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Abstract

A directed graph G = (V, E) is a di�erence-digraph if there exists a labelling
⁄ : V ‘æ Z such that the arc (v, w) is in E if and only if there exists a z œ V with
⁄(v) ≠ ⁄(w) = ⁄(z). An undirected graph G = (V, E) is an (integral) sum-graph
if there exists a labelling ⁄ : V ‘æ Z such that the edge {v, w} is in E if and only
if there exists a z œ V with ⁄(v) + ⁄(w) = ⁄(z). In this thesis, we investigate
some combinatoric as well as some informatical properties of di�erence-digraphs.
We present a complete dichotomy of which rooted forests are di�erence-digraphs,
as well as some interesting properties that aid in the classification of other graph
classes. For some graph classes, we look into the minimum number of vertices one
needs to add, in order to obtain a di�erence-digraph with the original graph as an
induced sub-graph. We also investigate the decision problem of deciding if a graph is
a di�erence-digraph, and prove that it is in NP. Lastly, we consider the complexity
of storing directed graphs as (induced sub-graphs of) di�erence-digraphs. We then
extend our findings, and apply them to the storage of undirected graphs as induced
sub-graphs of sum-graphs, by adding isolated vertices.

Deutsche Zusammenfassung

Ein gerichteter Graph G = (V, E) ist ein Di�erenzgraph genau dann, wenn es eine
Benennung ⁄ : V ‘æ Z der Knoten gibt, sodass die Kante (v, w) in E existiert genau
dann, wenn es ein z œ V gibt, sodass ⁄(v) ≠ ⁄(w) = ⁄(z). Ein ungerichter Graph
G = (V, E) ist ein integraler Summengraph genau dann, wenn es eine Benennung
⁄ : V ‘æ Z der Knoten gibt, sodass die Kante {v, w} in E existiert genau dann, wenn
es ein z œ V gibt, sodass ⁄(v) + ⁄(w) = ⁄(z). In dieser Arbeit untersuchen wir einige
kombinatorische, sowie komplexitätstheoretische Eigenschaften von Di�erenzgraphen.
Wir präsentieren eine vollständige Unterteilung, die bestimmt wann ein gewurzelter
Wald ein Di�erenzgraph ist und weitere Eigenschaften, die es erleichtern können
andere Graphklassen zu klassifizieren. Für bestimmte Graphklassen bestimmen wir
die geringste Anzahl an Knoten, die man zu einem beliebigen Graphen hinzufügen
muss, um einen Di�erenzgraphen zu erhalten, mit dem originalen Graphen als
induzierten Teilgraphen. Wir untersuchen auch das Entscheidungsproblem, welches
entscheidet ob ein Graph ein Di�erenzgraph ist und beweisen, dass es in NP liegt.
Schließlich betrachten wir die Platzkomplexität der Aufgabe, Graphen als induzierte
Teilgraphen von Di�erenzgraphen zu speichern. Wir erweitern daraufhin diese
Ergebnisse, um ungerichtete Graphen als induzierte Teilgraphen von Summengraphen
platze�zient speichern zu können, indem wir isolierte Knoten hinzufügen.
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1. Introduction

A di�erence-digraph is a directed simple graph such that there exists a labelling ⁄ (referred
to as a di�erence-labelling) from the vertex set to the integers, such that the arc (u, v) is
present if and only if ⁄(u) ≠ ⁄(v) is a label assigned to at least one vertex in the graph.
A sum-graph is defined by Frank Harary [Har90] as an undirected simple graph such that
there exists an injective labelling ⁄ (a sum-labelling) from the vertex set to the natural
numbers, such that the edge {u, v} is present if and only if ⁄(u) + ⁄(v) is a label assigned
to at least one vertex in the graph. Working with these graph classes is of particular
interest, due to their combinatoric as well as number-theoretical nature. In comparison
to sum-graphs, di�erence-digraphs have not been studied as intensively, having only been
investigated in a handful of papers since their inception. We, therefore, build on the ideas
of previous papers, to gain a deeper understanding of di�erence-digraphs.

Much like their undirected counterpart, di�erence-labellings pose a strong condition on
the structure of the graph. The first and most commonly asked question is therefore one
of classification. Aside from some simple examples (paths, transitive tournaments, etc.)
there have been only two ([EG84],[Son04]) families of graphs that have been identified
as di�erence-digraphs. There has been, however, more work invested into finding certain
properties that aid in the classification of di�erence-digraphs. We identify a third family,
by presenting a complete dichotomy of which rooted-forests are di�erence-digraphs, as well
some structural properties and forbidden substructures that further aid in the classification
of di�erence-digraphs. Our work, together with the work of M. Sonntag [Son04], puts us
very close to a complete dichotomy of directed forests.

A large portion of the research on sum-graphs deals with finding the minimum number of
isolated vertices to add to an undirected graph for it to become a sum-graph; this is referred
to as the sum-number. Similarly, we investigate the minimum number of vertices to add to
a graph to obtain a di�erence-digraph with the original graph as an induced sub-graph;
we refer to this as the di�erence-number of a graph. It took about three years since the
inception of sum-graphs for the sum-number of trees to be calculated (it is equal to one,
except for the trivial tree [Ell93]). We present a tight upper bound on the di�erence-number
of in-trees, as well as a constant upper bound on the di�erence-number of out-trees.

In the field of computer science, NP-complete problems are of particular interest1. It is
conjectured, that deciding if a given graph is a sum-graph is NP-complete. Not in part due
to lack of e�ort, an NP-completeness proof is still outstanding, although the problem is

1At the time of writing, the PNP-problem has not yet been solved.
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1. Introduction

known to be in NP. On the other hand, as we see throughout this thesis, di�erence-digraphs
have more structure than sum-graphs, but do not di�er by enough to make one believe
that they are much easier to detect. Their more specific structure could however make
a (non)-NP-completeness proof a bit more attainable. With the belief that deciding if a
directed graph is a di�erence-digraph is an NP-complete decision problem, we show that it
does lie in NP.

Continuing on the topic of complexity, a very recently proposed question is the space
complexity of storing undirected graphs as induced sub-graphs of sum-graphs by adding
isolated vertices. While not quite an adjacency scheme, this could still prove to be a valid
method of storing certain graph classes. For example, the currently most space-e�cient
manner of storing graphs as induced sub-graphs of sum-graphs [FG21] is the second most
space-e�cient manner to implicitly (i.e. without using pointers) represent planar graphs.
Similarly to the aforementioned paper, we investigate the space complexity of storing
directed graphs as induced sub-graphs of di�erence-digraphs. Due to the similarity of the
problems, we also present an algorithm that asymptotically beats the bound presented by
H. Fernau and K. Gajjar [FG21] (in general graphs, and matches it for graph classes of
constant degeneracy).

1.0.1 Thesis Outline

In our introduction, we give a brief outline of the historical context of our work, as well as
a general overview of our results. In Section 1.1 we give a brief history on sum-graphs and
a complete survey on di�erence-digraphs. This survey also includes our own results in more
detail. In Chapter 2 we state any non-standard notation that we use throughout this thesis
and then we begin formally investigating some simple properties of di�erence-digraphs. In
Chapter 3 we present some properties of di�erence-digraphs that help us classify which
graphs are di�erence-digraphs. We then conclude that chapter with a complete dichotomy
of rooted forests. In Chapter 4 we present some results on representing directed graphs
as induced sub-graphs of di�erence-digraphs and then we calculate upper bounds on
the di�erence-number of rooted trees. In Chapter 5 we look at the time complexity of
identifying di�erence-digraphs, as well as the space complexity of storing directed graphs
as induced sub-graphs of di�erence-digraphs. In Chapter 6 we discuss some conjectures
and unanswered questions that pique our curiosity.
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1.1. Related Work

1.1 Related Work

In this section, we give a short overview of related work. We briefly discuss some major
results on sum and di�erence-labellings.

Sum-Graphs

In 1990, F. Harary introduced sum-graphs [Har90]. A clear structural property of sum-
graphs is that they must be disconnected, since the vertex that receives the largest label
cannot be connected to any other vertices. He also shows that the sum-number of a graph
is always defined.

The definition of sum-graphs was later generalized by G. J. Chang [Cha93]. In a strong

sum-graph the labelling need not be injective. In 1994, F. Harary then expanded the
definition of sum-graphs [Har94] to include negative labels (and zero). Sum-graphs of
this type are referred to as integral. Unlike sum-graphs, integral sum-graphs need not be
disconnected.

Boland, Laskar, Turner, and Domke created a modular version of sum-graphs [BLTD90].
A graph is a mod-sum-graph if there exists an x œ N and a labelling ⁄ : V ‘æ Z/xZ such
that {u, v} œ E if and only if there exists a w œ V : ⁄(u) + ⁄(v) = ⁄(w) mod x. It is
clear that all mod-sum-graphs are also sum-graphs. The opposite is however untrue. For
instance, they have shown that all trees on 3 or more vertices as well as all cycles on 4 or
more vertices are mod-sum-graphs, but not sum-graphs.

Noga Alon and Scheinerman generalized sum-graphs [AS92], by replacing the condition
⁄(v) + ⁄(u) = ⁄(w) with f(⁄(v), ⁄(u)) = ⁄(w) for some symmetric polynomial f . For
a given polynomial f , they refer to graphs with an f -labelling as f-graphs. For any
polynomial f they give an asymptotic bound on the number of f -graphs on n vertices.
They also show, that for any graph, there exists a polynomial, such that the given graph is
an f -graph (this polynomial can however be pretty large). Notably, they show that every
graph G = (V, E) can be transformed into an f -graph by adding at most |E| isolated nodes.
This also means, that for any graph, the sum-number is bound by the number of edges.

An incomplete list of results on sum-labellings can be found in [Gal13].

Di�erence-Digraphs

This work is mostly inspired by F. Harary’s sum-graphs and di�erence-graphs [Har90].
He defines a di�erence-graph as an undirected graph G = (V, E), such that there exists
an injective labelling ⁄ from the vertex set to the natural numbers, such that for any
two distinct vertices v, u, {v, u} œ E if and only if |⁄(v) ≠ ⁄(u)| œ ⁄(V ). The term
di�erence-digraph was defined almost a decade prior by Gervacio [Ger82]. Gervacio defines
a di�erence-digraph, as a simple directed graph G = (V, E) with a surjective labelling ⁄

to a finite set S of real numbers such that (x, y) is an arc of G if and only if x and y are
distinct vertices in G and ⁄(x) ≠ ⁄(y) œ S. Gervacio also introduces di�erent classes of
di�erence-digraphs. A di�erence-digraph is called proper if it can be labelled using strictly
positive integers. A di�erence-digraph is called monographic if its labelling is bijective,
meaning that no two vertices receive the same label. A di�erence-digraph is called natural if
it has a labelling that uses distinct strictly positive integers. Results on di�erence-digraphs
are scattered around the mathematical community. A lot of results are however quite
di�cult to locate, and a thorough summary of all results does not exist. We, therefore,
give a thorough survey on di�erence-digraphs.

Most work that has been published on di�erence-digraphs works towards their classification.
In trying to achieve this goal, quite a few structural properties of di�erence-digraphs have
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1. Introduction

been discovered. Gervacio [Ger82] defines an in-pair, to be a pair of edges (u, v), (w, v),
such that u ”= w. He defines an out-pair, to be a pair of vertices (v, u), (v, w) such that
u ”= w. He shows that in a monographic di�erence-digraph, every in-pair contains at
least one edge that is also be part of an out-pair. This condition is referred to as the
in-out-pair-condition (IOC). It was later proven by Gervacio and Eggleton [EG84] that
any di�erence-digraph can be labelled using integer labels. This is the reason that our
definition of di�erence-labellings can, without loss of generality, use integer labels instead
of real labels. They show that the disjoint union of graphs is a proper di�erence-digraph
if and only if every connected component is a proper di�erence-digraph. We show, that
the disjoint union of digraphs is a di�erence-digraph if and only if each digraph is a
di�erence-digraph that can be labelled without using the label zero. They also prove that
natural di�erence-digraphs contain no directed cycles. They show, that a digraph with
a universal sink is a proper di�erence-digraph if and only if for any valid labelling ⁄ the
vertex set can be partitioned into subsets V1, . . . , Vk such that |V1| = 1, ⁄(u) + ⁄(v) œ ⁄(V )
if and only if u œ Vi, v œ Vj for some i > j. They define a source-join, of two graphs G1, G2
as a graph G obtained by the disjoint union of G1 and G2, with one extra vertex s, that
has exactly one arc going to G1 and one arc going to G2. They prove that the source-join
of two proper/natural di�erence-digraphs is also a proper/natural di�erence-digraph. M.
Sonntag [Son04] generalises the source-join result for proper/natural di�erence-digraphs.
Instead of only two graphs, he generalises the results for any even number of graphs. For
an induced sub-graph, we say it is almost a lake, if the only arcs that exit the sub-graph are
from vertices that are sinks in the sub-graph. We show that a valid di�erence-labelling on
a graph is also a valid di�erence-labelling when restricted to any sub-graph that is almost
a lake. We also present two substructures that are forbidden in di�erence-digraphs.

There has also been a number of developments in discovering which graphs are di�erence-
digraphs. Gervacio and Eggleton [EG84] show that not all graphs are di�erence-digraphs,
not all di�erence-digraphs are proper, not all di�erence-digraphs are monographic, not every
proper di�erence-digraph is monographic, and not every monographic di�erence-digraph
is proper. More interestingly, they show that not every di�erence-digraph that is proper
and monographic is natural. An orientation is a digraph obtained by orienting each edge
of a complete graph in a direction. They show that the only orientations that are proper
di�erence-digraphs are transitive tournaments. They also show that an oriented cycle is a
di�erence-digraph if and only if it fulfills the IOC and is not a directed cycle, unless it is
isomorphic to two given orientations of C4 and C5. The exact statement is restated by M.
Sonntag in his paper titled ‘Di�erence labelling of digraphs’ [Son04]. In the same paper,
Gervacio and Eggleton define an end-source as a source with out-degree one, an end-sink

as a sink with out-degree one, and all other sources/sinks as internal. A source is odd if
it has odd out-degree. A sink is referred to as special if it is adjacent to distinct sources
u, v such that u is an odd source, and v is an end-source. All other sinks are referred to
as ordinary. An alternating tree is a digraph, with a tree as its underlying undirected
graph, where every vertex is either a source or a sink. They show that an alternating tree
is a natural di�erence-digraph if and only if every odd-source is adjacent to an ordinary
sink. M. Sonntag [Son04] then defines a d-tree as a tree T = (V, E) that fulfills the IOC,
and for every v œ V : |Nout(v)| is either even or one, and if there exists a u œ Nin(v) with
|Nout(u)| = 1 then in Nin(Nout(v)) there are at most Nout(v)/2 vertices with out-degree one.
He proves that all d-trees are proper di�erence-digraphs. In this thesis, we classify which
rooted forests are di�erence-digraphs, as well as provide some lemmas and algorithms that
help in the labelling of denser graphs.

There has not yet been any work done towards investigating the di�erence-number of
digraphs. However, Eggleton and Gervacio [EG84] do prove that any digraph is an induced
sub-graph of a monographic di�erence-digraph. We show that the di�erence-number of

4



1.1. Related Work

directed cycles and the graph Kn with one additional isolated vertex is bound tightly by
one. We also show that the di�erence-number of out-trees is bound from above by two,
and that the di�erence-number of in-trees on n vertices is tightly bound from above by
Ân/2Ê ≠ 1.

Hegde and Vasudeva [HV09a] define a mod-di�erence-digraph as a graph G = (V, E) such
that there exists an m œ N+ and an injective labelling ⁄ : V ‘æ Z/mZ such that (u, v) œ E

if and only if ⁄(v) ≠ ⁄(u) mod m œ ⁄(V )2. They also define the mod-di�erence-number
of a graph as the minimum number of isolated vertices one must add to convert it to a
mod-di�erence-digraph; this is an invalid definition and should be ignored. The reason for
this is that if a vertex u receives a label that induces the arc (x, y), then ⁄(y) ≠ ⁄(x) © ⁄(u)
must hold, meaning ⁄(y) ≠ ⁄(u) © ⁄(x) must hold, so u cannot be isolated. They show
that all bi-directed complete digraphs and all directed cycles are mod-di�erence-digraphs.
In a di�erent paper [HV09b], the same authors also show that a directed acyclic graph is a
proper di�erence-digraph if and only if the graph obtained by inverting the direction of its
edges (due to the di�erence in definitions) is a mod-di�erence-digraph in an odd modulo.
Sooryanarayana and Sunita [SS20] show that bi-directed complete bipartite graphs as well
as in-trees where every non-leaf has exactly two children, ladder graphs and fan graphs are
all mod-di�erence-digraphs.

2That is not a typing error. Their definition is opposite to the definition we have seen so far. Their results
can still be converted to our definition by inverting the direction of all arcs.
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2. Preliminaries

This chapter serves as a basic introduction to di�erence-digraphs, we present some basic
examples of di�erence-digraphs, as well as some of their basic reoccurring features.

2.1 Notation

In this section, we state any specific graph theoretical, or number theoretical notation that
we use throughout this thesis.

We denote a directed graph (digraph) G as a tuple (V, E) of vertices and edges (a.k.a. arcs).
Throughout this thesis, we only consider simple directed graphs, meaning there are no loops
and E is a set. An edge from the vertex u to the vertex v is denoted by the tuple (u, v), or
simply uv for short. The out-neighbourhood of a vertex v (denoted Nout(v) or N

G
out(v) if

the graph is ambiguous) is the set {u | vu œ E}. In contrast, the in-neighbourhood of a
vertex v (denoted Nin(v) or N

G
in (v) if the graph is ambiguous) is the set {u | uv œ E}. The

open-neighbourhood of v refers the set Nout(v) fi Nin(v), while the closed-neighbourhood of v

refers to the set Nout(v) fi Nin(v) fi {v}.

