
Transit Planning Utilizing Ride Sharing
Techniques

Master’s Thesis of

Maximilian Walz

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius
Second reviewer: PD Dr. Torsten Ueckerdt
Advisors: Adrian Feilhauer

Michael Zündorf

1 January 2025 – 1 July 2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have not used any
other than the aids that I have mentioned. I have marked all parts of the thesis that I have included from
referenced literature, either in their original wording or paraphrasing their contents. I have followed
the by-laws to implement scientific integrity at KIT.
Karlsruhe, 1 July 2025

. .
(Maximilian Walz)

Abstract

Problems dealing with serving passengers’ travel demands using shared vehicles occur in both the
transit planning as well as the ride sharing domain. Nevertheless, to the best of our knowledge, there
is no work transferring techniques between them. Bridging this gap, we pursue to solve a transit
planning problem by adapting a technique based around calculating possible detours of passengers to
find common routes that can be travelled in shared vehicles. In transit planning, the drivers sharing
their vehicle correspond to buses and have no agenda on their own, implying there is no constraint
in their number or itineraries. Our goal is to settle the passenger demand within their respective time
constraints, while using as few buses as possible and minimizing the overall passenger transfers. To that
end we use the possible passenger detours to determine demand for buses between pairs of stations, that
is preferably shared by many passengers. We then construct an instance of Minimum Cost Flow from
it, which yields the required set of bus itineraries. We evaluate our approach by comparing it to a naïve
baseline solver, which we outperform. However, there still is a lot of potential for improvement in the
number of required buses. The number of transfers along with waiting times and delays, on the other
hand, stay notably low. We attribute this to the approach originating in ride sharing, where transfers,
delays and waiting times are generally less acceptable than in public transit.

Zusammenfassung

Die Problemstellung, Fahrgastnachfragen mit geteilten Fahrzeugen zu bedienen, stellt sich sowohl in der
Verkehrsnetzplanung als auch im Bereich Ride-Sharing. Trotz dieser inhaltlichen Nähe gibt es, soweit wir
wissen, bislang keine Ansätze, die Methoden zwischen beiden Bereichen übertragen. Diese Lücke greifen
wir auf und schlagen einen neuen Ansatz zur Lösung eines Problems der Verkehrsnetzplanung vor, bei
dem wir eine Methode aus dem Ride-Sharing adaptieren. Durch die Berechnung möglicher Umwege von
Fahrgästen identifizieren wir gemeinsame Routen, die sich für den Einsatz geteilter Fahrzeuge eignen.
In unserem Szenario übernehmen Busse die Rolle der geteilten Fahrzeuge, wobei sie keine festen Routen
oder Kapazitätsbeschränkungen haben. Ziel ist es, die Fahrgastnachfrage unter Berücksichtigung der
jeweiligen Zeitfenster zu bedienen und dabei möglichst wenige Busse zu verwenden, sowie Umstiege
zu minimieren. Dazu nutzen wir die ermittelten Umwege, um stark nachgefragte Streckenabschnitte
zwischen Stationen zu identifizieren, die idealerweise von mehreren Fahrgästen gemeinsam genutzt
werden. Diese Nachfrage modellieren wir anschließend als einMinimum Cost Flow-Problem, aus dessen
Lösung sich die gesuchten Busrouten ergeben. Unsere Methode zeigt im Vergleich zu einer einfachen
Referenz-Lösung bessere Ergebnisse. Allerdings besteht noch Verbesserungspotenzial hinsichtlich der
benötigten Anzahl an Bussen. Die Anzahl der Umstiege sowie Wartezeiten und Verspätungen bleiben
dagegen auffallend gering. Diesen Effekt schreiben wir der Herkunft unseres Ansatzes aus dem Ride-
Sharing zu, wo Umstiege, Wartzeiten und Verspätungen generell weniger Akzeptable als im klassischen
öffentlichen Verkehr sind.

i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Related Work . 1
1.3. Outline . 2

2. Preliminaries 3
2.1. Graph Theory . 3
2.2. Flow Networks . 3
2.3. Ride Sharing . 3
2.4. Transit Planning . 4

3. The Detour Approach 5
3.1. Detour-DAGs . 5

3.1.1. The Ellipsoid Spatiotemporal Accessibility Method 5
3.1.2. Detour-DAG Definition . 6
3.1.3. Detour-DAG Computation . 7

3.2. Bus Demands . 13
3.3. Bus Rides . 16
3.4. Bus Ride Flows . 21

3.4.1. Construction . 22
3.4.2. Correctness . 24

4. The Baseline Approach 27

5. Evaluation 29
5.1. Experimental Setup . 29
5.2. Detour-DAG Computation . 30
5.3. Detour-Solver . 32

6. Conclusion 35

Bibliography 37

A. Appendix 39

iii

1. Introduction

In this work, we adapt an approach from ride sharing, for solving a variation of the ride sharing problem,
to the domain of transit planning. There, we use it as part of our multi-step procedure to solve a
time-based version of the Transit Network Design problem.

1.1. Motivation

The domains of transit planning and ride sharing have a lot of conceptual similarities. At their core,
both involve coordinating the travel plans of participants using shared transportation vehicles. These
participants seek to travel from their individual origins to their individual destinations, commonly also
respecting particular travel-time windows. In ride sharing systems, the people are usually partitioned
into drivers and riders, where the drivers are the ones providing the vehicles, while the riders are
matched to drivers based on compatible routes and schedules. Public transit, in contrast, traditionally
operates on predefined routes and timetables. Moreover, public transport relies on vehicles such as
buses, trams or trains that are not tied to the travel destination of any single passenger. Despite these
operational differences, we argue that public transit can be interpreted as a ride-sharing system, where
vehicles serve collective demand patterns. This perspective opens the possibility of adapting techniques
originating in ride sharing literature to transit planning.

Specifically, we focus on adapting a method that computes feasible detours of participants to identify
ride-sharing potential. To us, having the information of all possible detours seems a very powerful tool
to ascertain common routes, which is why we choose this approach. While the original algorithm was
developed under real-time constraints, our transit planning context does not impose such strict timing
requirements. This relaxation allows us to explore its computational properties more broadly, even
though we cannot exploit the constraints introduced by drivers having their personal travel agenda,
which is incorporated in the original ride sharing scenario. By creating and investigating this adaptation,
we aim to explore the extent to which such methods can be applied to a transit planning scenario and
contribute to more demand-responsive transit systems.

1.2. Related Work

The field of transit planning ranges from designing route networks, determining vehicle frequencies
to the planning of concrete timetables and the assignments of individual vehicles and drivers [CW86].
Initially, these sub-problems where considered individually and often solved in sequence, where each
stage offers a broad variety of constraints and optimization criteria themselves. Mandl [Man80], for
instance, proposes approaches for assigning passengers to routes and vehicles to routes separately, while
optimizing for passenger transportation costs. They also suggest a method to improve routes on existing
transit networks. Salzborn [Sal72] deals with determining bus departure rates to minimize passenger
waiting times. In later research, it is common to incorporate the time-component directly in the route
designing process, like Zhou et al. [ZYWY21], who propose an optimization of line configuration and
frequency setting in regard to a combination of passenger and operator costs.

1

1. Introduction

With ride sharing, on the other hand, the departures of drivers are inherently part of the problem,
since drivers always serve the demands of specific riders. Key differences in works concerning ride
sharing are whether riders and drivers have fixed or flexible roles, rides back are guaranteed, multiple
hops or transportation modes are allowed and a driver will take multiple riders simultaneously [TMY20].
In some works, the exact problem configuration is motivated by concrete real world applications such as
to-work scenarios [CMSQ19]. The integration of additional, sometimes autonomous, external vehicles to
back up drivers is also subject of research [ANJ19 | CMSQ19]. Peer-to-peer ride sharing is arguably the
most common area of ride sharing covered in literature and is centred around the idea of some real-time
system, where riders and drivers can register their requests and rides on demand [Nam+18 |MNYJ17].
Despite the similarities between transit planning and ride sharing, we found few works connecting

these domains. The ones mentioning ride sharing alongside transit planning, for the most part discuss
them as supplementary or sometimes even competing modes of transport in an urban environment
[WVJ22 |MOCB21 | Cho+20].

1.3. Outline

In Chapter 2, we cover graph theory basics and notation used throughout this work as well as give an
introduction to transit planning and ride sharing.

Chapter 3 presents our detour based-approach to solve theTransitNetworkDesign andTimetabling
problem, by first covering the computation of the possible passenger detours in the form of detour-DAGs,
which are then collapsed to find the demand of bus rides between station pairs for each passenger. We
continue, describing how they are further processed to compute the actual bus rides between station
pairs and finally present our bus ride flow network construction, which concludes the chapter. In
Chapter 4, we introduce a simple naïve solver that acts as a baseline. We then evaluate our detour-DAG
computation along with our detour-solver in Chapter 5, by comparing it with the baseline solver and
discussing the results of our experiments on a realistic graph instance with authentic passenger travel
demand.

2

2. Preliminaries

In this chapter we first introduce some general definitions and concepts of graph theory that will be
used throughout this work as well as establish definitions specific to our topic. We continue by defining
the ride sharing and transit planning problems and conclude the chapter by discussing their similarities.

2.1. Graph Theory

A graph 𝐺 = (𝑉 , 𝐸) is a tuple of vertices 𝑉 and directed edges 𝐸 = {(𝑢, 𝜈) | 𝑢, 𝜈 ∈ 𝑉 }. An edge (𝑢, 𝜈)
may be abbreviated as 𝑢𝜈 and referred to as an outgoing edge of 𝑢 and an incoming edge of 𝜈 . Moreover,
we call 𝜈 part of the outgoing neighbourhood of 𝑢 and may also refer to it as a neighbour of 𝑢. Note
that, unless stated otherwise, the graphs in this work are directed, without parallel edges and loopless.
Moreover, we use 𝑉 (𝐺) and 𝐸 (𝐺) to refer to the vertex set and edge set of a graph 𝐺 respectively. A
subgraph is a graph 𝐺 ′ = (𝑉 ′, 𝐸′) with 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. A path 𝑃 is a graph whose vertices can be
seen as a sequence (𝜈1, . . . , 𝜈𝑛) with 𝑛 = |𝑉 (𝑃) |, with edges 𝜈𝑖𝜈𝑖+1 for every two consecutive vertices 𝜈𝑖 ,
𝜈𝑖+1 and no additional edges. A path in a graph 𝐺 , refers to a subgraph of 𝐺 , which is a path. We call a
path simple, if its vertices are pairwise disjoint. A cycle is a path with an additional edge 𝜈𝑛𝜈1. Note that
paths and cycles are also directed, unless stated otherwise. A directed acyclic graph or DAG, is a graph
which does not contain a cycle as a subgraph. A topological ordering of a graph is an ordering of its
vertices such that for every edge 𝑢𝜈 , the vertex 𝑢 appears before 𝜈 in the ordering. If such an ordering
exists for a graph, it cannot contain cycles and hence is a DAG. We call a vertex of a graph with no
incoming edges a source. A graph 𝑇 with only one source 𝑟 , called the root, where for each vertex 𝜈
there is exactly one path from 𝑟 to 𝜈 in 𝑇 , is called a directed tree or just tree.

2.2. Flow Networks

A flow network is a tuple 𝐹 = (𝐺, 𝑠, 𝑡, 𝑐) consisting of a graph𝐺 = (𝑉 , 𝐸) with two distinguished vertices
𝑠, 𝑡 ∈ 𝑉 . We call 𝑠 the source and 𝑡 the sink of 𝐹 . Additionally, 𝐹 has an capacity function 𝑐 : 𝐸 → ℕ.
A flow on 𝐹 is a function 𝑓 : 𝐸 → ℕ, where 𝑓 (𝑒) ≤ 𝑐 (𝑒) for all 𝑒 ∈ 𝐸. For a vertex 𝜈 ∈ 𝑉 , the in-flow
is the sum of all incoming flow 𝑓 +(𝜈) = ∑

𝑢𝜈∈𝐸 𝑓 (𝑢𝜈) and the out-flow is the sum of the outgoing
flow 𝑓 − (𝜈) = ∑

𝜈𝑢∈𝐸 𝑓 (𝜈𝑢). We call 𝑓 a feasible flow, if it satisfies the flow conservation constraint
𝑓 +(𝜈) = 𝑓 − (𝜈) for all 𝜈 ∈ 𝑉 \ {𝑠, 𝑡}. The value of a flow |𝑓 | = 𝑓 +(𝑡) − 𝑓 − (𝑡) is the net flow at the sink
vertex. A saturated path is a path 𝑃 in 𝐹 with at least one edge 𝑒 ∈ 𝐸 (𝑃) satisfying 𝑓 (𝑒) = 𝑐 (𝑒).

A weighted flow network 𝐹 = (𝐺, 𝑠, 𝑡, 𝑐, 𝑎) is a flow network with an additional cost function 𝑎 : 𝐸 → ℤ.
The cost of a flow 𝑓 is defined as 𝑎(𝑓) = ∑

𝑒∈𝐸 𝑓 (𝑒) · 𝑎(𝑒). Given a weighted flow network 𝐹 and a target
flow value 𝑘 , finding a flow of value 𝑘 with minimum cost is called theMinimum Cost Flow problem.

2.3. Ride Sharing

There is a plethora of slightly differing ways the ride sharing problem is stated in literature. While most
of the core principles are consistent, our upcoming definition adheres most closely to the one used by
Masoud and Jayakrishnan [MJ17]. Let R be a set of riders and D be a set of drivers that together make

3

2. Preliminaries

up the set of participants P = R ∪ D. There is also a graph on a set 𝑆 of stations as vertices and a travel
time function 𝑡 : 𝑆 × 𝑆 → ℕ indicating the time it takes to travel from one station to another. This graph
is often given as a subgraph of a street network graph. Each participant has a demand made up of its
departure station 𝑠𝑑 ∈ 𝑆 , arrival station 𝑠𝑎 ∈ 𝑆 , earliest departure time 𝜏𝑑min and latest arrival time 𝜏𝑎max .
Additionally, there are additional constraints specific to riders and drivers, like the maximum number
of times a rider is willing to transfer or the capacity of a driver’s vehicle. The goal of the ride sharing
problem is to find for each rider an itinerary of rides with drivers, which takes the rider from their
departure station to their arrival station in respect to the time- and additional constraints of involved
participants, while minimizing a linear combination of their time spent in vehicles, time spent waiting
and number of transfers.

