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Abstract

Solo Chess is a single-player variant of the game of chess. The player is given a chess position
consisting of only pieces of the same color and is tasked with finding a sequence of captures
that clears the board. Every move must be a capture, and the number of captures of each
piece must not exceed its budget. In particular, in an instance of 𝐵-Solo Chess, every piece
starts out with a budget of 𝐵 captures. The game ends when only a single piece remains.
The corresponding decision problem generalizes the game to an unbounded board and

asks whether a clearing capture sequence exists. Prior work has shown that 2-Solo Chess is
NP-complete, even when instances are restricted to contain only rooks, only bishops or only
queens, while instances containing only pawns can be decided in linear time. In addition,
11-Solo Chess is NP-complete for instances containing only knights.

The main focus of our work is on 2-Solo Chess. We show that the problem is NP-complete
for instances containing only kings, as well as instances containing only knights (previously
only known for budgets 𝐵 = 11). This yields a complete characterization of 2-Solo Chess.
We also give an alternative proof for the NP-completeness of 2-Solo Chess played with only
rooks. Finally, we discuss 𝐵-Solo Chess played on a one-dimensional board. We show that
instances containing 𝑛 pieces can be decided in time O(𝑓 (𝐵) ·𝑛), i.e., linear time for any fixed
𝐵 ∈ ℕ.

Zusammenfassung

Solo Chess ist eine Einzelspieler-Variante des Schachspiels. Spielende erhalten eine Schachpo-
sition, die nur aus Figuren derselben Farbe besteht. Ziel des Spiels ist, eine Folge von Zügen zu
finden, die das Brett leert. Jeder Zug muss ein Schlagzug sein, und die Anzahl der Schlagzüge
jeder Figur darf ihr Budget nicht überschreiten. Insbesondere hat in einer Instanz von 𝐵-Solo
Chess jede Figur anfangs ein Budget von 𝐵 Schlagzügen. Das Spiel endet, wenn nur noch eine
Figur übrig bleibt.

Das entsprechende Entscheidungsproblem verallgemeinert das Spiel auf ein unbeschränktes
Brett und fragt, ob eine räumende Zugfolge existiert. Frühere Arbeiten haben gezeigt, dass
2-Solo Chess NP-vollständig ist, selbst wenn die Instanzen nur Türme, nur Läufer oder
nur Damen enthalten, während Instanzen mit nur Bauern in Linearzeit entschieden werden
können. Darüber hinaus ist 11-Solo Chess NP-vollständig für Instanzen, die nur Springer
enthalten.
Der Schwerpunkt unserer Arbeit liegt auf 2-Solo Chess. Wir zeigen, dass das Problem

NP-vollständig ist für Instanzen, die nur Könige enthalten, sowie für Instanzen, die nur
Springer enthalten (bisher nur für Budgets 𝐵 = 11 bekannt). Dies liefert eine vollständige
Charakterisierung von 2-SoloChess. DerWeiteren präsentierenwir einen alternativen Beweis
für die NP-Vollständigkeit von 2-Solo Chess beschränkt auf Türme. Schließlich betrachten
wir 𝐵-Solo Chess auf einem eindimensionalen Brett. Wir zeigen, dass Instanzen mit 𝑛 Figuren
in Zeit O(𝑓 (𝐵) · 𝑛) entschieden werden können, d.h. in Linearzeit für jedes feste 𝐵 ∈ ℕ.

i





Contents

1. Introduction 1
1.1. Contributions & Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Preliminaries 5
2.1. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1. And-Or-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2. And-Or Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Solo Chess 11
3.1. Chess Board and Pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. General Notions of Solo Chess . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1. The Capture Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Special Cases 17
4.1. 1-Solo Chess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. One-Dimensional Solo Chess . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. King 2-Solo Chess 23
5.1. The Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2. The Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3. Variable Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4. The Or Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5. The And Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6. Wire Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6.1. Wire Crossing Functions f and g . . . . . . . . . . . . . . . . . . . . 38
5.6.2. Wire Crossing Function h . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.3. The Full Wire Crossing Gadget . . . . . . . . . . . . . . . . . . . . . 43

5.7. The 1-Test Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8. The Final Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Knight 2-Solo Chess 47
6.1. The Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2. Auxiliary Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1. Signal manipulation gadgets . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2. Value Production Gadgets . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.3. The Maximum Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.4. The Flip Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3. SAT Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1. The Variable Assignment Gadget . . . . . . . . . . . . . . . . . . . . 61

iii



Contents

6.3.2. The Or Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.3. The And Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.4. The 1-Test Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4. The Final Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7. Rook 2-Solo Chess 65
7.1. The Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.1. The Cleanup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.2. Logic Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.3. Gadget inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2. The Variable Assignment Gadget . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3. The Left Or Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4. The And Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5. The Right Or Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6. The Final Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8. Conclusion 85

Bibliography 87

A. Counter Example for the OriginalQueen 2-Solo Chess Proof 89

B. King Solo Chess Wire Crossing 91

iv



1. Introduction

Chess is a two-player turn-based perfect-information board game. It is played on a quadratic
board that holds an 8 × 8 checkered grid of squares. Each player begins with sixteen chess
pieces of either white or black color. The players then take turns to move their pieces and
capture their opponent’s pieces. The goal of the game is to checkmate the opponent’s king,
i.e., create a threat to capture the opponent’s king that cannot be parried.

Since standard chess is played on a constant sized board and has a bounded maximal game
length, finding the optimal strategy in a given position is possible in constant time.

Various generalizations of the game have been studied: Storer showed that chess on an𝑁×𝑁
board with the maximum game length bounded by a polynomial is PSPACE-complete [Sto83].
This matches results for some similar two-player board games, including Othello [IK94],
Amazons [Hea05], Hex [Rei81] and Gobang [Rei80]. The same holds true for cooperative
versions of chess: Brunner, Demaine, Hendrickson, and Wellman show that solving retrograde
or helpmate chess problems is PSPACE-complete [BDHW20].

When the requirement for a polynomial bound on the game length is dropped, chess on an
𝑁 ×𝑁 board becomes EXPTIME-complete [FL81]. This in turn is matched by other two-player
board games, such as Checkers [Rob84b], Shogi [AKI87], Xiangqi [Zha19], Jianggi [Zha19] and
Go under Japanese rules [Rob83]. Furthermore, within the framework of chess, the selfmate
and reflexmate problems are EXPTIME-complete as well [Zha22].

Some board games, such as Arimaa or Chinese rules Go, forbid a player to repeat a position
that previously occurred in the game. Under such an added rule, chess and checkers turn
out to even be EXPSPACE-complete [Rob84a]. However, for the mentioned games of Arimaa
[RS24] and Chinese rules Go [LS78] only PSPACE-hardness results are known, which do not
match the EXPSPACE upper bound.
Many single-player games or puzzle games turn out to be NP-complete. This includes

classic Windows games such as Freecell [Hel03], Klondike [LM09], Scorpion Solitaire [AD21]
and Spider Solitaire [Ste11]. It also extends to generalizations of physical single-player games,
such as finding the shortest solution of a 15-puzzle [RW86] and peg solitaire played on an
𝑁 × 𝑁 board [UI90]. The latter result is particularly interesting in the context of this work,

Figure 1.1.: An example po-
sition of Solo Chess.

since peg solitaire closely resembles the game of Solo Chess.
This single-player variant of the game of chess was intro-

duced on the chess website chess.com according to the following
rules: The player is given a chess position placed on a standard
8 × 8 chess board consisting of pieces of the same color. The
goal of the game is to perform a sequence of captures so that
only a single piece remains. A restriction is added that every
move must be a capture, and each piece may only capture twice.
We study the decision problem based on this game. Here,

an instance consists of 𝑛 pieces placed on an 𝑁 × 𝑀 board.
Furthermore, each of the 𝑛 pieces is given a budget denoting
how often it is allowed to capture. In particular, we call the
original game 2-Solo Chess since each piece has a budget of two captures.
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1. Introduction

It is known that deciding 2-Solo Chess is NP-complete, as is deciding 11-Solo Chess.
More specifically, it is known that 2-Solo Chess is already NP-complete even when instances
are only allowed to contain rooks (which we call Rook 2-Solo Chess), bishops or queens,
respectively [AMM22], [BDGL24]. Similarly, it is known that Knight 11-Solo Chess is NP-
complete [BDGL24]. On the other hand, Pawn 2-Solo Chess can be decided in linear time
[AMM22]. All of these results remain true for the generalized problem of ≤2-Solo Chess,
where each piece budget is at most, rather than exactly 2.

1.1. Contributions & Outline

We begin with the special cases of 1-Solo Chess where we extend existing work by giving
a linear-time algorithm. We follow this up with one-dimensional Solo Chess (played on a
chess board with only a single row). For this problem, we review the most general variant,
allowing any combination of piece types and any upper bound 𝐵 on piece budgets. We again
extend existing work by giving an algorithm that solves one-dimensional ≤𝐵-Solo Chess
instances of size 𝑛 in time O(𝑓 (𝐵) · 𝑛) for some computable function 𝑓 . In particular, this
constitutes linear time for any fixed 𝐵 ∈ ℕ.

Our main results concern the original 2-Solo Chess problem. We prove that King 2-Solo
Chess, as well as Knight 2-Solo Chess are NP-complete. This yields a complete characteri-
zation of 2-Solo Chess. We also give an alternative proof for the NP-completeness of Rook
2-Solo Chess which extends to Bishop 2-Solo Chess and Queen 2-Solo Chess using known
techniques.

For our reductions we introduce a new SAT variant which we call And-Or-(1,1)-SAT. In this
variant, clauses consist of up to three literals combined either by up to two disjunctions or a
disjunction and a conjunction. Additionally, each of the two literals of a variable is required
to occur exactly once. We show that this problem is NP-complete. We then show the hardness
results for King, Knight and Rook 2-Solo Chess by a reduction from And-Or-(1,1)-SAT. For
this we directly place SAT instances on the chess board using gadgets for variable assignments,
And and Or gates.

The remainder of this work is structured as follows: In Chapter 2, we define some general
notation, as well as introduce the problem of And-Or-(1,1)-SAT. In Chapter 3, we give a formal
definition of Solo Chess and introduce some related concepts. In Chapter 4, we discuss the
special cases of 1-Solo Chess, as well as one-dimensional ≤𝐵-Solo Chess. In Chapters 5, 6
and 7, we show that King 2-Solo Chess, Knight 2-Solo Chess and Rook 2-Solo Chess are
NP-complete, respectively. Finally, in Chapter 8, we summarize our work and give an outlook
on remaining open problems.

1.2. Related Work

The complexity of Solo Chess was first studied by Aravind, Misra and Mittal who showed
that deciding ≤2-Solo Chess is NP-complete [AMM22]. To this end, they studied simplified
versions of Solo Chess where only a single piece type is present. They showed that Rook
≤2-Solo Chess is already NP-complete, via a reduction from Red-Blue Dominating Set (a
variant of the Dominating Set problem). Furthermore, they gave reductions from Rook Solo
Chess to Bishop Solo Chess and Queen Solo Chess, yielding analogous hardness results for
Bishop ≤2-Solo Chess and Queen ≤2-Solo Chess. They also showed that Pawn ≤2-Solo
Chess can be decided in linear time. Finally, they gave an argument for the NP-completeness
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1.2. Related Work

of Queen 2-Solo Chess, where each piece starts out with a budget of exactly 2. However,
while the statement itself holds true, their specific approach does not work. We elaborate
on this in Appendix A. The authors also gave a short argument that 1-Solo Chess as well
as one-dimensional Rook ≤2-Solo Chess chess are in P. Finally, while they did not show
results concerning Knight Solo Chess, they introduced a generalization of the game called
Graph Capture. In this game, pieces are placed on vertices of a graph and capture along
edges. The authors show that this game played on either undirected graphs or DAGs is
NP-complete for piece budgets of 2 by reductions from Colorful Red-Blue Dominating Set
and 3SAT respectively.

Bilò, Di Donato, Gualà and Leucci later showed that Rook 2-Solo Chess is NP-complete via
a reduction from Vertex Cover [BDGL24]. Thanks to the reductions from Rook Solo Chess
outlined in [AMM22], this result extends to Bishop 2-Solo Chess and Queen 2-Solo Chess.
They also showed that Knight 11-Solo Chess is NP-complete, via a reduction from a variant
of the Hamilton path problem. The case of Knight 2-Solo Chess, as well as the problem of
King 2-Solo Chess were left open.

Brunner, Chung, Coulombe, Demaine and Gomez instead studied a related problem where
each piece has an unlimited budget [Bru+23]. They generalize the standard chess pieces
to discuss arbitrary piece types that are closed under submoves. In this setting, they show
that the single piece type problem is solvable in polynomial time. They also consider the
scenario of a single uncapturable piece of some type 𝑆 and some second piece type 𝑇 . Since
the single 𝑆 piece cannot be captured, it remains as the final piece of any solving sequence.
They showed that if the piece type 𝑇 is symmetric and has a superset of legal moves of 𝑆 ,
then this problem is solvable in polynomial time. For all remaining chess piece combinations
except 𝑆 ∈ {Pawn,King},𝑇 = Rook they show NP-completeness, reducing from variants of
Hamilton Path and SAT respectively. These hardness results extend to the problem variants
considering arbitrary configurations of the mentioned piece types (without any restrictions
regarding capturability or number of occurrences of the piece).
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2. Preliminaries

We provide some basic definitions and notation for graphs and the satisfiability (SAT) problem,
as well as introduce a new variant of the SAT problem.

2.1. Graphs

An undirected graph 𝐺 consists of a set of vertices 𝑉 and a set of edges 𝐸 ⊆ �𝑉
2
�
. We shorten

the notation of an edge {𝑢,𝜈} to 𝑢𝜈 . An edge 𝑢𝜈 ∈ 𝐸 can be seen as a connection between 𝑢
and 𝜈 . Given such an edge 𝑢𝜈 , we say that 𝜈 is a neighbor of 𝑢 or 𝜈 is adjacent to 𝑢 and vice
versa.

A subgraph of a graph 𝐺 contains a subset of vertices and a subset of edges of 𝐺 . For a
graph𝐺 = (𝑉 , 𝐸), we say that a graph𝐻 = (𝑉 ′, 𝐸′) is a subgraph of𝐺 , if𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸∩ �𝑉 ′

2
�
.

We call 𝐻 an induced subgraph, if it retains all edges of 𝐺 between its vertices, i.e., for every
𝑢,𝜈 ∈ 𝑉 ′ we have 𝑢𝜈 ∈ 𝐸′ ⇐⇒ 𝑢𝜈 ∈ 𝐸. We write 𝐻 ⊆ 𝐺 or 𝐻 ⊆ind 𝐺 , respectively. We also
say that 𝐺 contains an (induced) 𝐻 . Any subset of vertices �̃� = {𝜈1,𝜈2, . . . ,𝜈𝑘 } ⊆ 𝑉 uniquely
defines an induced subgraph 𝐺 [�̃� ] := 𝐺 [𝜈1,𝜈2, . . . ,𝜈𝑘 ] := (�̃� , 𝐸) with 𝐸 = 𝐸 ∩ ��̃�

2
�
.

We now define some common types of graphs that we need in the remainder of this work:
A path is a graph with vertices {𝜈1, . . . 𝜈𝑛} and edges {𝜈𝑖𝜈𝑖+1 | 1 ≤ 𝑖 ≤ 𝑛 − 1}, i.e., 𝐸 (only)
contains a sequence of edges from 𝜈1 to 𝜈𝑛 . We denote a path by the sequence of its vertices,
in this case (𝜈1,𝜈2, . . . ,𝜈𝑛). We denote the length of a path as the number of edges it contains.
In the above example, the path (𝜈1,𝜈2, . . . ,𝜈𝑛) has length 𝑛 − 1.
We call a graph 𝐺 = (𝑉 , 𝐸) connected if any two vertices 𝑢,𝜈 ∈ 𝑉 are connected by a path,

i.e., if 𝐺 contains as a subgraph a path containing both 𝑢 and 𝜈 . A connected component of a
graph 𝐺 is a (vertex-)maximal induced subgraph of 𝐺 that is connected. In particular, every
connected graph has exactly one connected component.
Let 𝐺 = (𝑉 , 𝐸) be a connected graph. We call a vertex 𝜈 ∈ 𝑉 a cut vertex if removing it

disconnects the graph, i.e., if𝐺 [𝑉 \{𝜈}] hasmore than one connected component. Analogously,
we call an edge 𝑒 ∈ 𝐸 a cut edge or bridge if removing it disconnects the graph, i.e., if
𝐺 ′ = (𝑉 , 𝐸 \ {𝑒}) has more than one connected component.

Antennae We define a non-standard type of subgraph that we use throughout our con-
structions, the antenna. An antenna consists of a sequence of vertices that form an induced
path, such that only the final vertex of the sequence may be adjacent to vertices outside the
sequence. More formally, for a graph𝐺 = (𝑉 , 𝐸) we call vertices {𝜈1, . . . ,𝜈𝑘 } an antenna (of
length 𝑘 − 1) if 𝐺 [𝜈1, . . . ,𝜈𝑘 ] is an induced path and only the final vertex of the path, 𝜈𝑘 , is
connected to vertices outside the path. Note that a path has no preferred direction. By the
additional antenna condition, it may be the case that (𝜈1, . . . ,𝜈𝑘 ) forms an antenna while
(𝜈𝑘 ,𝜈𝑘−1, . . . ,𝜈1) does not. The induced path in the graph shown in Figure 2.1 is an antenna
of length 3, since only the right outer vertex is adjacent to vertices outside the path. We call
the left-most vertex of such an antenna the “first” and the right-most vertex the “last” vertex
of the antenna.

5



2. Preliminaries

𝜈1 𝜈2 𝜈3 𝜈4

𝜈5

𝜈6

𝜈7

𝜈8

Figure 2.1.: The circled vertices form an antenna of length three, with first vertex 𝜈1 and last
vertex 𝜈4.

We observe that each edge of an antenna is a cut edge, since removing it disconnects the
first from the last vertex of the antenna (this uses the fact that only the last vertex may be
connected to vertices outside the antenna). For the same reason, every interior vertex of an
antenna (i.e., all but the first and last vertex) is a cut vertex. Furthermore, if the graph 𝐺
contains some further vertices outside an antenna, the antenna’s last vertex is a cut vertex as
well.

2.2. SAT

For our NP-hardness proofs, we reduce from a variant of the well-known SAT problem. SAT
is the original NP-complete problem [Coo71]. It asks whether a given boolean formula has
a satisfying assignment. The most common formulation is that of CNFSAT. In CNFSAT an
instance consists of a set of variables 𝑈 and a set of clauses 𝐶 . A literal is a variable or its
negation, for example for a variable 𝑥 ∈ 𝑈 there is the positive literal 𝑥 and the negative literal
¬𝑥 . A clause is the disjunction of a set of literals, for example (𝑥∨¬𝑦∨𝑧). Finally, a formula in
CNF is a conjunction of a set of clauses, for example (𝑥 ∨¬𝑦∨𝑧)∧ (¬𝑥 ∨¬𝑦∨¬𝑎)∧ (𝑦∨𝑧∨𝑎).
The CNFSAT problem asks, given an instance 𝐼 = (𝑈 ,𝐶), whether there exists an assignment
of truth values to the variables in𝑈 such that the conjunction over the clauses of𝐶 is satisfied,
or equivalently, that every clause of 𝐶 is satisfied.

A well known variant of CNFSAT is 3SAT, which requires each clause to contain (depending
on the exact definition) either at most or exactly three literals. Either version of this problem
is NP-complete as well, and we use it to show the NP-hardness of two further SAT variants.

2.2.1. And-Or-SAT

The first variant is based on a construction by Tovey [Tov84].
We define the (2+1),3-SAT problem as a special case of the CNFSAT problem. A CNFSAT

instance is a (2+1),3-SAT instance if it contains at most three literals per clause and if each
variable appears positive exactly twice and negative exactly once in the set of clauses. The
decision problem asks whether a satisfying variable assignment exists. This problem is similar
to the 3-SAT problem, however, it differs by the additional restrictions on the number of
occurrences of the literals of each variable.

Lemma 2.1: Deciding (2+1),3-SAT is NP-hard.

Proof. The first step of the proof is exactly analogous to the proof of Theorem 2.1 in [Tov84].
We reduce from 3-SAT. Let 𝐼 be a 3-SAT instance. Let 𝑛𝑥 be the number of occurrences of a
variable 𝑥 . Introduce 𝑛𝑥 copies of the variable 𝑥 , 𝑥1 through 𝑥𝑛𝑥 , and replace the 𝑖th occurrence
of 𝑥 with 𝑥𝑖 . To ensure that all 𝑥𝑖 are assigned the same truth value, we add clauses 𝑥𝑖 ∨ ¬𝑥𝑖+1
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for all 𝑖 = 1, ...,𝑛−1, and 𝑥𝑛∨¬𝑥1. We call the resulting instance 𝐼 ′. In 𝐼 ′, each variable appears
once in the original set of clauses (either positive or negative) and twice in the additional
clauses (once positive and once negative). In a second step, for each variable that appears
negative in the original set of clauses, we negate all its occurrences. The resulting instance 𝐼 ′′
is a valid (2+1),3-SAT instance. Below is an example of the construction:

𝐶 (𝐼 ) 𝐶 (𝐼 ′) 𝐶 (𝐼 ′′)
(𝑥 ∨ ¬𝑦 ∨ 𝑧) (𝑥1 ∨ ¬𝑦1 ∨ 𝑧1) (𝑥1 ∨ 𝑦1 ∨ 𝑧1)

(¬𝑥 ∨ ¬𝑦 ∨ ¬𝑎) (¬𝑥2 ∨ ¬𝑦2 ∨ ¬𝑎1) (𝑥2 ∨ 𝑦2 ∨ 𝑎1)
(𝑥1 ∨ ¬𝑥2) (𝑥1 ∨ 𝑥2)
(𝑥2 ∨ ¬𝑥1) (¬𝑥2 ∨ ¬𝑥1)
(𝑦1 ∨ ¬𝑦2) (¬𝑦1 ∨ 𝑦2)
(𝑦2 ∨ ¬𝑦1) (¬𝑦2 ∨ 𝑦1)
(𝑧1 ∨ ¬𝑧1) (𝑧1 ∨ ¬𝑧1)
(𝑎1 ∨ ¬𝑎1) (¬𝑎1 ∨ 𝑎1)

We show that 𝐼 and 𝐼 ′ are equivalent regarding satisfiability: Let 𝜙 ′ be a satisfying assignment
for 𝐼 ′. Observe that if some 𝑥1 is set to false, then by the first added clause, 𝑥2 must be set to
false as well and so forth. Similarly, if 𝑥1 is set to true, the final clause forces 𝑥𝑛 to be set to true
and so forth. Thus, the cyclic structure of the added clauses ensures that ∀𝑖, 𝑗 : 𝜙 ′(𝑥𝑖) = 𝜙 ′(𝑥 𝑗 ).
This allows us to define 𝜙 : 𝑥 ↦→ 𝜙 ′(𝑥1) (= . . .𝜙 ′(𝑥𝑛)) which satisfies all the original clauses
and thus is a satisfying assignment for 𝐼 .

Now let 𝜙 be a satisfying assignment for 𝐼 . Then 𝜙 ′ : 𝑥𝑖 ↦→ 𝜙 (𝑥) is a satisfying assignment
for 𝐼 ′: Each of the original clauses is satisfied by construction, and each of the added clauses
has exactly one true and one false literal. This shows that 𝐼 and 𝐼 ′ are equivalent.
Next, we show that 𝐼 ′ and 𝐼 ′′ are equivalent as well: Let 𝜙 ′ be a satisfying assignment for

𝐼 ′. Then 𝜙 ′′ defined as

𝑥𝑖 ↦→
(
𝜙 ′(𝑥𝑖) if the 𝑥𝑖 literal in the original clause appeared positive,
¬𝜙 ′(𝑥𝑖) if the 𝑥𝑖 literal in the original clause appeared negative.

is a satisfying assignment for 𝐼 ′′. The reverse direction works analogously. Thus, we have
shown that 𝐼 and 𝐼 ′′ are equivalent and so the NP-hardness of (2+1),3-SAT follows.

Next, we define a new variant on the SAT problem, And-Or-(1,1)-SAT, which is loosely
similar to 3-SAT but restricts the number of variable occurrences even further: An instance 𝐼
of And-Or-(1,1)-SAT consists of a set of variables𝑈 and a set of clauses 𝐶 . A clause can be a
disjunction of up to three literals, i.e., of the form 𝑙1 ∨ 𝑙2 ∨ 𝑙3 for literals 𝑙1, 𝑙2, 𝑙3. Additionally, a
clause may also be of the form (𝑙1 ∧ 𝑙2) ∨ 𝑙3. In the set of clauses, each literal appears exactly
once, i.e., each variable appears once positive and once negative.

Theorem 2.2: And-Or-(1,1)-SAT is NP-complete.