A vertex with an empty open-neighbourhood is re�ered to as isolated. A vertex whose
out-neighbourhood is empty is re�ered to as a sink. A sink v œ V , whose in-neighbourhood
is V \{v} is called a universal sink. A vertex v œ V , whose in-neighbourhood is V \{v} is
called a total sink (even though it is not necessarily a sink).

We denote that a graph S is a sub-graph of G using S ™ G. For a graph G = (V, E), and a
set A ™ V , we denote the sub-graph induced by A as G[A]. We also use G = (v1, . . . , vn),
to denote the directed path from v1 to vn, and G = (v1, . . . , vn, v1) to denote the directed
cycle on v1, . . . , vn. For a vertex v, we use G ≠ {v} to denote the graph obtained by
removing v from G, and G + {v} to denote the graph obtained by adding v to G as an
isolated vertex (assuming it is not already present in G). Similarly for v, w œ V we use
G + {vw} to denote the graph obtained by adding the edge vw to G (assuming it is not in
G already), and G ≠ {vw} to denote the graph obtained by removing the edge vw from G.
A topological ordering is an ordering ‡ on the vertex set of a graph, such that uv œ E only
if u <‡ v.

For a function f : A ‘æ B, and a C ™ A, we use f(C) to denote {f(c) | c œ C}. For any
numbers x, y, z we denote x = y mod z with x ©z y. For any set of numbers S, we use
max S to denote the largest element of the set S. For two sets A, B of numbers, we use
A + B and A ≠ B to denote {a + b | a œ A, b œ B} and {a ≠ b | a œ A, b œ B} respectively.

7



2. Preliminaries

in-pairout-pair

2x x

x+ y

x y

Figure 2.1: A drawing of an in/out-pair (left), and the two ways labels can induce edges
(right)

2.2 Di�erence-Digraphs

We define a di�erence-digraph (DG), as a simple directed graph G = (V, E) with a labelling
⁄ from V to Z, such that for any two distinct vertices u, v œ V the vertex uv is in G if and
only if ⁄(u) ≠ ⁄(v) œ ⁄(V ). Such a labelling is re�ered to as a di�erence-labelling. Over
the course of this thesis we refer to a graph G as being induced by a di�erence-labelling ⁄,
if ⁄ is a valid di�erence-labelling on G. Given a vertex set V , and a di�erence-labelling ⁄

on V , the distinct graph induced by ⁄ on V is defined as

G := (V, {uv | ÷z œ V : ⁄(u) ≠ ⁄(v) = ⁄(z)}).

There are two ways to induce an edge in a DG, represented in Figure 2.1. A pair of distinct
arcs ab, cd is re�ered to as an in-pair if b = d, and an out-pair if a = c, represented in
Figure 2.1. For a di�erence-labelling ⁄ and the vertices x, y, z, we say that x is connected

to y through z if ⁄(x) ≠ ⁄(y) = ⁄(z). Given a labelling ⁄, we say a vertex x is independent,
if there exist no vertices a, b such that ⁄(a) ≠ ⁄(b) = ⁄(x).

There are di�erent classes of DGs, that propose stronger conditions on their labellings.
These are presented in Table 2.1.

Table 2.1: The di�erent classes of DGs

DGs There exists a valid di�erence labelling
⁄ : V ‘æ Z.

proper DGs There exists a valid di�erence labelling
⁄ : V ‘æ N+.

monographic DGs There exists a valid injective di�erence la-
belling ⁄ : V ‘æ Z.

natural DGs There exists a valid injective di�erence la-
belling ⁄ : V ‘æ N+.

2.3 Some Basic Features

One can deduce some basic but useful features of DGs by considering the features of
subtraction. Firstly, we know that ’x, y, z œ Z : x ≠ y = z if and only if x ≠ z = y. More
specifically this means that if the vertex x is connected to y through z, then x must also
be connected to z through y. This means that isolated nodes are also independent, since if
the vertex with the label z is isolated, there cannot exist two assigned labels x, y such that
x ≠ y = z. This means that unlike sum-graphs, any non-DG cannot be converted into a
DG by adding isolated vertices. As we see in Section 4.1, isolated nodes can however turn
a DG into a non-DG. Moreover, if any node gets the label 0, then every node in the graph
must be connected to it, since x ≠ 0 = x. This also means, that two nodes with the same
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2.3. Some Basic Features

label are connected if and only if some node in the graph has received the label zero. Due
to the nature of multiplication, we know that given any di�erence-labelling on a DG, we
can multiply each assigned label by any non-zero factor, and our new labelling remains a
valid di�erence-labelling. This is because for any x, y, z œ Z, a ”= 0, x ≠ y = z if and only if
ax ≠ ay = az. The next question, would be to investigate, how changes in our definition of
DGs a�ect the structure of the resulting graphs.

Lemma 2.1. Two nodes u, v with di�erent open-neighbourhoods must have di�erent labels,

unless at least one vertex receives the label zero. If that is the case, then all u, v with

di�erent closed-neighbourhoods must have di�erent labels.

Proof. Let V be a vertex set, and ⁄ a di�erence-labelling on V . If there are two vertices
u, v œ V with the same label, then for all x, y œ V , ⁄(u) ≠ ⁄(x) = ⁄(y) if and only if
⁄(v) ≠ ⁄(x) = ⁄(y). It follows that Nout(u)\{v} = Nout(v)\{u}, regardless of any other
labels. Hence, if ⁄ assigns the label zero at least once, then v œ Nout(u), and u œ Nout(v),
meaning that v and u have the same closed-neighbourhoods. On the other hand, if ⁄ does
not assign the label zero, then v ”œ Nout(u), and u ”œ Nout(v), meaning that v and u have
the same open-neighbourhoods.

We refer to nodes that must have di�erent labels due to Lemma 2.1 as having distinct

relevant neighbourhoods. Note that the relevant neighbourhoods of vertices are labelling
specific. In order to show that two vertices have distinct relevant neighbourhoods, one
must therefore explore the case that the labelling assigns the label zero, and the case that
it does not, independently. There are however, plenty of graphs where every potentially
valid di�erence-labelling cannot use the label zero (any graph without a total sink). There
are other cases, where every potentially valid labelling must use the label zero, examples
of such graphs are however not as simple1. In the case that we know that every valid
di�erence-labelling must (not) use the label zero, then we can very easily distinguish what
the relevant neighbourhood of any vertex is, since it remains unchanged for every valid
labelling.

Lemma 2.2. For any DG G = (V, E), the graph G
Õ = (V Õ

, E
Õ) obtained from G by

duplicating any node is also a DG as long as there exists a labelling ⁄, where every node in

G receives a non-zero label. The graph G
Õ

has a di�erence-labelling ⁄
Õ

with ⁄
Õ(V Õ) = ⁄(V ).

Proof. Let us assume that we have a DG G := (V, E) with a di�erence-labelling ⁄ that
assigns only non-zero labels. Let us select any arbitrary node v œ V , and define G

Õ :=
(V Õ

, E
Õ) with V

Õ = V fi {v
Õ} and E

Õ := E fi {av
Õ|av œ E} fi {v

Õ
a|va œ E} for a v

Õ
/œ V . For

our newly added v
Õ we set ⁄

Õ(vÕ) := ⁄(v), and all other labels stay the same.

We know that for all nodes except v
Õ, ⁄

Õ is still a valid di�erence-labelling, since no new
labels were used. Since v

Õ receives the same label as v, we know that ⁄
Õ induces the same

in and out-neighbourhoods for both nodes, and vv
Õ
, v

Õ
v are not induced, since no node

receives the label zero. That means that exactly the edges of E
Õ are induced by ⁄

Õ, and
therefore G

Õ is also a DG.

It is important to keep in mind, that the labelling we choose for our new graph uses the
same labels as in our original graph. This means, that if we can label a DG with exclusively
non-zero labels, then we can duplicate any node an arbitrary number of times. As we see

1Take the graph represented in Figure 2.4, and extend an edge from w to y; all valid labellings of this
graph must assign y the label zero.

9



2. Preliminaries

in Section 3.5.1, monographic-DGs do not have this property, of being closed under vertex
duplication, meaning allowing vertices to have the same labels does in-fact change the
structure of the resulting graph class.

A directed cyclic graph, is a directed graph, with a directed cycle as a (not necessarily
induced) graph.

Theorem 2.3 ([Ger82]). In every cyclic DG, with a labelling ⁄, there exists two nodes

v, w, such that sgn(⁄(v)) = ≠sgn(⁄(w))

Proof. Given a cyclic DG G = (V, E), let us assume, for the sake of contradiction, there
exists a labelling ⁄ on G, such that ⁄ assigns labels with the same sign to all nodes in
G. We know that if ⁄ is a valid di�erence-labelling for G, then ⁄

Õ := ≠⁄ is also a valid
di�erence-labelling for G, so we can assume w.l.o.g. that ⁄ only assigns positive labels.

If ⁄ assigns the label 0 to any node, then the theorem clearly holds, since 0 = ≠0. We
therefore assume, that the label 0 is never assigned. Let us consider the labels of a cycle
(v1, . . . , vc, v1) ™ G. Letting vi be an arbitrary node on this cycle and vj be the next node
in the cycle, we know that vivj œ E, so that must mean that ⁄(vi) ≠ ⁄(vj) = ⁄(w) for
some w œ V . However, we know that ⁄(w) is strictly positive, so ⁄(vi) must be strictly
greater that ⁄(vj). Inductively, we can see that ⁄(v1) > ⁄(v2) > . . . > ⁄(vc) > ⁄(v1), a
contradiction.

One could reach the same result in a more intuitive way, by noticing that any valid proper
di�erence-labelling can be used to construct a topological ordering of the graph, simply by
ordering the vertices, according to the size of their labels. This works, since a vertex with
a smaller label cannot be connected to a vertex with a larger label, due to the absence of
negative labels. Since the graphs that have topological orderings are exactly the DAGs, we
know that no cyclic graph can have a proper di�erence-labelling.

It follows, that proper-DGs do not have any directed cycles. We see in Theorem 4.1, that
any graph is an induced sub-graph of a (monographic) DG, meaning there exist DGs
with directed cycles. The same cannot be said for proper DGs. Allowing negative labels
therefore also has an e�ect on the structure of DGs.

2.4 Examples

A good start when working with DGs, is to take some integer sets, and find the DG that
they induce. For example, a set of consecutive powers of two, induces a directed path,
while a set of the powers of three induces an independent set. We now present some simple
examples of DGs, after which we present some simple examples of non-DGs.

Di�erence-Digraphs

Given a path Gn := (vn, ..., v1) we provide a di�erence-labelling for each node and prove
that our labelling is valid di�erence-labelling. Notice here that the nodes are labelled
backwards, with the root of the path receiving the label vn. This is done purely to make
our construction a bit simpler. Along with the proof, refer to Figure 2.2 for a visual
representation of a valid labelling scheme for directed paths.

2482n 2n�1 2n�2

Figure 2.2: The only valid way to label a path (except for multiplication).

10
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Theorem 2.4. For any n œ N the labelling ⁄(vi) = 2i
is a valid di�erence-labelling on

Gn := (vn, ..., v1).

Proof. We prove this inductively over n. The base case is clear, the set {4, 2} induces a
directed path on two vertices (the case n = 1 is trivial).

We know that ⁄ is a valid di�erence-labelling for vn, . . . , v1, we must now only prove that ⁄

induces only one outgoing edge from vn+1 going only to vn, and no incoming edges to vn+1.
We know that ⁄(vn+1) ≠ ⁄(vn) = 2n+1 ≠ 2n = 2n = ⁄(vn), so vn+1 and vn are connected.
Since vn+1 has the largest label, and all labels are positive, the labelling induces no edges
towards vn+1. For any i œ {n ≠ 1, ..., 1}, 2n+1

> 2n+1 ≠ 2i
> 2n, so the labelling does not

induce any other outgoing edges from vn+1 either.

The labelling ⁄ is thereby a valid di�erence-labelling for Gn+1, making all paths DGs.

Moreover, one can verify, that except for multiplication, this is the only valid way to label
paths.

A transitive tournament is a graph Tn := (Vn, En), with Vn := {v1, . . . , vn} and En :=
{vivj | i > j}. Along with the proof, refer to Figure 2.3 for a visual representation of a
valid labelling scheme for transitive tournaments.

1234n

Figure 2.3: A valid labelling scheme for transitive tournaments

Theorem 2.5. For any n œ N the labelling ⁄(vi) = i is a valid di�erence-labelling for Tn.

Proof. We prove this inductively over n. The case n = 1 is not interesting, so we therefore
ignore it. The base case is clear; for n = 2 this is a valid labelling.

We know that ⁄ induces Tn on Vn, so ⁄ must still be a valid di�erence-labelling on
Tn+1 ≠ {vn+1}. We know that for every node vj with j ”= n + 1, ⁄(vn+1) ≠ ⁄(vj) =
n + 1 ≠ j œ ⁄(Vn+1), so ⁄ induces an edge from vn+1 to every other node in the graph.
The node with the largest label, vn+1, cannot have any induced incoming edges, since
all assigned labels are strictly positive. This labelling scheme therefore provides a valid
di�erence-labelling for Tn+1.

Inductively, ⁄ is a valid di�erence-labelling for any transitive tournament.

Let ≠æ
K i,j = (A fi B, E) denote a directed complete bipartite graph, where |A| = i, |B| = j

and edges only go from A to B.

Theorem 2.6. For all i, j œ N+
,
≠æ
K i,j is a DG.

Proof. With Lemma 2.2, we know that as long as a DG can be labelled using exclusively
non-zero labels, then we can duplicate nodes, and our graph remains a DG that can be
labelled with exclusively non-zero labels. That means, that if ≠æ

K i,j is a DG that can be
labelled with exclusively non-zero labels, then ≠æ

Ka,b, is also a DG for all a Ø i, b Ø j, since

11
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we can create it by duplicating nodes from ≠æ
K i,j . We must therefore only prove the ≠æ

K1,1 is
a proper DG, and our theorem follows inductively.

The graph ≠æ
K1,1 is a path, so it is a proper DG by Theorem 2.4. It follows that all complete

directed bipartite graphs are (proper) DGs.

Non-Di�erence-Digraphs

It might seem intuitively clear, that not all graphs are DGs, it is however still useful to
look at some examples. Consider the graph represented in Figure 2.4

x y z w

Figure 2.4: A graph that is not a di�erence graph.

In a DG, nodes with the same label must have the same outgoing and incoming neighbour-
hoods as each other. We show that the labels of x and z must be the same. However, w is
in the incoming neighbourhood of z, but not in that of x, meaning that this graph cannot
be a DG. Let ⁄ be a di�erence-labelling on the given graph. We know that no node can
have the label zero, since no node has in-degree three. In general, if a labelling ⁄ does not
assign the label zero, then for any vertex a with Nout(a) = {b}, we know that ⁄(a) ≠ ⁄(b)
must equal ⁄(b). It follows that ⁄(x) = 2⁄(y) = ⁄(z). This graph is therefore not a DG.

A directed cycle is a directed graph defined as Cn = (v1, . . . , vn, v1). Let us now consider
the family of directed cycles. It is clear, that C1 and C2 are DGs. For all other n, this is
not the case.

Theorem 2.7. All directed cycles except for C1 and C2 are not DGs.

Proof. We know for any two consecutive vertices v, u, that for any valid labelling ⁄(v) ≠
⁄(u) = ⁄(u), since v only has out-degree one. This implies that for any di�erence-labelling
on a Cn, |⁄(v1)| > . . . > |⁄(vn)| > |⁄(v1)| (n > 2), a contradiction.

Throughout this thesis, we see some more complicated examples of graphs that are not DGs.
In the meantime, these simple examples are su�cient to gain an intuitive understanding of
some more complex properties of DGs.
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One of the most commonly asked questions, when studying a graph class, is identifying
which graphs fall into this graph class. In this chapter, we identify characteristics of DGs
that allow us to more easily detect which graphs are (not) DGs. Subsequently, we also give
a complete dichotomy of which rooted trees are DGs.

3.1 A Bound on the Number of Edges

In this section, we present a bound on the density of DGs. Since complete graphs are DGs
(assign the label zero to all vertices), one would assume that DGs can be arbitrarily dense.
While there is no bound on the number of edges of DGs in terms of the number of vertices,
we can give a bound on the number of edges of a DG in relation to the maximum number
of distinct labels that a valid di�erence-labelling can assign.

Lemma 3.1. For any monographic DG with n nodes and m edges, that can be labelled

without using two labels a, b such that a = 2b,

m

2 Æ
Ï
3(n ≠ 1)2

/8
Ì

+ Â(n ≠ 1)/2Ê .

Proof. For any n œ N, Tiwari and Tripathi [TT13] show that there exist integral sum-graphs
with m edges if and only if m Æ

'
3(n ≠ 1)2

/8
(

+ Â(n ≠ 1)/2Ê. We assume that monographic
DGs can be arbitrarily dense and show that from arbitrarily dense monographic DGs one
could construct arbitrarily dense integral sum-graphs, in order to reach a contradiction.

Let us assume we have a monographic DG G := (V, E) with n nodes and m edges, with a
di�erence-labelling ⁄ that assigns each vertex a distinct label and no labels a, b, such that
a = 2b. We define a sum-graph G

Õ := (V, E
Õ) implicitly by labelling the nodes. Notice that

the vertex set of G
Õ is V . Let us interpret ⁄ as a a sum-labelling on G

Õ. Remember, that G

is a directed graph, while G
Õ is an undirected graph. We must prove that G

Õ has at least
m
2 induced edges.

For every node v œ V and every arc xv œ E, we then know that there must exist exactly
one other node u with ⁄(u) + ⁄(v) = ⁄(x). We know that u is not v, since there exist
no labels a, b with a = 2b. This means that the presence of the arc xv in G, forces the
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presence of the edge {u, v} in G
Õ. This means that |NGÕ(v)| Ø |N G

in (v)| for all nodes v in G.
With the degree sum formulas for directed and undirected graphs, it follows directly that

m =
ÿ

vœV

|N G
in (v)| Æ

ÿ

vœV

|NGÕ(v)| = 2|EÕ|.

