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Abstract

Finding a minimum HittingSet is a fundamental optimization problem on hypergraphs.
Despite beingNP-complete and even𝑊 [2]-complete (if parametrized by solution size), many
real-world instances can be solved quickly due to two simple reduction rules byWeihe [Wei98].
Experiments show that heterogeneity and locality are both common properties of real-world
instances as well as crucial factors for the effectiveness of these reduction rules.

In this thesis, we analyze a random model similar to 1D-GIRGs, that generates hypergraphs
with adjustable degrees of heterogeneity and locality, from a theoretical perspective. For the
model’s threshold variant, where the locality is set to its maximum, we show that the reduction
rules reduce the generated hypergraphs a.a.s. to a trivial kernel under weak conditions
that depend on the degree of heterogeneity. We, additionally, provide a fix to solve these
instances that do not satisfy this condition. For a general level of locality, we find that at least
a significant constant percentage of vertices is expected to be eliminated by the reduction
rules, depending on the exact degree of both heterogeneity and locality.

Zusammenfassung

Das Finden von minimalen Hitting-Sets ist ein fundamentales Problem auf Hypergraphen.
Obwohl das Problem NP- und sogar𝑊 [2]-komplett (durch die Lösungsgröße parametrisiert)
ist, können viele reale Instanzen schnell durch zwei einfache Reduktionsregeln nach Weihe
[Wei98] gelöst werden. Experimentelle Studien zeigen, dassHeterogenität und Lokalität sowohl
verbreitete Eigenschaften von realen Hypergraphen sind, als auch entscheidende Faktoren
für die Effektivität der Reduktionsregeln.

In dieser Arbeit analysieren wir ein Zufallsmodell aus einer theoretischen Perspektive, das
ähnlich zu 1D-GIRGs ist, und Hypergraphen mit variablen Graden von Heterogenität und
Lokalität generieren kann. Für Hypergraphen, die mit maximaler Lokalität in diesem Modell
erzeugt wurden, zeigen wir, dass die Reduktionsregeln die erzeugten Hypergraphen fast immer
(a.a.s.) auf einen trivialen Kern reduzieren. Das geschieht unter schwachen Bedingungen, die
vom Grad der Heterogenität abhängen. Für die Fälle, die diese Bedingung nicht erfüllen, stellen
wir eine zusätzliche Verzweigungsregel auf, mit der diese Instanzen trotzdem vollständig
gelöst werden können. Für ein allgemeines Maß an Lokalität zeigen wir, dass, abhängig vom
genauen Grad der Heterogenität und Lokalität, im Erwartungswert ein konstanter aber nicht
zu vernachlässigender Prozentsatz von Knoten durch die Reduktionsregeln eliminiert wird.
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1 Introduction

When solving NP-hard problems in practice, data reduction is a key part for minimizing the
run time of algorithms, especially on large instances. The idea of data reduction is to apply
so-called reduction rules that shrink the given instance while retaining the ability to find an
optimal solution in it [AK+22]. The better the reduction rules work on the passed input, the
smaller the resulting instance; the so-called kernel. If the kernel is small enough, it can then
be solved with an exact solver in reasonable time. In some cases, the reduction rules do not
only shrink the instance but also split it into multiple disjoint sub-instances, decreasing the
run time even further. In this thesis, we study a set of reduction rules for the HittingSet
problem due to Weihe [Wei98] that have this behavior on many real-world instances.
In general, the minimum hitting set problem, or short HittingSet, is defined as follows:

Given a hypergraph 𝐻 = (𝑉 , 𝐸), find a minimum set of vertices 𝑆 ⊆ 𝑉 that intersects every
hyperedge of𝐻 . The two reduction rules proposed by Weihe [Wei98] are based on the concept
of dominance among vertices and hyperedges respectively. The vertex domination rule says
that a vertex 𝑎, whose incident hyperedges are all incident to another vertex 𝑏, is dominated

by 𝑏 and can thus be eliminated. On the other hand, the hyperedge domination rule allows to
eliminate every hyperedge 𝑎 ∈ 𝐸 that is a superset of another hyperedge 𝑏 ∈ 𝐸.
Experiments show, that these reduction rules perform surprisingly well on real-world

networks. One example of such networks are railroad networks or public transportation
systems in general [Wei98][BFFS19]. These networks can be modeled as a hypergraph, where
the stations are the vertices, and the connections, running through the stations, are the
hyperedges. Bläsius et al. [BFFS19] studied the structure of several real railroad networks, and
identified the heterogeneity of the vertices and the locality of the network as two key properties
that cause the efficiency of the reduction rules on them. Heterogeneity is a measure of the
diversity of vertex degrees. Roughly speaking, a heterogeneous hypergraph has many vertices
with a small degree and only a few vertices with high degree, whereas homogeneous vertices
all have about the same degree. Public transportation networks of metropolitan areas are good
examples of heterogeneity, as they commonly have only a few highly frequented stations in
the central city (e.g. transfer stations or stations near sights and event locations) and many
stations in the suburbs using only a single connection headed to the center. Besides that,
heterogeneity or power-laws (also called Zipf’s Law or heavy-tail distribution) also occur in a
whole host of other real-life phenomena, e.g., the distribution of city populations, computer file
size, sales of books and music, as well as the number of citations among papers [New04]. Pinto
et al. [PMM12] published a survey explaining many more phenomena following a power-law.
This wide range of occurrences of power-law distributions underlines the importance of
understanding networks with heterogeneity.
The second network property that benefits the efficiency of the HittingSet reduction

rules, namely locality of the network, also has a good explanation for appearing in public
transportation networks. In general, the locality of a network can be measured by the bipartite
cluster coefficient [RA04], which is the probability that two vertices𝐴 and 𝐵 share a hyperedge,
if they have a common adjacent vertex 𝐶 . In the context of railroad networks, this property
presumably has its origin in the underlying geometry of the network [BFFS19]; which means
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1 Introduction

that stations that are close to each other are also more likely to be connected. Combining these
two properties yields networks in which the reduction rules cause large stations (vertices)
to dominate the many smaller ones in their neighborhood. This may be one reason for the
effectiveness of this set of reduction rules on instances with heterogeneity and locality. Because
of this efficiency, the two reduction rules are a crucial part of many algorithmic approaches
for different variants of HittingSet (e.g. [AK10][NR03]) and other similar covering problems
(e.g. [GST14][DB11]). However, despite the many practical evidences for the efficiency of the
reduction rules, there are only a few theoretical results on that; especially regarding networks
with heterogeneity and locality.

These two properties were not only found in hypergraph-like networks but also in networks
that can be modeled as (normal) graphs like social networks and internet infrastructure
[BKL19]. It is not surprising, that studying the structure of such networks is of great interest.
To support this study both practically and analytically, different random graph models were
introduced; the most prominent of whom are the hyperbolic random graphs [Kri+10] and the
more general geometric inhomogeneous random graphs (GIRGs) [BKL19]. These random graph
models are able to generate synthetic complex graphs with varying levels of heterogeneity and
locality for practical experiments, but are, on the other hand, simple enough to be analyzed
mathematically. Therefore, they are suitable for both experimental and theoretical studies on
complex graph-like networks.
For hypergraphs, there is a GIRG-like model due to Bläsius et al. [BFFS19], which we call

Hyper-GIRGs. Similar to GIRGs, Hyper-GIRGs use a power-law distribution to control the
level of heterogeneity among the vertex degrees, and a parameter called temperature𝑇 ∈ (0, 1)
to control the impact of the underlying geometry for locality. Further, Hyper-GIRGs are
defined to have homogeneous hyperedge sizes. This is due to their origin in the context of
public transportation systems, where the hyperedges have roughly the same size in practice
[BFFS19]. In a special case, the threshold variant of the model, the temperature can be set to 0,
which maximizes the locality. For every other temperature, it is called the binomial variant.

1.1 Contribution and Outline

In this thesis, we take Hyper-GIRGs as synthetic real-world HittingSet instances and
analyze the efficiency of the reduction rules due to Weihe [Wei98] on them from a theoretical
perspective. As Hyper-GIRGs mainly control heterogeneity and locality of the generated
hypergraphs, we focus on the impact of those properties in particular. The practical perspective
of this approach is covered by the experiments from Bläsius et. al [BFFS19], which are
summarized in Figure 1.1.
These experiments show that, although both properties have positive a impact on the

effectiveness of the reduction rules, heterogeneity alone is not enough to fully explain their
efficiency. However, with a certain level of locality, an increasing heterogeneity of the vertices
can decrease the kernel size. On the other hand, a high locality on its own is sufficient to
achieve very small kernel sizes independent of the degree of heterogeneity. Our goal is to
find proofs for the above suppositions on Hyper-GIRGs using the 1d-Torus as underlying
geometry.
After showing basic properties of this model in Chapter 3, we first focus on hypergraphs

generated by the threshold variant in Chapter 4. We show that the reduction rules reduce
these hypergraphs to a trivial kernel with a probability tending to 1 for increasing hypergraph
sizes. Here, the degree of heterogeneity impacts the speed of convergence of this probability.
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Figure 1.1: Figure 2 from [BFFS19]. It shows the reduction result for different values of heterogeneity and
locality. The lower the 𝛽 or the 𝑇 , the higher the heterogeneity or the locality, respectively (precise definition and
explanation follow in Section 2.3). The relative core complexity is the fraction of the original vertices that remain
after the application of the reduction rules.

However, for small and rather homogeneous hypergraphs there is a chance that the reduction
rules do not reduce the hypergraph entirely. In this case, we provide a simple fix to solve these
instances anyway. In Chapter 5, we consider the general binomial variant with 𝑇 ∈ (0; 1) and
show a lower bound to the expected fraction of vertices that is dominated in these hypergraphs.
We find that in hypergraphs with high locality and a bit heterogeneity, a significant percentage
of the vertices is dominated.

1.2 Related Work

The minimum hitting set problem is one of Karp’s original 21NP-complete problems [Kar72].
It is even𝑊 [2]-complete if parameterized by the solution size [DF12]. The variant of Hit-
tingSetwhere the hyperedges have a maximum size of 𝑑 is often referred to as 𝑑-HittingSet.
Apart from that, HittingSet is connected to many other NP-hard problems, e.g., it is the
dual problem of SetCover and equivalent to red-blue dominating set.

In practice, a common way to solveHittingSet instances are ILP-solvers. However, Bläsius
et al. recently developed a branch-and-bound solver that outperforms modern ILP-solvers by
at least an order of magnitude on many instances [BFSW]. They use the above-mentioned
reduction rules due toWeihe [Wei98], which were, besides that, also adapted for many variants
of HittingSet and other covering problems. For example, Niedermeier and Rossmanith
[NR03] as well as Faisal and Abu-Khzam [AK10] adapted these reduction rules for efficient
algorithms for 3- and 𝑑-HittingSet, respectively. Further, there is a kernelization algorithm
for planar red-blue dominating set due to Garnero et al. [GST14] that is based on Weihe’s
reduction rules. For a general overview of data reduction methods and open problems, Abu-
Khzam et a. [AK+22] published a survey about recent advances in practical data reduction,
which also contains a section about HittingSet.

The second main research area we touch in this thesis (besides data reduction) are GIRGs.
They were proposed by Bringmann et al. [BKL19] as a more general and also easier-to-analyze
form of the hyperbolic random graphs (HRGs) [Kri+10]. GIRGs (as well as HRGs) serve to
generate graphs with real-world properties and adjustable levels of heterogeneity and locality.

3



1 Introduction

Bringman et al. proved that GIRGs have the small-world property, i.e., they have a logarithmic
diameter with high probability [BKL16], which is a well-known property of many practical
graphs. Since GIRGs are especially used to understand the behavior of algorithms on complex
networks, it is important to generate even large GIRGs in reasonable time. The currently best
generator for GIRGs and HRGs is due to Bläsius et al. [Blä+22], which runs in expected linear
time.

Many problems and algorithms have already been studied on GIRGs (and HRGs), e.g.,Maxi-
mumFlow [BFW21],MinimumSpanningTree [BKW22], and VertexCover [BFFK23][BFK23]
to name just a few examples. Furthermore, Chauhan et al. [CFR20] studied the behavior
of greedy heuristics for DominatingSet, VertexCover, and IndependentSet on general
scale-free networks. On the other hand, the Hyper-GIRG model is much less investigated.
Besides the original paper [BFFS19] we are only aware of a study on the impact of heterogene-
ity and locality on the run time (proof complexity) among random SAT-instances [Blä+23].
Interestingly, both papers came to similar conclusions: heterogeneity is not sufficient to
decrease the efficiency of the reduction rules or the proof complexity of SAT-instances, but
supports the high positive impact of locality for both metrics.
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2 Preliminaries

In this chapter, we provide all definitions, notations, and generally known statements, we
need throughout this thesis. This includes basics of probability and graph theory, as well as a
formal definition of the reduction rules due to Weihe [Wei98] and the Hyper-GIRG model due
to Bläsius et al. [BFFS19]. Further, we state important inequalities and explain properties of
the exponential function that we need in several places of this thesis. At last, we state the
proof of a new inequality, which would otherwise break the flow of reading at its actual point
of use.

2.1 Probability Theory

For probability theory, we mostly follow the notations by Mitzenmacher et al.[MU17]. In this
subsection, we state the definition of probability and explain the difference between discrete
and continuous random variables and distributions. We, further, give specific information
and properties of the distributions that are either used in the Hyper-GIRG model itself or are
necessary for its analysis. This includes the uniform distribution, the power-law distribution,
and the (discrete) binomial distribution.

2.1.1 Basic Definitions and Notations on Probability

Sets. As a basis, we use the following notations regarding sets: Let 𝐴 be an arbitrary set.
Then, the power set 2𝐴 is the set of all subsets of 𝐴. The set of all subsets of 𝐴 with exactly
𝑘 ∈ {0, . . . , |𝐴|} elements is denoted as

(
𝐴
𝑘

)
. If two sets 𝐴 and 𝐵 have no common element,

they are called disjoint. Their union is then denoted as 𝐴 + 𝐵. Based on that, a partition of a
set 𝐴 is a set of pairwise mutually disjoint subsets 𝐴1, 𝐴2, · · · ∈ 2𝐴 \ ∅ such that their union∑

𝑖 𝐴𝑖 is exactly the whole set 𝐴.

Events and Probabilities. A probability space is a triple (Ω,F,ℙ) consisting of a sample

space Ω, an event space F , and a probability function ℙ. The sample space is the set of all
possible outcomes of the random process modeled by the probability space. These possible
outcomes are called atomic events. The event space F is a set of subsets of the sample space.
Its elements are called events. In this thesis, F will always be the whole power set 2Ω . The
probability function ℙ : F → ℝmaps each event 𝐸 ∈ F to its probability ℙ [𝐸]. Per definition,
ℙ satisfies the following three conditions:

(1) ℙ [Ω] = 1

(2) ℙ [𝐸] ∈ [0; 1] for every event 𝐸 ∈ F

(3) for any finite or countably infinite sequence 𝐸1, 𝐸2, 𝐸3, . . . of pairwise mutually disjoint
events, ℙ satisfies the countable additivity property, i.e.,

ℙ

[⋃
𝑖≥1

𝐸𝑖

]
=

∑︁
𝑖≥1

ℙ [𝐸𝑖] . (2.1)

5



2 Preliminaries

Note that the right side of Equation (2.1) is always an upper bound for the left side even if the
events 𝐸𝑖 are not mutually disjoint. This inequality is known as the union bound.

Conditional Probability. Let 𝐴, 𝐵 ∈ F be two events with ℙ [𝐵] > 0. The conditional
probability of𝐴 given 𝐵 is the probability that𝐴 occurs given that 𝐵 occurs. It can be expressed
as

ℙ [𝐴 ∩ 𝐵]
ℙ [𝐵] ,

which we denote as ℙ [𝐴 | 𝐵]. Two events 𝐴, 𝐵 ∈ F are called independent if and only if
ℙ [𝐴 ∩ 𝐵] = ℙ [𝐴] ℙ [𝐵]. For two independent events 𝐴 and 𝐵 it holds that ℙ [𝐴 | 𝐵] = ℙ [𝐴]
and ℙ [𝐵 | 𝐴] = ℙ [𝐵]. Given these definitions, the law of total probability states: If 𝐸1, . . . , 𝐸𝑛
is a partition of Ω, then it holds for every event 𝐴 ∈ F that

ℙ [𝐴] =
𝑛∑︁
𝑖=1

ℙ [𝐴 | 𝐸𝑖] ℙ [𝐸𝑖] .

Abbreviations for Probabilities. For a series of events 𝐸 = (𝐸𝑛)𝑛∈ℕ, we introduce the
following common abbreviations. If the probability ℙ [𝐸𝑛] for 𝑛 → ∞ tends to 1, we say
that 𝐸 occurs asymptotically almost surely (a.a.s.). If the probability ℙ [𝐸𝑛] additionally is
in 1 −O

( 1
𝑛

)
, the event is said to occur with high probability (w.h.p.). Finally, 𝐸 occurs with

overwhelming probability (w.o.p.) if for every 𝑐 > 0 it holds with a probability of at least
1−O (𝑛−𝑐). We extend these definitions by an intermediate stage between “w.h.p” and “w.o.p”.
If an event 𝐸 occurs with a probability in 1 − O

( 1
𝑛𝑐

)
for some 𝑐 > 1 we say it occurs with

more than high probability.

2.1.2 Random Variables

In the following, we introduce the basics of random variables. Random variables are functions
𝑋 : Ω → ℝ that map the atomic event to the real numbers. One distinguishes between discrete

and continuous random variables.

2.1.2.1 Discrete Random Variables

Discrete random variables have a finite or infinite countable sample space Ω. For this sub-
section, let 𝑋 : Ω → ℝ be a discrete random variable. The probability that 𝑋 takes a specific
value 𝑎 ∈ ℝ is denoted as

ℙ [𝑋 = 𝑎] := ℙ [{𝜔 ∈ Ω | 𝑋 (𝜔) = 𝑎}] :=
∑︁

𝜔∈Ω |𝑋 (𝜔 )=𝑎
ℙ [𝜔] . (2.2)

The function that maps each value 𝑥 ∈ ℝ to the probability that 𝑋 takes this value, is called
the probability mass function (in the discrete case). The expected value of 𝑋 is defined as

𝔼 [𝑋 ] :=
∑︁
𝑖

𝑖ℙ [𝑋 = 𝑖] (2.3)

where the summation is over the whole range of values of 𝑋 . The function 𝔼 is linear, i.e., for
every finite set of random variables 𝑋1, . . . , 𝑋𝑛 , it holds that

𝔼

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
=

𝑛∑︁
𝑖=1

𝔼 [𝑋𝑖] . (2.4)

This property is formally known as the Linearity of Expectations.

6



2.1 Probability Theory

2.1.2.2 Continuous Random Variables

In contrast to discrete random variables, continuous random variables can take values in a
continuous range. As one cannot sum over an uncountable set of elements, the definition
of a probability mass function is not applicable here. Instead, continuous random variables
are defined by the cumulative distribution function (CDF). A random variable 𝑋 is said to be
continuous if there is a continuous function 𝐹 : ℝ→ [0; 1], i.e., the cumulative distribution
function, such that

∀𝑥 ∈ ℝ: 𝐹 (𝑥) = ℙ [𝑋 ≤ 𝑥] (2.5)

with lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1. If there is a function 𝑓 (𝑥) such that

∀𝑎 ∈ ℝ: 𝐹 (𝑎) =
∫ 𝑎

−∞
𝑓 (𝑡) 𝑑𝑡 (2.6)

then 𝑓 is called the probability density function (PDF) of 𝐹 . The PDF is the continuous equivalent
of the discrete probability mass function. Although the probability that a continuous random
variable 𝑋 takes a single value 𝑥 ∈ ℝ is 0, 𝑓 (𝑥) can informally be interpreted as: how likely is
it for 𝑋 to take a value close to 𝑥 . Formally, the PDF 𝑓 is used to calculate the probability that
𝑋 takes a value between two values 𝑎, 𝑏 ∈ ℝwith 𝑎 < 𝑏. This probability is equivalent to the
area under 𝑓 between 𝑎 and 𝑏, i.e.,

ℙ [𝑎 ≤ 𝑋 < 𝑏] =
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Note that this value does not change if “≤” is exchanged by “<” since the probability for the
edge cases is 0. If a random variable 𝑋 has a PDF 𝑓𝑋 , then the law of total probability (in the
continuous case) states that the probability for an event 𝐴 to occur is

ℙ [𝐴] =
∫ ∞

−∞
ℙ [𝐴 | 𝑋 = 𝑥] 𝑓𝑋 (𝑥) d𝑥 .

The expected value of a continuous random variable can be calculated analogously to the
expected value of a discrete random variable:

𝔼 [𝑋 ] :=
∫ ∞

−∞
𝑥 𝑓 (𝑥) 𝑑𝑥 .

The linearity of expectations (Equation (2.4)) holds for continuous expectations too. Similar to
the law of total probability there is also the law of total expection. The law of total expectation

states for every two random variables 𝑋,𝑌 that

𝔼 [𝑋 ] = 𝔼𝑌 [𝔼𝑋 [𝑋 | 𝑌 ]] . (2.7)

If 𝑌 has a PDF 𝑓𝑌 , then this is equal to

=

∫ ∞

−∞
𝔼 [𝑋 | 𝑌 = 𝑦] 𝑓𝑌 (𝑦) d𝑦. (2.8)

As we will often use probabilities like ℙ [𝑋 ≥ 𝑎] = 1 − 𝐹 (𝑎) in the course of this thesis,
we also define the complementary cumulative distribution function (CCDF) of a continuous
random variable as

𝐹 (𝑎) := ℙ [𝑋 ≥ 𝑎] = 1 − 𝐹 (𝑎) (𝑎 ∈ ℝ) .
In the following, we give the basic definitions and lemmata about the most important

probability distributions that we use in this thesis.
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2.1.3 Uniform Distribution

The uniform distribution is a continuous distribution. If the PDF 𝑓 of a random variable 𝑋 is
constant over an interval [𝑎;𝑏], we say that 𝑋 is uniformly distributed over [𝑎;𝑏]. For that,
we write 𝑋 ∼ 𝑈 (𝑎, 𝑏). The formal definition of the PDF is

𝑓 (𝑥) :=
{

1
𝑏−𝑎 , 𝑥 ∈ [𝑎;𝑏]
0, otherwise

. (2.9)

Then, the CDF of such an 𝑋 is

𝐹 (𝑋 ) :=


0, 𝑥 < 𝑎

𝑥−𝑎
𝑏−𝑎 , 𝑥 ∈ [𝑎;𝑏]
1, 𝑥 > 𝑏

. (2.10)

Lemma 2.1 (Lemma 8.3. in [MU17]): If 𝑛 points (𝑥𝑖)𝑖∈[𝑛] are uniformly randomly placed on

the interval [0; 1], then the expected distance between an arbitrary pair of consecutive points on

the torus 𝕋1
is

1
𝑛
.