Proof. We reduce from (2+1),3-SAT. Let 𝐼 be an instance of (2+1),3-SAT. For each variable 𝑥 ,
we introduce new variables 𝑥+1 , 𝑥+2 , 𝑥− . We replace the two positive occurrences of 𝑥 with 𝑥+1
and 𝑥+2 respectively, and the negative 𝑥 literal with 𝑥− . To ensure that 𝑥+𝑗 and 𝑥− are not set
to true at the same time, we add an additional clause 𝑐 = (¬𝑥+1 ∧ ¬𝑥+2 ) ∨ ¬𝑥− . In the resulting
instance 𝐼 ′, each literal appears exactly once. In particular, the negative literal of each variable
appears in some And-Or-clause, while the positive literal of each variable appears in one of
the original disjunctive clauses. Once again, we give an example:
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𝐼 𝐼 ′

(𝑥 ∨ ¬𝑦 ∨ 𝑧) (𝑥+1 ∨ 𝑦− ∨ 𝑧+1 )
(¬𝑥 ∨ 𝑦) (𝑥− ∨ 𝑦+1 )
(𝑥 ∨ ¬𝑧) (𝑥+2 ∨ 𝑧−)
(𝑦 ∨ 𝑧) (𝑦+2 ∨ 𝑧+2 )

((¬𝑥+1 ∧ ¬𝑥+2 ) ∨ ¬𝑥−)
((¬𝑦+1 ∧ ¬𝑦+2 ) ∨ ¬𝑦−)
((¬𝑧+1 ∧ ¬𝑧+2 ) ∨ ¬𝑧−)

It remains to show that 𝐼 ′ is satisfiable if and only if 𝐼 is. Let 𝜙 be a satisfying assignment for
𝐼 . Then for 𝐼 ′ we set 𝜙 ′(𝑥+1 ) = 𝜙 ′(𝑥+2 ) := 𝜙 (𝑥),𝜙 ′(𝑥−) := ¬𝜙 (𝑥). By construction, each literal
in the original clauses is assigned the same truth value under 𝜙 ′ as under 𝜙 . Thus, each of
the original clauses is satisfied. The added And-Or clauses are satisfied too: If 𝜙 (𝑥) = true =
𝜙 ′(¬𝑥−), then the final operand of the And-Or clause is true. If𝜙 (𝑥) = false = 𝜙 ′(𝑥+1 ) = 𝜙 ′(𝑥+2 ),
then both And operands are true and thus the And evaluates to true. In either case, the And-Or
clause is satisfied.

Let 𝜙 ′ be a satisfying assignment for 𝐼 ′. We define 𝜙 (𝑥) := ¬𝜙 ′(𝑥−). Consider some clause
𝑐𝑘 in 𝐼 . This clause has a corresponding clause 𝑐′𝑘 in 𝐼

′ which under𝜙 ′ is satisfied by some literal
𝑥+𝑗 (case (1)), or some literal 𝑥− (case (2)). The relevant And-Or-clause 𝑐′ = (¬𝑥+1 ∧¬𝑥+2 ) ∨¬𝑥−

is satisfied by 𝜙 ′ as well.
Case (1): By the definition of our transformation, 𝑐𝑘 contains the positive literal 𝑥 in this

case. We know that 𝜙 ′(𝑥+𝑗 ) = true since it satisfies 𝑐′
𝑘
. Thus, in 𝑐′ the And operation evaluates

to false. Since 𝑐′ is satisfied by 𝜙 ′, it follows that 𝜙 ′(𝑥−) is set to false. Therefore, our definition
sets 𝜙 (𝑥) := ¬𝜙 ′(𝑥−) = true and so 𝑐𝑘 is satisfied.
Case (2): By the definition of our transformation, 𝑐𝑘 contains the negative literal ¬𝑥 in

this case. We know that 𝜙 ′(𝑥−) = true since it satisfies 𝑐′
𝑘
. Our definition of 𝜙 yields

𝜙 (𝑥) := ¬𝜙 ′(𝑥−) = false. Thus, the literal ¬𝑥 is set to true and 𝑐𝑘 is satisfied. This shows that
𝐼 ′ is satisfiable if and only if 𝐼 is, which shows the NP-hardness of And-Or-(1,1)-SAT.

This constitutes an increase in difficulty compared to regular CNFSAT: Tovey showed that
CNFSAT is in P when restricted to instances, in which each variable appears at most twice
[Tov84].

2.2.2. And-Or Embeddings

In our construction, we place SAT instances on the chess board. To this end, we describe
specific And-Or Embeddings of our SAT instances. Such an embedding is a drawing of the
instance in the plane, similar to a logic circuit. Figure 2.2 shows an example drawing of the
And-Or-(1,1)-SAT instance 𝐼 = (𝑈 ,𝐶) = ({𝑥,𝑦, 𝑧}, {(𝑥 ∧ ¬𝑦) ∨ 𝑧, (¬𝑥 ∨ ¬𝑧) ∨ 𝑦}). We give a
high level description of such an And-Or Embedding:

1 For each clause, its (up to) two logic gates are placed next to each other, as shown in
the figure.

2 Clauses are placed in a single column with sufficient vertical distance between different
clauses.

3 Variables are place to the left of the clauses at sufficient horizontal distance to each
other. Each variable is positioned vertically between the two clauses in which its two
literals are used, aligning the positive and negative literal appropriately. (we assume
without loss of generality that the two literals are not used in the same clause)
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+
𝑥
−

−
𝑦
+

+
𝑧
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∨
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∧ = 1
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Figure 2.2.: An And-Or Embedding of the SAT instance 𝐼 = (𝑈 ,𝐶) with 𝑈 = {𝑥,𝑦, 𝑧} and
𝐶 = {𝑐1, 𝑐2} = {(𝑥 ∧ ¬𝑦) ∨ 𝑧, (¬𝑥 ∨ ¬𝑧) ∨ 𝑦}.

4 Outputs of variables and logic gates are connected to the inputs of the next logic gate,
as specified by the SAT formula. Each of those connections consists of one or two
axis-aligned line segments.

5 Optionally: The outputs of each clause are combined pairwise through further And
gates, computing the value of the full SAT formula.

We note that such an And-Or Embedding can be created in polynomial time.

9





3. Solo Chess

We begin with describing the rules of Solo Chess.

3.1. Chess Board and Pieces

Solo Chess is played on a rectangular grid of squares. Usually the size of the grid is eight by
eight squares, however, in this work we use arbitrary sized rectangles with 𝑁 rows and 𝑀
columns, 𝑁 ,𝑀 ∈ ℕ. We name the squares by their coordinates, i.e., we name the square in
the top left corner (1, 1) and the square in the bottom right corner (𝑁 ,𝑀), i.e., row 𝑁 and
column𝑀 . Each square either contains one chess piece or is empty.
Solo Chess is a turn-based game. Every turn, the player makes a move according to the

chess rules. Such a move consists of moving one piece 𝑃1 from its current square 𝑧1 to some
other square 𝑧2. We denote this move as (𝑧1 → 𝑧2). We may denote consecutive moves
(𝑧1 → 𝑧2), (𝑧2 → 𝑧3) as (𝑧1 → 𝑧2 → 𝑧3). If the square 𝑧2 was already occupied by some piece
𝑃2, this piece 𝑃2 is removed from play, and we call the move a capture.

Each of the piece types permit a different way of moving. Broadly speaking, there are two
groups of piece types:

Long-range pieces which have unlimited range, namely the rook , the bishop

and the queen .

Short-range pieces which have a constant range, namely the king , the knight

and the pawn .

The movement of all pieces except the pawn is symmetrical. This means that if a (non-pawn)
piece can move from 𝑧1 to 𝑧2 it can also move from 𝑧2 to 𝑧1. For simplicity, we define the
movement of those pieces in one direction, the reverse moves are valid as well.
The rook moves arbitrarily far in the horizontal or vertical direction. It cannot jump over

other pieces. More formally, a rook on square (𝑖, 𝑗) may perform the move ((𝑖, 𝑗) → (𝑖,𝑘)) if
all squares (𝑖, 𝑗 + 1), (𝑖, 𝑗 + 2), . . . , (𝑖,𝑘 − 1) are empty. Analogously, the rook may perform the
move ((𝑖, 𝑗) → (𝑘, 𝑗)) if all squares (𝑖 + 1, 𝑗), (𝑖 + 2, 𝑗), . . . , (𝑘 − 1, 𝑗) are empty.
The bishop moves arbitrarily far diagonally. It too cannot jump over other pieces. More

formally, a bishop on square (𝑖, 𝑗) may perform the move ((𝑖, 𝑗) → (𝑖 + 𝑘, 𝑗 + 𝑘)) or ((𝑖, 𝑗) →
(𝑖 +𝑘, 𝑗 −𝑘)) if for all 1 ≤ ℓ < 𝑘 the squares (𝑖 + ℓ, 𝑗 + ℓ) or (𝑖 + ℓ, 𝑗 − ℓ) respectively, are empty.
The queen combines the movement of the rook and the bishop, i.e., it can move arbitrarily

far in horizontal, vertical or diagonal direction. Like the other ranged pieces, it cannot jump
over other pieces.
The king can move to any adjacent square, including diagonally adjacent squares. Due to

its limited range, the problem of jumping over other pieces cannot arise. As a result, the king
always has exactly eight legal moves, unless it is placed on the edge of the board, in which
case some of these moves are not possible.

11



3. Solo Chess

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9) (·, 10)(·, 11)(·, 12)(·, 13)(·, 14)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

Figure 3.1.: A visualization of the movement of the chess pieces. The different piece colors
are used for clarity.

The pawn is the only asymmetric piece, as well as the only piece that moves differently
when capturing as compared to when not capturing. When capturing, the pawn moves one
square forward diagonally. Thus, a pawn on square (𝑖, 𝑗) may capture a piece standing on
(𝑖 + 1, 𝑗 + 1) or (𝑖 + 1, 𝑗 − 1) but not one standing on (𝑖 − 1, 𝑗 + 1) or (𝑖 − 1, 𝑗 − 1). We don’t
need non-capturing moves and, thus, omit them here.

Finally, the knight has the most unusual movement. Its movement may be described as all
squares a distance of two from the knight, which the queen cannot move to. More specifically,
a knight on square (𝑖, 𝑗) may move to squares (𝑖 −2, 𝑗 +1), (𝑖 −1, 𝑗 +2), (𝑖 +1, 𝑗 +2), (𝑖 +2, 𝑗 +1)
as well as the reversed moves. It is the only piece that can jump over other pieces, meaning
that unless it is near the edge of the board, the knight always has exactly eight legal moves.
Figure 3.1 visualizes the movement of the chess pieces. The following statement follows

directly from the definition of the piece movements:

Lemma 3.1: A piece placed on some row 𝑗 ≠ 𝑖 has at most three possible moves that end in row
𝑖 for any 𝑖 ∈ {1, . . . ,𝑛}. Analogous statements hold for columns and diagonals.

Proof. We show the statement for the row case, the other cases are similar. We also assume
that the edge of the board does not interfere with the piece’s movements, otherwise the
number of possible moves may be lower but never higher. We make a case distinction by the
piece in question.
A knight can only move to row 𝑖 if it is placed on rows 𝑖 − 2, 𝑖 − 1, 𝑖 + 1 or 𝑖 + 2. In all of

these cases, it has exactly two moves that end in row 𝑖 .
A queen not placed on row 𝑖 always has exactly three moves ending in row 𝑖 . For a queen

placed on square (𝑟 , 𝑐), those moves are ((𝑟 , 𝑐) → (𝑖, 𝑐)), ((𝑟 , 𝑐) → (𝑖, 𝑐 − 𝑟 + 𝑖)), ((𝑟 , 𝑐) →
(𝑖, 𝑐 + 𝑟 − 𝑖)).
The possible moves for pawns, kings, bishops and rooks are strict subsets of the possible

moves for a queen.

3.2. Problem Definition

We define a decision problem for the game of Solo Chess. A configuration 𝐶 consists of a set
of pieces P . Each piece 𝑃 ∈ P has a piece type 𝑡 ∈ {King,Queen, Rook, Bishop,Knight, Pawn},
a square 𝑧 ∈ ℕ2 and a remaining budget 𝑐 ∈ ℕ0. In the initial configuration of an instance of
𝐵-Solo Chess, every piece has the same budget 𝐵, for a problem parameter 𝐵 ∈ ℕ. In the
problem variant ≤𝐵-Solo Chess, each piece instead has an individual budget of at most 𝐵.
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3.3. General Notions of Solo Chess

In Solo Chess, only moves that are also captures are allowed. A piece may move so long as
its budget is greater than 0. Doing so reduces its budget by 1. The decision problem asks, given
some instance, whether there exists a sequence of captures that reduces its configuration to a
single piece.

In the next chapter we discuss different values for 𝐵. In all following chapters we consider
the special case of 𝐵 = 2. If a configuration contains only pieces of the same piece type, we
call it uniform. This allows us to define a family of special cases for the Solo Chess problem,
namely those that contain only uniform instances. For example, we define the Rook Solo
Chess problem as the Solo Chess problem on uniform instances that contain only rooks.

Theorem 3.2: Solo Chess is in NP.

Proof. We describe how the problem can be solved in polynomial time by an oracle TM:
Guess a solving capture sequence. Note that the encoding of any instance with 𝑛 pieces

needs space Ω(𝑛). At the same time, a solving capture sequence contains exactly 𝑛−1 captures
since each capture reduces the number of pieces by one and any instance needs to be reduced
from 𝑛 pieces down to one piece. Thus, encoding each capture by the coordinates of its origin
and destination square yields a polynomially large encoding. Note that we assume without
loss of generality that the size of the board is at most exponential in 𝑛, thus, each square
coordinate can be encoded as a binary number of size O(𝑛).
Furthermore, it is possible to test a capture sequence for validity in polynomial time: The

validity of a single move can be tested by checking whether the origin and destination square
differ by an amount permitted by the move rules of the respective piece. If the piece was a
ranged piece, it also needs to be verified that the position of none of the other pieces interferes
with the capture. This can be done by a linear scan over the set of pieces. To test the validity
of the full sequence, validate and perform each move in order. This shows that the problem
can be solved in polynomial time by an oracle TM, and as a result is in NP.

This statement extends to all the special cases that are discussed in this work.

3.3. General Notions of Solo Chess

In this section we describe a number of general notions that prove useful in the upcoming
proofs.

Any solving capture sequence reduces a configuration to a single piece. We call this piece
the final piece and its square the final square. Note that different solving capture sequences
may have different final pieces / squares.

Solo Chess configurations adhere to a form of monotony: Given configurations 𝐶1 and 𝐶2
we say that 𝐶2 ≥ 𝐶1 if they contain the same pieces on the same squares and if the budget of
each piece in 𝐶2 is greater or equal to that of the corresponding piece in 𝐶1. We observe that
if 𝐶2 ≥ 𝐶1 and if 𝐶1 has a solution, i.e., a sequence of captures that clears it, then 𝐶2 can be
solved by that same sequence of captures.
We call a piece in a configuration stranded, if there is no sequence of captures, such that

the piece leaves its square. For example, if a piece in a uniform configuration is not adjacent
(according to the piece type’s movement) to any other piece, it is stranded. We call a group of
pieces stranded, if there is no sequence of captures such that every piece of the group leaves
its square. For example, if two pieces in a uniform configuration are adjacent to each other
but not to any other pieces, they are stranded. While either of them could make a capture and
leave its square, it is not possible for both of them to leave their square.
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One typical example of a stranded piece involves one with a budget of 0 (a 0-piece). Since its
budget is not greater than 0, it cannot directly perform a capture. Thus, any capture sequence
clearing its square 𝑧2 contains a pair of moves (𝑧1 → 𝑧2 → 𝑧3) for some squares 𝑧1, 𝑧2, 𝑧3. In
this case, squares 𝑧1 and 𝑧3 are not equal, since the first move vacates the square 𝑧1 and so 𝑧1
cannot be the destination of any future capture. This yields the following observation:

Observation 3.3: Let the problem parameter 𝐵 be at most 2 and let square 𝑧 hold a 0-piece 𝑃 .
Then 𝑃 is stranded, unless there exists a 2-piece 𝑃 ′, which

(a) can move to 𝑧 on an otherwise empty board and
(b) can move from 𝑧 to a square 𝑧′ holding another piece 𝑃 ′′, on otherwise empty board.

3.3.1. The Capture Graph

In some cases it can be useful to take a graph theory view on Solo Chess. To that end we
define the concept of a capture graph.

Definition 3.4 (The capture graph): For any uniform Solo Chess configuration that does not
contain pawns we define its capture graph 𝐺 = (𝑉 , 𝐸). Its vertex set 𝑉 is the set of all pieces of
the configuration. Vertices 𝑢 and 𝜈 are connected by an edge 𝑢𝜈 ∈ 𝐸 if and only if piece 𝑢 can
capture piece 𝜈 on an otherwise empty board.

This capture graph contains the structure of an instance without depending on the exact
placement on the board. Note that we only define the capture graph for uniform configurations,
i.e., those that only contain one piece type excluding pawns. Due to the symmetry of the
remaining piece types, if a piece 𝑢 can capture a piece 𝜈 , the converse holds as well, justifying
the use of an undirected edge.
Note that for ranged pieces, not every sequence of captures on the capture graph can be

translated into a sequence of captures on the normal chess board since ranged pieces cannot
jump over other pieces. For example, if 𝑘 rooks are placed in a row or column, their 𝑘 vertices
form a clique in the capture graph but only those rooks that are neighbors on the chess board
can directly capture each other. However, any sequence of captures on the chess board can be
translated to a sequence of captures in the capture graph. This implies in particular that if
there exists no sequence of captures to clear the capture graph of a configuration then there
also exists none on the chess board.

Capture graphs allow us to conveniently discuss some properties of (partial) configurations.
If the capture graph of a configuration has more than one connected component, then for any
capture sequence at least one piece in each component remains. It follows that the configura-
tion cannot be solved. Consider now a configuration whose capture graph is connected, but
has a cut vertex 𝜈 . Then any capture by 𝜈 splits the capture graph into multiple connected
components, yielding an unsolvable configuration. It follows that any solving sequence clears
all but one of these components before making a capture with 𝜈 . The following lemma uses
this insight in the scenario of an antenna whose length is equal to the budget 𝑐 of its first
vertex. An important special case to consider is that of a first vertex that has not yet moved
and, thus, still has a “full” budget of 𝐵.

Lemma 3.5 (𝐵-Antennae): Let the capture graph of a configuration contain an antenna whose
length is equal to the budget 𝑐 of its first vertex. Then, in any solving capture sequence, the
antenna is simplified to a 0-piece on its last square, unless the antenna contains the final square
of the configuration.
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Proof. We show the claim by induction. If 𝑐 = 0, the antenna consists only of a first vertex
with a budget of 0. This vertex is already on the last square of the antenna, and so the claim
holds.
Consider now the case of an arbitrary 𝑐 . Let the final square of the configuration not be

contained in the antenna for the given solving sequence. Then all 𝑐 + 1 antenna squares are
emptied by the sequence. However, all but the first vertex of the antenna are cut vertices.
Thus, the only capture that does not disconnect the capture graph is from the first to the
second vertex of the antenna. This creates an antenna of length 𝑐 − 1 with a first vertex with
a budget of 𝑐 − 1. The claim follows by induction.

We now discuss the scenario of an antenna whose length is larger than the budget of its
first vertex. One special case is an antenna of length 1 with a first vertex which has a budget
of 0. Phrased differently, this scenario considers the case of a leaf in the capture graph with a
budget of 0. Since a leaf has only one neighbor, by Observation 3.3 any 0-leaf is stranded. We
generalize this in the following lemma:

Lemma 3.6 (𝐵 + 1-Antennae): Let the capture graph of a configuration contain an antenna
whose length is greater than the budget 𝑐 of its first vertex. Then the set of antenna vertices is
stranded.

Proof. Assume that the claim does not hold and that there exists a solving sequence with a
final square outside of the antenna. Consider the first vertex of the antenna, and the 𝑐 next
vertices along the antenna. These 𝑐+1 vertices form a 𝑐-antenna themselves, with a first vertex
with budget 𝑐 . Thus, by Lemma 3.5 this smaller antenna is simplified to a 0-piece on its last
square. For the full antenna this translates to a 0-leaf as the first piece of an antenna of length
greater than 0. As observed above, this 0-leaf is stranded, contradicting the assumption.

From the statement of the lemma it immediately follows:

Corollary 3.7: Let the capture graph of a configuration contain an antenna whose length is
greater than the budget 𝑐 of its first vertex. Then, for any solving sequence, the antenna contains
the final square of the configuration.

As an example, consider again Figure 2.1 which shows an antenna of length 3. If each piece
budget is equal to 2, for example in the initial configuration of an instance of 2-Solo Chess,
then the set of antenna vertices is stranded. However, there exists a solving sequence, using
antenna-vertex 𝜈3 as the location for the final square of the configuration. It is reachable
from 𝜈1 in two captures. Also, all 𝜈5 through 𝜈8 can reach 𝜈4 in one capture, allowing one
more capture (𝜈4 → 𝜈3). This solves the instance, with the final square being contained in
the antenna.
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4. Special Cases

In this chapter, we review two special cases of Solo Chess that can be solved in linear time.

4.1. 1-Solo Chess

We begin with a simple version of Solo Chess. Recall that the problem parameter 𝐵 of
𝐵-Solo Chess determines the initial budget of each piece. The smallest possible value of 𝐵 is
1. Aravind, Misra and Mittal note that in this case the problem turns out to be easy [AMM22].
We expand on this by giving an algorithm that decides the problem in linear time.

Theorem 4.1: 𝐵-Solo Chess with problem parameter 𝐵 = 1 can be decided in linear time.

Proof. Since every piece budget is 1, each piece may only capture once. Thus, after some
piece 𝑃 performs a capture (𝑧1 → 𝑧2), its budget becomes 0. By Observations 3.3 it follows
immediately that 𝑃 is stranded and 𝑧2 can never be emptied since no (adjacent) 2-piece
exists. Thus, 𝑧2 already needs to be the final square of the configuration. Reducing such a
configuration to a single piece is possible if and only if there exists a non-empty square that
each other piece could legally move to on an otherwise empty board. Thus, it suffices to
decide whether such a center square exists.

If we are given a correct center square, validating that it is indeed a valid center square can
be done in linear time: Iterate over the list of pieces to check that there is a piece placed on
the center square and that each other piece can move to the center square on an otherwise
empty board (i.e., it is not necessary to consider possible interference with any of the other
pieces).

It remains to find such a correct center square. Testing every square that holds a piece with
the above method would necessitate checking 𝑛 different squares and would lead to an Θ(𝑛2)
algorithm. However, we achieve a Θ(𝑛) running time by only checking a constant number of
squares. We claim that there is always a set of at most 12 squares that can be found in linear
time and that contains a center square if there exists one:
If the configuration contains a short-range piece (knight, king or pawn), then that piece

has at most eight legal moves. Then any valid center squares is one of those eight destination
squares or the square of the short-range piece itself. We find such a piece by a linear scan
over the set of pieces, yielding a linear runtime as claimed.
The other case is when the configuration contains only long-range pieces. If every piece

is in the same row or column, the instance is solvable if and only if there is at most one
bishop (whose square would serve as the center square). Similarly, if every piece is in the
same diagonal, the instance is solvable if and only if there is at most one rook. This can be
decided with another linear scan.

Otherwise, we pick an arbitrary piece 𝑝1. Since not every piece is in the same row, column
or diagonal, there exist pieces 𝑝2 through 𝑝5 not in the same row, column or diagonal as 𝑝1,
respectively. Note that it is possible for some or all of the 𝑝2, . . . , 𝑝5 to be the same piece.
Since the center square can be at most one capture away from 𝑝1, it must be either in the
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(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

Figure 4.1.: Example configuration where the blue rook represents 𝑝1, the bishop 𝑝2, the
white rook 𝑝3, the red queen 𝑝4 and the white queen 𝑝5. Move arrows point towards the
resulting candidate squares. Of the four candidate squares, (4, 5) is a valid center square.

same row, the same column or the same diagonal as 𝑝1. If it is in the same row as 𝑝1, then by
assumption, 𝑝2 is not in the same row as the center square and, by Lemma 3.1, can move to
at most three squares of that row. Thus, any center square in the same row as 𝑝1 is one of
those three squares. Analogous arguments for the column and diagonals yield a set of at most
4 · 3 = 12 candidate center squares. Thus, with another linear scan, we find a set of at most
12 squares to check. Figure 4.1 shows an example configuration. Overall, we conclude that
1-Solo Chess can be decided in linear time.

4.2. One-Dimensional Solo Chess

Another problem variant that can be decided efficiently is ≤𝐵-Solo Chess played on a one-
dimensional board, i.e., a board containing only a single row. This section works towards
proving the following claim:

Theorem 4.2:We can decide any one-dimensional instance of Solo Chess, that has 𝑛 pieces,
each of which have a budget of up to 𝐵, in time O(𝑓 (𝐵) · 𝑛) for some computable function 𝑓 .
This constitutes linear time for any fixed 𝐵.

We first discuss the special case in which only rooks are present. The following lemma is
due to Aravind, Misra and Mittal [AMM22]:

Lemma 4.3 (1D Rook Lemma): Any one-dimensional Solo Chess configuration that contains 𝑛
rooks and no other pieces is solvable if and only if their budgets add up to at least 𝑛 − 1. It has a
solution with the final piece being the right-most or the left-most rook if and only if the budgets
of the remaining rooks add up to at least 𝑛 − 1.

Proof. We discuss the first claim. First, observe that the condition is necessary: To reduce a
configuration containing 𝑛 pieces down to one containing only 1 piece, 𝑛 − 1 captures are
necessary. We show by induction that the condition is also sufficient:

For the base case we note that any configuration with one rook remaining is already solved.
Assume that the claim holds for any configuration with 𝑛 rooks. Consider some configu-

ration 𝐶 with 𝑛 + 1 rooks and a combined budget of at least 𝑛. We distinguish between two
cases: If the configuration contains no 0-rook, then it is solvable by any sequence of captures
all capturing towards the same (final) square. Thus, we now assume that there exists a 0-rook.
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4.2. One-Dimensional Solo Chess

2 1 0 22

(a) Two moves to be swapped.

2 21

(b) The rook captures before the king.

2 20

(c) The two moves are swapped; the rook captures after the king.

Figure 4.2.: Example position of one-dimensional Solo Chess

Since 𝑛 ≥ 1, the combined budget of our configuration is greater than 0. Therefore, there
exists a rook with a budget that is greater than 0. With some number of 0-rooks and some
number of rooks having a budget greater than 0, there exists some 𝑖-rook (𝑖 > 0) adjacent to
some 0-rook. Then, capturing the 0-rook with the 𝑖-rook reduces the number of rooks as well
as the combined budget by 1. By the induction hypothesis, this resulting configuration has a
solution. Thus, the claim follows.
The other two claims can be shown by an analogous induction proof, which we omit

here.

This lemma proves useful when discussing partial configurations on two-dimensional boards
in the upcoming chapters. It also provides the basis for studying general one-dimensional
Solo Chess. Thanks to the lemma we can see that one-dimensional Rook Solo Chess can be
decided in linear time: It suffices to sum up 𝑛 budget values and test that the result is at least
𝑛 − 1.

