
Towards the Evaluation of Graph
Embeddings with Deep Decoders

Bachelor’s Thesis of

Paul Johannes Wagner

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius
Second reviewer: Prof. Dr. Dorothea Wagner
Advisors: Dr. Maximilian Katzmann

18.01.2023 – 19.05.2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I hereby declare that this document has been composed by myself and describes my own work,
unless otherwise acknowledged in the text. I also declare that I have read and observed the
Satzung zur Sicherung guter wissenschaftlicher Praxis am Karlsruher Institut für Technologie.

Karlsruhe, 19.05.2023

. .
(Paul Johannes Wagner)

Abstract

Graphs are ubiquitously used to represent relationships between objects and data in real-world
scenarios. They are, for example, used for road networks, citations of scientific publications,
social networks, and program code dependencies. Relevant problems when handling graphs
like link prediction and node classification involve predicting, comparing, and visualizing
graphs and their nodes. These tasks can be addressed using graph embeddings. To achieve
accurate results, the embedding has to capture as much information about the graph as
possible while keeping the dimension of the embedding low. While existing methods exhibit
biases when evaluating these embedding qualities, we are interested in an unbiased evaluator.
To this end, we explore a general-purpose approach to quantifying the quality of graph
embeddings that makes no assumptions over underlying models, distances, or applications.
We propose using a neural network as a decoder that predicts the existence of an edge based
on the embedding coordinates and use the achieved average precision to measure the quality
of an embedding.
Using our implementation, we can distinguish between known good and bad graph em-

beddings. We also show how graph subsampling reduces the required training time of the
decoder by an order of magnitude, while also slightly increasing the average precision.

Zusammenfassung

Graphen werden allgegenwärtig verwendet, um Beziehungen zwischen Objekten und Daten in
realen Szenarien darzustellen. Sie werden beispielsweise für Straßennetze, Zitationen wissen-
schaftlicher Veröffentlichungen, soziale Netzwerke und Abhängigkeiten von Programmcode
verwendet.

Relevante Aufgaben auf Graphen wie Kantenvorhersage und Knotenklassifizierung bein-
halten die Vorhersage, den Vergleich oder die Visualisierung. Diese Aufgaben können mithilfe
von Graph-Einbettungen gelöst werden. Um dies effizient und akkurat durchzuführen, muss
die Einbettung so viele Informationen über den Graphen wie möglich erfassen, während die
Dimension der Einbettung niedrig gehalten wird. Während die existierenden Methoden dazu
neigen, Annahmen über zugrunde liegende Modelle, Kantenlängen oder Anwendungen zu
machen, bemühen wir uns um ein möglichst unbefangenes Qualitätsmaß. Zu diesem Zweck
untersuchen wir einen allgemein anwendbaren Ansatz zur Quantifizierung der Qualität von
Graph-Einbettungen, der diese Annahmen nicht macht. Dafür schlagen wir vor, ein neuro-
nales Netzwerk als Decoder zu verwenden, das darauf trainiert wird, Kanten anhand von
Einbettungs-Koordinaten vorherzusagen, und die erreichte Präzision zur Messung der Qualität
einer Einbettung zu nutzen.

Mit unserer Implementierung können wir zwischen bekannten guten und schlechten Graph-
Einbettungen unterscheiden. Wir zeigen auch, dass Graphen-Subsampling die erforderliche
Trainingszeit des Decoders um eine Größenordnung reduziert und gleichzeitig die durch-
schnittliche Präzision leicht erhöht.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2

2 Preliminaries 3
2.1 Graphs and Embeddings . 3
2.2 Neural Networks . 3
2.3 Torus . 5
2.4 Random Geometric Graphs (RGG) . 5
2.5 Geometric Inhomogeneous Random Graphs (GIRG) 6

3 Framework 7
3.1 Feature Preprocessing . 7
3.2 Dataset Generation . 7
3.3 Dataset Splitting . 8
3.4 Epoch Graph Subsampling . 9

3.4.1 Weighted Random Sampling (WRS) 9
3.4.2 Breadth-first search (BFS) and Depth-first search (DFS) 10
3.4.3 Random Walk (RW) . 11
3.4.4 Random Jump (RJ) and Random Jump Star (RJ*) 11

3.5 Neural Network Structure . 13
3.6 Quality Quantification . 13
3.7 Early Stopping . 14

4 Results 15
4.1 Good Embeddings . 15

4.1.1 RGG threshold . 16
4.1.2 Reconstruction . 17

4.2 Bad Embeddings . 18
4.3 Epoch Subsampling . 18
4.4 Dataset Standardization . 20
4.5 Dataset Sorting . 20
4.6 Early Stopping . 21

5 Conclusion 23

Bibliography 25

iii

1 Introduction

1.1 Motivation

Graphs are an efficient method of representing relationships between objects and data in
real-world scenarios [Slu14 | CZC18]. They are, for example, used for road networks, citations
of scientific publications, social networks, and program code dependencies [Sal+21 | CZC18].
While social researchers might be interested in discovering friendships in social networks, biol-
ogists use graphs to model and analyze the interaction patterns of proteins [BNRF21 | Yue+19].
These tasks can be approached using graph embeddings. Graph embeddings compress large
and complex graphs into low-dimensional and fixed-size vectors [CZC18 | Dev22]. We use
graph embeddings to predict, compare, and visualize the characteristics of graphs and their
nodes. To perform these tasks efficiently, the embedding has to capture as much information
about the graph as possible while keeping the dimension of the embedding low.
That raises the question how we quantify how good an embedding is. There are several

methods to measure the quality of an embedding. Maximum likelihood estimation (MLE), for
example, assumes that the graph emerged from an underlying geometry according to some
rule defined by a model. Given an embedding of the graph, we measure the probability of the
graph emerging again when using the embedded coordinates. The disadvantage is that we do
not know the underlying model of real-world graphs (if one even exists) [BFKL16]. Another
method, the edge-length histogram, measures the length of edges and non-edges. We then
count how many edges are longer than non-edges. It assumes that distances are the main
criterion for adjacency, which may not always be the case [BFK21]. Otherwise a downstream
task could evaluate the embedding based on the task performance [ZZP20]. But all these
methods cannot be used on arbitrary embeddings without making any prior assumptions,
and therefore without any bias. Theoretically, as long as the relevant information of the
graph structure is captured by the embedding, we can perform tasks like link prediction
(for discovering relations) and classifications (for labeling nodes) with confidence assuming
that we know how to interpret it. In this thesis we explore general-purpose approaches to
quantifying the quality of graph embeddings that make no assumptions about underlying
models, distances, or applications.
We propose using a neural network (NN) as a decoder and using the performance of the

decoder to measure the quality of an embedding. The decoder is trained on the graph and
embedding to predict if two nodes are adjacent. But using a NN provides its own challenges.
First and foremost, neural networks require ample computational effort. Training the decoder
naively takes time proportional to the number of nodes in the graph squared. Especially for
graphs with millions of nodes, as in social networks like Twitter [Deg23], the training time
quickly grows into infeasible scales. This raises the second question, how can we speed up the
decoder? Additionally, the datasets generated from real-world graphs have an inherently large
class imbalance. The amount of edges is considerably lower than the amount of non-edges.
Theoretically, a NN that never predicts an edge to exist can easily reach a high prediction
accuracy. We look at how graph subsampling can increase the performance of the decoder in
both speed and accuracy. Lastly, NNs are black boxes. It is hard to tell why we get certain

1

1 Introduction

outputs. So when we receive bad results, it is unclear whether the embedding was bad or the
NN performed poorly. We therefore also look at how the decoder performs on known good
and bad embeddings to visualize its effectiveness.

