
E�icient Embedding of Scale-Free Graphs
in a Weighted Geometric Space

Bachelor’s Thesis of

Markus Wünstel

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: TT-Prof. Dr. Thomas Bläsius
Second reviewer: Prof. Dr. Dorothea Wagner
Advisors: Dr. Maximilian Katzmann

Jean-Pierre von der Heydt

25.04.2023 – 25.08.2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I hereby declare that this document has been composed by myself and describes my own work,
unless otherwise acknowledged in the text. I also declare that I have read and observed the
Satzung zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für Technologie.

Karlsruhe, 25.08.2023

. .
(Markus Wünstel)

Abstract

Networks in the real world are of strong economical, technical and social importance. A lot of
tasks such as link prediction or node classi�cation can be solved on those networks if we have
an embedding for the graph of this network that represents its graph structure. One way to
obtain an embedding is to assume that the existence of edges in a graph is tied to distances be-
tween geometrical representations of the vertices in some hidden geometry. This connection
between graph topology and underlying geometry is then formalized using a graph model. A
graph model that captures important properties of real world graphs such as a heterogenous
degree distribution and a high clustering coe�cient is the Geometric Inhomogeneous Random
Graph model or the Hyperbolic Random Graph model, which is similar to the previous one.
We develop the �rst algorithm that embeds a graph according to the Geometric Inhomo-
geneous Random Graph model. The main advantage over existing embedders is the use of
a weighted geometric space as ground space, which is easy to handle and which can have
higher dimensions. Our algorithm is a maximum likelihood embedder that means we �nd
parameters for each vertex in a given graph such that the probability to obtain the input graph
under a given graph model is maximized. Our approach is based on an existing maximum
likelihood embedder for the Hyperbolic Random Graph model. We implement the algorithm
and evaluate its performance by measuring the quality of the di�erent parts of the algorithm
and the in�uence of di�erent graph properties on the quality of the embedding and found
that our algorithm works quite well.

Zusammenfassung

In der realen Welt sind Netzwerke von großer ökonomischer, technologischer und sozialer
Bedeutung. Viele Probleme wie link prediction oder node classi�cation können auf diesen
Netzwerken e�zient gelöst werden, wenn es eine Einbettung zu diesem Netzwerk gibt, die
dessen Graphstruktur repräsentiert. Um eine Einbettung zu erhalten, nehmen wir an, dass die
Existenz einer Kante an die Distanz zwischen der geometrischen Repräsentation der Knoten
in einer versteckten Geometrie geknüpft ist. Die Verbindung zwischen Graphtopologie und
zugrundeliegender Geometrie wird durch Graphmodelle formalisiert. Ein Graphmodell, das
wichtige Eigenschaften von realen Netzwerken abbildet, wie eine heterogene Knotengrad-
verteilung oder einen hohen Clusterbildungskoe�zient, ist das Geometric Inhomogeneous
Random Graph-Modell oder das Hyperbolic Random Graph-Modell, welches dem vorherigen
sehr ähnlich ist.
Wir haben den ersten Algorithmus entwickelt, der Graphen gemäß dem Geometric Inhomo-
geneous Random Graph-Modell einbettet. Der entscheidende Vorteil zu bereits existierenden
Einbettungsalgorithmen ist, dass als Grundraum ein gewichteter geometrischer Raum genutzt
wird, der einfacher handzuhaben ist und höhere Dimensionen unterstüzt. Unser Algorithmus
ist ein maximum likelihood Einbettungsalgorithmus, dabei versuchen wir die Parameter der
Knoten so zu wählen, dass die Wahrscheinlichkeit, den gegebenen Graphen aus dem Graph-
modell zu generieren, maximiert wird. Unser Ansatz basiert auf einem bereits bestehenden
maximum likelihood Einbettungsalgorithmus für das Hyperbolic Random Graph-Modell.
Wir haben unseren Algorithmus implementiert und dessen Qualität evaluiert, indem wir
die Qualität der einzelnen Bestandteile des Algorithmus und den Ein�uss verschiedener
Grapheigenschaften auf die Qualität des Algorithmus untersucht haben. Dabei haben wir
herausgefunden, dass unser Algorithmus recht gut funktioniert.

i

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Hyperbolic Random Graphs . 5

2.1.1 Hyperbolic Space . 5
2.1.2 Hyperbolic Random Graphs . 5

2.2 Geometric Inhomogeneous Random Graphs 6
2.2.1 Weighted Geometric Space . 6
2.2.2 Model . 7
2.2.3 Relation to HRG . 8

2.3 Spring Embedder . 8
2.4 Likelihood . 9

3 Embedding Algorithm 11
3.1 Hyperbolic Embedding . 11

3.1.1 Parameter Estimation . 11
3.1.2 Core Embedding . 11
3.1.3 Periphery Embedding . 12

3.2 Weighted Geometric Embedding . 13
3.2.1 Parameter Estimation . 13
3.2.2 Core Embedding . 13
3.2.3 Periphery Embedding . 19
3.2.4 Algorithm . 22

4 Experimental Evaluation 25
4.1 Evaluation Process . 25
4.2 Degrees of Freedom . 26
4.3 Overall Quality . 26
4.4 Phase Dependence . 28
4.5 Core Phase Quality . 31
4.6 Periphery Phase Quality . 32

5 Conclusion 35
5.1 Future Work . 35

Bibliography 37

iii

1 Introduction

A lot of networks in the real world, e.g., social networks like Instagram, can be modeled as
graphs, consisting of edges and vertices. There are a lot of tasks that need to be performed
on those networks. A social network often makes recommendations to follow other people
on this network. On a graph this task is called link prediction and is commonly used on
networks [LK07]. Another task could be the identi�cation of communities in a network. In a
social network an example for this is the identi�cation of friendship groups. Sorting a group
of vertices in the same category, e.g., products in the Amazon recommendation network, is
called node classi�cation. Other task for networks are visualization, routing or the spread of
epidemics [BS03].
The link prediction and clustering problems can be tackled if we introduce a measure of
closeness. To solve the link prediction problem, we can predict a new edge between vertices
if two vertices are close but not yet connected. Communities can be identi�ed by a group of
vertices that are close together. A way to measure closeness in a network is the concept of
embeddings. Embeddings enable us to model real world properties of graphs. In an embedding
we assign each vertex a position in a metric space. With the distances calculated in the metric
space we can measure the closeness between vertices.
There already exist some embedders that embed networks in a metric space. In a previous
paper [GF18] a lot of embedding methods are collected, which also aim to solve the previous
de�ned problems such as link prediction, clustering, node classi�cation and visualization.
However, the embedding methods always use a 3-dimensional Euclidean space. The problem
with this is that a lot of real world graphs have a heterogenous degree distribution and cannot
be represented well in the Euclidean space because networks with a heterogenous degree
distribution have an underlying hyperbolic geometry [Kri+10]. An example for this is the
star graph. We want the middle vertex to be near all other vertices while each outside vertex
should be near the middle and far away from the other vertices. If there are a lot more vertices
than dimensions it is not possible to �nd such an embedding in the Euclidean Space.
Another category of embedders use the hyperbolic plane as metric space for the embedding.
The reason for this is that the previously mentioned problem, the heterogeneity, is solved
there. A common approach in the Euclidean space are spring embedders. This approach
was adapted for the hyperbolic plane [BFK21]. There also exist other maximum likelihood
estimation embedders. An example is the HyperMap algorithm which iteratively adds vertices
and tries to improve the overall likelihood [PPK15]. Another algorithm that produces a
maximum likelihood estimation embedding is proposed in [BFKL16]. Here the advantages
of a spring embedder and maximum likelihood estimation embedder are combined. This
embedder produces good embeddings for the hyperbolic plane.
A problem with the hyperbolic embedders is that they all embed the graph in the (2-dimensional)
hyperbolic plane. The assumption there is that all graphs that occur in the real world only
have two dimensions which is just unreasonable. This restriction exists because it is di�cult
to extend this approach to higher dimensions, e.g., for the 3-dimensional Hyperbolic Space.
Another �eld of study where graph embeddings are used is machine learning. A common
approach are graph neural networks. They also use the hyperbolic space for embedding their