We now consider scenarios with multiple different piece types, starting with kings and
rooks. We first show that we can bring any solving sequence of such a configuration into a
normal form which starts out with all the king moves:

Lemma 4.4 (1D Normal Form): Let𝐶 be a one-dimensional Solo Chess configuration consisting
of only kings and rooks. If there exists a solving capture sequence for 𝐶 , then there exists one
which consists of a sequence of king moves followed by a sequence of rook moves.

Proof. Given a solving capture sequence, we follow a simple procedure: Whenever a king
move is preceded by a rook move, swap the two moves. After completing this bubble sort
type of approach, all king moves are sorted to the front.

It remains to show that any such swap does not invalidate any of the moves. To show this,
we first deduce some facts about the capture sequence and the two moves to be swapped
in particular. Let (𝑧1 → 𝑧2) be the rook move and (𝑧3 → 𝑧4) be the king move in question.
Figure 4.2a shows an example position. The origin square of the king move, 𝑧3, cannot be the
origin or destination square of the rook move. Otherwise, the king could no longer follow up
said rook move since it would already have been captured. Similarly, the origin square of the
rook move cannot be the destination square of the king move as that square is already vacated
by the time the king move happens. If the two moves end on the same square 𝑧2 = 𝑧4, then
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they have captured from opposite directions, since the rook cannot jump over the king. It
follows that after performing the two moves (as shown in Figure 4.2b), either adjacent square
of the destination square is empty. Thus, in this case we can conclude that there are no further
moves by the king.

Consider now the capture sequence with swapped moves. Both the king and the rook move
themselves stay valid: A king move cannot be blocked, and the rook move happens on a board
containing a strict subset of filled squares as compared to the previous scenario. Also, the
piece on the rook’s destination square has not moved away, so the move remains a capture.

If the two moves have different destination squares, then after the swap the same resulting
position is reached. Otherwise, we observe that any future move cannot have been by the
rook as that rook was captured in the original sequence. It also cannot have been by the king
as observed above. Thus, any future move was by a different piece. In this case, the legality
of any of the remaining moves is not impacted by whether square 𝑧2 = 𝑧4 holds a king or a
rook. In particular, either could still be captured and neither could be jumped over. Overall,
we see that such a swap is always possible without invalidating the solving sequence, and so
the claim holds.

Being able to search for not just any solution but one in normal form greatly simplifies that
search. We give an algorithm for deciding such configurations which can easily be adapted to
also produce a solving sequence.

Lemma 4.5: Let 𝐼 be an instance of one-dimensional ≤𝐵-Solo Chess containing 𝑛 pieces, each
of which is either a rook or a king. The existence of a solving sequence for 𝐼 can be decided in
time O(𝑓 (𝐵) · 𝑛) for some computable function 𝑓 .

Proof. We assume without loss of generality that the instance is placed on a board containing
only O(𝑛) squares. In particular, since the king can only move to directly adjacent squares
while the rook has unlimited range, any instance can be “compacted” such that between any
two consecutive pieces there is at most one empty square. Furthermore, by the previous
lemma we can assume that if there exists a solving sequence, then there also exists one in
normal form.
A solving sequence in normal form is split into two phases: A king move phase and a rook

move phase. In the latter phase the kings do not move and, therefore, are equivalent to 0-rooks.
Thus, the problem becomes finding a sequence of king moves such that the remaining rook
configuration is solvable, i.e., by the 1D Rook Lemma 4.3, such that some𝑚 pieces and at least
𝑚 − 1 available rook captures remain.

To find such a sequence, we perform a linear scan (from left to right) over the configu-
ration. We maintain an interface of all candidate partial solutions to the left of the current
square. An element of this interface contains the 𝐵 right-most squares of the partial solu-
tion, i.e., the 𝐵 squares immediately to the left of the current square, as well as an integer
𝑡 encoding the “invisible” remainder of the partial solution. It is defined as the difference
𝑡 = (rook captures available−number of pieces present) in that remainder of the partial solu-
tion. Thus, it can be interpreted as the evaluation of the 1D Rook Lemma 4.3, where each king
has been replaced by a 0-rook. We can discard dominated entries: Any entry with the same
visible 𝐵 squares, but a lower value 𝑡 , provides no benefit for finding a solving sequence. Thus,
at any time the number of elements of the interface is at most the number of configurations
on 𝐵 squares that contain kings and rooks with budgets between 0 and 𝐵, or empty squares.
This gives a crude upper bound of (2𝐵 + 3)𝐵 elements, which only depends on 𝐵.
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4.2. One-Dimensional Solo Chess

2 3 0 1 3 2 𝑡 = −1

⇝

2 3 0 1 3 2 𝑡 = 1

2 3 0 0 2 𝑡 = 1

2 3 0 2 2 𝑡 = 1

2 3 1 2 𝑡 = 1

2 0 2 𝑡 = −2

Figure 4.3.: An example configuration with problem parameter 𝐵 = 3. An update step on the
top interface element, highlighted in white, yields the set of bottom interface elements.

We then use this interface to generate the interface for the next square: If the new square
in question is empty, we simply “shift” each interface element by one and discard any newly
dominated entries. This shift removes the left-most square of the visible configuration and
updates 𝑡 appropriately (i.e., subtracts 1 if the removed square held a king, adds 𝑖 − 1 if the
removed square held an 𝑖-rook and keeps the value unchanged if it was empty), followed by
adding the new square to the right. If the new square holds a rook and the right-most square
of an interface element is a king with a budget greater than 0, the king can capture the rook.
In this case, in addition to the shifted interface element, we also add an element with that
king move performed before the shift. Finally, if the new square holds a king with a budget
𝑐 > 0, it can perform up to 𝑐 captures to the left (depending on the configuration). In this
case, in addition to the shifted element and possibly the element containing a capture of the
king from the right-most visible square, we also add elements with captures by the new king
performed before the shift. Since dominated interface elements are discarded, we again end
with at most (2𝐵 + 3)𝐵 elements. In particular, such an update step can always be done in time
𝑓 (𝐵) ∈ O(𝐵 · (2𝐵 + 3)𝐵). Figure 4.3 shows an example of the update step on one interface
element.
Once we reach the end of the configuration, after performing the above update step for

the next 𝐵 empty squares we remain with only one interface element: A visible partial
configuration consisting of only empty squares, and its attached optimal value 𝑡 , all other
dominated interface elements having been discarded. Recall that this value encodes the dif-
ference 𝑡 = (available rook captures − number of pieces present in the entire configuration).
Thus, the configuration is solvable if and only if 𝑡 is at least -1, by the 1D Rook Lemma 4.3.

Overall, we obtain a running time of O(𝑓 (𝐵) ·𝑛) which is FPT in 𝐵 and, in particular, linear
time for any constant 𝐵.
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With this result at our disposal, proving the theorem becomes simple:

Proof of Theorem 4.2. Let 𝐼 be an instance of 1D ≤𝐵-Solo Chess. We transform it in linear
time into an instance 𝐼 ′ by replacing all bishops, pawns and knights with 0-rooks, and all
𝑘-queens with 𝑘-rooks. This results in an equivalent instance since on a 1D board, bishops,
pawns and knights cannot perform any captures, and the queen only has rook moves available.
We then solve 𝐼 ′ in the desired running time as described above.
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5. King 2-Solo Chess

After having reviewed some special cases of Solo Chess that turned out to be solvable in
linear time, we now review the case 𝐵 = 2 on a standard two-dimensional chess board. These
parameters replicate those of the original game. In particular, since 𝐵 = 1 is trivial as seen in
the previous chapter, this is the smallest “interesting” value for 𝐵.

Under these parameters, the decision problem turns out to be NP-complete even when
restricted to uniform instances. In particular, we show that 2-Solo Chess restricted to
instances containing only kings is already NP-complete. We reduce from And-Or-(1,1)-SAT.

5.1. The Setup

We transform a given And-Or-(1,1)-SAT instance 𝐼 into an equivalent King 2-Solo Chess
instance: We choose an And-Or Embedding of 𝐼 in the plane. We then directly translate
the embedding into a corresponding chess position. Figure 5.1 shows the structure of the
King 2-Solo Chess instance created from an example instance 𝐼 = (𝑈 ,𝐶) with variables
𝑈 = {𝑥,𝑦, 𝑧} and clauses𝐶 = {(𝑥 ∧¬𝑦) ∨ 𝑧, (¬𝑥 ∨¬𝑧) ∨𝑦}. It shows the creation of variables
𝑥,𝑦, 𝑧 (in green) and their respective positive and negative literals. These literals are connected
by wire to the logic gates for each clause. These consist of Or-gates (in pink) and And-gates
(in red). The outputs of the clauses are combined pairwise through And gates to produce a
single final value. This value is then checked to be true with a 1-test. We create gadgets for
the variable assignment, the wire, the Or and And gates, and the 1-test. Not shown in the
figure is the wire crossing gadget which is needed to implement crossings like the one in the
bottom left of the example configuration.

Our transformation yields a Solo Chess instance that can be fully cleared, if and only
if the SAT instance 𝐼 is satisfiable. In the following sections, we describe how to represent
logic values (true and false) as well as the implementation of each gadget, and discuss their
correctness. When discussing a gadget, we may show which value it evaluates to. This is
understood to denote which output value the gadget produces after it has otherwise been
cleared completely (recall that a solving sequence clears every square bar one, which means
that any square except the dedicated final square needs to be cleared at some point). More
specifically, we create a variable assignment gadget which produces literals 𝑥 and ¬𝑥 and
evaluates to one true and one false output. We create a wire gadget which propagates an
input 𝑥 from the beginning to the end of the wire. We create And and Or gadgets which
evaluate inputs 𝑥 and 𝑦 to outputs 𝑥 ∧ 𝑦 and 𝑥 ∨ 𝑦 respectively. Any solving sequence fully
clears all of the above gadgets. Finally, we create a 1-test which is reduced to a single final
piece if its input is true, and which cannot be reduced to a single piece if its input is false.
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Figure 5.1.: A King 2-Solo Chess instance encoding the SAT instance {(𝑥 ∧ ¬𝑦) ∨ 𝑧, (¬𝑥 ∨
¬𝑧) ∨ 𝑦}. For space constraint reasons, the wire crossing gadget × is not placed on the board.
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5.2. The Wire

0 2 2 2 2

2 2 2 2

1 2 2 2 2

2 2 2 2

2 2 2 2 2

1 2 2 2 2

⇝

0 2 2 2

2 2 2

1 2 2 2

2 2 2

2 2 2 2

1 2 2 2

Figure 5.3.: Three wires holding values 0 through 2. Arrows indicate pairs of moves that
propagate the signals by one column each.

5.2. The Wire

We begin with the wire, which provides the foundation for our construction. A wire is used
to propagate a signal from one gadget to another. We implement a wire using two rows (or
columns) of kings. Figure 5.2 shows an example of a wire.

2 2 2 2 2 2

2 2 2 2 2 2

Figure 5.2.: A wire connecting the left and the
right side of this configuration.

We can propagate three different signal
values through a wire, namely 0, 1 and 2. In
our construction, 0 corresponds to the logic
value false, while 1 corresponds to true. The
value 2 is an auxiliary value used only within
gadgets. In a wire, a 0-signal is represented
by a column containing only a single 0-king,
a 1-signal is represented by a column con-
taining only a single 1-king and a 2-signal
is represented by a column containing a 1-
king and a 2-king. We call this column the
signal column of the wire. Figure 5.3 shows
examples of all three signals, as well as the
intended way to propagate them by one column. As can be seen, propagating a signal “uses
up” the wire. Thus, each wire can only be used once to propagate a single signal, after which
the wire is no longer present. In particular, once one end of the wire holds a signal, this
signal propagating through the wire gives that wire a direction. We mark this direction using
repeated arrows, as can be seen in Figure 5.1.
Note that the two kings in a column of a wire have equivalent moves: Each is adjacent

exactly to the kings of the previous and the next column, as well as the other king of its
own column. It follows, then, that the vertical orientation of the signal does not matter. In
particular, the signal column having a single 0-king in the top row or the bottom row are
equivalent representations of the 0-signal. More generally, an alternative view point of the
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signal value is to view it as the number of excess captures of the signal column. If the column
contains 𝑛 kings that have a combined budget of 𝑐 , the value of the signal is 𝑠 = 𝑐 −𝑛 + 1. This
viewpoint immediately yields two further insights:

Observation 5.1: There is a monotony on signal values. Every capture sequence that is possible
with a lower signal value remains possible with a higher signal value, since the latter has at least
as many (in fact, more) captures available.

Based on this observation, when describing which value a gadget evaluates to, we always
assume it to evaluate to the maximum possible value. The alternative viewpoint also explains
why only signal values 0 through 2 are possible:

Lemma 5.2: A wire cannot propagate signal values larger than 2 or smaller than 0.

Proof. We first observe that the minimum value that the expression 𝑠 = 𝑐 − 𝑛 + 1 can take for
a column is -1, while the maximum value is +3. A hypothetical signal value of 3 would need
to consist of a signal column of two 2-kings. However, when propagating a signal, at least
one king of each column gets captured, after which it cannot have a budget of 2.
A hypothetical signal value of -1 would need to consist of a signal column of two 0-kings.

Then, it is easy to verify that there is no sequence of moves that allows both those kings to
leave the column; instead at least one of them remains stranded.

For convenience, we sometimes use the value -1 to indicate such a scenario of a stranded
piece. For example, we say that a gadget evaluates to -1 for certain inputs, if it is impossible
to clear the gadget completely. This implies in particular that the resulting configuration is
unsolvable.
We show that the wire works correctly in the sense that it propagates values without

modification. In particular, it is impossible to increase signal values; otherwise, it would be
possible to turn the logic value false into true.

Lemma 5.3: The signal value that is propagated through a wire neither decreases nor increases.

Proof. We have already seen in Figure 5.3 that the signal value does not decrease (recall that
we assume each gadget to evaluate to the maximum possible value). It remains to show that
it is impossible to increase signal values. Using the above viewpoint, our claim amounts to
saying that the value 𝑠 is an invariant that cannot be increased while a signal traverses a
wire. For captures within the signal column, this is clear: Each capture uses (at least) one unit
of budget, while reducing the number of pieces by exactly one. For the signal to propagate,
we also need to consider the next column. At least one of its pieces must be captured by
one or more of the previous column’s pieces. This captured piece then provides none of its
budget to the capture sequence. Thus, we see that this column contributes at most two units
of budget, while also adding two pieces itself. This means that the invariant does not increase
when including the next column, which in turn shows that when propagating the signal by a
column, its value cannot increase.

This invariant further suggests simple mini-gadgets to increase or decrease a signal value
by 1 (up to the maximum of 2, or down to the error value -1). The Increment gadget consists
of a wire with one specific column containing three instead of two kings, as seen in Figure
5.4a. The Decrement gadget consists of a wire with one specific column containing only one
instead of two kings, as seen in Figure 5.4b. When part of a larger gadget, we may call such a
wire column with only a single king a “defect” in the wire.
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0 2 2 2 2

2 2 2 2

2

(a) The Increment gadget acting on a 0-signal.

2 2 2 2 2

1 2 2 2

(b) The Decrement gadget acting on a 2-signal.

Figure 5.4.: Two possible modifiers for a wire propagating a signal.

0 2 2 2 2

2 2 2 2

2

1 2 2 2 2

2 2 2 2

2

⇝

2

1 2

2 2

1 2

Figure 5.5.: Increasing a 0- and a 1-signal by 1 each. Moves happen left to right.
Note that the budget of the extra king of the Increment gadget does not matter.

Lemma 5.4: The Increment gadget increases the value of a passing signal by 1.

Proof. We begin by giving a capture sequence achieving the claimed behavior: Figure 5.5
shows both a 0- and a 1-signal being increased by 1 by capturing through the extra king of
the gadget. By monotony, a 2-signal stays unchanged under the Increment gadget. It is for
example possible to follow the same capture sequence as the 1-signal, with one additional
capture by the extra 2-king.
This is the best possible outcome: Consider again the invariant 𝑠 = 𝑐 −𝑛 + 1. The Increment

column contains three kings, at least one of which must be captured and, thus, contributes
none of its budget. Overall, the column contributes at most four units of budget while adding
three pieces, a net gain of one, i.e., a signal increase of one.

Lemma 5.5: The Decrement gadget decreases the value of a passing signal by 1.
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Figure 5.6.: A wire turning a corner from the left to the bottom. Both 0- and 1-signals are
preserved.

Proof. Simply following the capture sequences for a 1- or 2-signal shown in Figure 5.3 yields
a 0- or 1-signal, respectively, when passing through a Decrement gadget. This again is the
best possible outcome by the invariant: The Decrement column contains only a single king,
which has to be captured. Thus, it contributes zero units of budget and adds one piece, a net
loss of one, i.e., a signal decrease by one.

Finally, we discuss the orientation of wires. Naturally, wires function the same whether
they are oriented horizontally or vertically. However, to transition from horizontal to vertical
movement or vice versa, it is necessary to turn a corner. Figure 5.6 shows a corner that is to
be traversed from the left towards the bottom. As indicated by the two examples, the corner
preserves both 0- and 1-signals. It does not preserve 2-signals, however, in our construction
we only need corners in wires holding 0- or 1-signals.

Lemma 5.6: A corner in a wire does not change the value of 0- or 1-signals.

Proof. Figure 5.6 shows that it is possible to retain the signal value. It remains to show that
the signal value cannot increase instead. The largest signal that can exit a corner is a 1-signal:
The cut vertex in the fourth row is captured at some point, after which its budget is at most 1,
corresponding to a 1-signal. Thus, it remains only to show that a 0-signal cannot be turned
into a 1-signal. For this, it suffices to review the capture sequence given in Figure 5.6 and
observe that either double-capture is necessary to not end with a stranded 0-king. Overall, 0-
or 1-signals neither decrease nor increase, as claimed.

This concludes our discussion of wires. In the following sections we use these wire concepts
to define more complicated gadgets which are, in turn, connected by said wires.

5.3. Variable Assignment

The assignment gadget for a variable 𝑥 has zero inputs and two outputs, namely the 𝑥 and ¬𝑥
literals. Our implementation of the gadget can be seen in Figure 5.7. It consists of a single
row of five kings, enclosed by a wire on either side. When the variable assignment gadget is
resolved, these wires carry the positive and the negative literal, respectively. We show that
the gadget sets exactly one literal to true and the other to false, as expected for a boolean
variable.
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Figure 5.7.: A variable assignment gadget. The capture of the center king decides which of
the two wires receives a 1- and which receives a 0-signal.

Lemma 5.7: A variable assignment gadget produces one 1- and one 0-signal.

Proof. We begin by discussing the center king, marked in blue. Assume that it gets captured
at some point, without loss of generality, by the king to its left. Then this creates a king with
a budget of 1 as the final piece of an antenna of length 2, connected to the wire on the right.
By Lemma 3.6, this antenna is stranded. Since every solving sequence fully clearly every SAT
gadget, the above does not happen in any solving sequence. Thus, the center king instead
performs a capture itself. Such a capture creates an antenna of length 1 on either side of the
center king. One of these antennae has as first vertex a 2-king, the other a 1-king due to the
first vertex having been captured by the center king. Either antenna is resolved by a capture
from its first vertex. This creates a 1-signal on the one wire and a 0-signal on the other wire.
By capturing with the center king either to the left or to the right, the literals of a variable
can take either of the two possible assignments.

As shown above, the only way to resolve the variable assignment gadget is to create a
signal on each wire, which is then propagated away from the gadget. This gives both attached
wires a direction, namely away from the gadget.

In our construction of thewire crossing gadget, we need two copies of the negative literal of a
variable. For this purpose, we describe a Double Assignment gadget. It is a variable assignment
gadget that produces two copies of the negative and one copy of the positive literal of a variable.
Figure 5.8 shows a high level view of our implementation of this gadget. It consists of two
variable assignment gadgets with one pair of outputs being combined with an And gadget

¬𝑥

¬𝑥

∧ 𝑥

− 𝑥1 +

− 𝑥2 +

Figure 5.8.: A variable assignment produc-
ing one copy of the literal 𝑥 and two copies
of the literal ¬𝑥 .

(which we define in an upcoming section). This
gadget has the desired behavior: Literal 𝑥 is set
to true if the And gadget evaluates to true, which
is only the case if both 𝑥1 and 𝑥2 are assigned the
value true. In this case, both ¬𝑥 literals are set
to false. Literal 𝑥 is set to false if the And gadget
evaluates to false. In this case, both 𝑥1 and 𝑥2
can be assigned the value false, resulting in both
¬𝑥 literals being set to true. As with standard
variable assignments, it is possible to set even
fewer outputs to true. However, as before, we
assume each gadget to evaluate to the maximum possible value.

This construction allows us to create multiple copies of the negative literal of a variable, so
long as the positive literal is only needed once.
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(c) The Or gadget combines a
shifted sum and a Decrement.

Figure 5.9.: Two instantiations of a shifted sum gadget (left), and the implementation of the
Or gadget (right).

5.4. The Or Gadget

The Or gadget has two inputs and one output. It evaluates to true if at least one of the inputs
is true. Using signal values of 0 and 1, we can define the Or function as 𝑥 ∨𝑦 = min{1, (𝑥 +𝑦)}.
A useful intuition for our implementation of the Or gadget is the equivalent formulation
𝑥 ∨ 𝑦 = min{2, (𝑥 + 𝑦 + 1)} − 1. To implement this function, we need a gadget that computes
the shifted sum 𝑥 + 𝑦 + 1. Since a wire can only carry signal values up to a maximum of 2, the
minimum part of the function is taken care of automatically. Thus, we only need to combine
a shifted sum gadget with a Decrement gadget.
This shifted sum gadget is created by simply merging two wires. Figures 5.9a and 5.9b

show the gadget under two different sets of inputs. If the left input of the shifted sum is at
least 1, the left wire can be reduced by a sequence of captures so as to act as two consecutive
Increment gadgets. This increases the top wire’s value by 2. If the left input is 0, the left wire
can serve as a single Increment gadget, increasing the top wire’s value by 1. We show that
the shifted sum gadget works correctly:

Lemma 5.8: The shifted sum gadget produces an output of 1 if both inputs are 0, and an output
of 2 otherwise.

Proof. The sequences depicted in Figures 5.9a and 5.9b sketch how each of the claimed outputs
can be reached. The only case where this does not yield the maximum possible value of 2 is
when both inputs are 0. In this case, incrementing a 0-signal once yields a 1-signal as intended.
We need to show that this is the best possible result. For this, we observe the following facts:

1 For two 0-signals as input, either 0-king can only be propagated by a pair of captures
from and to the two adjacent kings.

2 Any 2-king in the left wire (before the “junction”) that is captured by a king of the right
wire can, for the purposes of (1), only serve the second role of being captured towards.
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3 As long as the left wire contains more than one column, none of its kings capture into
the right wire, as that would introduce a defect into the left wire, leaving its 0-signal
stranded.

We claim that any capture sequence that evaluates the gadget can be re-ordered to begin
with all moves within the left wire. As in the 1D Solo Chess proof, we do this by a series
of swaps similar to bubble sort. It again suffices to show that none of the swaps lead to an
invalid capture sequence.
We begin with the scenario where the left wire contains more than one column, i.e., the

condition of (3) is met. Consider moves𝑚1 and𝑚2 to be swapped, i.e., move𝑚2 being contained
within the left wire while move𝑚1 is not. By (3), move𝑚1 is either contained within the right
wire or moves from the right to the left wire. In the first case, the two moves are independent,
and so swapping them always retains a valid sequence. Consider instead the second case,
and a pair of moves that are not independent. By (2), the destination square of𝑚1 cannot
be the origin square of 𝑚2. Thus, if they are not independent, the two moves share their
destination square. In this case,𝑚2 is the second move in a pair of moves of (1). Then, the
original sequence of𝑚1 followed by𝑚2 results in a 0-king, so swapping them results in a king
with a budget that is no smaller. Therefore, by monotony, this swap retains a valid capture
sequence.

Now, consider the scenario where the left wire contains only a single column. Since the left
wire contained a 0-signal, this column consists of a single 0-king. In this case, there can be
no further moves within the left wire, so there are no moves to be swapped in this scenario.
The resulting configuration is exactly that of an Increment gadget, i.e., an increase of the top
signal from 0 to 1, as claimed.

The full Or gadget consists of a shifted sum gadget followed by a Decrement gadget and
can be seen in Figure 5.9c. Its correctness follows directly from the correctness of the shifted
sum gadget and the Decrement gadget. Thus, we have shown:

Lemma 5.9: The Or gadget evaluates to 0 if both inputs are set to 0. It evaluates to 1 for any
other set of inputs.

5.5. The And Gadget

The And gadget has two inputs and one output, just like the Or gadget. However, the
requirements for the And gadget are slightly more complicated than for the Or gadget: If both
inputs are 0, it evaluates to 0. Increasing either input value does not increase the output value,
however, increasing both input values does increase the output value. The idea of our And
gadget, shown in Figure 5.10, is to have for each input signal two different paths it can take.
Choosing the top right path with the top signal and the bottom left path with the left signal is
possible even when both input values are 0, and results in a 0-output. If both inputs values
are 1, it is instead possible to choose the top right path for both signals while keeping the
bottom left intact, resulting in a 1-output. We show that the And gadget works correctly for
any set of inputs:

Lemma 5.10: The And gadget evaluates to 1 if both inputs are set to 1. It evaluates to 0 for any
other set of inputs.
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(b) Inputs 1 and 1 evaluate to an output of 1.

Figure 5.10.: The And Gadget being evaluated under two sets of inputs.

Proof. The sequences depicted in Figure 5.10 show that it is possible to achieve the claimed
output values. In particular, the sequence yielding a 0-output is, by monotony, valid for any
set of inputs. It remains to show that it is impossible to achieve larger output values.
We begin by observing that the output wire begins with a defect, which shows that the

output value is at most 1. This value is reached if both inputs are 1. We show that it is
impossible to achieve a 1-output if at least one of the inputs is not 1. To this end, we first
discuss how an output of 1 can be achieved in principle and then show that none of these
scenarios are possible, unless both inputs are set to 1. We split the argument into multiple
claims that we then show individually.