We implement our findings as a Python framework1. Our results show that the decoder is
able to distinguish known good and bad graph embeddings accurately. Additionally, we show
that training the decoder on subgraphs generated with our alteration of the random jump
algorithm reduces the required training time of the decoder by an order of magnitude, while
also slightly increasing the average precision.

1.2 Outline

First, the preliminaries declare the notation and concepts of the thesis. It explains graphs
and graph embeddings, neural networks, the torus, random geometric graphs, and geometric
inhomogeneous random graphs. In Chapter 3 we explain our framework that implements
our research questions as well as its important hyperparameters. In Chapter 4 we present
our results with the framework in its different configurations. In Chapter 5 we conclude our
results and point out possible future work.

1See the implementation at https://github.com/HydrofinLoewenherz/embedding-eval-framework.

2

https://github.com/HydrofinLoewenherz/embedding-eval-framework

2 Preliminaries

In this chapter we give general information about the notation and concepts used in the thesis.
We describe graphs and embeddings, as well as neural networks, and a selection of graph
types.

2.1 Graphs and Embeddings

We denote a graph 𝐺 = (𝑉 , 𝐸), with a set 𝑉 of nodes and a set 𝐸 of edges. An edge is a pair
{𝑢, 𝑣} = 𝑒 ∈ 𝐸 of nodes 𝑢, 𝑣 ∈ 𝑉 . Two nodes are adjacent if there exists an edge between them.
The size 𝑛 = |𝑉 | of a graph is the number of nodes in the graph. The degree 𝑘 of a node 𝑢 is
the number of edges |{𝑒 : {𝑢, 𝑣} = 𝑒 ∈ 𝐸}| that connect 𝑢 with another node. A sparse graph
is a graph with only Θ(𝑛) edges. In contrast, a general graph can have up to 𝑛2 edges.

An induced graph 𝐺 [𝑉 ′] of a graph 𝐺 and a node set 𝑉 ′ ⊂ 𝑉 is defined as𝐺 [𝑉 ′] = (𝑉 ′, 𝐸′)
with 𝐸′ = {𝑒 : {𝑢, 𝑣} = 𝑒 ∈ 𝐸 and 𝑢, 𝑣 ∈ 𝑉 ′}.

A path 𝑃 = (𝑤0, . . .𝑤𝑖) is a collection of nodes 𝑤0, . . . ,𝑤𝑖 for that ∀1≤ 𝑗≤𝑖 {𝑤 𝑗−1,𝑤 𝑗 } ∈ 𝐸.
We call a graph connected if, for any pair of nodes 𝑢, 𝑣 , there exists a path 𝑃𝑢𝑣 = (𝑢, . . . , 𝑣)
between them. A graph component 𝐺 ′ = 𝐺 [𝑉 ′] is a subgraph induced by a node set 𝑉 ′ such
that 𝐺 [𝑉 ′] is connected, while 𝐺 [𝑉 ′ ∪ {𝑣}] for any 𝑣 ∈ 𝑉 \𝑉 ′ is not.

A graph embedding assigns a feature vector 𝑓𝑢 ∈ 𝐹 = R𝑑 to every node 𝑢, with 𝑑 being the
dimension of the embedding.

2.2 Neural Networks

An artificial neural network (ANN) or neural network (NN) is amachine learning (ML) model in-
spired by the networks of biological neurons. One of the simplest ANN architectures is the per-
ceptron, modelling only a single artificial neuron. A perceptron takes inputs (𝑥0, 𝑥1, . . . , 𝑥𝑐) = 𝑥 ,
computes the weighted sum, and applies an activation function, for example a step or sigmoid
function [Gér19]. The activation function is chosen depending on the task, the NN should
perform. A perceptron with weights𝑤 = (𝑤0, . . . ,𝑤𝑖),𝑤𝑏 , and bias 𝑏 can be described as

ℎ𝑤,𝑏 (𝑥) = act(
∑︁
0≤𝑖≤𝑐

𝑤𝑖 · 𝑥𝑖) +𝑤𝑏 · 𝑏 = act(𝑥⊤𝑤) +𝑤𝑏 · 𝑏. (2.1)

Adjusting these weights to achieve the desired output is the core element of the training
process.
Usually, multiple perceptrons are bundled in parallel into layers, which are then stacked

on top of each other. The perceptrons’ outputs in one layer are fed into the perceptrons of
the next. Layers are typically fully connected, meaning that the output of each perceptron of
one layer is fed into every other perceptron in the next layer. The operation performed by a
single layer can be described as a matrix multiplication. Graphical processing units (GPUs)
are especially suited for this task and are hence often used to train and operate NNs.

3

2 Preliminaries

Figure 2.1: The plot shows a three-dimensional visualization of a torus on the left and a
graph on a flat torus on the right. The graph edges in red wrap around the opposite side.

A feed forward network (FNN) is a type of ANN in which the information in the network
moves only in one direction. That means, that the output of a layer is not fed back into itself,
nor any other layer before itself, which may be done in more complex architectures such as
recurrent neural networks (RNN). The resulting network consists of the first layer (input layer),
a number of intermediate layers (hidden layers), and the last layer (output layer). A NN that
has multiple hidden layers is called a deep neural network (DNN). Feeding a feature vector
into a DNN can be expressed as applying multiple matrix multiplications in succession.

A DNN is trained by feeding it a feature vector 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑐) to produce an output
vector. A loss function then scores the output vector against the desired output vector. Using
the backpropagation algorithm [RHW86], the gradients of the loss function with respect to
all weights are computed. The weights are then slightly adjusted, following the gradient, to
reduce the result of the loss function. The relative amount by which the weights are adjusted
is described by the learning rate and may further be controlled using dedicated optimizers (e.g.
ADAM [KB17]). By repeating this process multiple times on a whole dataset of input vectors,
the loss function is minimized, with the process also being known as stochastic gradient descent
(SGD).