Let us now assume of the sake of contraposition, that m
2 >

'
3(n ≠ 1)2

/8
(

+ Â(n ≠ 1)/2Ê. It
would follow, that

|EÕ| Ø m

2 >

Ï
3(n ≠ 1)2

/8
Ì

+ Â(n ≠ 1)/2Ê ,

a contradiction, since G
Õ is a sum-graph due to its construction. The lemma therefore holds

for monographic DGs.

Corollary 3.2. For any monographic DG with n nodes and m edges

m

2 Æ
Ï
3(n ≠ 1)2

/8
Ì

+ Â(n ≠ 1)/2Ê + n.

Proof. We now consider monographic DGs where any labelling forces the existence of
two labels a, b such that a = 2b (such as paths), so we must modify our algorithm for
generating G

Õ slightly. Assume we have a DG G = (V, E) with m edges and n nodes and a
di�erence-labelling ⁄. We then create a G

Õ := (V, E
Õ) by removing all edges from G that

are induced by exactly two labels (edges induced by labels of the form a = 2b). The graph
G

Õ is not necessarily a DG, however generating a G
ÕÕ := (V, E

ÕÕ) from G
Õ as in our proof of

Lemma 3.1 does give us a sum-graph with |EÕÕ| Ø |EÕ|/2. Since there can only be at most
n edges induced by exactly two labels, the corollary follows directly from Lemma 3.1

This bound is represented in Figure 3.1. For non-monographic DGs, this bound does not
hold. However, by contracting vertices with the same label, we can create a monographic
DG from any DG. This results in the following theorem

Theorem 3.3. For a DG G = (V, E) on n vertices, let ⁄ be a valid di�erence-labelling on

G that uses the maximal number of labels, and let m
Õ

denote the number of edges in the

graph obtained by contracting vertices with the same label, then

m
Õ

2 Æ
Ï
3(|⁄(V )| ≠ 1)2

/8
Ì

+ Â(|⁄(V )| ≠ 1)/2Ê + |⁄(V )|.

3.2 Lakes

We define a lake as an induced sub-graph, such that no edge exits the sub-graph. I.e.
for a graph G := (V, E) an induced sub-graph G[A] ™ G is a lake if and only if for all
a œ A, av œ E implies that v œ A.

Theorem 3.4 (The lakes condition). If a given graph G contains a lake, that is not a DG,

then G cannot be a DG.

Proof. Let us assume that we have a valid di�erence-labelling ⁄ for G = (V, E), and that
there exists an A ™ V , such that G[A] is a lake, and is not a DG. Our goal is to show that
⁄ is also a valid di�erence-labelling for G[A] = (A, E

Õ). One thing is clear, since A ™ V ,
then ⁄(A) ™ ⁄(V ). This means that ⁄ cannot induce any edges on A, that do not exist in
G.

14



3.2. Lakes

Figure 3.1: Bound on the number of edges in a monographic DG (blue) and the maximum
number of edges in a directed graph (red).

Let us assume, for the sake of contradiction, that there exist an a, b œ A, c œ V \A such
that ⁄(a) ≠ ⁄(b) = ⁄(c), meaning there exists an edge (ab) that is induced by ⁄ on V , but
not on A. The labelling ⁄ induces the edges ab, ac, which are edges that must be in E,
since G is a DG. Since a œ A and c /œ A then that would mean that G[A] is not a lake, a
contradiction.

In layman’s terms we have just shown, that if ⁄ induces an edge in E
Õ on V , then it must

also induce that edge on A. It follows, that G[A] is a sub-graph of the graph induced by ⁄

on A. Since ⁄ cannot induce any edges on A that do not exist in G, then G[A] is exactly
the graph induced by ⁄ on A.

This theorem is a lot stronger than it might initially seem. For example, it follows directly
from Theorem 3.4 that the disjoint union of graphs is not a DG, if at least one of the
graphs is not a DG, since a connected component is also a lake. Nevertheless, large lakes
are rare structures in directed graphs, so we also present an even stronger condition.

We refer to an induced sub-graph G[A] of a graph G = (V, E) as being almost a lake if and
only if it is a lake when all sinks in G[A] are removed. In other words,

for all a œ A : av œ E only if v œ A ‚ a is a sink in G[A].

Theorem 3.5 (The strong lakes condition). If a graph G = (V, E) is a DG, then every

induced sub-graph G[A] that is almost a lake in G is also a DG.

Proof. Our proof is analogous to the proof of the lakes condition. Assume there is a valid
di�erence-labelling ⁄ for G. Given an A ™ V such that G[A] is almost a lake in G, we
show that ⁄ is a valid di�erence-labelling on G[A].

We know that ⁄ cannot induce any edges on A that do not exist in G, since ⁄(A) ™ ⁄(V ).
Let us assume for the sake of contraposition that there exist an a, b œ A, c œ V \A, such
that ⁄(a) ≠ ⁄(b) = ⁄(c). Since G is a DG, the edges ab, ac must be in E. It follows that a

must be a sink in G[A], meaning that b ”œ A, a contradiction. It follows that every edge in
G[A] that is induced by ⁄ on V , is also induced by ⁄ on A.
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3.3 Disjoint Union

In this section we examine, when the disjoint union of two graphs is a DG. By Theorem
3.4, we know that if at least one of the two graphs is not a DG, then their disjoint union
cannot be a DG. We must therefore only focus on the case that the two graphs are DGs.

Theorem 3.6. The disjoint union of two non-empty DGs, is a DG if and only if both DGs

have a labelling that does not use the label zero.

Proof. By Theorem 3.4 we know that if there exists a di�erence-labelling for a given graph,
then the given labelling is a valid di�erence-labelling of all lakes in the graph. If we assume
that there exist graphs G1, G2 and that w.l.o.g. G1 cannot be labelled without using
non-zero labels, then G1fi̇G2 can also not be labelled without using non-zero labels. The
disjoint union of two non empty graphs cannot have a vertex that receives the label zero,
meaning that G1fi̇G2 cannot be a DG.

Let us assume we are given graphs G1 = (V1, E1), G2 = (V2, E2) and labellings ⁄1, ⁄2 for
G1, G2 respectively, that do not use the label zero. We can find the label in G2 with the
largest absolute value, max, and create the labelling

⁄(v) =
I

2(|max| + 1)⁄1(v), if v œ V1
⁄2(v), if v œ V2.

This labelling induces G1 on V1 and G2 on V2, and cannot induce any edges between G1
and G2. That is because the sum of any two labels in G1 has an absolute value too large
to be in G2, the sum of two labels assigned in G2 has an absolute value too small to be
in G1, and the sum of any label in G1 with a label in G2 has an absolute value too large
to be in G2 or is strictly between two labels assigned in G1 (or has an absolute value too
large to have been assigned in G1).

The given labelling is therefore a valid di�erence-labelling for G1fi̇G2.

From this we can directly imply the following corollary.

Corollary 3.7. The disjoint union of graphs is a DG if and only if all the graphs are DGs

that can be labelled without using the label zero.

3.4 Forbidden Substructures

Our goal in this section is to find forbidden substructures in DGs. There are a few major
reasons we could come up with, as to why a graph would not be a DG (this is by no means
a comprehensive list).

1. A valid labelling must assign the same label to two vertices with di�erent relevant
neighbourhoods.

2. A valid labelling on the graph must have two or three nodes v1, v2, v3 with ⁄(v1) ≠
⁄(v2) = ⁄(v3) with one or both of v1v2, v1v3 not being in our edge set.

We present two substructures that fulfill the first and second conditions respectively. Our
substructures are by no means the only substructures that fulfill these conditions, but in
order to avoid listing a possibly infinite list of forbidden substructures, we only present the
substructures, that we later require.
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Odd Matching Theorem

Here we present a substructure that fulfills the first condition. We refer to a vertex as odd,
if it has odd out-degree, and all the vertices in its out-neighbourhood have pairwise distinct
relevant neighbourhoods.

Lemma 3.8. For any valid labelling ⁄, and any odd vertex v, there exists exactly one

vertex u with ⁄(v) = 2⁄(u).

Proof. Let us consider an arbitrary vertex u. If ⁄(v) = 2⁄(u), then we know, that
⁄(v) ≠ ⁄(u) = ⁄(u), meaning that u œ Nout(v). Since labels in Nout(v) are distinct with
Lemma 2.1, u is the only vertex with that label. It follows that there is at most one vertex
u with ⁄(v) = 2⁄(u).

If u œ Nout(v), and ⁄(v) ”= 2⁄(u), then we know that there exists (due to the labels in
Nout(u) being distinct) exactly one w œ Nout(v), with ⁄(u) + ⁄(w) = ⁄(v). If there were
another u

Õ, with ⁄(uÕ) + ⁄(w) = ⁄(v), then u
Õ and u, must have the same labels, which

cannot be, since u
Õ would also have to be in Nout(v). It follows, that each vertex u œ Nout(v)

with ⁄(v) ”= 2⁄(u) must ‘pair up’ with an other vertex w œ Nout(v) with ⁄(v) ”= 2⁄(w).
There is therefore one vertex x œ Nout(v), with no other vertex in Nout(v), with which it
can be paired up. It follows that ⁄(v) = 2⁄(x).

Theorem 3.9. For a graph G = (V, E), without a total sink, let A µ V be an arbitrary

set of odd vertices, with pairwise distinct relevant neighbourhoods, such that A forms an

independent set in G. If the underlying undirected bipartite graph obtained by considering

G[A fi Nout(A)] and disregarding all edges starting in Nout(A) does not have a matching

that matches all of A, then G is not a DG.

Proof. For a graph G = (V, E), let A µ V be an arbitrary set of odd vertices, with
pairwise distinct relevant neighbourhoods, such that A forms an independent set in G. If
the underlying undirected bipartite graph obtained by considering G[A fi Nout(A)] and
disregarding all edges starting in Nout(A) does not have a matching that matches all of
A, then by Hall’s marriage theorem, we know that there exists a subset A

Õ ™ A with
|Nout(AÕ)| < |AÕ|. Since no valid labelling can use the label zero, we know by Lemma 3.8,
that every vertex a œ A, requires a vertex v œ Nout(a), with ⁄(a) = 2⁄(v). There must
therefore be a, a

Õ œ A, v œ Nout(A) with ⁄(a) = 2⁄(v), and ⁄(aÕ) = 2⁄(v). It follows, that
⁄(a) = ⁄(aÕ), a contradiction, since labels in A need to be distinct.

This is a generalisation of why the graph in Figure 2.4 is not a DG. We refer to a graph
that has such a substructure as a sub-graph that is almost a lake as an Odd Matching-less

Graph (OMG).
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Odd-Out-Problematic Structures

Our goal is to construct a graph, that fulfills the second condition. We create a very specific
graph, where some nodes are odd. We then prove, that any labelling on this graph induces
an unwanted edge. For a vertex v we call a vertex u problematic with respect to v if all the
following conditions are held.

• The vertex v is odd.

• The vertices Nout(v) form an independent set.

• v /œ Nout(Nout(v)).

• The vertex u is odd.

• Nin(Nout(u)) fl Nout(v) = {u}.

Theorem 3.10. For any graph G without a total sink, if there exists a vertex v with at

least
|Nout(v)| + 1

2 + 1

nodes from Nout(v) being problematic with respect to v, then G is not a DG.

Proof. Let ⁄ be a labelling for G. By Lemma 3.8 and Lemma 2.1 we know that the labels
of vertices in Nout(v) must ‘pair up’; with the sums of their labels being equal to the label
of v. Since v is odd, one of its children is left without a partner and is forced to take
the label ⁄(v)

2 (It is completely irrelevant which node in Nout(v) takes this label). Let us
refer to the node with this label as z. Now, with the pigeon hole principle, one can see
that there must exist two vertices x, y in Nout(v) that are problematic with respect to v,
with ⁄(x) + ⁄(y) = ⁄(v). This is because, there are at least two more problematic vertices
than non-problematic vertices. With Lemma 2.1, we know that x has a child x

Õ with
⁄(xÕ) = ⁄(x)

2 . Similarly for y, we know that y has a child y
Õ with ⁄(yÕ) = ⁄(y)

2 . However,
this must mean that

⁄(xÕ) + ⁄(yÕ) = ⁄(x) + ⁄(y)
2 = ⁄(v)

2 = ⁄(z).

The edges zx
Õ
, zy

Õ are therefore induced by ⁄, but are not in the edge set of G since x and
y were chosen to be di�erent problematic nodes, a contradiction.1

We refer to a graph that has such a substructure as a sub-graph that is almost a lake as an
odd-out-problematic-structure (OOPS).

3.5 Rooted Trees

A directed tree is a directed acyclic graph, such that the underlying undirected graph is a
tree. An out-tree, is a directed tree with a unique source, called the root. An in-tree, is a
directed tree with a unique sink, called the root. A rooted tree, is a directed tree that is
either an out-tree or an in-tree. In this section, we provide conditions that are necessary
and su�cient for a rooted tree to be a DG, as well as algorithms for labelling such trees.
To start o�, we present algorithms for the labelling of specific sub-classes of rooted trees.
These algorithms display the basic concepts of how we aim to label rooted trees that are
DGs, and also provide much better bounds on label sizes.

1Notice now how our construction from Theorem 4.1 ensures that every node has even out-degree, in order
to avoid odd vertices.
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A Labelling Scheme for Even-Degree Out-Trees

Let G := (V, E) be an out-tree such that for all v œ V, |Nout(v)| is even. Our goal is to
prove that such a graph is a DG. We do this by providing an algorithm for generating a
valid labelling ⁄ for G. We label the graph from the top down, starting with the root. Our
algorithm goes as follows.

Algorithm 1: Labelling Even-Degree Out-Trees

1. Assign an arbitrary positive label to the root (e.g. 1).

2. Let max := max{|⁄(v)| | v œ V, v is labelled}.

3. Select two arbitrary unlabelled nodes vi, vj , with a common labelled parent p.

4. Set ⁄(vi) := 4max, and ⁄(vj) := ⁄(p) ≠ ⁄(vi).

5. Return to step 2, until all nodes are labelled.

Claim. Algorithm 1 provides a valid di�erence-labelling for even degree out-trees.

Proof. Labelling the root does not cause any unwanted edges. For all other vertices, we
are going to prove that their labels are valid inductively over the number of completed
iterations. Keep in mind that this labelling scheme never uses the label 0. Labelling two
children in step 3, creates the edges pvi, pvj . All that is left to show is that labelling two
nodes vi, vj does not create any other edges.

It is clear that setting ⁄(vi) := 4max means that for any other label x, ⁄(vi) ≠ x > max.
This cannot cause any collisions since the only label larger than max is ⁄(vi), and x ”= 0.
We also know that x ≠ ⁄(vi) < ≠max. The only label that is that small is ⁄(vj) and
x ≠ ⁄(vi) = ⁄(vj) would imply that x = ⁄(p). There are therefore no collisions involving
the labelling of vi, since assigned labels are clearly distinct.

It still possible that there is a label x ”= ⁄(vi) that creates an undesired edge with
⁄(vj). We know that ⁄(vj) = ⁄(p) ≠ 4max Æ max ≠ 4max = ≠3max. This means that
|x ≠ ⁄(vj)| Ø | ≠ max + 3max| = 2max . There are no labels that large other than ⁄(vi), and
we have already proven that the labelling of vi does not take part in any collisions. This
means that neither the labelling of vi or that of vj , induce any edges in the graph, other than
pvi, pvj . It follows inductively, that the given algorithm provides a valid di�erence-labelling
of G.

Algorithm 1 provides a valid labelling of out-trees, where every vertex has even out-degree,
and uses labels in O(2n). This type of graph is very easy to label, since we never have
to use two labels a, b, such that a = 2b. We see, that when such labels are forced, the
di�culty of labelling trees can increase greatly.

A Labelling Scheme for Binary Out-Trees

A binary out-tree is an out-tree such that for all vertices v, |Nout(v)| œ {0, 1, 2}. In this
section, we show that all binary out-trees are (natural) DGs. This is meant to demonstrate,
how we can label a graph where every valid di�erence-labelling must have two labels a, b

with a = 2b, as well as providing a much better bound on label sizes in comparison to
general out-trees. Throughout this section we use, that any out-tree has a straight-line
planar drawing, with the root at the top and the leaves lying on the same horizontal line,
as in Figure 3.2.
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Figure 3.2: A straight-line planar drawing of a binary tree, with all the leaves on the same
horizontal line.

If binary out-trees are in fact DGs, then for every binary out-tree, there exists a valid
di�erence-labelling that does not use the label zero, since the only binary out-tree with
a total sink is also a path (the binary tree on two vertices). We therefore only focus on
labellings that do not use the label zero. Consider a vertex v in a binary out-tree with
at least one child. If v has exactly one child a, then we know that ⁄(v) = 2⁄(a) for every
valid labelling ⁄. If v has two children a, b, then we know that ⁄(v) = ⁄(a) + ⁄(b) for every
valid labelling ⁄. We therefore only explicitly label the leaves of the tree, and this forces
the labels of all other vertices in the tree.

Algorithm 2: Labelling Binary Out-Trees

Given a binary out-tree T

1. Find a planar drawing of T , such that all leaves lie on the same horizontal line.
This defines an ordering on the leaves ¸1, . . . , ¸k (from left to right).

2. Start by labelling ¸1 as an arbitrary strictly positive integer (e.g. 1).

3. This new label, forces the labels of some unlabelled nodes above it. To each
unlabelled non-leaf, whose label is now uniquely defined, assign it its label.

4. Select the next leaf if it exists.

5. Let max denote the value of the largest already assigned label in the graph.

6. Set the label of the selected leaf as 2max + 1.

7. Return to step 3, until all nodes are labelled.

Claim. Algorithm 2 provides a valid natural di�erence-labelling for binary out-trees.

