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Abstract

Power dominating set is a graph problem that asks for the smallest subset of vertices that
can observe all vertices. Observation is defined by two rules. The first one states that all
neighbors of the power dominating set are observed. This is identical to dominating set, of
which power dominating set is an extension. The second rule allows for propagation of the
observation status to vertices that are the only unobserved neighbor of an observed vertex.
Like dominating set, power dominating set is NP-complete.

Multiple approaches for solving power dominating set have been presented across literature,
including a formulation as an integer linear program. In this thesis, we present an algorithm
based on branch and bound. We derive a variety of lower and upper bounds to the optimal
solution and relate power dominating set to a graph covering problem. Moreover, we discuss
different strategies for branching. The implementation of our algorithm outperforms the
reference solution based on an integer linear program for small graphs but is slower on larger
instances.

Zusammenfassung

Power Dominating Set ist ein Graphenproblem, bei dem die kleinste Teilmenge der Knoten zu
finden ist, sodass alle Knoten beobachtet werden. Die Beobachtung von Knoten ist durch zwei
Regeln definiert. Erstere besagt, dass die Nachbarn des Power Dominating Set beobachtet
sind. Diese Regel ist identisch zu Dominating Set, ein Problem das Power Dominating Set
erweitert. Die zweite Regel ermöglicht es, weitere Knoten zu beobachten: Jeder Knoten, der
der einzige unbeobachtete Nachbar eines beobachteten Knotens ist, wird auch beobachtet.
Power Dominating Set ist wie auch Dominating Set NP-vollständig.
In der Literatur finden sich mehrere Ansätze um Power Dominating Set zu lösen, unter

Anderem eine Formulierung des Problems als ganzzahliges Programm. In dieser Abschluss-
arbeit nutzen wir einen Algorithmus, der auf Branch-and-Bound beruht. Dafür leiten wir
einige untere und obere Schranken für die optimale Lösung her und verknüpfen das Pro-
blem mit einem verwandten Überdeckungsproblem. Des Weiteren stellen wir Strategien für
den Branching-Schritt des Algorithmus vor. Die Implementierung unseres Algorithmus ist
schneller als das Auswerten des ganzzahligen Programms auf kleinen Graphen, aber deutlich
langsamer auf größeren Instanzen.
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1 Introduction

The problem of power dominating set originates from monitoring the status of electric power
networks [BBE18 | HHHH02]. This requires measuring the voltage and the phase angle, which
can be done by adding phase measurement units to the network. Phase measurement units are
expensive, so it is of interest to minimize the total amount of such units in a network while
still monitoring it fully. The problem can be formalized as a minimization problem on a graph
𝐺 that represents the electric power network. In this context, we call power measurement
units active vertices of the graph and capture the notion of monitoring in observation rules.

Stated as a graph theory problem, power dominating set looks for an active set of vertices
𝐴 ⊆ 𝑉 of an undirected graph 𝐺 = (𝑉 , 𝐸) such that all vertices are observed. Observation
happens due to two rules: First, the domination rule observes all neighbors of active vertices.
In addition to that, the propagation rule can extend the set of observed vertices to those that
are the only unobserved neighbor of an observed vertex. The problem is closely related to
dominating set, which only uses the first rule. Dominating set belongs to the set of 21 problems
that were the first to be proven NP-complete by Karp in 1972 [Kar72]. As an extension of
dominating set, power dominating set is NP-complete as well [HHHH02].

Power dominating set has been previously studied both from a theoretical perspective,
deriving bounds on the solution size for different graph classes [HHHH02 | ZKC06], aswell
as proposing algorithms for computation. Binkele-Raible and Fernau present an exponential
time algorithm [Bin11], whereas Jovanovich and Voss formulate an integer linear program
[JV20]. In this thesis we take a different approach to solving power dominating set by using
the branch and bound framework to search the space of possible solutions efficiently. Branch
and bound works by alternating between two steps. Branching subdivides the search space
into two or more subsets, then bounding discards parts of the search space that can be proven
to not contain a solution. The algorithm can be accelerated by applying reduction rules that
simplify the search space. Our algorithm is faster than the reference solution for small graphs,
but considerably slower on larger graphs.

We define power dominating set formally in chapter 2 using graph theoretic terms and
describe further prerequisites. We also give a concrete example of a power dominating set to
illustrate the concept.

Chapter 3 outlines related results for power dominating set as well as other related mini-
mization problems on graphs. In chapter 4 we present our branching algorithm. We discuss
the various components that make up a branch and bound algorithm. A core component of
such an algorithm are bounds for the size of the solution. We derive multiple lower and upper
bounds for power dominating set (section 4.2) using a related problem, subdivided star cover,
which we introduce. Further, we discuss strategies for branching. First, branching on the
inclusion or exclusion of a vertex in the set of active vertices (section 4.3), and after that a
variant that makes use of a special structure in certain graphs to discard parts of the search
space early (section 4.4).
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1 Introduction

We conclude with an evaluation of our algorithm on graphs from real world data in chapter 5.
We determine which strategies for branching are more useful on average and determine groups
of bounds that can be sensibly used in conjunction with each other. Lastly, we discuss the
performance of our algorithm.
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2 Preliminaries

We state power dominating set as a graph problem. A graph 𝐺 is a structure consisting of
vertices 𝑉 and edges 𝐸. For undirected graphs, each edge 𝑒 ∈ 𝐸 is a set of two vertices in
𝑉 , that is 𝐸 ⊆

(
𝑉
2
)
, whereas edges in directed graphs are a 2-tuple of vertices, so 𝐸 ⊆ 𝑉 ×𝑉 .

In both cases we denote the number of vertices by 𝑛 and the number of edges by𝑚. The
degree deg(𝜈) of a vertex 𝜈 ∈ 𝑉 is the number of edges that contain 𝜈 , so for undirected
graphs we have deg(𝜈) = |{𝑒 ∈ 𝐸 | 𝜈 ∈ 𝑒}|. For directed graphs we differentiate between the
indegree deg− (𝜈) = |{𝑢 ∈ 𝑉 | (𝑢, 𝜈) ∈ 𝐸}| and the outdegree deg+(𝜈) = |{𝑤 ∈ 𝑉 | (𝜈,𝑤) ∈ 𝐸}|.
Additionally we use deg(𝜈) = deg− (𝜈) + deg+(𝜈) as the sum of the in- and outdegree for
directed graphs. The largest degree in a graph is 𝑑max = max𝑉 deg(𝜈).
We also define neighborhoods for vertices of undirected graphs. The open neighborhood

𝑁 (𝜈) is the set of vertices that share an edge with 𝜈 , that is 𝑁 (𝜈) = {𝑤 ∈ 𝑉 | {𝜈,𝑤} ∈ 𝐸}. The
closed neighborhood𝑁 [𝜈] = {𝜈}∪𝑁 (𝜈) additionally includes the vertex 𝜈 itself. We extend the
definitions of neighborhoods to sets, meaning for a set of vertices 𝑆 ⊆ 𝑉 , 𝑁 (𝑆) = ⋃

𝑠∈𝑆 𝑁 (𝑠)
and 𝑁 [𝑆] = ⋃

𝑠∈𝑆 𝑁 [𝑆]. The notation of P (𝑆) is used to describe the power set of an arbitrary
set 𝑆 .

2.1 Power Dominating Set

2.1.1 Definition

Power dominating set is a minimization problem that asks for the smallest set of vertices in a
graph that observe all vertices. Any set 𝑆 that has this property is called a power dominating set.
More generally, a set of active vertices 𝐴 ⊆ 𝑉 observes some set 𝑂𝐴 ⊆ 𝑉 of vertices. Vertices
are observed iterativelly according to two rules [BG23]. First the domination rule determines
an initial set of observed vertices:

Domination Rule All active vertices are observed. Further, every vertex𝑤 that is a neigh-
bor of an active vertex 𝜈 is observed as well, that is 𝑁 [𝐴] ⊆ 𝑂𝐴. We say 𝜈 observes 𝑤 .

Additional vertices are observed by applying the propagation rule. We consider only a
subset of vertices 𝑃 ⊆ 𝑉 , called propagating vertices to be capable of observing further vertices
according to this rule.

Propagation Rule If a propagating vertex 𝜈 ∈ 𝑃 is observed and has only one unobserved
neighbor𝑤 , then 𝜈 observes𝑤 .

The propagation rule is then applied repeatedly until no additional vertices are observed. If
the set of observed vertices 𝑂𝐴 matches the entire vertex set, then 𝐴 is a power dominating
set. In general, there can be many different power dominating sets 𝑆 for a given graph. In
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Figure 2.1: Demonstration of the observation rules

particular, the set of all vertices is such a set. We are, however, interested a power dominating
set containing as few vertices as possible. We denote a mimnimum power dominating set 𝑆
by 𝑆∗ and call 𝛾𝑃 = |𝑆∗ | the power domination number.

If we only consider the domination rule, the problem is called dominating set, one of Karp’s
21 NP-complete problems. Both problems are equivalent for the special case of graphs without
propagating vertices. Therefore any algorithm that can solve power dominating set can also
solve dominating set. It follows immediately that power dominating set is NP-complete as
well.

To represent partial solutions we partition the vertex set into three disjoint sets. The set of
active vertices𝐴 contains all vertices which have been chosen to be part of a power dominating
set. Inactive vertices 𝐼 are vertices which we have ruled out from being part of the power
dominating set, and all remaining vertices 𝐵 = 𝑉 \ (𝐴 ∪ 𝐼 ) are called blank vertices.

2.1.2 Example

To demonstrate the observation rules let us consider the example graph shown in figure 2.1a.
Propagating vertices are shown as circles and non-propagating vertices are shown as triangles.
Vertices filled in green are active, and vertices with a green outline are observed. First, we
choose 𝑓 as an active vertex. Due to the domination rule, all neighbors of 𝑓 , namely 𝑐, 𝑑 and
ℎ become observed (fig. 2.1b). Next, we check which vertices can observe their neighbors
due to the propagation rule. 𝑑 cannot observe a neighbor because it has more than one
unobserved neighbors. ℎ is non-propagating, so it cannot observe any neighbors either. 𝑐 has
only one unobserved neighbor, 𝑏, which it therefore observes (fig. 2.1c). Now 𝑑 has only one
unobserved neighbor, so it can now observe 𝑒 . Additionally 𝑎 is observed by 𝑏 (fig. 2.1d).
Now no more vertices can be observed, so in order to find a power dominating set for

the graph we have to turn another vertex active. If we want a small power dominating set,
choosing 𝑖 or 𝑔 is less useful because ℎ will not propagate the observation status. We therefore
choose ℎ, which then observes both 𝑖 and 𝑔 due to the domination rule (fig. 2.1e). Now {𝑓 , ℎ}
form a power dominating set, and even a minimal power dominating set. It is however not
unique, in fact we could have chosen 𝑏, 𝑐 or 𝑑 instead of 𝑓 and still would observe all vertices.