2.4. Transit Planning

The definition for the transit planning problem used in this workmostly resembles the Transit Network
Design problem (TNDP) combined with a time component akin to the Transit Network Timetabling
problem (TNTP), both of which are stated in a review by Guihaire and Hao [GH08]. In our version of
the problem we assume the topology of a set 𝑆 of stations given as a graph 𝐺 = (𝑆, 𝐸) with 𝐸 ⊆ 𝑆 × 𝑆
and an associated travel time function 𝑡𝐺 : 𝑆 × 𝑆 → ℕ+. We will refer to such a graph as a station graph.
Note that in the context of a station graph, the length of a path in the station graph refers to the sum of
the travel times of the edges contained in the path. Additionally, there is a set of passengers P , each
passenger 𝑝 ∈ P having a demand 𝛿 (𝑝) = (𝑠𝑑 , 𝑠𝑎, 𝜏𝑎min, 𝜏𝑎max) composed of

departure station 𝑠𝑑 ∈ 𝑆 ,
arrival station 𝑠𝑎 ∈ 𝑆 ,

earliest departure time 𝜏𝑑min ∈ ℕ and
latest arrival time 𝜏𝑎max ∈ ℕ.

With these, we define the Transit Network Design and Timetabling problem (TNDTP). The goal
is to find a set of itineraries. Each itinerary specifies which stations a vehicle should visit at what time.
The solution must satisfy all passenger demands and at the same time, minimize both the number of
vehicles needed and the number of overall passenger transfers. If not stated otherwise, we will refer to
the vehicles as buses.

Although the typical density of stations in ride sharing might differ from the ones in transit planning
scenarios, we can also express their topology as a station graph. The demands of passengers and
participants are also alike, but while the TNDTP also seeks to leverage the sharing potential of vehicles
along similar routes, there is no distinction of passengers, as with riders and drivers. The buses could
be thought of as the equivalent of drivers but they are not part of the passengers, which especially
implicates that they have no predetermined departure and arrival constraints in terms of time and
station. Additionally, capacities of buses are generally bigger than the ones of the private vehicles
provided by drivers.

4

3. The Detour Approach

In this chapter we introduce our detour-based approach, where the first step is to compute possible
detour paths of passengers and represent them as time-expanded graphs. This is inspired by a technique
of Masoud and Jayakrishnan [MJ17]. In Section 3.1 we cover their approach in more detail and explain
how we adapt it to our setting. Once the possible detours for all passengers are known, we heuristically
evaluate which route each passengers should take to maximize the potential of shared bus demands. This
is covered in Section 3.2. Afterwards, in Section 3.3, we discuss how the bus demands of all passengers
given by the previous step are combined to bus rides. Lastly, in Section 3.4, we determine which bus
rides will be served by which bus in which order.

3.1. Detour-DAGs

The goal of this step is to end up with a time-expanded graph for each passenger, that represents all
possible detours the respective passenger can take, while still arriving at their destination in time. In this
sense, a time expanded graph is based on a station graph 𝐺 with station set 𝑆 along with a set 𝑇 ⊆ ℕ of
points in time and refers to a directed graph𝐺 = (𝑉 , 𝐸) with 𝑉 ⊆ 𝑆 ×𝑇 , where the vertices are tuples of
a station and a point in time. Two vertices (𝑠1, 𝜏1) and (𝑠2, 𝜏2) have a directed edge from (𝑠1, 𝜏1) to (𝑠2, 𝜏2),
if and only if station 𝑠2 can be reached from station 𝑠1 by departing at point in time 𝜏1 and arriving at
point in time 𝜏2, according to the specified travel time function 𝑡𝐺 of the station graph. So formally,

𝐸 = {((𝑠1, 𝜏1), (𝑠2, 𝜏2)) ∈ 𝑉 | 𝑡𝐺 (𝑠1, 𝑠2) = 𝜏2 − 𝜏1}.

Since we assume to only ever travel forward in time and the travel time of an edge cannot be zero, the
time-expanded graph has no cycles, making it a DAG.

3.1.1. The Ellipsoid Spatiotemporal Accessibility Method

Masoud and Jayakrishnan [MJ17] compute similar time-expanded graphs for riders in a ride-sharing
scenario. They use a method they call Ellipsoid Spatiotemporal Accessibility Method (ESTAM). As we
already discussed in Section 2.4, the domain of transit planning shares a lot of concepts with the ride
sharing scenario, which is why we can adopt their approach of finding detours for participants with
some small adjustments for the passengers of the TNDTP.

They start of with a graph of stations which represent the locations where drivers can start and end
their trips as well as stop to pick up riders. This graph can be interpreted as a station graph 𝐺 . In their
first step, for each rider 𝑟 , they compute a reduced graph 𝐺𝑟 from 𝐺 that only contains stations that
are spatio-temporally reachable for 𝑟 . Whether a station 𝑠 is spatio-temporally reachable is determined
by calculating the euclidean distance between 𝑠 and the departure station of 𝑟 and comparing it to an
overestimation 𝑑 of how far 𝑟 can travel, while still arriving at their destination in time. This can be
pictured as reducing 𝐺 to the stations inside an ellipse of transverse diameter 𝑑 with its focal points
being the riders departure and arrival station. In the second step of the ESTAM, they further reduce
the graphs 𝐺𝑟 by removing the stations that can not be covered by any driver. Since we do not have
any departure or arrival station constraints for our equivalent of drivers, the buses, there is nothing we

5

3. The Detour Approach

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

latest arrival timedeparture vertices

arrival vertices

Time Interval

St
at
io
n

Figure 3.1.: Example of a time-expanded graph created by the ESTAM. The dotted edges and greyed-out
vertices are not part of the final graph, since they do not lie on a path from a departure vertex to an
arrival vertex.

adapt from this step. The third step is where the time-expansion happens. At this point it is important
to note how their definition of time-expanded graphs differs from ours. Together with stations, Masoud
and Jayakrishnan use time intervals of uniform length for the vertices and also allow “waiting” edges,
which are edges between vertices where the station is the same but the time interval is incremented. In
our definition, the intervals are not explicitly given. Instead, a vertex contains a point in time together
with the station, which we use to model that the passenger can reach the station by this point in time.
We use this modified definition to keep the time expanded graph smaller, while still keeping all of
the information. To explain how we can still derive the intervals with our definition, we first need to
continue describing the ESTAM.

From each reduced graph𝐺𝑟 they create a time-expanded graph by first finding all paths in𝐺𝑟 from the
departure station to the arrival station of 𝑟 , which have a travel time within the travel time constraints
of 𝑟 . Then, they use this information to determine in which time intervals 𝑟 can be at which station and
create their time-expanded graph. Since there may be multiple vertices that contain the departure or
arrival station, these vertices are kept in departure vertex and arrival vertex sets respectively. Figure 3.1
shows an example for a graph created by the ESTAM, where these two sets are marked. There also may
be vertices that do not lie on a path from a departure vertex to an arrival vertex. Those can be deleted,
since the rider would not be able to reach their destination by going there. The incoming edges of these
vertices are represented as dotted lines in the example seen in Figure 3.1.

3.1.2. Detour-DAG Definition

Like mentioned before, we use time-expanded graphs to express that a passenger can reach a station
by a given point in time. Implicitly, the station can also be reached at any later point in time by just
waiting at the station. So there is no need for waiting edges with this approach. Stations can still appear
in multiple vertices of the time-expanded graph when there are multiple paths in the station graph to
reach a station. Note, that while there can be multiple vertices in the time-expanded graph that contain

6

3.1. Detour-DAGs

the arrival station, there will only ever be one vertex containing the departure station. For a passenger
𝑝 ∈ P with a given demand 𝛿 = (𝑠𝑑 , 𝑠𝑎, 𝜏𝑑min, 𝜏𝑎max), we call such a time-expanded graph based on a
station graph 𝐺 with stations 𝑆 and points in time 𝑇 a detour-DAG 𝐷 (𝛿) = (𝑉 , 𝐸) with

𝑉 = {(𝑠, 𝜏) ∈ 𝑆 ×𝑇 | 𝜏𝑑min + 𝑡𝐺 (𝑠𝑑 , 𝑠) + 𝑡𝐺 (𝑠, 𝑠𝑎) ≤ 𝜏𝑎max} and
𝐸 = {((𝑠1, 𝜏1) (𝑠2, 𝜏2)) ∈ 𝑉 ×𝑉 | (𝑠1, 𝑠2) ∈ 𝐸 (𝐺) and 𝜏2 = 𝜏1 + 𝑡𝐺 (𝑠1, 𝑠2)}.

The vertex that contains the departure station of the demand is sometimes referred to as its origin and
the vertices containing the arrival station are kept in its arrival vertex set

𝑉𝑎 = {(𝑠, 𝜏) ∈ 𝑉 | 𝑠 = 𝑠𝑎}.

Similar to the final time-expanded graphs of the ESTAM, a detour-DAG only contains vertices that lie
on a path from its origin to any of its arrival vertices, so that only actual detours, where the arrival
station can be reached in time, are represented. We call 𝑠1 a possible predecessor station of 𝑠2 for 𝑝 , if and
only if there is an edge (𝑠1, 𝜏1) (𝑠2, 𝜏2) ∈ 𝐸 (𝐷 (𝛿)). See Figure 3.2 for an example of a detour-DAG on the
same station graph and with the same demand as the example for the time-expanded graph in Figure 3.1
created with the ESTAM. When comparing these figures we can observe that their graph essentially
consists of multiple copies of our detour-DAG which are connected by waiting edges. Since we do not
have these waiting edges, our graph can be smaller. However, the information of how long the passenger
could wait at a station is not lost. From the detour-DAG of the passenger and the time constraints of its
demand, it is possible to derive for each station the time intervals in which the passenger can be at the
station, while still able to reach their arrival station in time. To that end, we call𝑇 𝑝

𝐼
(𝑠1, 𝑠2) = [𝜏 ′𝑎min, 𝜏

′
𝑎max]

the implied arrival time intervals of 𝑝 for 𝑠2 coming from 𝑠1, with

𝜏 ′𝑎min = min(𝜏𝑎 | (𝑠1, 𝜏𝑑) (𝑠2, 𝜏𝑎) ∈ 𝐸 (𝐷 (𝛿))) and
𝜏 ′𝑎max = 𝜏𝛿𝑎max − 𝑡𝐺 (𝑠2, 𝑠

𝛿
𝑎).

The start points of the intervals are already given by the vertices of the detour-DAG. The arrival vertices
also already have an end point given by the time constraints of the demand. These end points can now
be propagated to the predecessor vertices by subtracting the travel time associated with the respective
edge. This can be repeated until the origin is reached. A visualization of the procedure is shown in
Figure 3.3.

3.1.3. Detour-DAG Computation

To compute a detour-DAG for a given passenger demand, we proceed in two steps: First, we create a time
expanded graph by exploring the station graph from the departure station of the demand. Afterwards,
we reduce this graph to a detour-DAG.

The exploration is essentially a modified depth-first search. A station is explored by exploring all its
unvisited neighbours recursively. However, if the exploration of a station is finished, it is un-marked
again. This ensures that it can be explored coming from a different predecessor again. Figure 3.4 shows
some of the exploration states in an exemplary execution of Algorithm 3.1, with the street graph 𝐺

on the left and the associated time-expanded graph 𝐺 on the right. The currently marked vertices are
indicated by a bold outline and the order of exploration is marked by arrows. For simplicity, the street
graph is drawn as an undirected graph with the travel time given as edge labels. For this example,
the earliest departure of the passenger is at time 1 and the latest arrival is at time 11. In Figure 3.4a
the exploration starts with 𝑠1 and continues to 𝑠2. Due to the travel time, the passenger could reach 𝑠1
by time 6 and 𝑠2 by time 10, following this route. As the route is explored, the arrival information is

7

3. The Detour Approach

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

latest arrival timedeparture vertex

arrival vertices

Time

St
at
io
n

Figure 3.2.: Example of a detour-DAG. The
dotted edge and greyed-out vertex is not part
of the final graph, since they do not lie on a
path from the departure vertex to an arrival
vertex.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

latest arrival time

Time

St
at
io
n

Figure 3.3.: Visualization of the back-
propagation of visit interval end points
through a detour-DAG.

Algorithm 3.1: ExploreDetours
Input: Station graph 𝐺 , demand 𝛿 = (𝑠𝑑 , 𝑠𝑎, 𝜏𝑑min, 𝜏𝑎max)
Output: Time-expanded graph 𝐺 , arrival vertex set 𝑉𝑎

1 marked(𝑠)← false, for all 𝑠 ∈ 𝑉 (𝐺)
2 marked(𝑠𝑑)← true

3 add vertex (𝑠𝑑 , 𝜏𝑑min) to 𝐺
4 exploreVertex((𝑠𝑑 , 𝜏𝑑min))
5 Procedure exploreVertex((𝑠, 𝜏))
6 forall neighbours 𝑠′ of 𝑠 do
7 𝜏 ′← 𝜏 + 𝑡𝐺 (𝑠, 𝑠′)
8 if not marked(𝑠′) and 𝜏 ′ ≤ 𝜏𝑎max then
9 add vertex (𝑠′, 𝜏 ′) to 𝐺 , if not already contained
10 add edge ((𝑠, 𝜏), (𝑠′, 𝜏 ′)) to 𝐺
11 if 𝑠′ = 𝑠𝑎 then
12 add vertex (𝑠′, 𝜏 ′) to 𝑉𝑎
13 else
14 marked(𝑠′)← true

15 exploreVertex((𝑠′, 𝜏 ′))
16 marked(𝑠′)← false

8

3.1. Detour-DAGs

𝐺 :

𝑠𝑑

𝑠1 𝑠2

𝑠3

𝑠4 𝑠5𝑠𝑎

5

4

3 5
2

1

3

6 3 4

𝐺 :

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

(a) The exploration branch terminates at 𝑠2, since any subsequent arrival would be too late.