Proof. This algorithm only uses strictly positive labels. For every vertex v, let t(v) denote
the vertex set of the largest induced sub-tree in T with v as the root. By looking closely at
our algorithm, one can see that the vertex v gets labelled only when all other vertices in t(v)
are labelled. We prove inductively that v receives the largest label in t(v). If v, is a leaf, then
this must be true. If v has two children a, b, then its label is the sum of both its children’s
labels, which are inductively the largest labels in t(a) and t(b) respectively. Since the label
assigned to v is then larger than those assigned to a and b, and t(v) = {v} fi t(a) fi t(b), we
know that v receives the largest label in t(v). The case that v has one child can be dealt
with analogously. We can imply two things from this. If there exist two vertices v, w where
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a = pq

pq�1

pq�2

pq0+1

b = pq0

aq

aq�1

aq�2

aq0+1

t(aq) t(aq�1) t(aq�2) t(aq0+1) t(b)

`i = p0

Figure 3.3: Visual aid for the proof of the correctness of Algorithm 2.

the rightmost leaf in t(v) lies to the left of the rightmost leaf of t(w), then we know, since
v gets labelled as soon as t(v)’s rightmost leaf is labelled, that t(w)’s rightmost label is
labelled after v. This means, due to steps four and five, that w’s label must be strictly
larger than v’s label. It also follows that labels assigned by our algorithm are strictly
increasing, and therefore distinct.

We must now prove that Algorithm 2 produces a valid di�erence-labelling. We prove this
inductively over the number of completed iterations (refer to Figure 3.3 for visual aid).
Before any iteration is completed, all assigned labels are valid, since no labels are assigned.

Assume that the labelling assigned after the i≠1-th iteration is correct. In the i-th iteration,
we label ¸i, and potentially some vertices above it. If we do not label any vertices other than
¸i, then it is clear that our labelling remains valid after the i-th iteration, and we are done.
If we do label vertices above ¸i in step 3, then we refer to them as P := {p0, p1, . . . , pc},
where p0 = ¸i. For any vertex v with two children a, b, where a is the left child, and b

is the right child, we know that the leaves in t(a) must lie to left of the leaves in t(b).
The left child, a, must therefore be labelled before any vertex in t(b). It follows, that
2 max ⁄(t(a)) < min ⁄(t(b)). It also follows that P induces a path, in T . Without loss of
generality let pa be pa+1’s child for all a. We therefore know that pa is pa+1’s right child.
Due to step 3, all required edges of labelled vertices are induced by our labelling. We
therefore only have to prove, that there are no edges induced by our labelling that are not
in T .

Let us assume that the labelling does induce an edge that is not in T , i.e., there exist
vertices a, b, c, such that ⁄(a)≠⁄(b) = ⁄(c), even though ab ”œ E(T ). Step 3 of our algorithm
ensures that if this is the case, then ac ”œ E(T ), since each edge in E(T ) is induced by two
labels, or induced with another edge in E(T ). We can therefore continue the proof without
loss of generality.

The vertices a, b, c are not all labelled in previous iterations, since we assume that the
labelling provided by the i ≠ 1-th iteration is correct. Note that labels are assigned in
ascending order on P , meaning ⁄(p0) < ⁄(p1) < . . . < ⁄(pc). It is therefore not possible for
exactly two of a, b, c to not be in P , since for all vertices x, y ”œ P, ⁄(x) + ⁄(y) < ⁄(p0) =
min ⁄(P ). It follows, that at least one of b, c are in P .

Without loss of generality, let b be in P , and ⁄(b) Ø ⁄(c). It follows, since all assigned
labels are strictly positive, that ⁄(a) > ⁄(b), so a œ P , a is higher up in P in our drawing
of T , and a is not b’s parent, since the edge ab is not in E. Let a = pq, b = pqÕ . For all
v œ {pq, pq≠1, . . . , pqÕ+1}, we know that |Nout(v)| = 2. This is because, if |Nout(a)| = 1,
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then step 3 assigns ⁄(a) = 2⁄(pq≠1). It would follow, since b and c receive labels smaller
than that of a, and pq≠1 has the largest label smaller than that of a, that ⁄(b) + ⁄(c) <

⁄(pq≠1)+⁄(pq≠1) = ⁄(a), a contradiction. Similarly, if there were any qr œ {pq≠1, . . . , pqÕ+1}
with out-degree one, then since c’s label is at most as large as that of b

⁄(a) > ⁄(qr≠1) Ø 2⁄(b) Ø ⁄(b) + ⁄(c),

a contradiction.

With that we know that for all qr œ {pq, . . . , pqÕ+1} there exists an ar with ⁄(qr) =
⁄(ar) + ⁄(qr≠1), where in our planar drawing of T , ar lies left of qr≠1. Here we use the fact
that a vertex v gets labelled by our algorithm only if all other vertices in t(v) are already
labelled. We also know for all c that max ⁄(t(ac+1)) < 2 min ⁄(t(ac)), since the leaves in
t(ac+1) all lie to the left of all the leaves in t(ac). There are two cases.

Case 1. c ”œ t(b) fi P

In this case, ⁄(b) + ⁄(c) Æ ⁄(b) + ⁄(aqÕ+1) = ⁄(pqÕ+1) < ⁄(a), a contradiction.

Case 2. c œ t(b) fi P

In this case

⁄(b) + ⁄(c) =⁄(pqÕ) + ⁄(c)
>⁄(pqÕ) + 2⁄(aqÕ+1)
>⁄(pqÕ) + ⁄(aqÕ+1) + 2⁄(aqÕ+2)
> . . .

>⁄(pqÕ) + ⁄(aqÕ+1) + ⁄(aqÕ+2) + . . . + ⁄(aq≠1) + 2⁄(aq)
>⁄(pqÕ) + ⁄(aqÕ+1) + ⁄(aqÕ+2) + . . . + ⁄(aq≠1) + ⁄(aq)
=⁄(pqÕ+1) + ⁄(aqÕ+2) + . . . + ⁄(aq≠1) + ⁄(aq)
=⁄(pqÕ+2) + . . . + ⁄(aq≠1) + ⁄(aq)
= . . .

=⁄(pq) = ⁄(a),

a contradiction.

This concludes our proof; we first show that a and b must be in P and are not consecutive,
and when that is the case, that there is no choice of c whose label could induce the edge ab.
It follows, that the calculated labelling remains valid after the i-th iteration. Inductively,
Algorithm 2 provides a valid di�erence-labelling for any binary out-tree, while assigning a
distinct strictly positive label to every vertex.

The label assigned to each vertex is at most asymptotically twice the size of the largest
already assigned label, thus the following theorem is a consequence of the correctness of
Algorithm 2.

Theorem 3.11. For all n œ N, all binary out-trees on n vertices are DGs that can be

labelled with distinct strictly positive labels in O(2n).

Moreover, this bound on label sizes is asymptotically tight, since paths are binary out-trees
that require labels in �(2n).

22



3.5. Rooted Trees

A Remark on Other Out-Trees That Are Natural DGs

Here we use the generalised source-join result by M. Sonntag [Son04]. Let G1 = (V1, E1),
. . . , Gn = (Vn, En) be natural DGs, and v1 œ V1, . . . , vn œ Vn, s ”œ V1 fi . . . fi Vn. The
generalised source-join result says that the graph G1fi̇ . . . , fi̇Gn + {s} + {sv1, . . . , svn} is
also a natural DG. We know, due to the fact that out-trees are DAGS with an obvious
topological ordering, that in any natural di�erence-labelling of a tree, the root has the
largest label. For any out-tree, we can add a new vertex, and set the root of the tree to be
its only child. The new vertex is the new root of the tree, which we can assign a label that
is twice the label of the old root of the tree, to create a valid labelling for the new tree.
With that, and with the generalised source join result, it is clear to see that any out-tree,
where every vertex has out-degree that is either even or one, is a natural DG. This does,
however, provide a sub-optimal asymptotic bound on label sizes for binary out-trees, hence
the inclusion of our algorithm.

3.5.1 Out-Spiders

An out-spider, is an out-tree, where every node except the root has an out-degree of one.
An out-spider can be visualised as an out-star where some edges are subdivided. A leg is a
path starting at the root and ending at a leaf, excluding the root. An out-spider with k

leaves is then said to have k legs. We refer to a leg as trivial if it consists of one vertex. In
this section, we present a complete dichotomy of which out-spiders are DGs, as well as an
algorithm to label any spider that is a DG. In Section 3.5.2, we extend this algorithm in
order to label any out-tree that is a DG. The following construction is the main building
block for both algorithms, since it allows us to repeatedly label induced paths in out-trees.

Path Extension

Given, is a graph G
Õ, a valid labelling ⁄

Õ on G
Õ, the paths P = (p1, . . . , pk), P

Õ = (pÕ
1, . . . , p

Õ
kÕ)

(0 < k Æ k
Õ), and a vertex v in G

Õ. We need to label the graph G = G
Õfi̇P fi̇P

Õ + {vp1, vp
Õ
1}

obtained by extending the paths P and P
Õ from v. We provide a construction for a labelling

⁄ on G. We refer to this construction as path extension.

Provided that the labelling ⁄
Õ does not use the label 0, and that v is the only vertex with a

label in
{⁄

Õ(v)/2i | i œ {0, . . . , k ≠ 1}},

then we construct a labelling ⁄ on G in the following manner. Let

⁄(u) = 2kÕ
⁄

Õ(u) (u œ V (GÕ))

and ¸ be an arbitrary odd number such that ¸ > 4 max{|⁄(u)| | u œ V (GÕ)},

⁄(pÕ
i) = 2kÕ≠i

¸ (i œ {1, . . . , k
Õ}) and

⁄(pi) = ⁄(v)/2i≠1 ≠ ⁄(pÕ
i) (i œ {1, . . . , k}).

Lemma 3.12. Given a DG G = (V, E), with

G = (GÕ fi̇ P fi̇ P
Õ) + {vp1, vp

Õ
1},

for a graph G
Õ
, a vertex v œ V (GÕ), and paths P = (p1, . . . , pk) P

Õ = (pÕ
1, . . . , p

Õ
kÕ) with

0 < k Æ k
Õ
. If there exists a valid di�erence-labelling ⁄

Õ
for G

Õ
fulfilling the requirements

for using path extension, then for any integer “ Ø 4 path extension can be used to construct

a valid di�erence-labelling ⁄ on G with

≠⁄(pk), ⁄(pÕ
kÕ) Ø “ max{|⁄(u)| | u œ V (GÕ)}.
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Proof. Let ⁄
Õ be a di�erence-labelling on G

Õ fulfilling the requirements to extend P and P
Õ

from v. Let us construct the di�erence-labelling ⁄ on G using path extension. By stating
that the chosen ¸ in our path extension is arbitrary, this allows us allows us to vary our
choice of ¸ in order to adjust the size of the assigned labels in accordance with any given “.

We need to prove that ⁄ is a valid di�erence-labelling for G. Notice how the labels assigned
on P

Õ are strictly positive, while the labels assigned on P are strictly negative. First we
prove that G is a sub-graph of the graph induced by this labelling. For all the vertices in
G

Õ, we just multiply their labels by a factor, so all edges from G
Õ are induced by ⁄. For

any edge p
Õ
ip

Õ
i+1 we know that ⁄(pÕ

i) ≠ ⁄(pÕ
i+1) = 2kÕ≠i

¸ ≠ 2kÕ≠i≠1
¸ = 2kÕ≠i≠1

¸ = ⁄(pÕ
i+1), so

it is induced by ⁄. For any edge pipi+1 we know that

⁄(pi) ≠ ⁄(pi+1) = ⁄(v)
2i≠1 ≠ ⁄(pÕ

i) ≠ ⁄(v)
2i

+ ⁄(pÕ
i+1) = ⁄(v)

2i
≠ ⁄(pÕ

i+1) = ⁄(pi+1).

The edges vp1, vp
Õ
1 are induced by ⁄(v) ≠ ⁄(p1) = ⁄(v) ≠ ⁄(v) + ⁄(pÕ

1) = ⁄(pÕ
1). It follows

that G is a sub-graph of the graph induced by ⁄. What we now need to prove is that the
graph induced by ⁄ is a sub-graph of G. Our argumentation goes as follows. The labels
assigned on the paths are so much larger than previously assigned labels that they do
not interfere with G

Õ, and they are spaced out in a way, such that the sum/di�erence of
labels assigned to non-adjacent vertices on the paths results in a label that we know is not
assigned. This is mostly because pi is roughly equal to ≠p

Õ
i and the di�erence between p

Õ
i

and p
Õ
i+1 decreases exponentially.

Let us assume for the sake of contraposition, that the graph induced by ⁄ is not a sub-graph
of G. There must therefore exist vertices a, b, c with ⁄(a) ≠ ⁄(b) = ⁄(c), whose labels
induce an edge not in G. It is not possible for a, b, c to be in V (GÕ), since ⁄ induces the
same graph on V (GÕ) as ⁄

Õ. Furthermore, it is not possible for exactly two of a, b, c to be
in V (GÕ) since the sum of any two labels assigned by ⁄ in V (GÕ) has an absolute value
of at most ¸/2, which is smaller than the absolute value of any label assigned on the two
paths. We can therefore focus on the case that at least two of a, b, c lie on the paths.

We know with Theorem 2.4, that if there is an induced edge going between two vertices of
the same path that should not be there, then there must be another induced edge leaving
that path, since the labels assigned to the path cannot induce such an edge on their own.
All that is then left to prove, is that there are no edges entering or leaving either path,
except of those from v, which only has edges going to the first node of each path. In Case
1 we show that there cannot be any edges entering the paths, except for those coming from
v and going to p1 and p

Õ
1. In Case 2 we show that there cannot be any edges leaving either

path.

Case 1. a œ V (GÕ)

In this case, b and c must lie on the paths. We know that b and c must lie on di�erent
paths. Otherwise, ⁄(b) and ⁄(c) would have the same sign, and the absolute value of
⁄(b) + ⁄(c) would be much larger than any label assigned to nodes in V (GÕ). This means
that ⁄(a) = ⁄(px) + ⁄(pÕ

y) for some x, y œ N0. If x = y, then ⁄(a) = ⁄(px) + ⁄(pÕ
x) =

⁄(v)/2x≠1 ≠ 2kÕ≠x
¸ + 2kÕ≠x

¸ = ⁄(v)/2x≠1, which means a = v, and x = y = 1 since as per
our assumption, v is the only vertex with a label of this form.
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For all other possible combinations of x and y, the absolute value of the sum of 2kÕ≠y
¸ and

⁄(v)/2x≠1 ≠ 2kÕ≠x
¸ is simply too large for it to be equal to ⁄(a). If x > y, then

⁄(a) = ⁄(v)/2x≠1 ≠ 2kÕ≠x
¸ + 2kÕ≠y

¸

Ø ⁄(v)/2x≠1 ≠ 2kÕ≠y≠1
¸ + 2kÕ≠y

¸

= ⁄(v)/2x≠1 + 2kÕ≠y≠1
¸

Ø ≠|⁄(v)| + ¸

> ≠¸/4 + ¸

> max{|⁄(u)| | u œ V (GÕ)}.

The case that x < y results analogously (since ⁄(pÕ
i) = ⁄(v)/2i≠1 ≠ ⁄(pi)) in ⁄(a) <

≠ max{|⁄(u)| | u œ V (GÕ)}. The vertex a can therefore not lie outside the paths, unless
a = v, in which case it only has edges going to the first vertex of each path.

Case 2. a ”œ V (GÕ)

If a lies on one of the paths then we know that either b or c (or both) also lie on the paths.
If b lies on the other path as a, then ⁄(a) ≠ ⁄(b) = 2›

⁄(a) for some › œ N. This is because
the nodes that are above a on its leg are the only nodes with labels that have such a large
absolute value, and the same sign as ⁄(a) ≠ ⁄(b). Note that we know due to our choice of
⁄(v) and ¸, that ⁄(pÕ

kÕ) and ⁄(v)/2kÕ≠1 ≠ ⁄(pÕ
kÕ) are odd and both much larger than ⁄(v).

Hence, ⁄(a)≠⁄(b) = 2›
⁄(a) would mean that for some odd Â œ {⁄(pÕ

kÕ), ⁄(v)/2kÕ≠1≠⁄(pÕ
kÕ)}

and x, y, z œ N, 2x
Â = 2y

Â + 2z(⁄(v)/2kÕ≠1 ≠ Â). Since ⁄(v) is smaller than Â, there are
some prime factors that make up Â that are either not present in ⁄(v) or do not divide
⁄(v) enough times. By multiplying or dividing ⁄(v) with any power of two, we do not add
those missing prime powers back. It follows that (2z

⁄(v))/2kÕ≠1 ”©Â 0. This leads us to the
following congruence obstruction

0 ©Â 2x
Â = 2y

Â + 2z
3

⁄(v)
2kÕ≠1 ≠ Â

4
©Â

2z
⁄(v)

2kÕ≠1 ”©Â 0.

With the same argument, we can show that c can also not lie on the other path as a. We can
therefore assume that b lies on the same path as a, which means c cannot lie on either path.
If b lies beneath a on its path, then ⁄(a) ≠ ⁄(b) has an absolute value at least as large as
the label on a’s leg with the smallest absolute value, which still has an absolute value much
larger than that of c. If b lies above a on its leg, then |⁄(a)≠⁄(b)| Ø |⁄(a)≠2⁄(a)| Ø |⁄(a)|,
which is again much larger than |⁄(c)|.

We already know that there cannot be any edges induced by three labels in V (GÕ). Case 1
excludes the possibility of any incoming edges to the newly labelled paths, unless they are
coming from v, and going to the first node of each path. Case 2 excludes the possibility
of any edges leaving the newly labelled paths. It follows that ⁄ is a valid labelling of G.
Since ¸ is selected arbitrarily, and the lower bound for the minimum label size is below
that stated by the lemma, the lemma holds true.
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Labelling Out-Spiders

Notice how if we can use path extension to extend paths from vertices v, u, then one could
extend paths from v, and in the resulting graph, one can still extend paths from both
vertices. This leads us to the following result.