2.1.4 Power Law Distribution

The power law distribution 𝑃𝐿(𝛽, 𝑥min) is a continuous distribution. It takes two parameters:
the power law exponent 𝛽 and minimum 𝑥min. Its PDF is defined as

𝑓 (𝑥) := 𝐶𝛽𝑥
−𝛽 (𝑥 ∈ [𝑥min,∞]), (2.11)

where 𝐶𝛽 := 𝛽−1
𝑥
1−𝛽
min

is a normalization constant to fulfill the condition
∫ ∞
𝑥min

𝑓 (𝑥) 𝑑𝑥 = 1. The

CDF of this probability distribution is

𝐹 (𝑢) =
∫ 𝑢

𝑥min

𝑓 (𝑥) 𝑑𝑥 = 1 −
(

𝑢

𝑥min

)1−𝛽
.

The complementary cumulative distribution function (CCDF) is thus

𝐹 (𝑢) := 1 − 𝐹 (𝑢) =
(

𝑢

𝑥min

)1−𝛽
. (2.12)

In the following, we will state some important properties of a power law distribution
𝑃𝐿(𝛽, 𝑥min). First, we look at the expected value.

Lemma 2.2 ([New04]): The expected value for a random variable 𝑋 ∼ 𝑃𝐿(𝛽, 𝑥min) is

𝔼 [𝑋 ] =
{
∞, 𝛽 ≤ 2
1−𝛽
2−𝛽𝑥min, 𝛽 > 2

.

In this thesis, we only consider 𝛽 > 2, which holds for almost all instances arising from
practical phenomena. Most of them admit a power-law exponent between 2 and 3. Next, we
state properties of a set of 𝑛 sample values 𝑥1, . . . , 𝑥𝑛 that were drawn independently from
𝑃𝐿(𝛽, 𝑥min). The following Lemma 2.3 describes how the sum 𝑋 :=

∑𝑛
𝑖=1 𝑥𝑖 of all samples

grows with increasing 𝑛.

8
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Lemma 2.3 (Lemma 4.2. of [BKL16]): If 𝑥1, . . . , 𝑥𝑛 ∼ 𝑃𝐿(𝛽, 𝑥min) are independently drawn and

𝑋 :=
∑𝑛

𝑖=1 𝑥𝑖 , then 𝑋 ∈ Θ (𝑛).

Note that the authors of [BKL16] did not mention with which probability this statement
holds. However, this and similar statements are often assumed to be true in the context of
GIRGs. The next Lemma 2.4 describes how the maximum of 𝑛 identically and independently
drawn power-law samples behave.

Lemma 2.4: If 𝑥1, . . . , 𝑥𝑛 ∼ 𝑃𝐿(𝛽, 𝑥min) independently drawn, then the maximum sample is

expected 𝑛
1

𝛽−1
and w.h.p. smaller than 𝑛

2
𝛽−1𝑥min.

Proof. Let 𝑥max denote the maximum sample value. Then 𝔼 [𝑥max] ∼ 𝑛
1

𝛽−1 is proven in
[New04]. The second property of 𝑥max, that is stated in the lemma, can be shown with the
CDF 𝐹𝛽 of the power-law distribution. The probability that a single sample is smaller than
𝑛

2
𝛽−1𝑥min is

ℙ

[
𝑥1 ≤ 𝑛

2
𝛽−1

]
= 𝐹𝛽

(
𝑛

2
𝛽−1

)
= 1 −

(
𝑛

2
𝛽−1𝑥min

𝑥min

)1−𝛽
= 1 − 1

𝑛2
.

This event thus occurs with more than high probability. Now, using a union bound, the
probability that at least one sample is larger than 𝑛

2
𝛽−1𝑥min is

ℙ

[
𝑥max ≥ 𝑛

2
𝛽−1

]
= ℙ

[⋃
𝑖∈𝑛

[𝑥𝑖 ≥ 𝑛
2

𝛽−1𝑥min]
]
≤ 𝑛ℙ

[
𝑥1 ≥ 𝑛

2
𝛽−1

]
= 𝑛

1
𝑛2

=
1
𝑛
.

2.1.5 Binomial Distribution

The binomial distribution can be defined via Bernoulli trials. A Bernoulli trial is an experiment
with exactly the two outcomes, namely success and failure (e.g. a coin flip). It can be defined
as a random variable 𝑋 that takes either 1 (success) with a certain probability 𝑝 ∈ [0; 1] or 0
(failure) with probability 1 − 𝑝 . Such random variables are also called indicator variables and
are often denoted as 1𝐴 where 𝐴 is the success event. A sequence of multiple independent
and identically distributed Bernoulli trials is called a Bernoulli process. The distribution of the
number of successes in a Bernoulli process is the binomial distribution Bin(𝑛, 𝑝), where 𝑛 is
the number of Bernoulli trials and 𝑝 is their common success probability. The PMF of the
binomial distribution Bin(𝑛, 𝑝) is

𝑓 (𝑘) :=
{(

𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , 𝑘 ∈ {0, . . . , 𝑛}

0, otherwise

where
(
𝑛
𝑘

)
is the binomial coefficient of 𝑛 over 𝑘 . With this, but also with the linearity of

expectation, it can be shown that the expected number of successful Bernoulli trials in this
process is exactly 𝑝 · 𝑛. In contrast to the PMF, the CDF of Binomial Distributions does not
have a closed form. To be able to bound the values for the CDF anyway, we will use the
following concentration bound stated in Theorem 2.5.

9
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Theorem 2.5 (Chernoff Bounds for Binomial Distribution): Let 𝑋1, . . . , 𝑋𝑛 be independent

random variables taking values in [0; 1] and 𝑋 :=
∑𝑛

𝑖=1𝑋𝑖 their sum. Then

(1) ℙ [𝑋 > (1 + 𝜀)𝔼 [𝑋 ]] ≤ exp
(
− 𝜀2

3 𝔼 [𝑋 ]
)
holds for all 𝜀 ∈ (0; 1).

(2) ℙ [𝑋 > (1 − 𝜀)𝔼 [𝑋 ]] ≤ exp
(
− 𝜀2

2 𝔼 [𝑋 ]
)
holds for all 𝜀 ∈ (0; 1).

(3) ℙ [𝑋 > 𝑡] ≤ 2−𝑡 holds for all 𝑡 > 2𝑒𝔼 [𝑋 ].

2.2 Graph Theory

In this section, we give basic notations and definitions on graphs and hypergraphs as we use
them in this thesis. For that, we mostly follow the notations by Diestel [Die12]. Further, we
define the HittingSet problem and state the reduction rules due to Weihe [Wei98] in the
context of hypergraphs.

Graphs. An (undirected) graph 𝐺 is a pair (𝑉 , 𝐸) of a finite set 𝑉 and a set 𝐸 ⊆
(
𝑉
2
)
of

two-element sets of 𝑉 . We call the elements of 𝑉 vertices and the elements in 𝐸 edges. Note
that, according to the definition, neither multiple edges nor loops are allowed. Two vertices
𝜈1, 𝜈2 ∈ 𝑉 are called adjacent if there is an edge {𝜈1, 𝜈2} = 𝑒 ∈ 𝐸 in the graph. In this case, 𝜈1
and 𝜈2 are incident to the edge 𝑒 , respectively. The neighborhood 𝑁𝐺 (𝜈) of a vertex 𝜈 ∈ 𝑉 is
the set of all vertices that are adjacent to 𝜈 in 𝐺 . The number of those vertices is called the
degree of 𝜈 and is denoted as deg(𝜈). A graph whose vertices can be partitioned into two sets
𝐴 + 𝐵 = 𝑉 such that every edge is incident to exactly one vertex in 𝐴 and one vertex in 𝐵 is
called bipartite.

Hypergraphs. A hypergraph 𝐻 = (𝑉 , 𝐸) is a pair of a finite set of vertices 𝑉 and a multiset
of hyperedges 𝑒 ∈ 2𝑉 \ {∅}. Typically, we denote the number of vertices and hyperedges
with 𝑛 := |𝑉 | and𝑚 := |𝐸 |, respectively. Note that, in contrast to graphs, we allow multiple
(hyper-)edges to have the same set of vertices. A hypergraph 𝐻 = (𝑉 , 𝐸) is Sperner if there is
no hyperedge containing another hyperedge.
The incidence graph of a hypergraph 𝐻 is the bipartite graph 𝐺 = (𝑉 + 𝐸, I) where

(𝜈, 𝑒) ∈ 𝑉 × 𝐸 is an edge in 𝐺 if and only if the hyperedge 𝑒 contains the vertex 𝜈 in 𝐻 .
We denote 𝐸 (𝜈) for the set of hyperedges that contain a vertex 𝜈 ∈ 𝑉 . We define the dual of a
(primal) hypergraph 𝐻 = (𝑉 , 𝐸) as the hypergraph 𝐻 ∗ = (𝑉 ∗, 𝐸∗) with the primal hyperedges
as dual vertices 𝑉 ∗ := 𝐸, and the sets 𝐸 (𝜈) of all primal vertices 𝜈 ∈ 𝑉 as the dual hyperedges.

The HittingSet Problem. The HittingSet problem is defined as follows: given a hy-
pergraph 𝐻 = (𝑉 , 𝐸), find a minimum subset 𝑆 ⊆ 𝑉 of vertices, such that every hyperedge
contains at least one vertex from 𝑆 . In this context, we call a hyperedge 𝑒 ∈ 𝐸 covered if there
exists a vertex 𝜈 ∈ 𝑆 with 𝜈 ∈ 𝑒 . In this case, the vertex 𝜈 covers the hyperedges 𝑒 .

The two reduction rules due to Weihe [Wei98] allow us to safely remove dominated vertices
and hyperedges from the hypergraph, respectively. A vertex 𝜈1 ∈ 𝑉 is said to dominate

another vertex 𝜈2 ∈ 𝑉 if 𝐸 (𝜈2) ⊆ 𝐸 (𝜈1). A dominated vertex can safely be removed from the
hypergraph since every hyperedge containing 𝜈2 is already covered by 𝜈1. Therefore, it is
always better to select 𝜈1 instead of 𝜈2. We call this rule the vertex domination rule.
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On the other hand, a hyperedge 𝑒1 ∈ 𝐸 dominates another hyperedge 𝑒2 ∈ 𝐸 if 𝑒1 ⊆ 𝑒2.
Since every hyperedge needs to be covered, 𝑒2 is always covered if 𝑒1 is covered. Therefore,
removing 𝑒2 is safe. We call this rule the hyperedge domination rule.

If one of the rules is applied on one vertex or hyperedge, we call this an application of the
rule on this specific vertex or hyperedge. If we remove all dominated vertices or hyperedges
at once, we call this one round of the respective rule.

Besides the reduction rules due to Weihe [Wei98], we add an additional technical reduction
rule that simplifies some explanations in Chapter 4. This reduction rule allows us to select a
vertex, i.e., take it into the resulting hitting set, if there is a hyperedge 𝑒 that contains only
this vertex. This vertex has to be part of the solution, as there is no other way to cover the
hyperedge 𝑒 . When a vertex is selected, all its incident hyperedges 𝐸 (𝜈) and the vertex itself
may be removed from the hypergraph. We adopt the name from Shi and Cai [SC10] and call
it the Unit Hyperedge Rule. This rule is safe in the sense that the reduced hypergraph has
a minimum hitting set of size 𝑘 − 1 if and only if the original hypergraph has a minimum
hitting set of size 𝑘 .

2.3 Random (Hyper-)Graph Models

In the following, we give the formal definition of the Hyper-GIRG model due to Bläsius et al.
[BFFS19]. As its basis, we describe the GIRG model due to Bringmann, Keusch, and Lengler
[BKL19] first. Finally, we provide technical notations that are formally necessary to properly
define colloquial terms on a torus, which is the basis for both models.

2.3.1 GIRGs

The abbreviation GIRG stands for Geometric inhomogeneous random graph. It describes a
random graph model that generates graphs 𝐺 = (𝑉 , 𝐸) with varying degrees of heterogeneity
and locality. To achieve locality, it uses an underlying geometry (also called ground space),
which usually is the 𝑑-dimensional torus 𝕋𝑑 together with the maximums metric.

dist(𝑥,𝑦) := dist∞(𝑥,𝑦) := max
𝑖=1,...,𝑑

min{|𝑥𝑖 − 𝑦𝑖 |, 1 − |𝑥𝑖 − 𝑦𝑖 |}.

A 𝑑-dimensional torus 𝕋𝑑 is a 𝑑-dimensional cube [0; 1]𝑑 where opposite sides are identi-
fied. In this thesis, we assume the 1-dimensional torus 𝕋1 to be the underlying geometry.
Here, the minimal distance between two points 𝑥,𝑦 on the 𝕋1 has the more simple form
min{|𝑥𝑖 − 𝑦𝑖 |, 1 − |𝑥𝑖 − 𝑦𝑖 |}. When a graph𝐺 = (𝑉 , 𝐸) is generated, every vertex 𝜈 is assigned
a position 𝑥𝜈 inside the torus. Those positions (or every coordinate) are independently drawn
from a uniform distribution𝑈 [0; 1].
To achieve heterogeneity, every vertex 𝜈 is additionally assigned a weight 𝑤𝜈 that is inde-

pendently drawn from a power-law distribution PL(𝛽,𝑤min). This weight controls the degree
of a vertex 𝜈 by scaling the probability that close vertices are adjacent. The probability for
an edge to exist between two vertices 𝜈,𝑢 ∈ 𝑉 is called the edge probability 𝑝𝑒 (𝜈,𝑢) and is
defined as

𝑝𝑒 (𝜈,𝑢) := min

{
1, 𝑎 ·

(
1

dist(𝑥𝜈 , 𝑥𝑢)𝑑
· 𝑤𝜈𝑤𝑢

𝑊

) 1
𝑇

}
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where𝑊 is the sum of all weights and 𝑎 is a scaling parameter of the model. The parameter
𝑇 ∈ (0; 1) is called the temperature. It controls the locality or the impact of the geometry. It
describes how important the distance between the two vertices is to be connected. In a special
case, the so-called threshold variant, the temperature can be set to 𝑇 = 0, which maximizes
the locality. Here, the edge probability degenerates to the step-function

𝑝𝑒 (𝜈,𝑢) =
{
1, dist(𝑥𝜈 , 𝑥𝑢) ≤

(𝑤𝜈𝑤𝑢

𝑊

) 1
𝑑

0, otherwise
.

For every other temperature 𝑇 ∈ (0; 1) it is called the binomial variant. In conclusion, there
are 4 parameters for GIRGs: the number of vertices 𝑛, the power-law exponent 𝛽 , the minimal
vertex weight𝑤min, and the scaling parameter 𝑎. Note that many papers assume 𝛽 > 2, which
we also do in this thesis.

2.3.2 Hyper-GIRGs

The idea of the Hyper-GIRG model is to generate a bipartite graph and interpret it as the
incidence graph 𝐺 = (𝑉 + 𝐸, I) of a hypergraph 𝐻 = (𝑉 , 𝐸). Thus, similar to the vertices,
also every hyperedge 𝑒 ∈ 𝐸 is assigned a position 𝑥𝑒 on the torus together with a weight𝑤𝑒 .
All positions, of vertices as well as hyperedges, are independently drawn from a uniform
distribution 𝑈 [0; 1]. A key difference to the GIRG model is the way the hyperedge weights
are defined. Although it would be possible to apply a power-law distribution again, they
are defined to be a constant𝑤𝑒 . Due to this decision, Hyper-GIRGs (in this form) generate
hypergraphs with homogeneous hyperedge sizes.

The incidences in the Hyper-GIRG model are generated similarly to the edges in the GIRG
model. For every incidence a coin decides whether this incidence exists or not. The probability
by which an incidence (𝜈, 𝑒) ∈ I exists is the incidence probability

𝑝𝐼 (𝜈, 𝑒) := min

{
1,

(
𝑎 · 1

dist(𝑥𝜈 , 𝑥𝑒)𝑑
· 𝑤𝜈𝑤𝑒

𝑊

) 1
𝑇

}
(2.13)

with the same definitions for 𝑎, 𝑑 , 𝑇 , and𝑊 as in the GIRG model. In contrast to GIRGs, the
scaling parameter 𝑎 is inside the brackets in the Hyper-GIRG model. This is a design decision
that ensures that 𝑎 has an impact on the incidence probability of the threshold variant, which
is

𝑝𝐼 (𝜈, 𝑒) =
{
1, dist(𝑥𝜈 , 𝑥𝑒) ≤

(
𝑎𝑤𝑒

𝑤𝜈

𝑊

) 1
𝑑

0, otherwise
. (2.14)

In both bases, we omit one variable in 𝑝𝐼 if it can be clearly inferred from the context.
In the following, we fix some notations and definitions about Hyper-GIRGs. We denote

the model as H(𝑛,𝑚, 𝛽,𝑤min,𝑤𝑒 ,𝑇 , 𝑎) with the number of vertices 𝑛 ∈ ℕ, the number of
hyperedges𝑚 ∈ ℕ, the power-law exponent 𝛽 > 2, the minimum vertex weight 𝑤min, the
constant hyperedge weight𝑤𝑒 ≥ 𝑤min, the temperature 𝑇 ∈ (0, 1), and a scaling coefficient
𝑎 > 0 as parameters. As mentioned above, we set 𝑑 = 1 throughout this thesis. Further, we
define𝑊𝑐 := 𝑊

𝑛
to be the average vertex weight, and 𝛿𝐸𝑉 := 𝑚

𝑛
the hyperedge-vertex-ratio of a

generated hypergraph. Unless otherwise stated,𝐻 = (𝑉 , 𝐸) is a hypergraph and𝐺 = (𝑉 +𝐸, I)
its incidence graph. If𝐻 or𝐺 is generated by themodel, we write𝐻 ∼ H(𝑛,𝑚, 𝛽,𝑤min,𝑤𝑒 ,𝑇 , 𝑎)
or 𝐺 ∼ H(𝑛,𝑚, 𝛽,𝑤min,𝑤𝑒 ,𝑇 , 𝑎), respectively. In the context of Hyper-GIRGs, vertices and
hyperedges of 𝐻 are interpreted as points (𝑥,𝑤) with their randomly drawn position 𝑥 and
weight𝑤 as coordinates.
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2.3.3 Technicalities on the Torus

The 1-dimensional torus is the geometric basis for the Hyper-GIRGs we study in this thesis. It
can be described as the interval [0; 1] with identified ends. On [0; 1], it is easy to say that a
subinterval 𝐼 has a left end, i.e., the smallest number in 𝐼 , or right end, i.e., the largest number
in 𝐼 . However, these definitions are much harder on the torus.
In this thesis, we often try to give discrete values on the torus, e.g., the positions of

hyperedges, an order. Formally, this is done via the concept of cyclic orders (e.g. [Blä15]).
Informally, a cyclic order of a set 𝑆 = {𝑎1, . . . , 𝑎𝑛} is a linear order 𝑎1 ≺ 𝑎2 ≺ · · · ≺ 𝑎𝑛
with the additional relation 𝑎𝑛 ≺ 𝑎1. For a formal definition, let 𝑆 = {𝑎1, . . . , 𝑎𝑛} be a set
with a linear order 𝑎1 ≺ 𝑎2 ≺ · · · ≺ 𝑎𝑛 . We denote this linear order as ⟨𝑎1, . . . , 𝑎𝑛⟩. A
circular shift is an operation that transforms a linear order ⟨𝑎1, . . . , 𝑎𝑛⟩ into a linear order
⟨𝑎𝑛−𝑖 , . . . , 𝑎𝑛, 𝑎1, . . . , 𝑎𝑛−𝑖−1⟩ for some 𝑖 ∈ {0, . . . , 𝑛 − 1}. Two linear orders are cyclically

equivalent if one can be transformed into the other by a circular shift. The equivalence
classes of this equivalence relation are called cyclic orders. We denote the cyclic order as a
representative ⟨𝑎1, . . . , 𝑎𝑛⟩ with a small circle in the superscript, i.e., ≺◦:= ⟨𝑎1, . . . , 𝑎𝑛⟩◦. An
interval in a cyclic order is a set of elements that are consecutive in some linear order of the
cyclic order, e.g., {𝑒, 𝑎, 𝑏} is an interval in the cyclic order ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑒⟩◦.
With these definitions, we are finally able to define the ends of an interval. For every

interval 𝐼 that is neither empty nor contains all elements of 𝑆 , the left end is the element in 𝐼

that does not have a predecessor in 𝐼 with respect to ≺◦. Similarly, the right end of 𝐼 is the
element 𝐼 without a successor in 𝐼 with respect to ≺◦. In the example interval {𝑒, 𝑎, 𝑏} of
⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑒⟩◦, the left end is 𝑒 and the right end is 𝑏.
At last, we adapt these notations for the continuous torus itself. Instead of describing

the torus as the interval [0; 1] with identified borders, we write [0; 1]◦ to denote the cyclic
characteristic. Sometimes, we describe the 𝕋1 over the interval [−0.5, 0.5] instead of [0; 1] to
have a center point with more symmetry. In this case, we write 𝕋1 = [−0.5; 0.5]◦.

2.4 Properties of the Exponential Function

The exponential function is the function 𝑓 (𝑥) = 𝑒𝑥𝑝 (𝑥) = 𝑒𝑥 . Two well-known lower bounds
to this function are stated in the following form of Bernoulli’s inequality.

Lemma 2.6 (Bernoulli’s inequalities): For all real numbers 𝑥 ≥ −1 and 𝑟 ≥ 1 the following
inequalities hold:

1 + 𝑟𝑥 ≤ (1 + 𝑥)𝑟 ≤ 𝑒𝑟𝑥 .

The first bound, i.e., (1 + 𝑥)𝑟 ≤ 𝑒𝑟𝑥 is highly connected to the Euler limit, while the second
bound, i.e., 1 + 𝑟𝑥 ≤ 𝑒𝑟𝑥 , is a linearization of the convex exponential function at 𝑥 = 0. We
will discuss these topics in the following two subsections.

2.4.1 The Euler Limit

The Euler Limit states that for every complex number 𝑧 ∈ ℂ the limit lim𝑛→∞
(
1 + 𝑧

𝑛

)𝑛 is
exactly 𝑒𝑧 . The following Lemma 2.7 states the limits for a more general kind of series.
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Lemma 2.7: Let 𝑏, 𝑐 > 0 be positive constants, and (𝑎𝑛)𝑛∈ℕ a number sequence with elements

𝑎𝑛 :=
(
1 − 𝑐

𝑛𝑏

)𝑛
. Then (𝑎𝑛)𝑛∈ℕ has the following limits depending on 𝑏 and 𝑐 :

lim
𝑛→∞

𝑎𝑛 =


0, 𝑏 ∈ (0; 1)
1
𝑒𝑐
, 𝑏 = 1

1, 𝑏 > 1
.