A dataset for ML is typically split into three disjoint sets, the train set, the validation set, and
the test set. The train set is directly used to train the NN. The validation set is used to validate
the quality of the training while the NN is trained. It is used to update hyperparameters,
such as the number of epochs. Lastly, the test set is used to test the generality of the NN after
training. For training the NN, it is typically presented with the whole train set in mini-batches
of multiple input vectors each epoch. SGD is applied after each mini-batch.

We generally want to prevent the NN from overfitting and losing generality. An overfitted
NN gives good scores on data it has been trained on but is bad at labeling previously unseen
data.

4

2.3 Torus

Figure 2.2: The plot shows an RGG with 500 nodes and a degree of 10.

2.3 Torus

A torus is a hypercube [0, 1]𝑑 with the opposite sides being identified. We see an example of
a two-dimensional torus in Figure 2.1. On the left, we see a three-dimensional visualization of
the two-dimensional torus as a donut. On the right, we see a two-dimensional visualization
of the torus, called a flat torus. The graph on its surface shows how the edges (in red) wrap
around the opposite side.

2.4 Random Geometric Graphs (RGG)

Random Geometric Graphs (RGGs) are undirected graphs that resemble real-world networks
[Pen03]. They can be used to model ad hoc networks [Nek07]. RGGs are constructed by
placing 𝑛 nodes on a unit square at random. Two nodes are adjacent if their distance is
smaller than some threshold 𝑟 . An example can be seen in Figure 2.2. We approximate1 the
average node degree 𝑘 for a graph of size 𝑛 and a threshold radius 𝑟 on a unit square to be
𝑘 = (|𝑉 | − 1) · (𝜋 · 𝑟 2). We can rearrange to

𝑟 =

√︄
𝑘

(|𝑉 | − 1) · 𝜋 . (2.2)

If we choose a constant target for the average degree, the created graph has (𝑛·𝑘)/2 = Θ(𝑛)
edges. The generated graph is therefore sparse.
We define the feature vector for a node of an RGG with position 𝑝 = (𝑝𝑥 , 𝑝𝑦) as

𝑓 =
[
𝑝𝑥 𝑝𝑦

]⊤
. (2.3)

1Nodes close to the boundary of the square have a lower node degree

5

2 Preliminaries

Figure 2.3: The plot shows a GIRG with 100 nodes and a degree of 10 duplicated next to itself.
By showing it next to itself, we see the wrapping characteristic of the flat torus.

2.5 Geometric Inhomogeneous Random Graphs (GIRG)

Geometric Inhomogeneous Random Graphs (GIRGs) are undirected graph structures that
approximate complex real-world networks [BKL19]. The adjacency of nodes is not only defined
by their proximity, but also by weighting of individual nodes. They have a power-law degree
distribution and high clustering [BKL19]. They can be generated efficiently programmatically
[Blä+19]. We see an example of GIRGs in Figure 2.3, visualized on a torus.
We chose GIRGs as an example of complex real-world networks because we know the

ground-truth embedding of the graph, allowing us to evaluate the framework on good embed-
dings resembling real-world networks.

We define the feature vector for a node of a GIRG with position 𝑝 = (𝑝𝑥 , 𝑝𝑦) and weight𝑤
as

𝑓 =
[
𝑝𝑥 𝑝𝑦 𝑤

]⊤
. (2.4)

6

3 Framework

The basic approach of the framework1 is that based on a graph and its embedding in a
coordinate system, a decoder is trained to predict if two nodes are adjacent, given only their
features. Essentially, we train the decoder to reconstruct the graph given its embedding in a
feature space. We then measure the quality of the embedding by how good the reconstruction
of the decoder is compared to the original graph. The idea is that if the embedding efficiently
reflects the graph, the decoder should be able to reconstruct the graph. Should the embedding
not capture all necessary information about the graph or capture too many unnecessary
features, the decoder might struggle or even be unable to create a good reconstruction.
In the following sections we describe key features of the framework, such as dataset

generation, subsampling, and quality quantification.

3.1 Feature Preprocessing

Feature preprocessing is an important step to achieve good classification performance in ML
exercises. While deep learning does not depend on feature preprocessing as much as other
ML exercises, it still benefits from it. Dataset normalization is one approach where the dataset
feature vectors are either scaled or transformed to give each feature an equal contribution
[SS20]. As this framework is built to make no assumptions, we use the standardization
transformation, also called z-score normalization. It normalizes each feature row to have
a mean of 0 and a standard deviation of 1. In Equation (3.1), we see three feature vectors
(left) and their standardization (right) with the last feature row highlighted in red. First, we
calculate the mean𝑚 and the standard deviation 𝑠 for each row and then transform all entries
𝑓 in a row with their respective standard deviation and mean such that 𝑓 ′ = (𝑓 −𝑚)/𝑠.


0.252
0.816
1.125

 ,

0.489
0.094
0.919

 ,

0.851
0.75
0.957

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒−−−−−−−−−→

−1.131
0.87
1.393

 ,

−0.17
−1.4
−0.908

 ,

1.301
0.53
−0.485

 (3.1)

3.2 Dataset Generation

We want the decoder to be able to decide if two nodes 𝑢, 𝑣 ∈ 𝑉 are adjacent, given their
feature vectors 𝑓𝑢, 𝑓𝑣 ∈ 𝐹 . For this, we denote a data point as a tuple ({𝑓𝑢, 𝑓𝑣}, 𝑙) with feature
vectors 𝑓𝑢, 𝑓𝑣 ∈ 𝐹 and a label 𝑙 ∈ {0, 1}. The label is set to 1 if 𝑢 and 𝑣 are adjacent, otherwise
we set the label to 0, resulting in two classes, the 1-labeled class, and the 0-labeled class.
Our classification task is therefore a supervised binary classification, as we know the labels
of our data (supervised) and want to decide whether two nodes are adjacent or not (binary
classification).

1See the implementation at https://github.com/HydrofinLoewenherz/embedding-eval-framework.

7

https://github.com/HydrofinLoewenherz/embedding-eval-framework

3 Framework

2000 4000 6000 8000 10000
Graph Size

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Pe
rc

en
ta

ge
 o

f 1
-la

be
le

d
da

ta

Type
Graph
Subgraph

Figure 3.1: The plot shows the percentage of 1-labeled data for an RGG (green) and a subgraph
(orange) for different graph sizes over 100 iterations. The RGG has an average node degree
of 10, and the subgraph is generated with RJ*-subsampling at 𝛼 = 0.0. The percentage of
1-labeled data for the graph approaches 0% with increasing graph size. For the subgraph, it is
steadily higher at around 5%.

