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Solving Dynamic Macroeconomic Models
with an Entrepreneurial Sector

Henriette Kissling

Abstract

In this thesis, we make two contributions: first, we transfer an overlapping-generations
model of intertemporal savings and investment decisions used to evaluate taxation systems
to an equivalent infinite-horizon Aiyagari-style model. We compare the results of the two
model types and investigate the mechanisms at play. Our work is the first step of an
ongoing research program with the overall objective of evaluating wealth taxation in the
context of heterogeneous returns. We show that the results generated by the transferred
model are fairly close to the empirical data on the U.S. earnings, income and wealth
distribution. Crucially, the model yields almost the same extent of inequality in terms of
Gini coefficients.

Second, we explore the technical boundaries of solving complex dynamic macroeco-
nomic models with common methods and extend these methods in order to obtain a good
compromise between accuracy and computational feasibility. We show that our approach
manages to speedup the calculation by factor 9 and allows us to impose configurable
standards on the minimum precision.
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1 Introduction

In this thesis, we investigate a heterogeneous agent model of intertemporal savings deci-
sions in the context of wealth taxes. Evaluating the economic potential of wealth taxes
is interesting, as center-left parties in various economies have recently picked up on their
(re-)introduction. Advocators of wealth taxation refer to the large wealth inequality and
the relatively high tax burden of the working population in contrast to capital taxation.
The debate has been further accelerated by the question whether the high expenses during
the COVID-19 pandemic should at least partly be financed from a one-time conscription
of wealth.1

Consequently, Guvenen et al. (2019) introduce a model to investigate wealth taxation
in the presence of return heterogeneity of investments. They show that wealth taxes,
in contrast to capital income taxes, shift the tax base from working to idle capital and
therefore reduce the extent of capital misallocation. Furthermore, optimally designed
wealth taxation can raise aggregate welfare as it subsequently allows for lower income
tax rates and thus shifts the tax burden from the bulk of the working population to few
individuals at the top of the wealth distribution.

These findings, however, are built on the assumption of perfect substitutability be-
tween entrepreneurial capital and private assets. In reality, entrepreneurs are bond to
the decisions they made in the past, since investments cannot be withdrawn on short
notice. This raises the interesting question, whether the results by Brumm and Schei-
degger (2017) can be reproduced if the assumption of perfect substitutability is dropped.
One conceivable approach would be to impose adjustment costs that penalize fluctuating
investment decisions. As a consequence, it would be necessary to add one continuous
dimension to the state space in order to distinguish between entrepreneurial capital and
private assets. However, note that complex macroeconomic models like this one suffer
from the curse of dimensionality, implying that the size of the state space grows exponen-
tially in the number of dimensions. Thus, each additional dimension poses a substantial
computational challenge.

As a potential remedy, we could switch to Adaptive Sparse Grids (ASGs) instead of
conventional grids. The main idea of ASGs, as introduced by Guvenen et al. (2019), is to
alleviate the curse of dimensionality by solving dynamic economic models on a sparse grid
and adaptively refine the grid in regions with high function curvature, e.g., as in models
with occasionally binding constraints. Yet, we face another drawback when attempting to
solve the model with ASGs: In order to depict the lifecycle of entrepreneurs who typically
start from high productivity but low capital endowment and tend to revert this relation-
ship by the end of their life, Guvenen et al. (2019) choose an Overlapping-Generations

1Bundesministerium der Finanzen, 03/2021, https://www.bundesfinanzministerium.de/Content/
DE/Downloads/Ministerium/Wissenschaftlicher-Beirat/Gutachten/Vermoegensabgabe-Corona.
pdf?__blob=publicationFile&v=3
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(OLG) structure. OLG models usually involve interpolation of value functions during
the solution process. However, ASGs with hierarchical basis functions, as proposed by
Brumm and Scheidegger (2017) do not preserve concavity. This may cause problems re-
garding the maximization step in the value function iteration. Thus, we circumvent the
problem by transferring the OLG model into an infinite-horizon model.

We start by transferring the original overlapping-generations (OLG) structure into an
Aiyagari-style model with infinite time horizon. The Aiyagari model is the obvious start-
ing point for our analysis as it captures individual savings decisions subject to fluctuating
income levels. We extend the Aiyagari model mainly by two mechanisms.

First, we add entrepreneurial engagement as a third source of income next to labor and
capital income. Precisely, agents run their own businesses that turn capital into tradeable
goods, and periodically decide how much capital to invest, subject to their idiosyncratic
predisposition for entrepreneurial success. Adding this entrepreneurial process to the
Aiyagari model adds a full layer of complexity with an associated optimization problem
that needs to be solved separately in each period.

Second, we simulate the life cycle component of the OLG model and ensure con-
stant redeployment of agents by imposing a mortality risk and replacing old agents with
newborns. We provide detailed insights into the necessary adjustments to the classical
solution approaches in order to incorporate the mortality process.

We then evaluate if our model can explain (i.e., reproduce) the characteristics of the
U.S. economy. The model builds on the same set of assumptions about the underlying
economy as Guvenen et al. (2019), but differs in the way these assumptions are imple-
mented. In this light, we compare the results and discuss the impact of the different
approaches. Furthermore, we perform a sensitivity analysis on our choice of parameters,
since it is subject to high degrees of freedom.

This thesis is contributing to the research program motivated above by conducting the
transformation and investigating the robustness of the results. Furthermore, it goes into
the details of the necessary adjustments to the model as well as considerations regarding
the efficiency of the solution process.

The scope of our work, however, goes beyond the presented results. We develop the
model and choose methods to solve it such that it allows for later extensions. Specifically,
we discuss the accuracy of our solution both in absolute terms and in comparison to the
required computational effort. We observe that established solution approaches reach
their limits when applied to our model.

Thus, we introduce a solution approach that exhausts the common practices by dy-
namically placing grid points at areas of interest and interpolating in between. While
this does not automatically contribute to faster convergence, at least it saves us a lot of
computing-intensive steps and dramatically improves the overall runtime. Crucially, our
algorithm guarantees a configurable upper bound for the deviation of all grid points from
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the real solution and thus allows us to predetermine the accuracy of the solution. We
introduce a figure that allows us to quantify the loss of precision we need to cope with in
exchange for the reduced complexity. Furthermore, we obtain the full-blown solutions for
two selected configurations of the model and evaluate the extent to which they deviate
from the approximate results.

The remainder of this thesis is organized as follows: In Chapter 2, we present the
full Aiyagari-style model with infinite time horizon, extended by a mortality risk, a gov-
ernment and a complete additional sector of entrepreneurial business. In Chapter 3, we
introduce common numerical solution approaches for dynamic optimization problems that
cannot be solved analytically. In our particular case, we need to obtain the macroeconomic
equilibrium as well as the associated optimal decisions and the resulting distribution of
earnings, income and wealth. Additionally, we present the necessary extensions in relation
to the mortality risk. Chapter 4 discusses our choice of parameters and the corresponding
results of the model. Chapter 5 shifts the focus from the economic to an algorithmic
perspective and examines in detail how we can obtain sufficient solutions in a computa-
tionally feasible way. We conclude with Chapter 6 where we outline the main results and
sketch out further analyses conducted with our model. Furthermore, we propose ideas to
extend the model in order to challenge selected assumptions.
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2 The Heterogeneous Agent Model

In this section we introduce the dynamic stochastic heterogenous agent model the remain-
der our work is based on. We start from a model of intertemporal savings decisions made
by private households which was introduced by Aiyagari (1994).

In its simplest form, the model describes households who face stochastic variation in
their labor income in each period and try to hedge against this risk by accumulating
savings over their lifetime. Each period t, a household aims to maximize their expected
utility u(c) over lifetime by choosing how much to consume and how much to save for
the next period, given today’s assets at, interest rate r and income εt · w̄, where ε is the
stochastic labor productivity and w̄ is the equilibrium wage per efficiency unit. This leads
to the following optimization problem:

max
ct

E0
[ ∞∑
t=0

βt · u(ct)
]
, (1)

subject to

ct + at+1 = (1 + r) at + εt · w̄ (2)
at+1 ≥ −b, (3)

where β is the discount factor on future assets, u(ct) is the household’s utility function
depending on the current level of consumption ct and −b is the lower bound on borrowings.
The right-hand side of (2) describes the household’s current income from capital and labor
which must equal their total expenses on consumption and savings on the left-hand side
in each period. Additionally, (3) states that households are constrained in their savings
decision, which must not be lower than the borrowing constraint −b. The interest rate r
and the wage per efficiency unit w̄ are determined outside the optimization problem and
are assumed to be constant over all periods.

The stochastic labor productivity ε is drawn from the discrete space E = {ε1, . . . , εnε}.
Let Π(ε′|ε) denote the probability to move from labor productivity state ε in the current
period to labor productivity state ε′ in the next. We assume that Π(ε′|ε) follows a Markov
process which is exogenously determined outside the model and is therefore not affected
by any decisions made by the agents. Note that in contrast, next period’s assets a′ directly
result from the savings decision made in the current period. The consumption decision
and the decision how much to save for next period are just two sides of the same coin,
as every unit not spent on consumption will be saved for next period. In the following,
we will focus on the optimal savings decision at+1(at, εt) for each asset state at and labor
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productivity εt given r and w̄. This function is called the savings policy function. We can
directly retrieve the consumption policy from the savings policy using (2).

2.1 Solving the Model

We can solve the optimization problem (1) with constraints (2) and (3) by setting up the
Lagrangian and deriving the first-order conditions. This yields the optimality condition
we will refer to as the Euler equation in the following:

∂u(ct)
∂ct

= β · Et+1

[
(1 + r) · ∂u(ct+1)

∂ct+1

]
. (4)

Note that (4) breaks down the infinite-horizon problem (1) to a two-period optimality
condition which must hold for each period t. Thus, we impose the condition that decisions
do not change, i.e., ct = ct+1, and solve for the root of the Euler equation. The root yields
the optimal choice of consumption with the central feature being that the marginal utility
of consumption today equals the discounted expected marginal utility of consumption
tomorrow times the reward on having foregone one unit of consumption today (1 + r).
We can insert ct = (1 + r) · at + εt · w̄− at+1 from (3) in order to find the optimal savings
decision at+1(at, εt) for each asset state at and labor productivity εt.

2.2 Extensions of the Ayiagari Model

In this section, we present two common extensions of the Aiyagari model introduced
above. First, we make the labor decision “endogenous” by adding leisure to the utility
function and letting households decide how much to work in each period subject to the
current prices. Second, we add a government that levies taxes on consumption, labor and
capital income on all agents.

2.2.1 Endogenous Labor Decision

So far, the only decision households make is how much to consume and how much to save in
each period, subject to idiosyncratic shocks of their labor productivity. However, a more
realistic approach is that households adapt their working behavior depending on their
current productivity. If their current labor productivity is low, households might decide
to live on their savings and reduce their hours worked, depending on their preferences.
On the contrary, households might use a productivity boost to accumulate more assets
and therefore temporarily decide to work more.
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Since a household’s labor income now depends on their choice of hours worked, the
budget constraint (3) extends to

ct + at+1 = (1 + r)at + εt · w̄ · `t (5)
at+1 ≥ −b, (6)

where `t ∈ [0, 1] denotes this period’s labor choice as a fraction of total time, thus, (1−`t)
denotes the share of free time entering the utility function. The trade-off between free
time and income that can be used on additional consumption is reflected by the extended
utility function u

(
ct, (1− `t)

)
. The objective function including endogenous labor choice

becomes:

max
ct,`t

E0

[ ∞∑
t=0

βt · u
(
ct, (1− `t)

)]
. (7)

Introducing endogenous labor to the model adds another layer of complexity. We
thereby abstract from the labor decision for now but develop the model such that we can
easily adjust it for endogenous labor later. For the remainder of this thesis, we assume
that agents spend all of their time working and do not gain any utility from leisure.

2.2.2 Government and Taxes on Consumption, Labor and Capital Income

Next, we add a government to the model. The government levies taxes to finance (exoge-
nous) governmental expenses G. Let τc denote the tax rate on consumption, τ` the tax
rate on labor income and τcap the tax rate on capital. In view of our later analysis, τcap

can either be a tax τk on capital income or a tax τa on wealth, where the latter targets
total assets and not only the returns on those assets. This yields the governmental budget
constraint:

G =

τc · C + τ` · w̄ ·N + τcap · r · A, if τcap = τk

τc · C + τ` · w̄ ·N + τcap · (1 + r) · A, if τcap = τa.
(8)

The right-hand side of the equation yields the total tax revenue, where C denotes
aggregate consumption, N denotes aggregate productivity hours and A denotes aggregate
capital.

At the individual level, the taxes affect each household’s budget constraint, which now
takes into account the after-tax values of consumption, labor and capital income. The
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budget constraint including taxes depends on whether a capital income tax or a wealth
tax is levied:

ct · (1− τc) + at+1 =

at + r · at · (1− τcap) + εt · w̄ · `t(1− τ`), if τcap = τk

[at + r · at] · (1− τcap) + εt · w̄ · `t(1− τ`), if τcap = τa.
(9)

2.3 Entrepreneurial Business Decision

Having discussed two possible extensions of the Ayiagari model, we now add an addi-
tional source of income that is associated with a much more complex process than the
labor income ε · w̄. The extension is taken from Guvenen et al. (2019), who introduce a
stochastic heterogeneous agent model where agents run their own entrepreneurial busi-
nesses and produce intermediate goods x. We will refer to agents as entrepreneurs in an
interchangeable manner. The key feature of the model is heterogeneity of returns among
agents. Precisely, agents face different predispositions for entrepreneurial success, which
we call the entrepreneurial productivity z. The entrepreneurial productivity is composed
from a fixed inherent component and a lifecycle component and determines each agent’s
returns on their invested capital.

At the beginning of life, each agent is assigned an inherent entrepreneurial ability z̄.
However, this inherent potential is not constant over lifetime. Some agents enter life in
the fast lane Λf with probability pfl, where their ability z̄ is further amplified by a factor
λ > 1. Each period, they risk losing their place in the fast lane and ending up in the
normal lane Λn with probability pn, where their ability is no longer amplified. Agents
who have not been born into the fast lane enter life in the normal lane. Both of these
groups face another risk pr of losing their entrepreneurial productivity completely. These
agents end up in the retirement lane Λr, where they do not gain any returns on their
investments anymore and therefore must inevitably decide to drop out of entrepreneurial
engagement. The entrepreneurial productivity z(z̄,Λ) depends on inherent ability and
current lane status and can then be described by:

z(z̄,Λ) =


z̄λ if Λ = Λf

z̄ if Λ = Λn

0 if Λ = Λr.

(10)

Figure 1 illustrates the possible transitions between lanes with the respective proba-
bilities.

Note that in this setting, agents can never go back to a higher lane. The model by
Guvenen et al. (2019) is a so-called Overlapping Generations (OLG) Model, where agents
only live up to a certain number of years before they die. It is designed such that the
probability to end up in the retirement state grows over lifetime, but there is still a chance
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Λf

Λn

Λr

pn

pr

pr

pfl

1− pfl

Figure 1: Possible transitions between lanes with respective probabilities. The horizontal
position indicates the lifecycle, the vertical position indicates the level of entrepreneurial
productivity in the respective lane.

for agents to keep up their entrepreneurial engagement until they die. With an infinite
time horizon as in our model, however, all agents will inevitably end up in the retirement
state. This is compensated by the mortality risk, we introduce in the following section.

2.3.1 Adding a Mortality Risk to Match the OLG Structure

In the OLG model by Guvenen et al. (2019), the transition graph (1) for entrepreneurial
lanes is designed such that agents can never go back to a higher lane. However, the OLG
structure ensures that each period, a fixed share of retired agents is replaced by newborns
having a positive entrepreneurial productivity. In our infinite-horizon model, we capture
this OLG feature by adding a lane-dependent mortality risk: Each period, we take a fixed
share of agents from the retirement lane and replace them with newborns in the fast and
normal lane. Thus, we impose a positive mortality risk only on agents in the retirement
lane. The conditional mortality risk is:

η(Λ) =

η, if Λ = Λr

0 otherwise.
(11)

Figure 2 illustrates the effect of the mortality risk on the possible lane transitions.
Note that these additional transitions do not apply to a single agent (as they cannot be
newborn) but only on a macroeconomic level in order to ensure a constant share of agents
in the fast and the normal lane.

Newborns enter life without any assets. We do not take assets leftover by dead house-
holds into account. These assets accrue to the government but are not further considered.

2.3.2 Investment Decision

Subject to the equilibrium input factor price p and their current productivity z, each
entrepreneur decides how much to produce of intermediate good x in the current period.
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Λf

Λn

Λr

pn

pr

pr

η · pfl

η · (1− pfl)

pfl

1− pfl
1− η

Figure 2: Lane transition graph adjusted for the mortality risk. Each period, a share η of
all retired agents is redistributed from the retirement lane over the other two lanes. The
fraction of agents born into the fast lane is denoted by pfl.

