 · 𝐵
2𝑘−1

≥ 1 − 2𝑐 · 𝑛 log(𝑛)
𝑛2

= 1 − 2𝑐 log(𝑛)
𝑛

→ 1 for 𝑛 → ∞.

Thus, the desired conditions for the ID assignment are satisfied with high probability.

Generalization A natural approach for arbitrary graphs is trying to generalize the proposed
strategy for paths. Most ideas of the strategy on paths can be adopted for graphs in general,
but the way of storing new contacts needs to be adapted since some vertices might need to find
multiple bridges in the same prefix graph (contrary to only having to find one bridge for paths).
A key difference between arbitrary graphs and paths is that vertices in G [p] might have high
degree, even if the constraint that components in G [p] have small size is still in place. This is
particularly problematic for border vertices of components. For instance, suppose that some
border vertex 𝑣 of a p0-component in G [p] knows 𝑘 − 1 p0-vertices and 𝑘 − 1 p1-vertices
that belong to distinct components. Then, 𝑣 always returns all p0-vertices and only a small
subset of the p1-vertices in a 𝑘-closest response. This may prevent p1-vertices from finding
necessary bridges to make G [p1] connected.
This may be solved by changing the way vertices select contacts for their responses such

that they do not necessarily respond with the closest contacts. Instead, it might be reasonable
to diversify the response by including contacts from different buckets, possibly even depending
on the ID of the requesting source. Especially in the earlier stages of the algorithm, for example
when the graph is not KIRA-connected yet, such a changemight help with discovering contacts
in other parts of the graph and escaping local optima.
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To route efficiently in large networks, it is crucial to keep the lengths of the found paths as
short as possible. For other ID-based routing protocols such as VRR and DISCO, the quality of
the found paths was not prioritized [Cae+06 | Sin+10]. In contrast, KIRA uses certain policies
such as Proximity Neighbor Selection and Proximity Routing to find more efficient paths. On
the evaluated graphs, KIRA indeed often finds reasonably short paths, especially in a later
phase after a certain number of requests [BZDH22]. In the following, we analyze how long a
path between two vertices found by KIRA can be if Proximity Neighborhood Selection and
Proximity Routing are used. For two vertices 𝑠 and 𝑡 of a graph, we call the ratio of the lengths
of the found path 𝑃 and the shortest underlay path from 𝑠 to 𝑡 the path stretch 𝑆𝑠,𝑡 =

|𝑃 |
dist(𝑠,𝑡 ) .

To evaluate the stretch, we make certain assumptions on the state of the routing tables,
which we state in the following section. The rest of the chapter is divided into two parts,
where we provide lower bounds for the stretch for deterministic ID assignments first and
then, for random ID assignments. For deterministic ID assignments, we additionally show
that the bound is tight.

4.1 Assumed State of Overlay Graph

Especially at the start-up of KIRA, the stretch of a path found by KIRA may be very high
if it is found at all. However, by adding new contacts and improving existing ones, the
stretch decreases over time and the KIRA-connectivity improves. Thus, it is reasonable to
only consider states of the overlay graph, where KIRA-connectivity is already established,
and where routing tables are already filled sufficiently well. More specifically, we provide
lower bounds for the stretch if we assume a best possible state of the overlay graph regarding
Proximity Neighborhood Selection.

In particular, we assume that the buckets of each vertex are filled as much as possible. This
means that a bucket contains exactly 𝑘 vertices, or it stores all vertices in the graph that
belong to this bucket. An overlay graph whose routing tables have this property is called a full
overlay graph. This assumption guarantees that the graph is KIRA-connected by Lemma 3.2,
i.e., the algorithm finds a path between any two vertices. Moreover, the prefix bit distance
to some target decreases at each hop, thus, we only need the XOR metric as a tiebreaker if
Proximity Routing yields multiple candidates.

Further, we assume that the 𝑘 contacts that are stored in each bucket of some vertex 𝑢 are
the vertices in the corresponding bit distance range that are closest to 𝑣 in the underlay graph.
In other words, if some vertex𝑢 is a contact of 𝑣 , then there is no vertex𝑤 with 𝐵𝑣 (𝑤) = 𝐵𝑣 (𝑢)
and dist(𝑣,𝑤) < dist(𝑣,𝑢) that is not a contact of 𝑣 . We use the XOR metric as a tiebreaker,
i.e., if there are multiple vertices that belong to a bucket with the same underlay distance to 𝑣 ,
the vertex that is bitwise closest to 𝑣 is preferred. Additionally, we want the underlay paths
stored for each contact to be shortest paths between the vertices in the underlay graph. We
call a full overlay graph with these properties an optimal overlay graph regarding Proximity
Neighborhood Selection. Such an overlay graph is optimal in the sense that routing tables do
not change anymore, and contacts are never replaced.
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4.2 Worst Case ID Assignment

We investigate the worst case for the stretch using deterministic IDs, i.e., how large the stretch
can be if we choose a worst case underlay graph and an ID assignment. For two vertices 𝑠 and
𝑡 with underlay distance dist(𝑠, 𝑡), a trivial upper bound for the stretch is 𝑆𝑠,𝑡 ≤ 𝑛−1

dist(𝑠,𝑡 ) , where
𝑛 is the number of vertices in the graph. The following lemma bounds the possible stretch of
the path found by KIRA between two vertices, depending on their prefix bit distance.

Lemma 4.1: Let𝐺 be a graph with a full overlay, and let 𝑠, 𝑡 ∈ 𝑉 (𝐺) be two vertices with prefix
bit distance dist𝑝 (𝑠, 𝑡). Then, the stretch 𝑆𝑠,𝑡 is at most 2dist𝑝 (𝑠,𝑡 ) − 1.

Proof. As we assume that the overlay graph is full, a path from 𝑠 to 𝑡 found by KIRA uses
at most dist𝑝 (𝑠, 𝑡) overlay hops by Corollary 3.3. Let 𝑃 = (𝑣0 = 𝑠, 𝑣1, . . . , 𝑣ℎ = 𝑡) for some
ℎ ≤ dist𝑝 (𝑠, 𝑡) be the path that is found by KIRA in the overlay graph from 𝑠 to 𝑡 . Suppose
that the request is at the 𝑖-th overlay hop 𝑣𝑖 .
We first show that dist(𝑣𝑖 , 𝑣𝑖+1) ≤ dist(𝑣𝑖 , 𝑡). Assume that dist(𝑣𝑖 , 𝑣𝑖+1) > dist(𝑣𝑖 , 𝑡), i.e., 𝑣𝑖+1

is further away in the underlay graph from 𝑣𝑖 than 𝑡 . Since the prefix bit distance is improved
in each step, it is 𝐵𝑣𝑖 (𝑣𝑖+1) = 𝐵𝑣𝑖 (𝑡) which means that 𝑡 would be stored in the same bucket of
𝑣𝑖 as 𝑣𝑖+1. But if 𝑡 is closer to 𝑣𝑖 than 𝑣𝑖+1 in the underlay graph and 𝑣𝑖+1 is a contact of 𝑣𝑖 , then
vertex 𝑡 must be a contact of 𝑣𝑖 , too, since we assume an optimal overlay graph regarding
Proximity Neighborhood Selection. In this case, 𝑣 would directly route to 𝑡 , and 𝑣𝑖+1 would not
be the next overlay hop. Thus, it is dist(𝑣𝑖 , 𝑣𝑖+1) ≤ dist(𝑣𝑖 , 𝑡) ≤ dist(𝑠, 𝑡) + ∑𝑖−1

𝑗=0 dist(𝑣 𝑗 , 𝑣 𝑗+1)
for all 𝑖 ∈ {0, . . . , ℎ − 1}. The second inequality is obtained by applying the triangle inequality.
We show that

∑𝑖−1
𝑗=0 dist(𝑣 𝑗 , 𝑣 𝑗+1) ≤

(
2𝑖 − 1

)
· dist(𝑠, 𝑡) for 𝑖 ∈ {1, . . . , ℎ}. For 𝑖 = 1, this is

true by the previous observation. For 𝑖 > 1, we have

𝑖∑︁
𝑗=0

dist(𝑣 𝑗 , 𝑣 𝑗+1) =

𝑖−1∑︁
𝑗=0

dist(𝑣 𝑗 , 𝑣 𝑗+1) + dist(𝑣𝑖 , 𝑣𝑖+1)

≤
(
2𝑖 − 1

)
· dist(𝑠, 𝑡) + dist(𝑣𝑖 , 𝑣𝑖+1)

≤
(
2𝑖 − 1

)
· dist(𝑠, 𝑡) + dist(𝑠, 𝑡) +

𝑖−1∑︁
𝑗=0

dist(𝑣 𝑗 , 𝑣 𝑗+1)

≤
(
2𝑖 − 1

)
· dist(𝑠, 𝑡) + dist(𝑠, 𝑡) +

(
2𝑖 − 1

)
· dist(𝑠, 𝑡) =

(
2𝑖+1 − 1

)
· dist(𝑠, 𝑡) .