Corollary 3.13. All out-spiders with an even number of legs are DGs.

Proof. Given an out-spider with an even number of legs we can assign an arbitrary label
to the root and use path extension repeatedly to label two legs at a time until all legs are
labelled.

Corollary 3.14. Out-spiders with an odd number of legs, with at most one trivial leg and

at least five legs, are not DGs.

Proof. Let us consider an out-spider with at least five legs, an odd number of legs, and at
most one trivial leg. All relevant neighbourhoods in such a spider are distinct. The root
r of the spider has odd out-degree, and in-degree zero. All but at most one of the nodes
in the neighbourhood of r have odd out-degree (because they must have out-degree one).
Furthermore, Nin(Nout(r)) = {r}, and all nodes in Nout(Nout(r)) have in-degree one. The
out-spider is therefore an OOPS, meaning it cannot be a DG.

Corollary 3.15. Out-spiders with more than one trivial leg are DGs.

Proof. Let us assume we have an out-spider with more that one trivial leg. If the spider
has an even number of legs, then it is a DG according to Corollary 3.13. If the spider has
an odd number of legs, then we can remove one trivial leg. The new spider has an even
number of legs, and we can therefore find a valid di�erence-labelling for it. We can then
put that leg back in, and assign its vertex the same label as one of the labelled vertices
from one of the other trivial legs. Since both vertices have the same neighbourhoods, this
does not cause any problems.

In both cases, the out-spider with more than one trivial legs has a valid di�erence-
labelling.

One can verify, that out-spiders with three legs, and one trivial leg have a valid di�erence-
labelling. This can be obtained by labelling the root with a su�ciently large power of two,
and setting the label of the first node one of the non-trivial legs to be half of that. That
implicitly labels the rest of that leg. The other two legs are labelled using path extension.
Such spiders therefore have a valid di�erence-labelling.

Out-spiders with three legs, and no trivial legs are OOPSs, meaning they cannot be DGs.
It is interesting to note at this point that the only spiders that are not DGs are OOPSs.
This leads us nicely into the next section.

3.5.2 Out-Trees

In this section we prove that an out-tree is a DG if and only if it is not an OOPS (refer to
Section 3.4). We do this by providing an algorithm that labels such trees. Our algorithm
assumes that the given graph is not an OOPS, and finds very specific induced out-spiders
in it. By using an altered version of our labelling algorithm from Section 3.5.1 we are able
to label these induced spiders without inducing unwanted edges with preexisting labels.

26



3.5. Rooted Trees

Figure 3.4: A maximal OIS belonging to the root of this tree (red).

We work our way from the root to the leaves, by labelling induced out-spiders until all
nodes are labelled.

In Section 3.4, we introduce the term ‘problematic with respect to a vertex’. Since for u

to be problematic with respect to v, u must be in Nout(v), we simply refer to a vertex
of an out-tree as problematic if it is problematic with respect to its parent. By closely
inspecting the conditions for a vertex to be problematic one can determine, that a vertex
w in an out-tree is non-problematic, if and only if it has even out-degree, or if the relevant
neighbourhoods of Nout(w) are not pairwise distinct. From a given out-tree T we can
therefore construct an out-tree T

Õ, where a vertex is non-problematic if and only if it has
even out-degree, such that T can be obtained from T

Õ by vertex duplication. Every vertex
in T that has even out-degree can be kept. If a vertex w has odd out-degree in T but is
not problematic, then it must have two children with non-distinct relevant neighbourhoods.
The only way for the relevant-neighbourhoods of two vertices in a tree to be the same, is if
both vertices are leaves that share a parent. We can therefore delete one of the leaves of w,
and its degree in T

Õ becomes even. Due to our construction of T
Õ, we know that T can

be obtained from T using node duplication. All we must therefore prove, is that T
Õ is a

DG, and it follows by Lemma 2.2 that T is a DG. We therefore assume for the rest of this
section that a vertex in T is problematic if and only if it has odd out-degree.

We must now discuss how the induced spiders are found.

Odd-Induced Out-Spiders

We define an odd-induced-out-spider (OIS) of an out-tree T as a sub-out-tree S, such that
S is an induced out-spider in T , the leaves of S have even out-degree in T , and all other
vertices except the root of S have odd out-degree in T . For a vertex v in a tree T , let

S(v) = {S | S is an OIS with the maximal number of vertices and v as the root.}

Figure 3.4 shows a possible maximal OIS for the root of an out-tree. We denote the length
of the longest leg (in number of vertices) of any element in S(v) with l(v), note that this is
a well defined function, meaning any element in S(v) has at least one leg of length l(v).

Lemma 3.16. If T is not an OOPS, then for every odd number k, every maximal OIS in

T , with k legs, has at least

Í
k
2

Î
trivial legs.

Proof. If T is not an OOPS, then every vertex in T with odd out-degree k has at least
Í

k
2

Î

non-problematic children. We assumed that in T , all non-problematic children have even
out-degree. A maximal OIS includes at least all the children of its root. If a non-problematic
child is in an OIS, then it must be a leaf; hence, any maximal OIS with an odd number, k,
of legs must therefore have at least

Í
k
2

Î
trivial legs.
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Altered Labelling Algorithm for OISs

In the previous section, we provided an algorithm for labelling out-spiders. However, in
that section, we did not need to work around labels that exist outside of the spider. With
this algorithm, the root of the spider is already labelled, and we have to label the rest of
the spider, while ensuring that there are no collisions between new labels, and labels that
already exist in the graph. For this reason, our algorithm depends on some very specific
invariants in order to label an OIS in a given out-tree T .

Invariants

1. For every labelled vertex v with odd out-degree and unlabelled children, exactly one
of its children is labelled, and that child is the first vertex of a longest leg of every
spider in S(v).

2. If a vertex has even out-degree, then either none or all of its children are labelled.

3. For all vertices v with even out-degree, v is the only vertex that is assigned a label in

{⁄(v)/2i | i œ {0, . . . , l(v) ≠ 1}}.

4. No two vertices have the same label.

5. The sub-graph of labelled vertices is a sub-tree of T .

When our algorithm is called, we can assume that all invariants hold true, and we are given
an out-tree T on n vertices and a vertex v, as well as a maximal OIS S œ S(v), and the
label of v, ⁄(v).

Algorithm 3: Labelling an OIS

For a vertex v and a maximal OIS S œ S(v)

• If S has an even number of legs, then with Lemma 3.12, the legs of S can be
labelled two at a time, while ensuring in each step, that the leaves of the spider
receive labels with an absolute value at least 2n+1 times larger than the labels in
the rest of the graph.

• If S has an odd number of legs, a longest leg has at least one labelled vertex. The
remaining legs can be paired up so that in each path-extension a trivial leg is
labelled with a non-trivial leg. Label all unlabelled legs in accordance to Lemma
3.12, while ensuring in each step, that the leaves of the spider receive labels with
an absolute value at least 2n+1 times larger than the labels in the rest of the
graph.

Claim. Algorithm 3 provides a valid di�erence-labelling for the sub-tree of labelled vertices,
and does not break the invariants.

Proof. In order to show that our labelling is correct, all we need to show is that our use of
path extension is correct. The correctness of the labelling would then follow directly from
the correctness of path extension.

If S has an even number of legs, then we know with our third invariant, that the requirements
to use path extension are held. If S has an odd number of legs, then due to our first invariant,
the first vertex of a longest leg is already labelled. We therefore know with Lemma 3.16 that
at least half of the remaining legs are trivial. Due to {⁄(v)/2i | i œ {0, . . . , 0}} = {⁄(v)},
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3.5. Rooted Trees

and our fourth invariant, we know that as long as one of the two paths we would like to
extend from v is trivial, we can always use path extension to extend the two legs. In either
case, our algorithm provides a correct labelling. We now need to prove that our invariants
remain true after our algorithm is called.

If a vertex w with odd out-degree is labelled by Algorithm 3, then due to the fact that
in every maximal OIS in which w is a part it is not a leaf, exactly one of w’s children
must also be labelled. We specifically picked all our OIS to be maximal. It is clear that a
maximal OIS that includes the vertex w must also include a longest leg from an S œ S(w).
If a child of w is the first vertex on a longest leg of S, then it is the first vertex of a longest
leg in every element of S(w) (due to their maximality). It follows, that exactly one child
of w is labelled, and that this child is the first vertex on a longest leg of every element of
S(w). Thus our first variant remains true.

If a vertex w has even out-degree and unlabelled children, then in every OIS of which w is
a part up to this point, it is a leaf, meaning that none of the vertices below it in the tree
could be labelled. Thus our second variant remains true.

By Lemma 3.12, we can ensure whenever we label two paths, that we find a valid labelling
such that the leaves receive labels that are 2n+1 times larger than any label. It also ensures,
that if the invariants held for any already labelled vertex, then they still hold. Furthermore,
the only vertices that our algorithm labels, that have even degree, are the leaves. Due to
the relative size and the sign of the labels assigned to the leaves, the third invariant also
holds true.

Path extension ensures that labels remain distinct after our algorithm is called, since labels
on the legs must be distinct, and already assigned labels are all multiplied by a factor.
Thus the fourth invariant remains true.

Due to the fact that we label all the vertices of paths at the same time, and that we know
that the root of the OIS is already labelled, it is not possible for us to label a vertex,
without labelling its parent. We therefore know that the sub-graph of labelled vertices is
in fact a sub-tree of T . Thus the fifth invariant remains true.

All invariants then hold for the newly labelled vertices, and all previously labelled vertices
of the tree.

Labelling Algorithm

By using Algorithm 3 multiple times, we can create a valid di�erence-labelling for any
out-tree that is not an OOPS.

Algorithm 4: Labelling Out-Trees

1. Start by labelling our root r with the label 2n.

2. If the root has odd out-degree, then pick an arbitrary S œ S(r). Label a longest
leg in S as in Theorem 2.4.

3. Pick an arbitrary labelled vertex v with unlabelled children.

4. Pick an arbitrary S œ S(v) and label it with Algorithm 3.

5. Return to Step 3.
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Claim. Algorithm 4 provides a valid di�erence-labelling.

Proof. The correctness of Algorithm 4 follows from the correctness of Algorithm 3. All we
need to show is that the invariants and requirements to call Algorithm 3 always hold, and
that all vertices in our tree are assigned a label. After the first 2 steps it is clear that all
invariants hold true. Since the invariants still hold true after each call to Algorithm 3, we
know that the invariants always hold true.

Since there is a directed path from the root of T to every vertex in T , our algorithm assigns
a label to every vertex in T . It follows then from the correctness of Algorithm 3, that
Algorithm 4 is also correct.

In conclusion, the correctness of Algorithm 4 implies the following theorem.

Theorem 3.17. An out-tree T is a DG if and only if, it is not an OOPS.

Proof. If an out-tree is not an OOPS, then Algorithm 4 and Lemma 2.2 provide a valid
di�erence-labelling for it. If an out-tree is an OOPS, then by Theorem 3.10 it cannot be a
DG. It follows that an out-tree is a DG if and only if it is not an OOPS.

3.5.3 A Complete Dichotomy

With the work of the previous section, we already almost have a complete dichotomy of
rooted trees.

Out-trees

By Theorem 3.17, we know that an out-tree is a DG if and only if it is not an OOPS.

In-Trees

Let us consider a path P := (v1, . . . , vn). By Theorem 2.4 we know that P is a DG, that
can be labelled with distinct non-zero labels. By Lemma 2.2, we know that if we duplicate
any vertex of P , the new graph is also a DG. Furthermore, we know that P is an in-tree,
and no matter how many times we duplicate v1, it remains a DG. We define an in-broom as
an in-tree that can be obtained from a directed path on at least two vertices, by duplicating
the first vertex an arbitrary number of times2.

Corollary 3.18. An in-tree T = (V, E) is a DG if and only if T is an in-broom.

Proof. If T is an in-broom, then we already know that it is a DG.

In-brooms are exactly the in-trees in which a vertex has more than one child if an only if all
of its children are leaves. Hence, if T is not an in-broom, then there are three vertices u, v, w

with uw, vw œ E, and at least one of u, v are not leaves. It also means, that there is no total
sink in T , since the only in-trees with total sinks are in-stars, and those are also in-brooms.
The vertices u, v must then also have di�erent neighbourhoods, and uv, vu /œ E, since that
would make T not a tree. Since T is an in-tree, we know that Nout({u, v}) = {w}. We
know that the bipartite graph B = ({u, v, w}, {{u, w}, {v, w}}) does not have a matching
that matches {u, w}, so we know that T cannot be a DG since it is an OMG.

A great thing to note, is that this allows us to classify rooted trees in linear time. This
is because it is very easy to check if an in-tree is an in-broom, and for any out-tree it is
possible to check in linear time, if it is an OOPS.

2This definition of in-brooms therefore also includes all paths
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A Short Dichotomy of Rooted Forests

A rooted forest, is the disjoint union of rooted trees. By Corollary 3.7, we know that a
disjoint union of graphs is a DG if and only if all connected components are DGs that can
be labelled without using the label 0. We know that all rooted trees that are DGs can be
labelled without using the label 0. We can then conclude this section with the following
corollary.

Corollary 3.19. A rooted forest, is a DG if and only if all rooted trees in the forest are

DGs.
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As previously discussed, you cannot turn any non-DG into a DG by adding isolated nodes,
like you can with sum-graphs. We define the di�erence-number of a graph G = (V, E)
(denoted m(G)), as the minimum number of extra nodes one needs to add, in order to
create a DG G

Õ = (V Õ
, E

Õ) with G = G
Õ[V ].

Theorem 4.1 ([EG84]). For any graph G = (V, E), m(G) Æ |E|.

Proof. Given a directed graph G := (V, E), with V := {v1, . . . , vn} and E = {e1, ..., em},
our goal is to add m new nodes, and label each node in such a way as to induce a DG with
G as an induced sub-graph. Since all directed graphs with one or two nodes are DGs, we
can assume that n > 2.

Let us set G
Õ := (V Õ

, E
Õ) with V = {v1, . . . , vn, ¸1, . . . ¸m}. We provide an implicit definition

of E
Õ by providing a labelling ⁄

Õ on G
Õ. This ensures that G

Õ is a DG. Let ⁄
Õ(vi) = 3i

for i œ {1, . . . , n}. Currently, no two nodes are connected by an edge. Then let, for all
ei = vjvk, ⁄

Õ(¸i) = ⁄
Õ(vj)≠⁄

Õ(vk). Clearly then, vj is connected to vk through ¸i, so E ™ E
Õ.

We must only prove that ¸i does not connect any other two nodes from V .

Let ¸ œ V
Õ\V , with ⁄

Õ(¸) = 3k ≠ 3t and ⁄
Õ(¸) = 3i ≠ 3j . That means that 3k ≠ 3t = 3i ≠ 3j

meaning 3k + 3j = 3i + 3t. Without loss of generality let k > j, i > t. If without loss of
generality k > i then 3k + 3j

> 3k
> 2 · 3i

> 3i + 3t, a contradiction. It follows, that k = i,
thus j = t.

So, all added ¸i’s connect exactly two nodes from V to each other, meaning that our
construction is correct. The graph G

Õ is a DG and G is an induced sub-graph of G
Õ. The

theorem holds true, since G
Õ has exactly n + m vertices.

This also shows, that the di�erence-number of a graph is always defined. Throughout this
thesis, we provide multiple constructions, of varying complexity, that prove Theorem 4.1.
Another very similar construction is presented by Eggleton and Gervacio ([EG84]). For
now, this simple construction is su�cient.
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4.1 Basic Di�erence-Numbers

In this section, we present bounds on the di�erence-numbers of some graph classes.

Theorem 4.2. The di�erence-number of any directed cycle on n nodes is one for n > 2
and zero otherwise.

Proof. By Theorem 2.7 we know that C1 and C2 are DGs; their di�erence-numbers are
therefore zero. All other directed cycles are not DGs, their di�erence-number must be
strictly larger than zero. By adding one extra node however, one can create a DG with
the cycle as an induced sub-graph. Given a cycle G = (vn, . . . , v1, vn) we label it with
⁄(vi) = 2i. We add a node a to G, and give it the label 2 ≠ 2n. This is a negative
number and is therefore not an already existing label. This also connects v1 to vn. It also
does not connect any other two nodes since for any i Æ n, 2 ≠ 2n ≠ 2i

< 0 and for any
1 < i Æ n, 2i + 2n ≠ 2 > 2n.

We know that directed complete graphs are DGs, since we can assign the label zero to
each node. However, if we add one isolated vertex to Kn, then no vertex can receive the
label zero, since the new node has no incoming edges. Moreover, it forces all labels in the
graph to be distinct by Lemma 2.1, since the graph no longer contains a total sink. Let
K

ú
n := Kn fi {v} where v is an isolated vertex.

Theorem 4.3. For all n œ N m(Kú
n) Æ 1.

Proof. Given a K
ú
n with isolated vertex v, we assign the label one to every vertex, and

the label -2, to the isolated vertex. We add one extra vertex to the graph, make it a
universal sink, and assign it the label zero. Since at least one vertex receives the label zero,
our labelling induces edges between all nodes with the same label. No edges are induced
between nodes with the label 1, and the v. This new graph is therefore a DG that has K

ú
n

as an induced sub-graph. The di�erence-number of K
ú
n is therefore at most one.

Furthermore, for any valid di�erence-labelling on K
ú
n, every vertex must receive a di�erent

label by Lemma 2.1. For su�ciently large n, K
ú
n cannot be a DG, since it would violate

the bound from Corollary 3.2. It follows that our bound is also tight.