Claim 1: If the And gadget evaluates to 1, one of the intermediate configurations shown
in Figures 5.12a, 5.13 and 5.14a has been reached first.

Proof. Figure 5.11 shows the desired configuration of a 1-output. We use the method of
retrograde analysis: We work backwards from the desired result configuration to deduce
what the final few moves were. Since each capture uses a unit of budget, each un-capture
is played by a piece whose budget is smaller than 2. Thus, in a configuration where each
piece has a budget of 2 except for the 1-king on (6, 4), the previous capture has been
by a 2-king onto that (6, 4)-square. There are two possibilities for this: ((5, 4) → (6, 4))
or ((5, 3) → (6, 4)). If the first un-capture was ((5, 4) → (6, 4)), then the only square
that could possibly hold a piece with a smaller budget than 2 is that same (6, 4) square.
Thus, we deduce further un-captures ((𝑥,𝑦) → (5, 3) → (6, 4)), yielding us an earlier
intermediate configuration shown in Figure 5.12a. Here, the (𝑥,𝑦)-king is one of the
three transparent kings with outgoing transparent move arrows.
If instead the first un-capture was ((5, 3) → (6, 4)), then once more the only possible king
with a budget smaller than 2 is the king on (6, 4). Thus, we deduce another un-capture
((5, 4) → (6, 4)), preceded by either ((4, 3) → (5, 4)) or ((4, 5) → (5, 4)). In either case,
the only possible un-capturer is the king on (5, 4). Depending on the above un-capture,
the only remaining unused neighboring square is (4, 5) or (4, 3), respectively. This yields
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Figure 5.11.: The final configuration of an And gadget evaluating to 1. Transparent pieces
indicate which kings were originally present in the gadget.

two further un-captures ((𝑥 ′,𝑦′) → (4, 5) → (5, 4)) or ((𝑥 ′,𝑦′) → (4, 3) → (5, 4)),
respectively. Figures 5.13 and 5.14a show these two possible intermediate configurations.
Since we covered all cases of possible un-captures from the 1-output configuration, one
of these intermediate configurations has been reached, if the capture sequence then
reached the 1-output configuration, which shows the claim.

We now show that none of the intermediate configurations is reached, unless both inputs are
set to 1.

Claim 2: If the inputs of an And gadget are not both set to 1, then there is no capture
sequence that reaches the configuration shown in Figure 5.12a.

Proof. Let at least one of the inputs of the And gadget be set to 0. Assume for contra-
diction that there exists a resolving capture sequence that reaches the configuration of
Figure 5.12a. Then, in this sequence, all remaining (transparent) kings of the configu-
ration (except the mystery (𝑥,𝑦)-square king) capture towards one of the visible kings
to clear the remaining configuration. The resulting king has a budget of less than 2,
therefore, it is the king on the (5, 3)-square. We first discuss the case where the left input
is a 0-signal and then the case where the top input is a 0-signal.
Let the left input be 0. If the 2-king on (𝑥,𝑦) is in the second column, (4, 2) or (5, 2),
then the 0-king on (4, 1) has only one transparent neighbor (that is allowed to capture
or be captured by it), and, therefore, is immediately stranded. If instead (𝑥,𝑦) = (4, 3),
then for the 0-king to reach the (5, 3)-square, any resolving sequence contains captures
((5, 2) → (4, 1) → (4, 2)), ((3, 3) → (4, 2) → (5, 3)), which requires a 2-king on (3, 3).
In this case, the remaining top right side of the configuration does not reach the (5, 3)
square and so the intermediate configuration is not reached, a contradiction.
Now, consider the case where the left input is 1 and the top input is 0. If (𝑥,𝑦) = (4, 2),
then any resolving sequence progresses the left 1-king through the capture ((4, 1) →
(5, 2)). Furthermore, any resolving sequence propagates the resulting 0-king through
captures ((4, 3) → (5, 2) → (5, 3)), in which case the top right side does not reach
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(b) The final subcase for Claim 2.

Figure 5.12.: The first option for possible intermediate configurations, discussed in Claim 2.

the (5, 3)-square. Next, consider the case that (𝑥,𝑦) = (5, 2). After the initial capture
((4, 1) → (4, 2)), to not seal off the (5, 3)-square, any resolving sequence continues with
captures ((3, 3) → (4, 2) → (5, 3)). Then, for the (3, 4)-king to reach the (5, 3)-square,
any resolving sequence contains further captures ((3, 4) → (4, 3) → (5, 3)). This locks
out the top right side of the configuration, and so the intermediate configuration is not
reached in this way. Finally, consider the remaining case of (𝑥,𝑦) = (4, 3). This creates a
narrow path from the top signal to the (5, 3)-king. Both the (3, 3) and the (4, 2)-kings
represent cut vertices. Thus, to cross this path, any resolving sequence contains some
captures ((𝑥 ′′,𝑦′′) → (3, 3) → (4, 2)), after all the remaining kings of the top right
component have been cleaned up. This yields us a yet earlier intermediate configuration,
shown in Figure 5.12b.

If the remaining top input was a 1-signal, this intermediate configuration could in fact
be reached. However, with a 0-signal as input, propagating its 0-king requires using
both neighboring second row kings. This rules out the (2, 4)-king to serve as the final
capturing 2-king, which leaves (𝑥 ′′,𝑦′′) = (3, 4). Thus, the remaining pieces reach (3, 3)
via the (2, 4)-square. After captures ((2, 5) → (1, 5) → (2, 4)), any resolving sequence
propagates the resulting 0-king through captures ((3, 5) → (2, 4) → (3, 3)). In this case,
some kings on the right side of the configuration remain, meaning the intermediate
configuration is not reached in this way, a contradiction. This concludes the final subcase
and, thus, shows that the intermediate configuration of Figure 5.12a is not reached,
contradicting the assumption and showing the claim.

Claim 3: If the inputs of an And gadget are not both set to 1, then there is no capture
sequence that reaches the configuration shown in Figure 5.13.

Proof. Assume for contradiction that there exists a resolving sequence that reaches the
configuration of Figure 5.13. We first discuss the case where the left input is 0, then
the case where the top input is 0. Any resolving sequence contains the pair of captures

34



5.5. The And Gadget

2

2

2

1

2

2 2

2 2

1

2 2

2 2 2 2

2

2

1 2

2

(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7)

Figure 5.13.: The second option for a possible intermediate configuration, discussed in Claim
3.

((4, 2) → (4, 1) → (5, 2)) or ((5, 2) → (4, 1) → (4, 2)). The resulting 0-king is stranded
in the subgraph induced by the transparent pieces, a contradiction. In the latter case,
this is because it is a 0-leaf in the subgraph.
Consider now the case that the left input is 1 and the top input is 0. To deviate from the
above scenario is, any resolving sequence contains a capture by the 1-king of the left input
itself. It is not the capture ((4, 1) → (5, 2)), as the resulting 0-king is a leaf in the subgraph
induced by the transparent pieces, i.e., stranded. Thus, it is the capture ((4, 1) → (4, 2)),
which creates an antenna of length 2. Any sequence resolves this antenna through
captures ((5, 2) → (4, 2) → (3, 3)). This results in two 0-kings, with only three 2-kings
shared between them. Applying Observation 3.3 twice shows that the shared neighbor of
the two 0-kings is the destination of both pairs of captures propagating the 0-kings. Thus,
any resolving sequence contains the moves ((3, 4) → (3, 3) → (2, 4)), ((2, 5) → (1, 5) →
(2, 4)). The resulting 0-king is a leaf and, thus, stranded. This final contradiction shows
that the assumption is false and the claim holds.

Claim 4: If the inputs of an And gadget are not both set to 1, then there is no capture
sequence that reaches the configuration shown in Figure 5.14a.

Proof. Assume for contradiction that there exists a resolving sequence that reaches the
configuration of Figure 5.14a. Once more, we first discuss the case where the left input is
0, then the case where the top input is 0. If the left input is 0, then any resolving sequence
includes captures ((5, 2) → (4, 1) → (4, 2)). To propagate the resulting 0-king, while
keeping the 2-kings of the intermediate configuration intact, any resolving sequence
contains further captures ((3, 3) → (4, 2) → (4, 3)). Then, for any resolving sequence,
the mystery (𝑥 ′,𝑦′)-king is the king on (3, 4), which again locks out the top right side of
the configuration from reaching the (4, 3)-square, a contradiction.
For the case of the left input being 1 and the top input being 0, we again discuss possible
placings of the (𝑥 ′,𝑦′)-square, from which the final capture to (4, 3) originates. It is not
placed on (4, 2), since after the capture ((4, 1) → (5, 2)), the resulting 0-king is stranded.
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(b) The final subcase for Claim 4.

Figure 5.14.: The third option for a possible intermediate configuration, discussed in Claim 4.

Any resolving sequence with (𝑥 ′,𝑦′) = (5, 2) can be transformed to one with (𝑥 ′,𝑦′) =
(3, 3) instead: Any resolving sequence of the former case contains the leaf capture
((4, 1) → (4, 2)), followed by propagating the resulting 0-king through captures ((3, 3) →
(4, 2) → (4, 3)). In this case, swapping the roles of (5, 2) and (3, 3) yields an equivalent
resolving sequence with a mystery king on (𝑥 ′,𝑦′) = (3, 3) instead.

If (𝑥 ′,𝑦′) = (3, 4), this creates a narrow path from the top right side via squares (2, 4)
and (3, 3), both of which are cut vertices. Thus, in this scenario, any cleanup of the top
right side ends with captures ((𝑥 ′′,𝑦′′) → (2, 4) → (3, 3)). Any resolving sequence
propagates the resulting 0-king through captures ((4, 2) → (3, 3) → (4, 3)). Then, the
1-king of the left signal is the first vertex of an antenna of length 2 and, thus, stranded.

Finally, we consider the case (𝑥 ′,𝑦′) = (3, 3). This splits the configuration and separates
the two signals. Since either component of the configuration is cleared separately, if there
exists a resolving sequence, then (by reordering its moves) there exists one that reaches
an earlier intermediate configuration shown in Figure 5.14b. Any resolving sequence
propagates the top 0-king using the two second-row kings. This yields us an un-capture
sequence from this earlier intermediate configuration of ((3, 5) → (3, 4) → (4, 3)),
preceded by ((3, 6) → (2, 5) → (3, 4)), in turn preceded by ((2, 4) → (1, 5) → (2, 5)).
This once again leaves some kings on the far right side stranded. This contradiction
concludes the final case and shows that the assumption is false. It follows that the claim
holds.

To show the overall statement of the lemma, we combine the claims: Let at least one of the
inputs not be set to 1. Then, by Claims 2, 3 and 4, none of the intermediate configurations is
reached. It follows, by Claim 1, that the And gadget does not evaluate to 1. This shows the
second part of the lemma and concludes the proof.
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Figure 5.15.: A high level view on the workings of the wire crossing gadget...

5.6. Wire Crossings

As outlined in the beginning of this chapter, the embedding of our SAT instance may contain
crossings. Since we directly model connections through wires, this necessitates a gadget to
allow wires to cross. Naturally, simply intersecting two wires would allow the signals carried
by those wires to interfere with each other. Instead, we define a gadget that takes two inputs 𝑎
and 𝑏 and produces two outputs 𝑎 = 𝑎 and 𝑏 = 𝑏 arranged in a way to allow for the crossing. A
high level view of our approach is shown in Figure 5.15a. It consists of a variable assignment for
a variable 𝑏 that is meant to replicate the original 𝑏-signal on the other side of the wire that is
carrying 𝑎. A suitable function 𝐹 then ensures that𝑏 gets replicated correctly and — in this case
— simply propagates through the 𝑎 signal. The idea of such a function is to produce an error
if 𝑏 ≠ 𝑏 and, otherwise, be the identity function on input 𝑎. Table 5.1 shows our function 𝐹 .

𝑎 𝑏 ¬𝑏 𝐹 (𝑎,𝑏,¬𝑏)
0 0 0 -1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1

Table 5.1.: Function 𝐹 of the
wire crossing gadget.

We remark that for inputs 𝑏 = 1,¬𝑏 = 1, the function 𝐹
does not produce an error, even though in this case 𝑏 ≠ 𝑏.
As usual, we assume that, due to monotony, any gadget
produces the maximum possible output values. In this case,
an input 𝑏 = 1 can be matched by ¬𝑏 = 0, which yields
an output of 𝑏 = 1. Thus, the incorrect usage of the wire
crossing gadget to downgrade an input𝑏 from 1 to 0 merely
corresponds to the incorrect usage of a wire performing
that same downgrade.
To avoid having to create a gadget for 𝐹 that combines

three inputs at once, we decompose 𝐹 into multiple func-
tions taking only two inputs each. Recall that it is possible
to create two instances of the ¬𝑏 literal using the Double

37



5. King 2-Solo Chess

𝑎 ¬𝑏 𝑓 (𝑎,¬𝑏) 𝑓 () 𝑏 𝑔(𝑓 (),𝑏) 𝑔() ¬𝑏 ℎ(𝑔(),¬𝑏)
0 0 0 0 0 0 0 0 -1
0 1 0 0 1 1 0 1 0
1 0 1 1 0 0 1 0 0
1 1 2 1 1 2 1 1 0

2 0 2 2 0 1
2 1 2 2 1 1

Table 5.2.: A decomposition of function 𝐹 into three smaller functions.

Assignment gadget. This allows us to split 𝐹 into three functions as shown in Table 5.2, and
place these functions on the board as outlined in Figure 5.15b. Note that for all 𝑎,𝑏,¬𝑏 ∈ {0, 1}
it holds that ℎ(𝑔(𝑓 (𝑎,¬𝑏),𝑏),¬𝑏) = 𝐹 (𝑎,𝑏,¬𝑏). We remark that because every function im-
plemented in King 2-Solo Chess is monotone, this decomposition is essentially unique (see
Appendix B). It remains to construct gadgets for each of the functions 𝑓 , 𝑔 and ℎ.

5.6.1. Wire Crossing Functions 𝑓 and 𝑔
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Figure 5.16.: Function 𝑔 of the wire cross-
ing gadget

Observe that for all 𝑥,𝑦 ∈ {0, 1} it holds that
𝑓 (𝑥,𝑦) = 𝑔(𝑦, 𝑥). Thus, for the gadget of function
𝑓 , we simply use the gadget of function 𝑔 with
flipped inputs. Our gadget for function𝑔 is shown
in Figure 5.16. It is based on the same idea as
the And gadget, where each input signal has two
different paths it can take. Depending on the
set of inputs, different path choices are possible,
producing different outputs. We show that this
gadget represents a correct implementation of the
function 𝑔.

Lemma 5.11: For any set of inputs, the function
𝑔 gadget evaluates to the value given in Table 5.2.

To maintain readability, we present only the
primary line of reasoning and omit many details
across the various cases. We remark, however,
that this gadget — like all the other gadgets — has
been computer verified to work correctly.

Proof sketch. As usual, we first give capture sequences which show that the correct function
values can be attained, then argue that the gadget does not evaluate to larger values. Figure
5.17 gives capture sequences that achieve the values 𝑔(0, 0) = 0, 𝑔(0, 1) = 1, 𝑔(1, 1) = 2 and
𝑔(2, 0) = 2. By monotony, capture sequences for the remaining sets of inputs exist as well. It
remains to show that no larger output values can be reached.
To show correctness, due to monotony, it suffices to show that 𝑔(1, 0) does not evaluate to

a value larger than 0 and 𝑔(0, 1) does not evaluate to a value larger than 1. To this end, we
discuss the different possible paths that the two input signals can take through the gadget. We
show that any path option either does not yield a too large output value or that it is impossible
under the relevant pair of inputs.
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(a) Inputs 𝑓 () = 0,𝑏 = 0 yield output 0.
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(b) Inputs 𝑓 () = 0,𝑏 = 1 yield output 1.

1

2 2

2 2 2 2

1 2 2 2

2 2

2 2 2 2

2 2

2 2

b

f ()

g()

(c) Inputs 𝑓 () = 1,𝑏 = 1 yield output 2.
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(d) Inputs 𝑓 () = 2,𝑏 = 0 yield output 2.

Figure 5.17.: Evaluation of the function 𝑔 gadget under different sets of inputs.

Claim 1: For any set of inputs, the function 𝑔 gadget evaluates to an output no larger
than given in Table 5.2, if the top signal travels via the right path and the left signal
travels via the bottom left path of the gadget.

Proof. If the top signal travels via the right path and the left signal travels via the
bottom left path of the gadget, then both (5, 2) and (4, 6) are cut vertices along the
respective paths. Thus, by the time the top half of the gadget is cleared, both have
been captured and have a budget of at most 1, independent of the inputs to the gadget.
This scenario is shown in Figure 5.18a. Any clearing sequence contains the captures
((4, 6) → (5, 6)), ((6, 6) → (5, 6) → (6, 5)) and ((5, 2) → (6, 3)), as otherwise, some
pieces end up stranded. This leads to a familiar configuration of two 0-kings and only
three 2-kings between them. As usual, these two 0-kings are propagated towards a
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(a) Path choice 1: Split signals, under arbitrary
inputs

1

2 2 2

2 2

2 2

0

2 2

2 2 2 2

1 2 2 2

2

2

b

f ()

g()

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

(b) Path choice 2: Both signals left, under inputs
𝑓 () = 0 and 𝑏 = 1

Figure 5.18.: Some potential intermediate configurations for different path choices.

shared neighboring square, specifically, towards the (7, 4) square as seen in Figure 5.18a.
This results in a 0-output, which shows that with split signal paths, the gadget does not
evaluate to a too large output.

Claim 2: For any set of inputs, the function 𝑔 gadget evaluates to an output no larger
than given in Table 5.2, if both signals travel via the bottom left path of the gadget.

Proof. If both signals travel via the bottom left path of the gadget, then (5, 2) is a cut
vertex along the shared path. Thus, in any solving sequence, it captures only once both
input signals have reached it. We discuss the two relevant pairs of inputs (𝑓 (),𝑏), namely
(1, 0) and (0, 1):
We begin with the scenario where the left input 𝑏 is a 0-signal. Any solving sequence
propagating the 0-king on (4, 1) via the bottom left path contains the captures ((4, 2) →
(4, 1) → (5, 2)), ((4, 3) → (5, 2) → (6, 3)). However, this cuts off the other signal,
showing that with these inputs this path choice is impossible.
Next, consider the scenario of inputs 𝑓 () = 0 and 𝑏 = 1. This corresponds to evaluating
𝑔(0, 1). Thus, we need to show that in this case, the gadget does not evaluate to an
output of 2. To do so, we combine forward and retrograde analysis. Recall that in a
solving sequence, the cut vertex on (5, 2) captures only once both signals have reached
it. Observe that the move arrows of the non-transparent pieces in Figure 5.18b depict the
only possible capture sequence to reach a 2-output from a configuration with a 1-king on
(5, 2), using the captures ((5, 2) → (6, 3)), ((6, 4) → (6, 3) → (7, 4)), ((6, 5) → (7, 4)).
In particular, the configuration consisting of the non-transparent pieces is a necessary
intermediate configuration to reach a 2-output. We show that this configuration is
impossible to reach under the given inputs: Any capture sequence that reaches the
configuration, propagates the (6, 6)-king all the way around the gadget, beginning with
captures ((6, 6) → (5, 6) → (4, 6)), ((3, 6) → (4, 6) → (3, 5)). This results in a familiar
configuration with two 0-kings on (3, 5) and (1, 5) and only three 2-kings between them.
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Thus, as usual, any solving sequence propagates the two 0-kings to a shared neighboring
square, e.g. through moves ((2, 5) → (1, 5) → (2, 4)), ((3, 4) → (3, 5) → (2, 4)). Either
choice of a shared neighboring square leaves the resulting 0-king stranded. Thus, we
conclude that with the given inputs and path choice it is impossible to achieve a 2-output,
as claimed.

Claim 3: For any set of inputs, the function 𝑔 gadget evaluates to an output no larger
than given in Table 5.2, if both signals travel via the right path of the gadget.

Proof. If both signals travel via the right path of the gadget, then (4, 6) and (5, 6) are
cut vertices through which the signals pass. Thus, any solving sequence taking this
path contains the move ((4, 6) → (5, 6)). We deduce the moves prior to the above
capture. Any solving sequence contains a prior capture of either ((3, 6) → (4, 6))
or ((3, 5) → (4, 6)). In the latter case, after extending the capture sequence by a prior
((2, 5) → (3, 6) → (4, 6)), both signals are blocked off from reaching the right path of the
gadget. Thus, any solving sequence instead contains the moves ((3, 6) → (4, 6) → (5, 6)),
preceded by ((𝑥,𝑦) → (3, 5) → (4, 6)) and, before that, some sequence of captures that
propagates both signals onto said (3, 5)-square. Figure 5.19 depicts a possible intermediate
configuration using (𝑥,𝑦) = (2, 5). We briefly outline why it is impossible to reach this
intermediate configuration under two relevant pairs of inputs (1, 0) and (0, 1).
We begin with inputs 𝑓 () = 1 and 𝑏 = 0 and
discuss the different choices for the (𝑥,𝑦)-square.
If (𝑥,𝑦) = (2, 4), then the only possible cap-
ture sequence under which the 1-king of the
top input reaches the (3, 5)-square is ((1, 5) →
(2, 5)), ((3, 4) → (2, 5) → (3, 5)). This blocks
off the left input from reaching the right path of
the gadget. The case (𝑥,𝑦) = (2, 5) is the one
depicted in Figure 5.19. It shows a transparent
capture sequence which falls one capture (or one
unit of budget) short of reaching the (3, 5)-square
with both signals. Manual checking yields that
there is no capture sequence, with or without
utilizing captures by the (6, 3)-king, such that
both signals actually reach the (3, 5)-square. The
case for (𝑥,𝑦) = (3, 4) is similar.

2 2 2

2

2

2

2

0

2

2

2

2

2

1

2

2 2

0 2 2

2

b

f ()

g()

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

Figure 5.19.: Path choice 3: Both sig-
nals right, under inputs 𝑓 () = 1 and
𝑏 = 0, using (𝑥,𝑦) = (2, 5)

Next, consider the scenario of 𝑓 () = 0 and 𝑏 = 1. In this case, any solving sequence
propagates the 0-king of the first row through captures from and to the two second-row
kings. This leaves only the (3, 4)-king as possible (𝑥,𝑦)-king. We then observe that the
(3, 3)-king represents a cut vertex on the left signal’s path to the right side. After being
captured by the left signal, this (3, 3)-king with a resulting budget of at most 1 cannot
reach past the (2, 4)-square, after which it is impossible for both 0-kings (1, 5) and (2, 4)
to reach the square (3, 5) with only a single 2-king on (2, 5) available to propagate them.
This shows that with the given inputs, this path choice is impossible.

Combining the statements of the three claims, we see that it is impossible to achieve an output
larger than outlined in Table 5.2 for inputs of either 𝑔(1, 0) or 𝑔(0, 1), under any choice of
paths. The upper bounds for the remaining sets of inputs follow by monotony. This shows
the correctness of the function 𝑔 gadget.
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(a) Function ℎ with inputs
𝑔() = 0,¬𝑏 = 1 and output 0
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(b) Function ℎ with inputs
𝑔() = 1,¬𝑏 = 0 and output 0
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(c) Function ℎ with inputs
𝑔() = 2,¬𝑏 = 0 and output 1

Figure 5.21.: Evaluation of the (reduced) wire crossing function ℎ under different sets of
inputs. Note that the top Increment has already been evaluated.

5.6.2. Wire Crossing Function ℎ
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Figure 5.20.: Function ℎ of the wire
crossing gadget

Our gadget for function ℎ is shown in Figure 5.20. It
consists of an Increment gadget on the top input ¬𝑏,
followed by the remaining gadget that combines the
resulting top signal ¬𝑏+1 with the input𝑔(). We show
that this gadget represents a correct implementation
of the function ℎ.

Lemma 5.12: For any set of inputs, the function ℎ gad-
get evaluates to the value given in Table 5.2.

Proof. Figure 5.21 gives capture sequences which
show that for inputs 𝑔() = 0,¬𝑏 = 1 or 𝑔() = 1,¬𝑏 = 0
or 𝑔() = 2,¬𝑏 = 0 the correct output value can be
achieved. As usual, by monotony, the remaining sets
of inputs can use the same capture sequences. It re-
mains to show that no larger output values can be
reached.
Observe that the output wire begins with a defect.

It follows that the maximum possible output value is
1 which is reached if the input 𝑔() is equal to 2. We
further show that for inputs 𝑔() = 0 and ¬𝑏 = 0 the
gadget cannot be cleared and for inputs 𝑔() = 1 and
¬𝑏 = 1 an output of 1 is impossible. The remaining
cases then follow by monotony. We begin with the
first scenario:
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For inputs 𝑔() = 0 and ¬𝑏 = 0 (i.e., ¬𝑏 + 1 = 1) the
left 0-king can only be propagated by two double
captures, as seen in Figure 5.22. Any other set of
captures either leaves the 0-king stranded or dis-
connects the configuration. The capture graph of
the remaining configuration contains the set of ver-
tices of a wire with two defects and a subset of its
edges (enclosed by the dashed lines in the figure).
A wire with two defects turns an input value of
1 into an output value of -1, i.e., it is impossible
to clean up all the pieces. Since the actual config-
uration offers only a subset of possible captures,
any capture sequence in it would also be legal in
the “normal” wire. It follows from the above that
it is also impossible to clean up said remaining
configuration.
The other case is that of inputs 𝑔() = 1 and ¬𝑏 = 1
(i.e., ¬𝑏+1 = 2). For this case we once more employ
the method of retrograde analysis: Assume the
output is a 1-signal as shown in Figure 5.23. The
final move cannot have been ((5, 2) → (6, 3)) since
that would leave an earlier antenna of length 2
ending in a 1-king on (4, 1), which by Lemma 3.6
cannot have been resolved. Thus, the final move
was ((5, 4) → (6, 3)) as indicated in the figure.
Then the only possible un-capture piece is a 0-king
on (6, 3). If the previous double move had been
((4, 3) → (5, 2) → (6, 3)), this would leave the top
right side locked out from reaching the cut vertex
on (6, 3). Thus, the previous double move instead
was ((4, 2) → (5, 2) → (6, 3)) and at some earlier
time ((4, 1) → (5, 2)). In this configuration,
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Figure 5.22.: The reduced configura-
tion from scenario 1 is impossible to
resolve.
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Figure 5.23.: The goal configuration
for scenario 2 is impossible to reach.

the only possible un-capturer is the king on (5, 2). The only remaining possible un-captures
are ((3, 4) → (4, 3) → (5, 2)), which again locks out the top right side. Thus, we reach a
contradiction and see instead that for these inputs we cannot achieve a 1-output.