Proof. We prove each case separately. For 𝑏 = 1, the elements of (𝑎𝑛)𝑛∈ℕ simplify to
(
1 − 𝑐

𝑛

)𝑛 .
This is exactly the form, that is used to define the complex powers of Euler’s number, i.e.,
𝑒𝑧 := lim𝑛→∞

(
1 + 𝑧

𝑛

)𝑛 for 𝑧 ∈ ℂ. Using 𝑧 := −𝑐 yields the result.
To prove the two remaining cases, we use the two inequalities stated in Lemma 2.6. For

𝑏 > 1, we show that 𝑎𝑛 ≤ 1 for every 𝑛 ∈ ℕ and use Bernoulli’s inequality to find a lower
bound for 𝑎𝑛 that tends to 1. The first part is easy to show as 𝑐

𝑛𝑏
is positive and can thus be

omitted in the definition of 𝑎𝑛 to get 1𝑛 = 1 as an upper bound. For the lower bound, we use
Bernoulli’s inequality (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 with 𝑥𝑛 := − 𝑐

𝑛𝑏
and 𝑟𝑛 := 𝑛. The condition 𝑟𝑛 ≥ 1 is

satisfied as 𝑛 ∈ ℕ. The condition 𝑥𝑛 ≥ −1 holds for every 𝑛 ≥ 𝑏
√
𝑐 , because

𝑥𝑛 = − 𝑐

𝑛𝑏
≥ − 𝑐(

𝑏
√
𝑐
)𝑏 = −1.

Therefore, we get the lower bound:

𝑎𝑛 =

(
1 − 𝑐

𝑛𝑏

)𝑛
= (1 + 𝑥𝑛)𝑟𝑛 ≥ 1 + 𝑟𝑛𝑥𝑛 = 1 − 𝑐

𝑛𝑏−1
= 1 − 𝑐𝑛1−𝑏 .

As 𝑏 > 1, the function 𝑛1−𝑏 has a negative exponent and thus tends to 0. As a result, 𝑎𝑛 tends
to 1 for 𝑛 → ∞.
For the case 𝑏 ∈ (0; 1), we find an upper bound, that tends to 0, and show that 𝑎𝑛 ≥ 0 for

all sufficiently large 𝑛. Again, we use the substitutions 𝑥𝑛 := − 𝑐

𝑛𝑏
and 𝑟𝑛 := 𝑛. In the case

above, we already showed 𝑥𝑛 ≥ −1 for any 𝑛 ≥ 𝑏
√
𝑐 . As a consequence, (1 + 𝑥𝑛)𝑟𝑛 ≥ 0 for the

same 𝑛 ≥ 𝑏
√
𝑐 . Therefore, the limit of 𝑎𝑛 can not be negative. For the following upper bound,

we apply the other Bernoulli inequality (1 + 𝑥𝑛)𝑟𝑛 ≤ 𝑒𝑟𝑛𝑥𝑛 , for which we already showed the
necessary conditions 𝑟𝑛 ≥ 1 and 𝑥𝑛 ≥ −1 in the case above:

𝑎𝑛 =

(
1 − 𝑐

𝑛𝑏

)𝑛
= (1 + 𝑥𝑛)𝑟𝑛 ≤ 𝑒𝑟𝑛𝑥𝑛 = 𝑒−𝑐𝑛

1−𝑏
.

Because 𝑏 < 1, the function 𝑛1−𝑏 has a positive exponent and thus tends to infinity. As a
result, the 𝑎𝑛 tend to 0.

With Bernoulli’s inequality, one can prove that the series 𝑎𝑛 from Lemma 2.7 with 𝑏 = 1
approaches 𝑒−𝑐 from below. Therefore, every element of this series has 𝑒−𝑐 as an upper bound.
However, in Section 5.2 we will need a lower bound of such terms containing the exponential
function. As the proof of the following Lemma 2.8 would break the flow of reading there, we
move it to the preliminaries.
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2.4 Properties of the Exponential Function

Lemma 2.8: Let 𝑎, 𝑏 > 0 two constants. Then the following inequality holds for all 𝑥 > 𝑎
0.68(

1 − 𝑎

𝑥

)𝑏𝑥
≥ exp (−𝑎𝑏) − 0.542

𝑏𝑥
.

Proof. We first find proof that exp(−𝑎𝑏) 𝑎2𝑏
𝑥

is an upper bound to exp (−𝑎𝑏) −
(
1 − 𝑎

𝑥

)𝑏𝑥 and
then show the inequality exp(−𝑎𝑏) 𝑎2𝑏

𝑥
≤ 0.542

𝑏𝑥
for all 𝑥 > 𝑎

0.68 . For the first part, we find a
lower bound for the term1 (

1 − 𝑎

𝑥

)𝑏𝑥
= exp

(
𝑏𝑥 · ln

(
1 − 𝑎

𝑥

))
.

We use the inequality ln(1 + 𝑦) ≥ 𝑦 − 𝑦2 that holds for all 𝑦 ≥ −0.68. Since 𝑥 > 𝑎
0.68 , we can

substitute 𝑦 = −𝑎
𝑥
and get the lower bound

≥ exp
(
𝑏𝑥 ·

(
−𝑎
𝑥
−

(𝑎
𝑥

)2))
= exp (−𝑎𝑏) · exp

(
−𝑎

2𝑏

𝑥

)
.

Therefore, we find the following upper bound for the difference

exp (−𝑎𝑏) −
(
1 − 𝑎

𝑥

)𝑏𝑥
≤ exp (−𝑎𝑏)

(
1 − exp

(
−𝑎

2𝑏

𝑥

))
≤ exp (−𝑎𝑏) 𝑎

2𝑏

𝑥

where we used Lemma 2.6 for the second bound. At last, we prove the inequality

exp (−𝑎𝑏) 𝑎
2𝑏

𝑥
≤ 0.542

𝑏𝑥
.

For that, we reformulate the left side to

exp (−𝑎𝑏) 𝑎
2𝑏

𝑥
= exp (−𝑎𝑏) 𝑎

2𝑏2

𝑏𝑥

and look at the function 𝑒−𝑦𝑦2. As this function has a global maximum just below 0.542, we
get the upper bound

≤ 0.542
𝑏𝑥

for exp (−𝑎𝑏) −
(
1 − 𝑎

𝑥

)𝑏𝑥 .
2.4.2 Convex Functions and Linearization

In this section, we prove the second bound, i.e., 1 + 𝑟𝑥 ≤ 𝑒𝑟𝑥 , from Lemma 2.6, and thus
provide basic tools and notation used in this thesis along with it. An important property for
this bound to be true is the convexity of the exponential function for all 𝑟 ∈ ℝ.
1The inequality ln(1 + 𝑦) ≥ 𝑦 − 𝑦2 is from “Useful Inequalities”: https://www.lkozma.net/inequalities_cheat_sheet/
ineq.pdf

15

https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf


2 Preliminaries

For the following definitions and lemmata on convex functions, we refer to Stein [Ste18]. A
function 𝑓 : ℝ→ ℝ is said to be convex if and only if its second derivative is non-negative for
all 𝑥 ∈ ℝ. This is called the C2-characterization of convex functions. The exponential function
is a convex function since

𝜕2

𝜕𝑥2

(
exp (𝑟𝑥)

)
= 𝑟 2 exp (𝑟𝑥) > 0.

All convex functions have the nice property, that all its tangents are lower bounds to the
whole function. The formal statement is given in the following Lemma 2.9.

Lemma 2.9 (C1-Characterization of Convex Functions (Lemma 2.1.40 in [Ste18])): A continu-

ous function 𝑓 : ℝ→ ℝ is convex if and only if

𝑓 (𝑥) ≥ 𝑓 (𝑥0) + 𝑓 ′(𝑥0) (𝑥 − 𝑥0)

holds for all 𝑥, 𝑥0 ∈ ℝ.

The left side of the inequality in Lemma 2.9 is the tangent to the function 𝑓 at 𝑥0. Using the
tangent as a bound to the actual function is called Linearization. For the exponential function
𝑒𝑟𝑥 , the tangent at 𝑥0 ∈ ℝ is

𝑡𝑥0 (𝑥) := 𝑒𝑟𝑥0 + 𝑟𝑒𝑟𝑥0 (𝑥 − 𝑥0), (2.15)

and thus 𝑡0(𝑥) = 1 + 𝑟𝑥 . We will use the general form of a tangent later in Lemma 5.2.
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3 Fundamentals of Hyper-GIRGs

In this chapter, we find basic properties of Hyper-GIRGs, e.g., the distributions for vertex
degrees and hyperedge sizes. To do so, we first introduce basic notations on the geometric
structure of vertices in Section 3.1, and describe, based on that, the visualizations we use for
Hyper-GIRGs. A crucial part for many proofs in this thesis is to determine the probability by
which a single vertex covers a specific interval on the torus, i.e., is incident to all hyperedges
in that interval. In Section 3.2 we find a lower bound for that probability, that is tight in the
threshold variant. From that, we infer how likely vertices are dominated based on how their
incident hyperedges are located on the torus. The last Section 3.3 deals with the neighborhood
of a vertex in Hyper-GIRGs from a geometrical as well as graph-theoretical perspective.

3.1 Notations and Visualizations

For the following definitions, let 𝜈 := (𝑥𝜈 ,𝑤𝜈 ) be a vertex with a fixed weight 𝑤𝜈 ≥ 𝑤min.
Without loss of generality, we assume that 𝜈 is positioned at 𝑥𝜈 = 0 on 𝕋1 and that the torus
is built upon the interval [−0.5; 0.5]. Therefore, 𝜈 is exactly in the center. In this section,
we define basic terms around the geometric neighborhood of 𝜈 , i.e., how its graph-theoretic
neighbors are located on the torus 𝕋1.

Considering the incidence probability for the vertex 𝜈 (see Equation (2.13))

𝑝𝐼 (𝑒) := min

{
1,

(
𝑎 · 1

|𝑥𝑒 |
· 𝑤𝜈𝑤𝑒

𝑊

) 1
𝑇

}
,

there is an interval of hyperedge positions 𝑥𝑒 ∈ 𝕋1 that is independent of 𝑇 , such that 𝜈
is incident to every hyperedge in it. This interval has a radius of 𝑎𝑤𝑒

𝑤𝜈

𝑊
around the vertex

position. In the threshold variant, where the temperature is at its minimum𝑇 = 0, this interval
contains all incident hyperedges of 𝜈 . We call this interval the cold area NAcold(𝜈) of 𝜈 and all
incidences to hyperedges inside it cold or solid incidences. For higher temperatures, there
might be hyperedges outside the cold area. We call the incidences to these hyperedges warm
or fluid. To stay true to the analogy, we call the radius of the cold area the melting radius

𝑚𝑟 (𝜈) := 𝑎𝑤𝑒

𝑤𝜈

𝑊
(3.1)

of 𝜈 . In sketches of Hyper-GIRGs where certain incidences are important, we color the
solid/cold incidences blue, and the fluid/warm incidences red as shown in Figure 3.2.

However, we mainly use the cold areas of vertices to visualize Hyper-GIRGs. Throughout
this thesis, we use two different visualizations, each of which takes the weight 𝑤𝜈 and the
position 𝑥𝜈 of a vertex 𝜈 as 2-dimensional coordinates. The difference between the two is
the coordinate system they use; one uses the polar coordinate system and the other one the
Euclidean. A sketch of both visualizations is shown in Figure 3.1.
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3 Fundamentals of Hyper-GIRGs

𝑥𝜈

𝑤𝜈

𝑥𝜈
𝑤𝜈

. . .

Figure 3.1: Visualizations of a generated hypergraph on 𝕋1 based on the polar coordinate system (left) and
the Euclidean coordinate system (right). The black points are vertices and the points filled with white are the
hyperedges. Each blue cone starting at a vertex 𝜈 marks the area in which another vertex lies if and only if it is
dominated by 𝜈 in the threshold variant. The intervals on the circle (left) and the line (right) that are covered by
the blue cones are the cold areas of the respective vertices. The red cone in the right sketch marks the area in
which all vertices lie that contain the red hyperedge in their cold area.

If it is important, that the torus is circular, we use a polar coordinate system or the circular
visualization (on the left side of Figure 3.1). This is based on a circle with a circumference
of 1, where all positions 𝑥 ∈ [0; 1] of vertices and hyperedges can be placed on accordingly.
To find a good radius to visualize a vertex with some weight𝑤𝜈 , we use a similar approach as
in the default visualization of hyperbolic random graphs. Hyperbolic random graphs are a
well-known subclass of GIRGs [BKL19], in which high-degree vertices are often displayed
more towards the center of the visualization. Therefore, we use the weight of a vertex as the
distance from the circle to its center. Vertices with a low weight are placed near the base circle,
but not on the circle itself (since𝑤min > 0). On the other hand, vertices with a high weight
are closer to the center. Note that we ignore the fact that there might be weights tending to
infinity. The reason for this is that we will use this visualization more for sketches rather
than for precise mathematical calculations. To distinguish vertices and hyperedges in this
visualization, we neglect the (constant) weight of hyperedges and only use their positions to
place them directly onto the base circle. A sketch of this visualization can be seen on the left
side of Figure 3.1. The intervals, at which the blue cones intersect the circle, mark the cold
areas of the individual vertices.
The second visualization is the unrolled version of the first one. Instead of letting the

position define the angle of the vertex in the polar coordinate system, we use the position
as it is and draw it onto the interval [0; 1], which we call the baseline. Everything else stays
the same. The weight of each vertex defines its distance to the baseline, and the hyperedges
are drawn directly onto the line. An example can be seen on the right side of Figure 3.1. The
advantage of this visualization is that it can be better used for precise mathematical arguments,
which we will use in the subsequent Section 3.2.

Before that, we apply these visualizations to illustrate the few remaining definitions. In
the threshold variant, the area in which all incidences of 𝜈 lie is bounded by its cold area
or the melting radius. However, this is not true for the binomial variant. In order to have
a measure for the range of a vertex anyways, we define the neighborhood area NA(𝜈) of 𝜈
to be the smallest interval of the torus that includes the positions of all hyperedges incident
to 𝜈 . Further, we define the positions of the hyperedges marking the left and the right end of
the neighborhood area the be the left border 𝑏𝐿 (𝜈) and right border 𝑏𝑅 (𝜈) of 𝜈 , respectively.
The length of the neighborhood area of 𝜈 is its diameter 𝑑 (𝜈) := 𝑏𝑅 (𝜈) − 𝑏𝐿 (𝜈). If the vertex
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3.2 Covering Probability

𝑏𝐿 𝑏𝑅

𝑑

𝑏𝐿 𝑏𝑅

𝑑

𝜈𝜈

𝑏𝐿 𝑏𝑅

𝑑

𝜈

NAcold

Figure 3.2: Three different cases of how the cold area NAcold (𝜈) (light blue) of vertex 𝜈 can lie relative to its
neighborhood area. The neighborhood area is the interval between the left border 𝑏𝐿 and right border 𝑏𝑅 of 𝜈 .
The distance between the two borders is the diameter 𝑑 . Its bounds may be cold incidences (depicted as blue lines)
but also warm incidences (depicted as red lines), depending on the case. The left sketch shows a neighborhood
area that is disjoint to the cold area of 𝜈 . The middle sketch shows a neighborhood area that includes the cold
area entirely. The right sketch shows a neighborhood area that only intersects the cold area.

can be clearly inferred from the context, we omit the argument “(𝜈)” in the above definitions.
Figure 3.2 illustrates these definitions for different situations. It additionally shows that, at least
in the binomial variant, the neighborhood area of a vertex might be completely independent
from its cold area.

3.2 Covering Probability

In this thesis, we are often interested in the probability that a vertex 𝜈 covers a certain interval
𝐼 ⊆ 𝕋1 with its cold area, i.e., 𝐼 ⊆ NAcold(𝜈). This probability is calculated in Lemma 3.1.

Lemma 3.1: Let 𝐼 ⊆ 𝕋1
be an interval on the torus, and 𝑢 = (𝑋𝑢,𝑊𝑢) a vertex with a weight

𝑊𝑢 ∼ PL(𝛽,𝑤min) and a position 𝑋𝑢 ∼ 𝑈 [0; 1]. Then the probability that 𝑢 covers 𝐼 entirely with

its cold area is

ℙ [𝐼 ⊆ NAcold(𝑢)] = 2
𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

((
𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽
−

(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽 )
=

(
2
𝑎𝑤𝑒

𝑊

)𝛽−1
𝑤

𝛽−1
min

1
𝛽 − 2

(
( |𝐼 |)−(𝛽−2) − (1 + |𝐼 |)−(𝛽−2)

)
for every |𝐼 | ≥ 2𝑚𝑟 (𝑤min), and for every |𝐼 | ≤ 2𝑚𝑟 (𝑤min)

= 2

(
𝑚𝑟 (𝑤min) −

|𝐼 |
2

+ 𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

(
𝑤

2−𝛽
min

−
(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽 ))
.
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𝐼

𝑤min

𝐼

𝑤min

𝐶dom 𝐶dom

Figure 3.3: Two intervals 𝐼 on the torus. The green area indicates exactly the area in which a vertex lies that
covers the interval 𝐼 entirely. If the interval is large enough, the area is a cone (left). Otherwise, the cone is
truncated because of the minimum weight of the vertices (right). The black dot is the peak of the respective cone.

Proof. Every vertex𝑢 = (𝑥𝑢,𝑤𝑢), that entirely covers 𝐼 with its cold area, satisfies the condition
𝐼 ⊆ [−𝑚𝑟 (𝑢);𝑚𝑟 (𝑢)]. We assume w.l.o.g. that the position 0 is exactly in the middle of the
interval 𝐼 . Therefore, the left and right end of 𝐼 are exactly at ± |𝐼 |

2 and thus

𝐼 ⊆ [−𝑚𝑟 (𝑢);𝑚𝑟 (𝑢)]

⇔
{
𝑥𝑢 −𝑚𝑟 (𝑢) ≤ − |𝐼 |

2
|𝐼 |
2 ≤ 𝑥𝑢 +𝑚𝑟 (𝑢)

⇔
{
𝑥𝑢 + |𝐼 |

2 ≤ 𝑎𝑤𝑒
𝑤𝑢

𝑊

−𝑥𝑢 + |𝐼 |
2 ≤ 𝑎𝑤𝑒

𝑤𝑢

𝑊

⇔
{

𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2 ≤ 𝑤𝑢

− 𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2 ≤ 𝑤𝑢

.

As shown in Figure 3.3, those inequalities form a cone 𝐶dom with slopes ± 𝑊
𝑎𝑤𝑒

. Since the
weight of the vertices is always above𝑤min, the cone might be truncated for too small intervals.
The peak of the cone is the crossing point of the linear equations{

(𝐼 ) : 𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2 = 𝑤𝑢

(𝐼 𝐼 ) : − 𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2 = 𝑤𝑢

implied by the inequalities above. By adding and subtracting both equalities, we get the
position- and the weight-coordinate of the peak

⇔

(𝐼 𝐼 𝐼 ) = (𝐼 𝐼 ) + (𝐼 ) : − 𝑊

𝑎𝑤𝑒
𝑥𝑢 + 𝑊

𝑎𝑤𝑒

|𝐼 |
2 +

(
𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2

)
= 𝑤𝑢 +𝑤𝑢

(𝐼𝑉 ) = (𝐼 𝐼 ) − (𝐼 ) : − 𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2 −

(
𝑊
𝑎𝑤𝑒

𝑥𝑢 + 𝑊
𝑎𝑤𝑒

|𝐼 |
2

)
= 𝑤𝑢 −𝑤𝑢

⇔
{
(𝐼 𝐼 𝐼 ) : 𝑊

𝑎𝑤𝑒
|𝐼 | = 2𝑤𝑢

(𝐼𝑉 ) : −2 𝑊
𝑎𝑤𝑒

𝑥𝑢 = 0
.

Therefore, the peak of the cone is at 𝑥𝑢 = 0 and𝑤𝑢 = 𝑊
𝑎𝑤𝑒

|𝐼 |
2 . As a result, the cone is symmetric

to 𝑥𝑢 = 0 and its right border is described by the linear function

ℓ (𝑥) := 𝑊

𝑎𝑤𝑒

𝑥𝑢 + 𝑊

𝑎𝑤𝑒

|𝐼 |
2
.
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3.2 Covering Probability

In the following, let 𝑋𝑢 and𝑊𝑢 be random variables for the position and the weight of 𝑢
respectively. Then, the probability that 𝑢 covers the entire interval 𝐼 (with its cold area) is
exactly the probability that 𝑢 is inside the cone 𝐶dom, i.e.,

ℙ [𝑢 covers 𝐼 ] = ℙ [𝑢 ∈ 𝐶dom]

=

∫ 0.5

−0.5
ℙ [𝑢 covers 𝐼 | 𝑋𝑢 = 𝑥𝑢] 𝑓𝑋𝑢

(𝑥𝑢) d𝑥𝑢 .

Since 𝑥𝑢 is drawn from 𝑈 [−0.5; 0.5], its PDF 𝑓𝑋𝑢
(𝑥𝑢) is always 1. Therefore, the above

probability is equal to

=

∫ 0.5

−0.5
ℙ [𝑢 ∈ 𝐶dom | 𝑋𝑢 = 𝑥𝑢] d𝑥𝑢 .

As 𝐶dom is symetrical to 𝑥 = 0, this is equal to

= 2
∫ 0.5

0
ℙ [𝑢 ∈ 𝐶dom | 𝑋𝑢 = 𝑥𝑢] d𝑥𝑢

= 2
∫ 0.5

0
ℙ [𝑊𝜈 ≥ ℓ (𝑋𝑢) | 𝑋𝑢 = 𝑥𝑢] d𝑥𝑢 .

With 𝐹𝑊𝑢
being the CCDF of the power law distribution𝑊𝑢 is drawn from,

ℙ [𝑊𝑢 ≥ 𝑙 (𝑋𝑢) | 𝑋𝑢 = 𝑥𝑢] = 𝐹𝑊𝑢
(ℓ (𝑥𝑢))

holds for all ℓ (𝑥𝑢) ≥ 𝑤min. For all other values, the CCDF is exactly 1. For intervals with
|𝐼 | ≥ 2𝑚𝑟 (𝑤min) the CCDF is never (or only at the peak) 1. In this case, the integral resolves to

= 2
∫ 0.5

0
𝐹𝑊𝑢

(ℓ (𝑥𝑢)) d𝑥𝑢

= 2
∫ 0.5

0
𝑤

𝛽−1
min

(
𝑊

𝑎𝑤𝑒

𝑥𝑢 + 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)1−𝛽
d𝑥𝑢

= 2
𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

((
𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽
−

(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽 )
=

(
2
𝑎𝑤𝑒

𝑊

)𝛽−1
𝑤

𝛽−1
min

1
𝛽 − 2

(
( |𝐼 |)−(𝛽−2) − (1 + |𝐼 |)−(𝛽−2)

)
. (3.2)

For the other intervals, i.e., intervals 𝐼 with |𝐼 | ≤ 2𝑚𝑟 (𝑤min), we split the integral at the
position 𝑥 where the cone is truncated, which is

ℓ (𝑥) = 𝑤min ⇔ 𝑥 =𝑚𝑟 (𝑤min) −
|𝐼 |
2
.