It follows directly that 2dist𝑝 (𝑠,𝑡 ) − 1 is an upper bound for the stretch 𝑆𝑠,𝑡 .

An example graph, where there are two vertices 𝑠 and 𝑡 with maximally possible stretch is
depicted in Figure 4.1. Thus, the proposed bound is tight for a fixed prefix bit distance.

4.3 Random ID Assignment

In the previous section, we gave a worst-case upper bound disregarding that IDs are chosen
randomly. In the following, we give an asymptotically matching lower bound that even holds
in the probabilistic setting with random IDs. We basically build on the construction for the
worst-case lower bound. However, using the construction from the previous section, the
probability that KIRA routes in the wrong direction instead of routing directly to 𝑡 decreases
significantly with an increasing number of hops.
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2dist𝑝 (𝑠,𝑡 )−1 · 𝑑

Figure 4.1: An example graph with an ID assignment such that 𝑆𝑠,𝑡 = 2dist𝑝 (𝑠,𝑡 ) − 1. Only the
relevant prefixes of the IDs are specified, and the IDs of vertices on paths between hubs are
0-vertices. Each hub (marked in orange) consists of exactly 𝑘 vertices, which share a prefix.
The distance between 𝑠 and 𝑡 is 𝑑 , and the length of the paths between hubs doubles after
each hub. With this construction, it is possible that 𝑠 routes over each hub before reaching 𝑡 ,
correcting bits one by one, which gives us the proposed stretch.

In this section, we construct a family of graphs such that there is a pair of vertices for
which the algorithm finds a path with high stretch with at least constant probability. After
describing the topology of the graphs first, we qualify parameters that need to be chosen for
the construction. Then, we analyze the probability distribution of the stretch that is achieved
by the algorithm.
First, we introduce the notion of interesting vertices. Interesting vertices are vertices that

are candidates for the next overlay hop, i.e., they make some prefix-wise improvement towards
the target. More formally, a vertex 𝑢 ∈ 𝑉 (𝐺) is 𝑣-𝑡-interesting for some 𝑣 ∈ 𝑉 (𝐺) and some
target 𝑡 if dist𝑝 (𝑢, 𝑡) < dist𝑝 (𝑣, 𝑡). This is equivalent to 𝐵𝑣 (𝑢) = 𝐵𝑣 (𝑡), i.e., the vertices 𝑢 and 𝑡
belong to the same bucket with depth lcp(ID(𝑣), ID(𝑡)). The following lemma shows that the
probability that some vertex is 𝑣-𝑡-interesting depends on the prefix bit distance between 𝑣
and 𝑡 . Note that this is independent of the underlay graph.

Lemma 4.2: Let 𝑣, 𝑡 ∈ 𝑉 (𝐺) and 𝑑 B dist𝑝 (𝑣, 𝑡) the prefix bit distance between 𝑣 and 𝑡 . The
probability that a vertex 𝑢 ∈ 𝑉 (𝐺) is 𝑣-𝑡-interesting, is 2𝑑−1

𝑁
.

Proof. By definition, 𝑣-𝑡-interesting vertices share a bucket of depth lcp(ID(𝑥), ID(𝑡)) = 𝐵 −𝑑
in the routing table of 𝑣 , where 𝐵 is the number of bits of each ID. Thus, these vertices share
a prefix of length exactly lcp(ID(𝑣), ID(𝑡)) with 𝑣 . The probability that a vertex has this
property is (

1
2

) lcp(ID(𝑣), ID(𝑡 ) )+1
=

(
1
2

)𝐵−𝑑+1
=
2𝑑−1

𝑁
.

4.3.1 Construction of Graph

First, we describe the topology of the graph and introduce several parameters that need to be
specified later. Let ℎ ∈ ℕ. The graph consists of ℎ + 1 disjoint vertex sets 𝑉0,𝑉1, . . . ,𝑉ℎ , which
we call hubs. Each hub forms an independent set, i.e., the subgraph induced by the vertices of
a hub contains no edges. The hub 𝑉0 only consists of one vertex 𝑠 , which we call the source.
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𝑄0𝑠 𝑡

𝑃0
𝑉1

𝑉2 𝑉3

𝑉ℎ−1

𝑉4

𝑃1

𝑃2

𝑃3

𝑃ℎ−2

𝑃4

𝑃ℎ−1

𝑉ℎ

Figure 4.2: The constructed graph 𝐺 with source 𝑠 and target 𝑡 ∈ 𝑉ℎ , ℎ hubs 𝑉1, . . .𝑉ℎ , and
the path 𝑄0 and the paths in P . The graph is fully specified, given the number and sizes of
the hubs and the lengths of the paths.

The hub 𝑉ℎ may contain more than one vertex, and there is a vertex in 𝑉ℎ that we call the
target. As the names suggest, we are interested in the stretch of a path from 𝑠 to some target
in 𝑉ℎ found by the algorithm. All other hubs may contain any number of vertices. We denote
the size of a hub 𝑉𝑖 by 𝑛𝑖 for 𝑖 ∈ {1, . . . , ℎ}.

The hubs𝑉0, . . . ,𝑉ℎ are arranged on a cycle and are connected by pairwise disjoint paths in
P = {𝑃0, 𝑃1, . . . , 𝑃ℎ−1}. For a path 𝑃𝑖 with 𝑖 ∈ {0, . . . , ℎ − 1}, one endpoint of 𝑃𝑖 is adjacent to
all vertices in𝑉𝑖 , whereas the other endpoint of 𝑃𝑖 is adjacent to all vertices in𝑉𝑖+1. Any inner
vertex of 𝑃𝑖 is not adjacent to any vertices other than its neighbors in 𝑃𝑖 . Additionally, the
vertices 𝑠 and the vertices in 𝑉ℎ are connected by a path 𝑄0, i.e., all vertices in 𝑉ℎ are adjacent
to one endpoint of 𝑄0, while 𝑠 is adjacent to the other endpoint of 𝑄0. The structure of the
graph is depicted in Figure 4.2

The idea is to force KIRA to route along a path from source 𝑠 to some target in𝑉ℎ such that
the 𝑖-th overlay hop of the path is in hub 𝑉𝑖 for all overlay hops on the path. Between two
overlay hops, the algorithm takes a path in P . We first specify the path lengths such that the
resulting stretch depends on the number of overlay hops from 𝑠 to the target. Further, we
choose the size of each hub of the graph.

Path Lengths We specify the lengths of each path in P such that it is possible that KIRA
finds a path from 𝑠 to 𝑡 as described above. Further, we want to maximize the stretch in case
such a path found. As we are only interested in the distance between different hubs (which
is not equal to the lengths of the paths in P), we simplify the notation. Let distP (𝑉𝑖 ,𝑉𝑖+1)
with 𝑖 ∈ {0, . . . , ℎ − 2} be the distance between hub 𝑉𝑖 and 𝑉𝑖+1 if the path 𝑃𝑖 is taken. Since
every vertex in 𝑉𝑖 has the same distance to any vertex in 𝑉𝑖+1, this is well defined. Note that
it is distP (𝑉𝑖 ,𝑉𝑖+1) = |𝑃𝑖 | + 2, thus, it is sufficient to specify each distP (𝑉𝑖 ,𝑉𝑖+1) instead of
the lengths of each path in P . We further introduce a new variable ℓ and variables ℓ𝑖 for
𝑖 ∈ {0, . . . , ℎ − 1}, where ℓ𝑖 is the distance distP (𝑉𝑖 ,𝑉𝑖+1). Each ℓ𝑖 depends on ℓ , which roughly
describes the distance between 𝑠 and 𝑉ℎ .