By monotony, this result extends to the inputs of 𝑔() = 0,¬𝑏 = 1 and 𝑔() = 1,¬𝑏 = 0. This
shows the correctness of the function ℎ gadget.

5.6.3. The Full Wire Crossing Gadget

Using the above tools, we now construct the full wire crossing gadget. It can be seen in Figure
5.24.

Lemma 5.13: Given inputs 𝑎 and 𝑏, the wire crossing gadget produces outputs 𝑎 = 𝑎 and 𝑏 = 𝑏.

Proof. As shown above, functions 𝑓 , 𝑔 and ℎ combine to compute the function 𝐹 . We discuss
the different possible inputs for 𝐹 . Any solving sequence matches an input of 𝑏 = 0 with an
output of 𝑏 = 0: Assigning 𝑏 the value 1 would assign ¬𝑏 the value 0, which, by definition of
𝐹 , leads to an error case, meaning that the gadget cannot be cleared. Outside this error case,
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Figure 5.24.: The full wire crossing gadget.

function 𝐹 is the identity on 𝑎. Thus, it correctly produces an output of 𝑎 = 𝑎, as intended.
The remaining scenario is that of an input of 𝑏 = 1. In this case, both 𝑏 = 0 and 𝑏 = 1 are
valid outputs that do not lead to an error. As usual, we assume that any gadget evaluates to
the maximum possible output value. Thus, in this case, the wire crossing gadget produces
an output of 𝑏 = 1 = 𝑏 and so the input 𝑏 is correctly reproduced on the other side of the
wire.
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5.7. The 1-Test Gadget

The 1-test gadget serves two purposes: It contains the final square of the instance, thereby en-
suring that every other gadget needs to be evaluated and fully cleared. Furthermore, it ensures
that the full set of clauses is satisfied, by only being reducible to a single square under an input

1 2

2

2

2

2

2

2

Figure 5.25.: The 1-test gad-
get reduces to a single piece
if and only if it has an in-
put of (at least) 1. The fi-
nal square is highlighted in
blue.

of at least 1. It has one input and no outputs, and consists of
an antenna of length 2 connected to an incoming wire, as seen
in Figure 5.25.

Lemma 5.14: The 1-test gadget can be reduced to a single piece
if its input is at least 1. Otherwise, it is impossible to reduce the
gadget to a single piece.

Proof. Figure 5.25 shows a possible capture sequence that
achieves the first claim. To show the second claim, we observe
that the kings of the final column combine with one of the wire
kings to form an antenna of length three. By Corollary 3.7,
we conclude that this antenna contains the final square of the
instance. In particular, for any capture sequence, the bottom
left king does not leave the final column. Thus, to reduce the
gadget to a single piece, any solving sequence propagates the
wire signal to that final column. In case of a 0-signal, there is
no such capture sequence, since propagating the signal results
in a penultimate column holding only a 0-king, which remains
stranded.

This concludes our discussion of the various gadgets. It re-
mains to correctly put the pieces together.

5.8. The Final Reduction

We now describe our transformation of an And-Or-(1,1)-SAT instance into a King 2-Solo
Chess instance. Let an And-Or-(1,1)-SAT instance 𝐼 = (𝑈 ,𝐶) be given. Choose an And-Or
Embedding of 𝐼 that includes the optional conjunction of the outputs of the clauses. For every
variable 𝑢 ∈ 𝑈 , place a variable assignment gadget on the board at sufficient distance to all
other variable assignment gadgets. For each clause, place the respective logic gadgets on
the board according to the embedding, and place wire on the board to connect their inputs
with the correct outputs of variable assignments or other logic gadgets. Place the remaining
And gadgets that combine the outputs of the clauses, according to the embedding. Where
necessary, place wire crossing gadgets to allow wires to cross. Finally, place a 1-test gadget
and connect it to the output of the final And gadget. An example of such a placement on the
board can be seen in Figure 5.1. Using this construction, we now prove:

Theorem 5.15: King 2-Solo Chess is NP-hard.

Proof. We reduce from And-Or-(1,1)-SAT. We transform a given instance as described above.
Note that this transformation runs in polynomial time. Let 𝑛 be the number of variables and
𝑚 be the number of clauses of the SAT instance. For each variable, a single gadget is placed
on the board, for a total of 𝑛 gadgets. For each clause, at most two logic gate gadgets are
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placed on the board, for a total of at most 2𝑚 gadgets. To combine the outputs of all clauses,
𝑚 − 1 And gadgets are placed on the board. Including the final 1-test, the number of placed
gadgets is in O(𝑛 +𝑚). In addition, in our And-Or Embeddings, each of the O(𝑛 +𝑚) wires
connecting two gadgets has length O(𝑛 +𝑚) and crosses at most O(𝑛 +𝑚) other wires. Each
gadget consists of only a constant number of kings. Thus, the total number of kings is in
O((𝑛 +𝑚) + (𝑛 +𝑚)2), which is polynomial in the input size. Furthermore, the transformation
can be computed in time proportional to its output size. It remains to show that the two
instances are in fact equivalent.

SAT instance solvable =⇒ Chess instance solvable: Let Φ be a satisfying assignment
for the SAT instance. Then a solving sequence consists of the following steps: For each
variable assignment gadget, assign the value 1 to the literal that is set to true by Φ and the
value 0 to the other literal (see Lemma 5.7). Propagate the signal of each literal through its
wire and possible wire crossing gadgets to the logic gadget of its clause. By Lemmata 5.3,
5.6 and 5.13 each signal remains unchanged in this process. For each clause, evaluate each
logic gadget and propagate the resulting signal through the outgoing wire to the input of
the next logic gadget. Since each clause was satisfied by Φ, by Lemmata 5.9 and 5.10, each
outgoing wire from the final gadget of a clause receives a 1-signal. Then, evaluate each of
the additional And gadgets which combine the different clause outputs. Since each clause
evaluated to 1, the sequence of And gadgets by Lemma 5.10 once more yields an output of 1.
Finally, propagate the resulting 1-signal to the 1-test gadget, which is reduced to a single final
piece (see Lemma 5.14). Recall that whenever any other gadget is evaluated, none of its pieces
remain. Thus, only the final king of the 1-test gadget remains, meaning that this is a valid
solving sequence.

Chess instance solvable =⇒ SAT instance solvable: Let a solving capture sequence
for the chess instance be given. Then the following procedure yields a satisfying assignment
Φ for the SAT instance: For each variable assignment gadget, check which of the output wires
is assigned a 1-signal. If the wire corresponds to some literal ℓ = 𝑥 , set Φ(𝑥) := true. If it
corresponds to some literal ℓ = ¬𝑥 , set Φ(𝑥) := false. If neither of the two wires is assigned a
1-signal (through some “suboptimal” capture sequence), the value of the variable does not
matter, so we can for example set Φ(𝑥) := true. Then Φ is a satisfying assignment:
By Lemma 5.7, at most one of the wires of each variable assignment gadget is assigned

a 1-signal. Thus, Φ is a well-defined. We also see that every clause is satisfied: The solving
capture sequence reduces the configuration to a single piece. Thus, by Lemma 5.14 the 1-test
gadget has received an input of (at least) 1. By Lemma 5.10 it follows that each of the And
gadgets that combine the outputs of clauses has received two 1-signals as inputs. This means
that each clause in the Solo Chess instance has evaluated to 1. Then, by Lemmata 5.9 and
5.10, under the variable assignments given by Φ, each clause evaluates to 1, i.e., true. It follows,
that in the SAT instance, each clause is satisfied under Φ.

Overall, we conclude that the two instances are equivalent, which shows the NP-hardness
of King 2-Solo Chess.
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6. Knight 2-Solo Chess

In this chapter, we extend our study of 2-Solo Chess on a two-dimensional board. We show
that the NP-hardness result for the king case also holds for instances containing only knights.
The overall reduction is similar to that of King 2-Solo Chess. We reduce from And-Or-(1,1)-
SAT and directly translate an And-Or Embedding into a corresponding chess position. To
this end, we once again present gadgets for wires, wire crossings, Or-gates, And-gates and a
1-test. As before, any solving sequence fully clears all gadgets except the 1-test.

6.1. The Wire

We begin with the wire. It is constructed similarly as in the King 2-Solo Chess reduction,
however, due to the “strange” movement of the knight, it has a few peculiarities. Figure 6.1
shows the capture graph of a wire as well as its placement on the chess board. We define
pairs of consecutive vertices sharing the same square color, such as 1 and 2 or 3 and 4, as
(dark-squared or light-squared) wire-columns. Note that a knight always moves from a dark
square to a light square, or from a light square to a dark square. As a result, the square colors
of consecutive wire-columns alternate. We call vertices which (originally) have degree four
inner vertices (or inner knights) and vertices which have degree two outer vertices (or outer
knights). Every wire-column consists of an inner and an outer vertex. Note that while the wire
is being cleared, the degree of its vertices changes. However, we keep referring to vertices
as inner or outer vertices based on their original degree. In our vertex numbering, those of
the form 4𝑘 + 1 or 4𝑘 + 4 for some 𝑘 ∈ ℕ0 are outer vertices, and those of the form 4𝑘 + 2 or
4𝑘 + 3 are inner vertices.

The wire is once again used to propagate signals. These signals differ from the King 2-Solo
Chess signals in that they have two components: We define signal values as elements of
{0, 1}2 with (0, 0) representing false, (1, 0) representing true and auxiliary values (0, 1) and
(1, 1). In Figure 6.1 we call the wire-column containing vertices 1 and 2 the signal column if
all previous wire-columns have been cleared. Note that for parity reasons, only every other
wire-column, namely every dark-squared one, is a signal column at some point. Similar to
King 2-Solo Chess, we can read off signal values in the signal column. The value of the first
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Figure 6.1.: The Knight Wire placed on a chess board.
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2|1

0|2

2|3

2|4

2|5

2|6

2|7

2|8
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(a) Propagating a (1, 0)- and a (0, 1)-signal . . .

⇝

2|5

0|6

2|7

2|8

1|6

2|7

2|8

(b) . . . retains a (1, 0)- and a (0, 1)-signal.

Figure 6.2.: Two Knight Wires propagating a signal each. Each vertex shows its budget
followed by its vertex number.

component depends on the state of the outer vertex, while the value of the second component
depends on the state of the inner vertex of the signal column. Figure 6.2 shows a (1, 0)- and a
(0, 1)-signal. In general, the value of a signal can be read off as follows: If the outer vertex of
the signal column is present with a budget of 2, this corresponds to a first signal component
of 1. If it is not present at all, this corresponds to a first signal component of 0. Meanwhile,
under correct use the inner vertex of the signal column is always present, either with a budget
of 0 or 1. The second signal component is the value of this inner vertex budget, so again either
0 or 1. We show below that these are the only possible signals that a wire can propagate.

A signal is being propagated by the outer vertices of the wire capturing towards the inner
vertices of the wire. Figure 6.2 shows a (1, 0)- and a (0, 1)-signal being propagated by two
wire-columns each. More generally, if the first component of a signal is 1 (as in the top wire)
the outer vertex of the signal column captures forward, otherwise (bottom wire), it captures
backward. Analogously, if the second component of a signal is 1 (bottom wire), the outer
vertex of the next wire-column captures forward, otherwise (top wire) it captures backward.
Similarly, a (1, 1)-signal is propagated by both outer vertices capturing forward, while a
(0, 0)-signal is propagated by both outer vertices capturing backward. It follows that once
more there is a monotony on signal values: Using the example of the bottom wire of Figure
6.2, by immediately capturing with vertex 4 through captures (4 → 2 → 3), this (0, 1)-signal
can be turned into a (0, 0)-signal. Analogously, for the top wire, the first component can be
decremented from 1 to 0 by capturing (4 → 2 → 3), (1 → 3), (5 → 3 → 6). Note, however,
that while it holds that (0, 0) ≤ (1, 0) ≤ (1, 1) and (0, 0) ≤ (0, 1) ≤ (1, 1), the signal values
(1, 0) and (0, 1) are incomparable. When discussing gadgets, we still assume that any gadget
evaluates to the maximum possible value. This is ill-defined if a gadget can evaluate to either
(1, 0) or (0, 1), however, this case does not occur in our construction. We show that the wire
works correctly in the sense that it propagates values without modification.

Lemma 6.1: Propagating a signal through a wire does not change its value.
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6.1. The Wire

Proof. We have outlined in Figure 6.2 how to propagate a signal value such that it does not
decrease. To see that the signal value cannot increase, we remark that the invariant presented
in the King 2-Solo Chess reduction works analogously for Knight 2-Solo Chess. In particular,
the value 𝑠 = 𝑐 − 𝑛 + 1 for a wire-column containing 𝑛 knights with a combined budget of
𝑐 counts precisely the number of 1-components of the signal value. As before, every wire-
column contributes at most two units of budget and adds two knights, thus, the value of the
invariant never increases. This shows that a signal value never increases. It remains to show
that it is impossible to transform the value (1, 0) into the value (0, 1) and vice versa. For this,
we first show:

Claim 1: If an inner vertex captures an outer vertex of a wire, that wire cannot be
cleared.

Proof. Assume for contradiction that there exists a clearing capture sequence (without
loss of generality, from left to right) where an inner vertex captures an outer vertex. Fix
the left-most inner vertex 𝜈 that captures an outer vertex𝑤 . Consider the case that at
the time of the capture 𝜈 has a budget of less than 2. Then after capturing𝑤 , said vertex
𝑤 becomes a 0-leaf and thus stranded, a contradiction. Next, consider the case where at
the time of the capture 𝜈 has a budget of 2. Since the wire is cleared left to right, at least
one vertex of the wire-column to the left of 𝜈 captures a vertex of the wire-column of 𝜈 .
Since 𝜈 is the left-most (inner) vertex that captures an outer vertex, the vertices of the
wire-column to its left do not capture the outer vertex of the wire-column of 𝜈 . However,
based on its budget of 2 at the time of capturing, 𝜈 itself has not been captured either. We
again reach a contradiction, which shows that the assumption is false. It follows directly
that in any clearing capture sequence, no inner vertex captures an outer vertex.

Consider now the capture sequence of a (1, 0)-signal, as shown in Figure 6.2. We show that
there is no deviation from this sequence that results in a (0, 1)-signal: Vertex 2 can only leave
its square through being captured by one of its neighbors, followed by capturing the other
neighbor. By Claim 1, the second of these captures cannot be towards an outer vertex. Thus,
the given pair of captures (4 → 2 → 3) is the only one that does not leave a piece stranded.
It results in vertex 3 having a budget of 0. This vertex 3 can proceed by the pair of captures
as shown in the figure, which restores a (1, 0)-signal. Performing instead a pair of captures
(5 → 3 → 6) leaves vertex 1 stranded. Finally, performing a single capture (1 → 3) and then
a pair of captures (5 → 3 → 6) merely decrements the (1, 0)-signal to a (0, 0)-signal. This
covers all possible clearing capture sequences. It follows that a (1, 0)-signal cannot be turned
into a (0, 1)-signal.
Next, we show that there is no deviation from the capture sequence of a (0, 1)-signal that

results in a (1, 0)-signal: In a (0, 1)-signal, the signal column consists of only a single inner
1-vertex. Propagating this 1-vertex through a pair of captures (4 → 2 → 3) again decrements
the signal to a (0, 0)-signal. Otherwise, by Claim 1, vertex 2 captures (2 → 3). As above, the
resulting 0-vertex can only be propagated through a pair of captures (5 → 3 → 6). What
remains is a 2-leaf in vertex 4 and a 0-vertex in vertex 6. Capturing (8 → 6) followed by
(4 → 6 → 7) once more decrements the signal to a (0, 0)-signal. The remaining possibility of
immediately capturing (4 → 6) restores the original (0, 1)-signal. Thus, it is impossible to turn
a (0, 1)-signal into a (1, 0)-signal which concludes the final case and finishes the proof.
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2|1

2|2
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0|7

2|8

Figure 6.3.: A wire with reduced vertex budgets.

We observe that there are no other sig-
nals than the ones described above: An
outer vertex can be present with a budget
of 2 or not be present at all. Since it is
never captured, it is never present with
any other budget. Conversely, from the
previous proof, we know that every inner
vertex is captured by a vertex to its left.
Thus, when it is part of a signal column,
it has a budget 0 or 1.

Since each inner vertex is captured, and
so has its previous budget replaced by that of the capturing vertex, we observe:

Observation 6.2: Reducing the budget of an inner vertex outside the signal column does not
change the functionality of the wire. In particular, the wire shown in Figure 6.3 propagates a
signal without changing its value.

This proves useful when constructing larger gadgets that contain a wire.
We give a number of possible placements of the capture graph on the chess board. We have al-

ready seen in Figure 6.1 the “standard” placement of a (thin) wire.

1
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78

910

1112

Figure 6.4.: A wire turning a corner.

We give further placements of the capture graph
which serve different purposes. Figure 6.4 shows
a wire turning a corner. Since the capture graph
of the wire corner is the same as that of a stan-
dard wire, it behaves exactly like a standard wire
and does not change the value of the signal it
propagates.
Figures 6.5a and 6.5b show further placings,

which once more have the same capture graph.
These placings (and their mirrored versions) allow
us to shift the wire as needed so that it is aligned
correctly with the inputs to the yet to be defined
function gadgets. More specifically, the first of
these offsets the wire diagonally down and to the
right by one square relative to the standard wire.
The latter offsets the wire diagonally down and to
the left by one square relative to the standard wire.
Note that since wire-columns always alternate in
color, it is impossible to offset a wire only by one
square to the right or only by one square down,
as that would change a signal column’s color.
Figure 6.6 shows a mirrored wire. It too has the same capture graph as the standard wire,

however, it ends with a mirrored version of the wire where even-numbered pieces are on
top and where the light-squared wire-columns are one row further up than the dark-squared
wire-columns. To maintain the color parity, this includes a shift by one square to the right.

Next, we briefly discuss wire crossings. To this end we first show a placement of the wire
that is stretched in the vertical dimension, a thick wire as seen in Figure 6.7. Using this thick
wire, we can create a wire crossing by simply placing the two wires to be crossed appropriately,
as seen in Figure 6.8. Observe that none of the knights of the blue wire can capture any knight
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(a) Shifting a wire diagonally South East by one.
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(b) Shifting a wire diagonally South West by one.

Figure 6.5.: Two wire shifts. Dark gray squares show the (would-be) positions of the signal
columns in a standard wire. The light gray squares show the actual position of the right-most
signal column of the placement.
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Figure 6.6.: A mirrored wire, ending with even numbers on top and odd numbers at the
bottom. Dark gray and orange show the (would-be) positions of the signal and non-signal
columns, respectively.
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Figure 6.7.: Transitioning from the standard wire placement to the alternative thick wire.

of the red wire and vice versa. Thus, the two wires do not interact in any way and simply
propagate their values as usual.

This finishes our discussion on wires. We have seen various placements of the wire capture
graph on the board to create a standard wire, corners, shifts and mirrored wires. By combining
these, it is possible to propagate a signal to a signal column in arbitrary position and orientation
on the board. This allows us to create a wire crossing gadget without the need for auxiliary
functions, as well as construct various further gadgets.

6.2. Auxiliary Gadgets

In this section, we describe a number of auxiliary gadgets which are later composed to create
the desired SAT gadgets.

6.2.1. Signal manipulation gadgets

We begin with gadgets that manipulate the value of a signal. Analogous to King 2-Solo Chess
we describe the Increment and Decrement gadgets. Figures 6.9 and 6.10 show an Increment
and a Decrement gadget for the first signal component. The corresponding second component
Increment gadget instead adds a knight on a light square that is adjacent to a dark inner
vertex. Similarly, the second component Decrement gadget removes the outer knight of a
light-squared wire-column.

Lemma 6.3: The Increment gadget sets a specific component of a signal to 1, regardless of its
previous value. In particular, the dark-squared Increment gadget acts on the first, while the
light-squared Increment gadget acts on the second component of the signal.

Proof. We show the claim for the dark-squared Increment gadget. We first show that it is
possible to set the first component of the signal to 1, then, that this is the best possible result.
Consider the case where the first component of the incoming signal is 0, shown in Figure 6.11.
Then the standard propagation of the signal contains the move pair ((1, 5) → (2, 3) → (3, 5)).
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Figure 6.8.: A wire crossing of a red and a blue wire. Note that no red piece can capture any
blue pieces and vice versa.

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

Figure 6.9.: The dark-squared Increment gadget sets the first component of the signal to 1.

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

Figure 6.10.: The dark-squared Decrement gadget decrements the first component of the
signal.
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0

×
(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9)
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(2, ·)

(3, ·)

(4, ·)

Figure 6.11.: Incrementing the first component of a (0, 0)-signal.

Replacing it by ((4, 4) → (2, 3) → (3, 5)) sets the first component of the signal to 1 by retaining
the (1, 5)-knight. Note that the second component is unchanged by this. By monotony, this
also holds when the first component of the signal is already set to 1.
To show that this is the best possible result, by monotony, it suffices to show that a dark-

squared Increment gadget cannot turn a (1, 0)-signal into a (𝑥, 1)-signal for any 𝑥 ∈ {0, 1}.
Observe that it still holds that no outer vertex can be captured. Thus, any clearing capture
sequence contains the pair of moves ((4, 3) → (3, 1) → (2, 3)). Then, both the (1, 1)- and
the (4, 4)-knights are leaves, and capture the (2, 3)-knight at some point to clear the wire.
Once the eventual 1-knight on (2, 3) captures the next inner knight on (3, 5), this results
in a 0-knight, i.e., a second component of 0. Thus, it is impossible to increment the second
component of a signal with a dark-squared Increment gadget.
The proof for the light-squared Increment gadget is similar.

Lemma 6.4: The Decrement gadget reduces a specific component of a signal by 1, that is, it turns
a 1-component into a 0-component while turning a 0-component into a −1-component, i.e., leads
to a stranded piece. The dark-squared Decrement gadget acts on the first, while the light-squared
Decrement gadget acts on the second component of the signal.

Proof. We show the claim for the dark-squared Decrement gadget of Figure 6.10. If the
incoming signal has a first component of 1, then once reaching the Decrement column, the
first component becomes 0 since that signal column does not contain an outer knight in the
first place. Note also that there is no capture sequence that increases the second component
in return, as otherwise this sequence would also be valid in a standard wire. If the incoming
signal has a first component of 0, then regardless which third wire-column knight the (3, 1)-
knight captures, the resulting 0-knight is a leaf and, thus, stranded. Similar to King 2-Solo
Chess, we denote the resulting signal as (−1, 𝑥) to indicate an error state.

Once again, the proof for the light-squared Decrement gadget is similar.

The Increment gadget sets a component of a signal to 1, regardless of its previous value. We
create the converse Zeroing gadget, which sets a component of a signal to 0. In particular, it
differs from the Decrement gadget by not turning a 0-component into an error state -1. Instead,
to construct the Zeroing gadget, we combine the Increment and the Decrement gadget, as
seen in Figure 6.12. After setting the component to 1 using the Increment gadget, it is safe to
use the Decrement gadget to set it to 0, as desired. In figures, we denote the Zeroing gadget
that sets the first component of a signal to 0 by “·(0, 1)”. The converse ·(1, 0)-gadget is created
by combining a +(0, 1)- and a −(0, 1)-gadget. We have seen:
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·(0, 1)

+(1, 0) −(1, 0)(𝑥,𝑦) (0,𝑦)(1,𝑦)

Figure 6.12.: The dark-squared Zeroing gadget sets the first component of a signal to 0.

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9) (·, 10)(·, 11)(·, 12)(·, 13)(·, 14)(·, 15)(·, 16)(·, 17)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

Figure 6.13.: The three valued production gadget produces left and right outputs (1, 1) ↔
(0, 0) or (1, 0) ↔ (0, 1) or (0, 0) ↔ (1, 1).

Lemma 6.5: The dark-squared Zeroing gadget sets the first component of a signal to 0, regardless
of its previous value. The light-squared Zeroing gadget sets the second component of a signal to 0,
regardless of its previous value.

6.2.2. Value Production Gadgets

We use value production gadgets to populate the wires with values. We begin with a three
valued production gadget (3-Val for short), shown in Figure 6.13.

Lemma 6.6: The 3-Val gadget produces either a (1, 1)-signal to the left and a (0, 0)-signal to the
right, or a (1, 0)-signal to the left and a (0, 1)-signal to the right, or a (0, 0)-signal to the left and
a (1, 1)-signal to the right.
Proof. Consider the central knight marked in blue. If it is captured by the knight to its right,
this creates a knight with a budget of at most 1 as the final piece of an antenna of length 2. By
Lemma 3.6, this antenna is stranded. Thus, since every solving sequence fully clears every
SAT gadget, the blue knight is never captured by the knight to its right. However, it can be
captured by the knight to its left through a capture ((3, 7) → (2, 9)) which turns it into an
antenna of length 1 with a 1-leaf. After resolving the antenna with another leaf capture, there
remains a (1, 1)-signal on the left and a (0, 0)-signal on the right, the first of the three possible
outcomes.
The remaining options are those where the blue knight is not captured and instead makes

a capture itself: If it captures to the left through ((2, 9) → (3, 7) → (2, 5)), this creates a
(0, 0)-signal on the left and a (1, 1)-signal on the right by an analogous argument. If it captures
to the right through ((2, 9) → (3, 11)), this creates a (0, 1)-signal on the right. Then, after a
leaf capture on the left, the left wire receives a (1, 0)-signal. This covers all possible cases for
the blue knight and the capture sequence as a whole, and yields the claimed three possible
outcomes.