With this, we get that

ℙ [𝐼 ⊆ NAcold(𝑢)] = ℙ [𝑢 ∈ 𝐶dom]

= 2

(∫ 𝑚𝑟 (𝑤min )− |𝐼 |
2

0
1 d𝑥𝑢 +

∫ 0.5

𝑚𝑟 (𝑤min )− |𝐼 |
2

𝐹𝑊𝑢
(ℓ (𝑥𝑢)) d𝑥𝑢

)
= 2

(
𝑚𝑟 (𝑤min) −

|𝐼 |
2

+ 𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

(
𝑤

2−𝛽
min −

(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽 ))
. (3.3)
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Note that Equation (3.2) and Equation (3.3) have the same value for |𝐼 | = 2𝑚𝑟 (𝑤min), namely

2
𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

(
𝑤

2−𝛽
min −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽 )
.

The interval 𝐼 from Lemma 3.1 can be interpreted as many things, for example as the
neighborhood area of another vertex but also as the position of a hyperedge. If 𝜈 contains the
neighborhood area of another vertex𝑢, then 𝜈 dominates𝑢 according to the vertex domination
rule. Note that this is a sufficient but not necessary condition, as 𝜈 may also dominate 𝑢 using
fluid incidences. However, we do not focus on such cases in this thesis. In Corollary 3.2, we
derive the first basic statements of the Hyper-GIRG model when the interval 𝐼 from Lemma 3.1
is interpreted as the neighborhood area of a vertex.

Corollary 3.2 (From Lemma 3.1): The following statements hold for every Hyper-GIRG

(1) each vertex 𝜈 with deg(𝜈) > 0 is dominated by the cold area of another vertex 𝑢 with a

probability of

ℙ [𝜈 dom. cold] = 1 −
(
1 − ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

)𝑛−1
< 1.

(2) w.h.p. a vertex with diameter 𝑑 ∈ Ω
(
𝑛

1
𝛽−2−1

)
is not dominated by the cold area of any

another vertex.

Proof of (1): Let 𝜈 be a vertex with deg(𝜈) > 0. To prove statement (1), we first derive the
formula in the lemma and then show that it is constant in𝑛. The probability that 𝜈 is dominated
by the cold area of another vertex is

ℙ [𝜈 dom. cold] = ℙ


⋃

𝑢∈𝑉 \{𝜈 }
[NA(𝜈) ⊆ NAcold(𝑢)]


= 1 − ℙ


⋂

𝑢∈𝑉 \{𝜈 }
¬[NA(𝜈) ⊆ NAcold(𝑢)]


= 1 −

(
1 − ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

)𝑛−1

To show that this expression is smaller than 1, we show that it is decreasing for increas-
ing 𝑛. This is sufficient as it is a probability and thus always smaller or equal to 1. Ac-
cording to Lemma 2.7, this term is decreasing if ℙ [NA(𝜈) ⊆ NAcold(𝑢)] ∈ O

( 1
𝑛

)
holds for

every 𝜈 . This probability gets larger the smaller the diameter of 𝜈 . The smallest possible
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diameter for a vertex 𝜈 with deg(𝜈) > 0 is 𝑑 = 0 (if there is exactly one incident hyper-
edge). Since 𝑑 = 0 ≤ 2𝑚𝑟 (𝑤min), we use the second equation of Lemma 3.1 to determine
ℙ [NA(𝜈) ⊆ NAcold(𝑢)]. Asymptotically, this is

ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

= 2

(
𝑚𝑟 (𝑤min) −

|NA(𝜈) |
2

+ 𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

(
𝑤

2−𝛽
min −

(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|NA(𝜈) |
2

)2−𝛽 ))
.

Θ
=

1
𝑊

− |NA(𝜈) | + 1
𝑊

(
𝑤

2−𝛽
min − (𝑊 +𝑊 |𝐼𝑑 |)2−𝛽

)
≤ 1
𝑊

+ 1
𝑊

𝑤
2−𝛽
min .

Since𝑊 ∈ Θ (𝑛), this expression is in O
( 1
𝑛

)
. As a result, ℙ [𝜈 dom. cold] can be bounded

from above by a decreasing function that starts at 1 and is thus smaller than 1 for 𝑛 > 1.

Proof of (2): Let 𝜈 be a vertex with diameter 𝑑 ∈ Ω

(
𝑛

1
𝛽−2
𝑛

)
and thus 𝑑 ≥ 𝑚𝑟 (𝑤min). Then, the

probability that a vertex 𝑢 dominates 𝜈 with its cold area is asymptotically

ℙ [NA(𝜈) ⊆ NAcold(𝑢)]
Θ
=

(
1
𝑛

)𝛽−1 (
𝑑−(𝛽−2) − (1 + 𝑑)−(𝛽−2)

)
Θ
=

(
1
𝑛

)𝛽−1
𝑑−(𝛽−2)

∈ O ©«
(
1
𝑛

)𝛽−1 (
𝑛

1
𝛽−2

𝑛

)−(𝛽−2)ª®¬
∈ O

(
1
𝑛2

)
.

Now, the probability that there is no such vertex 𝑢 is

ℙ

¬
⋃

𝑢∈𝑉 \{𝜈 }
[NA(𝜈) ⊆ NAcold(𝑢)]

 .
With the same reformulations as in the proof of (1), this is equal to

=

(
1 − ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

)𝑛−1
which has a lower bound of

= 1 − (𝑛 − 1)ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

∈ 1 −O
(
1
𝑛

)
.

Part (1) of Corollary 3.2 states in particular that not even vertices with constant weight are
dominated with high probability.
The interval 𝐼 from Lemma 3.1 can also be interpreted as the position of a hyperedge. In

the following Corollary 3.3, we derive two basic properties of the hyperedge in the threshold
variant from that interpretation.
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Corollary 3.3 (From Lemma 3.1): The following statements hold for every Hyper-GIRG generated

with the threshold variant

(1) the expected hyperedge size is constant.

(2) w.h.p. all hyperedges have a size in O
(
ln(𝑛)2

)
.

Proof of (1): Let 𝑒 ∈ 𝐸 be a hyperedge. As already shown in the proof of part (1) of Corollary 3.2,
the probability for an interval of size 0 to be covered by the cold area of a vertex𝑢 with random
position and weight is in Θ

( 1
𝑛

)
. Therefore, each vertex 𝑢 is incident to 𝑒 with probability

Θ
( 1
𝑛

)
. As a result, the size 𝑆𝑒 of 𝑒 follows a binomial distribution Bin

(
𝑛,Θ

( 1
𝑛

) )
. Part (1) is a

direct consequence of that.

Proof of (2) (adapted from Lemma 4.5 (i) in [BKL16]): Again, let 𝑒 ∈ 𝐸 be a hyperedge and 𝑆𝑒
a random variable for its size. From part (1) we know that 𝑆𝑒 follows a binomial distribu-
tion Bin

(
𝑛,Θ

( 1
𝑛

) )
. We apply part (3) of the Chernoff bound for binomial distributions (see

Theorem 2.5) for which, we need a constant 𝑡 ∈ ℝwith 𝑡 ≥ ln(𝑛)2 and 𝑡 > 2𝑒𝔼 [𝑆𝑒]. Since
𝔼 [𝑆𝑒] ∈ Θ (1), there is a constant 𝑐 > 1 such that 𝑡 := 𝑐 ln(𝑛)2 fulfills both conditions. With
that,

ℙ [𝑆𝑒 ≥ 𝑡] ≤ 2−𝑡 = 2−𝑐 ln(𝑛)
2
= 𝑛−𝑐 ln(2) ln(𝑛) ∈ 𝑛−Θ(ln(𝑛) ) .

Now, a union bound over all hyperedges yields

ℙ

[⋂
𝑒∈𝐸

[𝑆𝑒 ≤ 𝑡]
]
= 1 − ℙ

[⋃
𝑒∈𝐸

[𝑆𝑒 ≥ 𝑡]
]
≥ 1 − 𝑛 · 𝑛−Θ(ln(𝑛) ) = 1 − 𝑛−Θ(ln(𝑛) ) .

That term 𝑛−Θ(ln(𝑛) ) decreases asymptotically faster than 1
𝑛1 for every constant 𝑐 .

Based on the result from the following Section 3.3, we find a similar bound to the expected
hyperedge sizes in the binomial variant.

3.3 The Neighborhood of a Vertex

In this section, we analyze the neighborhood of a vertex 𝜈 ∈ 𝑉 from a graph-theoretical and
a geometrical perspective. In the graph-theoretical perspective (see Section 3.3.1), we study
the degree of 𝜈 and determine the expected average degree of Hyper-GIRGs in the binomial
variant. In Section 3.3.2, we focus on the diameter of 𝜈 , which can be seen as the geometrical
size of the vertex. For that, we derive the distribution functions for the left and the right end
of 𝜈 and thus find an upper bound for the diameter depending on the temperature.

3.3.1 The Degree of a Vertex

The core problem of determining the degree of a vertex 𝜈 in Hyper-GIRGs is to find the
probability by which 𝜈 is incident to a hyperedge. More generally, we are often interested in
the probability by which a hyperedge with a uniformly random position lies left or right of a
certain threshold and is incident to 𝜈 . To simplify the following considerations, we assume
without loss of generality that 𝜈 has a fixed weight𝑤𝜈 ≥ 𝑤min and is centered on the torus
𝕋1 := [−0.5; 0.5]◦, i.e., 𝑥𝜈 = 0. With that, we denote the set of incident hyperedges of 𝜈 that
are left of a threshold 𝑡 ∈ [−0.5; 0.5] as

𝑁 𝜈
≤ (𝑡) := {𝑒 = (𝑥𝑒 ,𝑤𝑒) ∈ 𝐸 | 𝑥𝑒 ≤ 𝑡 ∧ 𝜈 ∈ 𝑒}.
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The sets 𝑁 𝜈
≥ (𝑡), 𝑁 𝜈

< (𝑡), and 𝑁 𝜈
> (𝑡) are defined analogously to 𝑁 𝜈

≤ (𝑡). For vertices with another
position as 𝑥𝜈 = 0, the definitions have to be shifted by 𝑥𝜈 . Note that 𝑁 𝜈

≤ (0.5) and 𝑁 𝜈
≥ (−0.5)

are always the same as the whole set of incident hyperedges of 𝜈 since their intervals cover
the entire torus. Additionally, the set of cold incidences of a vertex can be expressed by
𝑁 𝜈

≥ (−𝑚𝑟 (𝜈)) ∩ 𝑁 𝜈
≤ (𝑚𝑟 (𝜈)). With the following Lemma 3.4, we can derive the probability for

a random hyperedge to be in one of the above sets.

Lemma 3.4: Let 𝜈 = (𝑥𝜈 = 0;𝑤𝜈 ) be a fixed vertex and 𝑒 = (𝑥𝑒 ,𝑤𝑒) a hyperedge with random

position 𝑥𝑒 ∈ [−0.5; 0.5]. Then the following holds for every 𝑠, 𝑡 ∈ [−0.5; 0.5] with 𝑠 < 𝑡 :

ℙ [𝜈 ∈ 𝑒 ∧ 𝑥𝑒 ∈ [𝑠; 𝑡]] =
∫ 𝑡

𝑠

𝑝𝐼 (𝑥) d𝑥 .

Proof. To prove that, we interpret the hyperedge 𝑒 = (𝑥𝑒 , 𝑝) ∈ [−0.5; 0.5] × [0; 1] as a pair of
the position of the hyperedge on the torus 𝑥𝑒 ∈ [−0.5; 0.5], and a uniformly drawn probability
𝑝 ∈ [0; 1]. This probability is used to define whether 𝜈 ∈ 𝑒 in the following way: 𝜈 ∈ 𝑒 if and
only if 𝑝 ≤ 𝑝𝐼 (𝑥𝑒). Using this, we can reformulate the left side of the equation to

ℙ [𝜈 ∈ 𝑒 ∧ 𝑥𝑒 ∈ [𝑠; 𝑡]] = ℙ [𝑝 ≤ 𝑝𝐼 (𝑥𝑒) ∧ 𝑥𝑒 ∈ [𝑠; 𝑡]] .

Since 𝑥𝑒 is uniformly drawn on an interval of length 1, the law of total probability yields

=

∫ 𝑡

𝑠

ℙ [𝑝 ≤ 𝑝𝐼 (𝑥𝑒) ∧ 𝑥𝑒 = 𝑥] d𝑥 .

As 𝑝 is uniformly drawn in [0; 1] and the values of 𝑝𝐼 never leave the interval [0; 1] (since it
is a probability), this is exactly

=

∫ 𝑡

𝑠

𝑝𝐼 (𝑥) d𝑥 .

As a direct consequence of Lemma 3.4, it holds that

ℙ
[
𝑒 ∈ 𝑁 𝜈

≤ (𝑡)
]
=

∫ 𝑡

−0.5
𝑝𝐼 (𝑥) d𝑥 = ℙ

[
𝑒 ∈ 𝑁 𝜈

≥ (−𝑡)
]

(3.4)

since 𝑝𝐼 (𝑥) is symmetrical to 𝑥 = 0. Note that the same equalities hold for the strict sets
𝑁 𝜈
< (𝑡) and 𝑁 𝜈

> (𝑡). To get a better understanding of the values of these probabilities, we
calculate the solution for the integral

∫ 𝑡

−0.5 𝑝𝐼 (𝑥) d𝑥 in the following. For that, we first apply
the substitution 𝑢 (𝑥) := 𝑥

𝑚𝑟 (𝜈 ) with 𝑢′(𝑡) = 1
𝑚𝑟 (𝜈 ) where 𝑚𝑟 (𝜈) is the melting radius of 𝜈

(defined in Equation (3.1)). This yields∫ 𝑡

−0.5
𝑝𝐼 (𝑥) d𝑥 =𝑚𝑟 (𝜈) ·

∫ 𝑡
𝑚𝑟 (𝜈 )

− 1
2𝑚𝑟 (𝜈 )

min
{
1, |𝑢 |− 1

𝑇

}
d𝑢.

Now, we define the functions

𝐿(𝑡) :=
∫ 𝑡

𝑚𝑟 (𝜈 )

− 1
2𝑚𝑟 (𝜈 )

(−𝑢)− 1
𝑇 d𝑢, 𝑀 (𝑡) :=

∫ 𝑡
𝑚𝑟 (𝜈 )

−1
1 d𝑢, 𝑅(𝑡) :=

∫ 𝑡
𝑚𝑟 (𝜈 )

1
𝑢− 1

𝑇 d𝑢
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which can be combined such that

∫ 𝑡
𝑚𝑟 (𝜈 )

− 1
2𝑚𝑟 (𝜈 )

min
{
1, |𝑢 |− 1

𝑇

}
d𝑢 =


𝐿(𝑡), 𝑡 ∈ [−0.5;−𝑚𝑟 (𝜈)]
𝐿(−𝑚𝑟 ) +𝑀 (𝑡), 𝑡 ∈ [−𝑚𝑟 (𝜈);𝑚𝑟 (𝜈)]
𝐿(−𝑚𝑟 ) +𝑀 (𝑚𝑟 ) + 𝑅(𝑡), 𝑡 ∈ [𝑚𝑟 (𝜈); 0.5]

.

The function𝑀 is a constant integral with the solution

𝑀 (𝑡) =
∫ 𝑡

𝑚𝑟 (𝜈 )

−1
1 d𝑢 =

𝑡

𝑚𝑟 (𝜈)
+ 1.

To solve the remaining integrals

𝐿(𝑡) =
∫ 𝑡

𝑚𝑟 (𝜈 )

− 1
2𝑚𝑟 (𝜈 )

(−𝑢)− 1
𝑇 d𝑢 =

∫ 1
2𝑚𝑟 (𝜈 )

− 𝑡
𝑚𝑟 (𝜈 )

𝑢− 1
𝑇 d𝑢

and 𝑅(𝑡), we solve the general integral
∫ 𝑏

𝑎
𝑢− 1

𝑇 d𝑢 for all 1 ≤ 𝑎 ≤ 𝑏 ≤ 1
2𝑚 (𝜈 ) . The solution to

this integral is ∫ 𝑏

𝑎

𝑢− 1
𝑇 d𝑢 =

1
1
𝑇
− 1

[
𝑢1−

1
𝑇

]𝑎
𝑏
= 𝜏

(
𝑎−

1
𝜏 − 𝑏−

1
𝜏

)
where 𝜏 := 𝑇

1−𝑇 . Putting all pieces together yields:∫ 𝑡

−0.5
𝑝𝐼 (𝑥) d𝑥

=𝑚𝑟 (𝜈) ·


𝐿(𝑡), 𝑡 ∈ [−0.5;−𝑚𝑟 (𝜈)]
𝐿(−𝑚𝑟 ) +𝑀 (𝑡), 𝑡 ∈ [−𝑚𝑟 (𝜈);𝑚𝑟 (𝜈)]
𝐿(−𝑚𝑟 ) +𝑀 (𝑚𝑟 ) + 𝑅(𝑡), 𝑡 ∈ [𝑚𝑟 (𝜈); 0.5]

=𝑚𝑟 (𝜈) ·



𝜏

((
−𝑡

𝑚𝑟 (𝜈 )

)− 1
𝜏 −

(
1

2𝑚𝑟 (𝜈 )

)− 1
𝜏

)
, 𝑡 ∈ [−0.5;−𝑚𝑟 (𝜈)]

𝜏

(
1 −

(
1

2𝑚𝑟 (𝜈 )

)− 1
𝜏

)
+

(
𝑡

𝑚𝑟 (𝜈 ) + 1
)
, 𝑡 ∈ [−𝑚𝑟 (𝜈);𝑚𝑟 (𝜈)]

𝜏

(
1 −

(
1

2𝑚𝑟 (𝜈 )

)− 1
𝜏

)
+ 2 + 𝜏

(
1 −

(
𝑡

𝑚𝑟 (𝜈 )

)− 1
𝜏

)
, 𝑡 ∈ [𝑚𝑟 (𝜈); 0.5]

.

which can be simplified to

=𝑚𝑟 (𝜈) ·


𝜏

(
− 𝑡
𝑚𝑟 (𝜈 )

)− 1
𝜏 − 𝜏 (2𝑚𝑟 (𝜈))

1
𝜏 , 𝑡 ∈ [−0.5;−𝑚𝑟 (𝜈)]

𝑡
𝑚𝑟 (𝜈 ) + 1 + 𝜏

(
1 − (2𝑚𝑟 (𝜈))

1
𝜏

)
, 𝑡 ∈ [−𝑚𝑟 (𝜈);𝑚𝑟 (𝜈)]

−𝜏
(

𝑡
𝑚𝑟 (𝜈 )

)− 1
𝜏 + 𝜏

(
2 − (2𝑚𝑟 (𝜈))

1
𝜏

)
+ 2, 𝑡 ∈ [𝑚𝑟 (𝜈); 0.5]

. (3.5)
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As already stated above, the set 𝑁 𝜈
≤ (0.5) is exactly the set of all hyperedges incident to 𝜈 .

With the help of Lemma 3.4 and the third case of Equation (3.5), we can now state the exact
probability by which a hyperedge 𝑒 with uniformly drawn position 𝑥𝑒 is incident to the
vertex 𝜈 = (𝑥𝜈 = 0,𝑤𝜈 ). This is

ℙ [(𝜈, 𝑒) ∈ I] = ℙ
[
𝑒 ∈ 𝑁 𝜈

≤ (0.5)
]

=𝑚𝑟 (𝜈) ·
(
−𝜏

(
1

2𝑚𝑟 (𝜈)

)− 1
𝜏

+ 𝜏

(
2 − (2𝑚𝑟 (𝜈))

1
𝜏

)
+ 2

)
=𝑚𝑟 (𝜈) ·

(
2(𝜏 + 1) − 2𝜏 (2𝑚𝑟 (𝜈))

1
𝜏

)
. (3.6)

As a first application of Lemma 3.4, we use Equation (3.6) to calculate the expected degree of
a vertex and the expected average degree of Hyper-GIRGs in the following Lemma 3.5.

Lemma 3.5: Let 𝐻 = (𝑉 , 𝐸) be a Hyper-GIRG with average vertex weight𝑊𝑐 . Then

(1) the expected degree of a vertex 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) is

2𝛿𝐸𝑉𝑎𝑤𝑒

𝑤𝜈

𝑊𝑐

1
1 −𝑇

(
1 −𝑇 (2𝑚𝑟 (𝜈))

1−𝑇
𝑇

)
.

(2) w.h.p. all vertices 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) have a degree in O
(
𝑤𝜈 + ln(𝑛)2

)
.

(3) the expected average degree tends to the upper bound

2𝑑𝐸𝑉𝑎𝑤𝑒

1
𝑊𝑐

1
1 −𝑇

𝛽 − 1
𝛽 − 2

𝑤𝑚𝑖𝑛 .

Proof of (1): We show that the degree of 𝜈 follows the binomial distribution Bin(𝑚, 𝑝) with
𝑝 = ℙ [(𝜈, 𝑒) ∈ I] from Equation (3.6). Let 1𝑒 be the indicator variable that is 1 if and only if
the hyperedge 𝑒 ∈ 𝐸 is incident to 𝜈 . Then the degree 𝐷𝜈 of 𝜈 is the sum of those indicator
variables, i.e.,

𝐷𝜈 =
∑︁
𝑒∈𝐸

1𝑒

and thus follows a binomial distribution with probability

ℙ [1𝑒 = 1] = ℙ [(𝜈, 𝑒) ∈ I] .

Using Equation (3.6) as well as𝑊𝑐 := 𝑊
𝑛
and 𝛿𝐸𝑉 = 𝑚

𝑛
from Section 2.3, we get

𝔼 [𝐷𝜈 ] =𝑚 · ℙ [(𝜈, 𝑒) ∈ I]

=𝑚 · 𝑎𝑤𝑒

𝑤𝜈

𝑊
·
(
2(𝜏 + 1) − 2𝜏 (2𝑚𝑟 (𝜈))

1
𝜏

)
= 2𝛿𝐸𝑉𝑎𝑤𝑒

𝑤𝜈

𝑊𝑐

·
(
(𝜏 + 1) + 𝜏 (2𝑚𝑟 (𝜈))

1
𝜏

)
.