4.2 The Di�erence-Number of Rooted Trees

After showing which rooted trees are DGs in Section 3.5, we now present bounds on their
di�erence-number.

4.2.1 Out-Trees

We know, that the only out-trees that are not DGs are OOPSs. Here we bound the
di�erence-number of out-trees from above by two. We do this by presenting an algorithm
that labels any out-tree, while using exactly two extra vertices. For the most part, this
algorithm works similarly to Algorithm 4 from Section 3.5.2. We therefore assume that an
intuitive understanding of that algorithm is already present. Just like in that algorithm, we
label maximal OISs in the tree, until all vertices are labelled. In Theorem 3.10, we exploit
the fact that in some trees, one must assign labels a, b with a = 2b, to find a forbidden
substructure. Our goal is therefore to mostly avoid assigning such labels, while avoiding
other problems that arise along the way.
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Weak Path Extension

For a directed graph G and a set of vertices Z with Z fl V (G) = ÿ, we say that a labelling
⁄ is a di�erence-labelling on G with additional vertices Z if for the DG G

Õ induced by ⁄ on
V (G) fi Z, G

Õ[V (G)] = G. Given is a graph G
Õ, a valid labelling ⁄

Õ on G
Õ with additional

vertices Z, the paths P = (p1, . . . , pk), P
Õ = (pÕ

1, . . . , p
Õ
kÕ) (0 < k Æ k

Õ), and a vertex v in G
Õ.

We need to label the graph G = G
Õfi̇P fi̇P

Õ + {vp1, vp
Õ
1} obtained by extending the paths P

and P
Õ from v. We provide a construction for a labelling ⁄ on G with additional vertices

Z. We refer to this construction as weak path extension.

Provided that the labelling ⁄
Õ does not use the label zero, and we can find a z œ Z such

that z is the only vertex with a label in

{±i⁄
Õ(z) | i œ {1, . . . , k

Õ ≠ 1}},

and that v is the only vertex with a label in

{⁄
Õ(v) ≠ i⁄

Õ(z) | i œ {0, . . . , k + k
Õ ≠ 2}},

then we construct a labelling ⁄ for G with additional vertices Z in the following manner.
Let ¸ denote an arbitrary number larger than max{|⁄Õ(u)| | u œ V (GÕ) fi Z}, then set

⁄(pÕ
1) = 4k

Õ
¸ + k

Õ|⁄Õ(z)|,

⁄(p1) = ⁄
Õ(v) ≠ ⁄(pÕ

1),

⁄(u) = ⁄
Õ(u) (u œ V (GÕ) fi Z) and

⁄(pÕ
i) ≠ ⁄(z) = ⁄(pÕ

i+1), ⁄(pi) ≠ ⁄(z) = ⁄(pi+1) (for all i).

Lemma 4.4. Given a graph G = (V, E), with

G = (GÕ fi̇ P fi̇ P
Õ) + {vp1, vp

Õ
1},

for a vertex v œ V (GÕ) and the paths P = (p1, . . . , pk), P
Õ = (pÕ

1, . . . , p
Õ
kÕ) with 0 < k Æ

k
Õ
. If there exists a di�erence-labelling ⁄

Õ
on G

Õ
with additional vertices Z fulfilling the

requirements for using weak path extension, then for any “ Ø 4, weak path extension can be

used to provide a valid di�erence-labelling ⁄ on G with additional vertices Z, such that

≠⁄(pk), ⁄(pÕ
kÕ) > “ max{|⁄(u)| | u œ V (GÕ) fi Z}.

Proof. Let ⁄
Õ be a valid labelling on G

Õ with additional vertices Z that fulfills the require-
ments for using weak path extension. Let ⁄ be a di�erence-labelling on G with additional
vertices Z, obtained using weak path extension. The labelling ⁄ induces an edge from
every pi and p

Õ
i to pi+1 and p

Õ
i+1 respectively, and from v to p1 and p

Õ
1. Since ¸ was selected

to be arbitrary, we can vary our choice of ¸ to obtain labels with larger absolute values,
in accordance to any selected “. We therefore know, that G is a sub-graph of the graph
induced by ⁄. All we now need to prove, is that G is in fact an induced sub-graph of
the graph induced by ⁄. Our argumentation goes as follows. The labels assigned on the
paths are so much larger than previously assigned labels that they do not interfere with
G

Õ, and they are spaced out in a way, such that the sum/di�erence of labels assigned to
non-adjacent vertices on the paths results in a label that we know is not assigned.

Let us assume for the sake of contradiction, that ⁄ induces an edge between two vertices
in V that is not present in G. There must therefore exist three vertices a, b, c œ V fi Z

with ⁄(a) ≠ ⁄(b) = ⁄(c) with a, b œ V and ab ”œ E. We know that not all of a, b, c can be in
V (GÕ) fi Z since the labels in G

Õ and Z remain unchanged. The label with the smallest
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absolute value that is assigned on either path has an absolute value of at least 3k
Õ
¸. It is

therefore not possible for exactly two of a, b, c to be in V (GÕ) fi Z, since the absolute value
of the sum of any two labels assigned in V (GÕ) fi Z is at most 2¸. At least one of b, c must
therefore lie on one of the extended paths. We know that

(⁄(P ) fi ⁄(P Õ)) + (⁄(P ) fi ⁄(P Õ)) = {⁄(v) ≠ i⁄(z) | i œ {0, . . . , k
Õ + k ≠ 2}}

fi {2⁄(p1) ≠ i⁄(z) | i œ {0, . . . , 2k ≠ 2}}
fi {2⁄(pÕ

1) ≠ i⁄(z) | i œ {0, . . . , 2k
Õ ≠ 2}}.

Elements of the first set are obtained by adding one label assigned on P with one label
assigned on P

Õ, while elements of the second and third sets are obtained by adding up
two labels assigned on the same path. Elements of the first set have absolute values much
too small to have been assigned on either path. On the other hand, due to the large
size of ⁄(p1) and ⁄(pÕ

1), the elements of the second and third sets have absolute values
much too large to have been assigned on either path. It is therefore easy to verify that
((⁄(P ) fi ⁄(P Õ)) + (⁄(P ) fi ⁄(P Õ))) fl (⁄(P ) fi ⁄(P Õ)) = ÿ, meaning it is not possible for all
three of a, b, c to lie on the paths. We can therefore focus on the case that exactly two of
a, b, c lie on the paths.

If exactly b and c lie on the paths, then either they lie on the same path, or they lie on
di�erent paths. We now show that in either case, ⁄(b) + ⁄(c) is a label that we assume is
not assigned by ⁄

Õ. By looking closely at the labels assigned on the paths, one can see that
⁄(P )+⁄(P Õ) = {⁄(v)≠ i⁄(z) | i œ {0, . . . , k

Õ +k ≠2}}. It follows, due to our assumption on
⁄

Õ, that if b and c lie on di�erent paths, then (w.l.o.g) b = p1, c = p
Õ
1, a = v, a contradiction,

since the edge ab is then in G. The vertices b and c must therefore lie on the same path.
However, since that implies that the labels of b and c have the same sign, we know that
their sum has an absolute value much larger than any label assigned in V , a contradiction.

If exactly one of b, c lie on one of the paths, then we know that a must also lie on one of
the paths. Now we show, that for whichever x œ {b, c} lies on the paths, ⁄(a) ≠ ⁄(x) is a
label that we assume is not assigned by ⁄

Õ. If b lies on one of the paths, and a lies on the
same path as b then ⁄(a) ≠ ⁄(b) = i⁄(z) (i œ {≠k

Õ + 1, . . . , k
Õ ≠ 1}). Due to our assumption

we know that there exists only one vertex in V (GÕ) fi Z with a label of this form, namely z,
meaning that a, b are two consecutive vertices of the same path, so ab œ E, a contradiction.
If a lies on the other path, then ⁄(a) ≠ ⁄(b) has an absolute value much larger than any
assigned label, meaning it cannot equal ⁄(c), a contradiction. Similarly, if c lies on one of
the paths, we can show that ⁄(a) ≠ ⁄(c) ”= ⁄(b).

It follows, that ⁄ is a di�erence-labelling on G with additional vertices Z. Since we choose
¸ arbitrarily, we can vary our choice of ¸ according to our choice of “. The lemma therefore
holds true.

Labelling Out-Trees

By varying our choice of “ we can ensure that weak path extension can be used repeatedly
to extend multiple paths from a given vertex. We use this to add two vertices to a given
tree, assign them some very specific labels, and then use them repeatedly to extend paths
from vertices to label OISs in the tree, until all vertices are labelled. For a vertex z, if an
out-spider S, with an even number of legs is extended from a vertex v by using weak path
extension repeatedly to extend pairs of legs, using z’s label to label the vertices on the
legs, then we say that S is extended (from v) using z. Since all graphs on two vertices are
DGs, we assume for the rest of this section, that the input graph always has at least three
vertices.
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Algorithm 5: Labelling Out-Trees Using Two Extra Vertices

Given an out-tree T on n vertices, add two new vertices to the tree (u and w)

1. Set ⁄(u) = 1.

2. Set ⁄(w) = 2n.

3. Assign an arbitrary label larger than 2n+1
n

2 that is divisible by 2n to the root of
the tree.

4. If the root has even out-degree then skip this step. If the root has odd out-degree,
then find a maximal OIS starting at the root of the tree, and label its maximal
leg using the trivial path labelling.

5. Find a labelled vertex v with unlabelled children, and find a maximal OIS S with
root v.

6. Find a vertex z œ {u, w} such that v is the only vertex with a label in {⁄(v) ≠
i⁄(z) | i œ {0, . . . , 2(n ≠ 1)}}.

7. If v has odd out-degree, then a maximal leg of S has at least one labelled vertex;
extend the rest of the legs two at a time using z with “ = 4 (refer to Lemma 4.4)a.

8. If v has even out-degree, then none of the vertices in S are labelled; extend the
legs of the spider two at a time using z, with “ = 4.

9. Return to step 5
aTo build an intuitive understanding of the proof, it could help to take “ to be a very large number

or variable.

Claim. Algorithm 5 gives a valid labelling for any out-tree, using two extra vertices.

Proof. All we need to prove, is that our use of weak path extension is a correct one, and
the correctness of Algorithm 5 follows directly. Since the label of the root is strictly larger
that 2n+1

n
2, we know that the smallest label assigned to a vertex in the tree after the first

four steps is larger than 4n
2. Furthermore, after the first four steps, the assigned labels

induce a path, and u, w are both isolated. It follows, that after the first four steps, we can
use weak path extension to extend paths from any labelled vertex in the tree using u or w.

We know that after the first four steps, the smallest label is larger than 4n
2. When using

weak path extension, we only ever assign labels with absolute values that are larger than
previously assigned labels, meaning that for z œ {u, w} the condition that z is the only
vertex with a label in {±i⁄(z) | i œ {1, . . . , n ≠ 1}} always holds. Since the longest leg has
length at most n ≠ 1, all that is then left to prove is that the following invariant holds. For
any labelled vertex a, their exists a z œ {u, w} such that a is the only vertex with a label in
{⁄(a) ≠ i⁄(z) | i œ {0, . . . , 2(n ≠ 1)}}. We prove this invariant inductively. Due to the size
of the labels assigned in the first four steps, the invariant holds after the first four steps
for all labelled vertices and all z œ {u, w}. Now let us assume that the invariant held for
the previous iteration. When we select a vertex v in step five, we know that there exists a
z œ {u, w} such that v is the only vertex with a label in {⁄(v)≠i⁄(z) | i œ {0, . . . , 2(n≠1)}}.
We then extend an even number of paths from v using z. Since the labels of the newly
labelled vertices have absolute values that are so much larger than previously labelled
vertices, we know that they do not break the invariant for previously labelled vertices. We
therefore only need to prove the invariant for the newly labelled vertices. More specifically,
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4. Di�erence-Number

when a pair of legs are labelled, their labels are so large, that they cannot break the
invariant for any previously labelled vertex. We therefore only focus on extending two
paths from v using z. If z = u then for the root of a leg r, we know that the rest of the
leg receives labels within {⁄(r) ≠ i | i œ {0, . . . , 2(n ≠ 1)}}. For any vertex a on r’s path,
⁄(a) ≠ 2n is smaller than any label assigned on a’s path, and has a di�erent sign than
labels assigned on the other path. The number ⁄(a) ≠ 2(n ≠ 1)2n has an absolute value
that is larger than the largest previously assigned label. With that we get that a is the
only vertex within {⁄(a) ≠ i(2n) | i œ {0, . . . , 2(n ≠ 1)}}. We now deal with the case that
z = w very similarly. For any vertex a that lies on one of the two paths that are extended
using w, we know that {⁄(a) ≠ i | i œ {1, . . . , 2(n ≠ 1)}} lies strictly between ⁄(a) and
⁄(a) ≠ 2n. There are however no labels that are assigned within this range. It follows that
our invariant holds for both cases.

Inductively, we know that the conditions for using weak path extension always hold. The
correctness of our algorithm follows directly from the correctness of weak path extension
and the fact that it clearly assigns a distinct label to every vertex in the tree.

With that, we obtain the following theorem.

Theorem 4.5. For any out-tree T, m(T ) Æ 2.

4.2.2 In-trees

We know that an in-tree is a DG if and only if, it is an in-broom. We present a tight bound
on the di�erence-number of all other in-trees. In this section, we show that for any in-tree
T , m(T ) Æ

%n
2

&
≠ 1, and then show that this bound is tight.

Lemma 4.6. For any in-tree T on n vertices, m(T ) Æ
%n

2
&

≠ 1

We provide a very simple algorithm that adds at most
%n

2
&

≠ 1 vertices to a given tree, and
turns it into a DG, with the original tree as an induced sub-graph.

Algorithm 6: Representing In-Trees as DGs

We start by giving the root of the tree an arbitrary strictly positive label (e.g. 1)a.

1. Find the label max, with the largest absolute value.

2. Find the vertex p with the largest label and at least one unlabelled child v (if p

has unlabelled children that are leaves, we select v to be one of those leavesb).

3. If v is the first child of p to be labelled, then assign it the label 2⁄(p).

4. If there exists a labelled vertex u with the same relevant neighbourhood as v in
T (i.e. v, u are leaves with the same parent), then assign v the same label as u.

5. Otherwise, add a new vertex v
Õ, and set ⁄(vÕ) := 2max +1 and ⁄(v) := ⁄(p)+⁄(vÕ).

6. Return to step 1.
aThis algorithm also works if the root is assigned any non-zero label. Assigning a strictly positive

label only simplifies the proof.
bIt is not necessary to select the leaves first, but it also serves to simplify the proof.
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4.2. The Di�erence-Number of Rooted Trees

Note here, that all vertices are assigned labels with the same sign, and the labels of
non-leaves are distinct. We prove the correctness of this algorithm by induction over the
number of completed iterations. The graph induced by the labels of all labelled vertices
(including newly added vertices) after the i-th iteration is named T

Õ
i . The sub-tree of

vertices of T that are labelled after the i-th iteration is referred to as Ti. Our goal is only
to prove that T is an induced sub-graph of T

Õ
n, (T Õ

n is a DG due to its construction).

Lemma 4.7. For all i œ {1, . . . , n}, after the i-th iteration of Algorithm 6, there exists at

most one vertex from Ti with no labelled children, the vertex with the largest label in T
Õ
i ,

and Ti is an induced sub-graph of T
Õ
i .

Proof. We prove this inductively over the number of completed iterations. The base case is
clear, when the root is labelled it is the only labelled vertex in the graph, and thereby also
the vertex with the largest label and the only labelled vertex that may have no labelled
children. Furthermore T1 is T

Õ
1 (so also an induced sub-graph).

Let us assume that the lemma holds for the iterations 1, . . . , i. Let us refer to the vertex
that is to be labelled as v, and its parent as p.

If v is to be labelled in step 3 of our iteration, then p is the only labelled vertex with no
labelled children and thereby also has the largest label. The vertex v receives the label
2⁄(p), which induces the edge vp in T

Õ
i+1. Since the label of v is so large, and labels of

non-leaves are distinct, we know that it cannot be represented as the sum of any other two
labels in T

Õ
i+1. This means that Ti+1 is an induced sub-graph of T

Õ
i+1. Since we labelled

one of p’s children, we know that v is the only labelled vertex that can have no labelled
children. The lemma therefore holds for the i + 1-th iteration.

If v is labelled in step 4 of our iteration, then the fact that Ti+1 is an induced sub-graph of
T

Õ
i+1 follows directly from the fact that Ti is an induced sub-graph of T

Õ
i . Since v is a leaf,

the lemma clearly holds for the i + 1-th iteration.

If v is labelled in step 5 of our iteration, then we add a vertex v
Õ to T

Õ
i+1. Due to the size

of the label belonging to v
Õ, we know that it must have out-degree 0, since for any other

vertex u ”= v, ⁄(vÕ) > ⁄(vÕ) ≠ ⁄(u) > max. The in-degree of v
Õ is 1. This is because v

is the only vertex, with a label large enough so that ⁄(v) ≠ ⁄(vÕ) > 0. That means that
the addition of the vertex v

Õ induces only the edges vv
Õ and vp in T

Õ
i+1. Due to the fact

that the label of v is more than twice as large as any of the labels not belonging to v
Õ, we

know that no other edges are induced between v and the rest of the tree. The tree Ti+1 is
therefore an induced sub-graph of T

Õ
i+1. The vertex v now has the largest label in T

Õ
i+1.

Due to the assumption that the lemma held for the i-th iteration, and that we know that p

is the vertex with the largest label that has unlabelled children, we know that no vertex in
Ti has no labelled children. Thus v is the only labelled vertex in Ti+1 that may have no
labelled children. The lemma therefore holds for the i + 1-th iteration.

By Lemma 4.7, Algorithm 6 correctly represents T as an induced sub-graph of a DG. All
that is left to prove, is that Algorithm 6 adds no more than

%n
2

&
≠ 1 vertices.