Building on the 3-Val gadget, we create an asymmetric value production gadget, shown in
Figure 6.14.
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(1, 1) ←→ (0, 0)
(0, 0) ←→ (1, 0)

(𝑥, 𝑥) (1 − 𝑥, 0)3-Val ·(1, 0)

Figure 6.14.: The asymmetric value production gadget produces left and right outputs
(1, 1) ↔ (0, 0) or (0, 0) ↔ (1, 0).

Lemma 6.7: The asymmetric value production gadget produces a (1, 1)-signal to the left and a
(0, 0)-signal to the right, or a (0, 0)-signal to the left and a (1, 0)-signal to the right. An alternative
version of the gadget produces a (1, 1)-signal to the left and a (0, 0)-signal to the right, or a
(0, 0)-signal to the left and a (0, 1)-signal to the right.

Proof. Consider the different options for evaluating the 3-Val gadget. It can produce outputs
(1, 1) ↔ (0, 0). In this case, zeroing the second component of the right output does not
modify it, as such this yields the first of the two claimed possible outputs. The 3-Val gadget
can produce outputs (1, 0) ↔ (0, 1). In this case, zeroing the second component of the right
output turns it into a (0, 0)-signal. This yields an overall output of (1, 0) ↔ (0, 0) which is
smaller than the first option and thus, by monotony, is not chosen. Finally, the 3-Val gadget
can produce outputs (0, 0) ↔ (1, 1). In this case, zeroing the second component of the right
output turns it into a (1, 0)-signal, yielding the second possible output.
Modifying our construction by using a ·(0, 1) gadget instead of a ·(1, 0) gadget yields an

analogous gadget producing outputs (1, 1) ↔ (0, 0) or (0, 0) ↔ (0, 1).

6.2.3. The Maximum Gadget

Next, we describe the Maximum gadget seen in Figure 6.15. It computes the component-wise
maximum of the two input signals.

Lemma 6.8: The Maximum gadget computes the component-wise maximum of its two input
signals. I.e., for inputs (𝑢,𝜈) and (𝑤 , 𝑥) it produces the output (max{𝑢,𝑤},max{𝜈, 𝑥}).

Proof. First, observe that the white knights on (7, 4), (9, 5), (8, 7) form an antenna of length 2,
which by Lemma 3.5 is reduced to a 0-knight on (7, 4). We now show:

Claim 1: For a top (blue) input of (0, 0), the Maximum gadget is the identity on the left
(orange) input.

Proof. Figure 6.16 shows a suitable capture sequence. The resulting configuration consists
of the orange wire with one inner knight turned into a 0-knight. By Observation 6.2 this
modification does not change the value of the orange signal, thus, the wire acts as the
identity function on the orange input.
To see that this is the best possible output, consider the alternative capture sequences.
First, observe that after the two pairs of captures by the blue knights, the white 0-knight
only has one neighbor that has a budget of 2. Thus, any clearing sequence contains the
third pair of captures, as otherwise the white 0-knight would end up stranded. Next, we
discuss the blue knight captures themselves, in particular, the path of the 0-knight on
(1, 5). It is possible to propagate it to (5, 7) instead of (5, 3), through captures ((3, 4) →
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(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9) (·, 10)(·, 11)
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Figure 6.15.: The Maximum gadget computes the component-wise maximum of the blue and
the orange signal.

(1, 5) → (3, 6)), ((5, 5) → (3, 6) → (5, 7)). Then, if the white 0-knight is propagated to
(8, 6), through captures ((5, 3) → (7, 4) → (8, 6)), this creates a 0-leaf which is stranded.
Otherwise, after propagating it to (5, 3), as in the intended sequence, there again remains
an orange wire that propagates the orange signal unmodified. Propagating the (1, 5)-
knight to (5, 5) via the (3, 4) or (3, 6)-square produces a 0-leaf that is stranded. This
covers all cases and shows the claim.

Next, we discuss the case where the blue input is greater than (0, 0). We show:

Claim 2: For a blue input of (1, 0), the Maximum gadget is a first component Increment
on the orange input.

Proof. Figure 6.17 shows a suitable capture sequence. This sequence propagates the
(1, 5)-knight to (5, 3) without needing to use the (5, 5)-knight. This in turn allows the
(5, 5)-knight to take the role of the white 2-knight, freeing up that white knight to serve
as a dark-squared increment.
To show that this is the best possible output, we need to show that there is no capture
sequence that uses a blue (1, 0)-input to increment the second component of the orange
signal. We again consider alternative capture sequences. Deviating from the first pair
of moves and propagating the blue 0-knight to (3, 6) instead of (3, 4), through captures
((3, 4) → (1, 5) → (3, 6)), leaves the extra (1, 3)-knight stranded. Thus, any clearing cap-
ture sequence propagates the 0-knight to (3, 4) as in the given sequence. Propagating this
(3, 4)-knight to (1, 3) or (3, 5) leaves the resulting 0-knight stranded. Thus, any clearing
capture sequence propagates the (3, 4)-knight to (5, 3). Deviating from the second pair of
moves by interjecting the capture ((1, 3) → (3, 4)) followed by ((5, 5) → (3, 4) → (5, 3))
merely transposes to the capture sequence for a blue (0, 0)-signal which, as we have
seen, does not increment the second component of the orange signal. Finally, we discuss
deviating from the given sequence after the first two pairs of moves. Propagating the
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(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9) (·, 10)(·, 11)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)
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Figure 6.16.: The Maximum gadget with a top input of (0, 0).
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(1, ·)
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(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

(9, ·)

Figure 6.17.: The Maximum gadget with a top input of (1, 0).

white 0-knight from (7, 4) to (5, 5) or (8, 6), rather than to (5, 3), leaves the resulting 0-
knight stranded. Propagating it to (5, 3) using captures ((8, 6) → (7, 4) → (5, 3)) leaves
the (5, 5)-knight stranded. Finally, interjecting the capture ((5, 5) → (7, 4)) followed by
captures ((8, 6) → (7, 4) → (5, 3)) once more transposes to the capture sequence for a
blue (0, 0)-signal. This covers all the possibilities to deviate from the given sequence that
do not result in stranded pieces. It follows that there is no clearing capture sequence
given this blue input that increments the second component of the orange signal.

We show an analogous result for the second component:
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Figure 6.18.: The Maximum gadget with a top input of (0, 1).

Claim 3: For a blue input of (0, 1), the Maximum gadget is a second component Incre-
ment on the orange input.

Proof. Figure 6.18 shows a suitable capture sequence. This sequence propagates the
(1, 5)-knight to (5, 3) without needing to use the (3, 6)-knight. This allows the latter to
serve as a light-squared increment.

To show that this is the best possible output, we need to show that there is no capture
sequence that uses a blue (0, 1)-input to increment the first component of the orange
signal. We consider alternative capture sequences. We first discuss deviating from the
second pair of moves. Propagating the 0-knight from (3, 4) to (5, 5) instead of (5, 3),
through moves ((5, 3) → (3, 4) → (5, 5)) results in a 0-knight on (5, 5). To not end
stranded, this 0-knight is propagated by its only neighbor with a budget of 2, through
moves ((3, 6) → (5, 5) → (7, 4)). This results in a 0-leaf and, thus, a stranded piece.
Next, we discuss deviating from the first move. Capturing to the right instead of to
the left, through ((1, 5) → (3, 6)), results in an effectively symmetric scenario. After
captures ((5, 5) → (3, 6) → (5, 7)), the (3, 4)-knight takes the role of the light-squared
Increment. Other alternative continuations are equivalent to those given in the prior
case. It is also possible to propagate the (1, 5)-knight through a pair of captures. In
this case moves ((3, 6) → (1, 5) → (3, 4)) transpose to the case of a blue (0, 0)-signal
which as we have seen does not increment the first component of the orange signal.
Here too, the alternative pair of moves ((3, 4) → (1, 5) → (3, 6)) results in a symmetric,
equivalent scenario. This covers all the options to propagate the (1, 5)-knight. Finally, for
the final pair of moves, the white 0-knight has only two neighbors that it can possibly be
propagated to. Propagating it to the remaining white knight (e.g. in the above-mentioned
symmetric scenario) results in a stranded 0-leaf. The remaining option is the one given
in the example sequence. It follows that there is no clearing capture sequence given this
blue input that increments the first component of the orange signal.
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Flip

(1, 1) ←→ (0, 0)
(0, 0) ←→ (0, 1)

max −(1, 0) ·(1, 0) max(𝑥, 0) (0, 𝑥)

Figure 6.19.: The Flip gadget flips the two components of a signal.

If the blue input is (1, 1), then combining the two previous approaches increments both
components of the orange wire signal. Overall, we see that the Maximum gadget is the
identity on the orange wire signal if the blue wire signal is (0, 0), and that any blue signal
component set to 1 sets the corresponding component of the orange signal to 1, thereby
correctly implementing the maximum function.

6.2.4. The Flip Gadget

Finally, we describe the Flip gadget, which flips the two components of a signal. Figure 6.19
shows a high level view of the gadget. Specified in more detail:

Lemma 6.9: The Flip gadget turns a (1, 0)-signal into a (0, 1)-signal. It leaves a (0, 0)-signal
unchanged.

Proof. The idea of the Flip gadget is to use the asymmetric value production gadget to
differentiate the two possible inputs. It produces its first possible pair of output values for a
gadget input (𝑥, 0) = (0, 0), and its second possible pair of output values for a gadget input
(𝑥, 0) = (1, 0).
We verify all cases of possible inputs and produced value pairs:

Input (0, 0), pair (1, 1) ↔ (0, 0): (0, 0) max−−−→ (1, 1) − (1,0)−−−−−→ (0, 1) · (1,0)−−−−→ (0, 0) max−−−→ (0, 0)

Input (0, 0), pair (0, 0) ↔ (0, 1): (0, 0) max−−−→ (0, 0) − (1,0)−−−−−→ (−1, 0) ⇝ Error

Input (1, 0), pair (1, 1) ↔ (0, 0): (1, 0) max−−−→ (1, 1) − (1,0)−−−−−→ (0, 1) · (1,0)−−−−→ (0, 0) max−−−→ (0, 0)

Input (1, 0), pair (0, 0) ↔ (0, 1): (1, 0) max−−−→ (1, 0) − (1,0)−−−−−→ (0, 0) · (1,0)−−−−→ (0, 0) max−−−→ (0, 1)

By monotony, for each input the maximum possible output is chosen. The claim follows.

This concludes our discussion of the auxiliary function gadgets.

6.3. SAT Gadgets

In this section, we describe how to construct the necessary gadgets for our high level SAT
construction. For this, recall that we encode the logic value true as (1, 0) and the logic value
false as (0, 0).
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Figure 6.20.: The variable assignment gadget produces left and right outputs (1, 0) ↔ (0, 0)
or (0, 0) ↔ (1, 0).

6.3.1. The Variable Assignment Gadget

We begin with the variable assignment gadget seen in Figure 6.20. It works analogously to the
King 2-Solo Chess variable assignment gadget: It consists of a path of length five enclosed
by a wire on either side.

Lemma 6.10: A variable assignment gadget produces one (1, 0)- and one (0, 0)-signal.

Proof. The proof is effectively analogous to the king case. The center knight of the path,
marked in blue, cannot be captured as it would otherwise end up stranded. Thus, it needs to
make a capture itself. If it captures to the left, this creates a (0, 0)-signal on the left wire and a
(1, 0)-signal on the right wire, if it captures to the right the two signals are swapped.

Translated into the language of logic values, this shows that the variable assignment gadget
produces one true and one false literal, as expected.

6.3.2. The Or Gadget

For the Or gadget, we use the unmodifiedMaximum gadget. If both inputs are false — i.e., (0, 0)
— it produces the output false since max{(0, 0), (0, 0)} = (0, 0). If one or both inputs are true —
i.e., (1, 0) — it produces the output true since for any 𝑥 ∈ {0, 1} : max{(1, 0), (𝑥, 0)} = (1, 0).
Thus, the Maximum gadget correctly implements the Or function.

6.3.3. The And Gadget

Next, we describe the And gadget, seen in Figure 6.21. Note that the −(1, 1) gadget simply
consists of a first component, followed by a second component Decrement gadget.

Lemma 6.11: The And gadget receives two inputs, (𝑥, 0) and (𝑦, 0). It produces an output of
(1, 0) if both 𝑥 and 𝑦 are 1, and an output of (0, 0) otherwise.

Proof. The idea of this construction is similar to that of the Flip gadget. The asymmetric
value production gadget differentiates two classes of inputs, namely the case where 𝑥 = 𝑦 = 1,
and the case where at least one of 𝑥 or 𝑦 is 0. We first compute the left-most Maximum
gadget: max((𝑥, 0), Flip((𝑦, 0))) = max((𝑥, 0), (0,𝑦)) = (𝑥,𝑦) as indicated in the figure. Next,
we verify the cases of possible inputs and produced value pairs:

Input (𝑥,𝑦) = (1, 1), value pair (1, 1) ↔ (0, 0):
(𝑥,𝑦) = (1, 1) max−−−→ (1, 1) − (1,1)−−−−−→ (0, 0) max−−−→ (0, 0)
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And

Flip

(1, 1) ←→ (0, 0)
(0, 0) ←→ (1, 0)

max max −(1, 1) max(𝑥, 0)

(𝑦, 0)

(𝑥 ∧ 𝑦, 0)(𝑥,𝑦)

Figure 6.21.: The And gadget computes the logical conjunction of its two inputs.

Input (𝑥,𝑦) = (1, 1), value pair (0, 0) ↔ (1, 0):
(𝑥,𝑦) = (1, 1) max−−−→ (1, 1) − (1,1)−−−−−→ (0, 0) max−−−→ (1, 0)
Input (𝑥,𝑦) < (1, 1), value pair (1, 1) ↔ (0, 0):
(𝑥,𝑦) max−−−→ (1, 1) − (1,1)−−−−−→ (0, 0) max−−−→ (0, 0)
Input (𝑥,𝑦) < (1, 1), value pair (0, 0) ↔ (1, 0):
(𝑥,𝑦) max−−−→ (𝑥,𝑦) − (1,1)−−−−−→ (𝑥 − 1,𝑦 − 1) ⇝ Error, since (𝑥,𝑦) < (1, 1)

By monotony, for each input the maximum possible output is chosen. The claim follows.

Translated into the language of logic values, this shows that the And gadget evaluates to
true if both inputs are true, and evaluates to false, otherwise.

6.3.4. The 1-Test Gadget

Finally, we describe the 1-Test gadget, shown in Figure 6.22. As in the King 2-Solo Chess
case, it is used at the very end to ensure that the SAT formula evaluates to true.

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8) (·, 9)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

Figure 6.22.: The 1-Test reduces to a single piece if its input is (1, 0). If its input is (0, 0), it
cannot be reduced to a single piece.

Lemma 6.12: The 1-Test gadget reduces to a single piece on the final square marked in blue, if
and only if the first component of its input is 1.
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Proof. Consider the case that the first component of the signal is set to 1, i.e., the 2-knight on
(1, 1) is present. Then, after captures ((4, 3) → (3, 1) → (2, 3)), either end of the resulting
path of length five captures towards the blue finale square through captures ((1, 1) → (2, 3) →
(1, 5)), ((1, 9) → (2, 7) → (1, 5)), resulting in a single remaining piece as claimed.
Next, consider the case that the first component of the signal is set to 0, i.e., the 2-knight

on (1, 1) is not present. Then, after the eventual capture ((4, 3) → (3, 1)), we remain with a
path of length five once more, however, with the left leaf having a budget of at most 1. Thus,
the left leaf cannot reach the blue (final) square, while the right leaf cannot reach past the
blue square, meaning that the two cannot reach a common square. It follows that more than
one piece remains, as claimed.

6.4. The Final Reduction

We now describe our transformation of an And-Or-(1,1)-SAT instance into a Knight 2-Solo
Chess instance. Let an And-Or-(1,1)-SAT instance 𝐼 = (𝑈 ,𝐶) be given. Choose an And-Or
Embedding of 𝐼 that includes the optional conjunction of the outputs of the clauses. For
every variable 𝑢 ∈ 𝑈 , place a variable assignment gadget on the board at sufficient distance
to all other variable assignment gadgets. For each clause, place the respective logic gadgets
on the board according to the embedding and place wire on the board to connect their
inputs with the correct outputs of variable assignments or other logic gadgets. Place the
remaining And gadgets that combine the outputs of the clauses, according to the embedding.
Where necessarily, place wire crossing gadgets to allow wires to cross. Recall that thanks
to the various wire placements, it is always possible to align the different wires and gadgets
appropriately. Finally, place a 1-test gadget and connect it to the output of the final And
gadget. Using this construction, we now prove that Knight 2-Solo Chess is NP-hard. The
proof is effectively analogous to that of the NP-hardness of King 2-Solo Chess.

Theorem 6.13: Knight 2-Solo Chess is NP-hard.

Proof. We reduce from And-Or-(1,1)-SAT. We transform a given instance with 𝑛 variables
and𝑚 clauses as described above. This transformation runs in polynomial time: Similar to
the reduction for King 2-Solo Chess, the transformed instance consists of O(𝑛 +𝑚) gadgets,
each consisting of a constant number of pieces. Additionally, we place O(𝑛 +𝑚) wires of
O(𝑛 +𝑚) pieces each. In total, our instance consists of O((𝑛 +𝑚) + (𝑛 +𝑚)2) pieces and
can be computed in the same running time. It remains to show that the two instances are
equivalent.

SAT instance solvable =⇒ Chess instance solvable: Let Φ be a satisfying assignment
for the SAT instance. A solving sequence for the chess instance consists of the following
steps: For each variable assignment gadget, assign the value (1, 0) to the literal that is set
to true by Φ and the value (0, 0) to the other literal. Since Φ satisfies each clause, by the
correctness of the various gadgets, we obtain a capture sequence that yields a (1, 0)-output
from the final gadget of each clause. The conjunction of all gadget outputs once more yields a
(1, 0)-output, allowing the 1-test gadget to reduce to a single final piece. Every other gadget
has been cleared completely, so only this single piece remains, meaning that this is a valid
solving sequence.
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Chess instance solvable =⇒ SAT instance solvable: Let a solving capture sequence
for the chess instance be given. Then the following procedure yields a satisfying assignment
Φ for the SAT instance: For each variable assignment gadget, check which of the output wires
is assigned a (1, 0)-signal. If that wire corresponds to some literal ℓ = 𝑥 , set Φ(𝑥) := true. If it
corresponds to some literal ℓ = ¬𝑥 , set Φ(𝑥) := false. If neither of the two wires is assigned a
(1, 0)-signal, set Φ(𝑥) := true. Then Φ is a satisfying assignment:
At most one wire of each variable assignment gadget is assigned a (1, 0)-signal. Thus, Φ

is a valid assignment. The solving capture sequence reduces the instance to a single piece.
Thus, the 1-test gadget received a (1, 0)-signal as input. It follows that each of the extra And
gadgets received two (1, 0)-signals as inputs. This means that each clause in the Solo Chess
instance has evaluated to (1, 0). Then, under the variable assignment given by Φ, each clause
evaluates to (1, 0), i.e., true. It follows that each SAT clause is satisfied under Φ.

We conclude that the two instances are equivalent, which shows the NP-hardness of Knight
2-Solo Chess.

64



7. Rook 2-Solo Chess

In this chapter, we present another result for 2-Solo Chess on a two-dimensional board. We
give a proof of the NP-hardness of Rook 2-Solo Chess. This result has independently been
shown by Bilò, Di Donato, Gualà and Leucci, via a reduction from Vertex Cover [BDGL24].
We give an alternative proof, reducing from And-Or-(1,1)-SAT.

7.1. The Setup

Similar to our reductions for King and Knight 2-Solo Chess, we directly translate an And-Or
Embedding into a corresponding chess position. However, this reduction has some notable
differences: The rook has unlimited range. As such, no wire is required to propagate logic
values. Consequently, we implement logic values differently. Furthermore, the satisfaction of
each clause is checked individually. In particular, given a variable assignment, each unsatisfied
clause leaves behind stranded pieces. Figure 7.1 shows the structure of the Rook 2-Solo Chess
instance created from the example And-Or-(1,1)-SAT instance 𝐼 = (𝑈 ,𝐶), with variables
𝑈 = {𝑥,𝑦, 𝑧} and clauses𝐶 = {(𝑥 ∧¬𝑦) ∨ 𝑧, (¬𝑥 ∨¬𝑧) ∨𝑦}. It shows the creation of variables
𝑥,𝑦, 𝑧 (in green) and their respective positive and negative literals. These literals are aligned
with the logic gates for each clause. These consist of And-gates (in red), left Or-gates (in blue)
and right Or-gates (in pink). The latter two differ in that the left Or-gate produces an output
that is used to evaluate the remaining parts of the clause, while the right Or-gate — the final
gate of each clause — produces no output. All variables and clauses are enclosed by the shell
(in light and dark gray), whose purpose is explained below. We create gadgets for each of the
above concepts.

Our transformation yields a Solo Chess instance that can be reduced to a single piece, if
and only if the SAT instance 𝐼 is satisfiable. In the remainder of this chapter, we describe the
representation of logic values, as well as the implementation of each gadget, and discuss their
correctness. More specifically, we create a variable assignment gadget which produces literals
𝑥 and ¬𝑥 and evaluates to one True and one False output. We create And and left Or gadgets
which evaluate inputs 𝑥 and 𝑦 to outputs 𝑥 ∧ 𝑦 and 𝑥 ∨ 𝑦, respectively. These three gadgets
are fully cleared, when being evaluated. This stands in contrast with the right Or gadget.
It has inputs 𝑥 and 𝑦 and can be fully cleared when at least one of 𝑥 or 𝑦 is True, however,
it cannot be fully cleared when both 𝑥 and 𝑦 are False. Furthermore, it produces no output.
In addition to these SAT gadgets, we create some extra cleanup gadgets: The conveyor belt
collects left-over rooks from the evaluation of the clauses and guides them towards the tomb,
which, similarly to the 1-test of previous chapters, contains the final square of the instance.
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Figure 7.1.: A Rook 2-Solo Chess instance encoding the SAT instance [{𝑥,𝑦, 𝑧}, {((𝑥 ∧¬𝑦)∨
𝑧), ((¬𝑥 ∨ ¬𝑧) ∨ 𝑦)}]. For space constraint reasons, the cleanup rooks are not shown.
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Figure 7.3.: The shell of an instance is reduced to a single final piece in the tomb.

7.1.1. The Cleanup Phase

We first discuss the extra cleanup gadgets, which are used in the final phase of a solving
capture sequence. The very top left of Figure 7.1 shows in dark gray the tomb gadget, which
contains the final resting place of the final piece of the instance. It is implemented as an
antenna of length 3. Figure 7.2 shows our implementation in Rook 2-Solo Chess with the
antenna marked in gray and some rooks outside the antenna present.

2 2

2 2

2

2

2

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

Figure 7.2.: The tomb gadget ensures
that any solving sequence has its final
square on (2, 2).

By Corollary 3.7, for any solving sequence, the fi-
nal square of the instance is contained in the tomb.
We give a capture sequence that reduces the config-
uration of Figure 7.2 to a single piece. It consists of
first clearing the third row with captures ((3, 5) →
(3, 3) → (2, 3)), then clearing the third column with
captures ((5, 3) → (2, 3) → (2, 2)), before completing
the sequence with captures ((1, 1) → (1, 2) → (2, 2)).
Zooming out a bit, Figure 7.3 shows a compressed

version of the outer shell of the example instance. It
contains the tomb (in dark gray), as well as the con-
veyor belt (in light gray and orange). The conveyor
belt itself is divided into a set of capture destinations
(in light gray) and a set of cleanup rooks (in orange).
The latter were omitted from Figure 7.1 for space con-
straint reasons. The capture destinations are captured towards in the process of clearing the
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various yet to be defined SAT gadgets. As a result, these rooks end up with budgets as small as
0. The count of light gray rooks of the third column and row is matched by an equal number
of orange cleanup rooks.

We describe a solving sequence for the shell. It uses the same approach as outlined above,
of first clearing the third row, then the third column. By the 1D-Rook Lemma 4.3, it is possible
to clear the partial configuration of all pieces of the third row, except the right-most orange
rook, towards the left-most rook of the row. Then, the row is fully cleared through the
pair of captures ((3, 14) → (3, 3) → (2, 3)) from that right-most orange rook. Note that
clearing the third row like this reduces the number of gray rooks in the third column by
one, since the (3, 3)-rook is no longer present. Once more, by the 1D-Rook Lemma 4.3, it is
possible to clear the partial configuration of all pieces of the third column, except the bottom
orange rook, towards the top rook of the column. Then, resolving the tomb through captures
((10, 3) → (2, 3) → (2, 2)), ((1, 1) → (1, 2) → (2, 2)) completes the solving sequence.
We call a Rook 2-Solo Chess configuration well-formed, if it consists of a shell as well as

a (possibly empty) set of SAT gadgets. The latter are placed such that they are not adjacent
to the tomb or any of the cleanup rooks, however, they may be adjacent to some capture
destination rooks. Then, since the tomb contains the final square of the configuration, any
solving sequence fully clears all the SAT gadgets. Conversely, if there is a capture sequence
that fully clears all the SAT gadgets, then by the above procedure, the remaining shell can be
reduced to a single piece, i.e., the configuration can be solved. Overall, we have shown:

Lemma 7.1: A well-formed configuration has a solving sequence, if and only if there exists a
capture sequence that fully clears each of its SAT gadgets. The final square of such a solving
sequence is contained in the tomb.