34



4.3 Random ID Assignment

We choose the lengths in such a way that they satisfy some convenient properties under
the assumption that the 𝑖-th overlay hop is indeed in the 𝑖-th hub 𝑉𝑖 : On the one hand, our
goal is to maximize the stretch of the found path, thus we choose the paths as long as possible.
However, on the other hand, we have to make sure that the vertices in 𝑉𝑖+1 are closer to the
vertices in 𝑉𝑖 than the target. Otherwise, a vertex in 𝑉𝑖 would prefer to store the target. In
this case, the algorithm would directly route to 𝑡 from the 𝑖-th overlay hop. With these two
constraints in mind, we set ℓ𝑖 = 2𝑖 · ℓ .
If the path goes through all hubs 𝑉0, . . . ,𝑉ℎ , we obtain maximal stretch, similar as in

Lemma 4.1. However, it is possible that the found path goes over an overlay hop 𝑣 ∈ 𝑉 (𝐺)
that knows the target directly as a contact. In this case, the algorithm takes the path from
𝑣 to the target, which is stored in the routing table of 𝑣 . Recall that this underlay path is
a shortest path from 𝑣 to 𝑡 since we assume an optimal overlay graph regarding Proximity
Neighborhood Selection. The way we chose the lengths of the paths in P , such a shortest
path from a vertex 𝑣 in some hub𝑉𝑖 with 𝑖 ∈ {1, . . . , ℎ − 2} to a target in𝑉ℎ always routes back
to 𝑠 , going over the paths 𝑃𝑖−1, . . . , 𝑃0. From 𝑠 , the path routes to a target in𝑉ℎ via the path𝑄0.
Since the algorithm optimizes the found path by erasing all loops, the resulting path would
be optimal in that case. Although it does not affect the worst case, we still aim to achieve
some stretch even if the found path does not go via all hubs 𝑉1, . . . ,𝑉ℎ−1. Thus, we introduce
new paths𝑄1, . . . , 𝑄ℎ−2 that connect each hub with the vertices in𝑉ℎ by a path that is slightly
shorter than the path via 𝑠 and thus preferred. One endpoint of 𝑄𝑖 with 𝑖 ∈ {1, . . . , ℎ − 2}
is adjacent to all vertices in 𝑉𝑖 and the other endpoint is adjacent to all vertices in 𝑉ℎ . Let
Q = {𝑄0, . . . , 𝑄ℎ−2}, where 𝑄0 is the path that connects source 𝑠 with the vertices in 𝑉ℎ .
We choose the lengths of each path in Q such that at a hub 𝑉𝑖 , a contact in the next hub

𝑉𝑖+1 is preferred over the target for 𝑖 ∈ {1, . . . , ℎ − 2}. In other words, 𝑄𝑖 needs to be longer
than 𝑃𝑖 for every 𝑖 ∈ {0, . . . , ℎ − 2}. Similarly as before, we denote the distance between a
hub 𝑉𝑖 and the target hub 𝑉ℎ that goes over 𝑄𝑖 by distQ(𝑉𝑖 ,𝑉ℎ) for 𝑖 ∈ {0, . . . , ℎ − 2}. We set
distQ(𝑉𝑖 ,𝑉ℎ) B ℓ𝑖 + 1 for 𝑖 ∈ {1, . . . , ℎ − 2} and distQ(𝑉0,𝑉ℎ) B ℓ0 + 2. Figure 4.3 shows a
sketch of graph 𝐺 with the specified lengths of the paths in P and Q.

The following lemma shows that the stretch of a found path grows exponentially with the
number of hubs it routes through. Note that this asymptotically matches the upper bound
given in Lemma 4.1 for worst-case ID assignments.

Lemma 4.3: Let 𝑅 = (𝑟0 = 𝑠, 𝑟1, . . . , 𝑟 𝑗−1, 𝑡) with 𝑟𝑖 ∈ 𝑉𝑖 for 𝑖 ∈ {1, . . . , 𝑗 − 1} and 𝑡 ∈ 𝑉ℎ be a
path in 𝐺 from 𝑠 to a target 𝑡 in 𝑉ℎ . It is possible that KIRA finds this path when 𝑡 is requested
by 𝑠 . For ℓ ≥ 2, the stretch of the found path is at least 2𝑗−1.

Proof. We first prove that it is possible for the algorithm to find such a route. Recall that the
shortest path from hub 𝑉𝑖 to hub𝑉𝑖+1 for all 𝑖 ∈ {0, . . . , ℎ − 1} has length distP (𝑉𝑖 ,𝑉𝑖+1) = ℓ𝑖 =
2𝑖 · ℓ . Further, the distance between 𝑠 and 𝑡 is ℓ0 + 2. We first determine the distance between
an overlay hop 𝑟𝑖 ∈ 𝑅 and 𝑡 ∈ 𝑉ℎ by comparing the lengths of different paths from 𝑟𝑖 to 𝑡 .
The length of the path between 𝑟𝑖 and 𝑡 using path 𝑄𝑖 is distQ(𝑉𝑖 ,𝑉ℎ) = ℓ𝑖 + 1 by definition.
Another possible path goes back to 𝑠 , taking the overlay hops 𝑟𝑖−1, . . . , 𝑟1, 𝑠 in reversed order.
From there, it routes to 𝑡 via 𝑄0. The length of this path is
𝑖−1∑︁
𝑗=0

distP (𝑉𝑗 ,𝑉𝑗+1) + distQ(𝑠, 𝑡) =
𝑖−1∑︁
𝑗=0

ℓ𝑗 + ℓ0 + 2 =
𝑖−1∑︁
𝑗=0

2𝑗 · ℓ + ℓ0 + 2 =
(
2𝑖 − 1

)
· ℓ + ℓ0 + 2 = ℓ𝑖 + 2.

All other paths are clearly longer. Thus, the distance between 𝑟𝑖 ∈ 𝑉𝑖 and the target is
dist(𝑟𝑖 , 𝑡) = distQ(𝑉𝑖 ,𝑉ℎ). As KIRA prefers shorter paths, it takes a path in Q rather than
routing back to 𝑠 and from there to 𝑡 if the current overlay hop knows 𝑡 as a target.
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Figure 4.3: The constructed graph 𝐺 with source 𝑠 and target 𝑡 ∈ 𝑉ℎ , ℎ hubs 𝑉1, . . .𝑉ℎ , and
paths 𝑃𝑖 for 𝑖 ∈ {0, . . . , ℎ − 1} and 𝑄𝑖 for 𝑖 ∈ {0, . . . , ℎ − 2} which connect pairs of hubs. For
each path that connects two hubs 𝑉 ′ and 𝑉 ′′, we specify distP (𝑉 ′,𝑉 ′′) and distQ(𝑉 ′,𝑉 ′′),
respectively, in brackets after the name of the path.

Further, we need to prove that a vertex in 𝑉𝑖 prefers to store a vertex in 𝑉𝑖+1 in its routing
table over 𝑡 for 𝑖 ∈ {0, . . . , ℎ − 2}. The distance between a vertex in 𝑉𝑖 and a vertex in 𝑉𝑖+1
is dist(𝑉𝑖 ,𝑉𝑖+1) = distP (𝑉𝑖 ,𝑉𝑖+1) = ℓ𝑖 < ℓ𝑖 + 1 = dist(𝑉𝑖 , 𝑡) for 𝑖 ∈ {1, . . . , ℎ − 2}. For 𝑖 = 0, we
have dist(𝑉0,𝑉1) = ℓ0 < ℓ𝑖 + 2 = dist(𝑉0, 𝑡). As the underlay distance to the next hub 𝑉𝑖+1 is
smaller than 𝑡 , the vertices in𝑉𝑖+1 are preferred as contacts over the target. Thus, it is possible
that no overlay hop in 𝑅 (except for the last hop before 𝑡 ) knows the target as a contact.
For the length of 𝑅, we obtain the following sum if we assume ℓ ≥ 2.

|𝑅 | =
𝑗−1∑︁
𝑖=0

dist(𝑟𝑖 , 𝑟𝑖+1) ≥
𝑗−1∑︁
𝑖=0

ℓ𝑖 = ℓ ·
𝑗−1∑︁
𝑖=0

2𝑖 = ℓ ·
(
2𝑗 − 1

)
≥ (ℓ + 2) · 2𝑗−1.

This gives us a stretch of at least 2𝑗−1.