𝐺 :

𝑠𝑑

𝑠1 𝑠2

𝑠3

𝑠4 𝑠5𝑠𝑎

5

4

3 5
2

1

3

6 3 4

𝐺 :

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

(b) The exploration branch reaches 𝑠𝑎 , thus terminating there.

𝐺 :

𝑠𝑑

𝑠1 𝑠2

𝑠3

𝑠4 𝑠5𝑠𝑎

5

4

3 5
2

1

3

6 3 4

𝐺 :

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

(c) Another path to 𝑠𝑎 was explored. The arrival time is later but still not after 𝜏𝑎max .

𝐺 :

𝑠𝑑

𝑠1 𝑠2

𝑠3

𝑠4 𝑠5𝑠𝑎

5

4

3 5
2

1

3

6 3 4

𝐺 :

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

(d) Another path to 𝑠3 arriving at time 6 was discovered. The exploration branch terminates at 𝑠4.

𝐺 :

𝑠𝑑

𝑠1 𝑠2

𝑠3

𝑠4 𝑠5𝑠𝑎

5

4

3 5
2

1

3

6 3 4

𝐺 :

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

(e) Everything explored here is already known, so nothing new is added.

Figure 3.4.: Visualization for an exemplary execution of Algorithm 3.1 for passenger demand
(𝑠𝑑 , 𝑠𝑎, 1, 11).

9

3. The Detour Approach

added to the time-expanded graph. Since reaching any of the neighbours of 𝑠2 would take the passenger
there after their latest arrival, this branch of the exploration terminates at 𝑠2. As a consequence, 𝑠2 is
un-marked. The exploration of 𝑠1 is also finished for now, as it has no other un-marked neighbours,
so it is un-marked as well. This leads us to the state seen in Figure 3.4b, where 𝑠4 was chosen as the
next station to explore, followed by 𝑠𝑎 . Since this is the arrival station of the passenger, this branch of
the exploration can be terminated as well. Station 𝑠3 is explored next, through which 𝑠𝑎 can be reached
again. Figure 3.4c shows this state. By this route, the passenger would arrive at time 11 at their arrival
station, which is also still in time. Hence, there are now two vertices in the time-expanded graph that
represent station 𝑠𝑎 at different points in time. The exploration branch shown in Figure 3.4d finds a new
route to 𝑠3 arriving at the same time as before. Note, that this leads to a new edge in the time-expanded
graph. Afterwards, as seen in Figure 3.4e, the remaining neighbour of 𝑠3 is explored. In this case, this
does not lead to new information, so the time-expanded graph does not change. The exploration is
formally described by Algorithm 3.1.
To show the correctness of this procedure we first introduce terminology that makes it easier to

characterize the results of the algorithm. For the purpose of this section, we assume 𝐺 to be the graph
and𝑉𝑎 the vertex set computed by Algorithm 3.1 from street graph𝐺 and demand 𝛿 = (𝑠𝑑 , 𝑠𝑎, 𝜏𝑑min, 𝜏𝑎max).
Furthermore, we call a simple directed path with a length less than or equal to 𝜏𝑎max − 𝜏𝑑min starting in 𝑠𝑑 ,
which does not contain 𝑠𝑎 except as the last vertex an open 𝛿-detour path. If the last vertex of an open
detour path is 𝑠𝑎 , we call it a proper 𝛿-detour path, else we refer to it as an improper 𝛿-detour path. Like
mentioned before and as is also apparent in lines 14 to 16 of Algorithm 3.1, stations are marked as they
are explored and un-marked once their exploration is finished, to allow them to be explored coming
from different predecessors later. This leads us to Observation 3.1.

Observation 3.1: A vertex 𝑠 ∈ 𝑉 (𝐺) is marked if and only if, exploreVertex for a vertex (𝑠, 𝜏) is currently
executed.

As it is possible to reach the same station through multiple routes at the same point in time, like in
the example seen before, the graph added to the time-expanded graph by the exploration of a station is
not necessarily a tree, like with a regular depth-first search. Nevertheless, there is some structure to it.
Since an edge always points forward in time and we always explore from a single station, we end up
exploring a DAG with a single source in each recursive exploration step, which is shown in Lemma 3.2.

Lemma 3.2: The graph containing a vertex (𝑠, 𝜏) ∈ 𝑉 (𝐺) and all vertices and edges added to 𝐺 by an
execution of exploreVertex for (𝑠, 𝜏) is a DAG with unique source (𝑠, 𝜏).
Proof. In an execution of exploreVertex, vertices and edges can only be added to𝐺 in line 9, line 10 and
by the recursive execution of exploreVertex in line 15. Since with every recursive call another vertex
of𝐺 is marked and recursive calls are only made for unmarked vertices of𝐺 , there will eventually be no
additional recursive call. In the following, we will use this as the base case for an inductive argument.

Note, that for all edges ((𝑠1, 𝜏1), (𝑠2, 𝜏2)) added to𝐺 , 𝜏1 < 𝜏2 applies. This yields a topological ordering
for all vertices of 𝐺 and hence, 𝐺 is a DAG in any moment of execution of Algorithm 3.1. So it remains
to show that (𝑠, 𝜏) is its unique source. In the base case of the induction, there is no further recursive
call since all neighbours are already marked. In this case there is also nothing added to 𝐺 , hence the
statement holds. Now, we assume that the statement holds for the recursive calls made in an execution
of exploreVertex for a vertex (𝑠, 𝜏). Since we add the edge ((𝑠, 𝜏), (𝑠′, 𝜏 ′)) for all vertices (𝑠′, 𝜏 ′) for
which the recursive call is made in line 10, the vertex (𝑠, 𝜏) becomes the distinct source for the graph
added to 𝐺 in this execution of exploreVertex.

Hence, we can explore all possible paths starting from the departure station. However, if the ex-
ploration reaches the destination station or a station that can not be reached within the current time
constraints, we do not explore this station further. Therefore, the time-expanded graph created by

10

3.1. Detour-DAGs

Algorithm 3.1 contains exactly all open 𝛿-detour paths, which we show in Theorem 3.3. To simplify its
proof we introduce the concept of a path expansion, which is the representation of the time-expanded
version of a path from the station graph in the time-expanded graph. So for a path 𝑃 , given as the
sequence (𝑠1, . . . , 𝑠𝑛), 𝑛 ∈ ℕ, in a station graph 𝐺 with travel time function 𝑡𝐺 , we call E (𝑃) = (𝑉 ′, 𝐸′)
its path expansion with

𝑉 ′ = {(𝑠𝑖 , 𝜏𝑖) | 𝑖 ≤ 𝑛, 𝜏𝑖 = 𝜏𝑑min +
𝑖∑︁
𝑗=2

𝑡𝐺 (𝑠 𝑗−1, 𝑠 𝑗)} and

𝐸′ = {((𝑠𝑖 , 𝜏𝑖), (𝑠 𝑗 , 𝜏 𝑗)) | 𝑠𝑖𝑠 𝑗 ∈ 𝐸 (𝐺)}.

Further, for 𝑖 ≤ 𝑛, let E𝑃 (𝑠𝑖) = (𝑠𝑖 , 𝜏𝑖), such that (𝑠𝑖 , 𝜏𝑖) ∈ 𝑉 ′ is the vertex in the path expansion of 𝑃
containing 𝑠𝑖 .

Theorem 3.3: 𝐺 contains exactly the expansion of every open 𝛿-detour path in 𝐺 .

Proof. First, we will show that𝐺 contains the expansion of every open 𝛿-detour path in𝐺 . Assume there
is an open detour path 𝑃 in 𝐺 , whose expansion E (𝑃) is not contained in𝐺 . Without loss of generality,
let 𝑃 be the shortest such path. Note that this ensures that the path expansion of every open detour
path, which is a sub-path of 𝑃 , is contained in 𝐺 . Let 𝑠′ be the last and 𝑠 be the second last vertex of 𝑃
and let 𝑃𝑠 be the path obtained by deleting 𝑠′ from 𝑃 . Since E (𝑃𝑠) is contained in𝐺 , we know that E𝑃𝑠 (𝑠)
was added to 𝐺 in line 9 of Algorithm 3.1. From 𝑃 being an open detour path follows 𝑠 ≠ 𝑠𝑎 and hence,
E𝑃𝑠 (𝑠) is explored subsequently, resulting in the loop in line 6 being executed for 𝑠′, as it is a neighbour
of 𝑠 in𝐺 . Since 𝑃 cannot have a length greater than 𝜏𝑎max −𝜏𝑑min , the condition 𝜏 ′ ≤ 𝜏𝑎max will hold at that
point. Additionally, 𝑠′ must be un-marked or else, with Observation 3.1 and Lemma 3.2, there would
be a vertex (𝑠′, 𝜏) somewhere in E (𝑃𝑠), which contradicts 𝑃 being simple. Therefore, 𝑠′ is un-marked,
E𝑃 (𝑠′) is added to𝐺 along with the edge from E𝑃𝑠 (𝑠) = E𝑃 (𝑠) to E𝑃 (𝑠′) and thus E (𝑃) is contained in𝐺 .

Now, we will show that for any vertex of𝐺 there is an open 𝛿-detour path in𝐺 , whose path expansion
contains that vertex. Let (𝑠, 𝜏) be a vertex of 𝐺 . It follows from Lemma 3.2, that (𝑠, 𝜏) is contained in
a DAG with (𝑠𝑑 , 𝜏𝑑min) as the unique source. Thus, there is a directed simple path 𝑃 from (𝑠𝑑 , 𝜏𝑑min) to
(𝑠, 𝜏) in 𝐺 . Note that line 8 ensures 𝜏 ≤ 𝜏𝑎max . Additionally, 𝑠𝑎 can only be part of a vertex of 𝑃 if 𝑠 = 𝑠𝑎 ,
so as the last vertex, since the recursive call does not happen for 𝑠𝑎 and thus, a vertex containing 𝑠𝑎 will
never have outgoing edges. For every edge (𝑠𝑖 , 𝜏𝑖) (𝑠 𝑗 , 𝜏 𝑗) in 𝑃 there must be a corresponding edge 𝑠𝑖𝑠 𝑗 in
𝐺 , since only such edges are added in line 10. Therefore, there must be a path 𝑃 in 𝐺 starting from 𝑠𝑑
with E (𝑃) = 𝑃 . Since the constraints concerning 𝜏𝑎max and 𝑠𝑎 also translate from 𝑃 to 𝑃 , it is an open
𝛿-detour path.

The remaining step is to reduce 𝐺 to the detour-DAG 𝐷 , by removing all improper 𝛿-detour paths
which leaves us with only the proper 𝛿-detour paths being represented in 𝐷 . Figure 3.5 visualizes the
reduction for the result of the example from Figure 3.4. This is done by executing a depth first search in
the graph obtained by flipping all edges in 𝐺 . The search then starts from the arrival vertices in 𝑉𝑎 . All
vertices that were not discovered by the search are deleted, which discards all vertices that do not lie on
a path from the origin to an arrival station.

Note, that there is an improvement to Algorithm 3.1, that prevents the exploration of some improper
detour paths in the first place. It is sufficient to only explore a station 𝑠′, if it is still possible to reach the
arrival station in time, after arriving there. Changing the time-constraint in line 8 to 𝜏 ′+𝑡𝐺 (𝑠′, 𝑠𝑎) ≤ 𝜏𝑎max

will ensure this. However, this does not necessarily prevent the exploration of all improper detour paths,
as all paths to reach the arrival station from 𝑠′ in time could go through a station that is marked in the
current exploration state.

11

3. The Detour Approach

1 2 3 4 5 6 7 8 9 10 11 12

𝑠𝑑

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠𝑎

Time

St
at
io
n

Figure 3.5.: Reduction of the time-expanded graph obtained in Figure 3.4. The search starts at the
vertices of station 𝑠𝑎 and follows the edges flipped edges to the origin. The vertices not reached by that
are indicated in grey and are not part of the final detour-DAG.

There is another detail about our actual implementation of the exploration that we want to mention
here. Different than described in the pseudocode, each time we add a vertex to the time-expanded graph
in line 9, a new instance of this vertex is added to the actual data structure. As a consequence, every
execution of exploreVertex adds a directed tree to the time-expanded graph instead of a DAG. As a tree
is also a DAG with only one source, this does not influence the correctness. This adding of duplicate
vertices has the advantage that we can store the final detour-DAG as a list of arrival vertex copies and a
list of predecessors, where each vertex has exactly one predecessor. This makes it efficient to traverse
the detour-DAG backwards, as we will do it in the following step in order to use the implied arrival
time intervals.
The time-complexity of the time-expanded graph computation is linear in the output size, since

we stop the exploration of a vertex as soon as the time-constraints are not met any more. In theory,
the number of simple paths in the station graph starting from the departure node and meeting the
time-constraints could be exponential in the length of the shortest path. However, realistic station
graph instances are likely to be thin graphs and realistic time-constraints of a passenger demand do not
allow for an exploration of the whole graph. How the detour-DAG computation behaves with realistic
instances is discussed in Chapter 5. The reduction of the time-expanded graph can be done in linear
time in respect to the size of the resulting detour-DAG.

12

3.2. Bus Demands

3.2. Bus Demands

The goal of this step is to use the information about all the possible detours given by the detour-DAGs
to compute the demand for single bus rides between station pairs. So essentially, the detour-DAG we
computed in the previous step from the demand 𝛿 = (𝑠𝛿

𝑑
, 𝑠𝛿𝑎 , 𝜏

𝛿
𝑑min

, 𝜏𝛿𝑎max) of a passenger 𝑝 is now used to
compute a set of bus ride demands for 𝑝 . A single bus ride demand is a tuple (𝑠𝑑 , 𝑠𝑎, 𝜏𝑎min, 𝜏𝑎max), with

departure station 𝑠𝑑 ∈ 𝑆 ,
arrival station 𝑠𝑎 ∈ 𝑆 ,

earliest arrival time 𝜏𝑑min ∈ 𝑇 and
latest arrival time 𝜏𝑎max ∈ 𝑇 .