A NN expects a single vector as its input. We therefore concatenate the feature vectors
𝑓𝑢, 𝑓𝑣 of a data point such that

𝑓𝑢𝑣 =
[
𝑓𝑢1 . . . 𝑓𝑢𝑛 𝑓𝑣1 . . . 𝑓𝑣𝑛

]⊤
. (3.2)

With 𝑛 nodes, we have up to 𝑛2 inputs for the decoder, one for each combination 𝑢, 𝑣 ∈ 𝑉 .
We reduce the amount of inputs by skipping one of each pair 𝑓𝑢𝑣, 𝑓𝑣𝑢 . For this, we have two
options, we either skip every 𝑓𝑢𝑣 if 𝑓𝑢𝑣 < 𝑓𝑣𝑢 , or we skip one of the two at random. But even
after skipping one of each 𝑓𝑢𝑣, 𝑓𝑣𝑢 and all self-loops 𝑓𝑢𝑢 , we still have Θ(𝑛2) inputs.

𝑛(𝑛 − 1)
2

= Θ(𝑛2). (3.3)

We also notice an increasing class imbalance with increasing graph size. For sparse graphs,
the amount of 1-labeled data points is only Θ(𝑛). The remaining Θ(𝑛2) − Θ(𝑛) = Θ(𝑛2)
are 0-labeled. We can see in Figure 3.1 how the percentage of edges in the graph (green)
approaches 0% with increasing graph size. In Section 3.4 we explain how to mitigate this
issue.

3.3 Dataset Splitting

As described before, we have to split the dataset into the train set, validation set, and test set.
We split the dataset by subsampling the graph and subtracting the sample from the graph.
First, we subsample the test set and then the validation set. The remaining graph is used as
the train set. Generally, we use the same subsampling algorithm for splitting the dataset as
for subsampling each epoch, as described in the following section.

8

3.4 Epoch Graph Subsampling

subgraph size = 50 subgraph size = 100 subgraph size = 200

Figure 3.2: The plot shows WRS subgraphs on an RGG with 500 nodes for different subgraph
sizes. The nodes and edges in red represent the subgraph. We see that smaller subgraphs
have a relatively low number of edges compared to the larger subgraphs. The chance of two
adjacent nodes to be chosen at random is considerably lower with a smaller subgraph size
and a larger graph size.

3.4 Epoch Graph Subsampling

In a common ML setup, the NN trains on the complete train set in each epoch. As described
in Section 3.2, this results in Θ(𝑛2) inputs for each epoch. For graphs with millions of nodes,
the time needed to train the decoder would become infeasible.
Subsampling graphs is a commonly used method to speed up processing [Sal+21]. We

therefore generate a new fixed-size subgraph for each epoch. We sample a subset of nodes
𝑉 ′ ⊂ 𝑉 and use the induced subgraph 𝐺 [𝑉 ′] as the dataset for that epoch.

By subsampling the graph before generating the dataset, we can limit both the number
of inputs and the class imbalance. We see in Figure 3.1 that the percentage of edges in the
subgraph (orange), obtained by subsampling, is generally higher and steadier, here at around
5%, while the percentage of edges in the graph (green) approaches 0% with increasing graph
size. We can subsample with different algorithms, e.g.

Weighted Random Sampling (WRS)

Breadth-first search (BFS) and Depth-first search (DFS)

Random Walk (RW)

Random Jump (RJ)

Random Jump Star (RJ*)

In the following sections we give an overview of how these algorithms may be implemented
and used for subsampling in this framework.

3.4.1 Weighted Random Sampling (WRS)

Weighted Random Sampling (WRS) assigns a weight to each node in the graph. It then chooses
nodes at random with a probability that is proportional to their weight. Higher weighted
nodes have a higher chance to be sampled. We could also assign the weights to the dataset
directly, however this is out of scope for this thesis.

9

3 Framework

BFS DFS

Figure 3.3: The plot shows two subgraphs on an RGG generated with a BFS (left) and DFS
(right). The subgraph nodes and edges are highlighted in red.

Based on the weights assigned, the sampled subgraph has different properties. In general,
we want to assign weights, that are easy to compute, to minimize the overhead [Sal+21]. The
easiest weights are uniform weights, that is, the same weight for all nodes. The resulting
subgraph is easily sampled but shows low connectivity as seen in Figure 3.2. Low connectivity
means a higher class imbalance and is therefore not preferred. Additionally, as we can see in
Figure 3.2, the connectivity strongly correlates with the subgraph size relative to the graph
size. The connectivity in the left-most subgraph is considerably lower than on the right,
where the subgraph size is higher. To use WRS effectively, we have to choose a subgraph size
dependent on the graph size.

3.4.2 Breadth-first search (BFS) and Depth-first search (DFS)

Breadth-first search (BFS) and depth-first search (DFS) are search algorithms that generate
trees from graphs. We use these algorithms to generate subgraphs by limiting the number of
nodes visited to the target subgraph size and using the nodes of the tree as the subset 𝑉 ′.
The DFS generates line-shaped subgraphs, while the BFS-generated subgraphs are disc-

shaped. We see this in Figure 3.3. Although both subgraphs are generated on the same graph,
the BFS subgraph contains many more edges than the DFS subgraph.

A problem we encounter with BFS and DFS is, that the root node of the tree has to be on a
graph component that has at least the target subgraph size. The algorithms are not able to
jump between graph components2.

2BFS and DFS are able to detect this and could be altered to use additional tree roots.

10

3.4 Epoch Graph Subsampling

Algorithm 3.1: Graph subsampling
with RW
Input: Graph 𝐺 and target size 𝑠
Output: 𝑉 ′ ⊂ 𝑉 with |𝑉 ′ | = 𝑠

1 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← []
2 𝛼 ← 0.15
3 choose 𝑣 ∈ 𝑉 at random
4 𝑣𝑠 ← 𝑣

5 while |𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 | < 𝑠 do
6 if 𝑣 ∉ 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
7 append 𝑣 to 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑
8 choose 𝑟 ∈ [0, 1] at random
9 if 𝑟 ≥ 𝛼 then
10 𝑣 ← 𝑣𝑠
11 else
12 𝑣 ← 𝑣𝑛 ∈ 𝑉 neighbor of 𝑣 at

random
13 return 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Algorithm 3.2: Graph subsampling
with RJ
Input: Graph 𝐺 and target size 𝑠
Output: 𝑉 ′ ⊂ 𝑉 with |𝑉 ′ | = 𝑠

1 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← []
2 𝛼 ← 0.15
3 choose 𝑣 ∈ 𝑉 at random
4 while |𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 | < 𝑠 do
5 if 𝑣 ∉ 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
6 append 𝑣 to 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑
7 choose 𝑟 ∈ [0, 1] at random
8 if 𝑟 ≥ 𝛼 then
9 𝑣 ← 𝑣𝑟 ∈ 𝑉 at random

10 else
11 𝑣 ← 𝑣𝑛 ∈ 𝑉 neighbor of 𝑣 at

random
12 return 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑

3.4.3 RandomWalk (RW)

Random Walk (RW) is an algorithm to traverse graphs. We choose a starting node 𝑣𝑠 at
random and traverse along its edges at random. At every step, with a probability 𝛼 , we jump
back to the starting node instead of walking an edge. It can be implemented as shown in
Algorithm 3.1.