Specifically, the amount of x is determined by the amount of capital k the entrepreneur
chooses to invest in their business:

x = z · k. (12)

Crucially, producing the intermediate goods does not require any labor input. The
investment k is collateralized by the entrepreneur’s own assets. Entrepreneurs can borrow
capital for investment in the bond market, but only up to a certain factor ϑ of their own
assets a, which depends on their entrepreneurial productivity z. This yields the collateral
constraint:

k ≤ ϑ · a. (13)

Note that (13) depends on the entrepreneurial productivity zi, not the inherent ability
z̄i. If ϑ = 1, entrepreneurs do not have access to the bond market but can only invest
their own assets in their businesses. It is reasonable that ϑ is a monotonically increasing
function in z, since more productive entrepreneurs gain higher returns on their investment
and are thus more likely to repay their debt. Likewise, entrepreneurs in the retirement
lane face entrepreneurial productivity z = 0 and do not have access to the bond market,
even if their inherent ability z̄ is high.
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2.4 The Complete Optimization Problem

We extend the Aiyagari model presented at the beginning of this section by the en-
trepreneur process from Section 2.3 in order to approach the model by Guvenen et al.
(2019), with the main difference being the infinite time horizon in our model instead of
the OLG structure in theirs. In this section, we focus on the conditions that must hold
for the optimal solution. We will talk about how this solution can be obtained practically
in Section 3. For simplicity, we suppress the subscripts i and t in the following.

Given the interest rate r, the wage per efficiency unit w̄ and the price on intermediate
goods p(x), we determine the optimal savings decision of each agent, depending on their
asset level a, labor productivity ε, inherent entrepreneurial ability z̄ and current lane Λ.
The entrepreneurial process we just introduced generates an additional source of income
which does not depend on the savings decision and can thus be determined beforehand.
We will refer to this first optimization problem as the Static Entrepreneurial Investment
Decision Problem:

Each period, an entrepreneur chooses the amount of capital to invest in their business.
As shown in (12), Guvenen et al. (2019) assume there is no labor effort necessary to
produce the intermediate good x. This allows the Static Entrepreneurial Investment
Decision Problem to be completely decoupled from the household’s savings decision: since
p, a and z are predetermined at the beginning of the period, the investment decision over
k can be simply made from the first order conditions and does not need to be solved
dynamically. Precisely, each entrepreneur aims to maximize their profits π

π(a, z) = max
k≤ϑ·a

{p(z · k) · z · k − (r + δ) · k} , (14)

where r is the current interest rate at which they can borrow capital in the bond market
and δ is the capital depreciation rate. Section 2.4.1 describes the way to obtain the optimal
investment decision and the corresponding return on investment from (14) in detail.

Having solved the Static Entrepreneurial Investment Decision Problem, we can insert
this additional kind of earnings into the Household Dynamic Programming Problem in
order to obtain the optimal savings policy.

Let ω(a, z; τcap) denote post-production, after-tax wealth. This is the sum of current
assets a plus return on these assets r · a plus return on investment from entrepreneurial
business π(a, z) minus the tax burden which depends on the type of capital tax levied.

ω(a, z; τcap) =

a+
[
ra+ π(a, z)

]
· (1− τcap), if τcap = τk[

a+ ra+ π(a, z)
]
· (1− τcap), if τcap = τa.

(15)
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The individual dynamic programming problem is then given by:

max
ct,(1−`t)

E0

[ ∞∑
t=0

βt · (1− ηi)t · u(ct, 1− `t)
]
. (16)

subject to

ct · (1 + τc) + at+1 = ω(at, zt; τcap) + εt · w̄ · `t · (1− τ`) (17)
at+1 ≥ −b. (18)

Section 2.4.2 provides the associated Lagrangian and all first-order conditions neces-
sary to solve (16) with constraints (17) and (18) for the optimal consumption and labor
decisions.

Finally, we determine the corresponding market prices r, w̄ and p by introducing the
final good producer. Having introduced the dynamics of entrepreneurial engagement on
the individual level, we shed light on the question how these individual decisions are put
together. So far, the interest rate r, the wage per efficiency unit w̄ and the price p(x) of
intermediate goods were given. We want to understand how these prices are determined
on a macroeconomic level.

We use the concept of an anonymous final good producer who collects all input factors
and turns them into a final good that determines the economy’s aggregate output. For the
aggregation, we assume an infinite continuum of agents i with total measure

∫
i di = 1,

where the contribution of a single individual to the aggregate is negligibly small.
We assume a Cobb-Douglas production function with input factors L (labor supply)

and aggregate input goods Q. We call Q the quality-adjusted capital stock, which is
composed from the intermediate goods xi supplied by each entrepreneur i:

Q =
(∫

xµi di
) 1
µ

. (19)

The underlying assumption is monopolistic competition among entrepreneurs who sup-
ply their intermediate goods to the final good producer. The parameter µ determines the
markup over marginal costs: With perfect competition among suppliers, the equilibrium
price of a supplied unit must equal the marginal costs of producing this unit. In a setting
with monopolistic competition, however, each supplier has at least some market power,
causing the equilibrium price to exceed the marginal costs. This difference is expressed
in 1− µ, for example, if µ = 0.9, the markup is 10%.

Labor supply and quality-adjusted capital yield aggregate output Y :

Y = Qα · L1−α, (20)
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where α denotes the relative share of capital in production. The Final Good Producer
chooses the amount of input factors

∫
xi di and L =

∫
εi · `i di such that the total revenue

is maximized subject to the individual price of the intermediate good p(xi) and wage per
efficiency unit w̄:

max
{xi},L

(∫
xµi di

)α
µ

· L1−α −
∫
pi · xi di− w̄ · L. (21)

Note that the markup µ appears in the aggregation of the output but not in the
aggregation of input factors. The first-order conditions yield:

p(xi) = α ·Qα−µ · L1−α · xµ−1
i =: R · xµ−1

i (22)
w̄ = (1− α)Qα · L−α. (23)

Due to the markup µ, the equilibrium price p(xi) is calculated from the quality-adjusted
capital stock Q (19) instead of the unadjusted capital stock K =

∫
ki di. The absence of

perfect competition implies that the equilibrium price of capital, commonly known as the
interest rate, can no longer be derived from the firm’s optimality condition. In general,
the input factor price p(xi) does not equal the interest rate. We will discuss ways to
determine the equilibrium interest rate in Section 3.

2.4.1 Optimality Conditions for the Static Entrepreneurial Investment Deci-
sion Problem

We insert the equilibrium price p(x) of the intermediate good (22) into (25):

k(a, z) = min

(
µ · R · zµ

r + δ

) 1
1−µ

, ϑ · a

 . (24)

The entrepreneurial profit π(a, z) is then determined by

π(a, z) =


R (zϑ · a)− (r + δ)ϑ · a, if k(a, z) = ϑ · a

(1− µ)Rzµ
(
µRzµ

r + δ

) µ
1−µ

, if k(a, z) < ϑ · a.
(25)
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2.4.2 Optimality Conditions for the Dynamic Household Optimization Prob-
lem

Setting up the Lagrangian from (16) yields:

L = E0

[ ∞∑
t=0

βt(1− ηi)t
{
u(ct, 1− `t)

+ λt ·
[
ω(a, z; τcap) + εt · w̄ · `t · (1− τ`)− ct · (1 + τc)− at+1

]
+ µt · at+1,

}]
,

(26)

where λ is the Lagrangian multiplier of the budget constraint (17) in period t and µ is
the Lagrangian multiplier of the borrowing constraint (18). Note that for each period
t, the asset choice at affects tomorrow’s decision via at+1, but no other periods. Thus,
the optimization problem can be broken down to the following two-period optimality
conditions. For simplicity, we denote tomorrow’s state variables with a prime, e.g. a′

denotes tomorrow’s assets, instead of using the subscript t. The first-order conditions are
given by:

∂L
∂c

= ∂u

∂c
− λ · (1 + τc) = 0 ⇔ λ = ∂u

∂c
· 1

1 + τc
(27)

∂L
∂(1− `) = − ∂u

∂(1− `) + λ · (1− τ`) · w̄ · ε = 0 ⇔ ∂u

∂(1− `) = ∂u

∂c
· 1− τ`

1 + τc
· w̄ · ε. (28)

Equation (27) states that the Lagrangian multiplier of the budget constraint must
equal after-tax marginal utility of consumption today. Equation (28) states that marginal
utility of leisure today must equal after-tax marginal utility of consumption today times
after-tax labor income per hour worked. We point out that these two conditions must hold
for each period but do not depend on the other periods, so there is no need to calculate
the expected value.

For the third FOC, we get:

∂L
∂a′

= −λ+ µ+ β · (1− ηi) · Eε′,z′
[
λ′ · ∂ω(a′, z′; τcap)

∂a′

]
= 0

⇔ ∂u

∂c
= (1 + τc) · β · (1− ηi) · Eε′,z′

[
λ′ · ∂ω(a′, z′; τcap)

∂a′

]
+ µ.

(29)

13



Inserting (27) into (29) yields the final Euler Equation of the complete model:

∂u

∂c
= β · (1− ηi) · Eε′,z′

[
∂u(c′)
∂c′

· ∂ω(a′, z′; τcap)
∂a′

]
+ µ (30)

with

∂ω(a′, z′; τcap)
∂a′

=


1 +

(
r + ∂π(a′, z′)

∂a′

)
· (1− τk), if τcap = τk(

1 + r + ∂π(a′, z′)
∂a′

)
· (1− τk), if τcap = τa.

(31)

The derivative of the entrepreneurial revenue function with respect to a′ depends on
whether the collateral constraint is binding or not. As long as the constraint is binding,
each additional unit of assets today allows for additional investments in the amount of
ϑ. Once the investment decision (24) falls below the collateral constraint, the marginal
surplus of an additional unit of a is zero:

∂π(a, z)
∂a

=

R · µ · (z · ϑ · a)µ−1 · z · ϑ− (r + δ) · ϑ, if k(a, z) = ϑ · a

0, if k(a, z) < ϑ · a.
(32)
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3 Solving the Model

In this chapter, we introduce common solution approaches for the model presented in
Chapter 2. The complete algorithm is composed from several nested subroutines that
are dedicated to obtain locally optimal partial solutions. We start by breaking down the
model to a four-dimensional state space in order to establish a shared wording for the
remainder of this chapter. Afterwards, we work our way from the outer algorithm that
puts the partial solutions obtained by the subroutines together to a detailed description
of each subroutine. At the end of the chapter, we provide detailed information about the
adjustments that arise from introducing a mortality risk to the model.

3.1 Discretization of the State Space

The state space of the optimization problem is four-dimensional.

S := E× Z̄× L,

E := {ε1, . . . , εnε},

Z̄ := {z̄1, . . . , z̄nz̄},

L := {Λr,Λn,Λf}

An element s ∈ S is a distinct combination of the three exogenous states ε ∈ E, z̄ ∈ Z̄, and
Λ ∈ L. The transition matrix Π(s′|s) holds the probability to switch from any tuple over
exogenous states s today to any tuple s′ tomorrow. It is calculated from the Kronecker
product of the single transition matrices Πε, Πz̄ and ΠΛ.

The space over labor productivity E, the space over entrepreneurial ability Z̄ and the
lane states L are inherently discrete, however the asset space A is continuous. Since we
cannot calculate the policy function and the stationary distribution analytically, we need
to discretize A. We choose a non-equidistant monotonically increasing grid A = {a1, . . . , ana}
of length na, where a1 = amin and ana = amax.

The asset states are not equally spaced but concentrated at the bottom of the asset
distribution in order to locate the kink at the borrowing constraint as precisely as possible.
More precisely, the grid points are calculated from

ai =
(
i− 1
na − 1

)ϑa
· (amax − amin) + amin ∀i ∈ {1, . . . , na}, (33)

where ϑa = 2.0.
Adding the three discrete states E, Z̄ and L yields a discrete grid over states (a, ε, z̄,Λ)

of shape (na × nε × nz̄ × nΛ).
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A

S

(a10, s45) = (a10, ε4, z̄0,Λr)

amin

amax
s1 s75

Figure 3: Projection of the four-dimensional state space onto a two-dimensional grid
A× S. The grid point (a10, s45) is exemplary marked.

For illustration purposes, we set ng := nε · nz̄ · nΛ and project the four-dimensional
state space A× E× Z̄× L onto a two-dimensional grid A×S of shape na×ng, as shown
in Figure 3. We will refer to the tuple (ai, εk, z̄l,Λm) as grid point (ai, sj), where ai
corresponds the ith row of the grid and sj = (εk, z̄l,Λm) corresponds to the jth column of
the grid. For each grid point (a, s), we calculate the policy function and the stationary
distribution and interpolate in between.

3.2 Finding the Stationary Equilibrium

We want to find the stationary equilibrium of the economy where prices, decisions and the
distribution of agents over income, earnings and wealth remain constant. The economy
described by the model is a closed economy, which implies that there are no exports
and imports of goods or capital. Therefore, the total sum of capital K invested into
entrepreneurial business must equal the total sum of assets A held by all individuals:

A :=
∫
a dΦ(a, ε, z̄,Λ) =

∫
k(a, z) dΦ(a, ε, z̄,Λ) =: K, (34)

where Φ(a, ε, z̄,Λ) is the distribution of agents over assets a, labor productivity ε, en-
trepreneurial ability z̄ and lane Λ and k(a, z) is the investment decision which depends
on a and z̄. In order to find the macroeconomic equilibrium, we need to identify for each
market the corresponding prices where supply equals demand. These are the equilibrium
interest rate r∗ for the bond market, the equilibrium wage per efficiency unit w̄∗ for the
labor market and the price of intermediate goods p∗ for the market of intermediate en-
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trepreneurial goods. We can calculate w̄ and p from the firm’s first-order conditions (22)
and (23) if we know the quality-adjusted capital stock Q and the labor supply L. In a
situation with exogenous labor supply, L is constant. However, Q directly depends on the
investment decisions entrepreneurs make subject to the prices which are in turn affected
by Q. Therefore, we need an iterative process to determine the equilibrium quality-
adjusted capital stock Q∗. We start from a guess Q̂ for Q, calculate the policies for the
corresponding prices w̄(Q̂) and p(Q̂), determine the implied Qimpl, adjust the guess and
iterate until Q̂ = Qimpl.

However, the market-clearing interest rate r∗ cannot be obtained from the firm’s first-
order optimality conditions, since the quality-adjusted capital stock Q does not equal the
sum of investments K. Thus, we need to make another guess r̂ for r, calculate A and K
as in (34) and, as long as these values differ, update the guess and go to the next itera-
tion. Since r denotes the price of borrowing and lending capital respectively, aggregate
savings A is a monotonically increasing function in r, while aggregate investments K is a
monotonically decreasing function in r. Therefore, if aggregate savings exceed aggregate
investments, we lower the interest rate and similarly, if investments exceed savings, we
raise it. How do we do that?

The naive approach is to increment and decrement r by a constant value, depending
of the sign of excess capital K −A. However, in order to prevent us from running around
the equilibrium interest rate, we need to adjust the step size as the iteration converges. In
order to speed up the process, consider looking at the ratio K/A instead of the difference
K − A: if K exceeds A, aggregate investments exceed aggregate savings, which implies
that the current interest rate is too low. If we multiply r with K/A > 1, r is increased
and the change in r reflects the extent of capital shortage. Likewise, if K/A is smaller
than 1, r is decreased. As the algorithm converges towards the equilibrium, the change
in r is thus slowly moderated.

However, the adjustment of r does not inevitably yield the equilibrium interest rate
r∗ but can cause divergence if our guess for the quality-adjusted capital stock Q is not
sufficiently stable. Figure 4 shows the evolution of the guessed interest rate in a situation
where the solution does not converge.

Adding a smoothing factor to the K/A ratio reduces the chance of divergence, since
the actual deviation is not one-to-one translated into the interest rate adjustment. For
example, if we choose a smoothing factor of 0.5 and savings are twice as high as invest-
ments, the new guess is 0.75 times the old guess. Of course, this may come at the cost of
additional iterations of the outer algorithm, since the adjustment is slower. However, to
the best of our knowledge, this prevents the algorithm from diverging.

Algorithm 1 provides the complete algorithm that solves the model for the equilibrium
interest rate r∗ and quality-adjusted capital stock Q∗. Note that we use several subrou-
tines to determine the optimal investment decision and the optimal savings policy for each
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Figure 4: Divergence of the guessed interest rate r. As r and Q influence each other,
the adjustment of r does not inevitably yield an equilibrium (left-hand plot). Adding
a smoothing parameter of 0.5 mitigates the adjustment of the interest rate and yields
convergence for the same configuration.

agent. We refer to the former as the Static Entrepreneurial Optimization Problem, which
will be discussed in detail in Section 3.3, and to the latter as the Dynamic Household Op-
timization Problem (Section 3.4). As both optimization problems depend on the current
prices r, w̄ and p, we need to solve them in each iteration of the outer algorithm. Sub-
sequently, we need to determine the PDF using CDF Iteration (Section 3.6) in order to
calculate the aggregate variables Qimpl, K and A. The following sections provide detailed
information about the subroutines.