1

1 Introduction

networks [WHWW21]. In machine learning, knowledge graph embedding (KGE) is used a lot.
The Large-scale Information Network Embedding (LINE) [Tan+15] follows the same objective.
They typically embed graphs into a high dimensional space, e.g., with 128 dimensions.
The existing embedders have the problem that they embed graphs in either too many or to
few dimensions or in the wrong geometry or they do not scale well for large graph.
As mentioned, real world networks can be characterized by various properties such as a
power-law degree distribution and a high clustering coe�cient [VHHK19 | New01]. These
networks are so called scale-free networks. We are especially interested in this type of graphs
because a lot of real world networks seem to have similar properties.
What is a suitable mental picture for these properties in a network? Again, we can consider the
social network Instagram as an example for a scale-free graph. We notice that there are very
few users like Cristiano Ronaldo or Selena Gomez who have a lot of followers (a high vertex
degree) while the majority of users only have very few followers. This is called a heterogenous
degree distribution which we model as power-law degree distribution. A high clustering
coe�cient can be observed with friendship groups. If one has two friends it is very likely that
they also follow each other. Those triangles are the result of a high clustering coe�cient. It is
di�cult for Euclidean embedders to �nd an embedding for a scale-free network.
Fortunately, there are mathematical graph models that generate graphs with these proper-
ties such as the Hyperbolic Random Graph (HRG) model which is already well discussed in
literature [Kri+10]. We focus on a further model, the Geometric Inhomogeneous Random
Graph model [Keu18]. This model has been observed to model real world graphs well [BF22].
The GIRG model uses a weighted geometric space as ground space. The degree of a vertex is
proportional to its weight and hence the power-law degree distribution is achieved with a
power-law distribution of the weights. The high clustering coe�cient is achieved through
the geometric space. The probability for an edge to exist between two vertices is based on
their distance and their weights. We want to �nd positions for the vertices such that the
probability that the graph is generated under a given model like the GIRG model is maximized.
An embedder with this goal is called maximum likelihood embedder.
We solve the problems of the previous embedders, the heterogenous degree distribution and
the �xed dimension, by embedding networks in a weighted geometric space. The advantage
is that this space is a lot easier to handle than the hyperbolic space because we can use
Euclidean geometry while it also allows us to model the heterogenous degree distribution
with the weights. If we just use a 1-dimensional space this model is similar to the HRG model
but in contrast to the hyperbolic plane it can be easily extended to higher dimensions. The
embedding algorithm we introduce in this thesis is based on an embedder for the hyperbolic
plane [BFKL16]. The algorithm consists of two main steps where the �rst one is to embed the
core of the graph with a spring embedder and in the second step we embed the remaining
vertices by maximizing the likelihood. Because of the similarity of both spaces, the hyperbolic
plane and the 1-dimensional weighted geometric space, we can take a lot of insights about
the embedding process from the HRG embedder and apply it to the weighted geometric space.
Because the GIRG model is a more generalized model it is more powerful but there are also
challenges in the embedding process that are addressed and solved in this work. After the
implementation of our newly developed algorithm, we also provide an extensive empirical
evaluation of our algorithm.

2

Outline First we introduce all necessary de�nitions and notions in Chapter 2. This includes
the two graph models, the Hyperbolic Random Graph model and the Geometric Inhomoge-
neous Random Graph model. We also de�ne some mathematical constructs we use in the
thesis, e.g., the log-likelihood. Then we explain in Chapter 3 how the algorithm works that
we use as starting point. In this chapter we also explain our new algorithm and the theoretical
foundations for that. We perform the necessary calculations adapting it to the GIRG model
and show the di�erences to the HRG model. Then we evaluate our algorithm empirically in
Chapter 4. Finally we give a summary and a short outlook for future work on the algorithm
in Chapter 5.

3

2 Preliminaries

In this chapter we introduce all notions and concepts that we will use throughout this thesis.
This includes the two geometric random graph models that we use as well as a common
embedding technique and the way we measure the quality of embeddings.

2.1 Hyperbolic Random Graphs

The Hyperbolic Random Graph (HRG) model was �rst introduced in [Kri+10].

2.1.1 Hyperbolic Space

A point ? in the hyperbolic plane is represented by radial coordinates (A? , i?). The �rst
parameter A? describes the hyperbolic distance to the origin. The second parameter i? is the
angle with respect to the G-axis. The angle is in the interval [0, 2c]. The distance between
two points G and ~ in the hyperbolic plane is de�ned as

dist(?, @) := cosh−1(cosh(A?) cosh(A@) − sinh(A?) sinh(A@) cos(i? − i@)).

2.1.2 Hyperbolic Random Graphs

In the HRG model a graph is drawn on a disk in the hyperbolic plane. The vertices are
distributed (quasi) uniformly at random in this disk. The probability for two vertices to be
adjacent depends on the hyperbolic distance between them. The closer they are, the likelier it
is that an edge between them exists. The radial coordinate can be seen as a measure of the
popularity of the vertex. A vertex that is close to the origin is connected to a lot of vertices
and a vertex on the border of the disk is only connected to very few vertices. The angular
coordinate describes the similarity of the vertices. In a real world example like the Amazon
product recommendation network, one could imagine that products from the same category
have similar angular coordinates and products close to the origin are products that are bought
a lot with other products. In [BFKL16] an embedding of the Amazon product recommendation
network is shown. Nodes that belong to the same category are placed near (close angular
coordinate) such that the categories could be obtained from the embedding although the
algorithm did not know the ground truth communities. The HRG depends on four parameters
=, 2, U and) which are described in the following.

Vertices A graph in the HRG model consists of a set of = vertices + = {E1, . . . , E=}.

Degree Distribution (", c) The vertices are distributed on a disk in the hyperbolic plane.
This disk has a radius ' that can be computed from the parameters = and 2 as ' = 2 log (=) + 2 .
The constant 2 ∈ R+ in this equation determines the average degree of the graph and depends
on the constant U ∈

(1
2 , 1

)
. This yields a power-law degree distribution with exponent V =

2U + 1.

5

2 Preliminaries

Temperature Z The temperature) ∈ [0, 1] controls the clustering. The model for) > 0 is
called binomial model. If) = 0 the model is called threshold model.
From these parameters we can sample a HRG as follows. The position of a vertex ?E = (AE, iE)
is drawn randomly in the disk in the hyperbolic plane. The density function of the probability
distribution for the angle is

5 (iE) =
1

2c
.

The radial coordinate is sampled from the probability distribution with density function

5 (AE) =
U sinh (UAE)

cosh (U') − 1
.

Hence the density function of the joint distribution is

5 (AE, iE) =
U sinh (UAE)

2c (cosh (U') − 1) .

The probability of two vertices D and E being connected in the binomial model is given by

?DE = ?(dist(D, E)) =
1

(1 + 4
1

2) ·(dist(D,E)−'))
.

In the threshold model where) = 0 two vertices are connected if and only if their distance is
below the radius ', that is

?DE =

{
1 if dist (D, E) < '
0 else.

2.2 Geometric Inhomogeneous Random Graphs

A graph in the Geometric Inhomogeneous Random Graph model (GIRG) is drawn on a
weighted geometric space [Keu18]. Additionally to its position on a 3-dimensional ground
space each vertex has a weight. This weight acts like the radial coordinate in the HRG model
and has a big in�uence on the connection probability of two vertices. A vertex with a high
weight has a high popularity since it is connected to more vertices than a low weight vertex.
The coordinate in the ground space describes the similarity of vertices. But in contrast to
the HRG model the ground space can have an arbitrary dimension. The HRG model can be
seen as a special case of the 1-dimensional GIRG model. This relation is further explained in
Section 2.2.3.

2.2.1 Weighted Geometric Space

A vertex E in the weighted geometric space has a weight FE ∈ R+ and a position GE ∈ X3
for X ∈ {T, [0, 1]}. We use two di�erent 3-dimensional ground spaces for this, a torus which
is a unit cube where each two opposite sides are identi�ed or a unit cube without the wrap-
around. The removal of the wrap-around of the torus has some advantages and disadvantages.
Some calculations that involve distance calculations are easier without the wrap-around
whereas other calculations get more complicated because the space around a vertex depends
on its position. We use both ground spaces in this thesis. The distance between two vertices
D and E on the torus can be measured with the maximum norm !∞, where

‖GE − GD ‖ := ‖GE − GD ‖∞ = max
1≤8≤3

min {|GE8 − GD8 |, 1 − |GE8 − GD8 |} .

6

2.2 Geometric Inhomogeneous Random Graphs

For the cube the !∞-norm is de�ned as

‖GE − GE ‖∞ = max
1≤8≤3

|GE8 − GD8 |.

In this thesis we mainly focus on the !∞-norm but we also consider other norms too, for
example the Euclidean !2-norm, where the distance on the torus is

‖GD − GE ‖2 =

√
3∑
8=1
(min {|GE8 − GD8 |, 1 − |GE8 − GD8 |})2.

For the cube the !2-norm is

‖GE − GD ‖2 =

√
3∑
8=1

(GE8 − GD8)2.

2.2.2 Model

In addition to the four parameters =, V, 2 and) , GIRGs also feature the dimension 3 .

Vertices A graph in the GIRG model consists of a set of = vertices + = {E1, . . . , E=}.

Degree Distribution # The weights follow a power-law distribution that has a power-law
exponent V > 2. The property of a power-law distribution is that the fraction of weights with
weight at leastF is proportional toF1−V .

Dimension d Each vertex has a position GE in the ground space X3 with X ∈ {T, [0, 1]}
and dimension 3 ∈ N.

Average Degree c The parameter 2 ∈ R+ controls the expected average degree of the
overall graph.

Temperature Z The parameter) ∈ [0, 1] is the temperature which controls the binomial
variant. As in the HRG model the model is called binomial model for) > 0 and threshold
model for) = 0.
From these parameters we can sample a GIRG as follows. Each vertex has a position GE on
the ground space which is drawn uniformly and independently at random. Additionally each
vertex has a weightFE . The set of weights follows a power-law distribution where the density
function of the probability distribution is given by

d(F) = (V − 1) ·F−V . (2.1)

The probability that two vertices D, E ∈ + are adjacent is given for the binomial case as

?DE = min

{
1, 2

(
FDFE

, · ‖ GD − GE ‖3

) 1
)

}
(2.2)

7

2 Preliminaries

where, = ∑
E∈+ FE is the sum of all weights. As we can see, the weight controls the expected

degree of the vertex because a higher weight yields higher connection probabilities and thus
a higher vertex degree. In the threshold case with) = 0 the following equation describes the
probability that two vertices are adjacent

?DE =

{
1 if ‖ GD − GE ‖≤ 2

(FDFE

,

) 1
3 ,

0 else.
(2.3)

2.2.3 Relation to HRG

As mentioned previously the HRG model can be seen as a special case of the GIRG model.
There exists a mapping from the HRG model to the GIRG model with dimension 1 where the
weights and coordinates are given by

FE := =4−AD/2 and GE =
iE

2c
.