Proof of Lemma 4.6. In order to prove Lemma 4.6, all we need to do is show that Algorithm
6 adds no more than

%n
2

&
≠ 1 vertices to any given in-tree. Note that due to step 2, no leaf

is ever labelled in step 5. That means every vertex labelled in step 5 of our iteration has at
least one child.

Let us assume for the sake of contraposition that Algorithm 6 adds at least
%n

2
&

vertices
to a given input in-tree T = (V, E), (n = |V | > 2). That means that at least

%n
2

&
vertices
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4. Di�erence-Number

are labelled in step 5 of our iteration. Let Si := {v œ V | v is labelled in step i}, for
i œ {3, 4, 5}. We know that Si fl Sj = ÿ for i ”= j. Due to our assumption, we know that
|S5| Ø

%n
2

&
. Every element of S5 has at least one child, and vertices in |S5| cannot share a

child. Since the first child always gets labelled in step three, we know that |S3| Ø |S5|. We
can also see, that the root of the tree is not in S5, but it also has a child in S3, meaning
|S3| > |S5|. The root is clearly in neither of these sets. It follows that:

n = |V |
Ø |S3| + |S5| + 1

>

7
n

2

8
+

7
n

2

8
+ 1

Ø n ≠ 1
2 + n ≠ 1

2 + 1

= n,

a contradiction.

We now have a bound for the di�erence-number of in-trees. We know that the di�erence-
number of any graph is at most m; at first glance it might therefore seem like our bound
for in-trees is not tight. This is however not the case.

Lemma 4.8. There exists a family of in-trees, F such that for all T œ F

m(T ) =
7

n

2

8
≠ 1.

Proof. Let us define the family of trees F as the family of in-spiders, where every leg has
length two, except for one leg which is of length one. Every spider in this family with n

vertices, has exactly n
2 legs. Algorithm 6 adds exactly n

2 ≠ 1 vertices to represent such an
in-spider. Our goal is to show that this is optimal.

Given, is an in-spider S œ F , with k = n
2 legs. Let us refer to the children of the

root r of S as c1, . . . , ck. Let S
Õ be a DG with S as an induced sub-graph. The graph

S
Õ consists of the vertices of S, and some extra added vertices; we refer to the set of

these extra vertices as M . The out-neighbourhood of any ci in S
Õ is r, as well as some

vertices from M . We therefore know that for all ci, ⁄(ci) ≠ ⁄(r) œ {r} fi M . If there
exist indices i, j such that ⁄(ci) ≠ ⁄(r) = ⁄(cj) ≠ ⁄(r), then due to the fact that the
closed neighbourhoods of c1, . . . , ck are distinct, we can deduce that i = j. That means
that the cardinality of {⁄(ci) ≠ ⁄(r) | i œ {1, . . . , k}} is at least k. It follows, since
{⁄(ci) ≠ ⁄(r) | i œ {1, . . . , k}} ™ ⁄({r} fi M), that |M | Ø k ≠ 1 = n

2 ≠ 1.

It follows, that the number of vertices added by Algorithm 6 is therefore minimal.
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In this chapter, we deal with the complexity of di�erence-labellings. We discuss both the
time complexity of identifying DGs, as well as the space complexity of storing graphs as
induced sub-graphs of DGs.

5.1 Time Complexity

We formulate the existence of a di�erence-labelling for a given graph, as a decision problem.
For a given graph, we would like to be able to decide, if it is a DG or not. Before looking
into an algorithm that would be able to classify DGs, it would make sense to look into
the complexity of the problem. Our main goal in this section is to prove that this decision
problem is solvable in non-deterministic polynomial time (NP). This means that if a
graph G is a DG, then there must exist a valid di�erence-labelling that can be encoded
in polynomial space, whose validity can be checked deterministically in polynomial time.
It is clear that the validity of a labelling can be tested in polynomial time. Hence, in
this section we only show that for any DG there exists a valid di�erence-labelling with
label sizes bound exponentially by the number of vertices. We also discuss how one could
calculate exponentially bound labellings for arbitrary graphs.

Limit on Label Size

By showing, that there is an exponential bound, on the size of the labels required to label
any given DG, we know that we can encode each of these labels in linear space. The entire
labelling can therefore be stored in polynomial space. Thus, our goal in this section is to
prove the following theorem.

Theorem 5.1. For every DG G = (V, E) on n vertices, there exists a di�erence-labelling

⁄ such that for all v œ V , |⁄(v)| Æ 4n
.

Proof. We assume that G has a di�erence-labelling ⁄, and we use a linear programming
approach, to construct a valid labelling ⁄

Õ that fulfills the given bound. This proof follows
the proof by J. Kratochvíl, M Miller and H. M. Nguyen, of the same bound for sum-graphs
[KMN01]. For the sake of completeness, since this paper is unfortunately very di�cult to
find, the proof is given in full detail. In general we follow the terminology from ‘Linear
Programming’ by Murty K. G. [Mur83].
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For the given DG, on n vertices, we introduce n variables x1, . . . , xn. We know, that for
every edge vivj œ E there exists a vertex vk œ V such that ⁄(vi) ≠ ⁄(vj) = ⁄(vk). For each
edge in G we can add the constraints

sgn(⁄(vi))xi ≠ sgn(⁄(vj))xj ≠ sgn(⁄(vk))xk Æ 0,

≠sgn(⁄(vi))xi + sgn(⁄(vj))xj + sgn(⁄(vk))xk Æ 0.

For every non-edge vivj /œ E, we know for all k œ {1, . . . , n} that ⁄(vi) ≠ ⁄(vj) ”= ⁄(vk).
For every non-edge vivj /œ E and every k œ {1, . . . , n} we can therefore add the constraint

I
sgn(⁄(vj))xi ≠ sgn(⁄(vj))xj ≠ sgn(⁄(vk))xk Æ ≠1, if ⁄(vi) ≠ ⁄(vj) < ⁄(vk)
≠sgn(⁄(vi))xi + sgn(⁄(vj))xj + sgn(⁄(vk))xk Æ ≠1, if ⁄(vi) ≠ ⁄(vj) > ⁄(vk).

We also add the constraints 1

xi Ø 0.

We know that setting xi = |⁄(vi)|, is a solution to all of our constraints, this linear program
(LP) is therefore feasible. We also know, that a solution to our LP, provides a valid
di�erence-labelling, that uses real numbers as labels instead of integers (after returning
the signs of the labels). Since this LP is feasible, the solution space of an LP of this form
forms a non-empty convex polyhedron in Rn, with each vertex of the polyhedron being a
basic feasible solution (BFS). By representing the LP in matrix form, Ax Æ b and letting
x be a vertex of our polyhedron (a BFS), we know that there are n linearly independent
constraints that hold with equality, and that there is a regular n ◊ n sub-matrix A

Õ that
consists of the rows of A with indices c1, . . . , cn and a b

Õ = (bc1 , . . . , bcn)T, such that

A
Õ
x = b

Õ
.

We can set A
Õ
i to be A

Õ, where the i-th column is replaced by b
Õ. By Cramer’s Rule [Rob70],

we know that
xi = det(AÕ

i)
det(AÕ) .

It follows that if we set
x

Õ
i := xidet(AÕ) = det(AÕ

i),
then x

Õ can also be used to obtain a valid di�erence-labelling for our graph with rational
labels (since we would only multiply the old solution with a factor). With the Leibniz
Formula, we also know, since A

Õ
i is an integer matrix, that its determinant is also an integer.

The solution x
Õ uses therefore only integer labels. Furthermore we know, that the sum of

each row of A
Õ
i has an absolute value of at most 4. For any vector v and any matrix M

where the absolute value of any row is at most four, let k be the index of the entry of v

with the largest absolute value. We know that

|(Mv)k| = |
nÿ

j=0
Mkjvj | Æ |

nÿ

j=0
|Mkjvj || Æ |

nÿ

j=0
|Mkjvk|| = |vk

nÿ

j=0
|Mkj | Æ |4vk|.

The absolute value of the largest eigenvalue is therefore at most 4. The absolute value of
the determinant of any A

Õ
i is therefore at most 4n, since the determinant is the product of

the eigenvalues.

By setting ⁄
Õ(vi) := sgn(⁄(vi))xi, we have thus created a valid di�erence-labelling for our

graph, that uses labels with absolute values of at most 4n.

1This is to represent our linear program in canonical form (not notation from ‘Linear Programming’)
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Time Complexity

We know that the decision problem of whether a given graph is a DG or not, is in NP.
The proof of this bound labelling, is however purely existential. Here we discuss the time
complexity of actually calculating a valid labelling that is bound by 4n.

In our proof of Theorem 5.1, we use an existing labelling, and linear programming, to
construct a labelling with exponentially bound labels. More importantly we did not
specifically use the labels assigned by that labelling, but only their signs and certain
relationships between each triplet of labels. For any graph class, if we have an algorithm
that can find these relations in polynomial time, then we can use the algorithm from
Theorem 5.1 in order to find an exponentially bound labelling for our graph in polynomial
time, since one can find BFSs in polynomial time.

As a small example, Algorithm 4 for the labelling of out-trees could be slightly altered to
not explicitly find labels for the vertices, but only calculate the sign of each label, and the
required relations between all the vertices. This could then be used to find a labelling for
any out-tree, so that no label is larger than 4n.

5.2 Space Complexity

In the context of computer science, one might want to represent certain graphs as induced
sub-graphs of DGs. In order to do this, one would have to store the labels. It would
therefore be beneficial to minimize the size of the labels used to label the graph, as well
as the number of added nodes used to represent a non-DG as a DG. In this section, we
present a polynomial-time algorithm that stores any directed graph on n vertices, with m

arcs as an induced sub-graph of a DG on n + m vertices, and provides a di�erence-labelling
for the given graph with label sizes in O(n2). Due to the number-theoretical nature of our
algorithm, we first present a construction that requires very little prior knowledge, in order
to explain the intuition behind our algorithm. We then adapt our algorithm for the storage
of undirected graphs as sum-graphs, beating the previously best known bound on label
sizes of O(n3) (while adding the same number of vertices).

Cycles

As we have seen in Theorem 4.2, the di�erence-number of cycles is one. In the proof of
Theorem 4.2, exponential labels are used. It is however possible to use linear labels to
represent a cycle as a DG.

Let G be a graph on n + 1 vertices {v0, . . . , vn≠1, w}. We assign labels which implicitly
define the edge set E of G. We then show that G has an induced cycle of length n. More
importantly, we only use labels of linear size.

Define a labelling ⁄ on G as ⁄(vi) = n ≠ 1 + i and ⁄(w) = ≠1. Since ⁄(vi) ≠ ⁄(vi+1) = ⁄(w)
for i œ {0, . . . , n ≠ 2}, and ⁄(vn≠1) = n ≠ 1 + n ≠ 1 = 2⁄(v0), our labelling induces all
edges required for a cycle on v0, . . . , vn≠1. All that is left, is to check that this cycle is
induced. We know that the presence of the label -1 in the graph only induces an edge from
each node on the cycle to the one that follows it (and to w). Any other edge between two
vertices in our cycle must therefore be induced by three nodes in the cycle. However the
sum of any two labels in the cycle (other than ⁄(vn)), is larger than the largest label in the
graph, meaning that there exist no other edges of the form vivj other than those induced
by ⁄(w) and vn≠1v0. The nodes v0, . . . , vn≠1 therefore induce a cycle of length n in G.
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Paths

In Theorem 2.4, we discuss the fact that paths are DGs. Due to the structure of paths, the
only way to label (v1, . . . , vn) is to set the label of vi to be double the label of vi+1. This
always produces exponentially large labels. However, if we add an extra vertex to a path,
it is possible to use only linear sized labels to label the new graph.
Given a graph G with vertex set V = {v0, . . . , vn≠1, w}, we define the edge set of G

implicitly by labelling the vertices of V , and then show that G has an induced path of
length n ≠ 1. Let us define the labelling ⁄(vi) = n + i, ⁄(w) = ≠1. This labelling induces
the edges vivi+1 for i œ {0, n ≠ 2}. All that is left, is to show is that the path (v1, . . . , vn≠1)
is an induced sub-graph of G. Let vi, vj , u œ V be vertices with ⁄(vi) + ⁄(u) = ⁄(vj). If
u = w, then j = i ≠ 1, so this edge should be part of the induced path. If u ”= w, then
⁄(u) Ø n, so ⁄(vi) + ⁄(u) Ø 2n, there is however no vertex with a label that large. This
means that G[{v0, . . . , vn≠1}] is a path of length n.

Target-Set-Di�erence-Digraphs

We define a Target-Set-DG (TSDG) S = (L, T ) as a set L µ Z of labels and a target-set
T µ Z. Each element in L denotes a vertex in the graph S. There exists an arc from u to
v in S if and only if u ≠ v œ T .

Theorem 5.2. For a given TSDG S = (L = {¸1, . . . , ¸|L|}, T = {t1, . . . , t|T |}), S can be

represented as an induced sub-graph of a DG using at most |T | extra vertices, with the

largest label having the same asymptotic size as the largest label in L fi T .

Proof. Let us define a graph G on |L| + |T | vertices. We give a di�erence-labelling on the
vertices {v1, . . . , v|L|+|T |} of G, which implicitly defines the edge set, ensuring that G is a
DG. Let the labelling ⁄(vi) = ¸i (i œ {1, . . . , |L|}) and ⁄(v|L|+i) = ti, (i œ {1, . . . , |T |}). It is
clear to see that all edges that are in S are induced by this labelling on G. More specifically,
for i, j Æ |L|, k > |L|, ⁄(vi) ≠ ⁄(vj) = ⁄(vk) if and only if ¸i ≠ ¸j = t|L|≠k. It follows, that if
we were to ensure that there are no indices i, j, k Æ |L| with ⁄(vi) ≠ ⁄(vj) = ⁄(vk), then
G[{v1, . . . , v|L|}] = S.
We set max = max{L fi T} and min = min{L fi T}. We then define a new labelling ⁄

Õ

on the vertex set, with

⁄
Õ(vi) :=

I
⁄(vi) + max ≠ 2min + 1 If, i Æ |L|
⁄(vi) If, i > |L|

.

With this new labelling, we know for indices i, j Æ |L|, k > |L| that

⁄
Õ(vi) ≠ ⁄

Õ(vj) = ⁄
Õ(vk)

≈∆ ⁄(vi) + max ≠ 2min + 1 ≠ (⁄(vj) + max ≠ 2min + 1) = ⁄(vk)
≈∆ ⁄(vi) ≠ ⁄(vj) = ⁄(vk),

so S ™ G[{v1, . . . , v|L|}]. We also know, for i, j, k Æ |L|, if ⁄
Õ(vi) ≠ ⁄

Õ(vj) = ⁄
Õ(vk), then

⁄(vi) ≠ ⁄(vj) = ⁄(vi) + max ≠ 2min + 1 ≠ (⁄(vj) + max ≠ 2min + 1)
= ⁄

Õ(vi) ≠ ⁄
Õ(vj)

= ⁄
Õ(vk)

= ⁄(vk) + max ≠ 2min + 1
Ø min + max ≠ 2min + 1
= max ≠ min + 1 > max ≠ min,

which is not possible. Thus S = G[{v1, . . . , v|L|}], and G is a DG due to its construction.
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This is useful, since we now know that in order to obtain a space e�cient di�erence-labelling
of a given graph, all we have to do is find a space e�cient representation of the given graph
as a TSDG. We can also use such a representation to bound the di�erence-number of any
given graph from above, since clearly the di�erence-number of a given graph is bound by
the minimum size of the target-set of its TSDG representation. This is a great feature,
since TSDGs are much easier to work with than DGs.

5.2.1 Directed Acyclic Graphs

We can now deal with the space complexity of storing any given DAG as a sub-graph of a
DG. It is beneficial to assign the labels in such a way, that one could retroactively identify
which vertices belong to the original graph, and which vertices were added, in order to
represent it as a DG. In our construction, we guarantee that vertices belonging to the
original graph receive strictly positive labels, while labels that are added receive strictly
negative labels. Our algorithm also gives a polynomial bound on label sizes.

Lemma 5.3. For any n œ N there exist n elements e1, . . . , en œ N such that for any four

indices i, j, k, l with i ”= j, k ”= l

iÿ

c=j

ec =
kÿ

c=l

ec only if i = k, j = l,

and these elements are in O(n2)

Proof. We start by considering an odd n and then generalise our construction for even n.
For a given odd n, we set

p = min{i œ N | n + 1
n ≠ 1 i > i + n ≠ 1}.

Let
ei = p + i ≠ 1.

Let us assume for the sake of contraposition, that there exist indices i, j, k, l with i ”= j, k ”=
l, i ”= k, j ”= l and

iÿ

c=j

ec =
kÿ

c=l

ec.

Without loss of generality, we can assume that j < l. If i Ø k, then one sum is a strict
sub-sum of the other, and since we only sum positive values, the equality cannot hold. We
can therefore assume that i < k. By removing terms that are present in both sums, we can
obtain indices i

Õ
, l

Õ with i
Õ
< l

Õ such that

iÕÿ

c=j

ec =
kÿ

c=lÕ
ec,

with at least one (so therefore both) of these sums being non-zero. Now, all we show is
that the chosen elements are so large, that the longer of the two sums must also be strictly
larger. If k ≠ l

Õ Ø i
Õ ≠ j then

iÕÿ

c=j

ec Æ
iÕÿ

c=j

eiÕ = (iÕ ≠ j)eiÕ Æ (k ≠ l
Õ)eiÕ < (k ≠ l

Õ)elÕ =
kÿ

c=lÕ
elÕ Æ

kÿ

c=lÕ
ec.
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We can therefore assume that k ≠ l
Õ
< i

Õ ≠ j, meaning that i
Õ ≠ j Ø 2. With that we know

that

iÕÿ

c=j

ec >

iÕÿ

c=j

p = (iÕ ≠ j)p and

kÿ

c=lÕ
ec Æ

kÿ

c=lÕ
p + n ≠ 1 = (k ≠ l

Õ)(p + n ≠ 1).