Hub Sizes To make it probable that the path goes via the hubs 𝑉1, . . . ,𝑉ℎ−1, the main idea
is to make each hub sufficiently large such that the probability that the algorithm routes from
a vertex in 𝑉𝑖 to a vertex in 𝑉𝑖+1 is high for some given target. Assume that 𝑣𝑖 ∈ 𝑉𝑖 is the 𝑖-th
overlay hop and 𝑡 is the target. If 𝐵𝑣𝑖 (𝑡) ⊆ 𝑉𝑖+1, then all candidates for the next overlay hop
are in 𝑉𝑖+1. For this to happen with sufficiently high probability, we need sufficiently many
vertices in 𝑉𝑖+1 that are 𝑣𝑖-𝑡-interesting. Thus, we aim to choose 𝑛𝑖 , the size of hub 𝑉𝑖 , large
enough such this condition is satisfied.
From now on, we refer to this desired number of interesting vertices in each hub as the

constant 𝑟 . Lemma 4.2 implies that the number of interesting vertices also depends on the
prefix bit distance of the current overlay hop to the target. Thus, the choice of the size of
𝑉𝑖+1 needs to take the bit distance of the 𝑖-th overlay hop to the target into account. More
specifically, as the bit distance to the target decreases at each overlay hop, the size of each
hub has to increase along the path to maintain a constant number of 𝑟 interesting vertices in
each hub.
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Let 𝑑∗0 denote the desired initial prefix bit distance between 𝑠 and some target in 𝑉ℎ . For
fixed vertices 𝑠 and 𝑡 , it is not very likely that 𝑠 and 𝑡 actually have bit distance 𝑑∗0 . We boost
this probability by choosing the size of the last hub 𝑉ℎ , which contains the target, sufficiently
large. We set the size of the last hop |𝑉ℎ | = 𝑛ℎ B 𝑁

2𝑑
∗
0−1

. The following lemma shows that the
probability that 𝑠 and a vertex in 𝑉ℎ have the desired initial prefix bit distance is constant.

Lemma 4.4: Let 𝑑∗0 be the desired prefix bit distance between the source and the target. The
probability that 𝑠 and a vertex in 𝑉ℎ have prefix bit distance 𝑑∗0 is at least 1 − 1

𝑒
.

Proof. First, consider a fixed vertex 𝑣 ∈ 𝑉ℎ . It has prefix bit distance 𝑑∗0 to 𝑠 if and only if
lcp(ID(𝑠), ID(𝑣)) = 𝐵 − 𝑑∗0 . The probability that this happens is(

1
2

) lcp(ID(𝑠 ),ID(𝑣) )+1
=

(
1
2

)𝐵−𝑑∗
0+1

=
2𝑑∗

0−1

𝑁
.

Then, the probability that there is a vertex in 𝑉ℎ with the desired prefix bit distance is

1 −
(
1 − 2𝑑∗

0−1

𝑁

)𝑛ℎ
= 1 −

(
1 − 2𝑑∗

0−1

𝑁

) 𝑁

2𝑑
∗
0−1 ≥ 1 − 1

𝑒
.

In the following, we assume that there is a vertex 𝑡 ∈ 𝑉ℎ with bit distance 𝑑∗0 , and we consider
the request from source 𝑠 to target 𝑡 .
The improvement of the bit distance towards the target may vary after each overlay hop,

but similarly as for 𝑟 , the number of desired interesting vertices after each hop, we fix a desired
amount of improvement. At each overlay hop, we aim to improve the bit distance to the target
by 𝑏∗ bits. For now, we define 𝑏∗ B log

(
𝑟

ln(2)

)
. We later show 𝑏∗ is indeed appropriately

chosen and that the improvement at each overlay hop is not too far from 𝑏∗ with sufficiently
high probability. With the definition of 𝑏∗, we can now define the corresponding desired bit
distances 𝑑∗𝑖 B 𝑑∗0 − 𝑖 · 𝑏∗ between the 𝑖-th overlay hop on the found path and the target.
Depending on the desired bit distances, we set the size 𝑛𝑖 of a hub𝑉𝑖 with 𝑖 ∈ {1, . . . , ℎ − 1} to

𝑛𝑖 B
𝑁 · 𝑟
2𝑑∗

𝑖−1−1
=
𝑁 · ln(2) · 2𝑏∗ · 2(𝑖−1) ·𝑏∗

2𝑑∗
0−1

= ln(2) · 𝑁 · 2𝑖 ·𝑏∗−𝑑∗
0+1. (4.1)

Note that by choosing values for ℓ , 𝑟 , 𝑛ℎ , 𝑑∗0 and ℎ, the graph is fully specified.

4.3.2 Lower Bound for the Probability

In the following, we determine a lower bound for the probability that the graph satisfies our
conditions, i.e., that the path found by the algorithm from 𝑠 to 𝑡 goes over all hubs. We first
consider each pair of consecutive overlay hops separately and combine these probabilities to
obtain a result for the whole path.
Let 𝑌𝑖 be a random variable that is 1 if the 𝑖-th overlay hop on the chosen route is in 𝑉𝑖

and 0 otherwise for 𝑖 ∈ {1, . . . , ℎ − 1}. We consider the probability of going from some hub
𝑉𝑖 to the next hub 𝑉𝑖+1 in one step, i.e., the probability Pr [𝑌𝑖+1 = 1 | 𝑌𝑖 = 1]. Apart from the
number of vertices in 𝑉𝑖+1, this probability also depends on the prefix bit distance between
the 𝑖-th overlay hop and the target, which we call 𝐷𝑖 .
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For the construction of the graph, we assumed the desired prefix bit distance 𝑑∗0 − 𝑖 · 𝑏∗
after the 𝑖-th overlay hop. However, we need to consider that the bit improvement at each
overlay hop may vary. If the 𝑖-th overlay hop for some 𝑖 ∈ {1, . . . , ℎ − 1} improves the bit
distance much more than the desired improvement 𝑏∗, then it is possible that there are not
sufficiently many interesting vertices in𝑉𝑖+1. On the other hand, if it improves the bit distance
too little, then it is likely that 𝑉𝑖+1 contains too many interesting vertices and the algorithm
might overcompensate by choosing a vertex as the next hop that improves the bit distance far
too much. To measure this deviation on the improvement at each overlay hop, we introduce a
new random variable Δ𝑖 B 𝐷𝑖 − 𝑑∗𝑖 for every 𝑖 ∈ {0, . . . , ℎ − 1}, where 𝑑∗𝑖 refers to the desired
prefix bit distance to the target after the 𝑖-th overlay hop. If Δ𝑖 is negative, the algorithm has
improved the distance more than desired. The following lemma determines 𝔼 [𝑋𝑖+1 | Δ𝑖], the
expected value of 𝑋𝑖+1, depending on the deviation Δ𝑖 after the 𝑖-th overlay hop.

Lemma 4.5: For the 𝑖-th overlay hop with 𝑖 ∈ {0, . . . , ℎ − 2}, it is 𝔼 [𝑋𝑖+1 | Δ𝑖] = 𝑟 · 2Δ𝑖 .

Proof. Let 𝑖 ∈ {0, . . . , ℎ − 2} and 𝑣𝑖 be the 𝑖-th overlay hop of the found path. By assumption,
the prefix bit distance between 𝑣𝑖 and 𝑡 is 𝐷𝑖 = 𝑑

∗
0 − 𝑖 ·𝑏∗ +Δ𝑖 . Let 𝑋𝑣 for 𝑣 ∈ 𝑉 be an indicator

random variable that is 1 if 𝑣 is 𝑣𝑖-𝑡-interesting and 0 if not. Then, by Lemma 4.2, we have

Pr [𝑋𝑣 = 1 | Δ𝑖] =
2𝑑∗

0−𝑖 ·𝑏∗+Δ𝑖−1

𝑁

for every 𝑣 ∈ 𝑉 . For the expected value of 𝑣𝑖-𝑡-interesting vertices in 𝑉𝑖+1, we obtain

𝔼 [𝑋𝑖 | Δ𝑖] = 𝔼

[ ∑︁
𝑣∈𝑉𝑖+1

𝑋𝑣

����� Δ𝑖

]
=

∑︁
𝑣∈𝑉𝑖+1

𝔼 [𝑋𝑣 | Δ𝑖] = 𝑛𝑖+1 ·
2𝑑∗

0−𝑖 ·𝑏∗+Δ𝑖−1

𝑁

= ln(2) · 𝑁 · 2𝑖 ·𝑏∗−𝑑∗
0+1 · 2

𝑑∗
0−𝑖 ·𝑏∗+Δ𝑖−1

𝑁
= ln(2) · 2𝑏∗+Δ𝑖 = 𝑟 · 2Δ𝑖

by using 𝑛𝑖+1 = ln(2) · 𝑁 · 2𝑖 ·𝑏∗−𝑑∗
0+1 as defined in Equation 4.1.