7.1.2. Logic Squares

We describe how to represent truth values in Rook 2-Solo Chess. Recall that our construction
for Knight 2-Solo Chess encoded the value of the first component of its signal by the presence
or absence of a 2-piece on a specific square (the outer vertex of a signal-column). We use this
idea in Rook 2-Solo Chess with what we call logic squares. A logic square represents the
value True, when it holds a 2-rook, and False, when it holds no rook, i.e., is empty. A logic
square 𝑧 holds the output of a gadget 𝐴1 and at the same time the input of the next gadget
𝐴2. This can be seen in Figure 7.1 where neighboring gadgets share some rows so that the
output square of a gadget on the left is in line with a gadget on the right to serve as input
square. Initially, all logic squares are filled and, thus, set to True. However, throughout a
solving sequence, the 2-rook on output square 𝑧 may make a capture within the gadget 𝐴1. In
this case, it is no longer present on 𝑧, and so the corresponding input of gadget 𝐴2 is False.
Figure 7.4 shows an example of a left Or gadget with both, one, or none of the inputs set to
True. We mark inputs (i.e., logic squares, or the rooks placed on them) in blue and outputs in
orange; capture destinations of the shell are marked in gray.
The intuition behind our implementation of truth values is that the presence of a 2-rook

on a logic square provides additional units of budget. The typical use case of such an input
2-rook is to propagate a 0-rook of the gadget towards a capture destination. If the 2-rook is
not present, then a solving sequence may instead need to utilize the output rook of the gadget
to propagate the 0-rook. In this way, the value of the input of a gadget can affect the value
of the output of a gadget. As in the Knight 2-Solo Chess construction, there is a monotony
on input values: An input of True (a present 2-rook) is no worse than an input of False (an
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Figure 7.4.: A left Or gadget with both, one, or no input set to True.

absent rook), which in turn is no worse than an “invalid” input consisting of either a 1-rook
or a 0-rook on the input square. We formalize this intuition in the following subsection. As
usual, we assume that any gadget evaluates to the maximum possible output value.

In the following sections, we describe the various SAT gadgets. Recall that, by Lemma 7.1,
each solving sequence fully clears each SAT gadget. Thus, when describing what each of
the gadgets evaluates to, we only consider sequences which fully clear the gadget. This
excludes gray shell rooks which can remain, since they are cleaned up in the cleanup phase.
Furthermore, the logic squares containing the gadget’s outputs can contain rooks after the
gadget is fully cleared, since they are also inputs and, thus, part of the next gadget.

7.1.3. Gadget inputs

2 2

2

Figure 7.5.: A tri-
angle is an an-
tenna of length 2.

A common occurrence in our SAT gadget constructions is the triangle.
Shown in Figure 7.5, it is an implementation of a 𝐵-antenna in Rook
2-Solo Chess. Note that due to the rook’s unlimited range, a triangle
can include any number of empty rows or columns between its rooks.
This does not change its structure and the corresponding capture graph.

We give a brief intuition on the use of triangles / antennae in our
construction. By Lemma 3.5, any solving sequence reduces such an
antenna to a single 0-piece on its last square. In a solving sequence, this
0-piece is propagated away from its current square by being captured
by some 2-rook. Thus, it serves as a check that a specific 2-rook is
present to be able to propagate the 0-rook. Note, however, that for
Lemma 3.5 to apply, the triangle needs to be an antenna in the graph of the full instance. In
our constructions this is usually not the case. Instead, we show that the statement of the
lemma holds conditionally and then show for each gadget that there is a solving sequence
that adheres to the condition.

We now present a mini-gadget that is part of each of the gadgets for logic gates, the gadget
input. Shown in Figure 7.6, it combines the concepts of an input logic square and a triangle.
The red arrows indicate directions that contain no further rooks in the entire configuration
(this is relevant due to the rook’s unlimited range). Furthermore, by convention, we depict
capture destination rooks (in gray) in the first row. In particular, if there is no rook on a
square of the first row, this is understood to mean that there is no capture destination rook in
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Figure 7.6.: A gadget input is used in each of the gadgets for logic gates. Red arrows indicate
directions that contain no further rooks in the entire configuration.

the corresponding column. In the full instance, a gadget may be placed many rows below a
capture destination of the same column. However, due to the rook’s unlimited range, this is
equivalent to being placed just below.
As indicated above, the triangle of white rooks does not form an antenna in the full

configuration, since the (2, 5)-rook is adjacent to the blue input square rook, which is not part
of the antenna. Thus, we can only show the statement of Lemma 3.5 conditionally.

Lemma 7.2: Let a well-formed configuration 𝐶 contain a gadget input. Let a solving sequence
for 𝐶 not reach an intermediate configuration with a 0-rook to the left of the gadget input’s
triangle and no triangle rooks present anymore. Then it instead reduces the triangle to a 0-rook
on the triangle’s last square.

Proof. By Lemma 7.1, any solving sequence fully clears the gadget input. Thus, it contains
the capture ((3, 5) → (2, 5)), as otherwise the leaf on (3, 5) would remain stranded. This
results in a 1-rook on (2, 5), which in turn performs a capture at some point. If it captures the
(2, 4)-rook, this results in a 0-rook on the last square of the triangle, as claimed. Otherwise,
it captures a rook further to the left (after the (2, 4)-rook has moved out of the way), which
results in a 0-rook to the left. Since the (2, 4)-rook has already moved out of the way, none of
the triangle rooks are present anymore, breaking the condition of the lemma.

This leaves open the possibility of capturing towards the left. While such a capture to the
left may be part of a solving sequence, it does not occur after the previous gadget on the left
has been fully cleared (apart from the possible output rooks).

Lemma 7.3: Let the input square of a gadget input in a well-formed configuration hold a rook
that is not adjacent to any rooks outside the gadget input. Then there exists no solving sequence
for the configuration that includes a capture from the gadget input to the input square rook.

Proof. Recall that any solving sequence has its final square in the tomb. Consider a capture
sequence including a capture from the gadget input to the input square rook. This capture
is either performed by the rook on (2, 4), or by the rook on (2, 5) once the (2, 4)-rook has
moved out of the way. In either case, the set of remaining gadget input rooks and the input
square rook are disconnected from the rest of the configuration and, thus, stranded.

It immediately follows:
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Corollary 7.4: Let the input square of a gadget input in a well-formed configuration hold a
0-rook that is not adjacent to any rooks outside the gadget input. Then the configuration cannot
be solved.

Proof. Consider an arbitrary capture sequence. If it contains a capture from one of the gadget
input rooks to the 0-rook, then, by the previous lemma, it is not a solving sequence. If it
does not contain such a capture, then the 0-rook remains stranded, thus, it is not a solving
sequence either.

Corollary 7.5: Let the input square of a gadget input in a well-formed configuration hold a
1-rook that is not adjacent to any rooks outside the gadget input. If there exists a solving sequence
for this configuration, then there also exists one for the configuration in which the input square is
empty instead (i.e., an input of False).

Proof. By Lemma 7.3, no solving sequence contains a capture to the 1-rook. Thus, any solving
sequence instead contains a capture from the 1-rook to the gadget input. This capture replaces
a rook with some budget greater or equal than 0, with one having budget exactly 0. This
solving sequence is also valid for the configuration having an empty input square (excluding
the capture by the no longer present 1-rook).

The remaining possibility to be considered is that of a 2-rook on the input square.
Lemma 7.6: Let the input square of a gadget input in a well-formed configuration be empty and
not be adjacent to any rooks outside the gadget input (i.e., an input of False). If there exists a
solving sequence for this configuration, then there also exists one for the configuration in which
the input square holds a 2-rook instead (i.e., an input of True).

Proof. Observe that the condition of Lemma 7.2 is met. Thus, by the lemma, any solving
sequence reduces the triangle of the gadget input to a 0-rook on its last square. This solving
sequence remains valid under an input of True, by initially interjecting a capture from the
rook of the input square to the last square of the triangle.

The three previous results all apply to the outputs of fully cleared gadgets, as those output
squares are only adjacent to the gadget inputs of the following gadgets. Thus, we see that the
claimed monotony does hold, justifying the assumption that gadgets evaluate to the maximum
possible value.
All the above results consider a previous gadget that is fully cleared. However, a solving

sequence may still contain a capture from a gadget input to the left, so long as the previous
gadget is not yet fully cleared.
Lemma 7.7: Let a well-formed configuration containing a gadget input be given. Furthermore,
let a solving sequence contain a capture to the left from a rook of the gadget input’s triangle.
Then, the solving sequence contains a capture to the left from the final remaining rook of the
triangle that results in a 0-rook on the capture’s destination square (i.e., is performed by a 1-rook).

Proof. Since the solving sequence fully clears the triangle, it does include the leaf capture
((3, 5) → (2, 5)). Consider the case that the (2, 4)-rook performs a capture to the left. Then,
the (2, 5)-rook is the final rook of the triangle, and its only neighbors are to its left. Thus, the
solving sequence contains a capture by the (2, 5)-rook to the left, resulting in a 0-rook on the
capture’s destination square.

Consider now the case that the (2, 4)-rook does not perform a capture to the left. Then, by
assumption, the (2, 5)-rook performs a capture to the left, once more resulting in a 0-rook on
the capture’s destination square.
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Figure 7.7.: The variable assignment gadget (on the left) assigns truth values to the logic
squares holding the orange rooks. The transparent rooks (on the right) depict the gadget
inputs of the next gadget in the configuration.

With these tools at our disposal, we now present all the required SAT gadgets. As seen in
Figure 7.1, they consist of a variable assignment gadget, an And gadget and a left and a right
Or gadget. The general approach to clearing these gadgets is always the same: Based on the
inputs, all rooks except possibly the rooks on the output squares are cleared by a sequence of
captures. To retain a valid output of either a 2-rook or an empty square, some of the clearing
captures are made towards adjacent capture destination rooks. Once only rooks on output
squares remain, they serve as inputs for the next gadget, which is then cleared in the same
fashion.
For space constraint reasons, we may compress diagrams of Solo Chess configurations

in some of the figures. In that case, the row and column numbering may not be contiguous.
In particular, we denote each square by the coordinates it would have on an uncompressed
board.

7.2. The Variable Assignment Gadget

We begin with the variable assignment gadget, seen in Figure 7.7. It has zero inputs and two
outputs, namely the 𝑥 and ¬𝑥 literals. The logic squares holding orange rooks, (2, 2) and
(7, 2), hold the truth values of the two literals. We call those logic squares output squares of
the gadget, or outputs for short. The remainder of the gadget consists of a triangle, with its
last square aligned with a gray shell rook.
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Figure 7.8.: The capture graph of the variable assignment gadget.

Before reviewing the intended way to resolve a variable assignment gadget, we first discuss
an alternative scenario: Since the output squares of the variable assignment are part of the
gadget inputs of the next gadget, it is possible to capture from those gadget inputs to the
variable assignment’s output squares. We show, however, that this does not occur in any
solving sequence.

Lemma 7.8: Given a well-formed configuration containing a variable assignment whose outputs
are aligned with the gadget inputs of further gadgets. Then there exists no solving sequence
containing a capture from one of the gadget input’s triangle rooks to the variable assignment
gadget.

Proof. Assume for contradiction that there exists a solving sequence containing a capture
from a gadget input’s triangle to an output square of a variable assignment. By Lemma 7.7,
this results in a 0-rook on the output square with no other rooks of the gadget input remaining.
Recall that any capture sequence on the chess board is also a valid sequence in the capture
graph. Thus, it suffices to show that there is no clearing sequence in the capture graph, shown
in Figure 7.8. In this graph, the two output vertices 𝜈1 and 𝜈4 cannot be distinguished, thus, it
suffices to show the claim for vertex 𝜈1 being captured into.
The final square of any hypothetical solving sequence is contained in the tomb. Thus, by

Observation 3.3, 0-vertex 𝜈1 is propagated by a pair of captures from a 2-vertex𝑤 to another
vertex. This vertex𝑤 cannot be vertex 𝜈2, as otherwise, vertex 𝜈6 remains stranded. If𝑤 = 𝜈3,
then after a capture (𝜈3 → 𝜈1), the gadget is no longer connected to the shell vertex 𝜈5 and
can only be cleared via the second output, cut vertex 𝜈4. However, any sequence clearing the
remaining vertices of the gadget towards vertex 𝜈4 results in a 0-vertex on that output square.
By Corollary 7.4, this cannot be extended to a solving sequence. If instead𝑤 = 𝜈4, then after
the capture (𝜈4 → 𝜈1), the gadget can only be cleared via the shell vertex. But once again,
any sequence clearing the remaining vertices of the gadget results in a 0-vertex on the square
of 𝜈3, which, being a 0-leaf, remains stranded. This contradicts the assumption and shows the
claim.

In our construction, the only adjacency between the rooks of the variable assignment gadget
(excluding the gray shell rook) and the remaining configuration is the discussed scenario of
outputs being aligned with gadget inputs. Using this fact, we now show:

Lemma 7.9: The variable assignment gadget evaluates to one True and one False output.

Proof. We give a capture sequence achieving the claimed result, then show that there is no
capture sequence achieving a better result. To reach the claimed result, clear the triangle with
captures ((4, 3) → (4, 2) → (5, 2)). Then, propagate the 0-rook towards the shell rook with
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captures ((𝑥, 2) → (5, 2) → (5, 1)) for 𝑥 = 2 or 𝑥 = 7, to retain the bottom or the top literal as
True, respectively. The other logic square is emptied in the process, and so the other literal is
set to False. As noted previously, this constitutes a cleared gadget, as both the gray shell rook
and the output logic squares are part of other gadgets.
We show now that this is the maximum possible output value. This effectively states that,

for a variable 𝑥 , it is impossible to set both its literals to True at the same time. Any capture
sequence that keeps both outputs set to True, does not contain a capture within the gadget
from or to one of the output square’s rooks. The remainder of the gadget is an antenna of
length 3 which, by Observation 3.3, is stranded. Thus, it is not possible to fully clear the
gadget with both outputs set to True.

7.3. The Left Or Gadget

2 2
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2 2

2

2

2

2

2

2

Figure 7.9.: The left Or gadget with
both inputs set to True.

We now discuss the left Or gadget, shown in Figure 7.9.
It has two inputs and one output. We distinguish
between the left and the right Or gadget. The latter
is the final gadget of each clause. Since each clause
combines at most three literals, it uses at most two
logic gates. Thus, with the right Or gadget being the
final gadget of each clause, each left Or gadget is the
first gadget of its clause. This means, in particular, that
both of its inputs are literals straight from a variable
assignment gadget.
Like all other gadgets for logic gates, the left Or

gadget contains two gadget inputs aligned with the
logic squares holding its inputs. We show that the
gadget evaluates to True, if and only if at least one of
its inputs is True.

Lemma 7.10: If at least one of its inputs is set to True, the left Or gadget evaluates to True. If
none of its inputs are set to True, it evaluates to False.

Proof. We first give a capture sequence for the first claim, then one for the second claim. Let
the top input be set to True. Then, a clearing sequence is given by first reducing each triangle
to a 0-rook on its last square, followed by propagating each 0-rook towards the gray shell
rook, as shown in Figure 7.10. This fully clears the gadget, with the output being set to True.
The case for the second input or both inputs being set to True works analogously.

Next, let none of the inputs be set to True. Then a clearing sequence is given by again
reducing the triangles to 0-rooks, followed by propagating each 0-rook towards the gray shell
rook using the orange output square 2-rook instead of the blue input square 2-rook. This fully
clears the gadget, with the output being set to False.
We show now that these are the maximum possible output values. For this, it suffices to

show that the gadget does not evaluate to True if both inputs are set to False. We consider
the different possible capture sequences. Observe that, by Lemma 7.8, none of the gadget
inputs capture towards the variable assignment gadgets to the left of the gadget. It follows
from Lemma 7.2, that each of the triangles of the gadget inputs is reduced to a 0-rook on
its last square. Since each of the inputs is False, either 0-rook is only adjacent to the other
rooks of the column. This column consists of a gray 2-rook in the shell, two white 0-rooks, a
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Figure 7.10.: A partially cleared left Or gadget with one True and one False input.

white 2-rook, and an orange 2-rook on the output square. The only two rooks of the column
that are adjacent to rooks outside the column are the gray capture destination rook and the
orange output rook. Thus, any solving sequence propagates the two 0-rooks to one of those
two colored rooks, as they would otherwise remain stranded. Propagating them to the gray
capture destination rook requires captures from the other two 2-rooks of the column and
matches the sequence above. Propagating them to the orange output rook instead, requires
captures from the white and gray 2-rooks and results in a gadget containing only a 0-rook on
the orange output square. This orange output square is the input square of the next gadget.
By Corollary 7.4, the resulting configuration cannot be solved. Overall, we see that there is
no solving capture sequence that evaluates the gadget to True, given two inputs of False.

Excluding the input square rooks, the output square rook is the only rook of the left Or
gadget that is adjacent to other gadgets. In particular, it is part of the gadget input of the next
gadget, whose triangle rooks are adjacent to it. Thus, it remains to discuss the scenario of a
capture from a triangle rook of the next gadget to the output rook of this gadget.

Lemma 7.11: Let a well-formed configuration containing a left Or gadget, whose inputs are
both set to False, be given. Then there exists no solving sequence that contains a capture from the
gadget input of the next gadget towards the left Or gadget.

Proof. Assume there exists a solving sequence containing a capture from a gadget input to
the output square of the left Or gadget. By Lemma 7.7, this results in a 0-rook on the output
square, with no rooks of the gadget input remaining. After reducing the left Or gadget’s
triangles to 0-rooks, we once more remain with a one dimensional sub-configuration, this
time consisting of two 2-rooks and three 0-rooks. Of these, only the gray shell rook is adjacent
to rooks outside the gadget. By the generalized 1D Rook Lemma 4.3, there is no capture
sequence clearing this column towards that gray shell rook. Thus, some non-shell rooks of
the gadget remain stranded.

Note that there may exist solving sequences that do contain a capture from a gadget input
to the output of a left Or gadget, so long as both of the latter’s inputs are set to True. However,
in this case, there also exists a solving sequence that does not contain such a capture. We
discuss this scenario in the section on the final reduction.
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Figure 7.11.: An And gadget with two blue inputs and one orange output

7.4. The And Gadget

The And gadget, shown in Figure 7.11, has two inputs and one output. If both inputs are False,
it evaluates to False. Changing one of the inputs to True does not change the output, however,
changing both inputs to True does change the output to True. Similar to our reduction for
King 2-Solo Chess, this behavior is achieved by an And gadget that permits a different way
of clearing it when both inputs are set to True, as compared to when only one or none are.
We show separately that there exist clearing sequences that achieve the correct outputs, and
that these are the maximum possible output values.

Lemma 7.12: If both of its inputs are set to True, it is possible to clear the And gadget with its
output being set to True. For any other set of inputs, it is possible to clear the And gadget with its
output being set to False.

Proof. Consider the case of both inputs being set to True, i.e., the configuration shown in
Figure 7.11. Then, a clearing sequence is given by first reducing the triangles of the two
gadget inputs, as well as the triangle in the bottom right of the configuration, yielding the
intermediate configuration shown in Figure 7.12a. This is followed up by using the two blue
input rooks to propagate the two top 0-rooks towards the gray capture destination, as well
as performing a leaf capture in the bottom left, as indicated by the arrows in the previous
figure, yielding a later intermediate configuration shown in Figure 7.13. After performing the
highlighted two pairs of captures among the remaining white rooks, the output rook of the
otherwise cleared gadget remains.
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(a) Evaluating the And gadget on two True inputs
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(b) Evaluating the And gadget on two False inputs

Figure 7.12.: Some (compressed) intermediate configurations reached throughout the evalua-
tion of the And gadget; note the noncontiguous row and column numbering

Consider now the case of none of the inputs being set to True. A clearing sequence is
given by again reducing the three triangles and performing the leaf capture, yielding the
intermediate configuration shown in Figure 7.12b. The sequence is completed by first cleaning
up the two top 0-rooks, before resolving the remaining 0-rook, as indicated in the figure. This
fully clears the gadget, with the output being set to False, as claimed. In the case of a single
input being set to True, the gadget can be cleared similarly.
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Figure 7.13.: Evaluating the
And gadget on two True in-
puts, part 2

Before showing that these are the maximum possible output
values, we briefly give some intuition on the workings of the
gadget. The key idea of the gadget is to use the fact that rooks
cannot jump over other rooks. We utilize this fact by creating
a sort of cyclic dependency of necessary rook captures that
can each only be performed after some other rook capture has
been performed. Consider a possible intermediate configuration
for a scenario with one True input, shown in Figure 7.14b. If
rooks were allowed to jump, the capture sequence indicated by
the arrows would fully clear the gadget while retaining a True
output, violating the definition of the And function. However,
the 1-rook capture ((7, 4) → (7, 8)) is only legal, once the
blocking 2-rook has performed the capture ((7, 5) → (2, 5)).
This, in turn, is only possible, once the orange output rook has moved out of the way, capturing
to the right towards the next gadget. This capture, in turn, is blocked by the 2-rook on (6, 8),
which first needs to perform its pair of capture ((6, 8) → (7, 8) → (1, 8)). Finally, both of
these two captures are played after the initial 1-rook capture ((7, 4) → (7, 8)): If both captures
were played prior to the 1-rook capture, then the latter’s destination square would be vacated
and, thus, it would not be a (valid) capture. If the first of the two captures was played prior to
the 1-rook capture, then the second capture would no longer be valid, as the rook’s budget
would have become 0. Overall, there is no possible ordering of the captures such that each is
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a valid capture. We give a more formal version of this argument in the proof of the following
lemma. Nevertheless, for the sake of brevity, we do omit some details. As before, we note that
this gadget, like all others, has been computer verified to work correctly.

Lemma 7.13: For any set of input values for the And gadget, the output values given in
Lemma 7.12 are the maximum possible output values.

Proof. For two True inputs, the gadget evaluates to the maximum possible output value of
True. It remains to show that it is not possible to achieve a True output with only one or no
True inputs. We show this statement for the case of a second input of True, the other cases
are similar. We discuss some properties of possible solving sequences.

Claim 1: Any solving sequence reduces the triangle of each gadget input to a 0-rook on
its last squares.

Proof. By Lemma 7.8, none of the gadget inputs capture towards the variable assignment
gadgets to the left of the gadget. The claim then follows from Lemma 7.2.

Claim 2: If there exists a solving sequence, then there also exists one which begins with
leaf captures ((9, 4) → (7, 4)) and ((8, 9) → (7, 9)).

Proof. Let a solving sequence be given. We discuss the first part of the claim, on the leaf
capture ((9, 4) → (7, 4)). Since the rook on (9, 4) is a leaf, the solving sequence does
contain the capture at some point. Consider the reordered sequence that begins with
the capture ((9, 4) → (7, 4)). If every capture of the sequence is still valid, then this is a
solving sequence with the claimed property.

Otherwise, there exists a move (𝑧1 → 𝑧2) that is the first move which is no longer valid
in the reordered sequence. The move is played on a board containing a subset of present
pieces as to compared when it was played in the original sequence. Thus, it is not blocked
by any piece. Furthermore, since the (9, 4)-rook was a leaf, we can deduce that it was not
adjacent to the 𝑧1-rook, i.e., it was not the destination of the capture. The remaining option
to no longer be valid is if the rook had a greater than 0 budget in the original sequence,
but now has a budget of 0. The only rook whose budget is different in the reordered
sequence compared to the original sequence is the rook on (7, 4). In the original sequence,
it performs a capture after the ((9, 4) → (7, 4)) capture, thus, if its capture is still valid
in the reordered sequence, this results in a 0-rook in either sequence, leading to identical
configurations. The remaining option is that its capture is no longer valid, which happens
precisely in the scenario that the original sequence contains a capture (𝑧3 → (7, 4))
resulting in a 0-rook, followed by the leaf capture, which increases the budget of the
(7, 4)-rook to 1. In this case, in the reordered sequence, the (7, 4)-rook remains with a
budget of 0 instead of 1, and cannot perform the capture ((𝑧1 = (7, 4)) → 𝑧2). Observe
that in a solving sequence, 𝑧2 is not the right-most rook on (7, 9), since otherwise this
rook would be stranded (possibly together with the (8, 9)-rook). Thus, due to the rook’s
non-jumping nature, we deduce that 𝑧3 = (7, 5) and 𝑧2 = (7, 8). In this case, replacing
the subsequence containing captures ((7, 5) → (7, 4)), ((9, 4) → (7, 4) → (7, 8)) with
captures ((9, 4) → (7, 4)), ((7, 5) → (7, 8)), ((7, 4) → (7, 8)) transforms the original
solving sequence into one that starts with the leaf capture. The second part of the claim
holds by an analogous (mirrored) argument. We omit the details here.
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(a) The And gadget, after some initial captures have
been played
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(b) The core of the And gadget; would
evaluate to True if rooks were allowed to
jump, but does not, in standard chess

Figure 7.14.: Some intermediate configurations reached throughout the evaluation of the
And gadget with one True and one False input; neither configuration evaluates to an output
of True.

After reducing the triangles to 0-rooks and performing the leaf captures, we are left with the
configuration shown in Figure 7.14a. For the next claims, we make the simplifying assumption
that some solving sequence contains the pair of captures ((4, 3) → (4, 5) → (2, 5)).

Claim 3: Any solving sequence reaching the configuration shown in Figure 7.14a and
containing the pair of captures ((4, 3) → (4, 5) → (2, 5)), also contains the capture
((7, 9) → (7, 8)).
Proof. Consider the 1-rook on (7, 9). To not end stranded, it performs a capture ((7, 9) →
𝑧4) at some point. Observe that 𝑧4 ≠ (7, 4), as otherwise, the resulting rook would be
isolated and, thus, stranded.
Assume for contradiction that the solving sequence contains the 1-rook capture ((7, 9) →
(𝑧4 = (7, 5))) (after the blocking (7, 8)-rook has either captured it or moved out of the
way). Then, after the leaf capture ((7, 4) → (7, 5)), the resulting rook has a budget of 0.
By Observation 3.3, any solving sequence contains a capture of a 2-rook towards (7, 5),
followed by a capture from (7, 5) to another square. This 2-rook is not the gray shell
rook, as otherwise the resulting rook would be isolated and stranded. If it is instead the
orange output rook, then after the capture ((6, 5) → (7, 5)), the only rook of the column
adjacent to rooks outside the column is the gray shell rook. However, by the 1D Rook
Lemma 4.3, there exists no capture sequence that clears the column towards the gray
shell rook. Thus, there remain stranded pieces, contradicting the assumption.
By method of exclusion, the solving sequence instead contains the capture ((7, 9) →
(7, 8)), as claimed.