With 𝜏 + 1 = 1
1−𝑇 this is equal to

= 2𝛿𝐸𝑉𝑎𝑤𝑒

𝑤𝜈

𝑊𝑐

1
1 −𝑇

(
1 −𝑇 (2𝑚𝑟 (𝜈))

1−𝑇
𝑇

)
.
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Proof of (2) (adapted from Lemma 4.5 (i) in [BKL16]): We first prove that the probability, that
a single vertex 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) has its degree in O

(
𝑤𝜈 + ln(𝑛)2

)
, is in 𝑛−Θ(ln(𝑛) ) , and later use a

union bound to show that for all vertices.
For the first part, we make a case distinction over the weight 𝜈 . If 𝑤𝜈 ∈ O

(
ln(𝑛)2

)
, we

apply the Chernoff bound (3) (see Theorem 2.5). For that, we need a constant 𝑡 ∈ ℝ such that
𝑡 ≥ ln(𝑛)2 and 𝑡 > 2𝑒𝔼 [𝐷𝜈 ] where 𝐷𝜈 is the degree of 𝜈 . Since 𝑤𝜈 ∈ O

(
ln(𝑛)2

)
and thus

𝔼 [𝐷𝜈 ] ∈ O
(
ln(𝑛)2

)
(see part (1)), there is a constant 𝑐 > 1 such that 𝑡 := 𝑐 ln(𝑛)2 fulfills both

conditions. Therefore, it holds that

ℙ [𝐷𝜈 ≥ 𝑡] ≤ 2−𝑡 = 2−𝑐 ln(𝑛)
2
= 𝑛−𝑐 ln(2) ln(𝑛) ∈ 𝑛−Θ(ln(𝑛) ) .

If, otherwise,𝑤𝜈 ∈ Ω
(
ln(𝑛)2

)
, we apply the Chernoff bound (1) (see Theorem 2.5). For any

constant 𝜀 ∈ (0, 1) it holds that

ℙ [𝑋 > (1 + 𝜀)𝔼 [𝐷𝜈 ]] ≤ exp
(
−𝜀

2

3
𝔼 [𝐷𝜈 ]

)
∈ 𝑒−Θ(𝔼[𝐷𝜈 ] ) = 𝑒−Θ(ln(𝑛)2) = 𝑛−Θ(ln(𝑛) ) .

Now, we find the probability that 𝐷𝜈 ∈ O
(
𝑤𝜈 + ln(𝑛)2

)
holds for all vertices by using a union

bound in the following way

ℙ

[⋂
𝜈∈𝑉

{
𝐷𝜈 ∈ O

(
𝑤𝜈 + ln(𝑛)2

)}]
= 1 − ℙ

[⋃
𝜈∈𝑉

{
𝐷𝜈 ∈ O

(
𝑤𝜈 + ln(𝑛)2

)}]
≥ 1 − 𝑛 · ℙ

[
𝐷𝜈 ∈ O

(
𝑤𝜈 + ln(𝑛)2

) ]
∈ 1 − 𝑛 · 𝑛−Θ(ln(𝑛) )

= 1 − 𝑛−Θ(ln(𝑛) ) .

Therefore, w.h.p. all vertices have a degree of 𝐷𝜈 ∈ O
(
𝑤𝜈 + ln(𝑛)2

)
.

Proof of (3): Again, let 𝐷𝜈 be a random variable for the degree of a vertex 𝜈 . Using the
linearity of expectation and the fact that all vertices are independently drawn from identical
distributions, we get that the expected average degree is equal to the expected degree of a
vertex, i.e.,

𝔼

[
1
𝑛

∑︁
𝜈∈𝑉

𝐷𝜈

]
=

1
𝑛

∑︁
𝜈∈𝑉

𝔼 [𝐷𝜈 ] = 𝔼 [𝐷𝜈 ] .

In contrast to part (1) the weight of the vertex is unknown. Therefore, let𝑊𝜈 ∼ PL(𝛽,𝑤min) be
the random variable for the weight of a fixed vertex 𝜈 ∈ 𝑉 . Then, the law of total expectation
(Equation (2.8)) yields

𝔼 [𝐷𝜈 ] =
∫ ∞

𝑤min

𝔼 [𝐷𝜈 |𝑊𝜈 = 𝑤𝜈 ] 𝑓 (𝑤𝜈 ) d𝑤𝜈

where 𝑓 is the PDF of the power-law distribution of the vertex weights. For a known weight,
we already determined the expected degree of a vertex in part (1). Putting these two things
together yields:

=

∫ ∞

𝑤min

2𝛿𝐸𝑉𝑎𝑤𝑒

𝑤𝜈

𝑊𝑐

1
1 −𝑇

(
1 −𝑇 (2𝑚𝑟 (𝜈))

1−𝑇
𝑇

)
· 𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈 .
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With 𝑛 → ∞ the term (2𝑚𝑟 (𝜈))
1−𝑇
𝑇 tends to 0. Therefore, we get

≤
∫ ∞

𝑤min

2𝛿𝐸𝑉𝑎𝑤𝑒

𝑤𝜈

𝑊𝑐

1
1 −𝑇

· 𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈

= 2𝛿𝐸𝑉𝑎𝑤𝑒

1
𝑊𝑐

1
1 −𝑇

𝛽 − 1

𝑤
1−𝛽
min

·
∫ ∞

𝑤min

𝑤
1−𝛽
𝜈 d𝑤𝜈

= 2𝛿𝐸𝑉𝑎𝑤𝑒

1
𝑊𝑐

1
1 −𝑇

𝛽 − 1

𝑤
1−𝛽
min

·
[

1
2 − 𝛽

𝑤
2−𝛽
𝜈

]∞
𝑤min

= 2𝛿𝐸𝑉𝑎𝑤𝑒

1
𝑊𝑐

1
1 −𝑇

𝛽 − 1
𝛽 − 2

𝑤min.

A consequence of part (3) of Lemma 3.5 is that the expected hyperedge size is constant in
the binomial variant. In this part, we did not state the solution to the actual integral, as it
diverges for every𝑇 > 1 − 1

𝛽−1 . However, for small temperatures, the term (2𝑚𝑟 (𝜈))
1−𝑇
𝑇 tends

to 0 very fast as 1−𝑇
𝑇

is large in this case. Therefore, this bound is close to the actual solution
of the integral in the cases we focus on the most in this thesis. Additionally, the formula in
part (3) has a nice property: If we set𝑊𝑐 to be the expected average vertex weight, namely
𝔼 [𝑊𝑐] =

𝛽−1
𝛽−2𝑤min, this values is canceled out. The resulting bound 2𝑑𝐸𝑉 𝑎𝑤𝑒

1−𝑇 is completely
independent of the chosen power-law exponent. As a result, the heterogeneity does not have
a huge impact on the expected average degree of Hyper-GIRGs with low temperatures.

3.3.2 The Diameter of a Vertex

In this section, we find an upper bound to the diameter of a vertex 𝜈 ∈ 𝑉 depending on the
temperature and the weight𝑤𝜈 ∼ PL(𝛽,𝑤min) of 𝜈 . As 𝐷 := 𝐵𝑅 − 𝐵𝑅 , deriving the distribution
functions for the left border 𝐵𝐿 and right border 𝐵𝑅 is a crucial first step. This is done in the
following Lemma 3.6.

Lemma 3.6: Let𝑚 ∈ Θ (𝑛) be the number of hyperedges in the hypergraph, and 𝜈 = (𝑥𝜈 = 0,𝑤𝜈 )
a vertex. Then, for every 𝑏𝐿, 𝑏𝑅 ∈ [−0.5; 0.5], the CDFs of the left border 𝐵𝐿 and the right border

𝐵𝑅 of 𝜈 are

𝐹𝐵𝐿
(𝑏𝐿) := ℙ [𝐵𝐿 ≤ 𝑏𝐿] = 1 −

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚

𝐹𝐵𝑅
(𝑏𝑅) := ℙ [𝐵𝑅 ≤ 𝑏𝑅] =

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≥ (𝑏𝑅)
] )𝑚

,

and their PDFs are

𝑓𝐵𝐿
(𝑏𝐿) :=𝑚 · 𝑝𝐼 (𝑏𝐿) ·

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚−1

𝑓𝐵𝑅
(𝑏𝑅) :=𝑚 · 𝑝𝐼 (−𝑏𝑅) ·

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≥ (𝑏𝑅)
] )𝑚−1

.
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Proof. We first focus on 𝐹𝐵𝐿
(𝑏𝐿) and later on 𝐹𝐵𝑅

(𝑏𝑅). For a fixed 𝑏𝐿 ∈ [−0.5; 0.5], the
inequality 𝐵𝐿 ≤ 𝑏𝐿 holds if and only if there is at least one hyperedge 𝑒 that is incident to 𝜈
and lies left to 𝑏𝐿 . Therefore

𝐹𝐵𝐿
(𝑏𝐿) = ℙ [𝐵𝐿 ≤ 𝑏𝐿]

= ℙ

[⋃
𝑒∈𝐸

[𝑒 ∈ 𝑁 𝜈
≤ (𝑏𝐿)]

]
= 1 − ℙ

[⋂
𝑒∈𝐸

[𝑒 ∉ 𝑁 𝜈
≤ (𝑏𝐿)]

]
.

As all components of all hyperedges are drawn independently, this is equal to the product of
their individual probabilities, i.e.,

= 1 −
(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚

.

We get the PDF 𝑓𝐵𝐿
(𝑏𝐿) of 𝐵𝐿 by taking the derivative of its CDF 𝐹𝐵𝐿

(𝑏𝐿), which is

𝑓𝐵𝐿
(𝑏𝐿) =

𝜕

𝜕𝑏𝐿

(
1 −

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚)

= −𝑚

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚−1

· 𝜕

𝜕𝑏𝐿

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )

.

As ℙ
[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
]
=

∫ 𝑏𝐿

−0.5 𝑝𝐼 (𝑥) d𝑥 (see Equation (3.4)), the latter term is equal to −𝑝𝐼 (𝑏𝐿),
and thus

=𝑚 · 𝑝𝐼 (𝑏𝐿) ·
(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (𝑏𝐿)
] )𝑚−1

.

The distribution functions of the right border 𝐵𝑅 that are stated in the lemma follow directly
from the symmetry of the left and right border, i.e., ℙ [𝐵𝑅 ≤ 𝑡] = ℙ [𝐵𝐿 ≥ −𝑡] for every
𝑡 ∈ [−0.5; 0.5], and the fact ℙ

[
𝑒 ∈ 𝑁 𝜈

≥ (𝑡)
]
= ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (−𝑡)
]
from Equation (3.4).

Lemma 3.6 proves in particular, that the random variables 𝐵𝐿 and −𝐵𝑅 follow the same
distribution, since 𝑓𝐵𝐿

(𝑥) = 𝑓𝐵𝑅
(−𝑥) holds for all 𝑥 ∈ [−0.5; 0.5]. Based on these distribution

functions, it is possible to derive a closed distribution function for the diameter itself. The
PDF of the diameter is the convolution of the PDFs of the left and the right borders, which is
not nice to handle mathematically. However, the distribution functions derived in Lemma 3.6
are sufficient to find the following upper bounds to the vertex diameter in Lemma 3.7.

Lemma 3.7: Let𝑤𝜈 denote the weight of a vertex 𝜈 . Then,

(1) w.h.p. the diameter of a single vertex 𝜈 ∈ 𝑉 with weight𝑤𝜈 ≥ 𝑤min is in O
(
𝑤

1
1−𝑇
𝜈 𝑛

𝑇
1−𝑇 −1

)
.

(2) w.h.p. all vertices in a generated hypergraph have a diameter in O
(
𝑤

1
1−𝑇
𝜈 𝑛2

𝑇
1−𝑇 −1

)
.

Proof. Let 𝜈 be a single vertex with 𝑥𝜈 = 0 and weight 𝑤𝜈 ≥ 𝑤min. The probability that 𝜈
has a diameter of at most 𝑑 can be bounded from below by the probability that both ends
have an absolute distance of at most 𝑑

2 . Therefore, with 𝐵𝐿 , 𝐵𝑅 , and 𝐷 being random variables
representing the left end, right end, and the diameter of 𝜈 , it holds that

ℙ [𝐷 ≤ 𝑑] ≥ ℙ

[
𝐵𝐿 ≥ −𝑑

2
∧ 𝐵𝑅 ≤ 𝑑

2

]
.
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This is equal to the probability that 𝑁 𝜈
≤

(
𝑑
2

)
and 𝑁 𝜈

≥

(
𝑑
2

)
are both empty. Therefore, it holds

that

= ℙ

[
𝑁 𝜈

≤

(
−𝑑
2

)
∪ 𝑁 𝜈

≥

(
𝑑

2

)
= ∅

]
= ℙ

[⋂
𝑒∈𝐸

¬
[
𝑒 ∈ 𝑁 𝜈

≤

(
𝑑

2

)
∪ 𝑁 𝜈

≥

(
𝑑

2

)] ]
.

Since both have the same size, this is equal to

=

(
1 − 2ℙ

[
𝑒 ∈ 𝑁 𝜈

≥

(
𝑑

2

)] )𝑚
.

Therefore, it is sufficient to consider only one end of 𝜈 . In the following, we show that
ℙ

[
𝐵𝑅 ≤ 𝑐 ·𝑤

1
1−𝑇
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

]
∈ 1 −O

(
1
𝑛𝑃

)
holds for every constant 𝑐 > 0 and 𝑃 ∈ {1, 2}. With

that, we later prove both statements above. We focus on the right end with its CDF 𝐹𝐵𝑅
is the

CDF from Lemma 3.6. Then with 1
1−𝑇 = 𝑇

1−𝑇 + 1 we get

ℙ

[
𝐵𝑅 ≤ 𝑐𝑤

1
1−𝑇
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

]
= ℙ

[
𝐵𝑅 ≤ 𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

]
= 𝐹𝐵𝑅

(
𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

)
=

(
1 − ℙ

[
𝑒 ∈ 𝑁 𝜈

≥

(
𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

)] )𝑚
≥ 1 −𝑚ℙ

[
𝑒 ∈ 𝑁 𝜈

≥

(
𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

)]
.

Since 𝑤
𝑇

1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1 ≥ 𝑤𝜈

𝑛
, we assume that the diameter is larger than the melting radius.

Therefore, we can use the first case in Equation (3.5) to get the probability with the help of
Equation (3.4). Therefore, with 𝑑 := 𝑤

𝑇
1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1 this is equal to

= 1 −𝑚 ·𝑚𝑟 (𝜈)
©«

𝑇

1 −𝑇

(
− 𝑑

𝑚𝑟 (𝜈)

)− 1−𝑇
𝑇

− 𝑇

1 −𝑇
(2𝑚𝑟 (𝜈))

1−𝑇
𝑇︸                  ︷︷                  ︸

≥0

ª®®®®¬
Θ
≥ 1 −𝑚 ·𝑚𝑟 (𝜈)

(
𝑑

𝑚𝑟 (𝜈)

)− 1−𝑇
𝑇

.

With𝑊 ∈ Θ (𝑛) (see Lemma 2.3), we get that𝑚𝑟 (𝜈) ∈ Θ
(𝑤𝜈

𝑛

)
. Additionally, with𝑚 ∈ Θ (𝑛)

it holds that𝑚 ·𝑚𝑟 (𝜈) ∈ Θ (𝑛). Therefore, the latter term is equal to

𝑚 ·𝑚𝑟 (𝜈) ©«𝑤
𝑇

1−𝑇 +1
𝜈 𝑛𝑃

𝑇
1−𝑇 −1

𝑚𝑟 (𝜈)
ª®¬
− 1−𝑇

𝑇

Θ
= 𝑤𝜈

(
𝑤

𝑇
1−𝑇
𝜈 𝑛𝑃

𝑇
1−𝑇

)− 1−𝑇
𝑇

= 𝑤𝜈

(
𝑤−1

𝜈 𝑛−𝑃
)
=

1
𝑛𝑃

.

As a result, we get

ℙ

[
𝐵𝑅 ≤ 𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛

𝑇
1−𝑇 −1

]
∈ 1 −O

(
1
𝑛

)
and ℙ

[
𝐵𝑅 ≤ 𝑐𝑤

𝑇
1−𝑇 +1
𝜈 𝑛2

𝑇
1−𝑇 −1

]
∈ 1 −O

(
1
𝑛2

)
.
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The first relation proves the first statement. Additionally, using a union bound over all vertices,
the second statement follows from the second relation.

The first part of the Lemma 3.7 is only meaningful for𝑇 ≤ 0.5. For every other𝑇 > 0.5, the
term 𝑛

𝑇
1−𝑇 −1 increases with 𝑛 and is thus too large to represent a diameter on a torus with

constant length. The same applies to vertices with a weight in𝜔
(
𝑛1−2𝑇

)
. In both cases,𝑇 = 0.5

seems to be a temperature where asymptotics change. For the second bound if Lemma 3.7
this point of change is even lower at 𝑇 = 1

3 . This bound has only impact for vertices with a
weight in O

(
𝑛1−3𝑇

)
. If one considers that the maximum vertex weight is w.h.p. in O

(
𝑛

2
𝛽−1

)
,

the condition 𝑇 < 1
3
𝛽−3
𝛽−1 is necessary for the second bound to be impactful for all vertices.

Therefore, it is not applicable for 𝛽 < 3.
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4 The Threshold Variant

In this chapter, we study Hyper-GIRGs generated with the threshold variant and the behavior
of the reduction rules on it. In the threshold variant, the temperature is𝑇 = 0 and the incidence
probability is the step-function

𝑝𝐼 (𝜈, 𝑒) =
{
1, dist(𝑥𝜈 , 𝑥𝑒) ≤ 𝑎

𝑤𝜈𝑤𝑒

𝑊

0, otherwise

for some vertex 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) and a hyperedge 𝑒 = (𝑥𝑒 ,𝑤𝑒) (see Equation (2.14)). A consequence
of this step-function is that all hyperedges inside the neighborhood area of 𝜈 are actually
incident to 𝜈 . Note that this is not necessarily the case in the binomial variant, as the
neighborhood area of 𝜈 is just the interval between the most distant incident hyperedges,
and 𝜈 may have an (unlikely but possible) fluid incidence to a distant hyperedge, possibly
skipping many other hyperedges. This property of neighborhoods in the threshold area is
sufficient to classify the generated hypergraphs as so-called dual circular-arc hypergraphs; a
hypergraph class we introduce in Section 4.1. We find that the reduction rules always reduce
these hypergraphs to a trivial kernel independent of their degree distribution if they have
at least one gap (roughly speaking, there is no cycle going around the torus). In Section 4.2
we deal with the probability of gaps in Hyper-GIRGs depending on the heterogeneity. Our
main result is that there is a.a.s. at least one gap in every Hyper-GIRG generated with the
threshold variant. As a result, the reduction rules reduce such hypergraphs a.a.s. entirely.
However, for small Hyper-GIRGs generated with low heterogeneity, it may be possible to not
have a gap. In this case, we describe a branching rule that creates a gap in such hypergraphs
deterministically (see Section 4.3).

4.1 (Dual) Circular-Arc Hypergraphs

The definitions of circular-arc hypergraphs / CA-hypergraphs and their duals are largely based
on cyclic orders (defined in Section 2.3.3). A hypergraph 𝐻 = (𝑉 , 𝐸) is a CA-hypergraph
if there is a cyclic order ≺◦

𝑉
:= ⟨𝜈1, . . . , 𝜈𝑛⟩◦ on the vertices, such that the vertices of every

hyperedge form an interval in ≺◦
𝑉
. The hyperedge whose interval covers all vertices of 𝐻 is

called the universal hyperedge. For all other hyperedges 𝑒 ∈ 𝐸 \ {𝑉 }, the left end and the right
end of 𝑒 are the ends of its vertex interval with respect to ≺◦

𝑉
.

The duals of CA-hypergraphs can be defined in an analog way. A hypergraph 𝐻 = (𝑉 , 𝐸) is
a dual circular-arc hypergraphs / CA∗

-hypergraph if its dual 𝐻 ∗ = (𝑉 ∗, 𝐸∗) is a CA-hypergraph.
Thus, the roles of vertices and hyperedges swap. The hyperedges of a CA∗-hypergraph have a
cyclic order ≺◦

𝐸
:= ⟨𝑒1, . . . , 𝑒𝑚⟩◦ in which all 𝐸 (𝜈) (for 𝜈 ∈ 𝑉 ) are intervals in ≺◦

𝐸
. In this context,

we call 𝐸 (𝜈) the interval of the vertex 𝜈 ∈ 𝑉 . Figure 4.1 shows an example of a CA-hypergraph
together with its dual CA∗-hypergraph.
In the following Lemma 4.1 we show that all Hyper-GIRGs generated with the threshold

variant are CA∗-hypergraphs.
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𝜈1 𝜈2

𝜈3

𝜈4

𝜈5

𝜈6𝜈7
𝜈8

𝜈9

𝜈10

𝜈11

𝜈12

𝜈1

𝜈2

𝜈3

𝜈4

𝜈5

𝜈6

𝜈7

𝜈8

𝜈9

𝜈10

𝜈11

𝜈12

Figure 4.1: A CA-hypergraph (left) and its dual CA∗-hypergraph (right). The hyperedges of the graphs are
shown as circular arcs. The vertices are depicted as lines pointing towards the middle of the circle. A vertex is
part of a hyperedge, if and only if its line intersects the circular arc of the hyperedge

Lemma 4.1: Let 𝐻 = (𝑉 , 𝐸) be a Hyper-GIRG with 𝑇 = 0. Then 𝐻 is a CA
∗
-hypergraph.

Proof. As mentioned above, a vertex with weight 𝑤𝜈 is part of an edge if and only if their
distance on 𝕋1 is smaller than 𝑎

𝑤𝜈𝑤𝑒

𝑊
. For each vertex 𝜈 ∈ 𝑉 , this area is convex. Therefore,

all hyperedges 𝐸 (𝜈) of 𝜈 lie inside an interval on the 𝕋1. As a result, if we define ≺◦
𝐸
as the

cyclic order of the “smaller than”-relation on the hyperedge positions 𝑦1, . . . , 𝑦𝑚 ∈ [0; 1] of 𝐻 ,
all 𝐸 (𝜈) are intervals on ≺◦

𝐸
.

Note that we do not use any assumptions on the degree distribution in Lemma 4.1. Therefore,
this result is independent of the power-law exponent of the generated hypergraph.

Due to Lemma 4.1, we assume for the remainder of this section that 𝐻 = (𝑉 , 𝐸) is a general
CA∗-hypergraph with cyclic edge order ≺◦

𝐸
:= ⟨𝑒1, . . . , 𝑒𝑚⟩◦. In our context ofWeihe’s reduction

rules, the concept of gaps is important for CA∗-hypergraph. Formally, a gap in 𝐻 is a pair
of consecutive hyperedges (𝑒𝑔, 𝑒𝑔+1) such that there is no vertex 𝜈 ∈ 𝑉 that is part of both
hyperedges, i.e., 𝑒𝑔 ∩ 𝑒𝑔+1 = ∅. In the following Lemma 4.2 we show that the reduction rules
are sufficient to reduce every CA∗-hypergraph with a gap to a trivial kernel. For that result,
we count the additional unit hyperedge rule to the set of reduction rules.

Lemma 4.2: The reduction rules solve the HittingSet problem on CA
∗
-hypergraphs with at

least one gap entirely.