As 𝔼 [𝑋𝑖+1 | Δ𝑖 = 𝛿] does not depend on 𝑖 , we ignore the index and refer to it as 𝜇 (𝛿). Further,
note that if the deviation of the prefix bit distance after the 𝑖-th overlay hop is 0, then we have
𝜇 (0) = 𝑟 , which is exactly the desired number of interesting vertices.
To simplify, we are only interested in the case where deviations after each overlay hop are

not too negative, i.e., the actual bit distance to the target does not deviate too much from
the desired bit distance. Later, we show that this assumption is reasonable by proving that it
holds with sufficiently high probability after each hop. We refer to the smallest deviation we
still consider as 𝛿𝐿 < 0, which we will choose only depending on 𝑁 , the size of the ID space.
More formally, for all 𝑖 ∈ {0, . . . , ℎ − 2}, we determine the probability that the 𝑖-th overlay
hop of the found path is in 𝑉𝑖 under the condition that Δ𝑖 ≥ 𝛿𝐿 is satisfied.

The following lemma gives a lower bound for Pr [𝑌𝑖+1 = 1 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1], the probability
that the (𝑖 + 1)-th overlay hop is in 𝑉𝑖+1 if the 𝑖-th overlay hop is in 𝑉𝑖 and if the deviation is
not too negative. We denote this probability by 𝑃𝑌 (𝑖 + 1, 𝛿𝐿).

Lemma 4.6: The probability that the (𝑖 + 1)-th overlay hop is a vertex in 𝑉𝑖+1 if the 𝑖-th overlay
hop is a vertex in 𝑉𝑖 , given the deviation Δ𝑖 after the 𝑖-th hop is

Pr [𝑌𝑖+1 = 1 | Δ𝑖 , 𝑌𝑖 = 1] ≥
(
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) |
·
(
1 − exp

(
−𝜇 (Δ𝑖)

2
+ 𝑘

))
.
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Further, if we condition on the event that Δ𝑖 ≥ 𝛿𝐿 , we obtain the following lower bound for the
probability:

Pr [𝑌𝑖+1 = 1 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1] ≥
(
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) |
·
(
1 − exp

(
−𝜇 (𝛿𝐿)

2
+ 𝑘

))
.

Proof. We assume that the 𝑖-th overlay hop is a vertex 𝑣𝑖 ∈ 𝑉𝑖 with prefix bit distance
𝐷𝑖 = 𝑑

∗
𝑖 + Δ𝑖 = 𝑑

∗
0 − 𝑖 · 𝑏∗ + Δ𝑖 to 𝑡 . Then, the (𝑖 + 1)-th overlay is in 𝑉𝑖+1 if 𝐵𝑣𝑖 (𝑡) ⊆ 𝑉𝑖+1. In

this case, all 𝑣𝑖-𝑡-interesting vertices that 𝑣𝑖 knows as contacts are in 𝑉𝑖+1, which forces the
next overlay hop to be in𝑉𝑖+1. Since we assume that the 𝑖-th overlay hop is in𝑉𝑖 , vertices in the
previous hubs𝑉0, . . . ,𝑉𝑖 and on the paths 𝑃0, . . . , 𝑃𝑖−1 and𝑄0, . . . , 𝑄𝑖−1 cannot be interesting at
the 𝑖-th overlay hop. Thus, we only need to consider vertices in 𝑃𝑖 , 𝑄𝑖 and𝑉𝑖+1. The following
two conditions are sufficient to ensure 𝐵𝑣𝑖 (𝑡) ⊆ 𝑉𝑖+1:

1 No vertex in 𝑃𝑖 or 𝑄𝑖 is 𝑣𝑖-𝑡-interesting. Otherwise, such a vertex would be closer
in the underlay graph to 𝑣𝑖 than any vertex in 𝑉𝑖+1, and it would be preferred as a
contact in 𝐵𝑣𝑖 (𝑡) over any vertex in 𝑉𝑖+1. Let 𝐴𝑖 be the event that no vertex on 𝑃𝑖 ∪𝑄𝑖

is 𝑣𝑖-𝑡-interesting after the 𝑖-th overlay hop.

2 There are at least 𝑘 vertices in 𝑉𝑖+1 that are 𝑣𝑖-𝑡-interesting, i.e., 𝑋𝑖+1 ≥ 𝑘 . Since the
vertices in 𝑉𝑖+1 are closer to 𝑣𝑖 than 𝑡 by construction, vertices in 𝑉𝑖+1 are preferred as
contacts over 𝑡 .

These two conditions are independent of each other. We first determine the probability that
the above conditions are satisfied separately for each condition.
By Lemma 4.2, the probability that a vertex 𝑣 ∈ 𝑉 (𝐺) is 𝑣𝑖-𝑡-interesting is 2𝑑

∗
0−𝑖 ·𝑏

∗+Δ𝑖 −1

𝑁
.

Further, we know that the prefix bit distance 𝐷𝑖 = 𝑑
∗
0 − 𝑖 · 𝑏∗ + Δ𝑖 between 𝑣𝑖 and 𝑡 is at most

𝑑∗0 since the prefix bit distance decreases at each overlay hop. Thus, the probability that no
vertex in 𝑄𝑖 and 𝑃𝑖 is 𝑣𝑖-𝑡-interesting, is

Pr [𝐴𝑖 | Δ𝑖] =
(
1 − 2𝑑∗

0−𝑖 ·𝑏∗+Δ𝑖−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) |

≥
(
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) |
.

For the second part, we obtain a lower bound for Pr [𝑋𝑖+1 ≥ 𝑘 | Δ𝑖]. We first rearrange the
equation such that Chernoff’s bound is applicable.

Pr [𝑋𝑖+1 ≥ 𝑘 | Δ𝑖] ≥ 1 − Pr [𝑋𝑖+1 ≤ 𝑘 | Δ𝑖]

= 1 − Pr
[
𝑋𝑖+1 ≤ 1 −

(
1 − 𝑘

𝜇 (Δ𝑖)

)
· 𝜇 (Δ𝑖)

���� Δ𝑖

]
Recall that the expected value 𝔼 [𝑋𝑖+1 | Δ𝑖] is 𝜇 (Δ𝑖). Further, note that 𝑋𝑖+1 can be written as
the sum of the 0-1-valued random variables𝑋𝑣 for 𝑣 ∈ 𝑉𝑖+1, where𝑋𝑣 is 1 if 𝑣 is 𝑣𝑖-𝑡-interesting
and 0 if not. By assumption, the random variables are independently and identically distributed.
Thus, we can apply the first Chernoff bound (2.3) with 𝛼 B 1 − 𝑘

𝜇 (Δ𝑖 ) to obtain the following
lower bound:

≥ 1 − exp
(
−
(
1 − 𝑘

𝜇 (Δ𝑖)

)2
· 𝜇 (Δ𝑖)

2

)
= 1 − exp

(
−𝜇 (Δ𝑖)

2
+ 𝑘 − 𝑘2

2 · 𝜇 (Δ𝑖)

)
≥ 1 − exp

(
−𝜇 (Δ𝑖)

2
+ 𝑘

)
.
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Now, we combine the probabilities for each condition to determine a lower bound for
Pr [𝑌𝑖+1 = 1 | 𝑌𝑖 = 1,Δ𝑖]:

Pr [𝑌𝑖+1 = 1 | Δ𝑖 , 𝑌𝑖 = 1] ≥ Pr [𝐴𝑖 , 𝑋𝑖+1 ≥ 𝑘 | Δ𝑖] = Pr [𝐴𝑖 | Δ𝑖] · Pr [𝑋𝑖+1 ≥ 𝑘 | Δ𝑖]

≥
((
1 − 2𝑑∗

0−1

𝑛

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) | )
·
(
1 − exp

(
−𝜇 (Δ𝑖)

2
+ 𝑘

))
.

This proves the first inequality. To prove the second inequality, we rewrite the probability for
a fixed lower bound 𝛿𝐿 as follows.

Pr [𝑌𝑖+1 = 1 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1]
=

∑︁
𝛿

Pr [𝑌𝑖+1 = 1 | Δ𝑖 = 𝛿,Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1] · Pr [Δ𝑖 = 𝛿 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1]

As 1 − exp
(
− 𝜇 (𝛿 )

2 + 𝑘
)
decreases for decreasing 𝛿 , we obtain a lower bound of the first factor

with Δ𝑖 = 𝛿𝐿 :

≥
(
1 − exp

(
−𝜇 (𝛿𝐿)

2
+ 𝑘

))
·
((
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) | )
·
∑︁
𝛿

Pr [Δ𝑖 = 𝛿 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1]

=

(
1 − exp

(
−𝜇 (𝛿𝐿)

2
+ 𝑘

))
·
((
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃𝑖 ) |+|𝑉 (𝑄𝑖 ) | )
· 1.