3.3 Solving the Static Entrepreneurial Optimization Problem

As described in Section 2.4.1, the entrepreneurial investment decision problem is com-
pletely decoupled from the household’s savings decision and can thus be solved beforehand.
Knowing the current period’s price level p(x), we can calculate the optimal investment
decision k(a, z) from (24) and the return on investment π(a, z) from (25). Note that
π(a, z) generates an additional source of income in the dynamic households optimization
problem.
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1. Choose a smoothing parameter ρ ∈ [0, 1] and a tolerance ϕ > 0

2. Guess Q̂ and rr̂

3. Calculate w̄ and p from the firm’s FOC (22) and (23)

4. Solve the Static Entrepreneurial Optimization Problem (Section 3.3) to obtain the
investment decisions k(a, z) and the return on investment π(a, z) for all asset states
a ∈ A and entrepreneurial productivity states z ∈ Z̄

5. Solve the Dynamic Household Optimization Problem (Section 3.4) using Time Iter-
ation, i.e., find the policy function a′(a, s) for all asset states a ∈ A and exogenous
states s ∈ S

6. Use CDF Iteration to determine the distribution Φ(a, ε, z̄,Λ) (Section 3.6) from the
inverse policy function a′−1(a′, s)

7. Calculate

Qimpl =
( ∫ (

k(a, z) · z
)µ

dΦ(a, ε, z̄,Λ)
)1/µ

,

K =
∫
k(a, z) dΦ(a, ε, z̄,Λ),

A =
∫
a dΦ(a, ε, z̄,Λ)

8. If max
{∣∣∣K − A∣∣∣, ∣∣∣Qimpl − Q̂

∣∣∣} < ϕ: break

9. Else: Set

Q̂← ρ · Q̂+ (1− ρ) ·Qimpl

r̂ ← r̂ · K
A

and go to 3

Algorithm 1: Outer algorithm to determine the equilibrium interest rate and capital stock
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3.4 Solving the Dynamic Household Optimization Problem

We use the Time Iteration (TI) algorithm to determine the policy functions for savings
a′(a, s) and consumption c(a, s). The main idea of Time Iteration (TI) is to project
the infinite horizon savings decision onto a two-period decision model. Each period,
a household maximizes their expected lifetime utility by choosing how much to save for
next period (and thus, how much to put aside for current consumption), given their assets
and net income from labor, capital and entrepreneurial business. This decision is captured
by the policy function a′(a, s), which maps the current asset level a and exogenous state
s = (ε, z̄,Λ) to next period’s assets a′, subject to the factor prices w̄, r and p.

Given: wage w̄ and interest rate r, profit function from the solution of the Static
Entrepreneurial Optimization Problem π(a, z; τcap) (Section 3.3)

1. Choose a smoothing parameter ρTI and tolerance value ϕTI

2. Guess a′ ← â′

3. Loop: For each asset state a ∈ A and s ∈ S, s = (ε, z̄,Λ):

(a) Calculate

â′′(a, s) =
∑

s′∈ S
Π(s′|s) · â′(â′(a, s), s′)

(b) Use a Newton solver to obtain the root a′(a, s) of the Euler equation (30),
assuming a′′ = â′′.

4. If |a′ − â′| < ϕTI: break

5. Else: Adjust the guess: â′ ← ρTI · â′ + (1− ρTI) · a′

Algorithm 2: Time Iteration algorithm to determine the optimal policy functions for all
asset states a and exogenous states s for given prices.

The complete algorithm is given by Algorithm 2. In order to determine the current
policy, we solve for the root of the Euler equation (30) where the marginal utility of
consumption today equals the expected discounted marginal utility of consumption to-
morrow. In order to solve the Euler equation, we need to know the current after-tax
wealth ω(a, s; τcap) as well as the current labor income w̄ ·ε · ` and, crucially, next period’s
savings decision a′′(a′, s′), which in turn depends on the result we get for a′. This is where
the idea of TI comes in: We need to guess the policy a′ first in order to solve the Euler
equation for the root, using a fixed guess a′′ = Es′ a

′(a′, s′). Note that we found the cor-
rect solution exactly when we get the same value for the root as our guess. Consequently,
for any given state s, today’s policy is the same as tomorrow’s. As long as the root finding
yields another result than the a′ we assumed in order to guess a′′, we adjust the guess and
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solve for the root of the Euler equation again. Once the distance between the guess and
the real policy falls below a certain threshold, we consider the found root to be optimal
and terminate.

3.5 Determining the Stationary Distribution

The stationary distribution λ∗(S) over all exogenous states s ∈ S can be calculated
from the transition matrix Π(s′|s). By definition, the stationary distribution is a vec-
tor v ∈ [0, 1]ng that does not change when multiplied with the transition matrix Π, i.e.,
Π(s|s′) · v = v. We use this mathematical relationship and determine λ∗ by calculating
the eigenvector corresponding to the eigenvalue 1 of Π(s′|s) and normalize it to ‖v‖1 = 1
in order to obtain the stationary distribution λ∗(s) : S→ [0, 1]. Let S ⊆ S := E× Z̄× L
denote a subset of S. We define Sretired, Snormal and Sfast as the subsets of agents in the
retirement (normal/ fast) lane. The corresponding measure of agents in the retirement
(normal/ fast) lane is given by

λ∗(Sretire) :=
∑

s∈Sretire

λ∗(s) (35)

and similar for λ∗(Snormal) and λ∗(Sfast) respectively.
When we calculate the distribution of agents over the grid in the next step, the prob-

ability mass per column si summarized over all rows must be equal to the corresponding
stationary distribution λ∗(si). Put differently, we need to ensure that the CDF for the
highest asset state yields λ∗(si) for all si ∈ S.

3.6 Aggregation

Having determined the policy functions for a given interest rate r and quality-adjusted
capital stock Q, we need to calculate the distribution over the grid points, i.e., the percent-
age of agents for any combination of assets and exogenous states. Agents “move” between
grid points depending on their savings choices and the (stochastic) variation in their labor
productivity ε and entrepreneurial lane Λ. Note that the inherent entrepreneurial ability
z̄ is not subject to changes over the lifetime. The projection of the four-dimensional state
space onto a two-dimensional grid is helpful here: each vertical movement, i.e., change in
assets, is fully captured by the policy function a′(a, s), whereas each horizontal movement,
i.e., change in exogenous states, is captured by the transition matrix Π(a, s). We already
know the stationary distribution over exogenous states from Section 3.5. We need to
expand the stationary distribution to the asset dimension in order to find the distribution
Φ(a, s) corresponding to the savings decisions a′(a, s).
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To calculate Φ(a, s), we iterate over the cumulative distribution function (CDF). Like
TI, CDF Iteration is an iterative process where we initially guess the result and iterate
until the solution converges. Again, we search for an equilibrium where the macroeconomic
circumstances as well as the individual decisions do not change anymore. In this situation,
the distribution over agents is constant.

The exact algorithm is taken from Heer and Maussner (2009). We use an asset grid
{a◦1, . . . , a◦naf }, a

◦
1 = amin, a

◦
naf

= amax finer than the one we calculated the policy for,
i.e., naf � na. We start by guessing the CDF F (a◦, s) over the fine grid. First, we
determine the movement along the vertical dimension of the grid, i.e., the change in the
asset distribution, from the inverse policy function: Given an asset state a′ tomorrow and
an exogenous state si today, the inverse policy function a′−1(a′, si) yields the asset level
a that would make the savings choice a′ optimal. We interpolate F and insert a′−1 to
obtain the CDF that corresponds to the policy functions. However, due to the fact that
assets must not exceed the grid throughout the whole iteration, we need to apply some
rules:

• If the inverse policy function for (a′j, si) yields a′−1(a′j, si) ≥ amax, the CDF for si
reaches its maximum, thus, we set F (a, si) = λ∗(si) for all a ≥ aj.

• If the inverse policy function for (a′k, si) yields a′−1(a′k, si) ≤ amin, the CDF must be
zero for this and all lower asset states, i.e., F (a, si) = 0 for all a ≤ ak.

Applying these rules returns the CDF F (a, s) today. Since exogenous states change
between periods, we multiply F (a, s) with the transition matrix Π(s′|s) in order to ob-
tain the CDF F̂ (a′, s′) over tomorrow’s exogenous states s′ ∈ S. Note that this step is
equivalent to an in-row redistribution over the grid, as it solely changes the distribution
of agents over the exogenous states but not over assets. Section 3 provides the CDF It-
eration algorithm. Note that in step 5(a)iv, we ensure that the CDF at the highest asset
state equals the stationary distribution.

3.6.1 Aggregating with Mortality Risk

As described in Section 2.3.1, we impose a mortality risk on retired agents in order to
redistribute them to the normal and the fast lane. The effect of adding a mortality risk
to the model is threefold:
First, it effectively reduces the discount factor for agents who have a positive mortality
risk and thus their willingness to accumulate assets. This is reflected by the Euler equa-
tion (30) but not in the transition matrix Π(s′|s), as the single individual does not take
the possibility of being newborn into account.

Second, the mortality risk allows us to restrict aggregate savings in the model. In the
simplest case, newborns enter life without any assets. With this approach we guarantee
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Given: Policy functions a′(a, s), transition matrix Π(s′|s)

1. Choose a tolerance criterion ϕCDF

2. Choose a grid over assets a◦ = {a◦1, . . . , a◦naf } that is finer than the asset grid the
policy was calculated for, i.e., naf � na.

3. Calculate the (interpolated) inverse policy function a′−1(a′, s) over the fine grid a◦

4. Guess the piecewise cumulative distribution function (CDF) F (a, s) over the fine
grid a◦

5. Loop:

(a) ∀a′ ∈ A, s ∈ S:
i. Calculate F

(
a′−1(a′, s), s

)
by interpolating F (a, s)

ii. Set F
(
a′−1(a′, s), s

)
← 0, if a′−1(a′, s) ≤ amin

iii. Set F
(
a′−1(a′, s), s

)
← λ∗(s), if a′−1(a′, s) ≥ amax

iv. Set F (amax, s)← λ∗(s) ∀s ∈ S
(b) For all a′ ∈ A, s′ ∈ S calculate

F̂ (a′, s′) =
∑
s

Π(s′|s) · F
(
a′−1(a′, s), s

)

(c) If
∥∥∥F̂ − F∥∥∥

max
< ϕCDF: break

(d) Else: Update the guess by setting F = F̂

6. Calculate the PDF Φ(a, s) from the CDF

Algorithm 3: CDF Iteration algorithm to determine the PDF/ CDF over all grid points
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to always have a minimum proportion of agents at the lowest asset level. The effective
mortality risk, i.e., the total share of agents who are redistributed in each period, is
determined by the measure of retirement states in the stationary distribution:

ηeff = η · λ∗(Sretired) (36)

Third, we do not only redistribute agents over the asset grid but also over the exoge-
nous states. From a macroeconomic perspective, agents who die simply lose their assets
and switch from the retirement lane to the fast or normal lane. Let pfl denote the fixed
share of agents born into the fast lane and (1− pfl) the fixed share of agents born into the
normal lane. We need to ensure a minimum share of ηeff · pfl in the lowest asset state of
the fast lane and of ηeff · (1− pfl) in the lowest asset state of the normal lane respectively.

Whereas a single individual can, theoretically, live infinitely long in our model but
cannot be newborn once having died, this is possible at the macroeconomic level. Effec-
tively, introducing a mortality risk reduces the probability to remain in the retirement
lane by η and increases the chance to switch from the retirement lane to the normal lane
by η · (1−pfl) and to the fast lane by η ·pfl respectively. The corresponding lane transition
graph is shown by Figure 2, p. 9.

Specifically, we need to consider the modified lane transition graph from Figure 2
instead of Figure 1 (p. 1) in order to obtain the stationary distribution λ∗. However, in
the CDF Iteration, using 2 will not serve our purpose, as the process of death and rebirth
is inextricably linked to the complete loss of assets. Instead, we manually reduce the
probability mass at each retirement lane grid point by η and redistribute ηeff over the fast
and normal lane states with respect to pfl and the stationary distribution λ∗.

Algorithm 4 provides the additional steps (bb) and (cc) we need to insert into the
CDF Iteration algorithm proposed by Heer and Maussner (2009). Note that we use the
“naive” transition matrix Π(s′|s) corresponding to Figure (1) in step (bb) and manually
replace dead agents with newborns. Crucially, in step (cc), newborn agents draw their
exogenous states from the stationary distribution and not from the last state at which
their predecessor left the model. This procedure is consistent with the determination of
the policy functions for the households.
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5. Loop:

(bb) Take a fixed share η of agents from each grid point in the retirement lane, i.e.,
∀s ∈ Sretire:

F
(
a′−1(a′, s), s

)
← F

(
a′−1(a′, s), s

)
· (1− η)

(c) For all a′ ∈ A, s′ ∈ S calculate

F̂ (a′, s′) =
∑
s

Π(s′|s) · F
(
a′−1(a′, s), s

)

(cc) Redistribute the share of dead agents ηeff to the normal and the fast lane in
the respective measures of the stationary distribution, i.e., ∀a ∈ A:

F (a, si) = F (a, si) +



pfl · ηeff ·
λ∗(si)
λ∗(Sfast)

, if si ∈ Sfast

(1− pfl) · ηeff ·
λ∗(si)

λ∗(Snormal)
, if si ∈ Snormal

Algorithm 4: Extension of the CDF Iteration algorithm for the mortality risk.
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4 Policy Analysis

In Chapter 3, we described the algorithms to iteratively determine the macroeconomic
equilibrium. However, whether there is an equilibrium at all, i.e., whether we find a
(positive) interest rate such that the market clearing condition (34) (p. 16) holds, highly
depends on the choice of economic parameters. Thus, our goal is to find a parametrization
that yields a realistic equilibrium. We assess the extent by which our model represents
the real world by targetting the U.S. distribution over earnings, income and wealth found
by Kuhn, Rios-Rull, et al. (2016).2

In the following section, we propose a configuration that yields an equilibrium and is as
close to the empirical U.S. distribution data as we could get. We refer to this configuration
as the benchmark configuration in the following. Subsequently, we investigate the shape
of the policy functions as well as the macroeconomic parameters and the distribution over
earnings, income and wealth and evaluate possible channels to explain our observations.
Furthermore, we compare our results to the ones by Guvenen et al. (2019) our model
builds on.

Finally, we conduct sensitivity checks by systematically changing selected parameter
values and analyzing their effect on the model. This helps us to develop an intuition for
the dynamics of the model and to understand the influence of the choice of parameters.

4.1 Parametrization of the Benchmark Model

In the following, we present our choice of economic parameters the remainder of this (and
the next) chapter builds on. We refer to this configuration as the benchmark configuration.

Choice of Grid Points and Discretization of the Continuous Asset Space We
need to choose the maximum asset level amax carefully such that optimal savings do not
exceed the grid. Crucially, if the share of agents in the highest asset state of the stationary
distribution is unreasonably high, this indicates that amax is too small and we need to
extend the grid. For now, we set amax = 100 but we monitor the corresponding share in
the PDF closely throughout our investigation.

We set the number of asset states to na = 51, the number of labor productivity states
to nε = 5 and the number of entrepreneurial ability states to nz̄ = 5. The number of lanes
is nΛ = 3 by construction. This yields a grid of 51× (5 · 5 · 3) = 51× 75 entries. The grid
concentration parameter ϑa (see Section 3.1) is set to 2. For the CDF Iteration we need
a finer grid over assets than the one we calculated the policies for. We set the number of
asset states for the fine grid naf = 1001 and the concentration parameter to ϑaf = 4.0.

2In conformity with Kuhn, Rios-Rull, et al. (2016), we use the term “(labor) earnings” on labor income
and “income” on total income from labor, returns on capital and returns on entrepreneurial investment.
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Private Households The utility function of the household is a Cobb-Douglas function:

u(c, (1− `)) =

(
cγ(1− `)1−γ

)1−σ
− 1

1− σ , (37)

where σ is the risk aversion parameter and γ is the share of consumption in utility.
Note that we assume exogenous labor, i.e., households do not decide over their amount

of hours worked. Thus, the optimization problem becomes much simpler.3 We set γ = 1,
which implies that the household gains all its utility from consumption and none from
leisure and make sure the choice of labor hours ` is always 1. The simple utility function
that does not take leisure into account is

u(c) = c1−σ − 1
1− σ . (38)

We set the risk aversion parameters σ to 2, which is at the low side and implies a rather
small preference of agents to smooth their consumption over lifetime. In particular, the
higher σ the less volatile the savings subject to changing circumstances.

We set β = 0.92 which implies that one unit of consumption tomorrow yields only
92% of the utility it would yield today.

The log labor productivity log ε is generated from an AR1 process with persistence ρε =
0.965 and standard deviation σε = 0.25. This yields εmin = ε0 = 0.06, εmedian = ε2 = 1 and
εmax = ε4 = 17.46. The stationary distribution is provided by Table 1. The bulk of agents
(44%) has a median labor productivity.

Table 1: Measure of each labor productivity state ε in the stationary distribution.