4



2.1 Power Dominating Set

2.1.3 Observation Graph

The observation rules imply a directed graph on the vertices𝑉 of the input graph. For a set of
active vertices 𝐴, the observation graph 𝐺𝐴 = (𝑉 , 𝐸𝐴) contains an edge (𝜈,𝑤) if and only if 𝜈
observes𝑤 according to either observation rule. The edge set 𝐸𝐴 is in some sense a subset of
the edges 𝐸 of the input graph if we consider the undirected edges {𝜈,𝑤} of𝐺 to be equivalent
to two directed edges (𝜈,𝑤) and (𝑤,𝜈).

Which edges of 𝐸 are part of 𝐸𝐴 also depends on the order in which the rules are applied to
the vertices. We assume implicitly that the rules are applied according too some arbitrary
but fixed ordering ≤𝑉 , and by extension define the observation graph. However, the precise
ordering does not affect which vertices are observed after exhaustive application of the
observation rules. The observation graph for the graph in figure 2.1a is shown in figure 2.1f.
We also define the observation neighborhood 𝑁𝐴 [𝜈] for blank vertices 𝜈 ∈ 𝐵 and a set of

active vertices 𝐴. The observation neighborhood 𝑁𝐴 [𝜈] contains precisely those vertices that
would become observed by setting 𝜈 to active, or formally 𝑁𝐴 [𝜈] = 𝑂𝐴∪{𝜈 } \𝑂𝐴.

A graph class that is related to power dominating set are subdivided stars which we want
to define here. In fact we will show in section 4.2.1.1 that for a power dominating set, the
weakly connected components of the observation graph are subdivided stars.

A subdivided star is a directed tree with a root vertex 𝑐 called center with deg− (𝑐) = 0. Edges
are oriented away from 𝑐 , i.e. all other vertices 𝜈 ≠ 𝑐 have deg− (𝜈) = 1. Additionally, non-
center vertices have outdegree deg+(𝜈) ≤ 1 if they are propagating vertices and deg+(𝜈) = 0
if 𝜈 ∉ 𝑃 .
Subdivided stars can be seen equivalently as a set of directed paths that are joined at the

center vertex and share no other vertices. We discuss the names that are used across literature
for this graph class in section 3.4.

2.1.4 Subproblems

A widely used tool for simplifying a complex problem is to divide it into multiple subproblems,
solve each on its own and then reassemble them to get a solution for the original problem. This
can be trivially applied to power dominating set by finding power dominating sets for each
connected component of a graph𝐺 and then combining the solutions. This yields a correct
result because a vertex can only be observed by vertices in the same connected component of
𝐺 . The power domination number for a graph is therefore the sum of the power domination
numbers of its components.
We can improve this by considering fully observed vertices. A vertex is considered fully

observed if and only if all vertices in its neighborhood are observed, that is for some set
of active vertices 𝐴 we have 𝑁 [𝜈] ⊆ 𝑂𝐴. Fully observed vertices can not propagate the
observation status from neighbors. So if we have a set of fully observed vertices that form
a vertex seperator, they act as a boundary across which the observation status can not be
propagated. Therefore we can divide 𝐺 at such seperators, generating multiple subproblems.
This is especially useful if many vertices have already been assigned to 𝐴.

2.1.5 Reduction Rules

For a partial solution with active vertices 𝐴 and inactive vertices 𝐼 , we may be able to infer
that other blank vertices must necessarily be active, or conversely can never be part of a
minimal power dominating set. Consider for example an isolated vertex, that is a vertex of
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2 Preliminaries

degree zero. The only way this vertex can be observed is if it is itself active. We call such rules
that simplify the structure of the graph whithout discarding solutions reduction rules. We use
the reduction rules that have been presented by Bläsius and Göttlicher [BG23] to speed up
our algorithm. We will take a closer look at one more example here.
Consider a blank vertex 𝜈 ∈ 𝐵 of degree one, also called a leaf. It has one neighbor,𝑤 ∈ 𝐵

which we assume is also blank. Choosing 𝜈 to be active never yields a smaller solution than
choosing𝑤 to be active instead. This is because the observation neighborhood of𝑤 contains
that of 𝜈 , ie. 𝑁𝐴 [𝜈] ⊆ 𝑁𝐴 [𝑤]. We can therefore set 𝜈 to be inactive. Moreover, if 𝑤 ∉ 𝑃 is
non-propagating, we need to set𝑤 active for 𝜈 to be observed. Conversely, if𝑤 ∈ 𝑃 , we can
equivalently set𝑤 to be non-propagating and delete 𝜈 .
It is noteworthy that these rules do not just reduce the size of the input graph or lower

the number of blank vertices but also often generate non-propagating vertices. This is the
case even for input graphs that only contain propagating vertices. Graphs that contain many
non-propagating vertices have more constrained observation neighborhoods, which we make
use of for deriving lower bounds.

2.2 Branch and Bound

Branch and bound refers to an algorithmic framework for finding solutions to optimization
problems [MJSS16]. Algorithms based on branch and bound search through some space
𝑋 of possible solutions trying to find an optimal solution 𝑥∗ ∈ 𝑋 that either minimizes or
maximizes some objective function 𝑓 : 𝑋 → ℝ. For the sake of readability we assume we
want to solve a minimization problem.

The search space can be organized in a search tree𝑇 which the algorithm explores. Starting
at a root node we iterate over 𝑇 in two main steps. The root node contains all possible
solutions. In the context of power dominating set this means that all vertices of the graph are
blank. (Note that we always use vertex for the power dominating set instance and node for
the branch and bound search tree to differentiate between the two graphs). Each iteration
has two main steps. First, the branching step generates new child nodes by partitioning the
search space at a node 𝑥 into subproblems 𝑥1, . . . , 𝑥𝑘 . If a node still admits an optimal solution
then this solution must still be possible in at least one child node. This is always the case if
the child nodes cover the entire search space of node 𝑥 together. For power dominating set,
this could mean picking a blank vertex 𝜈 , and generating two subproblems, one with 𝜈 ∈ 𝐴
and the other with 𝜈 ∈ 𝐼 but is generally not the only possibility. The subproblems are then
inserted in 𝑇 as child nodes to 𝑥 . By repeating this step we would eventually generate every
possible solution (assuming the search space is finite), one of which would minimize 𝑓 .
To limit the size of the search tree, and by extension, speed up the searching process, we

follow up each branching step with a bounding step. In this step we want to prune subtrees
for which we can show that no node can be optimal. We do this by keeping track of the best
feasible solution 𝑦 we have found so far. If 𝑓 (𝑦) ≤ 𝑓 (𝑥𝑖) for all nodes 𝑥𝑖 in the subtree of node
𝑥 , we can prune that subtree. To do this, a lower bound 𝑓 ′ for 𝑓 is needed, so 𝑓 ′(𝑧) ≤ 𝑓 (𝑧)
must be true for all 𝑧 ∈ 𝑋 . We then need to only verify that 𝑓 (𝑦) ≤ 𝑓 ′(𝑥) for the single node
𝑥 to prune its subtree. Once no nodes remain unexplored, we know that 𝑦 is the optimal
solution.

Even though the search space is organized in a tree, we do not need to explicitly construct𝑇 .
Instead it is sufficient to keep the unexplored nodes in a priority queue, that has its elements
sorted by lower bound in ascending order, corresponding to searching 𝑇 depth-first.

6



3 Related Work

3.1 Power Dominating Set

The problem of efficiently placing measurement units in an electric power system formalized
as a graph problem has first been stated by Haynes et al. [HHHH02]. Introducing the
power dominating set problem as an extension of dominating set, the authors show that
any dominating set is always a power dominating set and observe that as a consequence,
the power domination number 𝛾𝑃 of a graph is always less than or equal to the domination
number 𝛾 . They further show that the problem remains NP-complete, even if the graphs are
restricted to two common graph classes, namely bipartite and chordal graphs. For trees the
problem is easier, in fact a power dominating set for trees can be found in linear time using
an algorithm that partitions the input graph into subdivided stars.

An exponential time algorithm for solving power dominating set on general graphs is given
by Brueni and Heath [BH05]. It relies on the result that on graphs with at least three vertices,
the power domination number is bounded by 𝛾𝑝 ≤

⌈
𝑛
3
⌉
. The resulting algorithm iterates then

over a set of possible candidates in 𝑂∗(1.89𝑛) time.

This asymptotic bound can be improved by a branching algorithm [Bin11] which requires
𝑂∗(1.7548𝑛) time on general graphs. Each branching step makes the decision to either include
or exclude a specific vertex in the power dominating set. The generated tentative solutions are
stored using a specific data structure the authors introduce, called reference search trees. The
algorithm also makes use of reduction rules that simplify the input graph without changing
the optimal solution.

A different approach to solving power dominating set is taken by Jovannovic and Voss
[JV20]. The authors transform the input graph and observation rules into an integer linear
program which then can be solved using a generic solver. This formulation however considers
all vertices to be propagating and has been extended to include non-propagating vertices by
Bläsius and Göttlicher [BG23].

More general bounds on 𝛾𝑃 for specific graph classes are summarized in a survey by Dorbec
[Dor20]. While some of these bounds are tight, they are not very useful for use in a branching
algorithm as the input graphs in general do not match any of these graph classes.

In branch and bound algorithms, monotone properties of the optimization problem can be
exploited to reduce the size of the search space. As such it would be useful to show that 𝛾𝑃 is
monotone with respect to some graph operation. Howerever, Dorbec et al. [DVV16] show
that this is not the case for three common local operations. Vertex removal, edge removal and
edge contraction can each increase and decrease the power domination number.

7
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3.2 Hitting Set

Hitting set can be expressed as a covering problem on hypergraphs. Given a hypergraph𝐺
with vertices 𝑉 and a set of hyperedges 𝐸 ⊆ P (𝑉 ), we consider a subset of vertices 𝐻 ⊆ 𝑉 a
hitting set if every hyperedge contains at least one vertex in 𝐻 . This can be formally stated as
follows: 𝐻 ⊆ 𝑉 is a hitting set if and only if ∀𝑒 ∈ 𝐸 : 𝐻 ∩ 𝑒 ≠ ∅. The hitting set problem then
asks for the smallest hitting set for a given hypergraph.

The problem can be restated using just a family of sets and is in this context known as set
cover. It is one of the original 21 problems proven by Karp to be NP-complete [Kar72].