In the following, we determine the probability distribution of the deviation Δ𝑖+1 after the
(𝑖 + 1)-th overlay hop, given that the 𝑖-th hop is in𝑉𝑖 and that the (𝑖 + 1)-th hop is in𝑉𝑖+1 and
given Δ𝑖 ≥ 𝛿𝐿 . Intuitively speaking, we have the following situation: The 𝑖-th overlay hop
is some vertex 𝑣 in 𝑉𝑖 , and we know that the next overlay hop is one of the 𝑣-𝑡-interesting
vertices in 𝑉𝑖+1. Out of those, the algorithm chooses the vertex that is bitwise closest to 𝑡 .
We are now interested in the deviation Δ𝑖+1 after choosing the (𝑖 + 1)-th hop if Δ𝑖 ≥ 𝛿𝐿 .
To calculate Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1, 𝑌𝑖+1 = 1], we first determine how likely it is to
improve a certain amount of bits at an overlay hop in the following lemma.

Lemma 4.7: Let 𝑣 be a vertex in𝑉 (𝐺), 𝑡 the target and dist𝑝 (𝑣, 𝑡) the prefix bit distance between
𝑣 and 𝑡 . Let 𝑋 be the set of 𝑣-𝑡-interesting candidates for the next overlay hop. Further, let 𝑏 ∈ ℕ.
Then, the probability that the amount of improvement dist𝑝 (𝑣, 𝑡) − dist𝑝 (𝑢, 𝑡) is at most 𝑏 for
every 𝑢 ∈ 𝑋 is (

1 − 2−𝑏
) |𝑋 |

.

Proof. Let 𝑢 ∈ 𝑋 be a 𝑣-𝑡-interesting candidate for the next overlay hop. Then, we know that
dist𝑝 (𝑣, 𝑡) − dist𝑝 (𝑢, 𝑡) ≥ 1, i.e., 𝑢 improves the prefix bit distance to 𝑡 by at least 1. For 𝑢 to
improve the prefix bit distance by exactly 𝑏 bits for some 𝑏 ∈ {1, . . . , dist𝑝 (𝑣, 𝑡)}, the ID of 𝑢
needs to share an additional 𝑏 − 1 bits with the ID of 𝑡 , and the bit after needs to be different.
The probability that the prefix bit distance to 𝑡 improves by exactly 𝑏 bits is 2−𝑏 . Then, the
probability that 𝑢 improves the prefix bit distance by at most 𝑏 bits is

𝑏∑︁
𝑖=1

2−𝑖 =
2−𝑏−1 − 1
2−1 − 1

= 1 − 2−𝑏 .
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Since we assume that the IDs are independently assigned, the probability that all vertices in

𝑋 improve the prefix bit distance by at most 𝑏 is
(
1 − 2−𝑏

) |𝑋 |
.

Lemma 4.8: Let 𝛼 ≥ 0. Then, it is

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 , 𝑌𝑖 = 1, 𝑌𝑖+1 = 1] ≥ 2−2
𝛿𝐿+1 · (1+𝛼 ) ·

(
1 − exp

(
−𝛼2 · 𝜇 (Δ𝑖)

2 + 𝛼

))
.

Further, we obtain a lower bound for this probability if Δ𝑖 is at least 𝛿𝐿 :

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1, 𝑌𝑖+1 = 1] ≥ 2−2
𝛿𝐿+1 · (1+𝛼 ) ·

(
1 − exp

(
−𝛼2 · 𝜇 (𝛿𝐿)

2 + 𝛼

))
.

Proof. The probability distribution Δ𝑖+1 depends on the probability distribution of 𝑋𝑖+1 given
the deviation Δ𝑖 . If 𝑋𝑖+1 is too large, then the improvement of bits is likely to be too large as
well. On the other hand, it is unlikely that 𝑋𝑖+1 is much smaller than the expected number of
interesting vertices. We obtain a lower bound by only considering cases where 𝑋𝑖+1 is not
too much larger than the expected value (specifically, 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)), and we show
that Δ𝑖+1 ≥ 𝛿𝐿 holds with sufficiently high probability, even with this additional restriction.
Since we now assume that the 𝑖-th overlay hop is in 𝑉𝑖 , and the (𝑖 + 1)-th overlay hop is in
𝑉𝑖+1 (i.e., 𝑌𝑖 = 𝑌𝑖+1 = 1), we omit both conditions in the following for better readability. Then,
we estimate a lower bound as follows.

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖] ≥ Pr [Δ𝑖+1 ≥ 𝛿𝐿, 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖) | Δ𝑖]
≥ Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)] · Pr [𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖) | Δ𝑖]

We first consider both factors separately. Again,𝑋𝑖+1 is the sum of 0-1-valued random variables
that are independently and identically distributed. Thus, we can apply the second Chernoff
bound (2.4) to the second factor:

Pr [𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖) | Δ𝑖] ≥ 1 − exp
(
−𝛼2 · 𝜇 (Δ𝑖)

2 + 𝛼

)
For the first factor, we get:

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)]

≥
(1+𝛼 ) ·𝜇 (Δ𝑖 )∑︁

𝑥

Pr [Δ𝑖+1 ≥ 𝛿𝐿, 𝑋𝑖+1 = 𝑥 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)]

≥
(1+𝛼 ) ·𝜇 (Δ𝑖 )∑︁

𝑥

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 , 𝑋𝑖+1 = 𝑥] · Pr [𝑋𝑖+1 = 𝑥 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)]

The first factor represents the probability that the prefix bit distance to the target improves
by at most 𝐷𝑖 − 𝐷𝑖+1 ≤ 𝑑∗0 + 𝑖 · 𝑏∗ − (𝑑∗0 + (𝑖 + 1) · 𝑏∗ + 𝛿𝐿) = 𝑏∗ + Δ𝑖 − 𝛿𝐿 bits if there are 𝑥
interesting candidates for the next overlay hop. By Lemma 4.7, this probability is equal to(
1 − 2−(𝑏∗+Δ𝑖−𝛿𝐿 )

)𝑥
.

=

(1+𝛼 ) ·𝜇 (Δ𝑖 )∑︁
𝑥

(
1 − 2−(𝑏∗+Δ𝑖−𝛿𝐿 )

)𝑥
· Pr [𝑋𝑖+1 = 𝑥 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)]
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4 Stretch of Found Paths

As the first factor decreases with increasing 𝑥 , we obtain a lower bound for 𝑥 = (1+𝛼) · 𝜇 (Δ𝑖):

≥
(
1 − 2−(𝑏∗+Δ𝑖−𝛿𝐿 )

) (1+𝛼 ) ·𝜇 (Δ𝑖 )
·
(1+𝛼 ) ·𝜇 (Δ𝑖 )∑︁

𝑥

Pr [𝑋𝑖+1 = 𝑥 | Δ𝑖 , 𝑋𝑖+1 ≤ (1 + 𝛼) · 𝜇 (Δ𝑖)]

=

(
1 − 2−(𝑏∗+Δ𝑖−𝛿𝐿 )

) (1+𝛼 ) ·𝜇 (Δ𝑖 )
· 1

By definition of 𝑏∗, we have 𝜇 (Δ𝑖) = ln(2) · 2𝑏∗+Δ𝑖 . Now, we can rewrite the last line and use
the inequality

(
1 − 𝑥−1

)𝑥 ≥ 1
2𝑒 :

=

(
1 − 2−(𝑏∗+Δ𝑖−𝛿𝐿 )

)2𝑏∗+Δ𝑖 −𝛿𝐿 ·ln(2) ·2𝛿𝐿 · (1+𝛼 )
≥ (2𝑒)− ln(2) ·2𝛿𝐿 · (1+𝛼 ) ≥ (𝑒2)− ln(2) ·2𝛿𝐿 · (1+𝛼 )

= 2−2
𝛿𝐿+1 · (1+𝛼 ) .

Note that this lower bound does not depend on the deviation Δ𝑖 after the 𝑖-th overlay hop.
Multiplying the lower bounds for each factor gives us the proposed lower bound for

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 , 𝑌𝑖 = 1, 𝑌𝑖+1 = 1] .

For the second inequality, we rewrite the probability for a fixed lower bound 𝛿𝐿 as follows.

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 ≥ 𝛿𝐿]
=

∑︁
𝛿

Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 = 𝛿,Δ𝑖 ≥ 𝛿𝐿] · Pr [Δ𝑖 = 𝛿 | Δ𝑖 ≥ 𝛿𝐿]

As Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 = 𝛿] decreases with decreasing 𝛿 , we obtain a lower bound for the first
factor with Δ𝑖 = 𝛿𝐿 :

≥ 2−2
𝛿𝐿 · (1+𝛼 ) ·

(
1 − exp

(
−𝛼2 · 𝜇 (𝛿𝐿)

2 + 𝛼

))
·
∑︁
𝛿

Pr [Δ𝑖 = 𝛿 | Δ𝑖 ≥ 𝛿𝐿]

= 2−2
𝛿𝐿 · (1+𝛼 ) ·

(
1 − exp

(
−𝛼2 · 𝜇 (𝛿𝐿)

2 + 𝛼

))
· 1.