It follows that (iÕ ≠ j)p < (k ≠ l
Õ)(p + n ≠ 1). In the case that (iÕ ≠ j) > n/2 since

(iÕ ≠ j) + (k ≠ l
Õ) Æ n, we obtain

p + n ≠ 1 >
(iÕ ≠ j)
(k ≠ lÕ)p Ø n + 1

2(k ≠ lÕ)p Ø n + 1
n ≠ 1p,

which is a contradiction to our choice of p. We can therefore assume that (iÕ ≠ j) < n/2.
With that we know that

p + n ≠ 1 >
i
Õ ≠ j

k ≠ lÕ
p

Ø i
Õ ≠ j

iÕ ≠ j ≠ 1p,

where we can use the fact that for all x œ N,
x+1

x >
x+2
x+1 to obtain

i
Õ ≠ j

iÕ ≠ j ≠ 1p >
i
Õ ≠ j + 1
iÕ ≠ j

p

> . . .

>
Án/2Ë

Án/2Ë ≠ 1p = n + 1
n ≠ 1p,

which is a contradiction to our choice of p. It follows that the first part of the lemma holds
for any odd n. For any even n we can select n + 1 elements such that the first part of the
lemma holds. By removing the largest of these elements, it is clear that the remaining n

elements satisfy the first part of the lemma. Furthermore, we know that the largest of the
selected elements is

en = p + n ≠ 1,

where (due to the way we handle even numbers)

p Æ min{i œ N | n + 1
n

i > i + n} = min{i œ N | ni + i > ni + n
2}

= min{i œ N | i > n
2} = n

2 + 1.

It follows that all of the selected elements are in O(n2). The lemma therefore holds for all
n.

We now use these elements in order to create a set A such that setting A to be the label-set
in a TSDG allows us to add a distinct label into our target-set in order to induce each edge.
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Theorem 5.4. A DAG G = (V, E) on n vertices with m edges can be represented as an

induced sub-graph of a DG on n + m vertices with label sizes in O(n3).

Proof. By Theorem 5.2, we know that if we represent G as a TSDG using a target-set of
size at most m, and labels with sizes in O(n3), then this theorem also holds. Our goal
is therefore to construct a TSDG S = (L, T ) such that G = S. Let e1, . . . , en≠1 be n ≠ 1
numbers as in Lemma 5.3. Any given DAG has a topological ordering of its the vertices.
Let v1, . . . , vn be a topological ordering of G. We use this topological ordering to ensure
that arcs in S only go from a smaller label, to a larger label. Let

⁄(vi) := 1 +
i≠1ÿ

c=1
ec and

L := ⁄(V ).

For any edge vivj œ E we know that

⁄(vi) ≠ ⁄(vj) =
i≠1ÿ

c=1
ec ≠

j≠1ÿ

c=1
ec =

j≠1ÿ

c=i

ec.

It follows with Lemma 5.3, that for any vivj , vkvl œ E

⁄(vi) ≠ ⁄(vj) = ⁄(vk) ≠ ⁄(vl),

means that i = j, k = l. We can therefore set

T := {⁄(vi) ≠ ⁄(vj) | vivj œ E}.

With this choice of T , it is clear that the induced TSDG S is isomorphic to G. As the sum
of at most n elements that are all in O(n2), every label we use (either in L or in T ) is in
O(n3).

This very simple construction is by no means optimal, as we see in Section 5.2.2, however
it serves an important demonstrational purpose. In order to represent a DAG on n vertices
as a TSDG, what we have essentially done is construct a set of n elements, such that if you
subtract any element from any smaller element, you get a distinct negative value. What
this means, is that in this specific set we have constructed, if you subtract any element
from a larger element, you get a distinct positive value. This means that for a set A that
is constructed as above, for all x ”= y, a ”= b œ A, x ≠ y = a ≠ b if and only if x = a, y = b.
We refer to this set property as having distinct di�erences. If we have any set with distinct
di�erences, then we can use the exact same scheme as above to represent any graph as a
TSDG, by labelling the vertices of our graph with elements of the set, and adding a new
element in our target-set for each edge we want to induce. Note that any set A with distinct
di�erences, also has distinct additions, meaning that for all x ”= y, a ”= b œ A, x + y = a + b

if and only if x = a, y = b. One could verify this simply by rearranging terms, since for
x ”= y, a ”= b, x + y = a + b if and only if x ≠ b = a ≠ y. However, not all sets with distinct
additions have distinct di�erences. This stems purely from the fact that, x + x = a + b

if and only if x ≠ b = a ≠ x, so there exist sets like {0, 1, 2} that have distinct additions,
but not distinct di�erences. It might have just become clear, that in this manner, we can
not only provide a labelling scheme to represent digraphs as DGs, but also to represent
graphs as sum-graphs. We discuss the algorithm for representing digraphs as DGs in the
next section, and then adapt that algorithm for sum-graphs.
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5.2.2 General Digraphs

Sidon [Sid32] defines a B2 sequence as a sequence of positive integers a1 < a2 < . . . such
that for all 1 Æ i Æ j, the sums ai + aj are distinct. If you take any subset of a B2
sequence, it forms a set with distinct di�erences. There are a multitude of constructions of
B2 sequences, which vary greatly in space and time complexity. Here we use a B2 sequence
construction from Lindenström [Lin98], but any construction of (in)finite B2 sequences is
su�cient.

Algorithm 7: Generating a B2 Sequence of Size n in Poly. Time

1. Find the smallest prime p strictly larger than n.

2. Find a primitive root ’ modulo p.

3. Calculate a B2 sequence of size p ≠ 1 by ordering the elements of the set

{pi + (p ≠ 1)’i mod p(p ≠ 1) | 1 Æ i Æ p ≠ 1}.

Claim. Algorithm 7 generates a B2 sequence of size n in polynomial time, with elements in
bound by 2n(2n ≠ 1) for all n and elements that tend towards being bound by n(n ≠ 1) as
n goes to infinity

Proof. Most of the complexity is completely in the first two steps. In order to find the
next prime number, we can very simply iteratively test numbers larger than n for primality
until we find a prime number. It is known, that we can (deterministically) determine, in
polynomial time, if a number is prime [AKS04]. It is known that for any n > 1, there
exists a prime number between n and 2n [Tch52]. It follows, that we can find the next
prime number in polynomial time.

For the second step, we can simply test all elements in Z/pZ until we find a primitive
root. There are many algorithms to test if a number is a primitive root in Z/pZ, but even
the naive algorithm of testing for each element j that j

i ”= 1 for all 1 Æ i < p ≠ 1 can be
implemented in polynomial time. The fact that Algorithm 7 generates a B2 sequence is
proven by Lindenström [Lin98].

For small n, we know that p is bound by 2n, meaning that p(p ≠ 1) is bound by 2n(2n ≠ 1).
Since all elements of the created sequence are in Z/p(p ≠ 1)Z, we know that for small n,
the elements of the generated B2 sequence are bound by 2n(2n ≠ 1). As n tends to infinity,
we know that p tends towards n, since the quotient of two consecutive primes tends to one,
thus p(p ≠ 1) tends towards n(n ≠ 1). Since all elements of the created sequence are in
Z/p(p ≠ 1)Z, we know that as n goes to infinity, the elements of the generated B2 sequence
tend towards being bound by n(n ≠ 1).

For any graph on n vertices that we would like to represent as a TSDG, we can use
Algorithm 7 to generate a B2 sequence of size at least n. We can set the label-set of our
TSDG to be any subset of our B2 sequence of size n. For each edge uv we would like to
add to our TSDG, there is exactly one integer (u ≠ v) that we can add into our target-set
that would induce it, and that integer induces no other edges, due to the label-set having
distinct di�erences. This would allow us to represent any graph as a TSDG in polynomial
time, with labels in O(n2). The following theorem is implied by Theorem 5.2

Theorem 5.5. Any directed graph G = (V, E) is an induced sub-graph of a DG G
Õ

with

|V | + |E| vertices, that can be labelled using labels in O(n2).
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With the goal of improving on this asymptotic bound, a plausible starting point would
be to try to construct a set with distinct di�erences of size n with numbers in o(n2).
Unfortunately, this is in general not possible.

Theorem 5.6. As n goes to infinity, every set of size n with distinct di�erences tends to

have elements of size �(n2).

Proof. Let �(n) denote the size of the largest set with distinct di�erences and numbers
with absolute values smaller or equal to n. Let the function �≠1(x) be the smallest n such
that there exists a set of size x with distinct di�erences, and elements with absolute values
less than or equal to n.

Define �(n) as the maximal x such that there exists a B2 sequence a1, a2, . . . with ax Æ
n < ax+1. In 1941 Erd�s and Túran [ET41] proved that

sup
lim �(n)Ô

n
Æ 1.

Let �≠1(x) be the smallest number n such that there is a B2 sequence of size x with
elements smaller or equal to n. Since the function �(n) is an increasing function, we know

inf
lim �≠1(x)

x2 Ø 1.

Let us assume for the sake of contraposition, that liminf �≠1(x)/f(x) Æ 1 for an f œ o(n2).
We know that every set with distinct di�erences and only positive elements can be ordered as
a B2 sequence. For every set with distinct di�erences of size n, we can subtract the smallest
element of the set from all elements, to obtain a set of size n with distinct di�erences, and
only positive integers that are in O(2f) ™ o(n2). It would follow, that

inf
lim �≠1(x)

f(x) Æ
inf
lim 2�≠1(x)

f(x) Æ 2.

This implies that liminf �≠1(x)/x
2 = 0, a contradiction. It follows that in general one

requires values in �(n2) to create a set with distinct di�erences of size n.

It follows, that in order to achieve better asymptotic bounds, one would need to take a
more graph theoretical approach by using specific features of the graph, although there
could be some very simple improvements even to this number theoretical approach that we
discuss in Chapter 6.
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5.2.3 A Remark on the Space Complexity of Sum-Labelling

In a recent paper titled ‘The Space Complexity of Sum-Labelling’ [FG21], H. Fernau and
K. Gajjar show that every graph on n vertices with m edges of minimum degree of at least
one, can be made a sum-graph by adding at most m isolated vertices. This new graph can
be labelled using labels bound by 8n

3. In the same paper they also show, that a graph on
n vertices and m edges that is d-degenerate, can be made into a sum-graph by adding at
most m isolated vertices. This new graph can be labelled using labels bound by 12dn

2. In
both cases, they present algorithms for constructing such graphs, as well as a labelling that
satisfies their respective bound. In this section, we take a number theoretical approach to
provide a polynomial time algorithm that adds m isolated vertices to a graph on n vertices,
with m edges in order to represent it as a sum-graph. We provide a labelling for this new
graph, where for all n the labels are bound by 24n

2, and as n goes to infinity, the labels
tend to be bound by 6n

2.

Algorithm 8: Representing Graphs as Sum-Graphs

Given an undirected graph G = ({v1, . . . , vn}, E)

1. Use Algorithm 7 to generate a B2 sequence a1, . . . , an.

2. Let L := {¸vivj | vivj œ E}.

3. Define the graph G
Õ := (V fi L, E) and the labelling

⁄(v) :=
I

ai + 2(an + 1), v = vi

⁄(vi) + ⁄(vj), v = ¸vivj

Algorithm 8 adds exactly m extra vertices to the input graph, and uses strictly positive
labels to label all vertices. Analogous to the previous section, we know that Algorithm 8
runs in polynomial time. We must therefore only prove the following claim.

Claim. For a given graph G = (V, E), the labelling generated by Algorithm 8 is valid and
the labels used are bound by 24n

2 for any n, and tend towards being bound by 6n
2 as n

goes to infinity.

Proof. In order to show that this labelling is a valid sum-labelling, we must first show that
the edges induced by this labelling are exactly the edges in E, and that assigned labels are
distinct. For an edge {vi, vj} œ E, we know ⁄(vi) + ⁄(vj) = ⁄(¸vivj ). Every edge in E is
therefore induced by this labelling.

Let us assume for the sake of contradiction that there exists an edge {v, w} ”œ E that is
induced by our labelling. Neither v nor w can be in L, since if w.l.o.g. v is in L, then

⁄(v) + ⁄(w) Ø 2a1 + 4(an + 1) + ⁄(w) Ø 3a1 + 6(an + 1)
>6(an + 1) > 2an + 4(an + 1) = ⁄(vn) + ⁄(vn) > max ⁄(V fi L),

a contradiction.

So both v and w are in V . But since we only add a vertex with the label ⁄(v) + ⁄(w) if
{v, w} œ E, it follows that there must exist an {x, y} œ E, with x, y œ V , and ⁄(x)+⁄(y) =
⁄(v) + ⁄(w). Thus, there exist indices i, j, k, l with ⁄(vi) + ⁄(vj) = ⁄(vk) + ⁄(vl).
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It follows, that

ai + aj + 4(an + 1) = ak + al + 4(an + 1), thus
ai + aj = ak + al,

meaning (due to a1, . . . , an forming a B2 sequence), that {v, w} = {x, y} œ E, a contradic-
tion. Our sum-labelling is therefore a valid sum-labelling for G

Õ.

All that is left to show is that the labels are bound by 24n
2. We know that

max ⁄(V fi L) < 2⁄(vn) + 4(an + 1) = 6an + 4 < 6(2n(2n ≠ 1)) + 4 < 24n
2
.

As n goes to infinity, max ⁄(V fi L) then goes to 6(n(n ≠ 1)) + 4 < 6n
2.

This beats the best known bound for the storage of general graphs as sum-graphs. With
that we can conclude this chapter with the following theorem.

Theorem 5.7. For every undirected graph G, on n vertices with m edges, there exists a

sum-graph that can be obtained by adding m isolated vertices to G, and has a labelling with

label sizes in O(n2).

In Theorem 5.5 we prove that this construction of sets with distinct di�erences is optimal,
since any set A with distinct di�erences can be used to create a B2 sequence with elements
of the same asymptotic size as A. Since B2 sequences of size n require elements in �(n2) (for
large enough n), there cannot be an algorithm that generates sets with distinct di�erences
with elements of asymptotically smaller sizes. As far as we know, this is not necessarily the
case for sets with distinct additions. The reason for this is that B2 sequences also require
that for any three elements x, y, z, x + x = y + z if and only if x = y = z. For a set to have
distinct additions, this is not the case, meaning it is entirely possible that for any n one
could construct a set with distinct additions of n elements with sizes in o(n2), although we
conjecture that this is not the case.
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In this thesis, we begin by studying the structure of DGs and discovering some forbidden
substructures in DGs. We then present conditions that are both necessary and su�cient for
a rooted tree to be a DG. We move on to show that deciding if a given graph is a DG is in
NP, as well as provide space-e�cient polynomial-time algorithms for the storage of graphs
as induced sub-graphs of DGs. There are still, however, a multitude of open questions.

Classification

In this thesis, we present some forbidden substructures in DGs. We subsequently use these
substructures to provide a complete dichotomy of rooted forests. Nevertheless, there is still
quite a lot to uncover. In Section 3.2 we present the strong lakes condition, although we
never specifically require this stronger statement. To clarify, for our purposes the lakes
condition would have completely su�ced. However, we believe the strong lakes condition
could prove invaluable in the classification of directed trees, since if a given tree is a DG
then the strong lakes condition provides a large list of maximal sub-trees that must also be
DGs.

We mention that there may be an infinite number of forbidden substructures in di�erence
graphs. It is, however, also entirely plausible that there be only very few forbidden
substructures, making the question of classifying DGs quite a simple one. This direction
did not seem advisable for a thesis, but it could be beneficial to work on finding forbidden
substructures, in parallel with classifying specific graph classes.

Di�erence-Number

We present an upper bound on the di�erence-number of both in and out-trees. We prove,
that our bound on the di�erence-number of in-trees is a tight one. However, we have not
managed to present an out-tree whose di�erence-number matches our upper bound. Since
we prove that the upper bound on the di�erence-number of out-trees is two and that the
lower bound is one, one would either need to find an example of an out-tree that requires
two extra vertices, or prove that any out-tree can be represented as an induced sub-graph
of a di�erence graph by adding at most one vertex. We have made many attempts at
proving that the upper bound is one, unfortunately to no avail. At this point, however,
neither an a�rmative nor a negative result would be unexpected.

An interesting notion that was proposed to us during the research phase of this thesis, is
the existence of a family of graphs with maximal di�erence-number. We already prove
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that the di�erence-number of any graph is at most the number of edges, but have not been
able to present a family of graphs with that high a di�erence-number. It is for this reason
that we conjecture that there exists a tighter bound on the di�erence-number of graphs,
although we know with Lemma 4.8 that there cannot be any asymptotic improvements on
this bound.

Complexity

The first question that we tried to work on, but unfortunately could not prove, is the time
complexity of deciding if a graph is a DG. It is conjectured, that deciding if a graph is a
sum-graph is NP-complete. Similarly, we conjecture that deciding if a digraph is a DG is
NP-complete. It would however be by no means surprising if this were not the case, since
DGs have a much stronger structure than sum-graphs.

On the space complexity of storing graphs as induced sub-graphs of DGs, we provide a
number theoretical algorithm for storing any digraph as an induced sub-graph of a DG,
that uses no property about the given graph. We show that our approach provides an
optimal such construction. However, there are very simple optimisations that one could
consider to improve on our bound. For instance, one could even use our construction while
ensuring that the vertices in the graph that receive the largest labels do not share an edge.
This alone can reduce the sizes of labels used by up to half. Another very simple way to
optimise our approach would be to consider that in most graphs, we need not use a set with
distinct di�erences to label the vertex set. The di�erence between ⁄(u) and ⁄(v) need only
be distinct, if the edge uv is present. It follows, that for most graphs it is entirely possible
to construct sets with smaller elements, such that a given graph can be represented as a
TSDG where every edge is induced by a distinct element in the target-set.
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