As pointed out before, the resulting configuration of Figure 7.14b could be fully cleared while
retaining an output of True, if rooks were allowed to jump over other pieces. However, since
rooks are not allowed to jump over other pieces, we show:
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7. Rook 2-Solo Chess

Claim 4: There is no solving sequence for the configuration shown in Figure 7.14b that
retains an output of True.

Proof. Consider the 0-rook on (7, 8). By Observation 3.3, any solving sequence contains
a capture from a 2-rook to the 0-rook, followed by a capture away from the square.
This pair of captures is not performed by the (7, 5)-rook, as that would leave the 1-
rook on (7, 4) isolated and stranded. It is also not performed by the gray shell rook
on (1, 8) (after the (6, 8)-rook has moved out of the way), since after a pair of captures
((1, 8) → (7, 8) → (7, 5)), the resulting configuration cannot be cleared as seen in the
proof of the previous claim. Thus, instead, the solving sequence contains the pair of
captures ((6, 8) → (7, 8) → (1, 8)). It follows, in particular, that the (6, 8)-rook does not
serve as an input of True for the next gadget.
Consider now the (5, 7)-rook below the orange output square rook. It makes a capture
at some point. If it captures to the right, then the 0-rook on (2, 5) is cleaned up by the
orange (6, 5)-rook, which, therefore, is not retained as an output of True, as claimed. If it
captures the orange rook itself, once more, no output of True is retained. Finally, if it
captures a rook above the orange rook, then it does so after the orange rook has moved
out of the way. However, it does so before the 2-rook on (6, 8) has performed its pair
of captures, as otherwise the 1-rook on (7, 4) would remain stranded. Thus, the orange
rook has moved out of the way while the 2-rook to its right was still blocking its path,
showing that it did not serve as an input of True for the next gadget, as claimed. This
concludes the case distinction and shows the claim.

We combine the shown claims. Let a solving sequence be given that evaluates an And gadget
with a second input of True. By Claim 1, this sequence reduces each gadget input triangle
to a 0-rook on its last square. By Claim 2, the sequence can be reordered to continue with
the leaf captures of ((9, 4) → (7, 4)) and ((8, 9) → (7, 9)), reaching the configuration of
Figure 7.14a. Under the assumption that the solving sequence contains the pair of captures
((4, 3) → (4, 5) → (2, 5)), Claims 3 and 4 then combine to show the statement of the lemma.
It remains to argue that if there is a solving sequence, then there is one that contains the
assumed pair of captures. For this, we only give a high level argument.

Any solving sequence contains the blue rook capture ((4, 3) → (4, 5)). Consider alternatives
to the follow-up capture ((4, 5) → (2, 5)): The solving sequence does not contain the capture
((4, 5) → (1, 5)) instead, since it is blocked by the 0-rook on (2, 5), which cannot be propagated
out of the way. If the solving sequence contains a capture from (4, 5) to one of the rooks
below it, this reduces that 2-rook’s budget to 0. Then, a similar proof to the one given above
shows that the solving sequence does not produce an output of True. Finally, if the solving
sequence does not contain a capture by the (4, 5)-rook before that one is captured itself, then
this effectively adds an extra 0-rook to the configuration discussed above. Then, a similar
proof as above shows that there is no solving sequence that produces an output of True. This
shows the statement of the lemma for an And gadget with a second input of True. The proofs
for And gadgets with a second input of False and a first input of True or False, are once more
analogous to the above proof.

For the And gadget, excluding the input square rooks, the only rooks adjacent to rooks of
other gadgets are the ones in the sixth row, i.e., the orange output square rook and the white
2-rook to its right. They are in line with the gadget input of the next gadget. Thus, it again
remains to discuss the scenario of a capture from a triangle rook of the next gadget to a sixth
row rook of the And gadget.
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Figure 7.15.: An And gadget, being captured into from the right

Lemma 7.14: Let a well-formed configuration containing an And gadget with at most one input
set to True be given. Then, there exists no solving sequence containing a capture from the gadget
input of the next gadget to the And gadget.

Proof. Once more, we consider the case of the second input being set to True. Assume for
contradiction that there exists a solving sequence containing a capture from a gadget input
into the And gadget, i.e., into one of the two rooks in the row of the output square. By
Lemma 7.7, this results in a 0-rook on the square of that rook, with no rooks of the gadget
input remaining. For either possibility of the position of that 0-rook, we observe that Claims 1
and 2 from the previous lemma hold with identical proofs. We now consider the first scenario
of the (6, 8)-rook being captured towards, yielding the configuration shown in Figure 7.15.

Claim 1: Any solving sequence of the configuration shown in Figure 7.15 contains the
move ((7, 4) → (7, 5)).
Proof. Assume for contradiction that there exists a solving sequence that does not contain
the move. The solving sequence contains a capture by the 1-rook on (7, 4), since the
rook otherwise stays stranded. The solving sequence does not contain the capture
((7, 4) → (7, 9)), since the resulting 0-rook would be isolated and stranded. Assume that
the solving sequence contains the capture ((7, 4) → (7, 8)). This results in two 0-rooks
in the eighth column. Applying Observation 3.3 twice, we see that the solving sequence
contains captures (𝑧1 → (6, 8) → 𝑧2) and (𝑧3 → (7, 8) → 𝑧4) in some order, for some
𝑧1, 𝑧2, 𝑧3, 𝑧4 of which at most 𝑧2 and 𝑧4 are the same. Observe that the only possible choice
under these restrictions is the sequence of captures ((6, 5) → (6, 8) → (7, 8)), ((1, 8) →
(7, 8) → (7, 9)). The resulting 0-rook on (7, 9) is isolated and stranded, a contradiction
to the assumed capture ((7, 4) → (7, 8)). By method of exclusion, the claim holds.

Claim 2: The configuration of Figure 7.15 followed by the move ((7, 4) → (7, 5)) has
no solving sequence.

Proof. Assume for contradiction that there exists a solving sequence. Then it contains
a capture by the (7, 8)-rook. Assume that it contains the capture ((7, 8) → (7, 5)) or
the capture ((7, 8) → (7, 9)). In either case, the 1-rook on (7, 9) is the first vertex of an
antenna of length 1, which, by Lemma 3.5, is reduced to a 0-rook on (7, 5). Applying
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Observation 3.3 thrice, by a similar argument as above, shows that at least one of
the 0-rooks ends up stranded, contradicting the assumed captures ((7, 8) → (7, 5))
or ((7, 8) → (7, 9)). Next, assume that the solving sequence contains some capture
((7, 8) → (𝑥, 8)) towards the top. Then, after the ((7, 9) → (7, 5))-capture, the same
argument shows that at least one of the 0-rooks ends up stranded, a contradiction. By
method of exclusion, the claim holds.

Combining the two claims, we see that there is no solving sequence for the configuration
shown in Figure 7.15.

Consider now the second scenario of a capture from the right towards the (6, 5)-rook. Since
rooks cannot jump over other pieces, this happens after the (6, 8)-rook has moved out of the
way. It results in three 0-rooks in the fifth column and three adjacent 2-rooks. Once more,
applying Observation 3.3 thrice shows that at least one of the 0-rooks ends up stranded, the
final contradiction. We conclude that the assumption is false, which shows the statement of
the lemma. The proofs for a second input of False and a first input of True or False are, again,
analogous to the above proof.

7.5. The Right Or Gadget

2 2

2

2 2

2

2

2

2

2

Figure 7.16.: A right Or Gadget with two blue
inputs and no output

The final gadget is the right Or gadget,
shown in Figure 7.16. It closely resembles
the left Or gadget, however, while it does
have two inputs, it does not have an output.
Instead, being the final gadget of each clause,
it can be fully cleared if the Or function eval-
uates its inputs to True, and it cannot be fully
cleared if the Or function evaluates its inputs
to False. For the latter statement, to account
for the possibility of capturing to the left, we
show a slightly weaker statement:

Lemma 7.15: If at least one of its inputs is set
to True, it is possible to fully clear the right Or
gadget. Conversely, if there exists a solving se-
quence for a well-formed configuration (which
fully clears each right Or gadget), then there
exists one that sets at least one of the inputs
for each right Or gadget to True.

Proof. For the first claim, let at least one of the inputs be set to True. Then a clearing capture
sequence is given by first reducing each triangle to a 0-rook on its last square, followed by
propagating each 0-rook to the gray shell rook, using the 2-rook(s) on the input squares, as
well as the remaining white 2-rook.

Now, let a solving sequence be given which sets none of the inputs of a right Or gadget to
True. Assume for contradiction that the sequence does not contain any captures from the
right Or gadget to the left. Then, by Lemma 7.2, the triangle of each gadget input is reduced
to a 0-rook on its last square. The resulting configuration of a single column containing two
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2-rooks and two 0-rooks can, by the 1D Rook Lemma 4.3, not be cleared towards the gray
shell rook. This means that some pieces remain stranded, a contradiction. Thus, we deduce
that the capture sequence contains a capture from the right Or gadget towards the left.

By Lemma 7.8, the capture to the left is not towards a variable assignment gadget. Thus, the
capture is either towards a left Or gadget or an And gadget. In the first case, by Lemma 7.11,
the left Or gadget had at least one input of True. Then, by Lemma 7.10, there exists a clearing
sequence, which evaluates the left Or gadget to True. Replacing the subsequences of the left
and the right Or gadget being cleared with one that evaluates the left Or gadget to True and
then fully clears the right Or gadget, yields a solving sequence which sets one of the inputs
for the right Or gadget to True. In the second case, by Lemma 7.14, the And gadget had both
inputs set to True. Then, by Lemma 7.12, there exists a clearing sequence which evaluates the
And gadget to True. The same replacement as before yields a solving sequence which sets
one of the inputs for the right Or gadget to True.

Repeating this for each right Or gadget yields an overall solving sequence with the claimed
properties.

7.6. The Final Reduction

We now describe our transformation of an And-Or-(1,1)-SAT instance into a Rook 2-Solo
Chess instance. Let an And-Or-(1,1)-SAT instance 𝐼 = (𝑈 ,𝐶) be given. Choose an And-Or
Embedding of 𝐼 that does not include the optional conjunction of the outputs of the clauses.
Adjust the vertical positions of the variable assignments and the horizontal position of the
clauses such that they are not aligned with other variable assignments and clauses (accounting
for the rook’s unlimited range). Then, based on the adjusted embedding, place for each
variable 𝑢 ∈ 𝑈 a variable assignment gadget on the board at sufficient distance to all other
variable assignment gadgets. For each clause, place the respective logic gadgets on the board
according to the embedding, aligning the outputs and inputs of the SAT gadgets as required
from the SAT formula. Place the shell around the bounding box that contains all SAT gadgets,
containing capture destination rooks placed as indicated in the various gadgets, a sufficient
number of cleanup rooks, as well as the tomb. An example of such a placement on the board
is shown in Figure 7.1. Using this construction, we now prove:
Theorem 7.16: Rook Solo Chess is NP-hard.

Proof. We reduce from And-Or-(1,1)-SAT. We transform a given instance as described above.
This transformation runs in polynomial time (in fact, in linear time): Let 𝑛 be the number
of variables and𝑚 be the number of clauses of the SAT instance. For each variable, a single
variable assignment gadget is placed on the board, for a total of 𝑛 gadgets. For each clause, at
most two logic gate gadgets are placed on the board, for a total of at most 2𝑚 gadgets. Each of
these gadgets contains only a constant number of rooks. For each gadget, a constant number
of shell rooks are placed on the board. Finally, the tomb consists of a constant number of
rooks. In total, O(𝑛 +𝑚) rooks are placed on the board. Furthermore, the transformation can
be computed in time proportional to its output size, i.e., linear time. It remains to show that
the two instances are in fact equivalent.

SAT instance solvable =⇒ Chess instance solvable: Let Φ be a satisfying assignment
for the SAT instance. Then a solving sequence consists of the following steps: For each
variable assignment gadget, assign the value True to the literal that is set to True by Φ, and
the value False to the other literal (see Lemma 7.9). For each clause, evaluate each logic gadget.
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Since each clause is satisfied by Φ, by Lemmata 7.10 and 7.12, at least one input of the right Or
gadget of the clause is True. Then, each of the variable assignment gadgets and each of the
clause gadgets are cleared fully. By Lemma 7.1, there is a solving sequence for the remaining
configuration of the shell.

Chess instance solvable =⇒ SAT instance solvable: Let the chess instance have a
solving sequence. Then, by Lemma 7.15, there exists one that sets at least one input for each
right Or gadget to True. On this solving sequence, the following procedure yields a satisfying
assignment Φ for the SAT instance: For each variable assignment gadget check which of the
two outputs is set to True, i.e., for which of the two output square rooks a capture to the right,
as a 2-rook, is contained in the sequence. If that output corresponds to some literal ℓ = 𝑥 , set
Φ(𝑥) := True. If it corresponds to some literal ℓ = ¬𝑥 , set Φ(𝑥) := False. If neither of the two
outputs is set to True, the value of the variable does not matter, so we set Φ(𝑥) := True. Then
Φ is a satisfying assignment:
By Lemma 7.9, at most one output of each variable assignment is set to True. Thus, Φ

is well-defined. We also see that every clause is satisfied: By definition, for each clause, at
least one input of its right Or gadget is set to True. If that input is the output of a variable
assignment gadget, then the corresponding literal satisfies the clause in the SAT instance
under Φ. Otherwise, it is the output of a left Or gadget or an And gadget, in which case, by
Lemma 7.10 or Lemmata 7.12 and 7.13, respectively, it follows again that the SAT clause is
satisfied under Φ.

Overall, we conclude that the two instances are equivalent, which shows the NP-hardness
of Rook 2-Solo Chess.
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8. Conclusion

In this thesis, we analyzed the complexity of the Solo Chess decision problem. We began by
introducing the And-Or-(1,1)-SAT problem and showed its NP-completeness. This variant of
SAT is unique in that each literal only occurs once, making it useful in deriving other hardness
results. In particular, we reduced from And-Or-(1,1)-SAT to show the NP-completeness of
different uniform 2-Solo Chess variants. For the short-range pieces of the king and the
knight, we presented a method for embedding SAT formulas onto the chess board using
specific gadgets for variable assignments, wires and logic gates. This construction allowed
us to directly translate the SAT instance into an equivalent Solo Chess instance. For the
long-range piece of the rook, we encoded each clause independently, using gadgets for variable
assignments and logic gates. Thanks to the rook’s unlimited range, the satisfaction for each
clause could be checked individually and without the need for an additional wire gadget.
The new results for King 2-Solo Chess and Knight 2-Solo Chess, combined with the

previous results for Rook, Bishop, Queen and Pawn 2-Solo Chess [AMM22], [BDGL24],
complete the computational characterization of (uniform) 2-Solo Chess. They also extend to
the more general problem of (uniform) ≤2-Solo Chess, whose computational complexity is
now also completely characterized.
Additionally, our study of ≤𝐵-Solo Chess played on a one-dimensional board yielded a

linear-time algorithm for any constant 𝐵. The algorithm performs a linear scan through the
configuration, maintaining an interface whose size depends solely on 𝐵. This result holds
true for any combination of piece types and any (constant) upper bound 𝐵 for piece budgets,
providing a complete resolution of the one-dimensional variant.

Future Work

Pawn 2-Solo Chess is the only uniform 2-Solo Chess variant which is solvable in polynomial
time (assuming P ≠ NP) [AMM22]. Further research could explore whether this holds true for
larger piece budgets. Similarly, the complexity increase from (uniform) 1-Solo Chess, solvable
in linear time, to (uniform) 2-Solo Chess, which is NP-complete, suggests that (uniform)
𝐵-Solo Chess remains NP-complete for any constant 𝐵 > 2. For the special case 𝐵 = 11 with
knights this has been shown [BDGL24]. One possible approach to show a general result for
any 𝐵 > 2 would be to generalize the gadgets of our SAT reductions to work with any piece
budgets. Recall that antennae of length 𝐵 can simulate 0-pieces, however, this approach does
not work to simulate pieces with budgets greater than 0 (see also Appendix A).

On the other hand, uniform Solo Chess with piece budgets equal to the number of pieces
𝑛 is solvable in polynomial time [Bru+23]. It would be interesting to study different variants
with large piece budgets, say 𝑛

𝑐 or 𝑛 1
𝑐 for some 𝑐 > 1, and determine at which point the

problem becomes solvable in polynomial time.
Other extensions include investigating various other piece types such as the golden and

silver general from Shogi (Japanese chess), the cannon from Xiangqi (Chinese chess), or
various fairy chess pieces. More generally, it would be interesting to characterize which
movement properties lead to a uniform Solo Chess problem being solvable in polynomial
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time or, alternatively, being NP-complete. Modifying the game rules, for example allowing
pieces to move without capturing, may lead to new complexity insights. Under this rule
some problem variants, such as Rook 2-Solo Chess, become trivial as any rook can reach
any square of the board within two moves. However, problem variants combining multiple
different piece types may still turn out to be hard.
Further research could focus on parameterized versions of 2-Solo Chess. These include

2-Solo Chess played on a board with a bounded number of rows (but an unlimited number
of columns). We have shown that for a board containing only a single row, this problem is
solvable in linear time, while for an unlimited number of rows it is NP-complete. However,
the complexity of intermediate cases remains unknown. It would for example be interesting
to study whether 2-Solo Chess parameterized by the number of rows is fixed-parameter
tractable (FPT).

All chess images in this paper use the piece set ’staunty’ by sadsnake1 under CC BY-NC-SA
4.0 Deed, of the website lichess.org.
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A. Counter Example for the Original Queen
2-Solo Chess Proof

In this chapter we discuss a claim made in the seminal paper on Solo Chess by Aravind,
Misra and Mittal [AMM22]. They give a reduction from the NP-complete problem of Red-Blue
Dominating Set (RBDS) to Rook ≤2-Solo Chess. Later, they describe how to transform the
resulting Rook ≤2-Solo Chess instances into equivalent Queen ≤2-Solo Chess instances.
Figures A.1a and A.1b give an example, transforming a No-instance of RBDS into a No-instance
of Queen ≤2-Solo Chess.
They then sketch how to modify this transformation to produce an equivalent instance

of Queen 2-Solo Chess. To this end, they describe a method to simulate 1-queens using
pairs of 2-queens. Figure A.2 shows the resulting instance after performing the suggested
transformation on the above example. Note that for the sake of clarity, we keep the 0-queen
on (1, 5) intact. It can be simulated by an antenna of length 2. The idea of the modified
transformation is that the added 2-queens in the bottom right quadrant capture their partner
queens in the top left quadrant to yield the desired 1-queens. However, by not immediately
performing these captures, it is possible to gain an additional unit of budget later on. A
specific solving sequence is given through the moves ((2, 3) → (2, 1)), ((8, 7) → (2, 1) →
(1, 1)), ((6, 6) → (1, 1) → (1, 5)). This shows that the transformed instance is a Yes-instance,
despite the original instance being a No-instance. We conclude that the transformation does
not produce equivalent instances, and so, the NP-completeness of Queen 2-Solo Chess cannot
be shown in this way. However, we remark that the result itself still holds. Since Rook 2-Solo
Chess has since been shown to be NP-complete [BDGL24], the transformation from Rook
Solo Chess to Queen Solo Chess yields the desired hardness result.

𝑟1

𝑏1

k = 0

(a) There is no set of 𝑘 = 0 red
vertices that dominates all blue
vertices.

1

1 2

0

(b) There is no clearing sequence for the resulting
Queen ≤2-Solo Chess instance.

Figure A.1.: A transformation from RBDS to Queen ≤2-Solo Chess.
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A. Counter Example for the Original Queen 2-Solo Chess Proof

2

2 2

0

2

2

(·, 1) (·, 2) (·, 3) (·, 4) (·, 5) (·, 6) (·, 7) (·, 8)
(1, ·)

(2, ·)

(3, ·)

(4, ·)

(5, ·)

(6, ·)

(7, ·)

(8, ·)

Figure A.2.: Simulating 1-queens using pairs of 2-queens. This Solo Chess instance is
solvable even though the original RBDS instance was not solvable.
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B. King Solo Chess Wire Crossing

In this chapter, we elaborate on the decomposition of function 𝐹 of the wire crossing gadget
introduced for King 2-Solo Chess.

𝑎 ¬𝑏 𝑏 ¬𝑏 𝐹 (𝑎,𝑏,¬𝑏) Row
0 0 0 0 -1 (1)
0 1 0 1 0 (2)
0 0 1 0 0 (3)
0 1 1 1 0 (4)
1 0 0 0 -1 (5)
1 1 0 1 1 (6)
1 0 1 0 1 (7)
1 1 1 1 1 (8)

Table B.1.: Function 𝐹 to be decomposed.

We decompose the function 𝐹 (𝑎,𝑏,¬𝑏) de-
scribed in Table B.1 into functions with two pa-
rameters each. We show below that under the
monotony requirement imposed by King 2-Solo
Chess, there exists no decomposition into just
two functions. Instead, we give a decomposi-
tion into three functions of the form 𝐹 (𝑎,𝑏,¬𝑏) =
ℎ(𝑔(𝑓 (𝑎,¬𝑏),𝑏),¬𝑏). This is possible by creating
multiple copies of the ¬𝑏 literal using the Double
Assignment gadget.

We note that under the given restrictions, this
type of decomposition gives themaximum expres-
sive power that is possible with two-parameter
functions: The only input value of which multiple copies can be created is that of ¬𝑏, using a
Double Assignment gadget (or a more general Multi Assignment gadget). Due to the planar
geometry, the wire carrying the 𝑎-signal is a divide between the variable 𝑏 and the incoming
𝑏-signal. It follows that the decomposition cannot utilize a function receiving inputs 𝑏 and
¬𝑏. Instead, every function is placed along the path of the 𝑎-signal and receives as inputs
the modified value of 𝑎 and either 𝑏 or ¬𝑏. Utilizing more than one function before or after
the function receiving the incoming 𝑏-signal does not give additional expressive power: Any
sequence of monotone functions receiving a copy of ¬𝑏 each, can be collapsed to a single func-
tion which is still monotone. Thus, one function on either side of the “additional information”
𝑏 already gives the maximum in expressive power.

We now construct functions 𝑓 , 𝑔 and ℎ that compose to 𝐹 . We number the different input
tuples according to Table B.1. We use the fact that each of the functions is monotone in each
argument to compare pairs of tuples and deduce inequalities between different intermediate
values:

(4) + (7) give us that 𝑔(𝑓 (1, 0), 1) > 𝑔(𝑓 (0, 1), 1), which implies that 𝑓 (1, 0) > 𝑓 (0, 1) ≥mon.

𝑓 (0, 0).
(3) + (5) give us that 𝑔(𝑓 (0, 0), 1) > 𝑔(𝑓 (1, 0), 0).
(4) + (6) give us that 𝑔(𝑓 (1, 1), 0) > 𝑔(𝑓 (0, 1), 1) ≥mon. 𝑔(𝑓 (0, 0), 1) > 𝑔(𝑓 (1, 0), 0), which

yields that 𝑓 (1, 1) > 𝑓 (1, 0) > 𝑓 (0, 1) ≥mon. 𝑓 (0, 0).
𝑎 ¬𝑏 𝑓 (𝑎,¬𝑏)
0 0 0
0 1 0
1 0 1
1 1 2

Table B.2.: Definition of
function 𝑓

Note that every set of inputs to 𝑓 can be extended to a set
of inputs for 𝐹 that does not produce an error value. Thus,
𝑓 itself does not produce an error value for any set of inputs,
which restricts its output to values between 0 and 2. Thus, using
the above chain of inequalities, we deduce that 𝑓 is defined as
shown in Table B.2
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B. King Solo ChessWire Crossing

Possible values for (𝑎,¬𝑏) 𝑓 (𝑎,¬𝑏) 𝑏 𝑔(𝑓 (),𝑏)
(0, 0)/(0, 1) 0 0 𝑔0
(0, 0)/(0, 1) 0 1 𝑔1

(1, 0) 1 0 𝑔2
(1, 0) 1 1 𝑔3
(1, 1) 2 0 𝑔4
(1, 1) 2 1 𝑔5

Table B.3.: The setting for function 𝑔.

We now discuss the function 𝑔,
shown in Table B.3. Once again,
we deduce from Table B.1.

(3) + (5) give us that 𝑔1 > 𝑔2.
(4) + (6) give us that 𝑔4 > 𝑔1.
(4) + (7) give us that 𝑔3 > 𝑔1.
(2) gives us that 0 ≤ 𝑔0 ≤mon.

𝑔2, i.e., neither are the error value
-1.

This yields 0 ≤ 𝑔0 ≤ 𝑔2 < 𝑔1 < 𝑔4 ≤mon. 𝑔5 ≤ 2 and 𝑔1 < 𝑔3 ≤mon. 𝑔5 ≤ 2. We deduce that
function 𝑔 is defined as shown in Table B.4.

𝑓 () 𝑏 𝑔(𝑓 (),𝑏)
0 0 0
0 1 1
1 0 0
1 1 2
2 0 2
2 1 2

Table B.4.: Definition of function 𝑔.

Finally, function ℎ is defined as shown in Table B.5, with ℎ0 being determined by (1), ℎ1 by
(2), ℎ2 by (3), ℎ3 by (4), ℎ4 by (7) and ℎ5 by (6).

𝑔() ¬𝑏 ℎ(𝑔(),¬𝑏)
0 0 ℎ0 = −1
0 1 ℎ1 = 0
1 0 ℎ2 = 0
1 1 ℎ3 = 0
2 0 ℎ4 = 1
2 1 ℎ5 = 1

Table B.5.: Definition of function ℎ.

This shows that there is at most oneway to decompose 𝐹 into three two-parameter functions.
At the same time, it is easy to verify that this decomposition is in fact valid, which shows
that there is exactly one way to decompose 𝐹 into three two-parameter functions. Since
neither 𝑓 nor ℎ are the identity function, it follows, in particular, that a decomposition into
two functions is impossible.
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