This mapping is a bijection and thus we can obtain a GIRG that is similar to the HRG and the
other way round. The proof for this is shown in [Keu18]. We see that the HRG model and
the 1-dimensional GIRG model are very similar. That is why our hope is that the approach of
the HRG embedder also works well for the GIRG model.

2.3 Spring Embedder

An important embedding technique that is used in our algorithm is a spring embedder also
called a force-directed embedder [BS03]. As the name suggests we apply forces to vertices
to obtain an embedding with a low energy. At the beginning of the embedding process we
start with a random position for each vertex. After that we repeat the following process
until the con�guration does not change any more. For every pair of vertices we calculate an
attractive force that moves vertices that belong together closer to each other or a repulsive
force that pushes vertices that are too close away from each other. After that these forces are
summed up for each vertex and then applied by adjusting its position accordingly. When the
con�guration is stable or a certain number of iterations is reached, the process stops. This
method is mostly used for the two-dimensional Euclidean space but can also be extended to
higher-dimensional Euclidean spaces or non-Euclidean spaces like the hyperbolic space. But
there are some complications in the hyperbolic space, which we discuss in Section 3.1.2.2.
There are several ways to de�ne the forces between vertices. One example is to apply a
repulsive force to each pair of vertices and an attractive force to each pair of vertices with
an edge between them. This leads to good results because edges are typically short and
non-edges are long and the vertices are uniformly distributed over the available space because
of the repulsive forces. Another option is to calculate the forces such that the forces are in
equilibrium when the distances in the embedding are proportional to the graph theoretical
distances. This means that, e.g., the shortest path between each pair of vertices is calculated
and a repulsive force is applied if their distance in the embedding is closer than their distance
in the graph or an attractive force if the distance is greater than the distance in the graph.
We use a similar approach where we estimate the distances between each pair of vertices
and use these distances to calculate the forces. A disadvantage of spring embedders is that,
without rather sophisticated enhancements, they only produce good results for very small
graphs [Kob13] and so we cannot apply them to the graphs we deal with which are typically

8

2.4 Likelihood

very large. Another problem is that spring embedders struggle with heterogenous graphs
because high degree vertices move loosely connected parts of the graph together [BFK21]. To
avoid this problem we only use the spring embedder for high weight nodes and embed the
remaining vertices based on that embedding.

2.4 Likelihood

We want the embedding to represent the graph structure, that is adjacent vertices are close
and non-adjacent vertices are far apart. This is captured by the connection probability of two
vertices in GIRGs, where the probability for an edge to exist depends on the distance between
its endpoints. In particular, given an embedding in a weighted geometric space, we can look at
each vertex pair, compute the probability for an edge to exist between them and compare that
with the adjacency information in the graph. More precisely, the likelihood of an embedding
measures the probability that an embedding matches the given graph. The goal of a maximum
likelihood embedding is that all edges and non-edges that are induced by the embedding
occur in the graph. The probability that this happens is given by the product of the probability
of all edges and the complementary probability of all non-edges: ΠDE∈�?DE · ΠDE 6∈�(1 − ?DE).
When trying to maximize the likelihood, we can simplify this by taking the logarithm of
that function which is valid since the logarithm is continuous and monotonous. The result
is the log-likelihood: L

(
{<}=8=1 |�

)
= ∑

DE∈� log (?DE) + ∑
DE 6∈� log (1 − ?DE) where<8 are the

parameters of a vertex E8 in a model. A further simpli�cation can be made by only considering
one vertex E

L(E) =
∑
D∈Γ(E)

log(?DE) +
∑
D 6∈Γ(E)

log(1 − ?DE). (2.4)

This function can be used to measure the quality of the position of one vertex in the embedding.
With this we can write the log-likelihood as L

(
{<}=8=1 |�

)
= 1

2
∑
E∈+ L (E) [BFKL16].

9

3 Embedding Algorithm

We have seen in Section 2.2.3 that HRGs and GIRGs are very similar. That is why we use an
approach that already works well for the HRG model and apply it to the GIRG model. First
we explain the basics of the HRG embedder, which we then transfer to the GIRG model.

3.1 Hyperbolic Embedding

The hyperbolic maximum likelihood embedder consists of three phases: parameter estimation,
core embedding, and periphery embedding. We refer to the paper for a detailed description of
the phases [BFKL16]. In the following we brie�y summarize the aspects that are relevant for
our approach.

3.1.1 Parameter Estimation

There are �ve parameters that can be estimated beforehand. These are the number of vertices
=, the power-law exponent U , the temperature) and the radius of the disk ' as well as the
radial coordinates A8 for each vertex E8 ∈ + . The power-law exponent U is estimated with the
algorithm [CSN07]. The temperature) is set to the �xed value of 0.1.

3.1.2 Core Embedding

The �rst step is to �nd a good embedding for the core. To be more speci�c, the vertices of the
graph are partitioned into layers !8 = {E | 28 ≤ deg(E) < 28+1}. The core of the graph is then
de�ned as

� =
⋃

8≥ log(=)
2

!8 .

It is very important that the embedding of the core is good otherwise we get a bad overall
embedding because the second phase heavily depends on a good core embedding. A spring
embedder as described in Subsection 2.3 is used to embed the core. The core contains all high
degree vertices and forms a clique. That means the spring embedder can not use the edges
and calculate repulsive forces for non-edges and attractive forces for edges because there
are only edges and thus attractive forces. So another approach is needed. The forces for the
spring embedder are calculated from the estimated distance between each pair of vertices
based on their common neighborhood.

11

3 Embedding Algorithm

3.1.2.1 Estimating Angular Di�erence between Vertices

The angular di�erence between each pair of core vertices is approximated based on their
common neighborhood. Vertices with small angular di�erence are more likely to be be
adjacent and thus vertices with a large common neighborhood are more likely to have a
small angular di�erence because they are adjacent to a lot of the same vertices. The resulting
angular di�erence for two vertices D and E with common neighborhood of size 2DE is

i (2DE, AD, AE) = Θ (1) · 21/(1−2U)
DE · exp

(
−1

2
AD +

(
1

2 − 4U
(AE − ')

))
.

To determine the constant factor the values for all pairwise distances are scaled such that
their median is c/2. After the scaling all values greater than c are set to c .

3.1.2.2 Spring Embedder

As mentioned in Subsection 2.3 there are some restrictions with spring embedders in the
hyperbolic space. Since the space in the hyperbolic space increases exponentially the only
way for two vertices to get closer is to get closer to the origin. But a vertex that gets closer to
the origin also gets closer to every other vertex in the graph. Because of that there are a lot of
repulsive forces which lead to stable but bad embeddings. A solution for this is to use a disk
in the hyperbolic space with only a small radius. Here the geometry is closer to the Euclidean
geometry and the problems of the hyperbolic space do not in�uence the embedding process
as much as with larger radii. This is exactly what is done when embedding the core because
the vertices of the core are close to the origin.
To calculate the force between each pair of vertices D and E , the di�erence between the
estimated angular di�erence i(2DE, AD, AE) and the actual angular di�erence iE − iD (where
0 ≤ iD < iE ≤ c) is calculated. This is err(D, E) = (iE − iD) − i(2D,E, AD, AE). The force between
two vertices is given by

�D (E) =


−err(D, E)2 if err(D, E) ≤ 0
err(D, E)2 if 0 < err(D, E) ≤ c

2
(c − err(D, E))2 if c2 < err(D, E) ≤ c

To obtain the resulting force on a vertex D the forces �D (E) for all vertices E ∈ � are summed
up. The spring embedder is run �ve times with di�erent initial coordinates and then the best
embedding is chosen.

3.1.3 Periphery Embedding

To embed the remaining vertices the layers are used. For each layer !8 starting with the
highest layer the position of each vertex in layers ! 9 (9 ≥ 8) is optimized by its log-likelihood.
This process is done log= times per layer. If a vertex is embedded for the �rst time its initial
position is estimated by a weighted average of all neighbors. This ensures that neighbors with
a large radius have more in�uence on the position and hence are nearer to the new vertex.
For a vertex E the initial position is determined by

iE = arctan

(∑:
8=1 exp

(
AD8

)
· sin

(
iD8

)∑:
8=1 exp

(
AD8

)
· cos

(
iD8

))

12

3.2 Weighted Geometric Embedding

If a vertex is already embedded its position used. The position of a vertex is updated by
sampling O (log=) positions around the initial position and the position with the smallest log-
likelihood is chosen. This is e�cient because the log-likelihood can be computed e�ciently
with a geometric data structure by only taking the neighbors and non-neighbors with a low
distance into account and roughly approximating the non-neighbors with a large distance.

3.2 Weighted Geometric Embedding

Our algorithm consists of three steps. In the �rst step we estimate the model parameters of
the input graph. In the second step we embed the core of the graph. In the third step we
embed the remaining vertices.