One issue of RW is that we can no longer detect if there are any nodes reachable from
the current node that have not been traversed yet. If 𝑣𝑠 is part of a graph component that is
smaller than the target size 𝑠 , the algorithm will end up in an infinite loop.

3.4.4 Random Jump (RJ) and Random Jump Star (RJ*)

Random Jump (RJ) is similar to RW, but instead of going back to the starting node 𝑣𝑠 with
a probability 𝛼 , a random node is chosen instead. This resolves the problem of RW getting
stuck on a graph component smaller than the target size, but decreases connectivity of the
subgraph. It can be implemented as shown in Algorithm 3.2.

Note that if we set the jump probability 𝛼 = 0.0, the algorithm no longer performs jumps and
gets stuck on small graph components. To resolve this, we introduce an additional element,
the (relative) boredom threshold 𝛽 . If the algorithm does not visit a node not previously
traversed in 𝛽 · 𝑠 steps, it jumps to a node in the graph at random. This adjustment has the
additional advantage that we can choose small values of 𝛼 without having to worry about the
runtime. We call this alteration Random Jump Star (RJ*). It can be implemented as shown
in Algorithm 3.3. The jump probability 𝛼 allows us to influence the number of disconnected
(or loosely connected) components in the subgraph. Setting the jump probability to 𝛼 = 0.0
gives us a method close to the base implementation of RW that shows structures similar to
BFS/DFS. Setting it to 𝛼 = 1.0 essentially produces a WRS with uniform weights. It allows us
to smoothly transition between the two extremes.

11

3 Framework

Algorithm 3.3: Graph subsampling with RJ*
Input: A graph 𝐺 and a target size 𝑠
Output: A subset 𝑉 ′ of 𝑉 with |𝑉 ′ | = 𝑠

1 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← []; 𝛼 ← 0.15; 𝛽 ← 0.90; 𝑏 ← 0
2 choose 𝑣 ∈ 𝑉 at random
3 while |𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 | < 𝑠 do
4 if 𝑣 ∉ 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
5 append 𝑣 to 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑
6 𝑏 ← 0
7 else
8 𝑏 ← 𝑏 + 1
9 choose 𝑟 ∈ [0, 1] at random
10 if 𝑟 ≥ 𝛼 or 𝑏 > 𝛽 · 𝑠 then
11 𝑣 ← 𝑣𝑟 ∈ 𝑉 at random
12 else
13 𝑣 ← 𝑣𝑛 ∈ 𝑉 neighbor of 𝑣 at random
14 return 𝑉𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Depending on the structure of the original graph that is sampled, we can choose different
settings for the jump probability 𝛼 and subgraph size 𝑠 . We see these subgraph structures in
Figure 3.4 for both RGGs and GIRGs. Low values of 𝛼 (left) result in subgraphs with more
edges, while higher values of 𝛼 (right) have fewer edges but a broader graph coverage.

alpha = 0.0 alpha = 0.15 alpha = 1.0

Figure 3.4: The plot shows an RGG (top) and GIRG (bottom) with subgraphs generated for
different jump probabilities 𝛼 at 0.0 (left), 0.15 (center), and 1.0 (right). The RGG is set to have
an average degree of 10. The red nodes and edges represent the generated subgraphs.

12

3.5 Neural Network Structure

Figure 3.5: The plot shows a simplification of the NN used in the framework. The NN has
two input perceptrons on the left, three hidden layers (gray) with each consisting of four
perceptrons, and one output perceptron on the right. The layers are fully connected, excluding
the perceptrons in red that have been dropped by the dropout layers.

3.5 Neural Network Structure

We use a FNN in the framework. It consists of one input layer, three hidden layers, and one
output layer, with each layer being fully connected. Each hidden layer has 32 perceptrons.
The activation function is a rectified linear unit (ReLU) function. The input layer size is fixed
to |𝑓𝑢𝑣 |, while the output layer consists of only one perceptron for the binary classification.
By applying a sigmoid function to the last perceptron, a probability for binary classification is
produced.

To decrease the risk of overfitting, we integrate dropout layers [Sri+14]. The dropout layers
randomly set some layer inputs to zero with a set probability of 20% while training, preventing
the NN from co-adapting too much (ensuring that the perceptrons work independently of
each other) [Sri+14]. Figure 3.5 shows a simplification of the NN, where the perceptrons in
red have been set to zero by the dropout layers.
We use binary cross entropy with logits3 as our loss function and the ADAM algorithm as

our optimizer [KB17].

3.6 QualityQuantification

Because we have a high class imbalance, we chose the precision-recall curve to measure our
decoder performance as opposed to, for example, a ROC curve, which is more suited for
datasets with low class imbalance. The precision-recall curve visualizes the trade-off between
precision and recall for different decision thresholds. A high precision relates to a low false
positive rate, and a high recall relates to a low false negative rate.

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
𝑅 =

𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(3.4)

3See PyTorch https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html.

13

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

3 Framework

With the true positive rate𝑇𝑝 , true negative rate𝑇𝑛 , false positive rate 𝐹𝑝 , and false negative
rate 𝐹𝑛 . The decision threshold 𝑡 ∈ [0, 1] is used to decide if a prediction 𝑝 ∈ [0, 1] indicates
either a 1-label or a 0-label. We use all individual probability values produced by the decoder
as decision thresholds. The average precision (AP) summarizes the precision-recall-curve, for
the different precision-recall pairs at the different decision thresholds 𝑡𝑖 . As such, we use the
AP as our decoder performance score.

AP =
∑︁
𝑖∈𝐼
(𝑅𝑖 − 𝑅𝑖−1)𝑃𝑖 (3.5)

For generating a reconstruction we have to decide on one decision threshold. We choose to
use the threshold that maximizes the F1-score. The F1-score is the harmonic mean of precision
and recall.

𝐹1 = 2 · 𝑃 · 𝑅
𝑃 + 𝑅 (3.6)

3.7 Early Stopping

Early stopping is commonly used to prevent the NN from overfitting on the train set and losing
generality. We detect overfitting by evaluating the NN after every epoch on the validation set.
Should the validation loss not improve in a set amount of epochs the training is stopped and
the NN state that scored the best on the validation set is restored.