Proof.
1Let 𝐻 = (𝑉 , 𝐸) be an arbitrary CA∗-hypergraph with cyclic edge order ⟨𝑒1, . . . , 𝑒𝑚⟩◦

and at least one gap. Due to symmetry, we can assume that one gap is between the hyper-
edges 𝑒𝑚 and 𝑒1. In case 𝐻 has more than one connected component, we only consider one
component, as the others are reduced equivalently.
We prove the lemma by arguing that there is a sequence of reduction rules, that eliminates

the vertices next to the gap. For the gap (𝑒𝑚, 𝑒1), we only consider 𝑒1, as 𝑒𝑚 can be eliminated
equivalently. Let {𝜈1, . . . , 𝜈𝑘 } be the vertices of 𝑒1, i.e., 𝑒 = {𝜈1, . . . , 𝜈𝑘 }. Since 𝐻 is a CA∗-
hypergraph, each vertex 𝜈 ∈ 𝑒 is part of all hyperedges 𝑒1, 𝑒2, . . . up to an individual index
1A similar idea of the proof is briefly described in Proposition 1 of [BFFS19].
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𝜈1

𝜈3

𝜈4

𝜈∗ = 𝜈2

𝑒1 𝑒2 . . . 𝑒𝑘 (𝜈∗ ) 𝑒𝑘 (𝜈∗ )+1 = 𝑒′1 . . .

𝜈6

𝜈7

𝜈8

𝜈9
𝜈5

𝜈6

𝜈7

𝜈8

𝜈9

Figure 4.2: Sketch of the elimination of a hyperedge 𝑒1 right to a gap. The hyperedges are arranged in a line
instead of a circle. One can imagine the gap to be from the right end of the sketch to the left side of 𝑒1 (or 𝑒′).

𝑘 (𝜈) := max{ 𝑗 | 𝜈 ∈ 𝑒 𝑗 }. Let 𝜈∗ := argmax𝜈∈𝑒1 𝑘 (𝜈) be the vertex with the largest 𝑘 (·), i.e., the
vertex that is contained in the most hyperedges starting from 𝑒1. This vertex dominates all
other vertices in 𝑒1 because 𝑘 (𝜈) ≤ 𝑘 (𝜈∗) holds for every 𝜈 ∈ 𝑒 per definition of 𝜈∗. Therefore,
after one round of the vertex domination rule, the hyperedge 𝑒1 only consists of the vertex 𝜈∗.
Consequently, the unit hyperedge rule is applicable. Therefore, 𝜈∗ has to be selected in a
hitting set and can safely be deleted together with all its incident hyperedges.
Then, we can consider the sub-hypergraph with the remaining vertices and the hyperedges

𝑒𝑘 (𝜈∗ )+1, . . . , 𝑒𝑚 . This is again a CA∗-hypergraph with a (bigger) gap and can thus be treated
similarly. One step of this process is shown in Figure 4.2.
As a result, we get a sequence of reduction rule applications, that eliminate the hyperedges

next to a gap step by step. Repeating this process eliminates all vertices and hyperedges of
each connected component of 𝐻 .

The algorithm described in Lemma 4.2 only works if there is at least one gap in the
hypergraph either before or during the application of the reduction rules. For general CA∗-
hypergraphs, this might not be the case. Therefore, we provide two fixes to this problem in the
following two sections. In Section 4.2 we motivate why the reduction rules often create gaps in
Hyper-GIRGs with𝑇 = 0. Additionally, even if the reduction rules are not enough, we describe
a branching rule in Section 4.3 that deterministically creates one in general CA∗-hypergraphs.

4.2 Gap Probability

In this section, we describe how the reduction rules create gaps around vertices and determine
how likely that happens. In particular, we prove that in every Hyper-GIRG 𝐻 there is a.a.s. at
least one gap after one round of each reduction rule. For that, let 𝐻1 be the Hyper-GIRG 𝐻

after one round of the vertex domination rule, and 𝐻2 the hypergraph 𝐻1 after an additional
round of the hyperedge domination rule. Our goal for this section is to find the probability by
which a gap exists in 𝐻2 around sufficiently heavy vertices in 𝐻 .

So far, we defined gaps to only exist between two hyperedges. To start this section, we
explain what we mean by saying “a gap exists around a vertex”. For that, let 𝜈 = (𝑥𝜈 ,𝑤𝜈 )
be a (sufficiently large) vertex in 𝐻1, i.e., 𝜈 is not dominated by any other vertex in 𝐻 . As
there cannot be any vertex domination in 𝐻1, all other vertices (or more specifically their cold
areas) contain at most one end of 𝜈 . Therefore, we can refer to vertices 𝜈 ′ = (𝑥 ′𝜈 ,𝑤 ′

𝜈 ) whose
cold areas overlap with the one of 𝜈 as vertices that reach into 𝜈 . Depending on whether they
contain the left or right end of 𝜈 , they reach into 𝜈 from the left or the right. Let 𝜈𝐿 and 𝜈𝑅
be the vertices that reach the furthest into 𝜈 from the left and the right, respectively. Based
on this notation, we define the interval 𝐼 (𝜈) for every vertex 𝜈 in 𝐻1 to the interval from the
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𝜈 𝜈

𝐼 (𝜈)

𝑒 𝑒

𝐻1 𝐻2

𝜈𝐿

𝜈𝑅

𝜈𝐿

𝜈𝑅

Figure 4.3: The process shows how gaps are formed after one round of the vertex domination rule (left) and
after an additional round of the hyperedge domination rule (right). The vertex 𝜈 is sufficiently heavy to have an
interval 𝐼 (𝜈) (in red) that is only covered by 𝜈 . The two remaining vertices in both sketches are the vertices that
reach the furthest into the cold area of 𝜈 from both sides respectively. As there is one hyperedge in 𝐼 (𝜈), all other
hyperedges in the cold area of 𝜈 are dominated (inside the green intervals). Therefore they are removed by the
hyperedge domination rule (right).

right end of 𝜈𝐿 to the left end of 𝜈𝑅 . In case this interval exists, i.e., 𝑅(𝜈𝐿) < 𝐿(𝜈𝑅), it is per
definition only covered by 𝜈 in 𝐻1. Any hyperedge 𝑒 ∈ 𝐸 included in 𝐼 (𝜈) only contains 𝜈 and
thus dominates all other hyperedges containing 𝜈 . As a result, (𝜈, 𝑒) is an isolated edge in the
bipartite representation of 𝐻2. As 𝜈 is the only vertex that can cover 𝑒 , it has to be selected
in every hitting set (unit hyperedge rule). Selecting 𝜈 allows to remove 𝑒 from 𝐻2, too. This
leads to a gap between the closest hyperedges next to the former position of 𝑒 that remain in
𝐻2 after removing 𝑒 . We call this gap to exist around 𝜈 (or 𝑒). The whole process can be seen
in Figure 4.3.
For the majority of this section, we argue with an 𝜀 ∈ (0, 1) that we specify further at the

end. This 𝜀 defines the size of the interval 𝐼 :=
[
− 1
𝑚1−𝜀 ; 1

𝑚1−𝜀
]
centered around 𝑥𝜈 = 0, which

is sufficiently large enough to contain a.a.s. at least one hyperedge in 𝐻 (see Lemma 4.3). We
will show in Lemma 4.4 that for any vertex 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) ∈ 𝑉 with𝑤𝜈 ∈ Ω (𝑛𝜀) there is a.a.s.
no other vertex in 𝐻1 reaching into that interval 𝐼 . With those two lemmata, we later show
that there is a.a.s. at least one gap in 𝐻 (Theorem 4.5). We start by showing in Lemma 4.3 that
the interval 𝐼 is large enough to contain at least one hyperedge.

Lemma 4.3: Let 𝜀 ∈ (0, 1) and 𝑐 > 0 be constants, and 𝐼 an interval with size |𝐼 | = 𝑐𝑚−(1−𝜀 )
.

Then there is at least one hyperedge in 𝐼 a.a.s. with probability 1 − 𝑒−𝑐𝑛
𝜀

.

Proof. The probability that at least one out of the 𝑚 hyperedges is placed into 𝐼 can be
expressed as:

ℙ [∃𝑒 ∈ 𝐸 : 𝑥𝑒 ∈ 𝐼 ] = 1 − ℙ

[⋂
𝑒∈𝐸

¬[𝑥𝑒 ∈ 𝐼 ]
]
.

As all hyperedges are drawn independently, this is equal to

= 1 − (1 − ℙ [𝑒 ∈ 𝐼 ])𝑚

Since all hyperedges are uniformly sampled in [0; 1], the probability for one hyperedge to lie
in an interval is exactly the size of this interval, i.e., ℙ [𝑒 ∈ 𝐼 ] = 𝑚−(1−𝜀 ) . Therefore, this is
equal to

= 1 −
(
1 − 𝑐

𝑚1−𝜀

)𝑚
.
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𝑤𝜈

0

𝜈 ′

𝑆

𝐿 𝑟

𝐴

𝑤min

Figure 4.4: A sketch of Hyper-GIRG generated with 𝑇 = 0. It shows a vertex 𝜈 and a random vertex 𝜈 ′ that
covers a part of the interval 𝐼 . This interval 𝐼 has a radius of 𝑟 around the position of vertex 𝜈 , which is set to be 0.
The area marked as “A” indicates all places in which such a vertex 𝜈 ′ can lie.

Using Lemma 2.7 with 𝑏 := 1 − 𝜀 ∈ (0; 1), we find that the term
(
1 − 𝑐

𝑚1−𝜀

)𝑚
tends to 0 for

𝑚 → ∞ with

≥ 1 − 𝑒−𝑐𝑛
𝜀

.

As a result, ℙ [∃𝑒 ∈ 𝐸 : 𝑒 ∈ 𝐼 ] tends to 1 for 𝑚 → ∞, and also for 𝑛 → ∞ as we assumed
𝑚 ∈ Θ (𝑛).

For the rest of this section, let 𝜈 = (𝑥𝜈 = 0,𝑤𝜈 ) ∈ 𝑉 be a vertex in 𝐻 with a weight of
𝑤𝜈 ∈ Ω (𝑛𝜀). In the following Lemma 4.4, we show that 𝜈 is sufficiently heavy such that the
interval 𝐼 from the last lemma is a.a.s. only covered by 𝜈 in 𝐻1.

Lemma 4.4: Let 𝐻 = (𝑉 , 𝐸) ∼ H(𝑛,𝑚, 𝛽,𝑤min,𝑤𝑒 ,𝑇 = 0, 𝑎) and 𝜈 = (𝑥𝜈 ,𝑤𝜈 ) ∈ 𝑉 a vertex in

𝐻 with a weight 𝑤𝜈 ∈ Ω (𝑛𝜀). Further, let 𝑉1 be the set of vertices that remain after the first

round of the vertex domination rule. Then, 𝜈 is a.a.s. the only vertex in𝑉1 that covers the interval

𝐼 with radius 𝑟 :=𝑚−(1−𝜀 )
around 𝑥𝜈 . The exact probability is in 1 −O

(
𝑛−𝜀 (𝛽−2) )

.

Proof. Without loss of generality, we assume the vertex 𝜈 to be at position 𝑥𝜈 = 0. We show,
that there is a.a.s. no vertex 𝜈 ′ = (𝑥 ′𝜈 ,𝑤 ′

𝜈 ) that (1) is not dominated by 𝜈max and (2) has its left
end 𝐿 to the left of the right interval bound 𝑟 . With the same probability, there is no similar
vertex on the other side of 𝜈 . If both events occur a.a.s. then their conjunction occurs a.a.s.
too.
The plan for this proof is to show that a single random vertex does not fulfill both properties

(1) and (2) with more than high probability. Then, we find the result by using a union bound
over all vertices. The area 𝐴 in Figure 4.4 visualizes all possible places, in which a vertex 𝜈 ′
could lie that fulfills both properties (1) and (2). The left border of 𝐴 ensures that 𝜈 ′ is not
dominated by 𝜈 . The right border ensures that the left end 𝐿 of 𝜈 ′ reaches into the interval 𝐼 .
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First, we find an upper bound to the probability ℙ [𝜈 ′ ∈ 𝐴] with the help of Lemma 3.1. For
that, we use the fact that 𝐴 is exactly the area in which all vertices lie that cover the interval
between the right end of 𝐼 , i.e., 𝑟 = 𝑚−(1−𝜀 ) , and the right end of 𝜈 , i.e., the melting radius
𝑚𝑟 (𝜈). Therefore, the interval 𝐽 , we plug into Lemma 3.1, has a size of𝑚𝑟 (𝜈) −𝑚−(1−𝜀 ) . The
probability by which a vertex 𝜈 ′ with random position and weight covers 𝐽 is thus

ℙ [𝜈 ′ ∈ 𝐴] = ℙ [𝜈 ′ covers 𝐽 ]

=

(
2
𝑎𝑤𝑒

𝑊

)𝛽−1
𝑤

𝛽−1
min

1
𝛽 − 2

(
( |𝐽 |)−(𝛽−2) − (1 + |𝐽 |)−(𝛽−2)

)
≤

(
2
𝑎𝑤𝑒

𝑊

)𝛽−1
𝑤

𝛽−1
min

1
𝛽 − 2

|𝐽 |−(𝛽−2) .

With𝑊 ∈ Θ (𝑛) and |𝐽 | ∈ Θ
(
𝑛−(1−𝜀 ) ) this term is asymptotically

∈ Θ
(
𝑛−(𝛽−1)𝑛 (1−𝜀 ) (𝛽−2)

)
= Θ

(
𝑛𝜀 (2−𝛽 )−1

)
.

As we assume 𝛽 > 2, the exponent 𝜀 (2 − 𝛽) − 1 is strictly smaller than −1 for all 𝜀 ∈ (0; 1).
As a result, a random vertex 𝜈 ′ lies with more than high probability not in 𝐴. With a union
bound over all vertices, we find that there is a.a.s. no vertex 𝜈 ′ that intersects the interval 𝐽
with radius 𝑟 :=𝑚−(1−𝜀 ) around 𝑥𝜈 .

ℙ


⋂

𝜈 ′∈𝑉 \{𝜈 }
¬[𝜈 ′ ∈ 𝐴]


= 1 − ℙ


⋃

𝜈 ′∈𝑉 \{𝜈 }
[𝜈 ′ ∈ 𝐴]


≥ 1 − 𝑛ℙ [𝜈 ′ ∈ 𝐴]

= 1 −O
(
𝑛−𝜀 (𝛽−2)

)

With Lemmas 4.3 and 4.4 we are able to prove that the reduction rules create a.a.s. at least
one gap during their application in 𝐻 . Together with Lemma 4.2 this results in the following
Theorem 4.5.

Theorem 4.5: The reduction rules reduce every Hyper-GIRG, that was generated with the

threshold variant, to a trivial kernel a.a.s.

Proof. Let 𝐻 = (𝑉 , 𝐸) be a Hyper-GIRG generated with the threshold variant, 𝐻1 = (𝑉1, 𝐸1)
the hypergraph 𝐻 after one round of the vertex domination rule, and 𝐻2 the hypergraph
𝐻1 after an additional round of the hyperedge domination rule. Lemma 4.2 shows that the
reduction rules reduce 𝐻 to a trivial kernel if there is at least one gap before or during the
execution of the reduction rules. In this proof, we show that there is a.a.s. a gap around the
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heaviest vertex of 𝐻 in 𝐻2. For that, let 𝜈max = (0,𝑤max) be the vertex with the maximum
weight among all vertices in 𝐻 . To bound the gap probability for 𝜈max (and thus also for 𝐻 ),
we use Lemmas 4.3 and 4.4 in the following way

ℙ [𝐻 has gap] ≥ ℙ [𝜈max has gap] ≥ ℙ

[∃𝑒 : 𝑥𝑒 ∈ 𝐼max] ∩
⋂

𝜈 ′∈𝑉 \𝜈max

[𝜈 ′ ∉ 𝐴max]


where 𝐼max and 𝐴max are defined as in the proof of Lemma 4.4 with respect to 𝜈max. Since
hyperedges and vertices are generated independently, this is equal to

= ℙ [∃𝑒 : 𝑥𝑒 ∈ 𝐼max] · ℙ


⋂
𝜈 ′∈𝑉 \𝜈max

[𝜈 ′ ∉ 𝐴max]
 .

The two probabilities are given in Lemmas 4.3 and 4.4 respectively for a vertex with a weight
in Ω (𝑛𝜀). In this proof, we set 𝜀 = 1

𝛽
and condition both events to the event that there is

indeed a vertex with a weight in Ω
(
𝑛

1
𝛽

)
. This yields the lower bound

≥ ℙ

[
∃𝑒 : 𝑥𝑒 ∈ 𝐼 | 𝑤max ≥ 𝑛

1
𝛽

]
ℙ

[
𝑤max ≥ 𝑛

1
𝛽

]
· ℙ


⋂

𝜈 ′∈𝑉 \𝜈max

[𝜈 ′ ∉ 𝐴max]
����� 𝑤max ≥ 𝑛

1
𝛽

 ℙ
[
𝑤max ≥ 𝑛

1
𝛽

]
. (4.1)

In the following, we show that each of the factors tends to 1 for 𝑛 → ∞. According to
Lemmas 4.3 and 4.4, the two conditional probabilities tend to 1, as

ℙ

[
∃𝑒 : 𝑥𝑒 ∈ 𝐼max | 𝑤max ≥ 𝑛

1
𝛽

]
≥ 1 − 𝑒−𝑐𝑛

1
𝛽 (𝐿𝑒𝑚𝑚𝑎 4.3)

ℙ


⋂

𝜈 ′∈𝑉 \𝜈max

[𝜈 ′ ∉ 𝐴max]
����� 𝑤max ≥ 𝑛

1
𝛽

 ∈ 1 −O
(
𝑛
− 𝛽−2

𝛽

)
. (𝐿𝑒𝑚𝑚𝑎 4.4)

Finally, it must be shown, that also ℙ

[
𝑤max ≥ 𝑛

1
𝛽

]
tends to 1 for 𝑛 → ∞. The maximum

weight is above a threshold if and only if not all weights are below the threshold. Therefore,
it holds that

ℙ

[
𝑤max ≥ 𝑛

1
𝛽

]
= 1 − ℙ

[⋂
𝜈∈𝑉

[
𝑤𝜈 < 𝑛

1
𝛽

] ]
.

The probability ℙ

[
𝑤𝜈 < 𝑛

1
𝛽

]
, that a single vertex with a randomly drawn weight is below a

threshold, can be expressed with the CDF 𝐹𝛽 of the power-law distribution. As, additionally,
all weights are drawn independently, we get

= 1 − 𝐹 (𝑛
1
𝛽 )𝑛 .

= 1 −
(
1 − Θ

(
𝑛

1
𝛽

)1−𝛽 )𝑛
= 1 −

(
1 − Θ

(
1

𝑛
𝛽−1
𝛽

))𝑛
.
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According to Lemma 2.7, the latter term tends to 0, as 𝛽−1
𝛽

< 1 for all 𝛽 > 2. As a result, all
factors in Equation (4.1) tend to 1. Therefore, the probability that the reduction rules create a
gap in 𝐻 tends to 1 for 𝑛 → ∞.

Note that the probability calculated in the proof of Theorem 4.5 decreases with increasing 𝛽 .
Therefore, it can happen that the reduction rules do not create any gap in 𝐻 , especially for
small 𝑛 and high 𝛽 . In this case, we show a way in Section 4.3 to create gaps deterministically
while retaining the ability to find an optimal solution in it.

4.3 Creating Gaps via Branching-Rule

In this section, we again consider the more general CA∗-hypergraph. However, the results
that we find for these hypergraphs still hold for Hyper-GIRGs generated with the threshold
variant due to Lemma 4.1. As usual in this setting, let 𝐻 = (𝑉 , 𝐸) be a CA∗-hypergraph with
cyclic edge order ≺◦

𝐸
:= ⟨𝑒1, . . . , 𝑒𝑚⟩◦. The goal of this section is to describe a branching rule

that creates a gap in sperner CA-hypergraphs. To be able to apply this rule to the given CA∗-
hypergraph𝐻 , we first describe how the reduction rules turn𝐻 into a sperner CA-hypergraph.
We do this in two steps. In the first step, we show that one round of the vertex domination
rule turns 𝐻 into a (primal) CA-hypergraph 𝐻1 = (𝑉1, 𝐸1). The second step is to show that
an additional round of the hyperedge domination rule makes the CA-hypergraph 𝐻1 sperner.
The following Lemma 4.6 shows step one, i.e., the transformation of a CA∗-hypergraph into a
CA-hypergraph via the vertex domination rule.

Lemma 4.6: After one round of the vertex domination rule, every CA
∗
-hypergraph is also a

(primal) CA-hypergraph.

Proof. Let 𝐻 = (𝑉 , 𝐸) be a CA∗-hypergraph after one round of the vertex domination rule.
For the proof, we need to find a cyclic order of the vertices ≺◦

𝑉
= ⟨𝜈1, . . . , 𝜈𝑛⟩◦ such that all

hyperedges contain a consecutive set of vertices in that order. Since 𝐻 is a CA∗-hypergraph
there is already a cyclic order ≺◦

𝐸
:= ⟨𝑒1, . . . , 𝑒𝑚⟩◦ on the hyperedges. Based on that, we order

the vertices 𝜈 ∈ 𝑉 according to their left end 𝐿(𝜈), that is the hyperedge 𝑒 ∈ 𝐸 (𝜈) that does
not have a direct predecessor in 𝐸 (𝜈). Formally, 𝑢 ≺𝑉 𝜈 holds, if the interval of 𝑢 contains the
left end of 𝜈 .

It remains to show that every hyperedge contains a set of consecutive vertices in this cyclic
order ≺◦

𝑉
. For that, assume that there is an 𝑒 ∈ 𝐸 with vertices 𝑢, 𝜈 ∈ 𝑒 such that the interval

from 𝑢 to 𝜈 as well as the interval from 𝜈 to 𝑢 in ≺◦
𝑉
contains a vertex that is not in 𝑒 . Let

𝑤𝑢 ∈ 𝑉 be that vertex in the interval from𝑢 to 𝜈 and𝑤𝜈 ∈ 𝑉 be that vertex in the interval from
𝜈 to 𝑢. This situation is shown in the left sketch of Figure 4.5. Since 𝐻 is a CA∗-hypergraph,
𝐸 (𝑢) and 𝐸 (𝜈) are intervals on ≺◦

𝐸
. We know that 𝑢 and 𝜈 share at least one edge, namely

𝑒 . Therefore, their intervals overlap. Without loss of generality, let 𝐿(𝑢) be the left end of
the interval 𝐸 (𝑢) ∪ 𝐸 (𝜈) and 𝑅(𝜈) the right end. This situation is shown on the right side of
Figure 4.5. As 𝑢, 𝜈 ∈ 𝑒 , 𝑒 is in the interval 𝐸 (𝑢) ∩ 𝐸 (𝜈), i.e., the interval from 𝐿(𝜈) to 𝑅(𝑢). We
now know, that in the joint interval 𝐸 (𝑢) ∪ 𝐸 (𝜈) there is the following ordering:

𝐿(𝑢) ≺◦
𝐸 𝐿(𝑤𝑢) ≺◦

𝐸 𝐿(𝜈) ≺◦
𝐸 𝑒 ≺◦

𝐸 𝑅(𝑢) ≺◦
𝐸 𝑅(𝜈). (4.2)

Additionally, we know that 𝑤𝑢 ∉ 𝑒 . Therefore 𝐸 (𝑤𝑢) ends before 𝑒 , i.e., 𝑅(𝑤𝑢) ≺◦
𝐸
𝑒 . As

a consequence of Equation (4.2), 𝑅(𝑤𝑢) ≺ 𝑅(𝑢) holds. This is a contradiction because 𝑢
dominates𝑤𝑢 , which is impossible after a round of the vertex domination rule.
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𝑢

𝜈

𝑤𝜈

𝐸 (𝑢)

𝐸 (𝜈)

𝐸 (𝑤𝑢)𝑤𝑢

𝑒 𝐿(𝑢)

𝐿(𝑤𝑢 )

𝐿(𝜈)𝑒

𝑅(𝑢)

𝑅(𝜈)

Figure 4.5: Proof sketch for Lemma 4.6. A (primal) CA-hypergraph with the vertices 𝑢,𝑤𝑢 , 𝜈,𝑤𝜈 and one
hyperedge that skips the vertex𝑤𝑢 (left), and the same situation in the dual graph (right).