The earliest and latest arrival time indicate the arrival time interval [𝜏𝑎min, 𝜏𝑎max] of 𝑝 at the arrival station.
This definition is similar to the regular passenger demand. Note, however, that each passenger can have
multiple associated bus ride demands, which together form their route from 𝑠𝛿

𝑑
to 𝑠𝛿𝑎 . The set of all bus

ride demands of 𝑝 is denoted by Δ𝐵 (𝑃) and we refer to the union of all bus ride demands as Δ𝐵 (P).
In order to compute the demand, we need to collapse all of the possible routes represented by a

detour-DAG to a single route, which the corresponding passenger will actually take. We do this greedily,
by starting at the destination of a passenger and determining which predecessor station the passenger
must come from, to maximise the number of other passengers that could potentially also take that
ride. The actual routes taken by the other passengers are not considered by this approach, but only
the sharing potential inferred from the detour-DAGs. This way, the order of passengers, for which we
compute the demand, does not matter and it could be computed in parallel. Additionally note, that
once the decisions for a predecessor is made, it is not changed again. We continue by determining the
next predecessor and repeating the process until the origin is reached. Refer to Figure 3.2 for a simple
example and to Algorithm 3.2 for a detailed description of the procedure. The backwards traversal and
the way the earliest arrival is updated in line 16, ensures that the earliest arrival between two subsequent
stations for a passengers are consistent with the time it takes to travel between these stations, which we
formalise in Observation 3.4.

Observation 3.4: For every two demands (𝑠1, 𝑠2, 𝜏𝑎min, 𝜏𝑎max), (𝑠2, 𝑠3, 𝜏 ′𝑎min
, 𝜏 ′𝑎max

) ∈ Δ𝐵 (𝑝), computed by
Algorithm 3.2 for an arbitrary passenger 𝑝 ∈ P , the inequality 𝜏𝑎min ≤ 𝜏 ′𝑎min

+ 𝑡𝐺 (𝑠2, 𝑠3) holds.

There are a few things we still need to address. The first of which is how the predecessor, maximizing
the sharing potential, is determined in each iteration. We do this by first finding the maximal passenger
interval for each predecessor. Consider a passenger 𝑝 and their arrival time interval [𝜏𝑎min, 𝜏𝑎max] at 𝑠2,
coming from 𝑠1. The respective maximal passenger interval is the interval [𝜏𝑎min, 𝜏𝑎max] ⊆ [𝜏𝑎min, 𝜏𝑎max],
which maximises the number of passengers with an arrival time interval at 𝑠2, coming from 𝑠1, containing
it. To find it, we do a sweep over the start- and end-points, of all arrival intervals of the station pair
(𝑠1, 𝑠2), sorted by time. When processing an interval start- or end-point, we keep track of the currently
best result and how it is influenced by this interval point. After the maximal passenger interval is found
for every predecessor, the once covering the most passengers is chosen.

The second thing is, that with each iteration, we potentially further restrict the arrival time interval.
If the interval start point changes, we get a situation like shown in Figure 3.8, where a passenger arrives
at a station later than previously assumed. The problem here is, that we propagate the interval changes
in the algorithm only backwards in time. To solve this, we keep track of the time by which we would
move the interval start point and clip all intervals only at the end.

13

3. The Detour Approach

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

latest arrival time

departure vertex

arrival vertices

Time

St
at
io
n

(a)

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

latest arrival time

departure vertex

arrival vertex

Time

St
at
io
n

(b)

Figure 3.6.: Two additional examples of detour-DAGs

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

Time

St
at
io
n

Figure 3.7.: Visualization of the overlaid implied intervals of the detour-DAGs from Figure 3.2 in blue,
Figure 3.6a in green and Figure 3.6b in purple. Let us attribute the blue detour-DAG to a passenger 𝑝1,
the green one to 𝑝2 and the purple one to 𝑝3. Consider for example, that we want to determine for 𝑝1
how they reach Station 6. Note that the detour-DAG is traversed backwards in time, so we follow the
directed edges in reverse. Passenger 𝑝1 could come from either Station 3 or Station 4. For both possible
predecessor stations we determine the time interval where 𝑝1 could arrive at Station 6 coming from the
respective station, where the most other passengers could also travel to Station 6 from that station. So
for Station 3 as the predecessor station, that is [10, 11], containing 𝑝2 alongside 𝑝1. For Station 4, we get
[11, 11], containing 𝑝2, 𝑝1 as well as 𝑝3. Note, that it is not determined whether 𝑝2 travels from Station 3
or Station 4 to Station 6, nor is any other passenger committed to a specific route by this step. It is just
about the number of passengers, potentially sharing the ride between stations. In this case, the sharing
potential with Station 4 is higher than with Station 3 and thus, we would create a bus ride demand for
𝑝1 from Station 4 to Station 6 arriving in [11, 11]. This procedure is then repeated to determine how 𝑝1
reaches Station 4 and so on.

14

3.2. Bus Demands

Algorithm 3.2: ComputeDemandIntervals
Input: Set D of detour-DAGs
Output: Bus ride demand Δ𝐵 (𝑝) sorted by 𝜏𝑎min for passengers 𝑝 ∈ P

1 forall detour-DAGs 𝐷 of D do
2 𝜏𝑎min ← earliest arrival in 𝐷

3 𝜏𝑎max ← latest arrival in 𝐷

4 𝑠 ← arrival station of 𝐷
5 𝑝 ← passenger of 𝐷
6 𝑡clip← 0

7 while 𝑠 is not arrival station in 𝐷 do
8 [𝜏𝑎min, 𝜏𝑎max] ← ⊥
9 𝑠′←⊥
10 forall predecessors stations 𝑠′ of 𝑠 in 𝐷 do
11 𝑡 ← D.maxPassengerInterval(𝑠 , 𝑠′, 𝜏𝑎min + 𝑡clip, 𝜏𝑎max , 𝑝)
12 if 𝑡 covers more passengers than [𝜏𝑎min, 𝜏𝑎max] then
13 [𝜏𝑎min, 𝜏𝑎max] ← 𝑡

14 𝑠′← 𝑠′

15 𝑡clip← 𝜏𝑎min − 𝜏𝑎min

16 𝜏𝑎min ← 𝜏𝑎min − 𝑡𝐺 (𝑠′, 𝑠)
17 𝜏𝑎max ← 𝜏𝑎max − 𝑡𝐺 (𝑠′, 𝑠)
18 add (𝑠′, 𝑠, 𝜏𝑎min, 𝜏𝑎max) to Δ𝐵 (𝑝)
19 𝑠 ← 𝑠′

20 forall (𝑠𝑑 , 𝑠𝑎, 𝜏 ′𝑎min
, 𝜏 ′𝑎max

) in Δ𝐵 (𝑝) do
21 𝜏 ′𝑎min

← 𝜏 ′𝑎min
+ 𝑡clip

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Time

St
at
io
n

Figure 3.8.: Visualization of implied intervals of two passengers. The interval containing the most
other passengers for 𝑝1, marked in blue, at Station 2 is [7, 8], since it might be able to share the ride
with the green passenger. That moves the earliest arrival of 𝑝1 at Station 2 from 5 to 7. But when 𝑝1
arrives at time 7, they can not take any bus before that, hence the earliest arrival at Station 3 changes as
well and the according interval must be clipped accordingly, which is marked in red.

15

3. The Detour Approach

Furthermore, we want to cover a few implementation details. To know which are the possible
predecessor stations of a station for a passenger, we can build a predecessor station map from a detour-
DAG in advance, by traversing it backwards from the arrival vertices. When we traverse an edge
(𝑠1, 𝜏1) (𝑠2, 𝜏2), we know that 𝑠1 is a possible predecessor of 𝑠2 and can add that information to the
predecessor stations map. To efficiently sweep over the arrival intervals when finding the maximal
passenger intervals, we can also build a map from the detour-DAGs in advance. It will map each pair of
stations to a list of arrival time start and end-points sorted by time. We will refer to this map as the
overlaid detour-DAG. If a passenger has multiple arrival intervals at a station, it suffices to insert the
earliest start-point and the latest end-point, since a passenger can always just wait at the station.
Lastly, we discuss the computation time. In the overlaid detour-DAG, every station pair will map to

a maximum of |P | interval start- and end-points each. Since every detour-DAG edge contributes to
exactly one interval, the overlaid detour-DAG can be built in 𝑂 (|𝐸 (D) | · log |P |) time by traversing the
detour-DAGs backwards whilst inserting the boundaries of the implied intervals in the respective set.
To find a maximal passenger interval, we have to sweep over |P | elements, in the worst case. Since
the maximal passenger interval may have to be computed for every detour-DAG edge, the worst-case
time-complexity is𝑂 (|𝐸 (D) | · |P |). In reality however, instances probably result in overlaid detour-DAGs
where the size of the sorted sets is a lot smaller than |P |. Assuming the size of the largest sorted set
associated with a station pair has size𝑇 , the overlaid detour-DAG can be built in𝑂 (|𝐸 (D) | · log |𝑇 |) and
the overall time complexity is 𝑂 (|𝐸 (D) | · |𝑇 |).

3.3. Bus Rides

The bus ride demand obtained from the previous step indicates for each passenger, between what station
pairs they need a bus ride arriving in which time interval at the arrival station. So for a given station pair,
some of the associated arrival time intervals may overlap, indicating that the corresponding passengers
could share a ride between this station pair. So in this step, we want to compute the actual bus rides
from the passengers’ bus ride demand, while minimizing the total number of rides needed by leveraging
overlapping demands. A bus ride is a tuple (𝑠𝑏

𝑑
, 𝑠𝑏𝑎 , 𝜏

𝑏
𝑑
, 𝜏𝑏𝑎 , 𝑃

𝑏) with

departure station 𝑠𝑏
𝑑
∈ 𝑆 ,

arrival station 𝑠𝑏𝑎 ∈ 𝑆 ,
departure time 𝜏𝑏

𝑑
∈ 𝑇 ,

arrival time 𝜏𝑏𝑎 ∈ 𝑇 and

passenger set 𝑃𝑏 ⊆ P .

The general idea is shown in Figure 3.9 using an example. We sweep over the start- and end-points of
all of the bus ride demand arrival intervals and pack the corresponding passengers in a bus ride between
the corresponding stations until an interval of one of the contained passengers ends, meaning that the
bus needs to arrive by that time. Then, this ride would be finished and a new one is created for the
concerned station pair. So in the example, we can pack 𝑝1, 𝑝2 and 𝑝3 in the same bus ride, since they all
have a demand from station 𝑠1 to station 𝑠2 with an overlapping arrival time frame and the latest arrival
of 𝑝3 dictates the actual arrival time of that bus ride.

However, there are cases where this simple procedure is not sufficient. Consider Figure 3.10. There, it
leads to a problem that the arrival time of 𝑏1 is some time later than the earliest arrival of the passengers
contained in the bus ride, since that implies that these passengers also arrive the same amount of time
after their earliest arrival at their next station. If this is not taken into account, passengers could be

16

3.3. Bus Rides

Time

(𝑠1, 𝑠2), 𝑝1

(𝑠1, 𝑠2), 𝑝2

(𝑠1, 𝑠2), 𝑝3

(𝑠2, 𝑠3), 𝑝1

(𝑠2, 𝑠3), 𝑝2

𝜏
𝑏1
𝑎 𝜏

𝑏2
𝑎

Figure 3.9.: Example for the assignment of passengers to bus rides using their bus ride demand intervals.
Bus ride 𝑏1 will arrive at 𝜏𝑏1𝑎 and contain passengers 𝑝1, 𝑝2 and 𝑝3, while 𝑏2 will arrive at 𝜏𝑏2𝑎 containing
𝑝1 and 𝑝2.

Time

(𝑠1, 𝑠2), 𝑝1

(𝑠1, 𝑠2), 𝑝2

(𝑠1, 𝑠2), 𝑝3

(𝑠2, 𝑠3), 𝑝1

(𝑠2, 𝑠3), 𝑝2

(𝑠2, 𝑠3), 𝑝4

𝜏
𝑏1
𝑎 𝜏

𝑏2
𝑎

Figure 3.10.: Example for the assignment of passengers to bus rides using their bus ride demand
intervals. As soon as the arrival time of bus ride 𝑏1 is determined, the remaining intervals of the
containing passengers need to be shortened, which is indicated by the striped area.

17

3. The Detour Approach

Time

(𝑠1, 𝑠2), 𝑝1

(𝑠1, 𝑠2), 𝑝2

(𝑠1, 𝑠2), 𝑝3

(𝑠2, 𝑠3), 𝑝1

(𝑠2, 𝑠3), 𝑝2

(𝑠2, 𝑠3), 𝑝4

𝜏
𝑏1
𝑎

Sweep-line

Figure 3.11.: Example for the assignment of passengers to bus rides using their bus ride demand
intervals with the improved strategy of choosing the bus ride arrival time.

Time

(𝑠1, 𝑠2), 𝑝1

(𝑠1, 𝑠2), 𝑝2

(𝑠2, 𝑠3), 𝑝1

𝜏
𝑏1
𝑎

Sweep-line

Figure 3.12.: Example for the assignment of passengers to bus rides using their bus ride demand
intervals. When the arrival time of bus ride 𝑏1 is determined, the start-point of the interval for station
pair (𝑠2, 𝑠3) of 𝑝1, marked in red, was already passed. However, the position of the start-point will now
be moved due to the shortening, which is indicated by the striped area.

assigned to a bus ride that departs at a station before they arrive there. This is remedied by shortening the
concerned intervals accordingly, which is indicated by the striped area in Figure 3.10. As a consequence,
the interval that caused the finishing of the bus ride will be shortened to a single point in time, as seen in
Figure 3.10 on the interval of 𝑝3. We can improve this without loosing any passengers. To that end, we
also keep track of the latest interval start-point concerning a bus ride. Then, like shown in Figure 3.11,
when the bus ride is finished by an interval end-point, the latest start-point becomes the bus ride arrival
time.
The clipping introduces a new problem, that needs to be handled. Consider the case shown in

Figure 3.12, where the sweep line already passed the start-point of the interval for (𝑠2, 𝑠3) of 𝑝1, marked
in red, before the arrival time of 𝑏1 is determined. Thus, 𝑝1 is also assigned to the active bus ride of
(𝑠2, 𝑠3), even tough the interval will be shortened, which could move the start-point beyond the actual
arrival time of the active bus ride of (𝑠2, 𝑠3). This problem is mitigated by restricting the number of
unfinished bus rides, that a passenger can be assigned to, to one. So when the sweep-line encounters an
interval start-point associated with a passenger that is already in a bus ride, which has its final arrival
time not set yet, it is ignored for the moment. The finishing of the active bus ride will eventually trigger
the shortening of this interval, which is when the start-point will be considered again by the sweep-line.