3.2.1 Parameter Estimation

We start by estimating the model parameters =, V, 2,) and 3 (see Section 2.2.2). The power-law
exponent and the temperature are estimated as in the HRG embedder.

Dimension d The estimation of the dimension is part of another paper and can be computed
algorithmically [FGKS23a].

Weightswv We assume that the degree of the vertices in the given graph follows a power-
law distribution. The expected degree of a vertex in the GIRG model matches the weight
up to constants. For the sake of simplicity, we set the weight of the vertex to its degree, i.e.,
FE = deg(E).

Expected Average Degree Parameter c The parameter 2 controls the expected average
degree of the graph. The estimation of 2 from the average degree of the graph is explained
in [Blä+22].

3.2.2 Core Embedding

In this subsection we only look at high-degree vertices in layers !8 with 8 ≥ log=
2 , which form

the core. We want to �nd a good embedding for them before we embed the other vertices. To
achieve this, we estimate the distance for each pair of core vertices based on the size of their
common neighborhood. Then we use a spring embedder to embed the vertices accordingly.
We refer to this part of the algorithm as the core phase in the following.

3.2.2.1 Expected Common Neighborhood

We only perform this calculation assuming the threshold model and a torus as ground space.
We have found out experimentally that this also works well for the cube and the binomial
model (see Figure 3.2c). We want to calculate the expected distance between two vertices D
and E based on the size of their common neighborhood. To do this we use the model and
calculate the expected size of the common neighborhood of D and E assuming we know
their distance. Then we can solve the resulting equation for the distance and calculate the
distance from the common neighborhood which we already know. To this end we need the
probability ?6(F0) that a third vertex 0 is connected to D and E when D and E have a �xed
distance ‖GD − GE ‖ between them and 0 has a weightF0 . The integral of the probability ?6(F)

13

3 Embedding Algorithm

Figure 3.1: Visualization of a 1-dimensional torus in the threshold model. The coordinate
is on the G-axis and the weight on the ~-axis. The green colored area covers all vertices
that are connected to the vertex E and all vertices in the red colored area are connected to D.
Vertices that have a weight belowF0 cannot be connected to both vertices at the same time.
Vertices that have a weight higher than F1 are in any case connected to both, D and E . For
all vertices with a weightF0 betweenF0 andF1 the probability to be connected to both, D
and E , is the length of the overlapping area (here the dotted line). We can see that the linear
approximation �ts well because we approximate the width of the triangle which increases
linearly but changes the slope at one point.

multiplied by the density function of the power-law distribution is then the expected size of
the common neighborhood. We approximate ?6 with a linear function. For this, we compare
two weightsF0 andF1, such that ?6(F0) = 0 and ?6(F1) = 1. This can be seen in Figure 3.1.
Then we can interpolate the function ?6 between these two points linearly. Note that by
the de�nition of the model (see Equation 2.3) 0 is in the neighborhood of D and E if both
inequalities hold

‖GE − G0 ‖ ≤
2

,
1
3

· (FE ·F0)
1
3 = ∆(E, 0), (3.1)

‖GD − G0 ‖ ≤
2

,
1
3

· (FD ·F0)
1
3 = ∆(D, 0) (3.2)

where ∆(D, E) is the maximum distance between D and E such that D and E are connected.
First, we calculate the weight F1 such that ?6(F0) = 1 for all F0 ≥ F1. In this case both
equations need to hold. Without loss of generality let FD ≤ FE . If we have a weight F0
such that Equation 3.2 is true for all possible distances ‖GD − G0 ‖, then Equation 3.1 is also
true because E has a higher weight than D. So we only need to solve Equation 3.2 for this.

14

3.2 Weighted Geometric Embedding

Let 3<0G be the maximum distance on the torus, which is 0.5 when using the !∞-norm
and 0.5

√
3 when using the !2-norm. Thus, Equation 3.2 holds whenF0 is su�ciently large

such that 3<0G ≤ ∆(D, 0), which is equivalent to

F0 ≥
33<0G,

23FD
=: F1.

Now we calculate the weightF0. Note that if ∆(E, 0) + ∆(D, 0) < ‖GE − GD ‖ then D and E are so
far apart that they cannot connect to both of them simultaneously. From this follows

∆(D, 0) + ∆(E, 0) ≥ ‖GE − GD ‖

⇔ 2

,
1
3

F
1
3
0

(
F

1
3
D +F

1
3
E

)
≥ ‖GE − GD ‖

⇔ F0 ≥
, ‖GE − GD ‖3

23
(
F

1
3
D +F

1
3
E

)3 =: F0.

Now we approximate the probability of 0 being connected to D and E with a linear function.
That means we can write ?6(F) ≈ ?̃6 (F) = �F + �. To solve this we have the following
equations

?6 (F1) = 1 = �F1 + �
?6 (F0) = 0 = �F0 + �

The solution is

� =
1

F1 −F0
=

23F̃

, ·
(
33<0G F̃

FD
− ‖GD − GE ‖3

)
� = − F0

F1 −F0
= − ‖GD − GE ‖3

33<0G F̃

FD
− ‖GD − GE ‖3

with F̃ =
(
F

1
3
D +F

1
3
E

)3
. To get the expected size of the common neighborhood we have to

integrate ?6 multiplied with the density function of the probability distribution d (F) of the
weights (given in Equation 2.1). The expected size 2DE of the common neighborhood is

2DE =
∫∞

0
d(F)?6(F)3F

=
∫F1

F0

d(F)?6(F)3F +
∫∞
F1

d(F)3F

≈
∫F1

F0

(V − 1)F−V (�F + �) 3F +
∫∞
F1

(V − 1)F−V3F

= −�V − 1
V − 2

F
2−V
1 + �F1−V

1 +�
V − 1
V − 2

F
2−V
0 − �F1−V

0 +F1−V
1

= �
V − 1
V − 2

(
F

2−V
0 −F2−V

1

)
+ �

(
F

1−V
0 −F1−V

1

)
+F1−V

1 .

We can see that this is a good estimation of the expected neighborhood in Figure 3.2. Now we
have to solve this equation for the distance ‖GD − GE ‖ between D and E which is given by

:1(2DE) ≈ :2(2DE) ‖GD − GE ‖3 + :3(2DE) ‖GD − GE ‖3 (2−V) (3.3)

15

3 Embedding Algorithm

(a) Graph with dimension 1
and torus as ground space. The
linear approximation works
quite well.

(b) Graph with dimension 3
and torus as ground space. The
linear approximation works
also well for higher dimen-
sions.

(c) Graph with dimension 1
and cube as ground space. The
linear approximation works
also well for the cube.

Figure 3.2: This plot shows the expected neighborhood on the ~-axis and the real neighbor-
hood on the G-axis. We sampled a GIRG with 20000 vertices, average degree of 10, temperature
0.1 and power-law exponent 2.5 which resulted in 43-44 core vertices. Then we calculated
the expected size of the common neighborhood for all core vertex pairs as described and
compared them to their real common neighborhood. The distances are calculated with the
!2-norm. The color indicates the number of vertices. The values for the neighborhood are
scaled such that the squared deviation is minimized.

with parameters

:1(2DE) =
33<0GF̃

FD

(
2DE +

(
33<0G,

23FD

)1−V (
V − 1
V − 2

− 1
))

:2(2DE) = 2DE

:3(2DE) =
(
V − 1
V − 2

− 1
) (

,

23F̃

)1−V
.

Note that this expression is tedious to solve exactly. Therefore, we approximate a solution
instead. Recall that ‖GD − GE ‖ ≤ 1

2 . Thus raising the distance to the 3(2− V), which is negative
as we assume V > 2 yields larger values. On the other hand, raising small distances to the
power of 3 > 0 yields smaller values, which is why we neglect the term :2(2DE) ‖GD − GE ‖3 .
Thus, we estimate the distance between two points as

dist>?C (D, E) =
(
:1(2DE)
:3(2DE)

) 1
3 (2−V)

.

The expected distances are than scaled such that their median is 3<0G/2 and all distances
greater than 3<0G are set to 3<0G . An example plot of this estimation with di�erent power-law
exponents can be seen in Figure 3.3. We note that for small power-law exponents (V ≤ 2.3)
the accuracy of the estimation declines as shown in Figure 3.3a. A reason for this is that with
smaller power-law exponent there is not as much information about the neighborhood as
with higher power-law exponents. A comparison of the !∞ to the !2-norm can be seen in
Figure 3.4. We can see that the result of the !2-norm is very similar to the !∞-norm.
Because the variance of the distance is quite large we can use an approach other than com-
puting the distance directly. Assuming that the common neighborhood is monotonous in
the distance, we can use binary search on the interval [0, 0.5] to estimate the distance. We

16

3.2 Weighted Geometric Embedding

(a) Power-law exponent 2.1
and 74 core vertices.

(b) Power-law exponent 2.5
and 44 core vertices.

(c) Power-law exponent 2.9
and 13 core vertices.

Figure 3.3: This plot shows the expected distance on the ~-axis and the real distance on the
G-axis. We sampled a GIRG with 20000 vertices, average degree of 10, temperature 0.1 and
dimension 1. We calculated the expected distance for all core vertex pairs as described and
compared them to their real distance. The distances are calculated with the !2-norm.

start with an initial value of 0.25 and add or subtract in iteration 8 the value 1/28+2 until the
expected common neighborhood is close to the real neighborhood in the graph. Surprisingly,
approximation and binary search yield nearly identical results as can be seen in Figure 3.4.
This means that the estimation for the expected common neighborhood works well and we
can use it in the algorithm.