As a result, all hyperedges contain a set of consecutive vertices in ≺◦
𝑉
. Therefore, 𝐻 is a

CA-hypergraph.

As a result of Lemma 4.6, we know that 𝐻1 is a (primal) CA-hypergraph. For the rest of this
section let ≺◦

𝑉
= ⟨𝜈1, . . . , 𝜈𝑛⟩◦ be its cyclic vertex order, which is described in the proof. An

additional round of the hyperedge domination rule makes 𝐻1 sperner, since all hyperedges,
that contain other hyperedges entirely, are dominated by those and thus eliminated in this
step. Let 𝐻2 = (𝑉2, 𝐸2) be the resulting sperner CA-hypergraph resulting from this step. Note
that, 𝐻2 is still a CA∗-hypergraph since the round of vertex domination only removed some
vertices, which does not make the cyclic hyperedge order of the original 𝐻 invalid.

However, for the description of the following branching rule, we only need that 𝐻2 is
a sperner CA-hypergraph. The idea of this branching rule is to branch over all necessary
hitting sets S𝑒 of an arbitrary hyperedge 𝑒 = {𝜈1, . . . , 𝜈𝑘 } ∈ 𝐸2. For the following notations,
we shift the indices in the cyclic hyperedges order ≺◦

𝑉
such that the left end of 𝑒 is 𝜈1 and

the right end is 𝜈𝑘 . With that, we define 𝑆0 := {𝐿(𝑒), 𝑅(𝑒)} and 𝑆𝑖 := {𝜈𝑖} (for 𝑖 ∈ [𝑘]) to be
elements of S𝑒 , i.e., all necessary hitting set candidates for 𝑒 . For each 𝑖 ∈ {0, . . . , 𝑘} let 𝐶𝑖 be
the child-hypergraph from the candidate 𝑆𝑖 , that is the hypergraph 𝐻2 without the vertices of
𝑒 and all hyperedges covered by the vertices in 𝑆𝑖 . We prove in Lemma 4.7 that the branching
rule is safe and the set S𝑒 is complete. Further, we show in Lemma 4.8 that every child instance
𝐶𝑖 with 𝑖 ∈ {0, . . . , 𝑘} has a gap that can be used by the algorithm described in Lemma 4.2.
Due to the last statement, the above branching rule earns its name cut-branching-rule. An
example of the application of the cut-branching-rule is illustrated in Figure 4.6.

Lemma 4.7: For each 𝑒 ∈ 𝐸, 𝐻2 has a minimum hitting set of size ℎ ∈ ℕ if and only if one of

the graphs 𝐶𝑖 (for 𝑖 ∈ {0, . . . , 𝑘}) has a minimum hitting set of size ℎ − |𝑆𝑖 |.

Proof. First, we prove the following claim: For every sperner CA-hypergraph 𝐻 = (𝑉 , 𝐸) and
every hyperedge 𝑒 ∈ 𝐸, there is a minimum hitting set 𝑆 of 𝐻 , such that 𝑆 either contains
exclusively one vertex in 𝑒 or both ends 𝐿(𝑒) and 𝑅(𝑒) of 𝑒 . In the following, we describe a
transformation of an arbitrary minimum hitting set 𝑆∗ of 𝐻 into a minimum hitting set 𝑆 ′
of 𝐻 with that property. For that, we make a case distinction over the size of 𝑆∗𝑒 := 𝑆∗ ∩ 𝑒 .
Since 𝑒 is covered by every hitting set, 𝑆∗𝑒 is not empty. If |𝑆∗𝑒 | = 1, 𝑆∗ contains exclusively
one vertex in 𝑒 and thus already satisfies the condition for 𝑆 ′. Otherwise, if |𝑆∗𝑒 | ≥ 2, then
𝑆∗ \ 𝑆∗𝑒 ∪ {𝐿(𝑒), 𝑅(𝑒)} is also a minimum hitting set. Note that one can conclude from this,
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𝜈3𝜈1
𝜈2

𝜈3𝜈1
𝜈2

𝑆0 = {𝜈1, 𝜈3}

𝜈3𝜈1
𝜈2

𝑆1 = {𝜈1}

𝜈3𝜈1
𝜈2

𝑆2 = {𝜈2}

𝜈3𝜈1
𝜈2

𝑆3 = {𝜈3}

Figure 4.6: An example for the cut-branching-rule. The sub-hypergraph, which is shown on the left side,
is the input hypergraph. As 𝐻2 is a CA-hypergraph, there is a cyclic vertex order ≺◦

𝑉
in which the vertices are

depicted. The hyperedges of 𝐻2 and its children (shown on the right) are displayed as arcs and represent their
intervals on ≺◦

𝑉
. Hyperedges that are not important in 𝐻2 are slightly lighter. The blue hyperedge is chosen for

the cut-branching-rule, which can be seen from the indices that start with 1 at the left end of the blue hyperedge.
In the child-hypergraphs, the hyperedges that were removed are outlined.

that every hyperedge and every hitting set of 𝐻 share at most two vertices. To prove that,
we assume that 𝑆∗ \ 𝑆∗𝑒 ∪ {𝐿(𝑒), 𝑅(𝑒)} is not a hitting set (since |𝑆∗𝑒 | ≥ |{𝐿(𝑒), 𝑅(𝑒)}| this is
equivalent to the assumption that 𝑆∗ \ 𝑆∗𝑒 ∪ {𝐿(𝑒), 𝑅(𝑒)} is not a minimum hitting set). Then,
𝑆∗𝑒 has to cover some hyperedge 𝑒′ ∈ 𝐸 that is not covered by {𝐿(𝑒), 𝑅(𝑒)}. This is only
possible, if 𝑒′ ⊆ 𝑒 , which is a contradiction to the assumption that 𝐻 is sperner. Therefore,
𝑆∗ \ 𝑆∗𝑒 ∪ {𝐿(𝑒), 𝑅(𝑒)} is a hitting set of 𝐻 , which proves the claim.
With this, we can prove the lemma. For the “⇒”-direction, let 𝑆 be a minimum hitting set

of 𝐻2 and ℎ := |𝑆 |. Because of the claim, we can assume that 𝑆 ∩ 𝑒 is one of the alternatives
{𝐿(𝑒), 𝑅(𝑒)}, {𝜈1}, . . . , {𝜈𝑘 }. Let 𝑙 ∈ {0, . . . , 𝑘} be the index such that 𝑆 ∩ 𝑒 = 𝑆𝑙 . We show that
𝑆 \ 𝑆𝑙 is a minimum hitting set for the child-hypergraph 𝐶𝑙 . Firstly, 𝑆 \ 𝑆𝑙 is a hitting set of 𝐶𝑙 ,
because 𝐶𝑙 contains exactly those hyperedges of 𝐻2 that are not covered by 𝑆𝑙 , and 𝑆 covers
all hyperedges of 𝐻2. Secondly, 𝑆 \ 𝑆𝑙 is minimum, because every smaller hitting set of 𝐶𝑙

would induce a smaller hitting set than 𝑆 for 𝐻2.
For the “⇐”-direction, let 𝐶∗ be one of the child-instances of 𝐻2 that induces a minimum

hitting set for 𝐻2, i.e., the union of 𝑆∗, a minimum hitting set of 𝐶∗, and 𝑆∗𝑒 , the respective
hitting set for 𝑒 , has minimum size among all child hypergraphs of 𝐻2. This union 𝑆min :=
𝑆∗ ∪ 𝑆∗𝑒 is a hitting set for 𝐻2 because all hyperedges that are not covered by 𝑆∗𝑒 are covered
by 𝑆∗ by definition of 𝑆∗. We show that this union is also a minimum hitting set for 𝐻2.
For that, we assume that there is a smaller hitting set 𝑆 ′min for 𝐻2 with 𝑆 ′𝑒 := 𝑒 ∩ 𝑆 ′min and
𝑆 ′ := 𝑆min \ 𝑆 ′𝑒 . Because of the claim, we can assume that 𝑆 ′𝑒 is one of the alternatives
{𝐿(𝑒), 𝑅(𝑒)}, {𝜈1}, . . . , {𝜈𝑘 }. Thus, a hitting set with equal size as 𝑆 ′min would have been found
in the respective child hypergraph of 𝑆 ′𝑒 . As a result, the union 𝑆min := 𝑆∗ ∪ 𝑆∗𝑒 would not be
minimal among the child hypergraphs of 𝐻2, which is a contradiction to the choice of 𝐶∗.

As a result of Lemma 4.7, we know that the setS𝑒 of hitting set candidates for the hyperedge 𝑒
is complete. Additionally, we know that applying the branching rule described above retains
the ability to find a minimum hitting set for the original hypergraph 𝐻2 (and thus also for 𝐻 ).
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To solve the resulting child instances 𝐶𝑖 (with 𝑖 ∈ {0, . . . , 𝑘}), one can use the algorithm
described in Lemma 4.2. For this to run correctly, we show that each of the child-hypergraphs
has at least one gap. In fact, we show a slightly stronger statement in the following Lemma 4.8.

Lemma 4.8: Let 𝐻 = (𝑉 , 𝐸) be a CA
∗
-hypergraph after one round of the vertex domination

rule, and 𝑒 ∈ 𝐸 an arbitrary hyperedge in 𝐻 . Then, removing all vertices in 𝑒 and all hyperedges

covered by an arbitrary subset 𝑠 ∈ 2𝑒 \ ∅ results in a CA
∗
-hypergraph with a gap around 𝑒 .

Proof. Let 𝑒 ∈ 𝐸 and 𝑠 ∈ 2𝑒 \ ∅ be fixed, and let 𝐻 ′ be the hypergraph resulting from the
removal of the vertices in 𝑒 and all hyperedges covered by the vertices in 𝑠 . Further, let ≺◦

𝐸

be the cyclic hyperedge order of 𝐻 . As 𝐻 ′ is just a sub-hypergraph of 𝐻 , ≺◦
𝐸
is also valid for

𝐻 ′. Now assume that there is still a vertex 𝜈 ∈ 𝑉 in 𝐻 ′, that is connected to the left and right
neighbor 𝑒𝑙 , 𝑒𝑟 ∈ 𝐸 of 𝑒 with respect to ≺◦

𝐸
. Since 𝐻 is a CA∗-hypergraph, 𝐸 (𝜈) is an interval

on ≺◦
𝐸
. As 𝐸 (𝜈) contains both direct neighbors of 𝑒 by definition of 𝜈 , 𝑒 has to be in 𝐸 (𝜈) too.

This is a contradiction to the assumption that all vertices of 𝑒 were removed in 𝐻 ′.

The work of this chapter can be concluded in an algorithm that solves HittingSet on
CA∗-hypergraph in polynomial time using only the reduction rules and one application of
the described cut-branching-rule.2 This algorithm has no exponential runtime as the set of
necessary hitting set candidates S𝑒 for cut-branching-rule is only linear in the size of the
chosen hyperedge. For Hyper-GIRGs from the threshold variant, a subclass of CA∗-hypergraph
(see Lemma 4.1), this algorithm is even faster in expectation, since they are likely to either
create gaps during the application of the reduction rules (see Section 4.2) or have small
hyperedges afterward. In fact, Hyper-GIRGs have a constant expected hyperedge size (see
Lemma 3.5), which is much better than the worst-case linear size in general CA∗-hypergraphs.

2Note that there is already a polynomial algorithm due to Elbassioni and Rauf [ER10] for EdgeCover on
CA-hypergraphs, which is the dualized equivalent to HittingSet on CA∗-hypergraphs.
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5 The First Round of Vertex Domination

In the first round of the vertex domination rule, there is a number of vertices 𝑉dom that is
dominated, i.e., eliminated by this rule. In part (1) of Corollary 3.2 we found, that not even
vertices with constant weight or vertices with only one incidence are dominated with high
probability by another vertex. In fact, they are dominated by only constant probability. As
there are linearly many vertices with constant weight in Hyper-GIRGs independent of the
degree of heterogeneity, there are thus also expected linearly many vertices that are dominated,
i.e., 𝔼 [|𝑉dom |] ∈ Θ (𝑛). However, the constant in the Big-O notation highly depends on the
parameters of the Hyper-GIRG, especially on the power-law exponent 𝛽 (heterogeneity) and
the temperature 𝑇 (locality). This constant can be seen as the fraction of vertices that are
dominated which we denote as 𝐹dom. The goal of this section is to find a lower bound to
𝔼 [𝐹dom], i.e., the expected fraction of vertices that are dominated in Hyper-GIRGs and are
thus eliminated in the first round of the vertex domination rule. For that, we first focus on
the threshold variant in Section 5.1 and then extend the result to the binomial variant in
Section 5.2.
Both calculations are based on the same bound that we derive in the following. For that,

let 1𝜈 be the indicator variable for the event that a vertex 𝜈 ∈ 𝑉 is dominated in the generated
hypergraph. Then, it holds that 𝐹dom = 1

𝑛

∑
𝜈∈𝑉 1𝜈 . Therefore, the expected value of 𝐹dom

is exactly the probability for 𝜈 to be dominated if both the position and the weight of 𝜈 are
randomly drawn from the respective distributions:

𝔼

[∑
𝜈∈𝑉 1𝜈
𝑛

]
=

1
𝑛

∑︁
𝜈∈𝑉

𝔼 [1𝜈 ] = ℙ [1𝜈 = 1] .

As a result, we only need to focus on one vertex 𝜈 = (𝑥𝜈 = 0,𝑊𝜈 ) with a random variable
𝑊𝜈 ∼ PL(𝛽,𝑤min) as its weight. Using the PDF 𝑓𝑊𝜈

of 𝑊𝜈 (see Equation (2.11)), we can
integrate over all possible weights of 𝜈 using the law of total probability, such that

ℙ [1𝜈 = 1]

=

∫ ∞

𝑤min

ℙ [1𝜈 = 1 |𝑊𝜈 = 𝑤𝜈 ] 𝑓𝑊𝜈
(𝑤𝜈 ) d𝑤𝜈 . (5.1)

Further, let 𝐷 be a random variable representing the diameter of 𝜈 , and 𝑓𝐷 its (unknown) PDF.
Then, we can again integrate over all possible diameters of 𝜈 to get

=

∫ ∞

𝑤min

∫ 1

0
ℙ [1𝜈 = 1 |𝑊𝜈 = 𝑤𝜈 , 𝐷 = 𝑑] 𝑓𝐷 (𝑑 |𝑊𝜈 = 𝑤𝜈 ) 𝑓𝑊𝜈

(𝑤𝜈 ) d𝑑 d𝑤𝜈 . (5.2)

Based on Equation (5.2) we find lower bounds to 𝔼 [𝐹dom] for the threshold and the binomial
variant in the following two sections. In both cases, we use simplifications to avoid the
unknown PDF of the diameter 𝑓𝐷 and its second integral.
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5.1 In the Threshold Variant

In this section, we use the fact that the diameter of a vertex cannot exceed 2𝑚𝑟 (𝜈) in the
threshold variant due to the step-function-like incidence probability (from Equation (2.14)).
Since the probability for a vertex to be dominated decreases with increasing diameter, we
therefore find the lower bound

𝔼 [𝐹dom] ≥
∫ ∞

𝑤min

ℙ [𝜈 is dom. |𝑊𝜈 = 𝑤𝜈 , 𝐷 = 2𝑚𝑟 (𝜈)] 𝑓𝑊𝜈
(𝑤𝜈 ) d𝑤𝜈 . (5.3)

Based on that bound, we derive the following Lemma 5.1.

Lemma 5.1: In every Hyper-GIRG in the threshold variant, the expected fraction of vertices that

are eliminated by the first round of the vertex domination rule is at least

𝔼 [𝐹dom] ≥ 𝐹𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)
−𝑊𝑐 (𝛽 − 2)

2𝑎𝑤𝑒

(
1 − exp

(
− 2𝑎𝑤𝑒

𝑊𝑐 (𝛽 − 2)

) )
where 𝐹𝛽 is the CDF of the power-law distribution that the vertex weights follow.

Proof. We use Equation (5.3) to prove this bound. For that, let 𝜈 = (𝑥𝜈 ,𝑊𝜈 ) be a vertex with
power-law distributed weight𝑊𝜈 ∼ PL(𝛽,𝑤min) and diameter 𝐷 = 2𝑚𝑟 (𝜈). First, we find a
lower bound to the probability ℙ [𝜈 is dom.] using part (1) of Corollary 3.2, which yields

ℙ [𝜈 dom. cold] = 1 −
(
1 − ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

)𝑛
≥ 1 − exp

(
− 𝑛ℙ [NA(𝜈) ⊆ NAcold(𝑢)]

)
.

where 𝑢 is a vertex with a randomly drawn position and weight. As we make the assumption
NA(𝜈) ⊆ NAcold(𝜈), we can use the first equation from Lemma 3.1 using |𝐼 | = 2𝑚𝑟 (𝜈) and
writing 𝑐𝛽 := 2𝑎𝑤𝑒

𝑊𝑐
𝑤

𝛽−1
min

1
𝛽−2 to get

ℙ [NA(𝜈) ⊆ NAcold(𝑢)] ≥ ℙ [NAcold(𝜈) ⊆ NAcold(𝑢)]

= 2
𝑎𝑤𝑒

𝑊
𝑤

𝛽−1
min

1
𝛽 − 2

((
𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽
−

(
𝑊

2𝑎𝑤𝑒

+ 𝑊

𝑎𝑤𝑒

|𝐼 |
2

)2−𝛽 )
=
𝑐𝛽

𝑛

(
𝑤

2−𝛽
𝜈 −

(
𝑤𝜈 +

𝑊

2𝑎𝑤𝑒

)2−𝛽 )
≥

𝑐𝛽

𝑛

(
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽 )
.

This lower bound of the probability ℙ [NA(𝜈) ⊆ NAcold(𝑢)] is negative for𝑤𝜈 ≥ 𝑤min + 𝑊
2𝑎𝑤𝑒

.
Since every probability is non-negative, we will use the following lower bound instead

≥
𝑐𝛽

𝑛
·max

{
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
, 0

}
.

Therefore, we get for a vertex with fixed weight𝑤𝜈 and diameter 2𝑚𝑟 (𝜈) that

ℙ [𝜈 dom. cold] ≥
𝑐𝛽

𝑛
·max

{
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
, 0

}
. (5.4)
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5.1 In the Threshold Variant

Putting all things together yields

𝔼 [𝐹dom] =
∫ ∞

𝑤min

∫ 1

0
ℙ [𝜈 is dom. |𝑊𝜈 = 𝑤𝜈 , 𝐷 = 𝑑] 𝑓𝐷 (𝑑) 𝑓𝑊𝜈

(𝑤𝜈 ) d𝑑 d𝑤𝜈

≥
∫ ∞

𝑤min

ℙ [𝜈 dom. cold |𝑊𝜈 = 𝑤𝜈 , 𝐷 = 2𝑚𝑟 (𝜈)] 𝑓𝑊𝜈
(𝑤𝜈 ) d𝑤𝜈

≥
∫ ∞

𝑤min

(
1 − exp

(
− 𝑛ℙ [NAcold(𝜈) ⊆ NAcold(𝑢)]

)) 𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈

= 1 −
∫ ∞

𝑤min

exp
(
− 𝑛ℙ [NAcold(𝜈) ⊆ NAcold(𝑢)]

) 𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈

≥ 1 −
∫ ∞

𝑤min

exp

(
−𝑐𝛽 ·max

{
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
, 0

})
𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈 .

For the integrand, we find an upper bound that is easy to integrate by decreasing the exponents
from 2 − 𝛽 to 1 − 𝛽 . Thus, the new integral is

≥ 1 −
∫ ∞

𝑤min

exp

(
−𝑐𝛽 ·max

{
𝑤

1−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)1−𝛽
, 0

})
𝛽 − 1

𝑤
1−𝛽
min

𝑤
−𝛽
𝜈 d𝑤𝜈

= 1 −
[
𝛽 − 1

𝑤
1−𝛽
min

exp
(
𝑐𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)1−𝛽 )
·
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp
(
− 𝑐𝛽𝑤

1−𝛽
𝜈

)
𝑤

−𝛽
𝜈 d𝑤𝜈 + 𝐹𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

) ]
,

where 𝐹𝛽 is the CDF of PL(𝛽,𝑤min). The solution of the remaining integral is∫ 𝑤min+ 𝑊
2𝑎𝑤𝑒

𝑤min

exp
(
− 𝑐𝛽𝑤

1−𝛽
𝜈

)
𝑤

−𝛽
𝜈 d𝑤𝜈 =

1
𝑐𝛽 (𝛽 − 1)

[
𝑒−𝑥

]𝑐𝛽 (
𝑤min+ 𝑊

2𝑎𝑤𝑒

)1−𝛽
𝑐𝛽𝑤

1−𝛽
min

. (5.5)

As a result, we get the following lower bound for 𝔼 [𝐹dom]

= 𝐹𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)
− 1

𝑐𝛽𝑤
1−𝛽
min

(
1 − exp

(
−𝑐𝛽

(
𝑤

1−𝛽
min −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)1−𝛽 )) )
≥ 𝐹𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)
− 1

𝑐𝛽𝑤
1−𝛽
min

(
1 − exp

(
−𝑐𝛽𝑤1−𝛽

min

) )
.

The lower bound for 𝔼 [𝐹dom] from Lemma 5.1 is equal to

1 −𝑊𝑐 (𝛽 − 2)
2𝑎𝑤𝑒

(
1 − exp

(
− 2𝑎𝑤𝑒

𝑊𝑐 (𝛽 − 2)

) )
with an additive error in O

(
𝑛1−𝛽

)
. This error comes from the fact that the probability for a

vertex to have a weight linear in the combined weight of 𝑛 vertices is very small.

47



5 The First Round of Vertex Domination
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Figure 5.1: The diagrams compare the 𝐹dom from different experiments (in dotted lines) to the lower bound of
the expected value from Lemma 5.1 for different power-law exponents. The bound uses the expected value for𝑊𝑐 .
The left diagram has an 𝑎 of about 10, while Hyper-GIRGs for the right diagram have an 𝑎 of about 1.