A survey of algorithms [CTF00] for solving hitting set both exactly and heuristically show
that most solvers rely on a linear program formulation of the problem. Conversely, Bläsius et
al. [BFSW] use a branch and bound algorithm to find a minimal hitting set. They introduce a
multiple lower bounds as well as an upper bound, some of which can be adapted for power
dominating set.
The simplest lower bound, max-degree is based on the degrees of the vertices in a hitting

set. The degree deg(𝜈) of a vertex 𝜈 ∈ 𝑉 in a hypergraph is the count of hyperedges that
contain 𝜈 . Each vertex is contained in at most 𝑑max = max𝑉 deg(𝜈) hyperedges. Because every
hyperedge needs to contain at least one vertex in a hitting set 𝐻 , the smallest hitting set
contains at least

⌈
|𝐸 |
𝑑max

⌉
vertices.

This bound can be improved by observing that instead of 𝑑max, each degree can only be
chosen as often as it appears in 𝐺 . Thus, given a list of vertex degrees 𝑑1, . . . , 𝑑 |𝑉 | sorted in
descending order, we can take the smallest number 𝑘 for which the sum over the largest
𝑘 degrees

∑𝑘
𝑖=0 𝑑𝑖 exceeds the number of hyperedges |𝐸 |. Then 𝑘 is a lower bound for the

smallest hitting set, called sum-degree.
We can adapt both lower bounds for finding a smallest power dominating set in a graph.

In a similar way that every vertex in a hitting set covers hyperedges according to its degree,
a vertex in a power dominating set is limited by its degree in how many non-propagating
vertices it can observe.

The authors introduce two further bounds that could in theory be transferred to power
dominating set, but would only yield trivial bounds: Efficiency bound charges each edge in
the hypergraph by a cost of 1/deg(𝜈) for all contained vertices, and bounds the size of a
hitting set by the sum of the minimal charges for each edge. Packing bound considers a set
of pairwise disjoint hyperedges 𝑃 . The smallest hitting set then is at least as large as 𝑃 . A
correct efficiency bound for power dominating set would require a very small charge for
each vertex, namely the inverse of the size of the respective connected component, because
without further structural insights the entire component could be observed by just a single
vertex. As a result the bound would just equal the number of connected components. Packing
bound has similar issues. The observation neighborhood of a vertex could extend over many
vertices and depends on which other vertices have already been chosen to be active. Only if
two vertices are in different connected components is it straightforward to show that their
observation neighborhoods do not intersect.
The sum-degree bound and the packing bound can be combined to get a tighter lower

bound. The authors use a greedy algorithm to determine an upper bound for hitting set. By
repeatedly selecting the vertex with the highest degree and adding it to 𝐻 and checking if
all hyperedges are covered, a hitting set will eventually be generated. We follow a similar
strategy for finding an upper bound for power dominating set.
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3.3 Zero Forcing Problems

Zero forcing is described by Bozeman et al. [BBE18] as a coloring game on the vertices 𝑉 of a
graph𝐺 . Each vertex has one of two colors, blue and white. The authors denote the set of blue
and white vertices by 𝐵 and𝑊 respectively. The vertices change color based on the following
rule: If 𝑏 is blue only one neighbor𝑤 of 𝑏 is white, then the color of𝑤 changes to blue. This
is denoted by 𝑏 → 𝑤 and called 𝑏 forcing 𝑤 . The closure of an initial set of blue vertices 𝐵 is
the set of vertices that are blue after the color changing rule is applied exhaustively. A set 𝐵
for which the closure of 𝐵 is the entire vertex set 𝑉 is called a zero forcing set. The size of the
smallest such set is called the zero forcing number 𝑍 (𝐺). In essence, zero forcing matches the
propagation rule of power dominating set where all vertices are considered to be propagating.
The chronological list of forces is a list of vertices that describes the order in which the

coloring rule is applied to the vertices. The authors note that sequences of vertices 𝜈𝑖 → 𝜈𝑖+1
form a path in 𝐺 . This is corresponds to the observation graphs for observed but inactive
vertices in power dominating set. The distinction is due to the domination rule, which causes
possibly multiple paths to begin at a single vertex, making the observation neighborhood of a
graph a subdivided star and not just a path.
In Bozeman et al. derive various bounds for the zero forcing number and the power

domination number 𝛾𝑃 (𝐺), as well as an equation that relates the two numbers [BBE18].
Before we can state the equation we need to define restricted variants of the two problems. For
a given set 𝑋 ⊆ 𝑉 , we set 𝐵 = 𝑋 at the beginning and want to find the smallest zero forcing
set under that precondition. We call 𝑍 (𝐺 ;𝑋 ) the restricted zero forcing number. Similarly for
restricted power dominating set, we consider 𝑋 to be necessarily active vertices and want to
find the smallest power dominating set with respect to this precondition and call 𝛾𝑃 (𝐺 ;𝑋 ) the
restricted power domination number. These two figures can then be related by the following
tight bound: ⌈

𝑍 (𝐺 ;𝑋 )
𝑑max(𝐺)

⌉
≤ 𝛾𝑃 (𝐺 ;𝑋 )

From this, the authors go on to derive an integer linear program to determine a minimum
restricted power dominating set of a graph. They do this using the concept of a fort, a subset
𝐹 ≠ ∅ of vertices with the property that every 𝜈 ∈ 𝑉 \ 𝐹 has either zero or at least two
neighboring vertices in 𝐹 . Now, any power dominating set 𝑆 has to intersect the closed
neighborhood of all forts 𝐹 , that is 𝑆 ∩𝑁 [𝐹 ] ≠ ∅. This can be easily stated as an integer linear
program. However it is infeasible to generate every fort, as there can be exponentially many.
Instead, a second ILP for constraint generation is given. Based on a partial solution for the
first program, it generates an additional fort that leads to a better solution.

The iterative process of solving power dominating set using fort constraints could be used
for determining lower bounds in a branch and bound algorithm, as the partial solution is a
lower bound on 𝛾𝑃 . Nevertheless, additional care needs to be taken with non-propagating
vertices, as the ILP considers all vertices to be propagating.

3.4 Graph Covering

In section 4.2.1.1 we relate the problem of power dominating set to a covering the vertices of
a graph with subdivided stars. For general graph covering problems we are given an input
graph 𝐻 as well as a class of graphs G, and a notion of how to cover 𝐻 with instances of G
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3 Related Work

[KU16]. Usually one is either concerned with covering the edges of 𝐻 or the vertices of 𝐻 .
Additionally, some coverings may be considered better than others, for example based on the
number of graphs from G that are needed.

The class of graphs which we call subdivided stars is inconsistently named across literature.
Some authors consider the graph resulting from subdividing each edge of a star exactly once
to be subdivided stars [Şah22 | BJ18]. Others use an equivalent definition to ours, but call
them spider graphs [PP16 | HHHH02]. Additionally the term spider graph is also used for stars
with exactly one vertex of degree greater than two where all edges have been equally often
subdivided [Moh13].

Algorithms for covering the vertices of graphs using similar classes such as trees and stars
exist [Eve+03] but to the best of our knowledge no prior research on covering graphs with
subdivided stars has been published.

10



4 The Branching Algorithm

In this chapter, we describe our branching algorithm used to solve power dominating set
instances. We outline our algorithm in section 4.1 before discussing the specific components.
Then, in section 4.2 we present bounds for 𝛾𝑃 . A group of lower bounds, which are based
on the relationship between the observation graph and subdivided stars, are discussed in
section 4.2.1.1. After we present three upper bounds based on greedy selection of vertices
in section 4.2.3, we offer a comparison of all bounds we present in section 4.2.4. We present
strategies for selecting vertices to branch on in section 4.3. Lastly, we conclude the chapter by
exploring an alternative wide branching strategy in section 4.4.

4.1 Overview

Our algorithm starts out with an input instance for which all vertices are considered to be
blank vertices, i.e. 𝑉 = 𝐵. During the execution of the algorithm we assign more and more
vertices to either the active set 𝐴, or the inactive set 𝐼 . To do this, we keep a list of instances
𝑄 , from which we generate new instances that split the search space. Eventually, we reach
instances that do not contain any blank vertices. Among these, we want to find one that is a
minimum power dominating set.
The algorithm consists of a main loop that iterates over elements of 𝑄 , which to begin

contains just the input graph. Additionally, we associate a lower bound ℓ and an upper bound
𝑢 with each instance. Initially we set ℓ = 0 and 𝑢 = |𝑉 |. The main loop terminates when 𝑄 is
empty. We also keep track of the best known solution 𝐺∗, as well as the lowest upper bound
𝑢∗.

We now want to take a look at one loop iteration. First, we take a graph 𝐺 out of 𝑄 . In
our case 𝑄 is implemented as a priority queue and we always remove the element with the
smallest lower bound first. To start, we check if the lower bound ℓ of the current graph 𝐺

is larger than then 𝑢∗. If this is the case we can safely skip it, as it can never be an optimal
solution. Next we update the lowest upper bound, that is set 𝑢∗ to min𝑢,𝑢∗. After that we
check if the current instance is a valid power dominating set. If it is, we take𝐺 as the new best
known solution𝐺∗. Note that it is impossible for a valid but suboptimal power dominating set
to be found at this step, because for incumbent solutions both bounds as well as the solution
size are identical, which would eliminate the suboptimal solution at the start of the loop.
In the next step we need to subdivide the search space. Generally, this means we need to

construct a set of new graphs 𝐺1, . . . ,𝐺𝑘 that make further restrictions on 𝐺 , meaning that
their sets of blank vertices each need to be a subset of the blank vertices in 𝐺 . On the other
hand, if the set of active vertices can be extended to a minimum power dominating set, this
must still be possible for at least one𝐺𝑖 . In the simplest case we just pick a single blank vertex
𝜈 ∈ 𝐵 and generate two new graphs. The first one contains 𝜈 as an active vertex whereas in
the second one, 𝜈 is inactive. All other vertices remain as they were in 𝐺 .
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Alternatively we can subdivide the search space in more than two parts. This is called
wide branching [MJSS16] in general. We present one such scheme for power dominating set
specifically in section 4.4. Note that the branching scheme does not need to be the same across
the entire algorithm but can instead be mixed and matched.
To simplify the graph we apply the reduction rules presented by Bläsius and Göttlicher

[BG23]. We apply these rules exhaustively, meaning until no more rule can be applied, to all
graphs 𝐺1, . . . ,𝐺𝑘 . We also do this in the beginning to the input graph.

Lastly we compute the lower and upper bounds on each new graph before adding them to
𝑄 . We repeat the checks on bounds from the beginning of the loop aswell as the update of 𝑢∗
here. This is not strictly necessary, but keeps the list from getting unnessecarily large and can
cause other instances to be discarded earlier.
The runtime of the algorithm strongly depends on the the bounds and how fast we can

prune parts of the search space. In the worst case, without considering reduction rules, we
would generate all 2 |𝑉 | possible assignments from 𝑉 to {𝐴, 𝐼 } culminating in exponential
runtime.

Algorithm 4.1: A branching algorithm for power dominating set.
Input: A graph 𝐺 containing only blank vertices.
Output: A power dominating set for 𝐺 of minimal size.