3.2.2.2 Spring Embedder

Now we can use the estimated distances from the previous subsection to embed the vertices
with a spring embedder as described in Section 2.3. In the �rst step we assign every vertex a
random initial position uniformly in the ground space. After that we calculate in every step
for each pair of vertices D and E the di�erence between the current distance ‖GD − GE ‖ and
the desired distance dist>?C (D, E) denoted by

err(D, E) = ‖GD − GE ‖ − dist>?C (D, E).

If the vertices are further apart than they should be (err(D, E) ≥ 0) we apply attractive forces to
pull the vertices towards each other. If the vertices are closer than they should be (err(D, E) < 0)
we apply repulsive forces to push them further apart. If two vertices on the torus are very far
apart but should be very near the error function is close to 3<0G . That means that the force
for this vertex is very strong for one direction. However, because of the geometry it does not
matter in which direction a vertex moves because the distance to the other vertex is decreased
in both directions. So we do not want a strong force for too large distances. To achieve this
we decrease the force again when a distance of 3<0G/2 is reached. For a given vertex E the
force to vertex D is calculated as

�E(D) =


−err(D, E)2 · (GD − GE) if − 3<0G < err(D, E) ≤ 0
err(D, E)2 · (GD − GE) if 0 < err(D, E) ≤ 3<0G/2(1

2 − err(D, E)
)2 · (GD − GE) if 3<0G/2 < err(D, E) ≤ 3<0G .

However, for the cube this is di�erent. We do not decrease the force there because we do not
have the wrap-around of the torus.
We note that, in the original paper, the spring embedder moved vertices on a circle, which is a
1-dimensional movement. An attractive force moves E in the direction where the distance to

17

3 Embedding Algorithm

(a) !∞-norm, dimension 2 and estimation. (b) !2-norm, dimension 2 and estimation.

(c) !2-norm, dimension 1 and estimation. (d) !2-norm, dimension 1 and binary-search.

Figure 3.4: This plot shows the expected distance on the ~-axis and the real distance on the
G-axis. We sampled a GIRG with parameters 20000 vertices, average degree of 10, temperature
0.1 and power-law-exponent 2.5 which resulted in 44 core-vertices. We calculated the expected
distance for all core vertex pairs as described and compared them to their real distance.

the target is smaller. A repulsive force moves a vertex in the opposite direction. For higher-
dimensional spaces this is more involved. If we use the gradient of the !∞-norm to calculate
the direction we would only move in one dimension. This is why we use the gradient of the
!2-norm to determine the direction of the force. On the torus we compute the direction such
that |GD8 − GE8 |< 0.5 (1 ≤ 8 ≤ 3). That means we always take the shortest way on the torus to
the other vertex. The resulting overall force applied to a vertex E is �E = ∑

D∈�\{E } �E(D). The
quality of the embedding is measured with a score

(=
∑
D∈�

∑
E∈�\{D }

|�D (E)|.

We run the spring embedder �ve times with di�erent initial coordinates and choose the best
embedding from them. Regarding the running time, note that the core consists of Θ(= (3−V)/2)
vertices [FGKS23b]. Since a single iteration of the spring embedder considers forces between
all vertex pairs, this yields a running time of Θ

(
=3−V) per iteration. Allowing =V−2 iterations

yields a linear running time in total.

18

3.2 Weighted Geometric Embedding

0 0.1 0.2 0.3 0.4 0.5-0.5 -0.4 -0.3 -0.2 -0.1

w

x

u2

u1

Figure 3.5: Visualization of a 1-dimensional torus in the threshold model. The coordinate is
on the G-axis and the weight on the ~-axis. All vertices that are in the green colored area are
connected to the vertex D1 and all vertices in the red colored area are connected to D2. We
want to �nd a good position for a vertex E which has D1 and D2 as neighbors. It is only possible
for E to be connected to both if E is placed in the area where the green and red area overlap.
The low weight vertex D2 has much more in�uence for this position than the high weight
vertex D1. The vertex E can have a nearly arbitrary position on the torus to be connected to
the high weight vertex. Thus high weight neighbors have a smaller in�uence on the position
of a newly embedded vertex than low weight neighbors.

3.2.3 Periphery Embedding

After we have embedded the core vertices we have to embed the remaining vertices. These
are the vertices in layers !8 = {E | 28 ≤ deg(E) < 28+1} for 8 < log=/2. We start this process
from the highest to the lowest layer. For each vertex we �rst calculate an initial position.
To measure the quality of a position we use the log-likelihood for one vertex as given in
Equation 2.4. We refer to this part of the algorithm as periphery phase in the following. Since
we are using the logarithm of the probability for the log-likelihood we have to deal with the
probability 1. We sum the complementary probabilities for the non-edges. If a non-edge has a
probability 1 we have a log-likelihood of log 0 which is unde�ned. That is why we use the
use the Fermi-Dirac-Equation to approximate the probability in Equation 2.2. This equation
eliminates the minimum and produces results in (0, 1). The Fermi-Dirac-Equation is given by

?DE ≈
1

1 + 1
2

(
FDFE

, ‖GD−GE ‖3

)− 1
)

=: ˜?DE . (3.4)

Initial Position

We calculate the initial position for a vertex E as the weighted average of the already embedded
neighbors Γ′(E). We want the vertex E to be connected to all other already embedded neighbors.
The connection probability depends on the the weight of the vertices and the distance between
them. This means we can have a larger distance to vertices with a high weight but we need a

19

3 Embedding Algorithm

shorter distance to vertices with a low weight. Since we want to be closer to vertices with a
small weight, we use the inverted weight for the weighted average. This is shown in Figure 3.5.
We de�ne the initial position of E to be

GE =
∑
D∈Γ′(E)

1
FD
GD∑

D∈Γ′(E)
1
FD

. (3.5)

This formula works well on a cube to get the weighted average position but on a torus it is not
clear how we can get a weighted average position. The wrapping makes it hard to calculate a
weighted average position. Now we want to move the vertices from their initial position to a
better position that is a position with a better log-likelihood. There we have two di�erent
options. For the �rst option we use a heuristic approach and sample di�erent positions around
the initial position. For the second option we use the gradient of the log-likelihood to optimize
the position.

Option 1: Sampling After we have computed a good initial position for a given vertex,
we can sample log(=)3 di�erent random positions distributed uniformly in a 3-dimensional
cube around the initial position with length _ for the vertex E . After that we compute the
log-likelihood for each position and we take the coordinates of the position with the highest
log-likelihood. To this point our approach is similar to the HRG embedder. However, we do
this process 3 times while decreasing the sample radius _. We halve the sample radius in
every iteration. This ensures that we are close to a local maximum for the log-likelihood of
the vertex E .

Option 2: Gradient Ascent We can also use gradient ascent to �nd a local maximum of
the function L (E). To this end we use the derivative of the function L(E) that is mL(E)

mGE
. We

start with the initial position GE,0 and take the derivative to compute a better position. This
position is given by GE,8+1 = GE,8 + W mL(E)

mGE
where W is the learning rate. The derivative is given

by

mL (E)
mGE

=
m
(∑

D∈Γ(E) log (?DE) + ∑
D 6∈Γ(E) log (1 − ?DE)

)
mGE

=
∑

D∈Γ(E)

m log (?DE)
mGE

+
∑

D 6∈Γ(E)

m log (1 − ?DE)
mGE

=
∑

D∈Γ(E)

m log (?DE)
m?DE

m?DE

mGE
+

∑
D 6∈Γ(E)

m log (1 − ?DE)
m?DE

m?DE

mGE

=
∑

D∈Γ(E)

1
?DE

m?DE

m ‖GD − GE ‖
m ‖GD − GE ‖

mGE

−
∑

D 6∈Γ(E)

1
1 − ?DE

m?DE

m ‖GD − GE ‖
m ‖GD − GE ‖

mGE
.

Here we have to calculate two derivatives, the probability derived with respect to the distance
and the distance derived with respect to the position. The probability given in Equation 2.2
has a minimum. That is why we have to make a case di�erentiation. The minimum evaluates

20

3.2 Weighted Geometric Embedding

to 1 if (FDFE/(, ‖GD − GE ‖3))1/) ≥ 1. The derivate of this is 0. That means we only look at
vertex pairs with ?DE < 1 when calculating the gradient. The derivate of the probability is
given by

m?DE

m ‖GD − GE ‖
=
m2

(
FDFE

, ‖GD−GE ‖3

) 1
)

m ‖GD − GE ‖

=2
(FDFE
,

) 1
) m ‖GD − GE ‖−

3
)

m ‖GE − GD ‖

= − 3
)
2

(FDFE
,

) 1
) ‖GD − GE ‖−

3
)
−1

= − 3
)
?DE ‖GE − GD ‖−1 .

If we plug this in the �rst equation we get

mL (E)
mGE

= − 3
)

∑
D∈Γ(E),?DE<1

1
?DE

?DE ‖GD − GE ‖−1 m ‖GD − GE ‖
mGE

+
3

)

∑
D 6∈Γ(E),?DE<1

1
1 − ?DE

?DE ‖GD − GE ‖−1 m ‖GD − GE ‖
mGE

= − 3
)

∑
D∈Γ(E),?DE<1

‖GD − GE ‖−1 m ‖GD − GE ‖
mGE

+
3 · 2
)

∑
D 6∈Γ(E),?DE<1

(FDFE)
1
) ‖GD − GE ‖−1(

, ‖GD − GE ‖3
) 1
) − 2 (FDFE)

1
)

m ‖GD − GE ‖
mGE

.