The diagrams in Figure 5.1 show how tight this bound for 𝔼 [𝐹dom] is in different settings
and for different power-law exponents. The left diagram shows the setting presented in the
main experiment of [BFFS19] about public transportation systems. The hyperedge-vertex-
ration is set to 𝛿𝐸𝑉 = 0.1, and the scaling parameter is set to achieve a desired average degree
of 𝛿 = 2. The right diagram uses 𝛿 = 2 with 𝛿𝐸𝑉 = 1 and 𝛿 = 10 with 𝛿𝐸𝑉 = 0.2. Both settings
result in similar 𝑎 ≈ 1 and thus in a similar bound. Further, we used 𝑤min = 𝑤𝑒 = 1 and
|𝐸 | = 104 for all generated Hyper-GIRGs. For every real value in the diagrams we generated
ten Hyper-GIRGs, and depicted the mean of the resulting 𝐹dom. Especially for larger 𝛽 the
single results do not deviate much from the respected average. As the bound from Lemma 5.1
needs a value for the average vertex weight𝑊𝑐 , we chose the expected value 𝛽−1

𝛽−2𝑤min.
The left diagram shows that in Hyper-GIRGs, similar to many public transportation systems,

the bound predicts that a significant fraction of vertices are dominated, which coincides with
the experiments. For 𝛽 = 2.1 at least 94% are expected to be eliminated in the first round of
the vertex domination round, and at least 80% even for the less heterogeneous Hyper-GIRGs.
At 𝛽 = 5, the bound is off by about 15%. However, when we consider the fraction of vertices
that remain after the round of vertex domination, i.e., 1 − 𝐹dom, the bound is about five times
worse than the experiments imply.

For the right diagram, we generated Hyper-GIRGs with different values for 𝛿 and 𝛿𝐸𝑉 ,
which nevertheless have similar scaling parameters 𝑎. Therefore, the sizes of the cold areas
are equal for vertices with equal weights (up to the difference in the generated𝑊𝑐 ). The
difference is the number of hyperedges that are in those cold areas. Note that, increasing
solely the average degree would also increase the number of hyperedge in the cold areas.
However, the hyperedge-vertex-ratio has to be changed along with it, to ensure similar value
for 𝑎 and thus similar sizes for the cold areas. This is due to the fact that 𝑎 ≈ 𝛿

𝛿𝐸𝑉

1
2𝑤𝑒

for𝑇 = 0
and𝑊𝑐 ≈ 𝔼 [𝑊𝑐] (see Lemma 3.5 part (3)). The diagram shows that the bound is tighter the
more hyperedges are in the cold area of equally weighted vertices. This is because the left
and the right end tend to be closer to the borders of the cold area, which we assumed to be
the exact left and right end in the proof of the bound from Lemma 5.1.
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5.2 In the Binomial Variant

5.2 In the Binomial Variant

Now, we generalize the idea from Lemma 5.1 to find a lower bound to 𝔼 [𝐹dom] for 𝑇 > 0. To
do so, we look at the vertices 𝜈 that have their neighborhood area inside their cold area,

NA(𝜈) ⊆ NAcold(𝜈),

despite the temperature in the model. We call such vertices nice. In the following Lemma 5.2
we first find that, at least for low temperatures, the fraction of nice vertices is not negligible.
Additionally, we use a lower bound of the fraction of nice vertices to find a lower bound for
𝔼 [𝐹dom] with 𝑇 > 0.

Lemma 5.2: In every Hyper-GIRG in the binomial variant, the expected fraction of vertices that

are eliminated by the first round of the vertex domination rule is at least

𝔼 [𝐹dom] ≥ exp (−𝑐𝑇𝑤min)
(

𝑐𝑇

𝛽 − 2
·
[
𝑥2−𝛽

] 1
𝑐𝑇

+𝑤min

𝑤min

− (1 + 𝑐𝑇𝑤min)
𝛽 − 1

[
𝑥1−𝛽

] 1
𝑐𝑇

+𝑤min

𝑤min

)
− exp

(
𝑐𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
− 𝑐𝑇𝑤min

)
· 1
𝑐𝛽 (𝛽 − 1)

[
𝑒−𝑥

]𝑐𝛽 (
𝑤min+ 𝑊

2𝑎𝑤𝑒

)1−𝛽
𝑐𝛽𝑤

1−𝛽
min

− 0.542
𝑚

where 𝑐𝛽 := 2𝑎𝑤𝑒

𝑊𝑐
𝑤

𝛽−1
min

1
𝛽−2 and 𝑐𝑇 := 2𝛿𝐸𝑉𝑎 𝑤𝑒

𝑊𝑐

𝑇
1−𝑇 .

Proof. We use the same approach as in Lemma 5.1. There, we had two assumptions that
always hold in the threshold variant. The first one is that the size of the cold area is an upper
bound to the diameter of a vertex. The second one is that a vertex 𝜈 is dominated by another
vertex 𝑢 if and only if the cold area of 𝑢 covers the neighborhood area of 𝜈 . We describe the
latter scenario as a cold domination of 𝑢 on 𝜈 . However, in the binomial variant, a vertex 𝑢 may
dominate a vertex 𝜈 using a warm/liquid incidence. In the following, we rule those situations
out and thus get the lower bound for Equation (5.1)

𝔼 [𝐹dom] ≥
∫ ∞

𝑤min

ℙ [𝜈 dom. cold |𝑊𝜈 = 𝑤𝜈 ] 𝑓𝑊𝜈
(𝑤𝜈 ) d𝑤𝜈 .

Now, we get a lower bound by only considering the nice vertices. Thus, the law of total
probability yields

≥
∫ ∞

𝑤min

ℙ [𝜈 dom. cold | 𝜈 nice,𝑊𝜈 = 𝑤𝜈 ] ℙ [𝜈 nice |𝑊𝜈 = 𝑤𝜈 ] 𝑓𝑊𝜈
(𝑤𝜈 ) d𝑤𝜈 .

For the first term ℙ [𝜈 dom. cold | 𝜈 nice,𝑊𝜈 = 𝑤𝜈 ], we can use the lower bound from Equa-
tion (5.4) derived in Lemma 5.1. This is possible since we (again) only consider nice vertices.
Therefore, it holds that

ℙ [𝜈 dom. cold | 𝜈 nice,𝑊𝜈 = 𝑤𝜈 ] ≥ 1 − exp

(
−𝑐𝛽 max

{
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
, 0

})
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5 The First Round of Vertex Domination

where 𝑐𝛽 := 2𝑎𝑤𝑒

𝑊𝑐
𝑤

𝛽−1
min

1
𝛽−2 . For the second term ℙ [𝜈 nice |𝑊𝜈 = 𝑤𝜈 ], we are interested

in the probability that a vertex 𝜈 with fixed weight 𝑤𝜈 ≥ 𝑤min is nice. This is equal
to the probability that there are no incident hyperedges outside the cold area of 𝜈 , i.e.,
𝑁 𝜈

≤ (−𝑚𝑟 (𝜈)) ∪ 𝑁 𝜈
≥ (𝑚𝑟 (𝜈)) = ∅. Since a hyperedge 𝑒 with uniformly random position is in

𝑁 𝜈
≤ (−𝑚𝑟 (𝜈)) and 𝑁 𝜈

≥ (𝑚𝑟 (𝜈)) with the same probability, it holds that:

ℙ [𝜈 nice |𝑊𝜈 = 𝑤𝜈 ]

=

(
1 − 2ℙ

[
𝑒 ∈ 𝑁 𝜈

≤ (−𝑚𝑟 (𝜈))
] )𝑚

.

The probability ℙ
[
𝑒 ∈ 𝑁 𝜈

≤ (−𝑚𝑟 (𝜈))
]
is known from Lemma 3.4. Therefore, we get the follow-

ing formula and its lower bound

=

(
1 − 2𝑚𝑟 (𝜈)

𝑇

1 −𝑇

(
1 − (2𝑚𝑟 (𝜈))

1−𝑇
𝑇

) )𝑚
≥

(
1 − 2𝑚𝑟 (𝜈)

𝑇

1 −𝑇

)𝑚
.

To get a lower bound for that, we use Lemma 2.8 with 𝑎 := 2𝑚𝑟 (𝜈) 𝑇
1−𝑇 and 𝑏 := 𝛿𝐸𝑉 :

≥ exp (−𝑎𝑏) − 0.542
𝑏𝑛

.

In the following, we use 𝑐𝑇 := 2𝛿𝐸𝑉𝑎 𝑤𝑒

𝑊𝑐

𝑇
1−𝑇 , such that the formula can be written as

= exp (−𝑐𝑇𝑤𝜈 ) −
0.542
𝑚

.

Plugging these two bounds in, yields

𝔼 [𝐹dom]

≥
∫ ∞

𝑤min

(
1 − exp

(
−𝑐𝛽 max

{
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
, 0

}))
·
(
𝑒−𝑐𝑇𝑤𝜈 − 0.542

𝑚

)
𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈

(5.6)

≥
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

(
1 − exp

(
−𝑐𝛽

(
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽 )))
·
(
𝑒−𝑐𝑇𝑤𝜈 − 0.542

𝑚

)
𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈 .

For the rest of this proof, we find a solvable lower bound to this integral. To do so, we multiply
out the integrand and get the following four integrals

≥
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

𝑒−𝑐𝑇𝑤𝜈 𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈︸                                   ︷︷                                   ︸
(𝐼 )

−
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

0.542
𝑚

𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈︸                                 ︷︷                                 ︸
𝐼 𝐼

−
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp

(
−𝑐𝛽

(
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽 ))
𝑒−𝑐𝑇𝑤𝜈 𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈︸                                                                                          ︷︷                                                                                          ︸

(𝐼 𝐼 𝐼 )

+
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp

(
−𝑐𝛽

(
𝑤

2−𝛽
𝜈 −

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽 )) 0.542
𝑚

𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈︸                                                                                         ︷︷                                                                                         ︸
(𝐼𝑉 )

.
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To get a lower bound in total, we find a lower bound for the first integrals (I) and (IV), and an
upper bound for the integrals (II) and (III).

For (I) we find a lower bound, by using the tangent to the convex function 𝑓1(𝑥) := exp (−𝑐𝑇𝑥)
instead of the function itself. The function 𝑓1 is convex as

𝜕2

𝜕𝑥2

(
exp (−𝑐𝑇𝑥)

)
= 𝑐2𝑇 exp (−𝑐𝑇𝑥) > 0

(see C2-Characterization of convex functions). According to the C1-Characterization of convex
functions, every tangent of this function is a lower bound for all 𝑥 ∈ ℝ. The tangent to 𝑓1 at
𝑥 = 𝑤min is

𝑡𝑤min (𝑥) := exp (−𝑐𝑇𝑤min) − 𝑐𝑇 exp (−𝑐𝑇𝑤min) (𝑥 −𝑤min)
= − 𝑐𝑇 exp (−𝑐𝑇𝑤min) 𝑥 + exp (−𝑐𝑇𝑤min) (1 + 𝑐𝑇𝑤min) .

Since exponential functions are strictly positive, max(𝑡𝑤min (𝑤𝜈 ), 0) is a lower bound for 𝑓1,
and thus ∫ ∞

𝑤min

exp (−𝑐𝑇𝑤𝜈 )𝑤−𝛽
𝜈 d𝑤𝜈 ≥

∫ ∞

𝑤min

max(𝑡𝑤min (𝑤𝜈 ), 0)𝑤−𝛽
𝜈 d𝑤𝜈 .

The tangent 𝑡𝑤min is only positive for 𝑥 ≤ 1
𝑐𝑇

+𝑤min. Therefore, the integral is equal to

=

∫ 1
𝑐𝑇

+𝑤min

𝑤min

𝑡𝑤min (𝑤𝜈 )𝑤−𝛽
𝜈 d𝑤𝜈 .

The solution of this integral is

exp (−𝑐𝑇𝑤min)
(

𝑐𝑇

𝛽 − 2
·
[
𝑥2−𝛽

] 1
𝑐𝑇

+𝑤min

𝑤min
− (1 + 𝑐𝑇𝑤min)

𝛽 − 1

[
𝑥1−𝛽

] 1
𝑐𝑇

+𝑤min

𝑤min

)
.

To get the lower bound for the whole integral (I), one has to multiply this bound by 𝛽−1
𝑤

1−𝛽
min

.

For integral (II), the solution is 0.542
𝑚

𝐹𝛽

(
𝑤min + 𝑊

2𝑎𝑤𝑒

)
. Since weights linear in 𝑛 are highly

unlikely, 𝐹𝛽
(
𝑤min + 𝑊

2𝑎𝑤𝑒

)
is close to 1. Therefore, we use the upper bound 0.542

𝑚
for the integral

(II) instead.
For integral (III), i.e.,

exp

©«
𝑐𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
︸                     ︷︷                     ︸

:=𝐴

ª®®®®®¬
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp
(
−𝑐𝛽𝑤2−𝛽

𝜈

)
𝑒−𝑐𝑇𝑤𝜈 𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈

we get an upper bound by decreasing the absolute value of the exponent in the following way

≤ exp(𝐴) ·
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp
(
−𝑐𝛽𝑤2−𝛽

𝜈

)
𝑒−𝑐𝑇𝑤min 𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈

≤ exp(𝐴 − 𝑐𝑇𝑤min) ·
∫ 𝑤min+ 𝑊

2𝑎𝑤𝑒

𝑤min

exp
(
−𝑐𝛽𝑤1−𝛽

𝜈

)
𝑓𝛽 (𝑤𝜈 ) d𝑤𝜈 .
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5 The First Round of Vertex Domination
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Figure 5.2: The diagrams compare the lower bound from Equation (5.6) (in solid lines) with the actual
percentages of vertices being eliminated in the first round of the vertex domination rule (in dotted lines). The
triangles represent the mean percentage over ten generated hypergraphs. The dashed line in the left diagram
shows the analytical bound from Lemma 5.2 for 𝑇 = 0.1. The hypergraphs in the left diagram were generated
with 𝛿𝐸𝑉 = 1, and the ones in the right with 𝛿𝐸𝑉 = 0.1.

This is the same integral as in Equation (5.5). Therefore, integral (III) resolves to

= exp

(
𝑐𝛽

(
𝑤min +

𝑊

2𝑎𝑤𝑒

)2−𝛽
− 𝑐𝑇𝑤min

)
· 1
𝑐𝛽 (𝛽 − 1)

[
𝑒−𝑥

]𝑐𝛽 (
𝑤min+ 𝑊

2𝑎𝑤𝑒

)1−𝛽
𝑐𝛽𝑤

1−𝛽
min

.

Integral (IV) has a factor of 0.542
𝑚

, which is small enough to bound it to 0.

Similar to Section 5.1, we plot the bound from Lemma 5.2 for some example settings and
compare it to real values of 𝐹dom from experiments, to get an understanding of how good
this bound is. Note that, we do not use the closed formula from Lemma 5.2 but a numerical
solution to the corresponding integral in Equation (5.6) from its proof. The reason for this
is, that the closed formula has a large difference to the actual solution of the integral for
small power-law exponents. This difference comes largely from the inaccurate estimate we
found for integral (III). For comparison, the analytical bound from Lemma 5.2 is shown for an
example value of 𝑇 = 0.1 as a dashed line in the left diagram of Figure 5.2.
For each setting, the bound and the values from the experiment are plotted for a range of

𝛽 ∈ [2.1; 5] and four different temperatures𝑇 = {0.1, 0.2, 0.3, 0.4}. The left diagram shows the
setting presented in the main experiment of [BFFS19] about public transportation systems,
i.e., 𝛿𝐸𝑉 = 0.1 and 𝛿 = 2. The right diagram uses 𝛿𝐸𝑉 = 1 and 𝛿 = 5. All remaining parameters
are equal for both diagrams, which are𝑤min = 𝑤𝑒 = 1 and |𝑉 | = 104. Again, we chose𝑊𝑐 to
be the expected value 𝛽−1

𝛽−2𝑤min to calculate the bound values.
The left diagram in Figure 5.2 shows that in the context of public transportation systems,

the bound can not entirely explain the high percentages of dominated vertices, which are
above 90% for all shown 𝛽 and𝑇 . Additionally, the absolute difference between the bound and
the experimental values increases with the temperature. For 𝑇 = 0.1, the highest difference
is at about 25%. For 𝑇 = 0.4, this difference increases to over 50%. However, this bound
allows to expect that at least half of all vertices are eliminated in the first round of the vertex
domination rule for all 𝛽 ∈ (2, 3) and 𝑇 ≤ 0.4.
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5.2 In the Binomial Variant

This does not hold for the setting in the right diagram. Here, the absolute difference is
significantly larger; even for low temperatures like 0.1 and 0.2, where the maximal difference
is over 40% for high power-law-exponents. Further, the absolute difference for 𝑇 = 0.3, 0.4
is even over 60% for 𝛽 = 3. However, it is not surprising that the difference increases with
increasing 𝑇 , since we only consider nice vertices, which become less and less likely with
increasing temperature.
On the other hand, both diagrams indicate that the bound correctly predicts a decreasing

𝐹dom for an increasing level of heterogeneity and a decreasing level of locality. Unfortunately,
this bound is not very tight for many settings. Even for low temperatures, there is a significant
difference, that even increases when the temperature rises.

53





6 Conclusion & Outlook

In this thesis, we studied the efficiency of Weihe’s HittingSet reduction rules on Hyper-
GIRGs from a theoretical perspective. The Hyper-GIRG model served as a representative for
real-world networks with adjustable degrees of heterogeneity and locality.

First, we introduced basic terminology and notations around the neighborhood of a vertex
and stated basic properties of Hyper-GIRGs. In particular, we analyzed the impact of the
vertex weight on its size. We derived simple asymptotic statements for both the degree of a
vertex and its diameter, which is the space on the torus that its neighborhood takes up.

In the second part, we focused on the threshold variant of Hyper-GIRGs, in which the
incident hyperedges of each vertex are consecutive on the torus. Based on that property,
we proved them to be a subset of the more general dual circular arc hypergraphs (CA∗-
hypergraphs). We showed that the reduction rules reduce all hypergraphs of this class to a
trivial kernel if they have at least one gap either before or during the reduction. Additionally,
we showed that the reduction rules create a.a.s. at least one gap during their application.
Here, the exact probability decreases with increasing 𝛽 . For the unlikely case, that there is
still no gap after the application of the reduction rules, we describe a safe branching rule that
branches over linearly many local hitting sets of a hyperedge and creates gaps in each child
instance. These two results can be combined into a polynomial algorithm for HittingSet on
CA∗-hypergraphs, and can thus also be applied to Hyper-GIRGs generated with the threshold
variant. However, for Hyper-GIRGs from the threshold variant, the reduction rules are
often enough, as they often create gaps during their application on such Hyper-GIRGs with
heterogeneity.

In the third part of this thesis, we focused on the first round of the vertex domination rule
and analyzed how many vertices remain after its application. In particular, we were interested
in the expected value of the fraction of vertices that can be eliminated by this rule. For this
expected value, we found lower bounds for both the threshold variant as well as the noisier
binomial variant of the Hyper-GIRG model. These bounds show that a significant fraction of
vertices is expected to be eliminated in heterogeneous Hyper-GIRGs with low temperature.

Future Work

However, these bounds from Chapter 5 can be improved further in future work on this
topic. One approach could be to solve or at least approximate the double integral from
Equation (5.2), which describes the expected fraction of dominated vertices exactly. This
includes, in particular, finding the PDF of the diameter of a vertex and variants that can be
handled mathematically. Besides that, the diameter PDF can also be used to find an asymptotic
lower bound for the diameter of the vertex depending on the temperature. Additionally, the
matching upper bounds from Lemma 3.7 could thereby also be improved.

In general, the question of how the reduction rules perform on Hyper-GIRGs with high tem-
peratures has not been fully resolved from the theoretic perspective; especially as Lemma 5.2
only yields a lower bound of 𝐹dom close to 0. Experiments suggest that the fraction of domi-
nated vertices indeed tends to 0 for 𝑇 → 1. Therefore, an upper bound for this value would

55



6 Conclusion & Outlook

be interesting in these cases. However, this would not prove that the reduction rules do
not have a huge impact on Hyper-GIRGs with high temperature, as it only approximates
the behavior of the first round of the vertex domination rule. Showing that an exhaustive
application of both reduction rules does not strongly alter high-temperature Hyper-GIRGs
would be valuable for the theoretical perspective of this topic.

For small temperatures, on the other hand, the bounds from Chapter 5 contribute to the
explanation of the effectiveness of the reduction rules. This approach can be developed further,
by finding a similar statement for the number of hyperedges that are eliminated in the first
round of the hyperedge domination rule. The resulting hypergraphs could admit interesting
structural properties that perhaps allow (depending on the temperature) some steps of the
algorithm for the threshold Hyper-GIRGs from Lemma 4.2, and therefore further reductions.
Especially for temperatures tending to 0, one approach could be to bound the number of nice
vertices and analyze how non-nice vertices break the flow of this algorithm. Preliminary
experiments on Hyper-GIRGS with low temperature imply that (at least for some sets of
parameters) the few fluid incidences do have a huge impact on the reduction.
The algorithm from Lemma 4.2 is strong evidence for the effectiveness of the reduction

rules on Hyper-GIRGs generated with the threshold variant. However, one could improve
the statement on the probability of gaps in these hypergraphs, which are necessary for the
algorithm. One approach for that is to additionally take the positions of the hyperedges into
account. This is not done in Section 4.2 since we assumed the cold areas of the vertices to be
their neighborhood area, which can greatly increase the diameter in some cases.
Another interesting challenge for future work is to extend the findings from this thesis

to Hyper-GIRGs in higher dimensions. As far as we know, there are neither experimental
nor theoretical studies on the effectiveness of the reduction rules higher dimensional Hyper-
GIRGs. Figure 6.1 shows an example of a Hyper-GIRG on the 𝕋2 generated with the threshold
variant. This example shows that the reduction rules do not deterministically reduce these
hypergraphs entirely even for𝑇 = 0. This is probably due to the fact, that small cycles (of size
3 or 4) are likely to be generated in this 2d-setting. However, if threshold Hyper-GIRGs should
be reduced entirely, one could think about changing the way Hyper-GIRGs are generated
in higher dimensions. One approach could be to take the structure of rail networks as a
guide, in which mainly one-dimensional objects are distributed and connected across the
two-dimensional plane. But also other changes to the model like heterogeneous hyperedge
sizes and other geometries would be interesting.
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Figure 6.1: Kernel of a Hyper-GIRG on the 𝕋2 generated with the threshold variant (including the unit
hyperedge rule). The blue squares mark the area around a vertex position in which all hyperedges are incident
to the vertex with probability 1. The black dots are the positions of all remaining hyperedges. All incidences
are depicted as black lines between the position of the respective hyperedge and vertex. The parameters for this
Hyper-GIRG are 𝑛 =𝑚 = 3000, 𝛿 = 5, and 𝛽 = 3.5.
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