ε0 ε1 ε2 ε3 ε4
Measure 0.04 0.24 0.44 0.24 0.04

Entrepreneurs The evolution of inherent entrepreneurial ability z̄ is simpler in our
model than in the one by Guvenen et al. (2019), since we do not consider inheritance
between parents and their children. Instead, the logarithmized ability states log z̄ are
drawn from an equally spaced discrete grid of length nz̄ = 5, where log z̄min = −σz̄ and
log z̄max = 3 · σz. Following Guvenen et al. (2019), we set σz̄ = 0.12 such that z̄min ≈ 0.89
and z̄max ≈ 1.43. We choose the distribution over z̄ such that only a small elite of agents
(5%) is highly productive, as shown by Table 2.

The probabilities of leaving the fast lane p1 = 0.05 and retiring from entrepreneurial
engagement p2 = 0.03 are taken from Guvenen et al. (2019). Table 3 shows the corre-
sponding probabilities to end up in the retirement, normal or fast lane respectively at
different ages for agents born into the fast lane. Agents born into the normal lane skip

3See Appendix A for the complete optimization problem with endogenous labor
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Table 2: Measure of each inherent entrepreneurial ability state z̄ in the stationary distri-
bution.

z̄1 z̄2 z̄3 z̄4 z̄5
Measure 0.35 0.3 0.2 0.1 0.05

the fast lane but face the same probability to retire at any age. After 80 periods, agents
born into the fast or the normal lane will have retired with a probability of more than
90 percent. This probability implies a mean duration of 12.5 years in the fast lane and
another 18 years until retirement.

Table 3: Guvenen: Probability to be in the retirement lane, normal lane or fastlane at a
certain age for agents who start life in the fastlane.

age pretire pnormal pfast
1 0.03 0.05 0.92
10 0.26 0.30 0.44
20 0.46 0.35 0.19
30 0.5 0.35 0.15
40 0.60 0.32 0.08
50 0.70 0.26 0.04
60 0.78 0.20 0.015
70 0.84 0.15 0.007
80 0.88 0.116 0.003
90 0.91 0.086 0.001

As described in Section 2.3.1, we impose a mortality risk η on agents in order to match
the OLG structure. We set η = 0.2 for now, which implies an unreasonably short mean
duration of 5 years in the retirement lane. However, remember that we use the mortality
risk as a tool to limit savings and ensure a minimum fraction of ηeff at the lowest asset
states. We will try to set a more realistic value for the mortality risk later. For the share of
agents born into the fast lane, we choose pfl = 1.0. This yields the stationary distribution
over lanes presented by Table 4 as well as an effective mortality risk ηeff = 2.61%.

Table 4: Measure of each entrepreneurial lane in the stationary distribution.

Λr Λn Λf
Measure 0.13 0.54 0.33

Each period, agents decide how much they want to invest in their businesses. As
proposed in Section 3.3, the optimal investment choice function k(a, s) given exogenous
state tuple s ∈ S and collateral constraint ϑ is:

k(a, s) = min

(
µRzµ

r + δ

) 1
1−µ

, ϑa

 , (39)
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where z denotes the entrepreneurial productivity depending on inherent ability z̄ and
current lane Λ. Very productive agents with high values of z (i.e., agents in the fast
lane or agents in the normal lane with very high inherent ability z̄) are subject to a
collateral constraint ϑ, as the first entry of the minimum function grows rapidly in z.
Thus, investments are highly sensitive to the choice of ϑ. Like Guvenen et al. (2019),
we define five groups i = 1, . . . , 5 that correspond to the five inherent ability states z̄i
and define the collateral constraint ϑ(i) = 1 + 1.5 · (i− 1)/(nz̄ − 1) for each group. Note
that ϑ meets the condition that retired agents must not have access to the bond market
anymore (since they are assigned to the lowest group i = 1) we imposed in Section 2.3.2.
Furthermore, for agents with z̄ > z̄median = 1 the collateral constraint is loosened as long
as they experience positive amplification of their ability in the fast lane.4

The Final Good Producer We set the share of capital in production to α = 0.4 and
the markup over marginal costs to µ = 0.9 as in the model by Guvenen et al. (2019). The
capital depreciation rate is δ = 0.04.

Government We choose the same tax rates as Guvenen et al. (2019), setting the labor
tax rate to τ` = 0.224, the consumption tax rate to τc = 0.075 and the capital income tax
rate to τcap = 0.25. For now, we do not require the government budget to be balanced
but let the government expenses scale up and down with the total tax income.

Table 5 gives an overview over all chosen parameters.

4If the z̄ values are chosen as indicated above, an amplification by λ = 2 implies a step to the next
higher i group and thus access to additional borrowings of 0.5 ·a for the z̄3 and z̄4 group. With λ = 3 and
greater, all three z̄ groups above the median have maximum access to the bond market. For the highest
z̄ group, ϑ is at maximum in the normal lane already.
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Table 5: Choice of economic parameters.

Economic Parameters
Parameter Symbol Value
Lower bond on (private) borrowings -b -0.0
Risk aversion σ 2.0
Share of consumption in utility γ 1.0
Discount factor β 0.92
Persistence of the labor productivity process ρε 0.965
Standard deviation of the labor productivity process σε 0.25
Standard deviation of log entrepreneurial ability σz̄ 0.12
Probability of leaving the fast lane p1 0.05
Probability of retirement p2 0.03
Conditional mortality risk when in the retirement lane η 0.2
Share of agents born into the fast lane pfl 1.0
Share of capital in production α 0.4
Markup over marginal costs µ 0.9
Labor income tax rate τl 0.224
Consumption tax rate τc 0.075
Capital income tax rate τcap 0.25

Technical Parameters
Parameter Symbol Value
Minimum asset level amin 0.0
Maximum asset level amax 100.0
Number of asset states (normal grid) na 51
Number of asset states (fine grid) naf 1001
Parameter of asset state concentration ϑa 2.0
Parameter of fine asset state concentration ϑaf 4.0
Number of labor productivity states nε 5
Number of entrepreneurial ability states nz̄ 5
Number of entrepreneurial lanes nΛ 3
Smoothing parameter for Q adjustment ρQ 0.5
Smoothing parameter for r adjustment ρr 0
Tolerance criterion for outer algorithm ϕ 0.01
Tolerance criterion for TI ϕTI 0.001
Tolerance criterion for CDF Iteration ϕCDF 10−6
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4.2 Macroeconomic and Distributional Results

With the parametrization proposed in the last Section, we find the equilibrium at an
interest rate of 7.11%. The ratio of the quality-adjusted capital stock Q to output is
6 and the ratio of Q to aggregate labor supply L is 14. The total tax revenue is 18%
of total GDP, of whom 53% account for labor income taxation, 25% for consumption
taxation and 22% for capital taxation. Finally, the ratio of aggregate input goods to
aggregate investments is around 7.6.

The PDF over asset states yields a share of 0.6% at the highest asset state, of whom
3% account for the retired agents, 11% account for agents in the normal lane and the
remaining 86% for agents in the fast lane. The measure of agents at the lowest asset
state is 9.5%. Recall that the effective mortality risk, i.e., the share of agents who are
redistributed in each period, is 2.61%, indicating that the model naturally generates a
substantial additional share of agents at the bottom asset level. The remaining 6.89% at
the lowest asset state are solely retirees. The corresponding PDF and CDF are shown by
Figure 5. There is a small outlier at the highest asset state indicating that the maximum
asset state is exceeded. We will check this when conducting the sensitivity analyses.
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Figure 5: PDF (left) and CDF (right) over asset states for the benchmark configuration.

Next, we investigate the distribution of aggregate savings over the three entrepreneurial
lanes. We find that 7% of all savings are made by retirees whose measure in the stationary
distribution is almost twice as large at 13%. The bulk of savings comes from agents in
the normal lane with a share of 54%, exactly matching their respective measure in the
stationary distribution. Agents in the fast lane make savings above average, as their
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contribution to the aggregate capital stock is 39% compared to measure 33% in the
stationary distribution.

In order to assess the extent of inequality generated from the benchmark configuration,
we compare the distribution over earnings, income and wealth to the empirical data found
by Kuhn, Rios-Rull, et al. (2016). Specifically, we partition the data by earnings, income
and wealth and determine the quintiles as well as the 90-95%, 95-99% and 99-100%
percentiles. Subsequently, we compute the share of earnings, income and wealth of each
percentile group and evaluate how well our model fits the empirical data.

Figures 6 to 8 compare the empirical data with the distribution generated from the
model. Looking at the quintiles, the model does a fairly good job at matching the real
data with a maximum deviation of 3.7 percentage points for the earnings distribution,
2.5 percentage points for the income distribution and 4 percentage points for the wealth
distribution. However, the 90-95%, the 95-99% and the 99-100% percentile need further
refinement. If our model is to be aligned with the findings by Guvenen et al. (2019), we
need to put emphasis on matching the top 10% and 1% closely. Figure 8 shows that the
upper 10% of the wealth distribution in our model hold 83% of the total wealth, which
overstates the empirical share of 75% from the U.S. and also the share of 66% generated
by Guvenen et al. (2019). The shares of the 95-99% quintile generated by our model tend
to be too large in all cases, whereas the top 1% shares tend to be too small.

The respective Gini coefficients are 0.54 (0.67) for the earnings partition, 0.52 (0.58)
for the income partition and 0.75 (0.85) for the wealth partition (bracketed values denote
the target Gini coefficients from the empirical data), which is already promising but also
emphasises the need to adjust the configuration. We will evaluate if other configurations
fit the empirical data better in the next section.
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Figure 6: Share of the quintiles (left) and upper percentiles (right) on total earnings. The
blue bars show the empirically determined data while the red bars show the data generated
by the model. All percentiles are calculated over the earnings partition. Empirical data
from Kuhn, Rios-Rull, et al. (2016).
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Figure 7: Share of the quintiles (left) and upper percentiles (right) on total income (labor
earnings, capital income and entrepreneurial profits). The blue bars show the empirically
determined data while the red bars show the data generated by the model. All percentiles
are calculated over the income partition. Empirical data from Kuhn, Rios-Rull, et al.
(2016).
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Figure 8: Share of the quintiles (left) and upper percentiles (right) on total wealth. The
blue bars show the empirically determined data while the red bars show the data generated
by the model. All percentiles are calculated over the wealth partition. Empirical data
from Kuhn, Rios-Rull, et al. (2016).
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Table 6 outlines the main findings in comparison to the figures found by Guvenen
et al. (2019). Our model manages to match some of their targeted moments better than
others. There are two possible explanations that are related to the specific implemen-
tations of the models, besides the differences in the parametrization. First, our model
features less variability of the inherent entrepreneurial ability z̄. As a result, the most
productive entrepreneurs are gathered in the fast lane state of the highest ability z̄4 that
still accounts for 1.6% of the stationary distribution. In order to consider few billionaires
with substantially higher productivity, as Guvenen et al. (2019) do, we would need a finer
resolution for the ability states.

Furthermore, as discussed in Section 2.3.1, when agents die in our model, their assets
accrue to the government and are not further considered. Crucially, we do not model any
parent-child relationship that could serve as a channel for bequests. Therefore, we do
not allow for billionaires by inheritance, which makes it harder for agents to accumulate
extremely large asset levels. If at all, our model allows solely for “self-made billionaires”.

Table 6: Macroeconomic Measures found by Guvenen et al. (2019) in comparison to the
benchmark model and sensitivity checks. Abbreviations: Total Tax Revenue (TTR),
Gross Domestic Product (GDP), Capital Income Tax Revenue (CITR)

U.S.
Data

Guvenen
Model

Benchmark
Model

Capital-Output-Ratio 3 3 5.96
Top 10% Wealth Share [%] 75 66 83
Top 1% Wealth Share [%] 36 36 25

TTR / GDP [%] 29.5 25 18
CITR / GDP [%] 28 25 22

Bequest / Wealth [%] 1.29 0.99 1.35

4.3 Policy Evaluation

Figure 9 shows the savings policy functions a′(a, s) over the asset grid A. We plot the
policy for each lane Λ, holding labor productivity ε = ε4 and entrepreneurial ability z̄ = z̄4

fixed at their highest level each. The grey line indicates the savings level at which the
asset level is kept constant.

All policy functions are strictly monotonically increasing in the asset level a, thus,
higher assets correspond with higher savings. Furthermore, we observe that the savings
level rises in effective entrepreneurial productivity, implying that fast lane agents save the
most and their net savings are positive. On the contrary, agents in the retirement lane live
on their savings, i.e., save less than their current asset level. However, when we evaluate
the policy functions for the benchmark configuration, several aspects leap to the eye. We
identify two occurences of nonlinearities from the plots: First, the retirement lane policy
shows a kink at the bottom of the asset range. Second, although not manifested in a
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Figure 9: Savings policy functions for fixed labor productivity ε4 and entrepreneurial
ability z̄4 over all three lanes. The grey line indicates the savings level where agents keep
their asset levels constant.

distinct kink, the slope of the fast lane policy function changes within the upper quarter
of the asset range and correspondingly, the fast and the normal lane policy approach each
other beyond this point.

In the following section, we evaluate the different sources of income and future prospects
agents base their decisions on in order to explain the observed behavior of the policy func-
tions.

4.3.1 Sources of Income

In order to better understand the effect of the different channels, let us recap the three
possible sources of income in our model: First, labor earnings, which, due to the ex-
ogenous labor choice, solely depend on the wage w̄ per efficiency unit and the current
labor productivity ε but not on the asset level a. Second, returns of investment in en-
trepreneurial activities π(a, z; τcap) as in (25) (p. 12), which are growing in a as long as
the entrepreneur is constrained in their investment decision and are constant otherwise.
Third, returns on lending capital at the bond market, which grow linearly in the asset
level a. Thus, we expect the impact of the different labor productivity levels to decrease
with rising asset levels, as other sources of income gain relative importance.

Table 7 and Table 8 provide data about the maximum possible income by source for
each group of the z̄ distribution. Note that the top-level income from entrepreneurial
investment π(amax, z̄4,Λf) is comparable to almost two additional top-level salaries w̄ · ε4.
Contrary to that, in the normal lane, maximum profits from entrepreneurial engagement
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are only little above the lowest earnings level w̄ · ε0. The maximum possible return on
capital is r · amax = 7.11.

Table 7: Maximum possible return on investments π for the normal lane Λn and the fast
lane Λf at the highest asset level a = amax by ability z̄.

z̄0 z̄1 z̄2 z̄3 z̄4
π(amax, z̄,Λn) 0.002 0.006 0.02 0.05 0.16
π(amax, z̄,Λf) 0.00003 0.006 1.39 21.13 56.15

Table 8: Labor earnings for each labor productivity group ε.

ε0 ε1 ε2 ε3 ε4
w̄ · ε 0.1 0.41 1.73 7.21 30.13

Driven by this insight, we ask which source of income is most important, depending
on labor productivity, entrepreneurial ability and lane. Keep in mind that at the lowest
asset level amin, agents solely rely on their labor earnings, since they do not own any
capital to invest or lend. Table 9 depicts the most important source of income for each
combination of labor productivity ε and ability z̄ at the maximum asset level. The data
emphasizes that the significance of entrepreneurial engagement vanishes for agents apart
from the fast lane.

Table 9: Predominant income source for all ε and z̄ groups at the highest asset level
a = amax, where RoC = return on capital, RoI = return on (entrepreneurial) investment,
L = labor income. Bracketed values denote the predominant source for the fast lane where
they deviate from the other two lanes.

z̄0 z̄1 z̄2 z̄3 z̄4
ε0 RoC RoC RoC RoC (RoI) RoC (RoI)
ε1 RoC RoC RoC RoC (RoI) RoC (RoI)
ε2 RoC RoC RoC RoC (RoI) RoC (RoI)
ε3 L L L L (RoI) L (RoI)
ε4 L L L L L (RoI)

4.3.2 Retirement Lane

Agents in the retirement lane have an entrepreneurial productivity of zero by construction,
regardless of their inherent ability z̄. Since they can never go back to a higher lane, these
agents differ from each other only in their current and expected labor income w̄ · ε with
the corresponding levels shown by Table 8. Thus, the policies for agents with the same
labor productivity are exactly the same. We will exploit this feature in Chapter 5 in order
to reduce the number of grid points we need to evaluate the policies for. All retired agents
face a substantially high mortality risk of 20% in each period. Consequentially, all retired
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Figure 10: Savings policies for agents in the retirement lane, by labor productivity ε over
the whole asset range (left) and zoomed in (right).

agents live on their savings in that they save less than would be necessary to keep their
asset level constant.

Table 10: Percentage share of return in capital (RoC) on total income at the top asset
level amax by labor productivity for agents in the retirement lane.