Depending on 𝛼 ≥ 0, we denote the probability Pr [Δ𝑖+1 ≥ 𝛿𝐿 | Δ𝑖 ≥ 𝛿𝐿, 𝑌𝑖 = 1, 𝑌𝑖+1 = 1] by
𝑃Δ (𝛼, 𝛿𝐿). Now, we summarize the results of Lemma 4.6 and Lemma 4.8 to obtain a lower
bound for the probability that the found path between 𝑠 and 𝑡 passes through a vertex in𝑉𝑖+1.

Lemma 4.9: For fixed 𝛿𝐿 < 0, the probability that the 𝑖-th overlay hop is in 𝑉𝑖 is

𝑃𝑟 [𝑌𝑖+1 = 1] ≥
(
1 − 2𝑑∗

0−1

𝑁

)2𝑖+2 ·ℓ
·
(
2−2

𝛿𝐿+2
)𝑖+1

·
(
1 − exp

(
−𝜇 (𝛿𝐿)

3

))2(𝑖+1)
.

Proof. We restrict the set of possible events further by having the additional condition that
Δ𝑖+1 ≥ 𝛿𝐿 , and show that the probability is still sufficiently high. We determine the probability
by using the probability that the 𝑖-th overlay hop is in 𝑉𝑖 with Δ𝑖 ≥ 𝛿𝐿 and then, making an
additional hop from 𝑉𝑖 to 𝑉𝑖+1, which gives us

Pr [𝑌𝑖+1 = 1] ≥ Pr [𝑌𝑖+1 = 1,Δ𝑖+1 ≥ 𝛿𝐿] ≥ 𝑃𝑌 (𝑖 + 1, 𝛿𝐿) · 𝑃Δ (𝛼, 𝛿𝐿) · Pr [𝑌𝑖 = 1,Δ𝑖 ≥ 𝛿𝐿] .
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4.3 Random ID Assignment

Now, we use recursion to determine the probability explicitly. Applying Lemma 4.6 and
Lemma 4.8 yields:

=

𝑖+1∏
𝑗=0

𝑃𝑌 ( 𝑗, 𝛿𝐿) · 𝑃Δ (𝛼, 𝛿𝐿)𝑖+1 · Pr [𝑌0 = 1,Δ0 ≥ 𝛿𝐿]

=

𝑖+1∏
𝑗=0

(
1 − 2𝑑∗

0−1

𝑁

) |𝑉 (𝑃 𝑗 ) |+|𝑉 (𝑄 𝑗 ) |
·
(
1 − exp

(
−𝜇 (𝛿𝐿)

2
+ 𝑘

))𝑖+1
𝑃Δ (𝛼, 𝛿𝐿)𝑖+1 · 1

≥
(
1 − 2𝑑∗

0−1

𝑁

)2𝑖+2 ·ℓ
·
(
1 − exp

(
−𝜇 (𝛿𝐿)

2
+ 𝑘

))𝑖+1
·
(
2−2

𝛿𝐿+1 · (1+𝛼 )
)𝑖+1

·
(
1 − exp

(
−𝛼2· 𝜇 (𝛿𝐿)

2 + 𝛼

))𝑖+1
With 𝜇 (𝛿𝐿) ≫ 𝑘 and choosing 𝛼 = 1, we obtain a simplified lower bound:

≥
(
1 − 2𝑑∗

0−1

𝑁

)2𝑖+2 ·ℓ
·
(
2−2

𝛿𝐿+2
)𝑖+1

·
(
1 − exp

(
−𝜇 (𝛿𝐿)

3

))2(𝑖+1)
.

We have now proven a lower bound, which depends on 𝑑∗0 , ℓ and 𝛿𝐿 , for the probability that
the algorithm routes over a hub 𝑉𝑖 for some 𝑖 ∈ {1, . . . , ℎ − 1}. In the following, we aim to
choose the parameters such that the probability for Pr [𝑌𝑖+1 = 1] is sufficiently high. For a
fixed number of hops ℎ, we are interested in determining 𝛼, 𝛿𝐿, 𝑟 and 𝛿∗0 such that Pr [𝑌ℎ−1 = 1]
is constant.

Theorem 4.10: Let ℎ ∈ ℕ be the number of hops. Further, let 𝛿𝐿 ≤ log
(
− log

(
1 − 1

ℎ

) )
− 2,

ℓ ≤ 𝑁 · 2−𝑑∗
0−ℎ+1, and 𝑟 ≥ −12 · ln(ℎ)/log(1 − 1

ℎ
). The probability that the (ℎ − 1)-th hop is in

𝑉ℎ−1 is
Pr [𝑌ℎ−1 = 1] ≥ (2𝑒)−4.

Proof. We obtain the following constant lower bounds for each factor of the probability
Pr [𝑌ℎ−1 = 1] from Lemma 4.9. With ℓ ≤ 𝑁 · 2−𝑑∗

0−ℎ+1, we can rewrite the first inequality as
follows: (

1 − 2𝑑∗
0−1

𝑁

)2ℎ ·ℓ
≥

(
1 − 2𝑑∗

0−1

𝑁

)𝑁 ·2−𝑑
∗
0+1

≥ (2𝑒)−1.

For the second inequality, we have with 𝛿𝐿 ≤ log
(
− log

(
1 − 1

ℎ

) )
− 2:(

2−2
𝛿𝐿+2

)ℎ−1
≥

(
2−2

log(− log(1− 1
ℎ ))−2+2

)ℎ−1
=

(
1 − 1

ℎ

)ℎ−1
≥ (2𝑒)−1.

Further, it is(
1 − exp

(
−𝜇 (𝛿𝐿)

3

))2ℎ−2
=

(
1 − exp

(
−𝑟 · 2

𝛿𝐿

3

))2ℎ−2
≥

(
1 − exp

(
−1
3
· 12 · − ln(ℎ)

log(1 − 1
ℎ
)
·
(
−1
4
log

(
1 − 1

ℎ

))))2ℎ−2
= (1 − exp (− ln(ℎ)))2ℎ−2

=

(
1 − 1

ℎ

)2ℎ−2
≥ (2𝑒)−2.

Multiplying these lower bounds gives us the proposed probability for Pr [𝑌ℎ−1 = 1].
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4 Stretch of Found Paths

Lemma 4.3 states that a path from 𝑠 to 𝑡 that goes via each hub 𝑉0 . . . ,𝑉ℎ achieves a stretch of
2ℎ−1. By Theorem 4.10, we can choose the parameters ℓ , 𝛿𝐿 and 𝑟 such that this event happens
with constant probability if we assume that the initial prefix bit distance is 𝑑∗0 . Naturally, the
goal is now to choose ℎ as large as possible compared to the number of vertices in the graph.
First, we determine an upper bound for the total number of vertices in the constructed graph,
depending on ℎ.

Lemma 4.11: The graph consists of at most

ln(2) · 𝑁 · 2ℎ ·𝑏∗

2𝑑∗
0−1

+ 3ℓ · 2ℎ−1 + 𝑁

2𝑑∗
0−1

− 1

vertices. The parameters 𝑏∗ = log
(

𝑟
ln(2)

)
and ℓ are chosen as in Theorem 4.10.

Proof. We determine the number of vertices in the hubs𝑉1, . . . ,𝑉ℎ−1 and the number of vertices
in the paths in 𝑃 and 𝑄 separately. For the sum over all 𝑛𝑖 = ln(2) · 𝑁 · 2𝑖 ·𝑏∗−𝑑∗

0+1, we get the
following upper bound:

ℎ−1∑︁
𝑖=1

𝑛𝑖 =
ln(2) · 𝑁
2𝑑∗

0−1
·
ℎ−1∑︁
𝑖=1

2𝑖 ·𝑏
∗
=
ln(2) · 𝑁
2𝑑∗

0−1
·
(
2ℎ ·𝑏∗ − 1
2𝑏∗ − 1

− 1
)
≤ ln(2) · 𝑁 · 2ℎ ·𝑏∗

2𝑑∗
0−1

.