Additionally, we stop the training early if the average precision on the validation set reaches
99%. Some embeddings and input parameters are able to reach scores above 99%, with any
further improvement not being worth the additional training time.

14

4 Results

In this chapter we explore results that have been generated by the framework. The main ques-
tions we answer are how the framework performs on good embeddings, how the framework
performs on bad embeddings, and how subsampling affects the framework results. All our
trainings were conducted on an NVIDIA GeForce RTX 2060 SUPER GPU.

4.1 Good Embeddings

As described before, we are interested in how the framework performs on good embeddings.
By looking at the framework’s performance on good embeddings, we are able to better
interpret the results of embeddings of unknown qualities. We look at two graph types with
ground truth embeddings, RGGs and GIRGs. They have ground truth embeddings, in that the
information used to decide if two nodes are adjacent is already associated with the nodes (see
Sections 2.4 and 2.5). To get a general idea about the performance of the decoder for these
two embeddings, we perform a grid search for different graph sizes and configurations for
RJ*-subsampling, namely the subgraph size and jump probability 𝛼 .

50 100 250
Subgraph Size

50
0

10
00

25
00

Gr
ap

h
Si

ze

0.98 0.99 0.99

0.98 0.99 0.98

0.77 0.96 0.98

Subgraph Alpha = 0.0

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.99 0.99 0.99

0.99 0.99 0.99

0.99 0.99 0.99

Subgraph Alpha = 0.15

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.98 0.98 0.99

0.98 0.98 0.99

0.92 0.96 0.97

Subgraph Alpha = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

50 100 250
Subgraph Size

50
0

10
00

25
00

Gr
ap

h
Si

ze

0.66 0.58 0.78

0.54 0.75 0.79

0.29 0.76 0.79

Subgraph Alpha = 0.0

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.63 0.74 0.77

0.6 0.72 0.81

0.63 0.68 0.62

Subgraph Alpha = 0.15

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.57 0.82 0.91

0.39 0.82 0.9

0.24 0.71 0.81

Subgraph Alpha = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Figure 4.1: The plot shows the mean average precision for different graph sizes, subgraph
sizes, and alphas over five repetitions. The RGG (top) and GIRG (bottom) both have an average
degree of ten. The subgraph is generated with RJ*-subsampling.

15

4 Results

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n

Figure 4.2: The plot shows the mean prediction (green) for node pairs with different distances
over 100 repetitions. The NN is trained on an RGG with a threshold radius of around 0.056.
The radius can be seen as the red vertical line. The blue horizontal line is the optimal threshold
that maximizes the f1-score.

We see in Figure 4.1 (top) that the framework often achieves a high average precision of
around 99%. For large differences between graph and subgraph size a drop to 70 − 80% can be
observed. By looking closely, we also notice how the results for 𝛼 = 1.0 are slightly worse
than their counterparts for 𝛼 = 0.0 and 𝛼 = 0.15. We see in Figure 4.7 that the mean average
precision reaches the 99% threshold relatively quickly. This shows that the decoder is able to
efficiently learn RGG embeddings.
Next, we are interested to see how the framework performs on more complex graphs like

GIRGs. We see in Figure 4.1 (bottom) how the results spread to a wider range. As seen for
RGGs, the mean average precision for graph size 2 500 and subgraph size 50 show the worst
results, dropping to around 30 − 60% and therefore even lower than for RGGs. Additionally,
the whole column with subgraph size 50 shows considerably worse results. Generally, the
decoder is still able to learn GIRG embeddings though.

From the plots we can deduct that RJ*-subsampling performs best with a jump probability
𝛼 = 0.15.

4.1.1 RGG threshold

After seeing the results from the grid search, we are interested in what the decoder actually
learned. For RGGs, two nodes are adjacent if their distance is smaller than a predefined radius.
We visualize what the decoder has learned by letting it predict the labels of node pairs of
different distances. We expect that the decoder predicts every pair with a distance smaller
than the radius as adjacent and all pairs with distances larger than the radius as nonadjacent.
In Figure 4.2, we see the decoder predictions (green) for different node pair distances, as

well as the RGG radius (red) and a decision threshold (blue) for classifying. The decoder was
able to learn that node pairs with distances below a particular threshold are 1-labeled, while
the rest are 0-labeled. The decision threshold (blue) shown predicts more node pairs to be
adjacent than they actually are.

16

4.1 Good Embeddings

Original Reconstruction [score=0.9866]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ed

ict
io

n

Original Reconstruction [score=0.906]

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
io

n
Figure 4.3: The plot shows a graph reconstruction for both an RGG and a GIRG. Note that
the scales and thresholds for the predictions differ.

4.1.2 Reconstruction

We use the decision threshold described in Section 3.6 to visualize a graph reconstruction. In
Figure 4.3 we see a reconstruction for both an RGG and a GIRG. Both reconstructions show
large similarities with their original graph. For the RGG reconstruction, similar to what we
saw in Figure 4.2, the decision threshold results in edges with lengths larger than the original
radius to be generated. The reconstruction therefore contains more edges than the original.
We see similar results for the GIRG reconstruction.

17

4 Results

50 100 250
Subgraph Size

50
0

10
00

25
00

Gr
ap

h
Si

ze

0.084 0.077 0.078

0.042 0.041 0.038

0.017 0.018 0.018

Subgraph Alpha = 0.0

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.05 0.052 0.055

0.023 0.023 0.022

0.0092 0.0096 0.01

Subgraph Alpha = 0.15

50 100 250
Subgraph Size

Gr
ap

h
Si

ze

0.02 0.019 0.021

0.0098 0.0093 0.01

0.0041 0.004 0.0041

Subgraph Alpha = 1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Figure 4.4: The plot shows the average precision for different graph sizes, subgraph sizes,
and alphas, averaged over five repetitions. The graph is generated by taking an RGG with an
average degree of ten and replacing the node features with random features of the same size.
The subgraph is generated with RJ*-subsampling. We observe that not a single configuration
reaches a mean average precision of over 10%. RJ* with a jump probability of 𝛼 = 0.0 achieves
compared to the other alphas the best score. This is because, without jumps, the generated
subgraph has more edges.

4.2 Bad Embeddings

After seeing how the framework is able to score good embeddings and reconstruct the graph
with high precision, we are interested in how the framework performs on bad embeddings.
To get a bad embedding, we use a graph embedding that is known to yield good scores like
RGGs, but replace the node features with random features. The resulting embedding does not
represent the original graph in any way. As such, the decoder should not be able to generalize.

We see in Figure 4.4 how the framework yields considerably lower scores for random graph
embeddings in comparison to RGG and GIRG embeddings (compare Figure 4.1). Not a single
configuration reaches a mean average precision of over 10%. We conclude that the framework
is not able to learn the random embedding, which can be used to distinguish bad embeddings.