1 𝐺.𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝜈𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ()
2 𝑢∗ ←− |𝑉 |
3 𝐺∗ ←− 𝑛𝑢𝑙𝑙
4 𝑄 ←− 𝑛𝑒𝑤𝑄𝑢𝑒𝑢𝑒 ()
5 𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 ((𝐺, ℓ = 0, 𝑢 = 𝑢∗))
6 while 𝑄 ≠ ∅ do
7 (𝐺, ℓ,𝑢) ←− 𝑄.𝑔𝑒𝑡𝑀𝑖𝑛()
8 if ℓ > 𝑢∗ then
9 continue
10 𝑢∗ ←− min𝑢,𝑢∗
11 if 𝑂𝐴 = 𝑉 then
12 𝐺∗ ←− 𝐺
13 𝐺1, . . . ,𝐺𝑘 ←− 𝑠𝑢𝑏𝑑𝑖𝜈𝑖𝑑𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑝𝑎𝑐𝑒 (𝐺)
14 for 𝑗 ∈ {1, . . . , 𝑘} do
15 𝐺 𝑗 .𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝜈𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ()
16 ℓ,𝑢 ←− 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑜𝑢𝑛𝑑𝑠 (𝐺)
17 if ℓ < 𝑢∗ then
18 𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 ((𝐺 𝑗 , ℓ, 𝑢))
19 𝑢∗ ←− min𝑢,𝑢∗
20 return 𝐺∗

4.2 Bounds for Power Dominating Set

The efficiency of a branch and bound algorithm strongly depends on the bounds that are used
to constrain the search space. In this section we present and analyze a variety of both lower
and upper bounds on power dominating set instances. To do this, we first define lower and
upper bounds. A lower bound ℓ (𝐺) is a function that for all graphs𝐺 with partitions of its
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vertices into active, inactive and blank vertices takes on a value at most as large as the smallest
power dominating set possible with the already assigned vertices. Conversely, an upper bound
𝑢 (𝐺) is a function that is always at least as large as the smallest power dominating set for a
given graph. In notation we usually omit the dependence on the graph 𝐺 for our bounds.
Note that multiple bounds of the same kind can be combined to form a new bound. If

ℓ1, . . . , ℓ𝑘 are all lower bounds, then max(ℓ1, . . . , ℓ𝑘 ) is also a correct lower bound. Similarly,
the minimum of a set of upper bounds is an upper bound as well. This is useful because, in
general, which bound is best may depend on the graph. If one lower bound ℓ1 is greater than
ℓ2 independent of the instance, we say ℓ1 dominates ℓ2. For upper bounds, a dominating bound
is always smaller than the dominated bound.
Bounds that are closer to the optimal solution 𝛾𝑃 are generally favorable, as they reduce

the space of possible solutions to a larger extent. As a consequence, the power dominating
number itself could be considered the best bound, as it is both the largest lower bound aswell
as the smallest upper bound. So an additional requirement for a good bound should be the
ability to compute it quickly. For this reason, bounds that are dominated by other bounds can
still be useful if they can be evaluated faster.
Before we explore more elaborate bounds, we want to give a pair of exemplary bounds

based on the number of active vertices. If 𝐴 is not a power dominating set, we need at least
one more vertex to observe the full graph. Thus

𝑎ℓ = |𝐴| +
{

1 if 𝑂𝐴 ≠ 𝑉

0 else

is a lower bound. Similarly, we can construct an upper bound 𝑎𝑢 :

𝑎𝑢 = |𝐴| + |𝐵 ∩𝑈𝐴 | +
{

1 if 𝑂𝐴 ≠ 𝑉

0 else

If it is still possible to find a power dominating set given the set of inactive vertices 𝐼 , then
setting all unobserved blank vertices to active clearly is a solution. In some cases however,
too many vertices are inactive, so the instance is infeasible and can be discarded. Both bounds
can be computed in O(𝑛) time by iterating over all vertices.

4.2.1 Star Bounds

4.2.1.1 Star Cover

The set of lower bounds we present next are derived from properties of the observation graph
𝐺𝐴 of 𝐺 . First, we show the relation between the observation graph and the graph class of
subdivided stars (see section 2.1.3).

Theorem 4.1: Let 𝐴 ⊆ 𝑉 be a set of vertices of a graph 𝐺 . Then each weakly connected
component of the observation graph 𝐺𝐴 is either

1 a single vertex of degree zero which is unobserved

2 a subdivided star with exactly one active vertex 𝑐 ∈ 𝐴 which we call center

Further, if 𝐴 is a power dominating set of 𝐺 , only the second case is possible.
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Proof. During application of the observation rules, the theorem holds as an invariant. Before
any rule is applied, 𝐺𝐴 does not contain any edges, thus the invariant is trivially fulfilled.
Applying the domination rule to a vertex 𝜈 ∈ 𝐴 generates a directed edge from 𝜈 to every

unobserved neighbor𝑤 ∈ 𝑁𝐺 (𝜈) ∩𝑈𝐴. Therefore the indegree of 𝜈 is zero and its outdegree
is unconstrained, making it the center. All neighbors𝑤 have indegree one and outdegree zero.
Thus each observed vertex is part of a subdivided star in𝐺𝐴 and all unobserved vertices are
isolated, so the invariant holds.
Every application of the propagation rule requires an observed vertex 𝜈 with exactly one

unobserved neighbor 𝑤 . The vertex 𝜈 cannot be active, otherwise it would not have an
unobserved neighbor. Because 𝜈 is observed and not active, it must have outdegree zero. The
rule introduces an edge (𝜈,𝑤) in 𝐺𝐴, raising 𝜈 ’s outdegree by one and setting the indegree of
𝑤 to one. Therefore the invariant also holds after application of the propagation rule.

Lastly, if 𝐴 is a power dominating set, all vertices must be observed, thus eliminating the
possibility of the first case.

We can now define the notion of a subdivided star cover. Given an undirected graph
𝐺 = (𝑉 , 𝐸), we call a directed graph 𝐺 ′ = (𝑉 , 𝐸′) on the same vertex set a subdivided star
cover of 𝐺 if two conditions are met. First, 𝐺 ′ must be a subgraph of 𝐺 , that is for every edge
(𝑢, 𝜈) ∈ 𝐸′ an edge {𝑢, 𝜈} must exist in 𝐸. Additionally every weakly connected component of
𝐺 ′ must be a subdivided star. We call the number of components the size of the subdivided
star cover. Furthermore we call the subdivided star cover of minimal size the subdivided star
cover number and denote it by 𝑠 .

FromTheorem 4.1 immediately follows that the observation graph𝐺𝑆 of a power dominating
set 𝑆 is also a subdivided star cover of 𝐺 , although not necessarily a minimal one. This is also
true for the special case of a minimal power dominating set 𝑆∗. Because every subdivided star
contains exactly one active vertex we get

𝑠 ≤ |𝑆∗ | = 𝛾𝑃 ,

so 𝑠 is a lower bound for the power dominating number.
To use 𝑠 in our branch and bound algorithm, we need to be able to compute it. This is

difficult, in fact it is straightforward to show that computing 𝑠 is NP-hard. Consider a graph
containing only non-propagating vertices, so 𝑃 = ∅. Now every subdivided star only contains
edges that start at the center of a star. In a sense we are now interested in finding a non-
subdivided star cover. Note that finding such a cover of minimal size is directly equivalent to
finding a dominating set as each star corresponds to one vertex in the dominating set. Thus,
if we had a polynomial time algorithm for computing 𝑠 , we could also solve a problem that is
NP-complete. Therefore the computation of 𝑠 is NP-hard as well.
We describe how 𝑠 can be computed for a given graph exactly in section 4.2.1.3, but for

now we want to find a way to compute a lower bound for 𝑠 itself more efficiently.

4.2.1.2 Lower Bounds for 𝑠

We notice that a subdivided star can also be characterized as a set of directed paths that start
at a shared center vertex. In the observation graph𝐺𝑆 of a power dominating set 𝑆 these paths
end due to two possible reasons. On the one hand, the last vertex can have no unobserved
neighbors that can be observed by the propagation rule. Alternatively, the last vertex can be
non-propagating and thus the propagation rule does not apply.
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Even though not every path ends at an non-propagating vertex, every such vertex does end
a path in𝐺𝑆 unless it is itself a center. We also know that the number of paths emanating from
an center 𝜈 is constrained by the degree of 𝜈 . The number 𝑝 of all paths in the observation
graph 𝐺𝑆 must therefore be smaller than the sum of the degrees of center vertices:

𝑝 ≤
∑︁
𝜈∈𝑆

deg(𝜈)

If the power dominating set 𝑆 contains 𝑞 non-propagating vertices, 𝑟 of which are centers,
𝑞 − 𝑟 ≤ 𝑝 must hold, and by extension

𝑞 − 𝑟 ≤
∑︁
𝜈∈𝑆

deg(𝜈) .

We can move 𝑟 to the other side of the equation and, because 𝑟 ≤ |𝑆 |, get:

𝑞 ≤
∑︁
𝜈∈𝑆

1 + deg(𝜈).

By substituting deg(𝜈) with the largest degree 𝑑max, we bound the expression from above and
can write the sum as a product:

𝑞 ≤
∑︁
𝜈∈𝑆

1 + deg(𝜈) ≤
∑︁
𝜈∈𝑆

1 + 𝑑max = |𝑆 | · (1 + 𝑑max)

After rearranging the equation we get a lower bound for the size of 𝑆 which we call 𝑠:

𝑠 =
|𝑉 \ 𝑃 |

1 + 𝑑max
=

𝑞

1 + 𝑑max
≤ |𝑆 |

Unlike 𝑠 , 𝑠 is easy to compute. In fact, if the underlying data structure keeps track of the
largest degree and number of non-propagating vertices, we can compute it in O(1) time. Our
implementation currently does not do this so we iterate over all vertices to determine 𝑑max
and 𝑞 resulting in an asymptotic runtime of O(𝑛).
This bound has two major shortcomings which we will address next. First, it does not

incorporate any information about vertices that have already been assigned to 𝐴. Therefore
𝑠 will only improve during the branch and bound algorithm if reduction rules simplify the
graph. Moreover, its quality strongly depends on how good 𝑑max approximates the degrees of
other vertices. In many input graphs, we see a few vertices with fairly high degrees and then
many vertices with much lower degrees. We improve this aspect of the bound first.