18

3.3. Bus Rides

Time

(𝑠1, 𝑠2), 𝑝1

(𝑠1, 𝑠2), 𝑝2

(𝑠2, 𝑠3), 𝑝1

(𝑠2, 𝑠3), 𝑝3

𝜏
𝑏1
𝑎 𝜏

𝑏2
𝑎

Sweep-line

Figure 3.13.: Example for the assignment of passengers to bus rides using their bus ride demand
intervals. The start-point of the interval of 𝑝1 for (𝑠2, 𝑠3) is ignored by the sweep-line, since 𝑝1 is already
assigned to 𝑏1 at that time, which is not finished then. Its finishing leads to the mentioned start-point
being processed retrospectively. Although 𝑝1 could share the bus ride 𝑏2 with 𝑝3, it cannot be assigned
to it in retrospect, since 𝑏2 is already finished when the retrospective processing happens.

If this shortening is not enough to move the before ignored start-point beyond the sweep-line, like
with the case shown in Figure 3.12, the sweep-line has to process them retrospectively. Note that by
this time, the corresponding end-point has not been processed. Therefore, the associated passenger of
every interval that is processed retrospectively like this, can simply be assigned to the active bus ride of
the respective station-pair. The one case, where a sharing opportunity can actually be missed by the
retrospective processing, can be seen in Figure 3.13. It might be possible to remedy this. However, it
would probably involve changing an already finished bus ride, which in turn causes new special cases
to consider. For now, dealing with this does not seem worth the computational effort to us.

Algorithm 3.3 shows how the whole procedure of computing bus rides from bus ride demands can be
realized. It uses two priority queues. One for the start-points and one for the end-points of demand
intervals. These will enable us to efficiently retrieve the next intervals to process. Moreover, there are
data structures to hold the active bus ride for each station pair and the time of the currently relevant
interval start-point for each passenger. The latter is used to determine howmuch the remaining intervals
need to be shortened upon an bus ride finishing. The queues use the respective time of an interval’s start-
and end-points as the key and the station pair along with the passenger as the value. The element with
the minimal key denotes the next start- and end-event respectively. The minimal keys of the two queues
are compared in each iteration, to determine which event will be processed next. On a start-event, we
assign the passenger to the currently active bus ride of the associated station pair. We also update the
arrival time of the bus ride, so that it is always set to the time of the latest start-event. The handling of
an end-event indicates that the active bus ride of the associated station pair needs to arrive at that time.
For each passenger contained in that ride, the first of its demands is removed, as that is now served.
We also delete the corresponding end-events that are still in the queue. Additionally, we update the
passengers’ total clipping time and insert the events for their next demand, with the interval clipped by
increasing the key of the start-point accordingly. This ensures that all passenger demands are served,
which we show in Lemma 3.5. Finally, a new, empty, bus ride is initialized for the concerned station-pair.

That a passenger is not assigned to multiple bus rides simultaneously, is guaranteed by the process
of inserting the events of passenger demands only when all previous demands of that passenger are
processed. Together with the clipping we use this in Lemma 3.6 to show that every transfer implied
by the bus rides is doable in the sense, that the first bus arrives before the connecting bus leaves.
We call two bus rides with this property time-consistent. Formally, bus rides 𝑏1 = (𝑠1, 𝑠2, 𝜏𝑏1𝑑 , 𝜏

𝑏1
𝑎 , 𝑃𝑏1),

𝑏2 = (𝑠2, 𝑠3, 𝜏𝑏2𝑑 , 𝜏
𝑏2
𝑎 , 𝑃𝑏2) are time-consistent, if the inequality 𝜏𝑏1𝑎 ≤ 𝜏

𝑏2
𝑑

holds.

19

3. The Detour Approach

Algorithm 3.3: ComputeBusRides
Input: Bus ride demand Δ𝐵 (𝑝) sorted by 𝜏𝑎min for passengers 𝑝 ∈ P , travel time function 𝑡𝐺
Output: Set 𝐵 of bus rides

1 Initialize priority queues 𝑄𝑎min , 𝑄𝑎max

2 activeBusRide((𝑠1, 𝑠2))← (𝑠1, 𝑠2,⊥,⊥, ∅) for all (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆
3 forall 𝑝 in P do
4 currentStartPoint(𝑝)←⊥
5 𝑡clip(𝑝)← 0
6 (𝑠𝑑 , 𝑠𝑎, 𝜏𝑎min, 𝜏𝑎max) ← Δ𝐵 (𝑝).front()
7 𝑄𝑎min .insert(((𝑠𝑑 , 𝑠𝑎), 𝑝), 𝜏𝑎min)

8 𝑄𝑎max .insert(((𝑠𝑑 , 𝑠𝑎), 𝑝), 𝜏𝑎max)

9 while 𝑄𝑎max not empty do
10 𝜏start← 𝑄𝑎min .peekMinKey()
11 𝜏end← 𝑄𝑎max .peekMinKey()
12 if 𝜏start ≤ 𝜏end then
13 handleStartEvent()

14 else
15 handleEndEvent()

16 Procedure handleStartEvent()
17 ((𝑠1, 𝑠2), 𝑝), 𝜏 ← 𝑄𝑎min .deleteMin()
18 𝑏 ← activeBusRide((𝑠1, 𝑠2))
19 𝜏𝑏

𝑑
← 𝜏 − 𝑡𝐺 (𝑠1, 𝑠2)

20 𝜏𝑏𝑎 ← 𝜏

21 add 𝑝 to 𝑃𝑏
22 currentStartPoint(p)← 𝜏

23 Procedure handleEndEvent()
24 ((𝑠1, 𝑠2), 𝑝), 𝜏 ← 𝑄𝑎max .deleteMin()
25 𝑏 ← activeBusRide((𝑠1, 𝑠2))

26 forall 𝑝′ in 𝑃𝑏 do
27 Δ𝐵 (𝑝′).popFront()
28 𝑄𝑎max .delete(((𝑠1, 𝑠2), 𝑝′))
29 𝑡clip(𝑝

′)← 𝑡clip(𝑝
′) + 𝜏𝑏𝑎 − currentStartPoint(𝑝′)

30 (𝑠𝑑 , 𝑠𝑎, 𝜏𝑎min, 𝜏𝑎max) ← Δ𝐵 (𝑝′).front()
31 𝑄𝑎min .insert(((𝑠𝑑 , 𝑠𝑎), 𝑝′), 𝜏𝑎min + 𝑡clip(𝑝′))
32 𝑄𝑎max .insert(((𝑠𝑑 , 𝑠𝑎), 𝑝′), 𝜏𝑎max)

33 add 𝑏 to 𝐵
34 activeBusRide((𝑠1, 𝑠2))← (𝑠1, 𝑠2,⊥,⊥, ∅)

20

3.4. Bus Ride Flows

In summary, assuming all bus rides are served, it follows from Lemmas 3.5 and 3.6 that every passenger
has an itinerary to fulfil their demand, which we formalise in Theorem 3.7. Additionally, the way we
insert the events results in the queues’ never having more than |P | elements. Thus, deleteMin can be
done in𝑂 (log(|P |) for these queues. The loop in line 26 is executed for each passenger in the concerned
bus ride. Since a start-event must have been processed for each of them, the number of times the loop is
executed equals the number of start-events, which is equal to the total number of bus ride demands.
Therefore, Algorithm 3.3 takes 𝑂 (|Δ𝐵 (P) | · log |P |) time.

Lemma 3.5: Let 𝐵 be set of bus rides computed by Algorithm 3.3 from bus ride demands Δ𝐵 (𝑝) of passengers
𝑝 ∈ P . For every bus ride demand (𝑠𝑑 , 𝑠𝑎, 𝜏𝑎min, 𝜏𝑎max) ∈ Δ𝐵 (𝑝) there is a bus ride (𝑠𝑏

𝑑
, 𝑠𝑏𝑎 , 𝜏

𝑏
𝑑
, 𝜏𝑏𝑎 , 𝑃

𝑏) ∈ 𝐵

with 𝑠𝑏
𝑑
= 𝑠𝑑 , 𝑠𝑏𝑎 = 𝑠𝑎 , 𝜏𝑏𝑎 ∈ [𝜏𝑎min, 𝜏𝑎max] and 𝑝 ∈ 𝑃𝑏 .

Proof. When the start-point of a demand (𝑠𝑑 , 𝑠𝑎, 𝜏𝑑min, 𝜏𝑎max) is processed, the corresponding passenger is
assigned to the active bus ride 𝑏 of the station pair associated with the demand, so 𝑠𝑏

𝑑
= 𝑠𝑑 and 𝑠𝑏𝑎 = 𝑠𝑎 .

Since the arrival time of the bus is set to the start-point being processed in line 20, 𝜏𝑏𝑎 ≥ 𝜏𝑎min holds. At
the latest when the corresponding end-point is processed, bus ride 𝑏 will be finished by the assignment
of a new bus ride as the active bus ride of the respective station pair in line 34. Hence, 𝜏𝑏𝑎 ≤ 𝜏𝑎max holds
as well.
It remains to show that for every demand a start- and end-event will be processed eventually. The

start- and end-point of the first bus ride demand of each passenger is inserted in the respective queue in
lines 7 and 8 of Algorithm 3.3. Note, that start-events are handled before end-events. For each inserted
start-point, the corresponding passenger is eventually assigned to a bus ride. Additionally, every bus
ride containing a passenger is eventually finished by an end-event of one of the contained passengers.
This leads to the events of the next demand of all contained passengers being inserted in the respective
queues.

Lemma 3.6: Every two bus rides 𝑏1 = (𝑠1, 𝑠2, 𝜏𝑏1𝑑 , 𝜏
𝑏1
𝑎 , 𝑃𝑏1), 𝑏2 = (𝑠2, 𝑠3, 𝜏𝑏2𝑑 , 𝜏

𝑏2
𝑎 , 𝑃𝑏2) with |𝑃𝑏1 ∩ 𝑃𝑏2 | > 0

computed by Algorithm 3.3, are time-consistent.

Proof. Let𝑏1 = (𝑠1, 𝑠2, 𝜏𝑏1𝑑 , 𝜏
𝑏1
𝑎 , 𝑃𝑏1),𝑏2 = (𝑠2, 𝑠3, 𝜏𝑏2𝑑 , 𝜏

𝑏2
𝑎 , 𝑃𝑏2) with |𝑃𝑏1∩𝑃𝑏2 | > 0. Since there is a passenger

𝑝 ∈ 𝑃𝑏1 ∩ 𝑃𝑏2 , there were bus ride demands 𝛿𝐵 = (𝑠1, 𝑠2, 𝜏𝑎min, 𝜏𝑎max), 𝛿 ′𝐵 = (𝑠2, 𝑠3, 𝜏 ′𝑎min, 𝜏
′
𝑎max) ∈ Δ𝐵 (𝑝).

Let 𝑡clip(𝑝) denote the clipping time of 𝑝 . From Observation 3.4 follows that 𝜏𝑎min < 𝜏 ′𝑎min . Thus, the
start-event of 𝛿𝐵 will be processed before that of 𝛿 ′

𝐵
and 𝑡clip(𝑝) ≥ 𝜏

𝑏1
𝑎 − 𝜏𝑎min . Since the start-point of 𝛿 ′𝐵

will be moved by 𝑡clip(𝑝), this implies for the arrival time of 𝑏2, that 𝜏𝑏2𝑎 ≥ 𝜏 ′𝑎min + 𝜏
𝑏1
𝑎 − 𝜏𝑎min holds and

hence, also 𝜏𝑏2
𝑑
≥ 𝜏 ′𝑎min + 𝜏

𝑏1
𝑎 − 𝜏𝑎min − 𝑡𝐺 (𝑠2, 𝑠3). By Observation 3.4, the statement holds.

Theorem 3.7: The bus rides computed by Algorithm 3.3 from bus demands Δ𝐵 (P) offer each passenger
𝑝 ∈ P time-consistent bus rides, that settle their bus ride demand Δ𝐵 (𝑝).

Proof. Follows from Lemmas 3.5 and 3.6.

3.4. Bus Ride Flows

We now have the set 𝐵 of bus rides that need to be served in order to get all passengers to their destination
in time. The next step is to determine how many buses are needed and which bus rides are performed by
each of them. To that end we construct a weighted flow network on which we then solve the Minimum
Cost Flow problem in order to obtain a set of bus itineraries for a given maximum number 𝛽 of buses.
By repeatedly solving the problem for increasing values for 𝛽 , we also get the minimal number of
required buses to serve all bus rides, while minimizing the number of passenger transfers. Section 3.4.1
covers the details of this flow network construction and in Section 3.4.2 we prove its correctness.

21

3. The Detour Approach

𝜈𝑠 𝜈𝑡𝜈
𝑏1
𝑑

𝜈
𝑏2
𝑑

𝜈
𝑏3
𝑑

𝜈
𝑏1
𝑎

𝜈
𝑏2
𝑎

𝜈
𝑏3
𝑎

Figure 3.14.: Example for the graph of a bus ride flow network on bus rides {𝑏1, 𝑏2, 𝑏3}, where 𝑏2 and
𝑏3 are reachable from 𝑏1.