ε0 ε1 ε2 ε3 ε4
Share of RoC [%] 98.6 94.5 81.5 49.7 19.1

In the retirement lane, agents rely on the two remaining sources of income: their
labor earnings and the return on capital, which is determined by the interest rate r.
Table 10 shows that for agents at the maximum asset level amax in the lower three labor
productivity groups, return on capital is the most important source of income. Thus, each
unit of capital saved today provides a huge utility gain from consumption tomorrow. As
a consequence, these agents are very likely to accumulate high savings. We identify two
contrary effects. First, agents with high labor productivity gain a substantial share of
income from labor and are thus less dependent on the interest payments, which reduces
their propensity to accumulate savings. Second, the relative importance of labor income
on total income decreases in the asset level for all agents, thus, at high asset levels,
the differences in labor productivity should hardly be reflected in the savings behavior.
However, Figure 10 shows that the former effect outweighs the latter. If hold ability z̄ and
lane Λr fixed and plot the different savings levels by labor productivity state ε, we observe
a negative relationship between labor earnings and savings, and this difference grows in
the asset level. Furthermore, zooming in reveals that the higher the labor productivity
the higher the maximum asset level where the borrowing constraint is still binding.

Figure 11 shows the consumption policies for retired agents by labor productivity. We
observe that the higher the labor productivity level the higher the consumption level, as
agents with high labor productivity can simply afford to consume more (remember that
the top before-tax salary is around 30, whereas the lowest is around 0.1). Furthermore,
we can see the kink of the ε4 consumption policy that corresponds to the kink of the
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Figure 11: Consumption policy for agents in the retirement lane at all labor productivity
levels.

savings policy. Up to this kink, the borrowing constraint for the ε4 group is binding, thus,
agents spend all their after-tax income on consumption (and would prefer to consume even
more). The borrowing constraint has a continuing effect up to an asset level of roughly
25, which is reflected in a decreasing slope of the consumption policy.

Remember that we set the risk aversion parameter σ comparably low. This implies
that the preference of agents to smooth their consumption over lifetime is rather small.
Simultaneously, because the persistence ρε of the AR1 process that generates the labor
productivity is at the high side, the probability to remain in the same state is about 99.5%.
Thus, agents with high labor productivity are well-advised to assume the same amount
of earnings tomorrow as today and consequently rely less on savings to finance their
consumption. If we set the risk aversion parameter σ to 4 or lower the persistence ρε to
0.9 while holding all other circumstances fixed, all agents reduce their consumption levels
as shown by the left and middle plot of Figure 12. Crucially, the borrowing constraint
is no longer binding as the valuation of the future (for higher σ) and the expected value
of the future (for lower ρε) decrease, and the consumption policies are flattened. Note
that these effects are solely due to changes in the decision rules, as the current income is
neither affected by σ nor by ρε.

The same happens if the mortality risk is reduced from 20% to 0%. Remember that
the mortality risk effectively decreases the discount factor for agents in the retirement
lane. We can see these mechanisms at play if we plot the consumption policies for a given
labor productivity and ability over the three lanes in Figure 13. Retired agents spend
substantially more on consumption than agents in the normal and even most agents in
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Figure 12: Consumption policy of retired agents for changed parameters σ = 4 (left plot)
and ρε = 0.9 (right plot), holding all other factors fixed at their equilibrium benchmark
level. The dotted lines indicate the benchmark consumption policy.

the fast lane. If we eliminate the mortality risk, holding all other circumstances fixed, the
consumption of retired agents drops to the normal lane level, as these two lanes almost face
the same income. Note that the lower mortality risk also slightly affects the consumption
policies of the normal and the fast lane but rather indirectly via the future prospects.
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Consumption Decision by Lane

Figure 13: Consumption policy by lane with 20% mortality risk in the retirement lane
(left plot) and 0% mortality risk (right plot). The dotted lines in the left plot show the
benchmark policy.

4.3.3 Normal Lane

Due to the high interest rate, agents in the normal lane face only little or no incentives to
invest much in their business. Figure 14 shows the optimal investment policies and the
corresponding returns on investment for the normal lane. We observe that all agents but
the ones with very low assets are restricted by the first entry of the minimum function
(39). Consequently, for normal lane agents, returns on entrepreneurial investment account
for only a small share of their total income. Even for agents with the highest ability z̄4,
this share is no higher than 2% at maximum.
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Figure 14: Optimal investment policy and corresponding return on investments for agents
in the normal lane. Since optimal investment does not depend on labor earnings, the
investment policies are the same for all ε states.
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Savings Decision by Labor Productivity

Figure 15: Optimal savings policy by labor productivity for agents in the normal lane.

Since the significance of entrepreneurial engagement almost vanishes for normal lane
agents, the policy functions differ only in the labor productivity. In Figure 15, we plot the
policies for fixed ability and lane. We observe that the savings policies for the different
labor productivities approach and even cross each other with rising asset levels. This
leads to the initial ordering almost being reversed at the highest asset state compared to
the lowest, i.e., those agents with the lowest earnings levels tend to save the most in order
to keep their consumption level high.

Crucially, we observe large differences in the savings behavior of normal lane agents
compared to retirees as shown in Figure 10. The explanation for the reversed order is
fairly similar, however, the big difference is the mortality risk we imposed on retirees but
not on the other lanes. As discussed in Section 5.1.1, if we drop the mortality risk, the
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savings and consumption policies for both lanes are almost the same, since entrepreneurial
engagement if of no importance for any of the two groups.

4.3.4 Fast Lane

Being in the fast lane amplifies the differences in inherent ability z̄, as agents in the
bottom ability group with z̄0 < 1 are worse off when in the fast lane while agents with
z̄ > z̄median gain substantially. Agents in the second lowest ability group z̄ = z̄1 neither
profit nor lose when in the fast lane. Consequently, their same savings policies for the
normal and the fast lane are the same.

Figure 16 shows the optimal investment policy and the corresponding return on in-
vestment for fast lane agents. We observe that the two top ability groups are constantly
constrained in their investment decision. Remarkably, we find that for the most produc-
tive group, returns on entrepreneurial investment amplify their total wealth by factor 1.5
in a single period.

As a result, profits from entrepreneurial business are the predominant source of in-
come (up to 89%) for the two highest ability groups. Table 11 depicts the share of
entrepreneurial profits in total income for entrepreneurs in the fast lane and all possible
combinations of labor productivity ε and ability z̄ at the top asset level amax. The sub-
stantial endowment of highly productive agents explains the higher savings levels of these
groups compared to less gifted agents as shown by Figure 17.
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Figure 16: Optimal investment policy and corresponding return on investments for agents
in the fast lane. Since optimal investment does not depend on labor earnings, the invest-
ment policies are the same for all ε states. The upper two ability groups are constantly
constrained in their investments (thus, optimal investment grows linearly in the asset
level), while the middle ability group z̄2 is constrained at least up to an asset level around
40.

However, we observe a kink in their policy functions, located in the upper quarter of
the asset range, which cannot be explained solely by the level of endowment. As shown
by Figure 18, the kink appears for the two top ability groups of entrepreneurs, regardless
of their labor productivity. It indicates a threshold above which the slope of the policy
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Table 11: Percentage share of fast lane entrepreneurs’ profits in total income at the top
asset level amax.

z̄0 z̄1 z̄2 z̄3 z̄4
ε0 0.0004 0.09 16.15 74.55 88.62
ε1 0.0004 0.08 15.58 73.73 88.18
ε2 0.0003 0.07 13.58 70.5 86.4
ε3 0.0002 0.044 8.84 59.59 79.67
ε4 0.0008 0.02 3.6 36.2 60.12
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Figure 17: Savings policy functions for fast lane agents at the highest labor productivity
state ε4 over all entrepreneurial ability states.
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Savings Decision by Labor Productivity

Figure 18: Savings policy functions for fast lane agents at the highest ability state over
all labor productivity states.

function is smaller than before. The most most productive fast lane groups differ from
the others in two aspects: First, their current income from entrepreneurial engagement
increases in the asset level due to the constantly binding constraint ϑ on investments.

Second, just because of this constraint, these agents gain an additional reward on each
additional unit of savings, since the first derivative of the investment function from (39)
is nonzero. Due to the collateral constraint, highly productive agents cannot invest as
much in their businesses as would be optimal. Constrained agents gain very much from
each additional unit of assets tomorrow as their optimal investment grows linearly in their
asset level. Precisely, each unit of consumption let go today implies 2.5 additional units
of investment tomorrow, due to the choice of the collateral constraint ϑ. Remember that
the Euler equation (30) includes a reward on each additional unit of savings expressed by:

∂ω(a′, z′; τcap)
∂a′

= 1 +
(
r + ∂π(a′, z′)

∂a′

)
· (1− τk), if τcap = τk

For the most productive entrepreneurs, the derivative of the investment choice function
∂π(a′, z′)/∂a′ is 3.33 at maximum, which is almost 50 times higher than the 0.07 reward
gained from the interest rate. With growing asset levels, the derivative approaches 0.5,
which is still about seven times higher than the interest rate.5 For all non-constrained
agents, the derivative is zero. Crucially, because prices are assumed to be constant in equi-

5We left out a0 = amin = 0 as ∂π(a′, z′; τcap)/∂a′ approaches ∞ for a→ 0.
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Figure 19: Savings policy functions by ability state for agents in the fast lane with labor
productivity ε3. If the probability to descend to the fast lane pnormal is increased from
0.05 to 0.5, the savings levels rise and the kinks of the policy functions are shifted to lower
asset states.

librium and each agent’s productivity can only deteriorate, agents who are unconstrained
today will be unconstrained tomorrow.

The reward on additional savings partly explains our observation related to Figure 9,
where the distance in savings between the fast and the normal lane grows up to the
location of the kink and is continually reduced afterwards. However, this is only the case
if agents remain in the fast lane in the next period, and the corresponding probability is
92% due to our choice of the probabilities to descend pnormal = 0.05 and pretire = 0.03.
Thus, if we increase the risk of descending to the normal lane to pnormal = 0.5, holding all
other factors fixed, we expect the kink to be shifted towards lower asset states. This is
confirmed by Figure 19, where we increased pnormal to 0.5, holding all other factors fixed
at their benchmark equilibrium level. Note that, again, all income sources remain the
same, thus, our observation is solely due to a change in the decision rules.

Besides the risk of descending to lower lanes, the choice of the collateral constraint
has a huge impact on the model, as mentioned in Section 4.1. If we relax the collateral
constraint ϑ while keeping all prices fixed at their benchmark equilibrium level, we observe
that the kink is more pronounced and moves towards lower asset states. The results
are shown by Figure 20. In the most extreme case, we disable the collateral constraint
completely by setting ϑ = ∞. This allows highly productive agents with low assets to
borrow heavily and gain from large profits. The effect of the higher income implies a jump
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Table 12: Macroeconomic moments from the U.S. data compared to the results found by
Guvenen et al. (2019), our benchmark model and various sensitivity checks. In order to
establish the same basis of comparison, the U.S. data is also taken from Guvenen et al.
(2019).

U.S.
Data

Guvenen
Model

Benchmark
Model pfl = 0.5 β = 0.9475

δ = 0.05 η = 0.05 Identical
η > 0 σ = 4

Capital-Output-Ratio 3 3 5.96 4.6 6.6 5.5 4.49 8.4
Top 10% Wealth Share [%] 75 66 83 78 75 83 90 53
Top 1% Wealth Share [%] 36 36 25 18 24 33 33 21

TTR / GDP [%] 29.5 25 18 20 17 19 19 15
CITR / GDP [%] 28 25 22 20 21 21 15 30

Bequest / Wealth [%] 1.29 0.99 1.35 1.31 1.31 3.77 5.81 1.89

of the savings policy from the lowest to the second lowest asset state.6 However, since no
agent is constrained in their investments, the first derivative of the profit function with
respect to the asset level drops to zero for all agents. Consequently, the kink is eliminated.
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Figure 20: Savings policy for fixed lowest labor productivity state ε0 and the second
highest ability state z̄3 over all three lanes. The left plot depicts the policy if ϑ is raised
by factor 50 compared to the benchmark value. The right plot depicts the policy for
ϑ =∞.

4.4 Sensitivity Analysis

We conduct sensitivity checks varying selected economic parameters. The corresponding
macroeconomic outcomes are provided by Table 12. Apparently, changing only one or
two parameters can have a substantial impact on the resulting equlibria. In contrast to
the last section, where we analyzed few changes in the parametrization holding all other
circumstances fixed, we now turn to the comparison of the final equilibria.

Lowering the Share of Fast Lane Agents We cut the share of agents born into the
fast lane from 1.0 to 0.5. This does not have any direct effect on the policy functions

6Due to the design of the bond market that requires participants to own at least one infinitesimal
small unit of assets, agents at the lowest asset state a = 0 do not have access to the bond market.
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but solely on the distribution of agents and thus on the macroeconomic outcomes. The
measure of retirees remains the same, however, the measure of fast lane agents is cut in
half by 16 percentage points and these accrue to the normal lane, which now makes up
the bulk of the population with measure 71%.

Since there are fewer highly productive agents, the quality-adjusted capital stock is
cut by one third compared to the benchmark level, which allows the price on input goods
to scale up by 25%. As a result, returns on investment rise for all active entrepreneurs.
This drives up the incentives to accumulate savings, especially for agents in the fast lane.

Looking at the top 10% and top 1% wealth share provided by Table 13, we observe
that this configuration generates slightly less inequality compared to the benchmark con-
figuration.

Table 13: Macroeconomic moments from the U.S. data in comparison to the results of
the model by Guvenen et al. (2019), the benchmark model and a lower share of fastlane
agents.

U.S.
Data

Guvenen
Model

Benchmark
Model pfl = 0.5

Capital-Output-Ratio 3 3 5.96 4.6
Top 10% Wealth Share [%] 75 66 83 78
Top 1% Wealth Share [%] 36 36 25 18

TTR / GDP [%] 29.5 25 18 20
CITR / GDP [%] 28 25 22 20

Bequest / Wealth [%] 1.29 0.99 1.35 1.31

Approaching the Guvenen Configuration We increase the discount factor for future
utility β from 0.92 to 0.9475 and the capital depreciation rate δ from 0.04 to 0.05 in order
to match the parametrization by Guvenen et al. (2019). The configuration manages to
exactly match the empirical top 10% wealth share as shown by Table 14. The impact
on the other targeted parameters compared to the benchmark configuration is rather
moderate, except for a much higher capital-output-ratio.

The equilibrium savings and investment levels increase by 37% and the quality-adjusted
capital stock rises by 18,6%. Consequently, the interest rate falls by 41% to 4.2%. While
the earnings and the income distribution remain almost constant, the share of the top
wealth quintile decreases by 4 percentage points, as shown by Figure 21. The policy
functions stay roughly the same.

Reducing the Mortality Risk We lower the mortality risk of retired agents from
20% to 5%. This is far nearer to the OLG structure by Guvenen et al. (2019), since it
implies an average duration of 12.5 in the fast, 18 years in the normal and 20 years in
the retirement lane. Consequently, the measures of lanes in the stationary distribution
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Table 14: Macroeconomic moments from the U.S. data in comparison to the results of
the model by Guvenen et al. (2019), the benchmark model and larger discount factor β
and capital depreciation rate δ.

U.S.
Data

Guvenen
Model

Benchmark
Model

β = 0.9475
δ = 0.05

Capital-Output-Ratio 3 3 5.96 6.6
Top 10% Wealth Share [%] 75 66 83 75
Top 1% Wealth Share [%] 36 36 25 24

TTR / GDP [%] 29.5 25 18 17
CITR / GDP [%] 28 25 22 21

Bequest / Wealth [%] 1.29 0.99 1.35 1.31
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Figure 21: Wealth Distribution for increased discount factor β and capital depreciation
rate δ.

change from 13% to 38% for the retirement lane, 54% to 39% for the normal lane and
33% to 23% for the fast lane. The effective mortality risk is lowered from 2.61% to 1.87%.
As a result, we get 30% less agents at the lowest asset state. The share of savings held
by retirees jumps by 11 percentage points from 6.84% to 18.9%.

Table 15: Macroeconomic moments from the U.S. data in comparison to the results of
the model by Guvenen et al. (2019), the benchmark model and lower mortality risk η.

U.S.
Data

Guvenen
Model

Benchmark
Model η = 0.05

Capital-Output-Ratio 3 3 5.96 5.5
Top 10% Wealth Share [%] 75 66 83 83
Top 1% Wealth Share [%] 36 36 25 33

TTR / GDP [%] 29.5 25 18 19
CITR / GDP [%] 28 25 22 21

Bequest / Wealth [%] 1.29 0.99 1.35 3.77

The interest rate is lower by 7% and the quality-adjusted capital stock is lower by 13%
compared to the benchmark level. However, there is almost no impact on the distribution
of earnings, income and wealth, except the share of total wealth for the upper quintile
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Figure 22: Savings policy functions for the retirement lane. Dotted lines indicate the
respective policies for the benchmark configuration.

rises by 1.5 percentage points to 92.5%. This corresponds with a slightly higher Gini
coefficient of 0.765 compared to 0.755 before.

The effect on the policy functions for retired agents is remarkable. Figure 22 shows
that savings levels are much higher and the differences by labor productivity vanish.
Furthermore, no retired agent is affected by the borrowing constraint. The corresponding
consumption policy functions are almost linear and much lower than at the benchmark
level as shown by Figure 12 in Section 4.3.2.