Taking a step back, we notice that the inequality

𝑞 ≤
∑︁
𝜈∈𝑆

1 + deg(𝜈)

must hold for any power dominating set 𝑆 . Even though we do not know which vertices
𝑆 contains and therefore cannot calculate the sum precisely, each vertex 𝜈 ∈ 𝑉 can only
appear in the sum once. Let 𝜈1, 𝜈2, . . . , 𝜈𝑛 be the list of all vertices in𝑉 ordered by degree such
that deg(𝜈𝑖) ≥ deg(𝜈𝑖+1) for 𝑖 ∈ {1, . . . , 𝑛 − 1}. Then picking vertices in this order until the
inequality is fulfilled makes for an improved bound. More precisely, we define a lower bound
𝑠 as follows:

𝑠 = min

{
𝑘

����� |𝑉 \ 𝑃 | ≤ 𝑘∑︁
𝑖=1

1 + deg(𝜈𝑖)
}
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To compute this we can simply collect all the degrees in a list, sort it, and count how many
values we need to sum until the threshold of |𝑉 \ 𝑃 | is reached. Asymptotically the time
needed to sort the list dominates the runtime of the algorithm resulting in O(𝑛 log𝑛) time
over all.
We can speed up this calculation by observing that even though each vertex can appear

only once in the sum, each degree can be present multiple times. As noted earlier, especially
for lower values, it is common that many vertices share the same degree. So instead of keeping
a list of every vertex, we generate a list 𝐷 with 𝑑max + 1 entries that stores at index 𝑑 , how
many vertices in 𝐺 have degree 𝑑 .

After that we iterate over 𝐷 trying to greedily exceed the threshold of𝑇 = |𝑉 \ 𝑃 |. We keep
track of the value of the sum 𝑥 after choosing the 𝑘 vertices with the largest degrees. Both
𝑥 and 𝑘 are initialized with zero. Starting at the largest degree we first calculate how many
vertices of degree 𝑑 we would need to reach 𝑇 . This value, denoted by 𝑗 can be fractional. If
there are at least 𝑗 many vertices of degree 𝑑 available, then 𝑘 + ⌈ 𝑗⌉ vertices are sufficient
to reach 𝑇 and we can return. Otherwise we take all 𝐷 [𝑑] vertices and add the appropriate
value to 𝑥 and increment 𝑘 by 𝐷 [𝑑]. We repeat this while decrementing the degree until the
threshold is reached.

Algorithm 4.2: Fast computation of 𝑠 .
Input: List of degrees 𝐷 , threshold 𝑇 .
Output: Number of vertices needed to exceed 𝑇 .

1 𝑥 ←− 0
2 𝑘 ←− 0
3 for 𝑑 ∈ {𝑑max, . . . , 0} do
4 𝑗 ←− 𝑇−𝑥

𝑑+1
5 if 𝑗 ≤ 𝐷 [𝑑] then
6 return 𝑘 + ⌈ 𝑗⌉
7 else
8 𝑥 ←− 𝑥 + 𝐷 [𝑑] · (𝑑 + 1)
9 𝑘 ←− 𝑘 + 𝐷 [𝑑]
10 return false

The list 𝐷 can be generated by iterating over 𝑉 and incrementing the relevant entry for
each vertex. This takes O(𝑛) time. Computing the bound then takes O(𝑑max) time as each
loop iteration takes constant time. The largest degree can be at most 𝑛 − 1, thus making the
over all runtime O(𝑛), an improvement over the naive solution.
Next, we want to improve 𝑠 by taking into account which vertices have already been

selected for the power dominating set. The active vertices 𝐴 imply a set of vertices 𝑂𝐴 that
is already observed. In addition to the |𝐴| vertices that are already active, we need to cover
the unobserved vertices with additional subdivided stars. Restricting the computation to
unobserved vertices is too strong, because the optimal solution might require an observed
blank vertex to be set to active in order to observe a neighboring unobserved vertex. Therefore
we need to take all vertices into account that have a neighborhood that is not completely
observed. Denoting the largest degree among these vertices by 𝑑𝑈max, we get an improved
bound of
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𝑠𝑈 = |𝐴| + |𝑉 \ (𝑃 ∩ {𝜈 ∈ 𝑉 | 𝑁𝐴 [𝜈] ⊆ 𝑂𝐴}) |
1 + 𝑑𝑈max

following the same construction as for 𝑠 .
It may seem like the observed vertices can have an effect on the unobserved area due to the

propagation rule, but this is not an issue. Consideder in a graph with𝑉 = 𝑃 vertices 𝜈1, . . . , 𝜈𝑘
that form a path emanating in 𝑂𝐴 from some active vertex 𝜈1. The path ends at 𝜈𝑘 because it
has at least two unobserved neighbors 𝑢1, . . . , 𝑢𝑘 . If a new active vertex𝑤1 were placed in the
unobserved region, generating a path of newly observed vertices𝑤1, . . . ,𝑤𝑘 , 𝑢1 that ends next
to 𝜈1’s path, the observation graph my extend due to the propagation rule. If 𝜈𝑘 has only two
unobserved neighbors, then 𝑢2 becomes observed as well, however it depends on the vertex
order which subdivided star continues. It is also possible that the subdivided stars are split in
a different way and that some edges get reversed. Even though this is ambiguous, the number
of subdivided stars and the overall observed region stays the same.
We can easily see that 𝑠𝑈 dominates 𝑠 . Every set of subdivided stars corresponding to a

bound of 𝑠𝑈 is also admissable for 𝑠 although not the other way around. Therefore, 𝑠 ≤ 𝑠𝑈

for every instance of power dominating set. This bound can be computed in O(𝑛) as well,
however a O(1) computation as for 𝑠 would require the graph structure to keep track of
additional data.

One further improvement to 𝑠 can be made by recognizing that the observation neighbor-
hoods of any vertex can not extend to different subproblems. We can therefore subdivide the
graph into its subproblems and calculate 𝑠 seperately. Strictly speaking, the subdivided stars
can rearrange as described above, but this is no problem for the same reasons. This seems
similar to the previous strategy, but is subtly different. For 𝑠𝑈 , we only consider the set of
unobserved vertices as a whole, whereas in this case, we consider each region describing an
individual subproblem on its own, but do not care whether the vertices in it are observed
or not. Because the subproblems can share some active vertices, we need to determine how
much the bound raises the number of active vertices required per subproblem. After that we
can add the changes up and add the number of active vertices in the entire graph to get the
improved bound which we denote by 𝑠𝐶 . Following from the construction, we see that 𝑠𝐶
dominates 𝑠 . Computing the bounds for each subproblem can be done in linear time in the
number of its vertices, but computing the subproblems in the first place takes considerably
more time.

Of course we can also combine the three strategies for improving 𝑠 to get better bounds. In
addition to 𝑠, 𝑠 and 𝑠𝑈 we also compute 𝑠𝑈 , where we take the individual degrees of vertices
in unobserved regions into account, aswell as 𝑠𝑈

𝐶
where we combine all three strategies. We

do not use the simple 𝑠 bound in conjunction with more costly operations because computing
𝑠 instead takes a negligable additional amount of time.

4.2.1.3 Exact Formulation

Next we want to calculate the subdivided star cover number 𝑠 for a graph𝐺 = (𝑉 , 𝐸) precisely.
On the one hand it is a better bound than the approximations discussed in the previous section,
so we can prune larger parts of the search space in the branching algorithm, but it also serves
as a point of reference to assess the quality of the other bounds. As previously discussed,
computing 𝑠 is NP-hard in general. For this reason we choose a common approach for solving
such problems by defining an integer linear program which can be solved using a generic
algorithm.
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4 The Branching Algorithm

To do this, we model a valid subdivided star cover using three kinds of decision variables.
First, we introduce a variable 𝑐𝑖 ∈ {0, 1} for every vertex in 𝑉 , indicating whether the
corresponding vertex is a center of a subdivided star. Because every vertex in 𝑉 needs to
be connected to a center vertex, we introduce parent pointers 𝑝𝑖 𝑗 ∈ {0, 1} that form paths
towards center vertices. We add 𝑝𝑖 𝑗 and 𝑝 𝑗𝑖 for every undirected edge (𝑖, 𝑗) ∈ 𝐸, because the
parent pointers can be directed in either way. Lastly we add distance variable 𝑑𝑖 for every
vertex that can take on any natural number. It indicates how often we need to follow a parent
pointer until we reach a center. Additionally we use parameter 𝑧𝑖 ∈ {0, 1}, that is one if and
only if the corresponding vertex is propagating.
This construction already guarantees that the subdivided star cover is a subgraph of 𝐺 ,

because any edge not in 𝐸 does not have a corresponding variable. Next we describe the
constraints that force every connected component to be a subdivided star.

Distance start Every center has distance zero, so 𝑐𝑖 = 1 =⇒ 𝑑𝑖 = 0. Note that no distances
larger than |𝑉 | can occur. Therefore we can add the following constraint for every vertext
𝜈 ∈ 𝑉 :

𝑑𝑖 ≤ |𝑉 | (1 − 𝑐𝑖)
Here we multiply a binary variable with an upper bound on the range of possible values,
thereby conditionally constraining a second variable. We use this technique in many con-
straints to translate an implication into a linear inequality.

Distance increment To avoid parent pointers creating circles, we keep track of the distance
to the center vertex. We require for every edge 𝑝𝑖 𝑗 that 𝑑𝑖 ≥ 𝑑 𝑗 + 1. This means that no circles
of vertices with equal distances are possible It can be expressed by the following constraint:

𝑑𝑖 ≥ 𝑑 𝑗 + 1 − |𝑉 | (1 − 𝑝𝑖 𝑗 )

Degree constraints The next three constraints guarantee that the degrees of each vertex
match the requirements of subdivided stars. First, we make sure that every vertex that has
children must also have a parent, or be a center. This is guaranteed in part by adding∑︁

𝑖

𝑝𝑖 𝑗 ≤
∑︁
𝑗

𝑝 𝑗𝑖 + |𝑉 | 𝑐𝑖 .

Here, the left side determines how many children the vertex 𝑗 has and the sum on the right
side determines 𝑗 ’s number of parents. We also need to constrain the number of parents per
vertex to at most one: ∑︁

𝑗

𝑝𝑖 𝑗 ≤ 1

The next constraint allows center vertices to have arbitrarily many children, non-center but
propagating vertices to have one child and vertices that are neither centers nor propagating
to have no children at all: ∑︁

𝑖

𝑝𝑖 𝑗 ≤ 𝑧𝑖 + |𝑉 | 𝑐 𝑗

Cover Constraint Every vertex needs to be either a center or have a parent pointer so we
can find its corresponding center vertex. So for every vertex we must have

𝑐𝑖 +
∑︁
𝑗

𝑝𝑖 𝑗 ≥ 1.
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4.2 Bounds for Power Dominating Set

Active and inactive vertices We want to take account which vertices have previously
been chosen to be active or inactive. Vertices in 𝐴 must be centers, whereas vertices in 𝐼 can
never be centers. Therefore we add the constraints 𝑐𝑖 ≥ 1 for active vertices and 𝑐𝑖 ≤ 0 for
inactive vertices.