3.4.1. Construction

A simple example is shown in Figure 3.14. The idea of this construction is to have bus rides modelled
by edges and buses represented by flow units, flowing through the bus ride edges they serve. So for
each bus ride 𝑏 ∈ 𝐵 we create the departure vertex 𝜈𝑏

𝑑
= (𝑠𝑏

𝑑
, 𝜏𝑏

𝑑
) and the arrival vertex 𝜈𝑏𝑎 = (𝑠𝑏𝑎 , 𝜏𝑏𝑎),

associated with the time and station of the departure and arrival of the bus ride respectively. In between,
we insert a directed edge from departure vertex to arrival vertex, representing the bus ride itself. Now,
we want to model the choices a bus has after serving a bus ride, of which bus ride to serve next. To
that end, we introduce the concept of reachability of bus rides. Consider the occurring departure times
𝑇𝑑 (𝐵) = {𝜏𝑏𝑑 | 𝑏 ∈ 𝐵} of 𝐵. For a given maximum waiting time 𝑤 and point in time 𝜏 we define the
waiting-time neighbourhood

𝑈𝑤 (𝜏) = {𝜏 ′ ∈ 𝑇𝑑 (𝐵) | 𝜏 ≤ 𝜏 ′ ≤ 𝜏 +𝑤}.

With this, we call bus ride 𝑏2 reachable from a bus ride 𝑏1, if and only if 𝑜𝑏2 = 𝑑𝑏1 and 𝜏𝑏2
𝑑
∈ 𝑈𝑤 (𝜏𝑏1𝑎).

In order to connect the bus rides in our flow network, we insert an edge from the arrival vertex of a bus
ride to the departure vertices of all reachable bus rides. The source 𝜈𝑠 and sink 𝜈𝑡 of the flow network are
additional vertices which could be interpreted as a start- and end point for buses respectively. The source
is therefore connected with the departure vertices of all bus rides and the arrival vertices of all bus rides
are in turn connected with the sink. With this the graph 𝐺𝐹 (𝐵) = (𝑉 , 𝐸) of the bus ride flow network is
complete and consists of vertex set 𝑉 = {𝜈𝑏

𝑑
, 𝜈𝑏𝑎 | 𝑏 ∈ 𝐵} ∪ {𝜈𝑠 , 𝜈𝑡 } and edge set 𝐸 = 𝐸𝑠 ∪ 𝐸𝑡 ∪ 𝐸𝑅 ∪ 𝐸𝑀

where

the source edges 𝐸𝑠 = {(𝜈𝑠 , 𝜈𝑏𝑑) | 𝑏 ∈ 𝐵},
the sink edges 𝐸𝑡 = {(𝜈𝑏𝑎, 𝜈𝑡) | 𝑏 ∈ 𝐵},
the ride edges 𝐸𝑅 = {(𝜈𝑏

𝑑
, 𝜈𝑏𝑎) | 𝑏 ∈ 𝐵},

the reachability edges 𝐸𝑀 = {(𝜈𝑏1𝑎 , 𝜈
𝑏2
𝑑
) | 𝑏1, 𝑏2 ∈ 𝐵, 𝑏2 reachable from 𝑏1}.

To complete the flow network construction, we now define the capacity function and the cost function.
As mentioned before, a flow unit in the flow network should represent a bus. Since a single bus ride
should only be served by one bus, we set the capacity of the ride edges to one. The source edges connect
to the departure vertices of bus rides. These always have exactly one outgoing ride edge and thus,

22

3.4. Bus Ride Flows

𝜈𝑠 𝜈𝑡𝜈
𝑏1
𝑑

𝜈
𝑏2
𝑑

𝜈
𝑏3
𝑑

𝜈
𝑏1
𝑎

𝜈
𝑏2
𝑎

𝜈
𝑏3
𝑎

−𝑎

−𝑎

−𝑎

0

0

0 0

0

0

−|𝑃
𝑏 1
∩ 𝑃

𝑏 2 |

−|𝑃 𝑏
1∩
𝑃 𝑏

3|

Figure 3.15.: Example for a bus ride flow network 𝐹 (𝐵) with 𝐵 = {𝑏1, 𝑏2, 𝑏3} where 𝑏2 and 𝑏3 are
reachable from 𝑏1. The labels on the edges represent their cost.

there is a maximal out-flow of one on the departure vertices. Hence, a capacity of one does not restrict
the possible flows. A symmetrical argument can be made for the sink edges and the in-flow of arrival
vertices. Since the reachability edges connect arrival vertices with departure vertices, there will also be
a maximal flow of one on these edges. So in summary, we obtain 𝑐 : 𝐸 → ℕ with 𝑐 (𝑒) = 1 for all 𝑒 ∈ 𝐸
as the capacity function.

For the cost function, we want it to ensure served rides are maximized first and the number of transfers
are minimized as a secondary criterion. To that end, we assign a negative cost to some of the edges,
which will act as a reward for sending flow units through them. To address the secondary criterion, we
reward reachability edges that connect bus rides with a lot of overlap in their containing passengers. All
passengers contained in both bus rides can consequentially stay in the bus and do not have to transfer
to another bus at the end of the first ride, which results in more reward for fewer overall transfers.

However, the main criterion is still that as many bus rides are served as possible. Therefore, we need
the reward of serving a bus ride surpass any accumulation of reward from minimizing transfers. This is
done by setting the reward of bus ride edges higher than an overestimate 𝑎 ∈ ℕ of the possible reward
from transfer minimization accumulated on any path from source to sink. So 𝑎 >

∑
𝑏∈𝐵 |𝑃𝑏 |. All of the

other edges, which are the ones connected to source or sink, are assigned a reward of zero. This gives
us 𝑎 : 𝐸 → ℤ with

𝑎(𝑒) =

−𝑎, 𝑒 ∈ 𝐸𝑅
−|𝑃𝑏1 ∩ 𝑃𝑏2 |, 𝑒 = (𝜈𝑏1

𝑑
, 𝜈

𝑏2
𝑎) ∈ 𝐸𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

as the cost function. Now, the definition of the bus ride flow network of 𝐵 is complete and states as
𝐹 (𝐵) = (𝐺𝐹 (𝐵), 𝜈𝑠 , 𝜈𝑡 , 𝑐, 𝑎). Figure 3.15 shows the example from before with the associated edge costs.

A bus ride flow network for bus rides 𝐵 has 2|𝐵 | + 2 vertices. Additionally, there are |𝐵 | source edges,
|𝐵 | sink edges and |𝐵 | ride edges. The number of reachability edges depends on the reachability of rides
and thus also on the maximum waiting time. In the worst case, there are 𝑂 (|𝐵 |2) reachability edges.
This gives a worst-case time-complexity of 𝑂 (|𝐵2 |) for the construction of 𝐹 (𝐵). However, in realistic
instances we expect the bus rides to be spread out in space as well as time, along with a small maximum
waiting time in relation to the overall time horizon. With the way the bus rides are computed, they can

23

3. The Detour Approach

be stored by their departure station and sorted by departure time in order to efficiently determine the
reachable rides for every bus ride. Thus, we expect the construction in realistic scenarios to perform
considerably better than the worst case.

3.4.2. Correctness

In the following, we assume a flow network 𝐹 (𝐵) constructed as specified in Section 3.4.1 from a set
𝐵 of bus rides. In the course of this section we want to show that solving the Minimum Cost Flow
problem on 𝐹 (𝐵) leaves us with the intended bus itineraries, maximizing served rides and minimizing
transfers. We start by transferring the concept of itineraries to our flow network. Since a flow unit is
meant to represent a bus, the path taken by a flow unit will represent the itinerary of a single bus. Note,
that the flows considered in this work are always integer-valued. A bus ride itinerary will denote the
assignment of all of the bus rides to buses, meaning it is equivalent to a set of paths 𝐼 from the source to
the sink of 𝐹 (𝐵), that share no vertices except the source and the sink itself. We call a bus ride itinerary
satisfying if and only if it contains all bus ride edges of 𝐵. Further, we establish the set of bus ride pairs
between which a transfer happens in 𝐼 as

T (𝐼) = {(𝑏1, 𝑏2) | (𝜈𝑏1𝑎 , 𝜈
𝑏2
𝑑
) ∈ {𝑒 ∈ 𝐸 (𝑅) | 𝑅 ∈ 𝐼 }},

to define the number of transfers

𝑡 (𝐼) = ©­«
∑︁

(𝑏1,𝑏2) ∈T (𝐼)
(|𝑃𝑏1 \ 𝑃𝑏2 |ª®¬ − |P |.

We then show in Lemma 3.8 that a feasible flow on our flow network yields us such a satisfying bus ride
itinerary 𝐼 and additionally, the value of the flow equals the size |𝐼 | of the itinerary.

Lemma 3.8: A feasible flow 𝑓 is equivalent to a bus ride itinerary of size |𝑓 |.

Proof. We first show that we can construct a bus ride itinerary from a feasible flow. Let 𝑓 be a feasible
flow on 𝐹 (𝐵). Since 𝑓 sends |𝑓 | flow units from source 𝜈𝑠 to sink 𝜈𝑡 and all edges in 𝐹 (𝐵) have unit
capacity, 𝑓 is equivalent to |𝑓 | 𝜈𝑠𝜈𝑡 -paths. Suppose there are saturated 𝜈𝑠𝜈𝑡 -paths 𝑃1, 𝑃2, that share a
vertex 𝜈 ∈ 𝑉 (𝐹 (𝐵)) \ {𝜈𝑠 , 𝜈𝑡 }.

Case 1: 𝜈 is a departure vertex of a bus ride 𝑏 ∈ 𝐵: Then 𝜈 has only one outgoing edge, the one to 𝜈𝑏𝑎 .
Because of flow conservation, 𝜈 can thus also only have one incoming edge with flow.

Case 2: 𝜈 is an arrival vertex of a bus ride 𝑏: Then 𝜈 has only one incoming edge, the one to 𝜈𝑏
𝑑
. Because

of flow conservation, 𝜈 can thus also only have one outgoing edge with flow.

Therefore, in both cases, such two paths 𝑃1, 𝑃2 cannot exist.
Now we show that we can construct a feasible flow from a bus ride itinerary. Let 𝐼 be a bus ride

itinerary of size 𝑘 . We construct a flow 𝑓 by assigning every edge of every path in 𝐼 a flow value of 1.
Since there are 𝑘 paths, the value of 𝑓 is also 𝑘 . Furthermore, the paths in 𝐼 are vertex disjoint, hence
flow conservation holds for 𝑓 .

With Lemma 3.9, we show that by the construction of our cost function, a min-cost-flow on the flow
network maximizes the number of covered bus rides, as intended. Further, we show in Lemma 3.10,
that the cost function ensures the second criterion of minimizing the transfers for a fixed number of
served rides as well. Using these two lemmata, we conclude the section with Theorem 3.11, showing that
solvingMinimum Cost Flow on our flow network construction yields an itinerary, which maximizes

24

3.4. Bus Ride Flows

served bus rides and minimizes the number of transfers for a fixed number of buses. Successively solving
Minimum Cost Flow with an increasing number of buses thus also finds the minimum number of buses
needed to serve all bus rides. Note, that there are implementations to solveMinimum Cost Flow by
repeatedly finding augmenting paths [Ber+92]. Since all edges have a capacity of one, each augmenting
path corresponds to another bus itinerary. This method can be used to enumerate the solutions for
increasing number of buses. We use a custom implementation to model the flow network and find the
augmenting paths instead of a black-box solver, since in this way, we can leverage the unit capacities
and retrieve the solutions for increasing number of buses like mentioned before. There certainly is some
improvement potential for our Min Cost Flow implementation and there may even be algorithms that
make more use of the specific structure of our flow network construction, yet we did not find any in our
research.

Lemma 3.9: A min-cost-flow maximizes the number of bus ride edges contained in the equivalent bus ride
itinerary.

Proof. Let 𝑓 be a min-cost flow on a bus ride flow network 𝐹 and 𝐼𝑓 the equivalent bus ride itinerary,
containing 𝑘 bus ride edges.
Suppose there is a flow 𝑓 with equivalent bus ride itinerary 𝐼

𝑓
containing ≥ 𝑘 + 1 bus ride edges. Then,

𝑓 is missing the reward 𝑎 of a bus ride edge which, by the construction of the cost function, cannot
be mitigated by the reward of reachability edges. Therefore, 𝑎(𝑓) ≤ (𝑘 + 1) · 𝑎 ≤ 𝑎(𝑓) ≤ 𝑘 · 𝑎, which
contradicts that 𝑓 is a min-cost flow.

Lemma 3.10: Let 𝑓 , 𝑓 ′ be flows with their respective equivalent bus ride itineraries 𝐼𝑓 , 𝐼𝑓 ′ containing 𝑘 bus
ride edges. For their number of transfers, it holds that 𝑡 (𝐼𝑓) < 𝑡 (𝐼𝑓 ′) ⇐⇒ 𝑎(𝑓) < 𝑎(𝑓 ′).