Making the Mortality Risk Independent of Lane We impose a mortality risk on
all agents, regardless of the lane, and set it to 2.6% in order to obtain the same effective
mortality risk as the benchmark configuration. This dramatically reduces the share of
active entrepreneurs in the stationary distribution, as the measure of retired agents jumps
from 13% to 54% and the measures of normal and fast lane agents are roughly cut in half.
As a result, aggregate input goods fall by one third, which allows for higher prices on
input goods and thus higher returns on investments for all active entrepreneurs.

For retirees, whose mortality risk is now 2.6% compared to 20% before, the effective
discount on future consumption decreases. In response, they accumulate more savings,
increasing their share in aggregate wealth from 6.84% to 29%. Note that this capital is
idle in that it is not invested in production.

The effect on the wealth distribution is large. The share of the upper quintile is raised
by almost 7 percentage points to 98%, which is almost 11 percentage points above the
empirical value. The top 1% wealth share is 33% which is fairly near to the 36% share
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Table 16: Macroeconomic moments from the U.S. data in comparison to the results of
the model by Guvenen et al. (2019), the benchmark model and identical mortality risk
η = 0.026 imposed on all agents.

U.S.
Data

Guvenen
Model

Benchmark
Model

Identical
η = 0.026

Capital-Output-Ratio 3 3 5.96 4.49
Top 10% Wealth Share [%] 75 66 83 90
Top 1% Wealth Share [%] 36 36 25 33

TTR / GDP [%] 29.5 25 18 19
CITR / GDP [%] 28 25 22 15

Bequest / Wealth [%] 1.29 0.99 1.35 5.81

targeted by Guvenen et al. (2019). Looking at the PDF and CDF over assets presented
by Figure 23 reveals that in this case, the high top 1% wealth share is indeed generated
by the model and not due to grid exceedance. However, the model overstates the 90-95%
and the 95-99% percentiles as shown by Figure 24.
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Figure 23: PDF (right) and CDF (left) of the configuration with lane-independent mor-
tality risk.

Increasing the Risk Aversion Finally, increasing the risk aversion σ to 4 as in Guve-
nen et al. (2019) inflates the entrepreneurial business and yields less inequality, as shown
by Table 17. Savings and investments almost triple compared to the benchmark configu-
ration and the quality-adjusted capital stock is inflated to almost 180% of its benchmark
value. As a result, the interest rate is cut by 75% compared to the benchmark configura-
tion and the price on input goods falls by 25%.

The resulting distrubution over earnings, income and wealth is far from the empirical
data as shown by Figure 25. The top 10% wealth share is 10 percentage points lower than
the targeted empirical share and 14 percentage points lower than the benchmark model.
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Figure 24: Top 10% percentiles for the wealth distribution where all agents face the same
mortality risk of 2.6% in comparison to the empirical data.

Table 17: Macroeconomic moments from the U.S. data in comparison to the results of
the model by Guvenen et al. (2019), the benchmark model and higher risk aversion σ.

U.S.
Data

Guvenen
Model

Benchmark
Model σ = 4

Capital-Output-Ratio 3 3 5.96 8.4
Top 10% Wealth Share [%] 75 66 83 53
Top 1% Wealth Share [%] 36 36 25 21

TTR / GDP [%] 29.5 25 18 15
CITR / GDP [%] 28 25 22 30

Bequest / Wealth [%] 1.29 0.99 1.35 1.89
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Figure 25: Wealth Distribution for higher risk aversion σ = 4.
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5 Improving the Efficiency of the Solution

As we have seen in the last chapter, we need to run the model over and over in order
to find a choice of parameters that yields a realistic equilibrium. Thus, pushing down
the runtime to a computationally feasible minimum is crucial. This applies to our model
introduced in Chapter 2, but even more to future extensions of the model which are likely
to further drive up the computational effort.

We start by comparing the complete Guvenen model including mortality risk, en-
trepreneurial productivity process, taxes and exogenous labor supply to the simple Aiya-
gari model from the beginning of Chapter 2. In order to establish comparability between
the two models, we inflate the number of exogenous states of the latter to 75. The
additional complexity from the entrepreneur process drives up the runtime to about 55
minutes, which is roughly four times higher than for the simple Aiyagari model.

Note that we cannot perform isolated runtime experiments holding all circumstances
fixed, thus, the observed runtime is subject to natural variations. We collect the runtime
data on a private notebook with an Intel(R)Core(TM) i7-10510U CDP @ 1.8GHz 2.3GHz
processor and 16 GB RAM. Due to the low validity of the runtime data, we focus on the
number of computing-intensive steps in the following, which we can control and reproduce.

It is obvious, however, that we need to dramatically reduce the runtime of the complex
model. Remember that we need to perform several repetitions of the TI as the guesses for
the macroeconomic variables adjust (see Algorithm 1, p. 19). Thus, assuming a number
of 30 iterations of Algorithm 1, an expected runtime of 55 minutes per iteration yields a
total time effort of 27 hours until convergence every time we change a single parameter,
which is highly unfeasible.

We use line profiling tools in order to identify the policy determination and especially
the root finding (3b of Algorithm 2, p. 20) as the most time-consuming step. Note that one
iteration of Algorithm 1 consists of one execution of the TI algorithm and one execution
of the CDF Iteration algorithm (Algorithm 3, p. 23). Of the 55 minutes total runtime,
only half a minute accounts for the CDF Iteration.

We find that one subiteration (assuming a savings policy for tomorrow and calculating
the corresponding root of the Euler equation) of the TI algorithm needs roughly 63.9
seconds on average. These 63.9 seconds are solely due to the root finding steps (we need
to find the root for each of the 3825 grid points). However, the root finding is executed by
an external solver and thus beyond our control. Therefore, our best chance is to reduce
the number of grid points we need to calculate the root for and interpolate in between. We
use the total number of root finding steps in order to assess the efficiency improvements
in the following.

In this chapter, we focus on similarities of the policy functions along the asset range.
We start by exploiting our preliminary knowledge about the policy functions gained from

51



Chapter 4 in Section 5.1. Afterwards, in Section 5.2, we develop an approach that does
not make use of a priori knowledge but is dynamically tailored to the model and its config-
uration. In order to do this, we need to introduce a metric to approximate the deviation of
the interpolated solution from the optimal solution: the Euler error. Section 5.3 discusses
our choice of a suitable tolerance criterion. Finally, we evaluate our results in Section 5.4.
We give a brief outlook on exploiting possible similarities in other dimensions of the state
space at the end of this chapter in Section 5.5.

5.1 Using A Priori Knowledge to Reduce the Number of Grid
Points

As we have seen in Chapter 4, for each combination of exogenous states held fixed, the
policy functions are monotonically increasing in the asset level and look almost linear in
most parts of the asset space. We identified two main areas of interest: First, the lowest
asset levels where households have very small current income levels but are likely to be
better off in the future. These households prefer to make negative savings, i.e., they would
like to borrow additional capital to smooth their lifetime consumption, but are restricted
by the borrowing constraint.

Second, policy functions for agents in the fast lane with high levels of entrepreneurial
ability show a kink in the upper half of the asset range. This indicates a threshold above
which agents decide to save less and consume more. We have already discussed possible
explanations for the appearance of the kink in Chapter 4. In this section, we use this a
priori knowledge to reduce the number of grid points beforehand.

5.1.1 Reduce Grid Points in the Retirement Lane

Once they end up in the retirement lane, all entrepreneurs, regardless of their inherent
ability z̄, face the same entrepreneurial productivity z = 0. None of these households
will ever engage in entrepreneurial business again until they die. Thus, for each labor
productivity state ε, current income as well as the transition probability for all nz̄ ability
states are exactly the same. By calculating the policy only once for each labor productivity
state ε, we reduce the number of retirement lane states from 25 to 5 and the total number
of grid points from na · (25 + 25 + 25) = 3825 to na · (25 + 25 + 5) = 2805.

We save our choice of grid points in the sparse matrixM ∈ {0, 1}na×ns , where na is
the number of asset states and ns = nε · nz̄ · nΛ is the number of exogenous state tuples.
This matrix has the same shape as the policy grid and marks the grid points where the
policy was calculated exactly. Each row denotes an asset state, while each column denotes
a distinct combination of exogenous states. The binary-coded matrixM for the reduced
number of retirement states is shown by Figure 26.
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Figure 26: Binary-coded sparse matrixM with reduced number of retirement states.

We calculate the policy for each marked entry of M. Afterwards, for each labor
productivity state ε, we copy the obtained policy to all other columns with the same ε
but different ability z̄. Note that this kind of redundancy arises from having vectorized
the three-dimensional exogenous state space E×Z̄×L to the quasi one-dimensional space
S which is associated with building the cross product of the three substates. It would be
sufficient to define only one accumulative retirement state per labor productivity state in
the first place.

5.1.2 Locate the Second Kink

Having reduced the number of marked columns inM, we make use of our insights from
Chapter 4 in order to reduce the number of marked grid points per column. Since each
row of M corresponds to an asset state a, we exploit the almost linear behavior of the
policy functions for agents with low entrepreneurial skills. Our naive approach to reduce
the number of grid points along the asset range is to assume that the second kink appears
only for non-retired entrepreneurs with ability z̄ equal to or above the median z̄median = 1.
Note that these are precisely the entrepreneurs who are not worse off when in the fast
lane. In contrast, entrepreneurs with z̄ < z̄median have an even smaller productivity when
in the fast lane compared to the normal lane, since the amplifier λ is greater than 1.
Moreover, in the retirement lane, agents drop out of entrepreneurial business completely,
thus, we do not assume any second kinks here.

We assume sufficiently linear policies for z̄0 as well as for all retirement states and
content ourselves with simply interpolating between the lowest and the highest asset
state. For the remaining ability states in the normal and fast lane, we calculate the policy
for every second asset state exactly and interpolate in between, which implies dna/2e grid
points per column. The corresponding sparse matrixM can be fully initialized beforehand
and is shown by Figure 27.

Table 18 provides the total number of grid points for each variant discussed above.
Using a priori knowledge about the policy functions saves us about 72% of all root finding
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Figure 27: Sparse matrixM assuming linear policies for lower entrepreneurial productiv-
ity states.

Table 18: Total number of grid points for each initialization ofM.

Ability States all z̄0 all Total number
of grid pointsLanes Λr Λn,Λf Λn,Λf

nrow ncol nrow ncol nrow ncol
Unadjusted complete model 51 25 51 10 51 40 3825
Reduce columns (Figure 26) 51 5 51 10 51 40 2805
Reduce rows (Figure 27) 2 5 2 10 d25/2e 40 1070

steps. Expressed in total runtime of the subiterations, reducing the number of columns
with the corresponding initialization ofM shown by Figure 26 decreases the runtime from
64 seconds to 39 seconds. If we additionally reduce the number of rows (Figure 27), the
runtime drops to 9 seconds on average.

However, there are some drawbacks: First, calculating only every second grid point for
those states which presumably show a kink implies a loss of precision. It is also inefficient
in that we do not isolate the kink but instead search over the whole asset range.

Second, we used our limited knowledge derived from few iterations of the TI algo-
rithm to assume a relationship between low entrepreneurial productivity and linear poli-
cies. How do we ensure these policies never show the second kink, subject to changing
macroeconomic circumstances such as interest rate and prices?

Third, the efficiency gain from the reduction of grid points heavily depends on the
configuration of the model, especially the entrepreneurial ability z̄. If we change the pa-
rameters of the entrepreneurial ability process or add additional states above the median,
this approach does not bring us any advantage.
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5.2 Using a Bisection-based Approach to Determine the Grid
Points of Interest

Having discussed the several disadvantages of using preliminary knowledge and statically
determining the choice of columns in advance, we now focus on reducing the grid points
along the asset range. This implies a reduction of marked entries per column ofM. We
introduce a flexible approach that is not based on a priori knowledge but dynamically
chooses grid points of interest. In the easiest case, where the policy function for a given
combination of exogenous states is completely linear, we need to calculate only the first
and the last grid point of each column and obtain a sufficient result by interpolating in
between. Therefore, all approaches we introduce in the following start by initializingM
with ones in the first and the last row as shown in Figure 28.

Figure 28: Initialization ofM. Black dots indicate ones.

We use a bisection-based approach in order to dynamically insert data points as long
as the interpolation error is too large. For each combination of exogenous states (i.e., each
column inM), we calculate the root for the lowest and the highest asset state and inter-
polate in between. Subsequently, we check for each asset level whether the interpolated
policy value is close enough to the real solution. We can quantify the interpolation error
using the concept of Euler errors we introduce below in order to determine the grid points
of interest. If the Euler error for a given asset level is above a chosen tolerance value,
we calculate the root for this point exactly and interpolate again between all points we
have already observed. The order in which we observe the grid points is taken from the
bisection algorithm, i.e., we look at the middle asset level first, then divide the interval in
two, look at the resulting two middle points again and continue until we have evaluated
all points. Figure 29 provides an example for the dynamic choice of grid points. Note
that unlike the example suggests, we neither know the true policy function nor the exact
deviations eA and eB.
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Figure 29: Determination of the piecewise linear policy function with initial data points
amin and amax. The solid line shows the true functional form (which is unknown), while
the dotted line shows the interpolated function. Point A = abna/2c is evaluated first. Since
the deviation eA is above the tolerance value, A is calculated exactly and marked inM.
We interpolate again over the data points amin, A and amax. In the proceeding of the
algorithm, each asset state to the left of A will be accepted, while the asset states to the
right need further adjustment. When point B is evaluated, the deviation eB from the
true value is beyond the tolerance criterion. The algorithm will calculate the root for B
exactly and mark B inM.

5.2.1 The Euler Error

For each grid point, we calculate the Euler error in order to determine the deviation of
the interpolated policy from the exact policy we would obtain by root finding. For a given
asset level a and state s, the Euler error yields the percentual deviation of the estimated
consumption policy from the optimal one. To compute the Euler error, we use the Euler
equation (30) from Section 2. First, we calculate the consumption choice ĉ today implied
by the savings level a′ from the budget constraint (17):

ĉ = 1
1 + τc

(
ω(a, z; τcap) + ε · w̄ · ` · (1− τ`)− a′

)
. (40)

Likewise, we calculate tomorrow’s approximate consumption ĉ′ for tomorrow’s assets
a′ and all exogenous states s′, using the same function we assume for a′ to derive the
expected policy a′′ for the period after tomorrow. We then use the Euler equation to
obtain the optimal consumption choice c∗ given the approximate consumption choice ĉ′

tomorrow:

∂u

∂c∗
= β · (1− ηΛ) · E

[
∂u

∂ĉ′
· ∂ω(a′, z′; τcap)

∂a′

]
+ µ

⇔ c∗ = u−1
c

(
β · (1− ηΛ) · E

[
∂u

∂ĉ′
· ∂ω(a′, z′; τcap)

∂a′

]
+ µ

)
.

(41)
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How do we obtain the Lagrangian multiplier µ? In the full optimization problem (26),
µ is nonzero only if the borrowing constraint is binding, i.e., a′ ≥ −b. This is the case for
low-income households with low productivity. For these households, the multiplier is the
residual of the Euler equation when solved for a′ = 0 instead of the optimal value a′ < 0:

µ(a′ = 0) = ∂u

∂c
− β · (1− ηΛ) · E

[
∂u

∂c′
· lim
a′→0

∂ω(a′, z′; τcap)
∂a′

]
. (42)

For constrained households, the optimal savings decision is negative, because the
marginal utility of consumption today is greater than the expected discounted marginal
utility of consumption tomorrow weighted by the return on saving an additional unit.
This is precisely the case where the residual of (42) is positive. For all non-constrained
households, the residual is zero.

We are finally equipped to calculate the Euler error as the fraction of consumption ĉ
implied by the policy from (40) and the optimal consumption c∗ from (41):

e =
∣∣∣∣∣ ĉc∗ − 1

∣∣∣∣∣ (43)

Note that we need the multiplier µ from (42) to “cancel out” the fact that we manip-
ulate the policy for the borrowing-constrained households. If we calculate the policy for
the borrowing-constrained households exactly, we do not make any interpolation error.
However, since we manually set the policy to zero, the residual of the Euler equation for
a′ = 0 is nonzero which would yield a positive Euler error. By adding µ to (41), we ensure
that the Euler error solely reflects the interpolation error made and is not affected by the
manual adjustment at the borrowing constraint.

However, if we do not calculate the policy for the borrowing-constrained households
exactly, we cannot disentangle the effect of the interpolation error from the effect of the
binding constraint. In this case, the multiplier µ incorporates both influences, implying
an Euler error of zero for all grid points where the constraint is binding, whether we
calculated them exactly or not.

For this reason, we distinguish between the interpolation error, which reflects solely
the error due to non-exact policy determination and determines our choice of grid points
throughout the calculation, and the a posteriori Euler error we calculate after the TI
has converged for the resulting policy. Why do we need to distinguish between these two
concepts?

First, as described above, the a posteriori Euler error fails to properly reflect the inter-
polation error made at the very low asset states where the borrowing constraint is binding.
However, we can estimate the interpolation error before we manually adjust negative pol-
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icy values. This allows us to decide whether the interpolation error is reasonably small or
if we should make additional efforts to determine the location of the borrowing constraint
exactly. We will go into the details in Section 5.4.5.