Optimization Now, any values of 𝑐𝑖 , 𝑑𝑖 and 𝑝𝑖 𝑗 that fulfill these conditions describe a valid
subdivided star cover. To get the smallest subdivided star cover, we minimize the sum of 𝑐𝑖 :

𝑠 = min
∑︁
𝑖

𝑐𝑖 such that the above conditions are met

The integer linear program can now be solved by a generic solver. Our implementation
uses gurobi.

4.2.2 Relaxed Linear Program

Power dominating set has also been solved by formulating it as an integer linear program
[JV20]. Solving an integer linear programs is NP-hard in general, however in practice efficient
computation is possible for many instances. If the integrality constraint is relaxed, we get a
linear program which can be solved more efficiently, both in asymptotic running time and
in practice. Because power dominating set is a minimization problem, relaxing the integer
linear program enlarges the space of possible solutions towards lower values. Thus, we can
relax the program presented by Jovanovic and Voss [JV20] and extended by Göttlicher [BG23]
and use the solution as a lower bound. The result can be fractional because we do no longer
require the decision variables to be integers. In this case we can round up to the next integer
because 𝛾𝑃 is always an integer and rounding down would no longer be a solution for the
linear program. We denote this value by 𝑟 .
Further improvements can be made by solving the relaxed program for each subproblem

individually. To do this we compute all subproblems and compute 𝑟 for each of then. We then
add up the new active vertices for each subproblem aswell as the number of vertices that were
already active in the entire graph. We call this bound 𝑟𝐶 .

4.2.3 Upper Bounds

In addition to lower bounds, we can derive upper bounds for 𝛾𝑃 as well. Upper bounds are
useful because they can be used to prune instances from the search tree that can never be
optimal. We use a simple greedy approach to find a power dominating set with already chosen
active vertices 𝐴 and inactive vertices 𝐼 . To do this, we iteratively pick a blank vertex 𝜈 and
add it to the set of active vertices. After that we determine which vertices are now additionally
observed and repeat until the entire graph is observed, making 𝐴 a power dominating set.
Note that if inactive vertices have been chosen such that even𝐴∪𝐵 is not a power dominating
set, we return a number that is larger than any power dominating set of 𝐺 can be. We also
apply reduction rules exhaustively at the start of every iteration to simplify the graph. This
solution is not optimal in general and my contain more than 𝛾𝑃 vertices, thus making it an
upper bound.
The precise algorithm depends on the strategy used to pick new vertices 𝜈 . In section 4.3

we present three such strategies. We define an upper bound for each strategy: Choosing the
next vertex by largest degree, we get 𝑔𝑑 as an upper bound. If we use the largest observation
neighborhood instead, we get 𝑔𝑜 . Lastly, 𝑔𝑝 describes the upper bound determined by picking
vertices in proximity to already determined vertices.
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4 The Branching Algorithm

Algorithm 4.3: Greedy upper bound for power dominating set.
Input: Graph 𝐺 with active vertices 𝐴, blank vertices 𝐵 and inactive vertices 𝐼 .
Output: Upper bound for 𝛾𝑃

1 while 𝑂𝐴 ≠ 𝑉 do
2 𝐺.𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝜈𝑒𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ()
3 if 𝐵 = ∅ then
4 return |𝑉 | + 1
5 𝜈 ←− 𝐺.𝑝𝑖𝑐𝑘𝐵𝑙𝑎𝑛𝑘𝑉𝑒𝑟𝑡𝑒𝑥 (𝐵)
6 𝐴←− 𝐴 ∪ {𝜈}
7 𝐵 ←− 𝐵 \ {𝜈}
8 return |𝐴|

4.2.4 Comparison

To conclude this section, we want to compare the bounds we have presented. All bounds are
shown in figure 4.1. Here, an arrow from 𝑎 to 𝑏 means that 𝑎 is at least as large as 𝑏 for any
graph 𝐺 and partition of vertices into active, blank and inactive.
Comparing the three greedy upper bounds 𝑔𝑑 , 𝑔𝑜 , 𝑔𝑝 from a theoretical perspective is

difficult because their precise behaviour depends on the reduction rules that are applied as an
in between step. Each of them however dominates 𝑎𝑢 , because 𝑎𝑢 selects every unobserved
blank vertex whereas the greedy bounds might select fewer blank vertices.
The subdivided star cover number 𝑠 dominates 𝑎𝑙 because if the active vertices do not

observe the entire graph we get 𝑎𝑙 = |𝐴| + 1. Because of the cover constraint in the ILP
formulation of 𝑠 , we get 𝑠 ≥ |𝐴| + 1 and thus 𝑠 ≥ 𝑎𝑙 . All the lower bounds for 𝑠 we described
in section 4.2.1.2 rely on non-propagating vertices, so if all blank vertices are propagating,
they can be a worse bound than 𝑎𝑙 . In practice this is rare, and we expect the lower bounds
for 𝑠 to be greater than 𝑎𝑙 , but it shows that neither bound dominates the other. Of course the
lower bounds for 𝑠 dominate each other according to their construction. The diagram also
includes the combinations of improvements for 𝑠 which we do not implement.
We can combine bounds that do not dominate each other (or where we do not know if

they dominate each other) to get better bounds. The combined lower bound is 𝑐𝑙 = max{𝑟𝐶 , 𝑠}
and the combined upper bound is 𝑐𝑢 = min{𝑔𝑜 , 𝑔𝑙 , 𝑔𝑑 }. Nevertheless, other combinations
of bounds can still be useful in the bounding step of the algorithm because they might be
faster to compute. In chapter 5 we discuss which bounds are useful based on their real world
performance.

4.3 Vertex Selection Strategies

In the branching step of the algorithm we need to split the search space into at least two parts.
The approach we follow for the most part, is to pick a blank vertex 𝜈 ∈ 𝐵 and generate two
new instances, one in which 𝜈 is active, and another where 𝜈 is inactive. These two instances
together cover the entire search space, so no possible solutions are discarded. On the other
hand, they are also disjoint, which is not strictly necessary but avoids duplicate computations.
The order in which blank vertices are picked has an effect on how quickly parts of the search
space can be pruned. Therefore we want to eliminate as many subtrees that do not contain an
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Figure 4.1: Relations between lower and upper bounds:
𝑎𝑢 is an upper bound based on the number of active ver-
tices.
𝑔𝑑 , 𝑔𝑜 and 𝑔𝑝 are upper bounds based on greedily adding
active vertices in order of largest degree, largest observa-
tion neighborhood and proximity to non-blank vertices
respectively.
𝑟 is a lower bound found by relaxing an ILP for 𝛾𝑃 ; 𝑟𝐶
takes individual subproblems into account.
𝑎ℓ is a lower bound based on the number of active ver-
tices.
𝑠 is the subdivided star cover number.
𝑠 is a lower bound for 𝑠 using the largest degree as an
approximation, 𝑠 uses the individual degrees.
A superscript 𝑈 indicates restriction to unobserved re-
gions and a subscript 𝐶 computes the bound for each
subproblem seperately.

optimal solution as quickly as possible. In this section we present three strategies for picking
the next vertex to branch on, given some previous assignments of some vertices into active
and inactive sets.

Largest Degree The motivation for this strategy is simple: vertices with more neighbors
have a stronger influence on the graph. By picking the blank vertex 𝜈𝑑 which has the largest
degree, we might expect to be able to apply more reduction rules, thereby simplifying the
graph more. Finding 𝜈𝑑 (or a blank vertex with maximal degree, if there is no unique one) by
iterating over all vertices takes O(𝑛) time, making this strategy asymptotically the fastest.

Largest Observation Neighborhood Perhaps a more precise definition of the influence
a vertex 𝜈 on the graph is captured by the notion of the observation neighborhood 𝑁𝐴 [𝜈].
Because the observation neighborhood contains exactly the vertices that become observed by
adding 𝜈 to the set of active vertices 𝐴, it describes the range of vertices that are affected by
branching on 𝜈 well. We denote the blank vertex that has the largest observation neighborhood
by 𝜈𝑜 . We can find 𝜈𝑜 by determining the observation neighborhood for each vertex, which
in turn can be done by applying the observation rules exhaustively. When calculating the
observation neighborhood, we need to look at each edge at most two times, so the asymptotic
runtime for determining 𝜈𝑜 is in O(𝑛 ·𝑚).
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4 The Branching Algorithm

Proximity For this strategy we take a different approach. We notice that reduction rules
can be applied the most if multiple vertices that have been assigned to 𝐴 and 𝐼 are close
together. Using the other two strategies, we may find vertices that have a large effect on the
graph, but if the vertices that are picked in consecutive branching steps are far apart from
each other, they can not have a combined effect. Instead we want to choose vertices close
to other vertices that have been either picked in a previous step, or were assigned to 𝐴 or 𝐼
due to reduction rules. To be more precise, the picked vertex 𝜈𝑝 is one that minimizes the
proportion of blank vertices among its neighbors:

𝜈𝑝 = argmin
𝜈∈𝐵

𝐵 ∩ 𝑁 [𝜈]
𝑁 [𝜈]

Finding 𝜈𝑝 by calculating this ratio for every vertex takes O(𝑛 ·𝑚) time.

4.4 Branching on Short Paths

So far, the method we chose to subdivide the search space for the branching algorithm relied
on picking a single blank vertex and assigning it to the active or inactive set. This splits the
search space into two disjoint parts, generating a binary search tree. If we consider more
generally a set of 𝑘 blank vertices, we need to generate 2𝑘 instances, each representing one
combination of assigning vertices 𝐴 or 𝐼 . This happens automatically during the branch and
bound process, although not necessarily in immediate succession.

In this section we want to describe how we can construct these combinations explicitely for
a specific structure in 𝐺 , such that some combinations never need to be constructed because
they can never be part of a minimal power dominating set. This structure, wich we call short
paths, consist out of three blank vertices 𝑢, 𝜈,𝑤 , which need to fullfill the following conditions:
As the name suggests, the vertices need to form a path, that is (𝑢, 𝜈) and (𝜈,𝑤) need to be
edges of the graph. We also require the middle vertex 𝜈 to have no other neighbors than 𝑢
and𝑤 . Additionally, to reduce the number of possible instances, we want the outer vertices
to be non-propagating and the middle vertex to be propagating, that is 𝑢,𝑤 ∉ 𝑃 and 𝜈 ∈ 𝑃 .
We illustrate a short path in figure 4.2.

𝑢 𝜈 𝑤

Figure 4.2: Three vertices forming a short path

There can be 23 = 8 possible assignments of the vertices 𝑢, 𝜈,𝑤 to 𝐴 or 𝐼 which we will
explore next. First, consider the case where all three vertices are inactive. Now, the middle
vertex 𝜈 can never be observed, because the three vertices which could observe 𝜈 through the
domination rule are inactive, and other vertices that could observe 𝜈 through the propagation
rule can never reach 𝜈 because both 𝑢 and 𝑤 are non-propagating. Therefore this case can
never be a power dominating set and does not need to be constructed.