In the last step we used the de�nition of the probability ?DE to simplify the equation. If we
use the !∞-norm the derivate m ‖GD−GE ‖

mGE
is given by

m ‖GD − GE ‖∞
mGE

=

©­­­­­­­«

0
...
±1
...
0

ª®®®®®®®¬
.

The 1 is on the 8-th position where min{|GD 9−GE 9 |, 1−|GD 9−GE 9 |} ≤ min{|GD8−GE8 |, 1−|GD8−GE8 |}
for all 1 ≤ 9 ≤ 3 . The 1 is negative if |GD8 − GE8 |≤ 1 − |GD8 − GE8 | and GD8 ≥ GE8 or if |GD8 − GE8 |>
1 − |GD8 − GE8 | and GD8 < GE8 . Otherwise the 1 is positive.
If we use the !2-norm instead this term becomes

m ‖GD − GE ‖2
mGE

=
1

‖GD − GE ‖2

©­­«
± ‖GD1 − GE1‖2

...
± ‖GD3 − GE3 ‖2

ª®®¬ .

21

3 Embedding Algorithm

The 8-th entry is negative if |GD8 −GE8 |< 1− |GD8 −GE8 | and GD8 > GE8 or |GD8 −GE8 |≥ 1− |GD8 −GE8 |
and GD8 ≥ GE8 . On the cube these derivatives are easier, for the !∞-norm this is

m ‖GD − GE ‖∞
mGE

=

©­­­­­­­«

0
...
±1
...
0

ª®®®®®®®¬
.

where the 1 is on the 8-th position where |GD8 − GE8 |= max1≤ 9≤3 |GD 9 − GE 9 |. The 1 is positive
if GD8 < GE8 and otherwise negative.
The derivate of the !2-norm for the cube looks like the following

m ‖GD − GE ‖2
mGE

=
1

‖GD − GE ‖2

©­­«
GE1 − GD1

...
GE3 − GD3

ª®®¬ .
We stop the gradient ascent if the gradient is smaller than a threshold epsilon or if we
exceed O(log (=)) iterations.
If we calculate the log-likelihood as given in this equation we have to consider all other
vertices in the graph. The running time for this is then in O

(
=2) . To obtain a linear running

time, we have to calculate the log-likelihood more e�ciently.

Computing the Log-Likelihood E�iciently

To compute the log-likelihood function, which is de�ned in Equation 2.4, we need Ω (=)
time, which is too much. So we need to speed up the computation. The �rst term of the
log-likelihood ∑

D∈Γ(E) log (?DE) can computed in O(|� |) for all vertices E ∈ + . With high
probability |� |= Θ (=) [Keu18]. The previous term can be computed in linear time for
all vertices and thus in amortized constant time for each vertex. This leaves the second
Term ∑

D 6∈Γ(E) log (1 − ?DE). Our goal is to speed up the computation by ignoring negligible
summands, i.e., the ones that are close to zero. Note that these are the ones where ?DE is close
to zero. This happens when there is a large distance between two vertices and the product
of their weights is small. We use the Fermi-Dirac-Equation for the probability as given in
Equation 3.4

˜?DE =
1

1 + 1
2

(
FDFE

, · ‖GD−GE ‖3

)− 1
)

.

For small weights and a large distance the denominator is very large and thus the probability
is small. This means the term log(1 − ?DE) is close to 0 and does not contribute to the log-
likelihood. This means we can either ignore or coarsely approximate vertices with large
distances and small weights. An e�cient implementation can be realized through a spatial
data structure (as in the original paper [BFKL16]). For this, it is necessary to de�ne more
precisely when a node is far enough away and a weight is small enough.

3.2.4 Algorithm

We are now ready to combine the previously described steps into one algorithm. First we
estimate the necessary parameters and embed the core of the graph as explained in Section 3.2.1
and Section 3.2.2. Then we sort the remaining vertices in layers and iterate over the layers !8

22

3.2 Weighted Geometric Embedding

with 8 < log=/2 in decreasing order. The following process is repeated log= times per layer.
We look at every vertex E ∈ ⋃

9≥8 ! 9 . If E already has a position from previous iterations, we
keep it. Otherwise, we compute an initial position as described above. Then we adjust E ’s
positions using gradient ascent or sampling, this optimizes the log-likelihood of every vertex.
As a result of optimizing vertices from all layers not only the vertices with larger weight have
an in�uence on the position of a vertex but also the vertices with smaller weight can a�ect
their position.

23

4 Experimental Evaluation

In this section we want to see how well the embedding algorithm performs on di�erent graphs
and how their properties, such as the dimension or the power-law exponent, in�uence the
quality of the embedding. We also want to know what impact on the algorithms performance
each part of the algorithm has and what parts need to be improved in the future. Since the
algorithm consists of two parts, the core phase and the periphery phase, we want to evaluate
the performance of each part individually. Subsequently we analyze the algorithm as a whole.
In particular, we want to address the following questions:

1 What is the overall quality of the produced embedding?

2 How do di�erent graph properties in�uence the overall embedding?

3 Which of the two parts of the algorithm is the bottleneck when the quality deteriorates?

4 How do di�erent graph properties in�uence the core phase?

5 How do di�erent graph properties in�uence the periphery phase?

4.1 Evaluation Process

We evaluate the algorithm by �rst generating a GIRG, that means we already have an em-
bedding for this graph, the ground truth embedding. Then we run the algorithm with the
vertices and edges of the generated graph to get the embedding from our algorithm. We do not
perform the estimation of the graph properties here but take the original values instead except
for the weights, which are estimated. The reason for this is that we do not want to accumulate
the errors from the parameter estimation. Then we have the positions of the vertices from
the original generated GIRG and the positions from the algorithm. Now we want to know
how close the quality of the embedding of our algorithm is to the ground truth. We use the
log-likelihood which is de�ned in Equation 2.4 to measure the quality of the embedding. We
have two graphs, the input graph � and the output graph � ′ = A(�) and we compare the
log-likelihood by taking their quotient which we call log-likelihood quotient which is given by

L2><?0A4 =
L(� ′)
L(�)

.

If we have a value of 1, the quality of the embedding of our algorithm is as good as the ground
truth. Our goal is to get as close to the value 1 as possible. If the value is below 1, the generated
embedding is more likely than the ground truth and if the log-likelihood quotient is higher
than 1, the ground truth embedding is more likely. We sampled �ve graphs for each parameter
combination in order to have a statistical relevant result. We use box plots to present the
results of our evaluation. The aggregated results are represented by a box with a black line,
whiskers and outliers. The black line is the median of the samples, the box contains all values
between the 25th percentile and the 75th percentile. The whiskers cover all values between

25

4 Experimental Evaluation

the minimum value and the maximum value. The length of the whiskers is 1.5 IQR. All points
outside of them are considered as outliers.
Another comparison to the ground truth embedding can be done with corresponding-coordinates-
plots. A corresponding-coordinates-plot can be seen in Figure 4.2. There we plot for every
vertex the coordinate of the ground truth embedding against the coordinate of the algorithms
embedding. In the following the coordinates of the algorithms embedding are on the ~-axis
and the coordinates of the ground truth embedding are on the G-axis for the corresponding-
coordinates-plots. If the plot is a line (with an optional cyclic shift for the torus) the embedding
of the algorithm is the same as the ground truth. For higher dimensions it is possible that the
algorithm swaps axes, e.g., the G1-axis of the ground truth embedding and the G2-axis of the
algorithms embedding correlate and the G2-axis of the ground truth embedding and the G1-axis
of the algorithms embedding correlate. That is why we draw a corresponding-coordinates-plot
for each combinations of dimensions. If there is one corresponding-coordinates-plot in each
row and column where the coordinates correlate we have a good embedding.

4.2 Degrees of Freedom

There are several options and graph properties which can in�uence the algorithms perfor-
mance. We grouped them in four di�erent categories in order to evaluate their in�uence on
the embedding.

Graph Ground Space Core Embedding Periphery Embedding
number of vertices torus or cube core distances: core embedding:

estimated or phase 1 embedding
ground truth or ground truth

average degree norm: !2 or !∞ initial positions: initialization:
ground truth estimates or ground truth
or random

power-law-exponent dimension optimization method:
sampling or
gradient ascent

temperature

4.3 Overall �ality

In this section we want to answer the question how good the overall quality of the algorithm
is and which in�uence the graph properties have. We tested property combinations with
di�erent dimensions, power-law exponents, temperatures and ground spaces. The results
are shown in Figure 4.1. In Figure 4.2 are corresponding-coordinates-plots for two examples
of embeddings from the algorithm. We can clearly see that our embedding is close to the
ground truth that means that the algorithms performance is pretty good which answers
question 1 about the overall quality. The embedding is near the desired value of 1 when
using the cube as ground space for high power-law exponents and temperature 0.1. With
the results of this experiment we can answer question 2 , which graph properties in�uence
the algorithms performance. If we compare the ground spaces we notice that the algorithm
performs better if the ground space is a cube with temperature 0.1. For a higher temperature
the di�erence is more balanced. There are also some other things we can notice. We notice that
for temperature) = 0.1 the quality decreases with increasing dimension. We also investigate

26

4.3 Overall Quality

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

0.1
0.5

Cube Torus Cube Torus Cube Torus Cube Torus Cube Torus

1

2

8

32

128

1

2

8

32

128

Ground Space

Lo
g−

Li
ke

lih
oo

d
Q

uo
tie

nt

Power−Law Exponent

2.1

2.5

2.9

Figure 4.1: Experiments for the overall quality. We sampled graphs with 1000 vertices and an
average degree of 10. We run the whole algorithm (including the core phase and the periphery
phase) with di�erent power-law exponents, dimensions, temperatures and ground spaces.
The columns represent the dimension starting with dimension 1 to 5. The rows represent
di�erent temperatures.