Second, our algorithm is designed such that it ensures an upper bound on the Euler
error over all points of the original grid. However, remember that the grid over assets A
we defined in Section 4.1 is itself only a discrete approximation of the continuous asset
space [amin, amax]. This implies, that we rely on interpolation if we want to evaluate the
policy function at any asset level off the grid. As a result, the Euler errors between the
grid points might far exceed the maximum Euler error our algorithm can ensure. We
choose a finer grid for the a posteriori calculation of the Euler errors with naf = 1001 and
an even higher concentration of grid points at the bottom asset levels.

5.2.2 Dynamically Determine the Sequence of Grid Points

The Euler error itself is of course only an approximation of the deviation from the real
value as it depends crucially on the guessed policy â′ and ĉ′ respectively. Nevertheless,
we assume that it serves as an approximation for the real deviation (which implies a
monotonic relationship between the Euler error and the real deviation). We can exploit
this feature in order to make the choice of grid points even more efficient than the bisection-
based approach does. The exact procedure is described by Algorithm 5. Precisely, we let
go of the fixed order and evaluate the grid points with the highest Euler error first. If this
is already below the tolerance value, we are done. Otherwise, we calculate the root for
this grid point exactly, interpolate again and recalculate the associated Euler errors. With
the added information, we expect the maximum Euler error to be smaller than before.
Moreover, the Euler error for the grid points we already calculated exactly is zero. We
repeat until the maximum Euler error falls below the tolerance criterion.

Figure 30 illustrates the development of the Euler error for a given state s over the
asset grid. With only six grid points calculated exactly, the maximum Euler error is still
at 0.06 which is larger than the allowed tolerance of 0.05. When the grid point with the
currently highest Euler error is calculated exactly in the next iteration, the number of
marked grid points increases by one and the Euler error is now below the tolerance value
for all remaining asset states. We accept the found policy interpolated over 7 states and
go to the next exogenous state.

This approach, however, has one drawback: it might prevent the time iteration algo-
rithm from converging. Consider the case where the two largest Euler errors, eA and eB

with the corresponding grid points A and B, are very close to each other but both above
the tolerance value. In the first iteration, eA is greater than eB, thus, grid point A is
calculated exactly. Now the Euler errors are recalculated and eB is below the tolerance
value, thus, we accept the interpolated solution for B. As we have seen in Section 3.4, the
result of the current iteration enters the next iteration as the (possibly smoothed) new
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Given a combination of exogenous states s = (ε, z̄,Λ):

1. For all data points {ak :M(ak,s) = 1}, calculate a′(ak, s) exactly

2. Interpolate linearly between {ak :M(ak,s) = 1}

3. Calculate the Euler error ea over all asset states a

4. For all ai withM(ai,s) = 0:

(a) Set j ← argmaxai eai
(b) If ej < ϕ: break
(c) Else:

i. Calculate a′(aj, s) exactly by root finding
ii. SetM(aj ,s) = 1
iii. Interpolate again between all data points {ak :M(ak,s) = 1} and recalcu-

late the Euler errors

Algorithm 5: Dynamic approach to calculate the grid points in descending order of their
Euler errors until all remaining points fall below the tolerance value.

policy guess. This time, eB is greater than eA and B is calculated exactly instead of A.
In the worst case, we alternate between two solutions which yields a constant deviation
between the guessed policy and the result.

We solve this problem by storing the grid points we have calculated exactly in former
iterations in the sparse matrix M. In each subsequent iteration, we calculate all grid
points (a, s) with M(a,s) = 1, regardless of their current Euler error, in order to avoid
alternation. This approach ensures that precision can only improve with each iteration
but might lead to slight redundancies. In the context of the example above, we likely end
up calculating both grid points in each iteration. We will evaluate the additional effort
on calculating these additional grid points in Section 5.4.

5.3 Choice of Tolerance Criterion

How do we decide if the interpolated value is close enough to the real solution? We need
to define a tolerance criterion for the Euler error above which we calculate the root for the
observed grid point exactly. The smaller the tolerance the more grid points we calculate
exactly and the higher the calculation effort. However, if we set the tolerance criterion
too loose, we risk making a high interpolation error and overlooking areas of interest.

As a compromise, we choose a very loose tolerance criterion at the beginning where we
need to approximate the functional form. As the iteration converges, we simultaneously
tighten the tolerance criterion such that the number of grid points calculated exactly
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Figure 30: Development of the Euler error for an exogenous state s held fixed over all
asset states. The blue line shows the initial Euler error for the policy interpolated over
11 data points. The dashed horizontal line marks the maximum tolerance value of 0.01.
After the grid point with the highest Euler error has been adjusted, the number of marked
grid points increments by one and the re-calculated Euler error (red dotted line) is below
the tolerance value of 0.01 for all grid points.

increases throughout the calculation. Crucially, the tolerance criterion is reduced in each
iteration, so we cannot run into a deadlock as described in Section 5.2.2.

We construct a function t for the tolerance criterion that becomes stricter the more
iterations have been calculated. First, we choose a maximum tolerance tmax. This is the
maximum Euler error allowed, thus, it defines a lower bound for the accuracy. Second,
each iteration we multiply the tolerance by a fixed factor 0 < ft < 1. The smaller ft the
faster the tolerance criterion is reduced. Third, we add an offset o if t should approach
a value greater zero. Grid points with Euler errors below o will not be calculated. The
formula to calculate the tolerance criterion is:

ti = t̂i + o,

t̂i =

tmax, if i = 0

ti−1 · ft, if i > 0.

(44)

5.3.1 Using a Constant Tolerance Value

Using a lose tolerance criterion in the beginning and tightening it as the convergence makes
progress seems reasonable as it brings the algorithm quickly towards an approximate
solution. However, this comes at the cost of more iterations since premature errors have
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to be adjusted later. We compare two scenarios: First, we start at tmax = 0.8 and
decrease exponentially with factor ft = 0.95 down to an offset o = 0.05. Second, we keep
the tolerance value constant at 0.05 throughout the whole iteration.

As expected, the mean number of grid points per iteration of the latter variant is
larger by a factor of roughly 1.25 (176 compared to 138) and the maximum number of
grid points is larger by a factor of roughly 1.1 (183 compared to 167). However, we observe
a surprising reduction in the number of iterations from 105 for the decreasing tolerance
value to 79 for the constant tolerance value. In terms of total root finding steps during
the TI execution, the constant tolerance leaves us with 600 or 5% root finding steps less
as well as a smaller mean Euler error of 1.02% compared to 1.17%.

Driven by this insight, we conduct several experiments with different tolerance criteria,
varying tmax, ft and o, and compare the results with several constant tolerance values.
Table 19 provides the data for different tolerance criteria, sorted by the mean Euler error
in ascending order. We use the total number of root finding steps throughout the whole
execution of the TI algorithm as an indicator for the computational effort.

First, the data shows a negative correlation between the number of root finding steps
and the mean Euler error, implying that we need to make some effort in order to gain
sufficiently accurate results. Notably, each change that speeds up the convergence of the
tolerance value (i.e., choosing a smaller starting value or a larger adjustment factor) leads
to a smaller mean Euler error, indicating that roughly approximating the policy initially
does not bring us any advantage. Moreover, the data reveals that if the adjustment factor
ft is chosen too high and simultaneously the stopping criterion is chosen too lose, we risk
premature termination. This is the case for run no. 12, where the calculation terminates
already at t = 38.56%. Thus, another advantage of using a constant tolerance criterion is
that we can precisely quantify the maximum possible Euler error beforehand and do not
risk early convergence.

While we observe large improvements concerning the mean Euler error, the maximum
Euler error is rather invariant under different tolerance criteria. We explore different
explanations for the high maximum Euler error in the next section.

We conclude that we need to choose the tolerance criterion carefully in order to obtain
accurate results. Moreover, we need to take into account the termination condition for the
TI algorithm and the smoothing parameter we calculate the new guess with. In any case,
we face a tradeoff: Increasing the smoothing parameter or decreasing the termination
condition leads to a higher number of iterations and therefore also to a smaller tolerance
criterion. However, if we choose these parameters too losely, we risk an early termination
and inaccurate results.
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Table 19: Comparison of runtime data for different tolerance criteria. The list is sorted by
the mean Euler error (EE) in ascending order. #root denotes the number of root finding
steps. tfinal denotes the minimum tolerance value at which the algorithm terminates. If
the tolerance value is an exponentially decreasing function, tfinal cannot be determined
beforehand.

tmax ft o #root mean EE [%] max EE [%] tfinal[%]
1 0.001 0 0.001 97840 0.04 6.62 0.1
2 0.01 0 0.01 27208 0.27 6.32 1.0
3 0.02 0 0.02 20097 0.47 6.64 2.0
4 0.03 0 0.03 16511 0.72 6.59 3.0
5 0.04 0 0.04 14852 0.9 6.59 4.0
6 0.05 0 0.05 13904 1.02 6.62 5.0
7 0.8 0.9 0.05 11850 1.08 6.65 5.02
8 0.2 0.95 0.05 16116 1.09 6.67 5.08
9 0.5 0.95 0.05 13490 1.17 6.59 5.36
10 0.8 0.95 0.05 14490 1.17 6.58 5.36
11 1.0 0.95 0.05 14960 1.18 6.58 5.35
12 0.8 0.99 0.05 8991 2.88 29.94 38.56

5.4 Results

In view of the upcoming comparative analysis, we choose a benchmark configuration
we consider to be sufficiently accurate while simultaneously feasible and conduct several
experiments concerning the way grid points are chosen. Our experimental design needs to
ensure constant circumstances as far as possible. Since the runtime of Algorithm 1 highly
depends on the quality of the initial guesses for the interest rate r and the quality-adjusted
capital stock Q, we concentrate on one single iteration and specifically on the execution of
the TI algorithm. Furthermore, we try to eliminate any disturbances caused by erroneous
guesses of r and Q by choosing the last iteration before Algorithm 1 converges. We
evaluate the total TI runtime, the duration of the single subiterations as well as the
respective Euler errors solely in the context of this last near-to-equilibrium iteration.

The goal of this analysis is to find the best compromise between maximum accuracy
and minimum computational effort. We concentrate on the TI Algorithm and evaluate the
choice of grid points and the total number of root finding steps necessary. Furthermore,
we observe the Euler error over the fine and the interpolation error over the original grid
in order to determine “blind spots”. There are different reasons for high Euler errors
that are associated with the discretization of the asset space, the choice of the tolerance
criterion, the consideration of the borrowing constraint as well as the ordering of grid
point evaluation.
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5.4.1 Benchmark Configuration

We choose the same economic parameters as in Chapter 4 for the benchmark configuration
and a constant tolerance value of 0.01. The last execution of the TI algorithm before the
equilibrium is reached takes 5.3 minutes and 76 iterations in total. The mean duration
is 4.2 seconds. The first iteration stands out with 7.9 seconds as we start from an initial
all-zero policy guess.

Of these 4.2 seconds per subiteration, 92.8% account for the root finding and 6.7%
account for the calculation of the interpolation errors. The total time spent on calculating
the interpolation error roughly corresponds to 5 additional root finding steps.7

Compared to the static approach introduced in Section 5.1.1, where we calculated all
grid points except for the redundant retirement lanes, the dynamic choice of grid points
reduces the runtime per subiteration roughly by factor 9 (38.7 seconds compared to 4.2
seconds).

Turning to the number of grid points calculated exactly, we find a mean number of 358
grid points per subiteration which accounts for 9.4% of all possible grid points, or 12.8%
if we do not take the redundant retirements into account as proposed in Section 5.1.1.
Keep in mind that the number of marked grid points can only increase from one iteration
to the next, since grid points that have been marked once will be calculated exactly until
the TI converges. Figure 31 plots the number of marked grid points from the first to
the last subiteration of the TI algorithm. Although the tolerance criterion is constant
at 0.01, the number of marked grid points rises from 207 to 379 due to the redundancy.
This implies that the share of marked grid points in all possible grid points rises from
5.4% to 9.9%, or from 7.4% to 13.5% without the redundant retirement lanes. However,
the number does not grow constantly but reaches a plateau around iteration no. 30. This
corresponds to the progress of the convergence, which we measure by the volatility of the
mean interpolation error and illustrate in Figure 32

The total number of root finding steps over all subiterations is 27,228. Figure 33
shows the average number of exact calculations over all iterations for each grid point.
Note that the grid has the same structure and the same initialization as in Figure 26.
The figure acts as a good indicator for areas of interest in the policy functions. For
example, there is a large coherent block of marked grid points in the lowest exogenous
state s0 = (ε0, z̄0,Λr). In fact, as discussed in Chapter 4, this is precisely the area where
the shape of the consumption policy function is rather curved than linear. This applies
to all five retirement lane states which are marked by dashed lines in Figure 33.

Next, we evaluate the Euler errors in order to assess the accuracy of the found solu-
tion. The mean Euler error over the fine grid is 0.27% compared to a mean interpolation
error of 0.23% for the original grid. The maximum Euler error of the fine grid is 6.31%.

7Based on an average number of 25 iterations over the system of equations per root finding step and
an approximate duration of 0.0027 seconds for solving the system of equations.
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Figure 31: Number of grid points calculated exactly over the 76 subiterations of the TI
algorithm.
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Figure 32: Mean interpolation error over the 76 subiterations of the TI algorithm.

In comparison to the static approach based on a priori knowledge we introduced in Sec-
tion 5.1, the dynamic approach relies on only one third of the grid points but produces
more accurate results. Precisely, we manage to reduce the mean Euler error by 75% and
the maximum Euler error by 50% compared to the static approach.

However, the maximum Euler error of the fine grid is still more than six times larger
than the allowed 1% interpolation error we specified by the tolerance value. Figure 34
reveals where the high Euler error comes from: At the middle asset levels, the mean Euler
error is constantly small at around 1%. The high Euler errors appear at the very low and
the very high asset levels. At the low asset levels, this is due to the borrowing constraint
we did not identify exactly. At the high asset levels, the reason for the high Euler errors
is entirely different. Remember that when discretizing the asset space A, we placed many
grid points at the bottom of the asset range in order to identify the first kink, and only
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Figure 33: Mean binary-coded matrix M over all subiterations of the TI. The grid has
the same shape as the grid for the policy calculation, thus, the horizontal dimension
reflects the space over exogenous states and the vertical dimension the asset space. In
each subiteration,M can only take the values 0 or 1. Thus, the color code ranges from
purple (grid points are never marked) to yellow (grid points are marked in each iteration).
The fast lane as well as the retirement lane states relevant for the calculation are marked
by vertical dotted and dashed lines.
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Figure 34: Maximum Euler error calculated over the fine asset grid. The vertical dotted
lines mark the position of grid points the policy was calculated for.

few at the top. Figure 34 marks the location of grid points in the original grid the policy
was initially calculated for. Clearly, the Euler error is low where grid points have been
placed - by construction, it must be below 0.01 at any grid point. However, the distances
between the grid points at the right half of the plot are comparably large. As this is
exactly the area where the second kink is likely to appear, we get high Euler errors in the
intervals between two grid points.

Our conjecture is further emphasized when we evaluate the maximum Euler error by
exogenous state s. Figure 35 shows the maximum Euler error by exogenous state over all
asset states. We add vertical grey lines to the graph to distinguish between the different
lanes. Most of the tips appear in the fast lane but we also observe high errors in the
retirement lane. These are precisely the lanes where the second and the first kink appear.
Again, we see that the maximum interpolation error for the original grid (orange plot) is
moderate and nearly constant around 1%.

5.4.2 Exact Solution

We compare the results found by the adaptive approach to the full-blown solution where
we calculate each grid point exactly. The duration per execution of the TI algorithm
jumps up to 40 minutes and the average duration of one subiteration is 32 seconds.
The macroeconomic results are slightly different: the interest rate obtained by the full
solution is higher by 11% (or 0.0084 percentage points, respectively), aggregate savings
and investment levels are 6.5% lower, and the quality-adjusted capital stock is 7% lower.
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Figure 35: Maximum Euler error by Exogenous State. The blue plot shows the a posteriori
Euler error over the fine asset grid, the orange plot shows the interpolation error over the
original grid. The vertical grey dotted and dashed lines mark the position of the different
lanes.

The capital-to-output ratio slightly drops from 5.96 to 5.7 and the share of the wealthiest
1% in total wealth rises by 1.17 percentage points to 25.75%. Overall, the resulting
distribution is fairly similar with a maximum deviation of one percentage point for the
earnings and income percentiles and 1.17 percentage points for the wealth distribution.

While these differences are not to be underestimated when evaluating the results of the
model in detail, the overall qualitative results regarding the shape of the policy functions,
the distribution of agents and the macroeconomic outcomes remain roughly the same.
We recall that the motivation behind developing the adaptive approach in the first place
was to improve the feasibility of working with the model. Specifically, the approximate
approach dramatically decreases the runtime during the trial-and-error process of finding
the correct parametrization. In this light, our implementation fully serves the purpose
in that the found equilibrium is not expected to substantially deviate from the exact
solution. Once a sufficient parametrization has been found, we suggest to recalculate the
model exactly, with the initial guesses being already fairly near to the real outcome.