The reverse situation where all three vertices are active can be a part of a power dominating
set, but never a minimal power dominating set. This is because 𝜈 does not need to be active to
be observed, as it is observed by either 𝑢 or𝑤 . Therefore we could construct a smaller power
dominating set which has 𝜈 ∈ 𝐼 . As such this case can also be discarded.
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Next, consider the three cases where exactly one of 𝑢, 𝜈,𝑤 are active (fig. 4.3). These cases
can clearly be part of a power dominating set, as the active vertex can observe both inactive
vertices. There is also no reason why for a general graph instance this could never be optimal.
It is possible that the active vertices outside of the short path can not observe the inactive
vertices within, therefore making the active vertex necessary. As a result, we need to add
these three instances to the search space.

u v w u v w u v w

Figure 4.3: Three necessary candidates for short paths

Among the three cases with exactly two active vertices, let us look at the case where
𝑢,𝑤 ∈ 𝐴 and 𝜈 ∈ 𝐼 . Again, this can be part of a power dominating set because 𝜈 can be
observed by the outer vertices. This solution can also be optimal, because 𝑢 and 𝑤 may be
needed to observe vertices outside of the short path. As an example this is the case when
both 𝑢 and𝑤 each have two additional neighbors each with degree one as shown in figure
4.4. Here, any other pair of active vertices is not a power dominating set, so the assignment is
optimal, and as a consequence, we need to construct this instance.

𝑢 𝜈 𝑤

Figure 4.4: A minimal power dominating set for a short path with two active vertices

Of the two remaining, symmetrical cases, consider the one where 𝑢, 𝜈 ∈ 𝐴 and𝑤 ∈ 𝐼 . As
above, this can be part of a dominating set because 𝜈 can observe𝑤 . It can also be part of an
optimal solution if 𝑢 is needed to observe vertices outside of the short path. However, in this
case, choosing𝑤 to be active instead of 𝜈 also generates a power dominating set of the same,
minimal size. Because we are only interested in finding one optimal solution, we never need
to construct this instance, and know that if it would allow for a minimal solution, we account
for it in the previous case. The same argument holds for the mirrored case where 𝜈,𝑤 ∈ 𝐴
and 𝑢 ∈ 𝐼 , so we do not construct this instance either.
We can further eliminate a case if one of the outer vertices 𝑢 and𝑤 are of degree two. If

deg(𝑢) = 2, we get a path of four vertices 𝑡,𝑢, 𝜈,𝑤 . Now the case where 𝑢,𝑤 ∈ 𝐴 and 𝜈 ∈ 𝐼
can also be discarded, because we can pick 𝑡 instead of 𝑢 as an active vertex. This does not
make the set of observed vertices smaller, and therefore makes the case 𝑤 ∈ 𝐴, 𝑢, 𝜈 ∈ 𝐼 at
least as good. The case of deg(𝑤) = 2 follows analogous.
Through this construction, we reduce the number of instances in the subdivided search

space from eight to four or in some cases even three. To find short paths in the graph, we
search the vertex set for possible middle vertices 𝜈 . For each vertex, we can assess if it is
part of a short path by checking the size of its neighborhood in constant time. We further
check if the neighboring vertices are both blank and non-propagating if deg(𝜈) = 2, because
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4 The Branching Algorithm

only then these checks are possible in constant time as well. Therefore finding a short path,
or verifying that none exist is possible in O(𝑛). If we cannot find any, we use the regular
strategy of branching on the inclusion of a single vertex instead.
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5 Evaluation

To evaluate the algorithm, we implemented it in C++20 and compiled it with GCC v12.0.1
using the -O3 optimization flag. The program is executed on a machine equipped with a
48-core AMD K10 CPU and 256 GB RAM running Ubuntu 22.04 LTS. We solve linear programs
using gurobi v9.5.2.
For testing we mostly use the same graphs as Jovanovic and Voss [JV20], however we

evaluate our algorithm on individual subproblems instead of the entire graphs. We do this
because it gives us a better idea of how parameters of the graph change the performance of the
branching algorithm. A very large graph might consist out of many small subproblems that
can be easily solved, so it makes more sense to compare these small subproblems with small
input graphs. A different, similarly large graph may contain just a single subproblem that is
considerably harder to solve. Before the subproblems are computed we apply the reduction
rules exhausively. Many instances, especially the smaller ones contain only propagating
vertices, in others up to 42% of vertices are non-propagating.

We first evaluate the strategies used for branching (section 5.1). After that we take a closer
look at the performance and effectiveness of our bounds (section 5.2) and determine which
groups of bounds are useful to use in conjunction with each other. We also discuss how well
our lower bounds for the subdivided star cover number 𝑠 approximate 𝑠 . Last, we evaluate the
performance of our algorithm with different sets of bounds on select instances in section 5.3.

5.1 Strategies

We first want to evaluate which of the three strategies for picking vertices to branch on is the
most efficient. We combine this with the option of branching on short paths, if possible. To
determine the efficiency, we compare how many nodes of the search tree the algorithm has
to explore before it terminates. Every node that is taken from the priority queue is counted
as explored. A strategy that needs fewer explored nodes is thus more efficient for a given
instance. To aggregate the result over all subproblems, we take the strategy of branching at
the largest degree as a baseline. Then we calculate the ratio of how much more nodes different
strategies explore in comparison and average over all instances. We also measure the relative
duration of determining the new instances.
The results in table 5.1 show that picking the largest degree without branching on short

paths is on average themost efficient strategy. The other two strategies need to explore roughly
one third more nodes before terminating. Branching on paths makes the respective strategies
slightly less efficient for both the largest degree and the largest observation neighborhood.
For the proximity strategy however, we get a significant improvement, getting results closer
to the largest degree. The runtimes are fairly similar, with largest degree being the fastest
still. Branching on paths incurs a small performance hit except for largest observation
neighborhood where it improves performance slightly.
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Table 5.1: Number of explored nodes and runtime relative to the first line

Strategy Branch on paths explored nodes runtime

Largest Degree No 1.00 1.00
Yes 1.01 1.04

Largest Observation No 1.28 1.16
Neighborhood Yes 1.29 1.06

Proximity No 1.34 1.03
Yes 1.06 1.11

In general, we observe that most graphs have no or very few short paths that can be used
for branching. On some large graphs, we can branch on short paths about half the time for the
first one hundred explored nodes. After that the ratio is much smaller. Even where branching
on paths is possible more often than on most other graphs, it does not have a significant effect
on the algorithm.
Averaging over subproblems somewhat obscures the difference in efficiency and runtime

on individual instances. However there seems to be no strong correlation between the number
of vertices, edges, or largest degrees and the efficiency of the strategies.

5.2 Bounds

To compare the bounds with each other, we assign each of them a score. We use two ways to
score bounds: First, the ordered score, which assigns to the best bound the value one, and to
the worst bound the value zero. The intermediate bounds get evenly spaced scores between
zero and one. To be more precise, for 𝑛 bounds 𝑏0, . . . , 𝑏𝑛−1 that take on values such that
𝑏𝑖 < 𝑏𝑖+1 we define the ordered score 𝑠𝑜 to be

𝑠𝑜 (𝑏𝑖) =
𝑖

𝑛 − 1
for lower bounds and

𝑠𝑜 (𝑏𝑖) =
𝑛 − 1 − 𝑖
𝑛 − 1

for upper bounds. To better capture how close the individual bounds are to each other, we
also calculate a proportional score 𝑠𝑝 . Here, the best bound still gets a score of one, and worse
bounds get a score in proportion to the best bound. For lower bounds 𝑏𝑖 as above we define

𝑠𝑝 (𝑏𝑖) =
𝑏𝑖

𝑏𝑛−1
.

For upper bounds we take the reciprocal so that every score is again between zero and one:

𝑠𝑝 (𝑏𝑖) =
𝑏0

𝑏𝑖

Table 5.2 shows the score of all lower bounds averaged over all subproblems as well as all
explored nodes within the respective search trees. We also list the average time to compute
each bound. The largest degree is used in the branching step and branching on short paths is
turned off. Because we have many subproblems that are small, we also determine the averages
among larger instances that have more than 50 vertices.
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5.2 Bounds

Table 5.2: Comparison of lower bounds

Bound all instances large instances
𝑠𝑜 𝑠𝑝 time[𝜇s] 𝑠𝑜 𝑠𝑝 time[𝜇s]

𝑎𝑙 0.057 0.869 0.25 0.161 0.618 0.81
𝑠 0.105 0.793 0.25 0.067 0.407 0.81
𝑠𝑈 0.352 0.930 0.25 0.578 0.822 0.81
𝑠 0.343 0.857 0.43 0.278 0.576 1.56
𝑠𝑈 0.583 0.980 0.34 0.732 0.935 1.33
𝑠𝑈
𝐶

0.708 0.988 25.25 0.857 0.961 95.22
𝑟 0.616 0.869 2187.49 0.356 0.619 7551.81
𝑟𝐶 0.741 0.870 1949.48 0.481 0.621 7441.51
𝑠 0.969 0.990 53658.46 0.977 0.997 58013.41

Table 5.3: Comparison of upper bounds

Bound all instances large instances
𝑠𝑜 𝑠𝑝 time[𝜇s] 𝑠𝑜 𝑠𝑝 time[𝜇s]

𝑎𝑢 0.345 0.807 0.45 0.229 0.782 0.69
𝑔𝑑 0.612 0.984 3513.74 0.635 0.989 4028.03
𝑔𝑜 0.320 0.981 56180.73 0.343 0.984 65538.38
𝑔𝑝 0.774 0.989 56307.50 0.776 0.990 62850.44

Among all instances, 𝑎𝑙 is on average the weakest lower bound, but it can nevertheless
come close to the better bounds if the instance is small. The most simple approximation to
the subdivided star cover number 𝑠 is better in most cases, but falls behind 𝑎𝑙 in larger graphs
because it does not take the number of vertices that are already active into account. For
smaller graphs, taking only unobserved vertices into account (𝑠𝑈 ) and counting the degrees
(𝑠) make for a similar improvement. However, for larger graphs the restriction to unobserved
vertices is considerably more effective. Further improvents such as 𝑠𝑈 and 𝑠𝑈

𝐶
make for better

lower bounds, however the latter is the first one to take more than just a few microseconds to
compute. Taking the relaxed integer linear program as a lower bound does not make for a
good lower bound considering the much larger computation time. We observe that the time it
takes to compute the subproblems is made up for by the faster computation for the individual
linear programs, so 𝑟𝐶 is not only a better bound than 𝑟 , but is also faster to compute. As
expected, we find that the subdivided star cover number is the best lower bound in the vast
majority of cases, especially for larger graphs. This comes at a significant cost - for the largest
subproblem, solving the integer linear program takes almost half a second.