Proof. Let 𝐸𝑀 (𝑓) = {𝑒 ∈ 𝐸𝑀 | 𝑓 (𝑒) > 0} be the set of reachability edges of a flow 𝑓 . Further, let 𝑓 , 𝑓 ′ be
two flows with their respective equivalent bus ride itineraries 𝐼𝑓 , 𝐼𝑓 ′ containing 𝑘 bus ride edges. Then,

𝑡 (𝐼𝑓) < 𝑡 (𝐼𝑓 ′)

⇐⇒ ∑
(𝑏1,𝑏2) ∈T (𝐼𝑓)

(|𝑃𝑏1 \ 𝑃𝑏2 |) − |P | <
∑

(𝑏1,𝑏2) ∈T (𝐼𝑓 ′)
(|𝑃𝑏1 \ 𝑃𝑏2 |) − |P |

⇐⇒ ∑
(𝑏1,𝑏2) ∈T (𝐼𝑓)

(|𝑃𝑏1 \ 𝑃𝑏2 |) <
∑

(𝑏1,𝑏2) ∈T (𝐼𝑓 ′)
(|𝑃𝑏1 \ 𝑃𝑏2 |)

⇐⇒ ∑
(𝑏1,𝑏2) ∈T (𝐼𝑓)

(|𝑃𝑏1 ∩ 𝑃𝑏2 |) <
∑

(𝑏1,𝑏2) ∈T (𝐼𝑓 ′)
(|𝑃𝑏1 ∩ 𝑃𝑏2 |)

⇐⇒ ∑
(𝑏1,𝑏2) ∈T (𝐼𝑓)

(−|𝑃𝑏1 ∩ 𝑃𝑏2 |) <
∑

(𝑏1,𝑏2) ∈T (𝐼𝑓 ′)
(−|𝑃𝑏1 ∩ 𝑃𝑏2 |)

⇐⇒ ∑
(𝜈𝑏1

𝑑
,𝜈

𝑏2
𝑎) ∈𝐸𝑀 (𝑓)
(−|𝑃𝑏1 ∩ 𝑃𝑏2 |) <

∑
(𝜈𝑏1

𝑑
,𝜈

𝑏2
𝑎) ∈𝐸𝑀 (𝑓 ′)
(−|𝑃𝑏1 ∩ 𝑃𝑏2 |)

⇐⇒ ∑
𝑒∈𝐸𝑀 (𝑓)
(𝑎(𝑒)) <

∑
𝑒∈𝐸𝑀 (𝑓 ′)

(𝑎(𝑒))

⇐⇒ ∑
𝑒∈𝐸𝑀 (𝑓)
(𝑎(𝑒)) − 𝑘𝑎 <

∑
𝑒∈𝐸𝑀 (𝑓 ′)

(𝑎(𝑒)) − 𝑘𝑎

⇐⇒ 𝑎(𝑓) < 𝑎(𝑓 ′) .

25

3. The Detour Approach

Theorem 3.11: For a given set 𝐵 of bus rides and a number 𝛽 of buses, solving Minimum Cost Flow on
𝐹 (𝐵) with a flow demand of 𝛽 yields the itinerary with the maximal number of served bus rides and the
minimal number of transfers for this number of served bus rides.

Proof. Let 𝑓 be a min cost flow on 𝐹 (𝐵) with a flow demand of 𝛽 and 𝐼𝑓 the equivalent bus ride itinerary.
By Lemma 3.9, 𝑓 maximizes the number of bus rides contained in 𝐼𝑓 , so the number of served bus rides.
Let 𝑘 be the number of served bus rides. Then, Lemma 3.10 implies, that 𝐼𝑓 has the minimal amount of
transfers for 𝑘 served bus rides.

26

4. The Baseline Approach

In order to have a reference point, to assess our solver, we implemented a naïve baseline solver described
in Algorithm 4.1. For a passenger demand, we first compute the shortest path from the passenger’s
departure station to their arrival station in the station graph. From the length of the shortest path, we
can determine the time by which they arrive earlier at their arrival station, than their latest arrival
time. This will be their waiting time contingent. Additionally, we keep track of how much waiting time
they already used, which we call their delay. The shortest path is then processed edge by edge starting
from the departure station. For each edge, we check whether waiting for the next bus ride happening
between the respective stations is inside the waiting time contingent of the passenger. If it is, they can
take this ride and the waiting time contingent and delay of the passenger are updated accordingly. Else,
a new bus ride is created for the concerned station pair, departing as soon as the passenger arrives at the
departure station of the ride. We process the passenger demands in descending order of their departure
times in order to increase the potential to use already existing bus rides. The resulting set of bus rides
can then be compared with the set of bus rides obtained from the detour approach by constructing a bus
ride flow from each of the sets and solving Minimum Cost Flow with successively increasing numbers
of buses.

Algorithm 4.1: BaselineSolver
Input: Station graph 𝐺 , set Δ of passenger demands sorted by descending departure time
Output: Set 𝐵 of bus rides

1 forall demand (𝑠𝑑 , 𝑠𝑎, 𝜏𝑑 , 𝜏𝑎) of 𝑝 in Δ do
2 dist, succ← shortestPath(𝐺 , 𝑠𝑑 , 𝑠𝑎)
3 𝑡wait← 𝜏𝑎 − (𝜏𝑑 + dist[𝑠𝑎])
4 𝑡delay← 0
5 𝜈 ← 𝑠𝑑

6 while 𝜈 is not 𝑠𝑎 do
7 𝜏now← 𝜏𝑑 + dist[𝜈] + 𝑡delay
8 𝑢 ← succ[𝜈]
9 𝑏 ← getUpcomingRide(𝜈,𝑢)

10 if 𝜏𝑏
𝑑
< 𝜏now + 𝑡wait then

// Bus ride 𝑏 can be taken

11 add 𝑝 to 𝑃𝑏

12 𝑡delay← 𝑡delay + (𝜏𝑏𝑑 − 𝜏now)
13 𝑡wait← 𝑡wait − (𝜏𝑏𝑑 − 𝜏now)
14 else

// Spawn new bus ride

15 𝜏𝑏
′

𝑎 ← 𝜏𝑑 + dist[𝑢] + 𝑡delay
16 add (𝜈,𝑢, 𝜏now, 𝜏𝑏

′
𝑎 , {𝑝}) to 𝐵

17 𝜈 ← 𝑢

27

5. Evaluation

This chapter presents a comparative evaluation of our proposed solver, which is based on the detour-
approach, against a naïve baseline. The evaluation focuses on both computational performance and
solution quality. We analyse how different parameters such as the maximal allowed travel time and bus
waiting time affect the computation time and solution quality. To this end, we run both solvers on a
station graph based on a real-world road network with realistic passenger demands.

5.1. Experimental Setup

All algorithms were implemented in C++23, compiled with gcc version 11.4.0 using cmake version 3.22.1
in its release configuration and executed on a 2023US-TR4 Supermicro A+ Server with 256GB RAM and
two 16-Core AMD EPYC Zen1 7281 CPUs with 2666MHz.

We created the instances from a dataset consisting of a street graph and a set of passenger demands.
The street graph represents roughly the Stuttgart Metropolitan Region in Germany [SHP11]. The street
graph consists of 134 663 vertices and 307 759 edges. From this, we generate station graphs of varied
sizes by overlaying a 𝑛 × 𝑛 uniform grid for some integer 𝑛 and choosing the geographically closest
vertex as the station for this grid cell. If there happen to be no vertices in a grid cell, the cell will not
have a station. Two stations are adjacent in the station graph, if there is no other station on the shortest
path between them in the street graph.
The passenger demands are given as a departure vertex and an arrival vertex in the street graph

as well as an earliest departure time. The set of demands used in this chapter has 280 364 entries and
represents an hour of rush-hour car traffic on a Tuesday evening. The data was created with mobiTopp
using calibration data of a household travel survey conducted in 2009/2010 [MKV13 |MV15 | Stu11]. As
the departure and arrival station, we assign the closest station, in terms of travel time, to the departure
and arrival vertex respectively. For some of these demands, their departure and arrival vertices could be
assigned to the same station in the station graph. Such demands will be discarded and not considered
by the solvers. For each demand, we also need a latest arrival time which is not given by this dataset.
Hence, we determine the minimal travel time from departure station to arrival station in the station
graph and multiply it by a factor 𝛼 to obtain a maximal travel time. So the detours in the station graph
can take a factor of 𝛼 longer than the shortest path. Table 5.1 shows the grid sizes we use along with the
size and density of the resulting station graphs as well as the number of considered passenger demands.

Table 5.1.: Size and density of the station graph created with different grid sizes 𝑛 along with the size of
the considered passenger demand set 𝛿 (P) after discarding the ones where the assigned departure and
arrival station are identical.

Name 𝑛 #Vertices #Edges Density |𝛿 (P) |
grid40 40 374 42 026 0.301 188 263
grid50 50 570 80 602 0.249 200 397

29

5. Evaluation

Figure 5.1.: Computation time of the individual
detour-DAGs by the number of their containing de-
tours for station graph grid40 and differing travel
time multipliers 𝛼 .

Figure 5.2.: Number of containing detours of indi-
vidual detour-DAGs by themaximal allowed travel
time for station graph grid40 and differing travel
time multipliers 𝛼 .

5.2. Detour-DAG Computation

In this section, we evaluate the detour-DAG computation. The full results with varying travel time
factors and on station graphs of different grid sizes can be seen in Table A.1. Figure 5.1 shows the
relation between the computation time of the individual detour-DAGs and the number of proper detour
paths, confirming that, for large number of detours, it is linear. We see in Figure 5.2, that the number of
detours increases exponentially with the maximal travel time.

Looking at the distribution of maximal travel times shown in Figure 5.3 in relation to the contribution
to the total computation time of detour-DAGs by their maximal travel time seen in Figure 5.4, suggests
that for 𝛼 = 1.4 the computation time is dominated by few demands with large travel times. For 𝛼 = 1.3
this effect is still noticeable, while it is not apparent with lower values for 𝛼 . Refer to Figure A.2 for a
version of Figure 5.4, where the contributions with lower values for 𝛼 can be observed more clearly.
This is in line with the total number of explored edges increasing exponentially with increasing values
for 𝛼 , as shown in Figure 5.5, where we can also observe that the total number of edges that are part of
the final detour-DAGs follow this trend as well. Depending on the application, it may thus be feasible to
only consider demands below a certain distance threshold, confining for example to intra-city transport.

Furthermore, Figures 5.5 and 5.6 indicate that the grid size also has an influence on the computation
time. However, we do not have enough data to reasonably draw any conclusions on that, which is
partly due to the computation times reaching values beyond our time constraints. The computations for
𝛼 = 1.4 for station graph grid50 were terminated after surpassing 5 hours.

Overall it becomes clear to us that this way of computing detour-DAGs does not scale well and is
therefore only feasible for station graphs up to a certain size. In the case of the station graphs created
with our grid-based approach, a grid size of 40 still allows for detour-DAG computations up to 𝛼 = 1.4
in a reasonable amount of time. We will therefore focus on the instance grid40.

30

5.2. Detour-DAG Computation

Figure 5.3.: Histogram of maximal travel times
on station graph grid40 for varying travel time
multipliers 𝛼 .

Figure 5.4.: Histogram showing the cumulative
computation time associated with detour-DAGs
falling into the corresponding travel time bin, com-
puted on station graph grid40 with varying travel
time multipliers 𝛼 .

Figure 5.5.: Number of explored edges in com-
parison to the number of edges part of the final
detour-DAG for varying travel time multipliers 𝛼
and different station graphs.

Figure 5.6.: Total detour-DAG computation time
for varying maximal travel time multipliers 𝛼 on
different station graphs.

31

5. Evaluation

Figure 5.7.: Reachability score 𝜌 of the solver runs
on station graph grid40 for different maximal bus
waiting times 𝜔 . Note, that for 𝛼 = 1.0 the detour-
solver data obscures the baseline data.

Figure 5.8.: Number of buses computed to settle
the passenger demand of the solver runs on station
graph grid40 by their reachability score 𝜌 . Note,
that for 𝛼 = 1.0 the detour-solver data obscures
the baseline data.

5.3. Detour-Solver

In this section we evaluate the detour-based solver (DS) by comparing it with the baseline solver. To
compare the computed bus rides, we also calculate a reachability score 𝜌 for each bus ride flow network,
which indicates the average number of bus rides that are reachable from a bus ride. Refer to Table A.2
for a detailed insight of all the results.
As expected, 𝜌 increases with the maximal bus waiting time 𝜔 , which can be seen in Figure 5.7.

A high value for 𝜌 indicates that, on average, there are more choices for a bus to continue its travel.
Interestingly, with the detour-solver, 𝜌 increases as 𝛼 increases, whereas with the baseline, 𝜌 decreases.
There is however no direct correlation between 𝜌 and the number of buses needed, which we see in
Figure 5.8, where we also observe that our detour-solver surpasses the baseline for every parameter
configuration.

Although 21 147 buses as the best result of the detour-solver still seem disproportionally many for a
period of 60 minutes, even in rush hour, the number of overall passenger transfers stays consistently low
over all experiments with both solvers, as shown in Figure 5.9, with 2 031 being the highest transfer count.
Looking at the comparably small amount of allowed delay being exhausted, displayed in Figure 5.10, it
appears to us that there, together with the low transfer count, lies the largest potential to further reduce
the number of required buses. Regarding the behaviour of transfer count seen in Figure 5.9, we also
observe that with the detour-solver, the number of transfers decreases significantly when the maximum
waiting time of buses is increased. This effect probably occurs since the bus would need to end its
journey, when not allowed to wait until the next bus ride, and a new one would need to continue in its
place, causing all contained passengers to transfer. That this does not appear with the baseline solver
is consistent with the fact of it not causing much delay, and thus waiting time at stations, observed in
Figure 5.10.
We also observe that the more additional travel time is allowed, controlled by increasing 𝛼 , the

better the results. This behaves as expected, since when detours are allowed to be longer, it is more
likely to have more overlap with other passengers’ detours. Significantly larger values of 𝛼 may still be

32

5.3. Detour-Solver

Figure 5.9.: Number of overall passenger trans-
fers by the allowed bus waiting time 𝜔 for runs
of different maximal travel time multipliers 𝛼 on
station graph grid40. Note, that for 𝛼 = 1.0 the
detour-solver data obscures the baseline data.

Figure 5.10.: Distribution of allowed arrival delay
usage on station graph grid40 with 𝜔 = 20.

relevant for practical applications. Which range of values can be deemed realistic however, represents a
fundamental design decision in real-world settings. Moreover, it could be given as part of the input data,
by incorporating the delay acceptance in the demand simulation.
Through the number of detours, parameters like the grid size and the maximal travel time factor

greatly influence the computation time, which can easily reach multiple hours. By controlling them,
the computation time can be kept within reasonable times according to the application, which will of
course influence solution quality.