With |𝑉 (𝑃𝑖) | = 2𝑖 · ℓ − 1 for 𝑖 ∈ {0, . . . , ℎ − 1} and |𝑉 (𝑄𝑖) | = 2𝑖 · ℓ for 𝑖 ∈ {1, . . . , ℎ − 2} and
|𝑉 (𝑄0) | = ℓ + 1, we get for the number of vertices in the paths:

ℎ−1∑︁
𝑖=0

|𝑉 (𝑃𝑖) | +
ℎ−2∑︁
𝑖=0

|𝑉 (𝑄𝑖) | =
ℎ−1∑︁
𝑖=0

(
2𝑖 · ℓ − 1

)
+ 1 +

ℎ−2∑︁
𝑖=0

2𝑖 · ℓ

=

(
2ℎ − 1

)
· ℓ − (ℎ − 1) + 1 +

(
2ℎ−1 − 1

)
· ℓ

=

(
3 · 2ℎ−1 − 2

)
· ℓ − ℎ − 2

≤ 3ℓ · 2ℎ−1 − 2.

Including the 𝑠 and the vertices in 𝑉ℎ , there are

1 + 𝑛ℎ +
ℎ−1∑︁
𝑖=1

𝑛𝑖 +
ℎ−1∑︁
𝑖=0

|𝑉 (𝑃𝑖) | +
ℎ−2∑︁
𝑖=0

|𝑉 (𝑄𝑖) | =
ln(2) · 𝑁 · 2ℎ ·𝑏∗

2𝑑∗
0−1

+ 3 · 2ℎ−1 · ℓ + 𝑁

2𝑑∗
0−1

− 1

vertices in the graph.

We now choose a specific value for the initial prefix bit distance 𝑑∗0 , and show that the resulting
graph consists of at most 22ℎ vertices, where ℎ is the number of hops. Thus, we achieve a
stretch of Θ(log(𝑛)), where 𝑛 is the number of vertices in the constructed graph.

Theorem 4.12: Let 𝑑∗0 = log(𝑁 ) − ℎ − log(ℎ) for some ℎ ∈ ℕ. Let ℓ , 𝛿𝐿 and 𝑟 be as in
Theorem 4.10. The probability that there is a vertex 𝑡 ∈ 𝑉ℎ such that the found path from 𝑠 to 𝑡
has length at least 2ℎ−1 · dist(𝑠, 𝑡) is at least (2𝑒)−4 ·

(
1 − 𝑒−1

)
. Further, the constructed graph

consists of at most 22ℎ vertices for sufficiently large ℎ.
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4.3 Random ID Assignment

Proof. We first show that the number of vertices in the constructed graph using the chosen
parameters does not exceed 22ℎ . By Lemma 4.11, the number of vertices in the graph is at
most

|𝑉 (𝐺) | ≤ ln(2) · 𝑁 · 2ℎ ·𝑏∗

2𝑑∗
0−1

+ 3ℓ · 2ℎ−1 .

For the chosen parameters and sufficiently large ℎ, this is at most 22ℎ .
Since the parameters ℓ , 𝛿𝐿 and 𝑟 are chosen as in Theorem 4.10, the probability that𝑌ℎ−1 = 1

for a fixed target 𝑡 with the desired initial bit distance 𝑑∗0 is at least (2𝑒)−4. By Lemma 4.4, the
probability that there is such a vertex 𝑡 ∈ 𝑉ℎ with the desired initial prefix bit distance 𝑑∗0 is at
least 1 − 𝑒−1. This gives us

Pr [𝑌ℎ−1] = Pr
[
𝑌ℎ−1 = 1

�� ∃𝑡 ∈ 𝑉ℎ : dist𝑏 (𝑠, 𝑡) = 𝑑∗0 ] · Pr [
∃𝑡 ∈ 𝑉ℎ : dist𝑏 (𝑠, 𝑡) = 𝑑∗0

]
≥ 1

(2𝑒)4 ·
(
1 − 1

𝑒

)
.

That means that the algorithm routes via 𝑉ℎ−1 with at least constant probability. From there,
the algorithm must take the path 𝑃ℎ−1 to reach the target vertex 𝑡 in 𝑉ℎ . In this case, the
stretch of the found path is at least 2ℎ−1 by Lemma 4.3.

The following corollary summarizes the findings of this chapter.

Corollary 4.13: There is a graph𝐺 with two vertices 𝑠 and 𝑡 such that the stretch 𝑆𝑠,𝑡 of the path
found by KIRA is at least 1

2 log(𝑛) with constant probability, where 𝑛 is the number of vertices.

The construction of the graph depends on multiple parameters, which affect the value of the
stretch, as well as the probability with which KIRA finds a path with high stretch. To achieve
a higher stretch, the graph needs more hubs since the construction maximizes the stretch
asymptotically in regard to the number of hubs by Lemma 4.1. But then, the hubs have to
be smaller than before since increasing the number of vertices in the graph would reduce
the achieved stretch (compared to the number of vertices). However, as a consequence of
smaller hubs, we would have fewer interesting vertices and thus, a smaller probability that
KIRA indeed finds a path that passes through all hubs. This gives us a trade-off between the
achieved stretch and the probability with which it occurs, which may be investigated further
by tuning the parameters.
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5 Conclusions

In this thesis, we studied properties of 𝑅2/𝐾𝑎𝑑 , a routing protocol on networks implemented
in the routing tier of KIRA, from a theoretical perspective.
In particular, we analyzed if and how KIRA is able to establish KIRA-connectivity on

arbitrary graphs. First, we proved basic properties of KIRA-connectivity, which behaves quite
differently from the usual definition of connectivity on graphs. For instance, we showed
that KIRA-connectivity is neither symmetric nor transitive, which complicates analyses. By
constructing a graph that is not KIRA-connectable with constant probability, we proved that
KIRA is not always able to connect a graph in general. We found that the different mechanisms
implemented in the original variant of KIRA play an important role for the connectivity and
need to be combined in certain cases to establish KIRA-connectivity.

Further, we considered different variants of KIRAwith slightly modified mechanisms, which
proved to be useful in certain scenarios. In particular, a variant we proposed can always
establish connectivity if a new vertex joins an already KIRA-connected graph. If we assume
that vertices have global knowledge of the topology and the ID assignment of the graph, a
variant of KIRA is able to connect any overlay graph. However, such an assumption is not
applicable in practice, since it is a core concept of the algorithm that vertices only have a
limited view of the graph. For paths, we proposed a strategy with modified mechanisms to
establish KIRA-connectivity.
In the second part, we studied bounds for the stretch of paths found by KIRA for both

deterministic and random ID assignments. For deterministic ID assignments, we showed that
the worst case stretch is at most exponential in the prefix bit distance of the two vertices,
and that this bound is tight. Using a similar construction, we provided a lower bound for the
stretch assuming random ID assignments. More specifically, we proved that there is a graph
with two vertices 𝑠 and 𝑡 such that the path found by KIRA from 𝑠 to 𝑡 has stretch Θ(log(𝑛))
with constant probability.

5.1 Future Work

For both properties of KIRA that we studied in this thesis, there are still interesting questions
that are left unanswered, some of which we provide in the following.

For instance, we showed that there are graphs that are not KIRA-connectable with constant
probability by defining a path structure that acts as a separator. However, these examples are
small in the sense that they only have constant diameter. A natural attempt to generalize the
approach by extending the graphs attached to the separator proved to be not successful since
it is possible that such a separator can be bridged over. As a consequence, we conjecture that
graphs, where every pair of vertices is contained in a sufficiently large number of distinct
paths, are KIRA-connectable with high probability. This has yet to be proven.

Further, investigating more variants of KIRA may lead to efficient routing strategies, which
are provably successful in establishing connectivity with high probability or even determinis-
tically. More specifically, generalizing the strategy that we proposed for paths to arbitrary
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graphs looks promising if we modify the closest-𝑘-response by diversifying the contacts the
final overlay hop responds with. To develop other strategies, it might be necessary to further
modify the mechanisms already implemented in KIRA, and it would be useful to deepen the
analysis of the effects of each mechanism on the KIRA-connectivity in more detail.

By constructing a family of graphswhere KIRA finds a pathwith high stretch, we determined
a lower bound for the stretch. This construction depends on multiple parameters, which may
be tuned to achieve even higher stretch, possibly with a lower probability, enabling a trade-off
between stretch and probability. It would be interesting to further evaluate this trade-off and
additionally, obtain an upper bound on the stretch that is achieved with constant or even high
probability.
Although establishing connectivity and finding short paths are important goals of most

routing protocols, there are other qualities that get increasingly important with increasing
size and complexity of a network. Examples include robustness against any kind of failures
by providing good alternative paths, or how well network traffic is distributed across the
network. On the evaluated graphs, KIRA seems to be robust and shows no indication of
traffic concentrations [BZDH22]. However, this has not yet been analyzed from a theoretical
perspective.
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