As for the lower bounds, 𝑎𝑢 is consistently the worst upper bound (Table 5.3), but it is also
the only fast one. The three other bounds score similar values on average, however the bound
based on greedily adding vertices by largest observation neighborhood 𝑔𝑜 ranks lower more
often. Picking vertices by proximity is slightly more effective than selecting the largest degree,
however 𝑔𝑑 is significantly faster to compute than 𝑔𝑜 and 𝑔𝑝 .

Because the subdivided star number 𝑠 is our best lower bound, but is hard to compute, we
want to compare it to its best lower bound 𝑠𝑈

𝐶
. In figure 5.1a and 5.1b we plot the time to

compute the respective bounds. We can see that both grow roughly linearly with the number
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5 Evaluation

of vertices. However, calculating 𝑠 is about five hundred times slower than computing its
lower bound. In figure 5.1c we show how close the lower bound comes to the actual value of
𝑠 . For small graphs, 𝑠𝑈

𝐶
often is close to 𝑠 . With a growing number of vertices the gap widens,

although more data would be useful to see how strong the correllation actually is. Within our
data set, the average degree and ratio of propagating vertices seem to not have a strong effect
on neither the computation time nor the ratio of the two bounds.

To evaluate the runtime of the overall algorithm, we want to choose a selection of bounds
that offer a good balance between closeness to 𝛾𝑃 and computational cost. The average
runtimes fall in four groups:

very fast 𝑎𝑙 , 𝑠, 𝑠
𝑈 , 𝑠, 𝑠𝑈 , 𝑎𝑢

fast 𝑠𝑈
𝐶

medium 𝑟, 𝑟𝐶 , 𝑔𝑑

slow 𝑠, 𝑔𝑜 , 𝑔𝑝

Because the time needed to compute the bounds in a faster category is negligable com-
pared to the next slower category, we add to each group all bounds from faster groups. We
additionally reduce the number of bounds per group by removing those that are dominated
by another bound in the same group. We get the following groups:

very fast 𝑎𝑙 , 𝑠
𝑈 , 𝑎𝑢

fast 𝑎𝑙 , 𝑠
𝑈
𝐶
, 𝑎𝑢

medium 𝑎𝑙 , 𝑠
𝑈
𝐶
, 𝑟𝐶 , 𝑔𝑑

slow 𝑠, 𝑟𝐶 , 𝑔𝑑 , 𝑔𝑜 , 𝑔𝑝

5.3 Performance of the Branching Algorithm

We compare the performance of our algorithm with the integer linear program presented
by Bläsius and Göttlicher [BG23] which we solve using the gurobi solver for a selection of
instances labelled A-F1. For each graph we compute a minimal power dominating set with each
group of bounds aswell as the gurobi solver for reference. Again, the vertices for branching are
picked in order of largest degree and branching on short paths is turned off. If the computation
time exceeds two hours, we interrupt the algorithm. The results are shown in table 5.4. We
list the number of vertices of the respective graphs, the largest degree and the number of
non-propagating vertices (NP). Besides the total runtime, we also list the time spent in vertex
selection, applying reduction rules and calculating bounds. The last two columns show the
number of nodes the branching algorithm explores, and how many it discards.

1The graphs A-F are subproblems of the following instances:
A: IEEE-300
B: case2383wp
C: IEEE-118
D: case2746-wop
E: psd-Western
F: case2869pegase
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Figure 5.1: Comparison between 𝑠 and 𝑠𝑈
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5 Evaluation

Small instances of fewer than 50 vertices can be solved quickly by our algorithm. For
graphs like A and B, picking the vertex of largest degree is good enough that we arrive at the
solution almost immediately. Here, time is spent mostly in reducing the graph after picking
a vertex and verifying that no better solution exists. Computing medium or slow bounds
is not necessary in these cases. Whether fast or only very fast bounds are computed does
not matter, as the time needed is negligable compared to applying reduction rules. In these
cases we beat the reference solution. For graph C, fast and very fast bounds are still the most
useful, however they are no longer faster than gurobi. Using slow bounds, the algorithm is
significantly slower but needs to explore about one quarter of the search space compared to
faster bounds.
On larger graphs such as E, our algorithm still finds a solution but is much slower. Now

choosing the group of fast bounds is clearly the best option. In comparison, very fast bounds
are too far of the actual solution, so about five times more nodes need to be explored before
the algorithm terminates. Medium and slow bounds on the other hand are too expensive to
compute.
Despite being similarly large and having more non-propagating vertices, graph E takes

about ten times longer to solve than graph D. This indicates that the precise structure of a
graph has a strong impact on its difficulty that the graph parameters do not capture on their
own. Slow bounds now take too much time to complete in the alloted time. This extends to
all groups of bounds for graph F, which is the largest among the listed instances.

Which sections of the algorithm takes most time depending on group of bounds is displayed
in figure 5.2. Selecting the next vertex takes fairly little time regardless of the selected group
of bounds. Very fast and fast bounds lead to most time being spent in reduction rules whereas
medium and slow bounds lead to more time used for bounds computation. The exception
are small graphs, where time is spent more evenly in the three categories although the data
varies strongly between instances.

In figure 5.3 we plot the total time our algorithm uses to compute 𝛾𝑃 using fast bounds on a
log-linear scale. We see that the computation time grows exponentially with the number of
vertices in the graphs, with computation time growing about ten times for fifty additional
vertices. The correlation in 5.3b is less strong, but a larger average degree seems to indicate
that the problem is more difficult to solve. The portion of vertices that are non-propagating
does not have a clear effect on the runtime.
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5.3 Performance of the Branching Algorithm
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5.3 Performance of the Branching Algorithm

Table 5.4: Runtime of the Algorithm using different groups of bounds
Graph Parameters Solver Time[ms] #Nodes

n 𝑑max NP total select reduct bound expl. disc.

A 5 3 0 v. fast 0.06 < 0.01 0.02 < 0.01 1 2
fast 0.05 < 0.01 0.02 < 0.01 1 2
medium 3.33 < 0.01 0.02 < 0.01 1 2
slow 5.36 < 0.01 0.02 0.5 1 2
gurobi 2.0

B 22 3 0 v. fast 0.23 0.01 0.13 < 0.01 2 1
fast 0.25 0.01 0.13 < 0.01 2 1
medium 1.54 0.02 0.13 0.39 1 2
slow 7.31 0.02 0.13 1.78 1 2
gurobi 3.0

C 85 9 0 v. fast 45 4 35 < 1 174 173
fast 46 3 32 5 163 162
medium 364 4 31 317 153 154
slow 944 1 15 902 44 43
gurobi 7

D 284 6 0 v. fast 132262 16655 92276 1542 189856 169970
fast 36154 2923 23751 5478 33872 29757
medium 232194 2540 20896 204882 25651 25652
slow 366307 469 4378 360572 4400 4351
gurobi 39

E 291 6 39 v. fast 1994350 159476 1114630 10954 1476810 1216341
fast 370828 27387 262631 37770 283251 283251
medium 3515560 37839 276191 3144420 285409 282704
slow timeout 125876 16639
gurobi 80

F 589 10 106 v. fast timeout 5020450 0
fast timeout 2414978 0
medium timeout 246256 0
slow timeout 30634 0
gurobi 439
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6 Conclusion

In this thesis, we presented an alternative algorithm for solving power dominating set using a
branch and bound approach. For this algorithm, we derived multiple lower and upper bounds
for the power domination number 𝛾𝑃 . We introduced the concept of the subdivided star cover
of a graph and proved its relation to power dominating set and the observation graph in
particular. With the subdivided star cover number 𝑠 we provide a lower bound for 𝛾𝑃 that is
in itself NP-hard to compute and give an integer linear program to compute it. Additionally
we discussed two branching strategies, one using the inclusion or exclusion of a vertex in the
power dominating set. Alternatively we explored branching on short paths, a wide branching
strategy that can be used to discard some parts of the search space early. Lastly, we evaluated
the bounds used in our algorithm as well as its overall performance on graphs common in
related literature.
For small inputs our algorithm is faster than solving the integer linear program given by

Bläsius and Göttlicher [BG23]. In these cases our strategies for picking vertices can select
a minimal power dominating set with only a few nodes being explored. The minimality of
the selected set is then proven by lower bounds that are both fast to compute and a good
approximation for 𝛾𝑃 on small instances. However for larger instances, our branch and bound
approach is slower than the reference solution by multiple orders of magnitude. Next we
want to discuss a few options for improving the performance of our algorithm.

Some of the lower bounds we presented could be further sped up by using a data structure
for the graph that stores certain additional data like the largest degree. This could bring the
asymptotic runtime for computing 𝑠 from linear time to constant time. A similar, but more
elaborate approach could bring the same improvement to 𝑠𝑈 . However, since these bounds
can already be computed very fast, the improvement would like only affect the performance
of our algorithm on instances where it is already efficient. In section 5.2 we grouped our
bounds by similar performance. Further evaluation could show that we can get similar results
while discarding some bounds. More generally, the algorithm could compute the bounds
iteratively and discard the instance as soon as the first bound exceeds the allowed threshold.
This is in contrast to our current approach, which computes the minimum or maximum of all
the bounds, and then discards the instance if possible. But this again will not meaningfully
improve performance on large graphs, since even our best bounds are not close enough to
𝛾𝑃 . In addition, it could be interesting to evaluate the bound given by relaxing the integer
linear program for the subdivided star cover number. Currently, computing 𝑠 is only about
one order of magnitude faster than computing 𝛾𝑃 using the reference solution. This could be
a worthwile compromise between the quality of the bound and its computation time.
The most important direction of research that could make branch and bound algorithms

a competing approach is therefore the search for tighter bounds on the power domination
number. Here, study of cases in which the gap between our bounds and the minimal solution
is especially wide could be useful. However the question remains whether bounds that are
good enough for efficient branching are also necessarily hard to compute. We showed that
even computing the subdivided star cover number 𝑠 is NP-hard, and still is not close enough
to 𝛾𝑃 to make our algorithm feasible on larger instances.
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6 Conclusion

In general, power dominating set differs from two related problems that make it harder
to derive bounds. Comparing it to dominating set, it lacks useful monotonicity properties
(see section 3.1) and in comparison to hitting set, the amount of vertices that can be observed
by one active vertex is not constrained by its degree as we explain in section 3.2. A wholly
different approach to a branching algorithm for power dominating set could be to branch
on the direction of the edges in the observation graph instead of the inclusion of vertices.
However we believe that this approach would be less useful for two reasons: First, the search
space grows form 2𝑛 nodes to 3𝑚 because each edge can be present in two directions or absent.
Furthermore, both representations of the graph can be translated into each other as long as a
vertex order is given, giving rise to the same bounds.

In conclusion, our algorithm is not competitive with different approaches on larger graphs
but can outperform the reference solution on small instances. However, we gained theoretical
insights into bounds for power dominating set as well as showing its relation to other problems.
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