27

4 Experimental Evaluation

Embedding of a graph with dimension 1. Embedding of a graph with dimension 2.

Figure 4.2: Corresponding-coordinates-plots for embeddings produced from the whole algo-
rithm. We sampled a GIRG with 1000 vertices, average degree of 10, power-law exponent 2.9
and a temperature of 0.1 and a torus as ground space.

which part of the algorithm has di�culties with higher dimensions. The quality is bad for
power-law exponent V = 2.1 but gets better for higher power-law exponents. As we saw in
Section 3.1.2 the core embedding is not good for small power-law exponents which results in a
bad overall embedding. This e�ect is strong with the temperature 0.5. For higher temperature
the quality gets better. The reason for this is that with a higher temperature edges that would
be non-edges in the threshold model and non-edges that are edges in the threshold model are
more likely. So we have more freedom in the embedding process.

4.4 Phase Dependence

In the following, we investigate whether the associated problems arise in the core phase or
the periphery phase. To answer this question we begin with the periphery phase. We run the
periphery phase with the core embedding of the core phase and compare it to the results of
the periphery phase with the ground truth core embedding and the result of the periphery
phase with random core positions. As we can see in Figure 4.3 the algorithm performs better
if we use the ground truth of the core embedding and is very bad when using random core
positions. We can say that we need a good core embedding in order to get a good overall
embedding. It is better to use the estimated core embedding than random core positions but
the embedding with estimated core positions is worse than the ground truth embedding. The
reason for this is that we do not have an optimal embedding for the core and thus get a worse
overall embedding. We investigate the reasons for this in the following section. We can now
answer question 3 . The core phase is the bottleneck of the algorithm since the overall quality
can not be good if the core embedding is bad. We can see that a good core embedding is
important for the overall performance of the algorithm.

28

4.4 Phase Dependence

●
●

●

●

●

1 2

co
re

 g
ro

un
d

tr
ut

h

em
be

dd
ed

 c
or

e

ra
nd

om
 c

or
e

co
re

 g
ro

un
d

tr
ut

h

em
be

dd
ed

 c
or

e

ra
nd

om
 c

or
e

Cube Torus

co
re

 g
ro

un
d

tr
ut

h

em
be

dd
ed

 c
or

e

ra
nd

om
 c

or
e

co
re

 g
ro

un
d

tr
ut

h

em
be

dd
ed

 c
or

e

ra
nd

om
 c

or
e

Cube Torus

1

2

8

32

Experiment

Lo
g−

Li
ke

lih
oo

d
Q

uo
tie

nt

Figure 4.3: Experiment for phase dependence. We generated graphs with 1000 vertices, an
average degree of 10, power-law exponent 2.5, temperature 0.1 and a torus and a cube as
ground space. We sampled graphs with dimension 1 and 2, where the experiments with
dimension 1 are in the left column and the experiments with dimension 2 are in the right
column. Then we run the periphery phase three times on the graph with di�erent core
embeddings. The �rst one is the ground truth core embedding, the second embedding is the
result of the core phase and the third embedding are random positions for the core vertices.

29

4 Experimental Evaluation

●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●
●
●

●●

●

●

●●●

●

●

●
●

● ●

●

●

●
●
●●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●
●●

●

●● ●

●
●

●

●

●
●●●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●●●●
●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●
●

●●●
●
●
●

●●
●●

●

●
●
●

●●

●

●

●

●

●

●

●

●●
●●

●
●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

1 2

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

L2 Max L2 Max L2 Max L2 Max
Cube Torus Cube Torus

ground truth estimated

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

gr
ou

nd
 tr

ut
h

ra
nd

om
gr

ou
nd

 tr
ut

h
ra

nd
om

L2 Max L2 Max L2 Max L2 Max
Cube Torus Cube Torus

ground truth estimated

1

10

20

30

Experiment

Lo
g−

Li
ke

lih
oo

d
Q

uo
tie

nt

Figure 4.4: Experiment for the core phase quality. We sampled graphs with 20000 vertices,
an average degree of 10, power-law exponent 2.5 and temperature 0.1. We sampled graphs
with dimension 1 and 2, where the experiments with dimension 1 are in the left column
and the experiments with dimension 2 are in the right column. We sampled 200 graphs per
experiment con�guration. The experiment con�guration is given on the G-axis. The used
con�guration from top to bottom is as follows. We test initialization of the spring embedder
with the ground truth and random positions. We used the !2 and the !∞ norm. We used a
cube and a torus as ground space. We estimated the pairwise distances for core vertices and
used the ground truth.

30

4.5 Core Phase Quality

Embedding of the core with dimension 1 and
torus as ground space.

Embedding of the core with dimension 1 and
cube as ground space.

Embedding of a graph with dimension 2 and
torus as ground space.

Embedding of a graph with dimension 2 and
cube as ground space.

Figure 4.5: Corresponding-coordinates-plots for the results of the core phase. We sampled a
GIRG with 20000 vertices, average degree of 10, power-law exponent 2.5, a temperature of 0.1
which resulted in 33 to 42 core vertices.

4.5 Core Phase �ality

From the previous results we can see that the performance of the algorithm heavily depends
on the core embedding. Now we want to see under which parameter con�guration the core
embedding is bad in order see where the algorithm can be improved in the future. There are
several questions we want to answer:

Does the spring embedder work correctly? Are the given distances reached?

How good are the estimated distances?

What is the in�uence of di�erent norms on the embedding?

Does the choice of the ground space a�ect the quality of the core phase?

31

4 Experimental Evaluation

Therefore, we run the core phase with several parameter combinations. The results can be seen
in Figure 4.4. Examples for di�erent ground spaces and dimensions can be seen in Figure 4.5
The �rst thing we notice is that the quality of the embedding stays the same if we use the
ground truth for the initial positions and the ground truth distances between them because in
this case the forces are zero. Another thing we can see is that the spring embedder reaches
the desired distances because the log-likelihood quotient is close to 1 when we use the ground
truth distances and random initial positions. We can see on the basis of dimension 2 that the
!2-norm is always better than the !∞-norm. When using the !∞-norm we can only move a
vertex in one dimension to get closer to a vertex. In the !2-norm we use every dimension to
change the distance to a vertex. We can answer question 4 with these results. We can see
that the estimation is not optimal for higher dimensions because the log-likelihood of the
embedding with estimated distances is worse in comparison to embedding with the ground
truth distances. When we use a cube as the ground space the quality is better compared to
the torus. From these results we can say that the spring embedder works very well whereas
the distance estimation especially for higher dimensions can be improved.

4.6 Periphery Phase �ality

In this section we want to evaluate the quality of the periphery phase of the algorithm.
Therefore we have several questions:

How good is the estimation of the initial positions for non-core vertices?

Does the norm a�ect the quality of the periphery phase?

Does the log-likelihood optimization method (gradient ascend vs. sampling) a�ect the
quality of the periphery phase?

The results for this experiment are shown in Figure 4.6. If we focus on the cube we can see
that the estimation of the initial position is pretty good because the values for the estimated
position and the ground truth are very close. Another thing we notice is that the sampling
approach is much better than the gradient ascent. A reason for this could be that we only
con�gured the hyperparameters such as the learning rate for the gradient ascent only for
the torus and not for the cube. When looking at the torus the results are not that clear. The
estimation of the positions is not that good as with the cube because the quality of the ground
truth is always better than when using the estimated positions. The reason for this is that
we do not consider the geometry of the torus when we calculate the weighted average. On
the torus we need another approach, e.g., we want to minimize the distances to all embedded
neighbors for the initial position. The results for the log-likelihood optimization methods
di�er for dimension 1 and 2. For dimension 1 the sampling approach is better whereas gradient
ascent worked better for dimension 2. A reason for this is that we only sample very few
positions (7 for = = 1000) which are not enough to �nd a good position in higher dimensions.
We can answer question 5 with these results. With higher dimension the embedding process
gets better and the embedding is generally better when using a cube as ground space. We see
that this phase also works quite well but the quality there can be improved.

32

4.6 Periphery Phase Quality

●

●●

●

●

●

1 2

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

gradient ascent sample gradient ascent sample
Cube Torus

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

es
tim

at
ed

gr
ou

nd
 tr

ut
h

gradient ascent sample gradient ascent sample
Cube Torus

1

5

10

15

20

Experiment

Lo
g−

Li
ke

lih
oo

d
Q

uo
tie

nt

Figure 4.6: Experiment for the periphery phase quality. We generated graphs with 1000
vertices, average degree of 10, power-law exponent 2.5, temperature 0.1 and a torus and a
cube as ground space. We used the ground truth embedding for the core and then run the
periphery phase. We used di�erent approaches for the log-likelihood method, which are
sampling and gradient ascent. We compare the estimation of the initial positions for non-core
vertices with the ground truth.