4.3 Epoch Subsampling

A central component of the framework is epoch subsampling. We already explored how
subsampling improves the runtime and performance in theory. The idea is that the subsampled
graph used as the epoch dataset is considerably smaller than the complete train set while also
having a lower class imbalance (see Section 3.4). But how does subsampling compare to no
subsampling at all? In Figure 4.5 we see the runtime and average precision results for different
graph sizes, both with and without subsampling. Notably, the runtime for RJ*-subsampling is
much lower compared to no subsampling. RJ*-subsampling results in a runtime of around
100 to 500 seconds, while without subsampling the runtime reaches 3 000 seconds (around 50
minutes). Additionally, the average precision, as seen in the lower plot, is generally higher
with subsampling. We see an average improvement of around 10%.

Note that the framework depends on subsampling for splitting the dataset. For the experi-
ment with no subsampling, we still have to use RJ*-subsampling to split the dataset.

In conclusion, we see that epoch subsampling leads to a considerable improvement in speed
and precision.

18

4.3 Epoch Subsampling

500 750 1000 1250 1500 1750 2000 2250 2500
Graph Size

0

1000

2000

3000

4000

Ru
nt

im
e

[s
ec

]

Subsampling
none
rjs

500 750 1000 1250 1500 1750 2000 2250 2500
Graph Size

0.5

0.6

0.7

0.8

Av
er

ag
e

Pr
ec

isi
on

Subsampling
none
rjs

Figure 4.5: The plot shows the average runtime and precision for different graph sizes
with and without subsampling over five repetitions. The graph is a GIRG with default
configuration except for its size. The RJ*-subsampling uses a fixed subgraph size of 100 nodes
and 𝛼 = 0.15. We see how both the runtime and average precision increases considerably
when we subsample with RJ* (rjs) compared to no subsampling (none). Note that in the plot
for the average precision the y-axis does not start at zero.

19

4 Results

False True
Standardized Dataset

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Av
er

ag
e

Pr
ec

isi
on

False True
Standardized Dataset

80

100

120

140

160

Ru
nt

im
e

[s
ec

]

False True
Sorted Dataset

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Av
er

ag
e

Pr
ec

isi
on

False True
Sorted Dataset

80

90

100

110

120

130

Ru
nt

im
e

[s
ec

]

Figure 4.6: The plot shows the average precision (left) and runtime (right) on a GIRG with
and without dataset standardization (top) and dataset sorting (bottom) over five runs. The
GIRG is created with 1 000 nodes and a degree of 10. The subgraph is generated with RJ*
subsampling with 𝛼 = 0.15 and a subgraph size of 100 nodes. Note that the plot y-axis does
not start at 0.

4.4 Dataset Standardization

In Section 3.1 we explained how normalization through feature standardization should im-
prove the framework performance. Normalization can improve framework performance for
embeddings with features that follow different ranges, as normalization removes the need to
generalize for varying ranges. One such example are GIRG embeddings. GIRG embeddings
assign each node its position 𝑝 ∈ [0, 1]𝑑 and an arbitrarily large weight𝑤 ∈ R, making it hard
for the NN to use both together effectively. In Figure 4.6 (top), we can see how the decoder
average precision increases for the standardized dataset, while reducing its runtime.

4.5 Dataset Sorting

In Section 3.1we also explained how dataset sorting could improve the framework performance.
We see in Figure 4.6 (bottom) how sorting the dataset impacts the performance compared
to randomly choosing, slightly increasing precision at the cost of also slightly increased
runtime. It therefore seems that sorting the dataset presents no justifiable reason to pursue.
We therefore do not sort the dataset1 and instead pick one of the two 𝑓𝑢𝑣 or 𝑓𝑣𝑢 at random for
the dataset.

1Dataset sorting is disabled for all other framework tests.

20

4.6 Early Stopping

0 100 200 300 400 500 600 700
Runtime [sec]

0.93

0.94

0.95

0.96

0.97

0.98

0.99
Av

er
ag

e
Pr

ec
isi

on

Figure 4.7: The plot shows the mean average precision per runtime in seconds, combined
for 20 repetitions and averaged over 50 bins on the validation set, while training (threshold
stopping disabled). The line in red shows the threshold 99%. The test is performed on RGGs
with 1 000 nodes using RJ* subsampling, with subgraph size 500 and 𝛼 = 0.15. The plot
increases in roughness with increasing runtime, as traditional early stopping is still in effect
and fewer repetitions reached that runtime. Note that the plot y-axis does not start at 0.

4.6 Early Stopping

In Section 3.7 we showed that early stopping by threshold should speed up the framework
train time while only slightly diminishing the average precision. We see in Figure 4.7 how
the framework performs without the threshold at 99% in place. The mean average precision
reaches the aforementioned 99% after around 380 seconds, whereas the NN continues training
for up to 700 seconds while only improving slightly.

21

5 Conclusion

In this thesis we explored how deep decoders allow us to measure the quality of graph embed-
dings without making any assumptions about underlying models, distances, or applications.
Additionally, we looked into how epoch subsampling improves the performance of such
decoders.
We have implemented a Python framework that encapsulates our research questions and

allows us to evaluate and compare different configurations. We tested how different graph
types, subgraph types, dataset preprocessors and decoder structures affect the framework
performance in both speed and precision.
In our first set of experiments, we looked at the scores achieved by different graphs and

subgraphs. We tested both known good (RGG and GIRG) and bad (random) embeddings
with different configurations of our RJ*-subsampling algorithm. Our results indicate that
the framework and its decoder are able to effectively distinguish good embeddings from
bad embeddings. Good embeddings achieved high scores, while bad embeddings scored
poorly. Additionally, we determined that our subsampling algorithm RJ* performs best on
average with a low jump probability. Feature preprocessing with normalization also shows
considerable performance improvements for the framework. We also visualized what the
decoder actually learns by plotting the decoder prediction for different node pair distances on
RGGs. We see that the decoder is able to learn the threshold characteristic of RGGs.
The framework also includes utilities to visualize the framework predictions into graph

reconstructions. We see how the framework is able to reconstruct graphs accurately.
Our results present a proof-of-concept showing that the quality of graph embeddings can be

measured with deep decoders without making assumptions. In conjunction with the Python
framework it is a foundation for future work to further explore how DNNs can be used in
evaluating graph embeddings.
Future work could alter the NN by testing combinations of loss and activation functions,

the composition of layers, and feature preprocessors. Other decision thresholds could also be
used to achieve different desired results. Additional graphs and embeddings of known quality
should be tested (e.g., node2vec [GL16]) to provide a better understanding of the framework
itself. Furthermore, it would be interesting to see how the framework performs on much
bigger graphs with millions of nodes. We could introduce weights to nodes that are used by
the subsampling algorithm to decide which nodes should be explored first, like using the node
degree or even the inverse of the node degree. Lastly, real-world data is not perfect. It would
be helpful to know how the framework performs on incomplete and inaccurate data.