Furthermore, evaluating the Euler errors of the full solution provides an interesting
insight: The mean Euler error of the exact solution is only 9% lower (0.244%) than for the
adaptive approach (0.268%). However, Figure 36 reveals that the high mean Euler error
is mainly due to the lowest asset states: the mean Euler error over all exogenous states is
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almost four times as high for the exact solution compared to the approximate solution.8

Therefore, we identify the same areas of high errors in both solutions, indicating that the
problem is indeed caused by the discretization of the asset grid and the sensitivity of the
model for small deviations.
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Figure 36: Mean a posteriori Euler error over the asset grid for the exact solution (solid
blue line) and the approximate solution (dotted red line). The vertical grey dotted lines
mark the position of the asset states.

5.4.3 Modifying the Discretization of the Asset Space

As we have seen in the last section, choosing only few grid points in the upper half of the
asset range can cause high Euler errors. In this section, we modify two central parameters
of the asset space discretization: first, by doubling the total number of grid points, and
second, by making the asset grid equally-spaced.

A central feature of our algorithm is that it is designed to ignore the majority of the
grid points and dynamically pick only few of interest. Thus, we expect that doubling the
total number of asset states does not yield much additional effort (in contrast to the static
a priori approach discussed in Section 5.1).

Indeed, if we double the number of asset states (and thus the total number of grid
points), the mean number of marked grid points per iteration rises only moderately by
2%. Note that this effectively implies a reduction in the share of marked grid points in

8Remember, that the Euler error itself is only an approximation of the real deviation, as we do not
know the true policy function. Put differently, the Euler errors for the two solutions assume different
underlying policy functions.
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Figure 37: Maximum Euler error by asset states for the equidistant grid (solid line) vs.
grid point concentration at the bottom of the asset range (dotted line). The vertical
dotted lines mark the values of asset states for the equally-spaced case.

all possible grid points (leaving the redundant retirement states out) from 12.7% to 6.6%
on average.

With an equally spaced grid of double precision, we can locate the second kink more
precisely. In the most extreme case, the interval size between amax and amax−1 is almost
divided by four from 3.96 to 1 when the concentration parameter ϑa is changed from 2 to
1 and if, additionally, we double the number of asset states. However, this implies that
the size of the intervals at the lowest asset states simultaneously grows by factor four.

The results of this approach are shown by Figure 37. The maximum Euler errors at
the top of the asset range vanish thanks to the smaller interpolation intervals. However,
this comes at the cost of precision loss at the bottom of the asset space which causes the
maximum Euler error to triple compared to the benchmark level. The mean Euler error
over the whole grid is reduced by 9% compared to the benchmark level.

We conclude that the chosen level of moderate grid point concentration is the best
compromise we can get as it keeps both the mean and the maximum Euler error in
reasonable bounds over the whole grid.

5.4.4 Bisection Approach

Next, we compare the results of the bisection-based approach from Section 5.2 where
grid points are evaluated in a fixed order to the dynamic approach where grid points are
evaluated in descending order by their Euler errors. Figure 38 plots the sparse matrices
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M for the two variants. The overall placement of marked grid points is overall very
similar. However, the left plot shows horizontal bars at the middle asset state, since it is
the first and often the only grid point to be calculated exactly. In contrast, the adaptive
approach places roughly the same number of grid points per column but precisely those
where the deviation is the highest.

0 10 20 30 40 50 60 70
Exogenous states s S

0

10

20

30

40

50

As
se

t S
ta

te
s

fast

retire

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
Exogenous states s S

0

10

20

30

40

50

As
se

t S
ta

te
s

fast

retire

0.0

0.2

0.4

0.6

0.8

1.0

Figure 38: Mean binary-coded matrixM over all iterations for the bisection-based fixed-
order approach (left side) vs. the adaptive approach that evaluates grid points in the
descending order of their Euler errors (right side).

Surprisingly, both approaches yield almost exactly the same equilibrium interest rate,
quality-adjusted capital stock and distributional data. For a constant tolerance value of
0.01, the equilibrium interest rate is 7.11% for the adaptive approach and 7.10% for the
bisection-based approach and the quality-adjusted capital stocks differ by 0.04%. The
technical data is exactly the same: both approaches yield a total number of 76 iterations
in the near-equilibrium TI execution with 358 marked grid points on average and 376
and 379 grid points respectively at maximum. The mean Euler error is smaller by 0.07
percentage points for the adaptive approach compared to the bisection variant and the
maximum Euler error is smaller by 0.055 percentage points. We conclude that at least at
this level of precision, the adaptive approach does not save us any grid points, although
it presumably targets the kinks more efficiently.

Nevertheless, these differences grow in the tolerance criterion, implying that the loser
the final tolerance the larger the deviation. Repeating the analysis for a tolerance value
that starts at 0.8 and decreases with factor 0.95 down to an offset of 0.05 yields remarkable
differences between the two approaches. The adaptive approach relies on 105 iterations,
138 grid points on average and 167 at maximum. In contrast, the bisection-based variant
requires 27 additional iterations and 143 (170) grid points on average (at maximum),
which yields an increase in the number of root finding steps by 30%. While the former
converges already at t = 5.36%, the minimum tolerance for the latter is t = 5.09% which
yields a slightly smaller mean Euler error (which, again, advocates a constant tolerance
value).
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Furthermore, the fixed order in which the grid points are evaluated can lead to di-
vergence of the outer algorithm when combined with a constant tolerance criterion. This
situation appears when we combine the bisection-approach with a constant tolerance value
(whose advantages we have discussed in detail in Section 5.3). Remember that the order
in which grid points are evaluated is preassigned by the bisection algorithm. In combina-
tion with a comparably lose tolerance value of 0.05 this leads to divergence of the outer
algorithm, where every second iteration yields the same policy and Q and r alternate be-
tween two values. We therefore highly recommend to use the adaptive approach instead
which ensures more variation as the algorithm dynamically decides which grid points to
evaluate first.

5.4.5 Precisely Locate the First Kink

As we have seen in Chapter 4, the existence and exact location of the two kinks in the
policy functions depend on the combination of assets and exogenous states s as well as
the state transition probability and cannot be analytically determined. However, since
the first kink applies to all households with negative optimal savings, we can relatively
easily identify it “on the fly” during execution of the Time Iteration algorithm.

As proposed in Section 5.2, we initialize the binary-coded matrix M with ones in
the first and the last row and calculate the interpolated policy for each exogenous state
s separately. If the policy a′(ai, s) is negative or zero, we register the next grid point
(ai+1, s) for the calculation by setting the respective entry M(ai+1,s) = 1. As soon as
the first positive policy value has been found, we can stop the exact calculation for this
exogenous state s (as agents with sufficiently high skills are not likely to be constrained at
all, the policy is positive already at the lowest asset state for most columns). Subsequently,
we proceed with the dynamic choice of grid points subject to the Euler error.

This approach increases the number of total root finding steps by 15% when used with
a constant tolerance value of 0.01, compared to the benchmark approach where the first
kink is not targeted directly. The mean Euler error is slightly smaller by 0.01 percentage
points. The results for the euqilibrium interest rate and the quality-adjusted capital stock
are the same. The share of agents at the lowest asset state is about 0.1 percentage points
larger, since the borrowing constraint can be located more precisely. However, zooming
into the policy function at the constrained states reveals that the difference between
the two approaches is rather negligible as shown in Figure 39. When zoomed out, the
difference is not even visible anymore.

Figure 40 reveals that the maximum Euler error at the bottom of the asset grid is still
relatively high at 0.03 compared to 0.05 before - indicating that the error does not arise
from the points at the borrowing constraint but rather from the ones slightly above.

This conjecture is further strengthened when we evaluate at the interpolation error
made during the calculation that does not search specifically for the borrowing constraint.
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Figure 39: Policy function for the exact calculation of constrained asset states (solid
line) vs. the interpolated approach (dotted line). The difference near the kink is almost
negligible when zoomed in and vanishes when zoomed out to the whole asset grid.

Figure 41 plots the interpolation error by exogenous state for the five lowest asset states
(except amin which is by construction calculated exactly). The maximum asset level where
the borrowing constraint is binding depends on the exogenous state, thus, we plot only
those asset states where the constraint is binding for all exogenous states. We mark the
states where the constraint is binding with vertical dotted lines. Clearly, the figure reveals
that the interpolation error near the borrowing constraint is negligible compared to the
interpolation error for the non-constrained states.

We conclude that exactly locating the first kink does not target the areas that produce
the highest Euler errors. The additional effort of 4250 root finding steps is not justified
by a systematic precision gain.

5.5 Further Ideas

While in the above section we focused on interpolation along the asset level, this ap-
proach can clearly be extended to other dimensions. For example, we could fix assets,
entrepreneurial ability and lane and assume the same policy for all labor productivity
states as long as the deviation from the real solution is sufficiently low. As we have seen
in Chapter 4, if we hold two dimensions of exogenous states fixed and vary the third, the
policy functions are often but not always monotonically increasing or decreasing. This
further emphasizes the potential of a dynamic approach.

We already used this idea in Section 5.1.1, where all retired agents face the same
entrepreneurial ability z = 0, regardless of their inherent ability z̄. However, whereas
this approach is based on a priori knowledge and statically embedded in the algorithm,
we could also do it dynamically. Precisely, we could configure the algorithm to detect
similarities of the policy functions along the different labor productivity, entrepreneurial
ability or lane states. Clearly there is potential for further efficiency improvements and
correspondingly a reduction in runtime of the TI algorithm.
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Figure 40: Maximum Euler error for the exact calculation of constrained asset states
(solid line) vs. the interpolated approach (dotted line).
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vertical dotted lines mark the exogenous states where the borrowing constraint is binding
at all plotted asset states.
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6 Conclusion and Outlook

In this thesis we translated an OLG model of intertemporal savings decisions made by
entrepreneurs to an equivalent infinite-horizon Aiyagari-style model. We simplified the
evolution of labor productivity and entrepreneurial ability in the model and reduced
the respective number of states in each dimension. Remarkably, letting go of the OLG
structure saved us an entire state variable, an agent’s age, and allowed us to simplify the
complex inheritance of skills between parents and children as modeled by Guvenen et al.
(2019).

We discussed the differences between our model and the one by Guvenen et al. (2019)
concerning our implementation as well as our choice of parameters and their impact on
the results. Furthermore, we showed that despite these differences, our model is able to
generate distributional results fairly close to the empirical data for the U.S. economy.
Thus, it proves to be a good starting point for further tax analyses. However, there is
some need for refinement of the parametrization in order to tightly match the top 1%
share of the wealth distribution and lower. Further research is needed in order to evaluate
whether this problem arises from a too small resolution of entrepreneurial states or if
another choice of economic parameters can solve the issue.

In order to solve the model in a computationally feasible way, we designed an approach
to reduce the computational effort by dynamically placing grid points at areas of interest
and interpolating in between, where the deviation is below a configurable upper bound.
We showed that our algorithm manages to reduce the number of grid points calculated
in each iteration by 90.5%. The corresponding runtime per iteration of the TI algorithm
is reduced from 55 to 4.2 minutes, which corresponds to a speedup of roughly factor 9
and yields the final solution within few hours, depending on the number of iterations.
Furthermore, our algorithm allows us to predetermine the upper bound on the interpola-
tion error the choice of grid points is based on. As a caveat, we pointed out that the a
posteriori error might still exceed this lower bound since we inevitably need to discretize
the continuous space over assets beforehand. However, this issue applies to the full-blown
approach alike and is solely related to the sensitivity of the model in response to slight
changes.

As the first subsequent step, we suggest to conduct similar tax experiments with the
model as in Guvenen et al. (2019) and replace the capital income tax with a wealth
tax. Section 2 already takes the necessary adjustments to the optimization problem
into account. In order to obtain comparable results, we require the government budget
to be balanced. Note that in our model, agents can only retire from entrepreneurial
business but not from labor. Thus, the government expenses are not fed into the model
in the form of pension payments and therefore did not have any practical relevance so
far. However, when conducting tax experiments, we target the governmental expenses at
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their equilibrium level from the capital income tax economy and adjust the wealth tax
rate until the total tax revenue equals the expenses. This approach is equivalent to the
“balanced budget” reform by Guvenen et al. (2019). We do not expect our results to be
substantially different than theirs, since the key structure and, crucially, the assumption
of heterogeneous returns remain the same.

As a second step we suggest to target several assumptions made by the authors of the
original model and perform a robustness check on the results. For example, the origi-
nal model features only one type of assets that are completely interchangeable between
periods. However, in reality, entrepreneurs are often bound to the decisions they made
in the past, since investments might not be withdrawable within a short time horizon.
This yields the follow-up question whether the key findings hold if we distinguish between
private assets and entrepreneurial capital and add frictions to the model, e.g., capital
adjustment costs that penalize fluctuating investment decisions.

Since assumptions are made to keep the model (relatively) simple, each assumption
let go poses a challenge on computational feasibility. In our case, in order to distinguish
between different asset types, we need to add another continuous dimension to the state
space. This is where ASGs can prove to be benefitial.

Brumm and Scheidegger (2017) state that regular grids suffer from the curse of di-
mensionality, i.e., the grid complexity grows exponentially in the number of dimensions.
We already discussed the effect of adding states in Sec. 5.4.3. If we double the number
of asset states, our dynamic choice of grid points manages to keep the computational
effort almost constant. However, our approach is limited to the asset range and does not
bring any advantage if we add exogenous states. In contrast, ASGs can handle highly
complex models at reasonable computational effort in exchange for only a small accuracy
loss. Brumm and Scheidegger (2017) state that for smooth policy functions, the number
of computationally feasible dimensions can grow up to 100 when using ASGs and still up
to 20 dimensions for non-smooth policy functions.

Another advantage of ASGs is that they are especially suited for economic models with
occasionally binding constraints that imply kinks in the policy function. The adaptivity
of the sparse grid allows us to place grid points precisely at those kinks, since they offer
a substantial information gain. In our work, we make a similar attempt by introducing
an algorithm in Sec. 5.2.2 to dynamically choose grid points where high Euler errors
indicate movements in the policy functions. For example, our approach places many grid
points at the low asset states where the consumption policy is rather curved than linear.
Furthermore, we locate the kink associated with the borrowing constraint by working our
way up from the lowest asset state until we found the first positive policy value. However,
this approach is neither efficient nor is it applicable to the second kink in the upper half
of the asset range. We further observe that the algorithm is limited to the choice of
discrete asset states we make beforehand and with only little prior knowledge of the true
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functional form, yielding high interpolation errors as a result. There are other approaches
that are able to precisely locate the kink arising from the borrowing constraint and do
not rely on root finding, like the Endogenous Grid Method (EGM). However, EGM does
not work with more than one continuous state variable and is therefore not suited for
extensions of the model.

In summary, the usage of ASGs yields promising gains both in terms of accuracy and
computational feasibility. In view of the subsequent research endeavor building on this
thesis, we are now fully equipped to take the next step, conduct tax experiments and
challenge the assumption of perfect substitutability of capital. Our substantial insights
from developing the dynamic approach and our detailed discussion of the Euler errors
provide us with a solid intuition for the model and the mechanisms at play.
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Acronyms

ASGs Adaptive Sparse Grids. 1, 2, 75, 76

CITR Capital Income Tax Revenue. 34

EGM Endogenous Grid Method. 76

GDP Gross Domestic Product. 34

OLG Overlapping-Generations. 1, 2, 7, 8, 10, 28, 46, 74

TI Time Iteration. 20, 51, 54, 57, 61–64, 66, 70, 72, 74

TTR Total Tax Revenue. 34
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A Full Optimization Problem with Endogenous labor

The utility function of the household is a Cobb-Douglas function:

u(c, (1− `)) = (cγ(1− `)1−γ)1−σ − 1
1− σ , (45)

where γ is the share of consumption in utility and σ is the risk aversion parameter.
The derivatives of the utility function are given by:

∂u(c, (1− `))
∂c

= γ ·
(
cγ(1− `)1−γ

)−σ
·
(

c

1− `

)γ−1
(46)

∂u(c, (1− `))
∂(1− `) = −(1− γ) ·

(
cγ(1− `)1−γ

)−σ
·
(

c

1− `

)−γ
(47)

Inserting (46) and (47) into (28) yields:

(1− γ) ·
(
cγ(1− `)1−γ

)−σ
·
(

c

1− `

)−γ
= γ ·

(
cγ(1− `)1−γ

)−σ
·
(

c

1− `

)γ−1
· 1− τ`

1 + τc
· w̄ε

(48)

We can simplify (48) in order to obtain `:

(1− γ) = γ · c · (1− `) · 1− τ`
1 + τc

· w̄ε

⇔ ` = 1− 1− γ
γ
· 1 + τc

1− τ`
· c
w̄ε

(49)

To solve for c, we insert (49) into (18):

c = γ

1 + τc

[
ω(a, z; τcap)− a′ + w̄ε(1− τ`)

]
(50)
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