33

5 Conclusion

We introduced an embedding algorithm for the GIRG model in Chapter 3. The algorithm
consists of three steps, the parameter estimation, the core embedding and the periphery
embedding. This is the same structure as for the HRG embedder which we used as basis
for our algorithm. We applied the techniques of the HRG embedder to the GIRG model and
extended them to higher dimensions. We use a spring embedder for the core embedding.
The necessary forces for the spring embedder are calculated from the estimated distances
between two core vertices. The estimated distance between two vertices is calculated from
their common neighborhood. The spring embedder was adapted to the torus and to higher
dimensions such that always the shortest distance on the torus is used. After the core is
embedded we embed the vertices of the periphery. This is done by calculating the initial
position as the weighted average of the embedded neighbors and then iteratively changing
the position for each vertex by optimizing its log-likelihood. In the periphery embedding we
extended the heuristic approach from the HRG embedder for optimizing the log-likelihood of
one vertex. We sampled not just positions inside a sampling radius but we repeat that while
decreasing the sample radius. We also introduced a new approach for optimizing the log-
likelihood. We use the gradient of the log-likelihood function to maximize the log-likelihood.
These are the essential steps for the algorithm.
We also implemented the algorithm and made an extensive evaluation for this algorithm in
Chapter 4. We found that the algorithm is working rather well. A good core embedding is
important to embed the periphery. An insu�cient core embedding leads to a bad overall
embedding. Fortunately, the performance of the spring embedder is good and the spring
embedder reaches the desired distances. If we look at the periphery phase in an isolated way
where we use the ground truth core embedding the resulting embedding is quite good. If we
look at graph properties we notice that the quality of the embedding decreases with higher
dimensions and increases with higher power-law exponent. If we use a cube instead of a torus
as ground space the quality is also better most of the time.
In conclusion, we veri�ed that our algorithm for the GIRG model brings a reduction of
complexity compared to the HRG model and extension to higher dimensions as well as a good
performance.

5.1 Future Work

Although our algorithm provides good results, there are a few things that can be improved
or tested. The improvements can be split in two main areas. The �rst one is the quality
of the embedding and the second one the running time of the algorithm. We saw that the
variance for the estimation of the common neighborhood is quite large. This estimation
could be improved by providing direct solutions instead of approximations or by using other
topological features of the graph to calculate the common neighborhood respectively the
distance between two vertices. In the periphery phase we could improve the estimation of the
initial position. Currently the position is calculated as if we would use a cube. For the torus
it is not clear what the weighted average is. A promising approach is to choose the initial

35

5 Conclusion

position such that the distance to all other neighbors is minimized. In the periphery phase
we could also improve the gradient ascent. There we can add a second hyperparameter to
decrease the learning rate. Another idea is to decrease the learning rate for all vertices that
are already embedded. It is more likely that they already have a good position which is lost
when the learning rate is too large. It would be also helpful to �nd other methods to measure
the quality of the embedding such as quantifying the corresponding-coordinates-plots with
linear regression. Additionally we would like to compare our embedder to the hyperbolic
embedder.
Regarding the running time we need to speed up the log-likelihood calculation. To perform
the speedup as described in this thesis we need a geometric data structure to represent the
graph. The data structure should support higher dimensions and it should be a dynamic data
structure. The data structure of the hyperbolic embedder can not be used because of the one
dimension. Another data structure for GIRGs in [Blä+22] also does not �t the requirements
because the position of the vertices can not be dynamically changed. So we need to �nd a
data structure that meets both requirements.
Furthermore, we see a good opportunity to perform challenging tests of our algorithm when
applying it to real world data and and expect promising results.

36

Bibliography

[BF22] Thomas Bläsius and Philipp Fischbeck. “On the External Validity of Average-
Case Analyses of Graph Algorithms”. In: 30th Annual European Symposium on
Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany. Edited
by Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman.
Vol. 244. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 21:1–21:14.
DOI: 10.4230/LIPIcs.ESA.2022.21.

[BFK21] Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann. “Force-Directed
Embedding of Scale-Free Networks in the Hyperbolic Plane”. In: The Sea. 2021.

[BFKL16] Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. “E�cient
Embedding of Scale-Free Graphs in the Hyperbolic Plane”. In: 24th Annual
European Symposium on Algorithms (ESA 2016). 2016, 16:1–16:18. DOI: 10.4230/
LIPIcs.ESA.2016.16.

[Blä+22] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel
Penschuck, and Christopher Weyand. “E�ciently generating geometric inho-
mogeneous and hyperbolic random graphs”. In: Netw. Sci. Volume 10 (2022),
pp. 361–380. DOI: 10.1017 /nws.2022.32.

[BS03] Stefan Bornholdt and Heinz Georg Schuster, eds. Handbook of graphs and
networks : from the genome to the internet. Weinheim, 2003.

[CSN07] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. “Power-Law
Distributions in Empirical Data”. In: SIAM Rev. Volume 51 (2007), pp. 661–703.

[FGKS23a] Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller. A
simple statistic for determining the dimensionality of complex networks. 2023.
arXiv: 2302.06357 .

[FGKS23b] Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller.
“Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs”.
In: 50th International Colloquium on Automata, Languages, and Programming,
ICALP 2023, July 10-14, 2023, Paderborn, Germany. Edited by Kousha Etessami,
Uriel Feige, and Gabriele Puppis. Vol. 261. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023, 62:1–62:13. DOI: 10.4230/LIPIcs.ICALP.2023.62.

[GF18] Palash Goyal and Emilio Ferrara. “Graph embedding techniques, applications,
and performance: A survey”. In: Knowl. Based Syst. Volume 151 (2018), pp. 78–
94. DOI: 10.1016/j.knosys.2018.03.022.

[Keu18] Ralph Keusch. “Geometric Inhomogeneous Random Graphs and Graph Color-
ing Games”. en. Zurich: ETH Zurich, 2018. DOI: 10.3929/ethz-b-000269658.

[Kob13] Stephen G. Kobourov. “Force-Directed Drawing Algorithms”. In: Handbook of
Graph Drawing and Visualization. 2013.

37

https://doi.org/10.4230/LIPIcs.ESA.2022.21
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/10.1017/nws.2022.32
https://arxiv.org/abs/2302.06357
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.3929/ethz-b-000269658

Bibliography

[Kri+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguñá. “Hyperbolic geometry of complex networks”. In: Phys. Rev. E
Volume 82 (Sept. 2010), p. 036106. DOI: 10.1103/PhysRevE.82.036106.

[LK07] David Liben-Nowell and Jon M. Kleinberg. “The link-prediction problem for
social networks”. In: J. Assoc. Inf. Sci. Technol. Volume 58 (2007), pp. 1019–1031.
DOI: 10.1002/asi.20591.

[New01] M. E. J. Newman. “Clustering and preferential attachment in growing net-
works”. In: Phys. Rev. E Volume 64 (July 2001), p. 025102. DOI: 10.1103/PhysRevE.
64.025102.

[PPK15] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri V. Krioukov. “Net-
work Mapping by Replaying Hyperbolic Growth”. In: IEEE/ACM Trans. Netw.
Volume 23 (2015), pp. 198–211. DOI: 10.1109/TNET.2013.2294052.

[Tan+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
“LINE: Large-Scale Information Network Embedding”. In: Proceedings of the
24th International Conference on World Wide Web. Florence, Italy: International
World Wide Web Conferences Steering Committee, 2015, pp. 1067–1077. ISBN:
9781450334693. DOI: 10.1145/2736277.2741093.

[VHHK19] Ivan Voitalov, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Kri-
oukov. “Scale-free networks well done”. In: Phys. Rev. Res. Volume 1 (Oct. 2019),
p. 033034. DOI: 10.1103/PhysRevResearch.1.033034.

[WHWW21] Liping Wang, Fenyu Hu, Shu Wu, and Liang Wang. “Fully Hyperbolic Graph
Convolution Network for Recommendation”. In: CIKM ’21: The 30th ACM
International Conference on Information and Knowledge Management, Virtual
Event, Queensland, Australia, November 1 - 5, 2021. Edited by Gianluca Demar-
tini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong. ACM,
2021, pp. 3483–3487. DOI: 10.1145/3459637.3482109.

38

https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1002/asi.20591
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1109/TNET.2013.2294052
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1103/PhysRevResearch.1.033034
https://doi.org/10.1145/3459637.3482109

	Introduction
	Preliminaries
	Hyperbolic Random Graphs
	Hyperbolic Space
	Hyperbolic Random Graphs

	Geometric Inhomogeneous Random Graphs
	Weighted Geometric Space
	Model
	Relation to HRG

	Spring Embedder
	Likelihood

	Embedding Algorithm
	Hyperbolic Embedding
	Parameter Estimation
	Core Embedding
	Periphery Embedding

	Weighted Geometric Embedding
	Parameter Estimation
	Core Embedding
	Periphery Embedding
	Algorithm

	Experimental Evaluation
	Evaluation Process
	Degrees of Freedom
	Overall Quality
	Phase Dependence
	Core Phase Quality
	Periphery Phase Quality

	Conclusion
	Future Work

	Bibliography