33

6. Conclusion

In this work, we adapted the idea of using possible detour paths to solve a ride sharing problem to the
domain of transit planning. After computing the DAG of possible detours for each passenger demand,
we used it to heuristically compute the bus demand of each passenger by greedily choosing the route
where the most other passengers may travel. As these depict time-intervals during which a passenger
requests a bus ride between a pair of stations, we afterwards computed at what points in time a bus ride
should happen between each pair of stations, to settle the demand. From the set of bus rides, we then
constructed an instance of theMinimum Cost Flow problem and showed how solving it can be used
to obtain a set of bus itineraries that serve all bus rides and thus settle all passenger demands, while
minimizing the number of overall passenger transfers. We evaluated this approach by comparing it
with a naïve baseline and running experiments for different input parameters on an authentic instance,
finding that, while the baseline is outperformed in solution quality, there still is room for improvement
in both the computation time as well as the computed number of bus itineraries. We identified the
number of transfers along with the usage of allowed arrival delay of our solutions as the place where
the potential for this is located.
We attribute the general tendency of the detour-solver to result in very low transfer counts but still

large number of buses to the fact that the underlying approach was originally developed for ride-sharing
contexts, where minimizing transfers, delays, and waiting times is probably far more critical due to user
expectations. In contrast, public transit systems typically tolerate higher levels of waiting times and
transfer counts. Additionally, ride-sharing tends to place greater emphasis on serving all passengers,
whereas public transit operators often aim to maximize the total number of passengers served with a
somewhat fixed capacity of buses, accepting that some passengers may not be accommodated, which
our approach does not allow. Relaxing this requirement could also significantly reduce computation
time, as the detour calculations for demands with very large maximal travel times could be skipped,
with the possibility that the resulting bus system may still be able to serve those demands, but without
the explicit constraint to do so.
A computational gain like this would open up opportunities that could also enhance the solution

quality. It may be possible to integrate the station placement in the algorithm itself, allowing for solutions
that are more adaptive to the demand. Even without integrating station placement, alternative station
graph topologies beyond the simple uniform grid used in our evaluation, such as demand-aware or
hierarchical layouts, could improve the solution quality of our solver and potentially its performance.
Moreover, it may also be possible to further refine the solutions in a post processing stage. For example,
small local optimizations like removing redundant stops in bus itineraries where no passengers board or
exit could be applied. Additionally, the concept of bus ride reachability could be extended. Currently,
we only consider temporal proximity, but incorporating spatial proximity could allow buses to continue
with geographically nearby rides and capture real-world conditions more accurately.

Lastly, an improved heuristic for computing bus demands seems promising. The current greedy
approach is prone to converge to local maxima and it appears that the information available by the
computed detour-DAGs could be leveraged more effectively. Exploring this further could therefore be a
valuable direction for future work.

35

Bibliography

[ANJ19] Sunghi An, Daisik Nam, and R. Jayakrishnan. “Impacts of integrating shared autonomous
vehicles into a Peer-to-Peer ridesharing system”. In: Procedia Computer Science Volume 151
(Jan. 2019), pp. 511–518. ISSN: 1877-0509. DOI: 10.1016/j.procs.2019.04.069.

[Ber+92] Dimitri P Bertsekas et al. “An auction/sequential shortest path algorithm for the minimum
cost network flow problem”. In: (1992).

[Cho+20] Joseph YJ Chow, Srushti Rath, Gyugeun Yoon, Patrick Scalise, and Sara Alanis Saenz.
“Spectrum of public transit operations: from fixed route to microtransit”. In: (2020).

[CMSQ19] Wenyi Chen, Martijn Mes, Marco Schutten, and Job Quint. “A Ride-Sharing Problem with
Meeting Points and Return Restrictions”. en. In: Transportation Science Volume 53 (Mar.
2019), pp. 401–426. ISSN: 0041-1655, 1526-5447. DOI: 10.1287 /trsc.2018.0832.

[CW86] Avishai Ceder and Nigel H.M. Wilson. “Bus network design”. In: Transportation Research
Part B: Methodological Volume 20 (1986), pp. 331–344. ISSN: 0191-2615. DOI: https://doi.org/
10.1016/0191-2615(86)90047-0.

[GH08] Valérie Guihaire and Jin-Kao Hao. “Transit network design and scheduling: A global
review”. In: Transportation Research Part A: Policy and Practice Volume 42 (Dec. 2008),
pp. 1251–1273. ISSN: 0965-8564. DOI: 10.1016/j.tra.2008.03.011.

[Man80] Christoph E. Mandl. “Evaluation and optimization of urban public transportation networks”.
In: European Journal of Operational Research Volume 5 (1980), pp. 396–404. ISSN: 0377-2217.
DOI: https://doi.org/10.1016/0377-2217(80)90126-5.

[MJ17] Neda Masoud and R. Jayakrishnan. “A real-time algorithm to solve the peer-to-peer ride-
matching problem in a flexible ridesharing system”. en. In: Transportation Research Part
B: Methodological Volume 106 (Dec. 2017), pp. 218–236. ISSN: 01912615. DOI: 10.1016/
j.trb.2017.10.006.

[MKV13] Nicolai Mallig, Martin Kagerbauer, and Peter Vortisch. “mobiTopp – A Modular Agent-
based Travel Demand Modelling Framework”. In: Procedia Computer Science Volume 19
(2013), pp. 854–859. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2013.06.114.

[MNYJ17] Neda Masoud, Daisik Nam, Jiangbo Yu, and R. Jayakrishnan. “Promoting Peer-to-Peer
Ridesharing Services as Transit System Feeders”. en. In: Transportation Research Record:
Journal of the Transportation Research Board Volume 2650 (Jan. 2017), pp. 74–83. ISSN:
0361-1981, 2169-4052. DOI: 10.3141/2650-09.

[MOCB21] Marlyn Montalvo-Martel, Alberto Ochoa-Zezzatti, Elías Carrum, and Denise Barzaga. “De-
sign of an Urban Transport Network for the Optimal Location of Bus Stops in a Smart City
Based on a Big Data Model and Spider Monkey Optimization Algorithm”. In: Technological
and Industrial Applications Associated with Intelligent Logistics (2021), pp. 167–201.

[MV15] Nicolai Mallig and Peter Vortisch. “Modeling Car Passenger Trips in mobiTopp”. In: Procedia
Computer Science Volume 52 (2015), pp. 938–943. ISSN: 1877-0509. DOI: https: //doi.org/
10.1016/j.procs.2015.05.169.

37

https://doi.org/10.1016/j.procs.2019.04.069
https://doi.org/10.1287/trsc.2018.0832
https://doi.org/https://doi.org/10.1016/0191-2615(86)90047-0
https://doi.org/https://doi.org/10.1016/0191-2615(86)90047-0
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/https://doi.org/10.1016/0377-2217(80)90126-5
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/https://doi.org/10.1016/j.procs.2013.06.114
https://doi.org/10.3141/2650-09
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.169
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.169

Bibliography

[Nam+18] Daisik Nam, Dingtong Yang, Sunghi An, Jiangbo Gabriel Yu, R. Jayakrishnan, and Neda
Masoud. “Designing a Transit-Feeder System using Multiple Sustainable Modes: Peer-to-
Peer (P2P) Ridesharing, Bike Sharing, and Walking”. In: Transportation Research Record
Volume 2672 (2018), pp. 754–763. eprint: https://doi.org/10.1177 /0361198118799031.

[Sal72] Franz JM Salzborn. “Optimum bus scheduling”. In: Transportation Science Volume 6 (1972),
pp. 137–148.

[SHP11] Johannes Schlaich, Udo Heidl, and R. Pohlner. “Verkehrsmodellierung für die Region
Stuttgart: Schlussbericht”. In: Unpublished (2011).

[Stu11] Verband Region Stuttgart. “Mobilität und Verkehr in der Region Stuttgart 2009/2010:
Regionale Haushaltsbefragung zum Verkehrsverhalten”. In: Schriftenreihe Verband Region
Stuttgart 29 (2011), pp. 1–138.

[TMY20] Amirmahdi Tafreshian, Neda Masoud, and Yafeng Yin. “Frontiers in Service Science: Ride
Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions”. In: Service
Science Volume 12 (June 2020), pp. 44–60. ISSN: 2164-3962. DOI: 10.1287 /serv.2020.0258.

[WVJ22] Keji Wei, Vikrant Vaze, and Alexandre Jacquillat. “Transit Planning Optimization Under
Ride-Hailing Competition and Traffic Congestion”. In: Transportation Science Volume 56
(2022), pp. 725–749. eprint: https://doi.org/10.1287 /trsc.2021.1068.

[ZYWY21] Yu Zhou, Hai Yang, Yun Wang, and Xuedong Yan. “Integrated line configuration and
frequency determination with passenger path assignment in urban rail transit networks”.
en. In: Transportation Research Part B: Methodological Volume 145 (Mar. 2021), pp. 134–151.
ISSN: 01912615. DOI: 10.1016/j.trb.2021.01.002.

38

https://doi.org/10.1177/0361198118799031
https://doi.org/10.1287/serv.2020.0258
https://doi.org/10.1287/trsc.2021.1068
https://doi.org/10.1016/j.trb.2021.01.002

A. Appendix

In the following, we provide the detailed results of our experiments along with additional figures that
did not make it in the evaluation.

Table A.1.: Results of the detour-DAG computation for varying station graphs and travel timemultipliers.

Station graph |𝛿 (P) | 𝛼 #Explored
edges

#Detour
edges

#Detours 𝑇detours [s]

grid40 188 263 1.0 199 603 199 603 188 266 9
grid40 188 263 1.1 571 652 559 613 338 262 10
grid40 188 263 1.2 7 059 414 5 270 615 3 066 234 12
grid40 188 263 1.3 95 630 324 35 299 688 40 916 289 35
grid40 188 263 1.4 1 241 388 104 313 835 276 514 109 445 377

grid50 200 397 1.0 219 613 219 612 200 653 21
grid50 200 397 1.1 2 781 924 2 199 780 1 200 633 22
grid50 200 397 1.2 136 596 908 34 436 308 52 130 125 58
grid50 200 397 1.3 5 814 722 649 1 804 920 756 2 028 933 149 1 866

Figure A.1.: Computation time of the individual
detour-DAGs by the maximal allowed travel time
for station graph grid40 and differing travel time
multipliers 𝛼 .

Figure A.2.: Histogram showing the cumulative
computation time associated with detour-DAGs
falling into the corresponding travel time bin, com-
puted on station graph grid40 with varying travel
time multipliers 𝛼 .

39

A. Appendix

Table
A
.2.:Resultsofthe

baseline
solverand

the
detour-solver(D

S)on
the

station
graph

grid40.
Solver

𝛼
𝜔
[s]

|Δ
𝐵 (P
)|

𝑇
dem

ands [s]
|𝐵|

𝑇
rides [s]

𝜌
𝑇
brf [s]

𝑇
flow

[s]
|𝐼|

𝑡(𝐼)
𝑇
total [s]

Baseline
1.0

5
-

-
68830

1
0.323

416
5237

60456
4

5654
Baseline

1.0
10

-
-

68830
1

0.488
393

5219
59239

4
5613

Baseline
1.0

15
-

-
68830

1
0.668

723
6672

58450
4

7397
Baseline

1.0
20

-
-

68830
1

0.838
569

5860
58028

5
6430

Baseline
1.1

5
-

-
47914

1
0.182

162
2903

43899
159

3066
Baseline

1.1
10

-
-

47914
1

0.275
188

3053
42973

143
3242

Baseline
1.1

15
-

-
47914

1
0.370

258
3818

42360
143

4078
Baseline

1.1
20

-
-

47914
1

0.459
219

3409
41975

139
3629

Baseline
1.2

5
-

-
37546

1
0.161

105
2134

34523
132

2241
Baseline

1.2
10

-
-

37546
1

0.239
242

2887
33749

120
3130

Baseline
1.2

15
-

-
37546

1
0.318

131
2234

33184
117

2366
Baseline

1.2
20

-
-

37546
1

0.394
136

2371
32760

109
2508

Baseline
1.3

5
-

-
31906

2
0.153

98
1828

29437
167

1927
Baseline

1.3
10

-
-

31906
2

0.221
67

1660
28761

147
1728

Baseline
1.3

15
-

-
31906

2
0.293

70
1715

28251
144

1787
Baseline

1.3
20

-
-

31906
2

0.361
85

1800
27825

135
1887

D
S

1.0
5

199599
34

68832
2

0.324
424

5688
60394

6
6158

D
S

1.0
10

199599
35

68832
2

0.494
654

7407
59125

5
8107

D
S

1.0
15

199599
32

68832
1

0.685
549

9837
58244

5
10429

D
S

1.0
20

199599
39

68832
2

0.855
609

10384
57765

5
11043

D
S

1.1
5

219783
85

53534
1

0.852
281

5700
35704

450
6079

D
S

1.1
10

219783
108

53534
2

1.260
622

9432
33839

405
10174

D
S

1.1
15

219783
108

53534
2

1.670
767

11975
32669

365
12861

D
S

1.1
20

219783
109

53534
2

2.072
1216

9732
31918

349
11069

D
S

1.2
5

249913
482

52988
2

1.305
1113

9445
27326

1270
11054

D
S

1.2
10

249913
433

52988
2

1.925
628

7303
25077

1005
8378

D
S

1.2
15

249913
328

52988
1

2.542
506

6873
23661

862
7720

D
S

1.2
20

249913
671

52988
2

3.158
1272

8096
22715

775
10053

D
S

1.3
5

278117
1326

58062
2

1.482
681

7779
25822

2031
9823

D
S

1.3
10

278117
1821

58062
2

2.192
1329

9100
23472

1642
12287

D
S

1.3
15

278117
1615

58062
2

2.912
576

7096
22032

1404
9325

D
S

1.3
20

278117
1633

58062
2

3.631
1202

8874
21147

1320
11746

40

	Introduction
	Motivation
	Related Work
	Outline

	Preliminaries
	Graph Theory
	Flow Networks
	Ride Sharing
	Transit Planning

	The Detour Approach
	Detour-DAGs
	The Ellipsoid Spatiotemporal Accessibility Method
	Detour-DAG Definition
	Detour-DAG Computation

	Bus Demands
	Bus Rides
	Bus Ride Flows
	Construction
	Correctness

	The Baseline Approach
	Evaluation
	Experimental Setup
	Detour-DAG Computation
	Detour-Solver

	Conclusion
	Bibliography
	Appendix