23

Bibliography

[BFK21] Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann. “Force-Directed
Embedding of Scale-Free Networks in the Hyperbolic Plane”. In: 19th International
Symposium on Experimental Algorithms (SEA 2021). Edited by David Coudert
and Emanuele Natale. Vol. 190. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, 22:1–22:18. ISBN: 978-3-95977-185-6. DOI: 10.4230/
LIPIcs.SEA.2021.22.

[BFKL16] Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. “Efficient Em-
bedding of Scale-Free Graphs in the Hyperbolic Plane”. In: 24th Annual European
Symposium on Algorithms (ESA 2016). Edited by Piotr Sankowski and Christos
Zaroliagis. Vol. 57. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016, 16:1–16:18. ISBN: 978-3-95977-015-6. DOI: 10.4230/LIPIcs.ESA.
2016.16.

[BKL19] Karl Bringmann, Ralph Keusch, and Johannes Lengler. “Geometric inhomoge-
neous random graphs”. In: Theoretical Computer Science Volume 760 (2019), pp. 35–
54. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2018.08.014.

[Blä+19] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel
Penschuck, and Christopher Weyand. “Efficiently Generating Geometric Inho-
mogeneous and Hyperbolic Random Graphs”. In: 27th Annual European Sym-
posium on Algorithms (ESA 2019). Edited by Michael A. Bender, Ola Svensson,
and Grzegorz Herman. Vol. 144. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, 21:1–21:14. ISBN: 978-3-95977-124-5. DOI: 10.4230/
LIPIcs.ESA.2019.21.

[BNRF21] Kamal Berahmand, Elahe Nasiri, Mehrdad Rostami, and Saman Forouzandeh.
“A modified DeepWalk method for link prediction in attributed social network”.
In: Computing Volume 103 (Oct. 2021), pp. 2227–2249. ISSN: 1436-5057. DOI:
10.1007 /s00607-021-00982-2.

[CZC18] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. “A Comprehen-
sive Survey of Graph Embedding: Problems, Techniques, and Applications”. In:
IEEE Transactions on Knowledge and Data Engineering Volume 30 (2018), pp. 1616–
1637. DOI: 10.1109/TKDE.2018.2807452.

[Deg23] J. Degenhard. “Number of Twitter users worldwide from 2018 to 2027”. MathWorld.
Mar. 12, 2023. URL: https://www.statista.com/forecasts/1146722/twitter-users-in-the-
world (visited on 04/19/2023).

[Dev22] Google Developers. “Embeddings”. Google. July 18, 2022. URL: https://developers.
google.com/machine-learning/crash-course/embeddings/video-lecture (visited on
12/05/2023).

[Gér19] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
flow. O’Reilly Media, Inc., 2019. ISBN: 9781492032649.

25

https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1007/s00607-021-00982-2
https://doi.org/10.1109/TKDE.2018.2807452
https://www.statista.com/forecasts/1146722/twitter-users-in-the-world
https://www.statista.com/forecasts/1146722/twitter-users-in-the-world
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture

Bibliography

[GL16] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for net-
works”. In: Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 2016, pp. 855–864.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980.

[Nek07] Maziar Nekovee. “Worm epidemics in wireless ad hoc networks”. In: New Journal
of Physics Volume 9 (June 2007), p. 189. DOI: 10.1088/1367-2630/9/6/189.

[Pen03] Mathew Penrose. Random Geometric Graphs. Oxford University Press, May 2003.
ISBN: 9780198506263. DOI: 10.1093/acprof:oso/9780198506263.001.0001.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature Volume 323 (Oct. 1986),
pp. 533–536. ISSN: 1476-4687. DOI: 10.1038/323533a0.

[Sal+21] Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam,
andMichalis Vazirgiannis. “FastGAE: Scalable graph autoencoders with stochastic
subgraph decoding”. In: Neural Networks Volume 142 (2021), pp. 1–19.

[Slu14] David J Slutsky. “The effective use of graphs”. en. In: J. Wrist Surg. Volume 3 (May
2014), pp. 67–68.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a simple way to prevent neural networks from over-
fitting”. In: The journal of machine learning research Volume 15 (2014), pp. 1929–
1958.

[SS20] Dalwinder Singh and Birmohan Singh. “Investigating the impact of data nor-
malization on classification performance”. In: Applied Soft Computing Volume 97
(2020), p. 105524. ISSN: 1568-4946. DOI: https://doi.org/10.1016/j.asoc.2019.105524.

[Yue+19] Xiang Yue, ZhenWang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosav-
inasab, Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun.
“Graph embedding on biomedical networks: methods, applications and evalua-
tions”. In: Bioinformatics Volume 36 (Oct. 2019), pp. 1241–1251. ISSN: 1367-4803.
eprint: https : //academic .oup.com/bioinformatics/article-pdf /36/4/1241/48983324/
bioinformatics_36_4_1241.pdf .

[ZZP20] Zhiqiang Zhong, Yang Zhang, and Jun Pang. “NeuLP: An End-to-End Deep-
Learning Model for Link Prediction”. In: Web Information Systems Engineering –
WISE 2020. Edited by Zhisheng Huang, Wouter Beek, Hua Wang, Rui Zhou, and
Yanchun Zhang. Cham: Springer International Publishing, 2020, pp. 96–108. ISBN:
978-3-030-62005-9.

26

https://arxiv.org/abs/1412.6980
https://doi.org/10.1088/1367-2630/9/6/189
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/j.asoc.2019.105524
https://academic.oup.com/bioinformatics/article-pdf/36/4/1241/48983324/bioinformatics_36_4_1241.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/4/1241/48983324/bioinformatics_36_4_1241.pdf

	Introduction
	Motivation
	Outline

	Preliminaries
	Graphs and Embeddings
	Neural Networks
	Torus
	Random Geometric Graphs (RGG)
	Geometric Inhomogeneous Random Graphs (GIRG)

	Framework
	Feature Preprocessing
	Dataset Generation
	Dataset Splitting
	Epoch Graph Subsampling
	Weighted Random Sampling (WRS)
	Breadth-first search (BFS) and Depth-first search (DFS)
	Random Walk (RW)
	Random Jump (RJ) and Random Jump Star (RJ*)

	Neural Network Structure
	Quality Quantification
	Early Stopping

	Results
	Good Embeddings
	RGG threshold
	Reconstruction

	Bad Embeddings
	Epoch Subsampling
	Dataset Standardization
	Dataset Sorting
	Early Stopping

	Conclusion
	Bibliography

