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Zusammenfassung

Ein breit angenommenes öffentliches Verkehrsangebot ist ein wichtiger Baustein zur Re-
duktion zukünftiger Klimaschäden. Ein solches Verkehrsangebot sollte die Bedürfnisse der
Verkehrsteilnehmer abdecken, aber gleichzeitig auch eine möglichst geringe Belastung für
unser Klima darstellen. Es bietet sich an die Suche nach einem solchen Verkehrsangebot
in zwei Schritte aufzuteilen. Zuerst gilt es für die einzelnen Verkehrsteilnehmer Routen zu
bestimmen, die möglichst geeignet sind, um gemeinsam gefahren zu werden. Dann muss im
zweiten Schritt eine möglichst effiziente Bedienung der Routen ermittelt werden. Zur Effizi-
enz eines Verkehrsystems gehört aber nicht nur die Fahrtstrecke, die Fahrzeuge insgesamt
zurücklegen. Auch Haltestellen, an denen viele Verkehrsteilnehmer umsteigen, verursachen
einen großen zeitlichen Mehraufwand. Müssen Verkehrsteilnehmer häufiger umsteigen, kann
das Verkehrsystem also weniger seiner eigentlichen Aufgabe nachgehen: dem Transport. Es
liegt somit im Interesse der Effizienz, dass Fahrzeuge möglichst selten halten.

Zur Bestimmung eines möglichst effizienten Verkehrssystems zu gegebenen Routen führen
wir das graphentheoretische Optimierungsproblem Fahrzeugzuweisung mit Haltekosten
ein. Wir entwickeln einen optimalen Linearzeitalgorithmus für gerichtete Pfade. Weiter zeigen
wir Eigenschaften von optimalen Lösungen auf einer Einhals-Spinnne – eine Einschränkung
von Bäumen. Außerdem entwickeln wir einen optimalen Polynomialzeitalgorithmus für
Instanzen, in denen sich immer nur die Routen von zwei Reisenden gleichzeitig berühren. Auch
für eine Problemvariante, in der ein Reisender insgesamt nur mit einem anderen Reisenden
ein Fahrzeug teilen darf, stellen wir einen optimalen Polynomialzeitalgorithmus vor. Zur
Lösung allgemeiner Probleminstanzen entwickeln wir eine ILP-Formulierung des Problems
Fahrzeugzuweisung mit Haltekosten. Außerdem zeigen wir auf, dass einige Eigenschaften,
die für die Konstruktion eines greedy Algorithmus hilfreich wären, nicht gelten.
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1. Einleitung

In der heutigen Zeit ist das Thema Klimawandel und notwendige Maßnahmen zur Begrenzung
der Klimaschäden hochrelevant. So auch im Sektor Verkehr – Stichwort Verkehrswende. Eine
Möglichkeit zur Reduktion der Klimaschäden ist die Abwendung vom aktuell gelebten Indivi-
dualverkehr. Anstatt auf das eigene Automobil könnten wir als Gesellschaft auf multimodale
Transportsysteme im Sinne von klassischem ÖPNV aber auch von Carsharing-Angebote
zurückgreifen [CW16].

In bisherigen Arbeiten wird meist nur das Teilen von Taxifahrten zwischen verschiedenen
Verkehrsteilnehmern untersucht [MZW13 | San+14 | Alo+17 | BSW]. Allerdings ist das Problem
die totale Fahrzeit für alle Reisende zu minimieren NP-vollständig [BSW]. Deshalb beruhen die
Algorithmen zur Berechnung einer akzeptablen Lösung meist auf einem Online-Ansatz [BSW].
Anfragen werden einzeln bearbeitet und zu möglichst guten Lösungen zusammengesetzt
[BSW].

Als ein möglicher Ansatz zur Bestimmung einer ganzheitlichen Lösung, die über einzelne
Anfragen hinausgeht, bietet sich die Unterteilung des Problems in zwei Schritte an. Zuerst
werden aus dem Verkehrsbedarf für die einzelnen Verkehrsteilnehmer Routen mit möglichst
hohem Sharing-Potential berechnet. Dann können wir aus den konkreten Routen der Reisen-
den Fahrten bestimmen, um allen Bedarf abzudecken. Für den ersten Schritt entwickeln Bläsius
et al. [Blä+25] einen spieltheoretischen Ansatz im Paper „Synergistic Traffic Assignment“. Mit
dieser Arbeit betrachten wir den zweiten Schritt, zu den vorgegebenen Fahrtstrecken von
Verkehrsteilnehmern Fahrzeuge zu finden.

Wir wollen ermöglichen, dass Reisende anders als in der Betrachtung von Taxirouten nicht
immer an das gleiche Fahrzeug gebunden sind. Stattdessen sollen Reisende verschiedene Fahr-
zeuge verwenden können. Dafür müssen sie die Fahrzeuge wechseln können. Halte an Station
verursachen allerdings oft eine signifikante Verlängerung der Reisezeit und dadurch eine
geringere Effizienz des Transportsystems [ZSL17]. Deswegen betrachten wir zur Bewertung
der Operationskosten nicht nur die Fahrtzeiten aller Fahrzeuge, sondern auch die gesamte
Anzahl der Halte aller Fahrzeuge.

Konkret führen wir das Problem Fahrzeugzuweisung mit Haltekosten ein. Die bestehende
Infrastruktur, in der Fahrzeuge operieren können, bildet einen Graphen. Das kann zum
Beispiel ein Straßen- oder Schienennetz sein. Verkehrsknotenpunkte bilden die Knoten des
Graphen und die Verbindungen zwischen Verkehrsknotenpunkte wie Straßen bilden die
Kanten. Da ein Verkehrsfluss von einem Start zu einem Zielverläuft, modellieren wir die
Kanten gerichtet. Damit können wir auch zum Beispiel Einbahnstraßen korrekt beschreiben.
Wie bereits disskutiert, gehenwir davon aus jede Reisende einer festen Routen imVerkehrsnetz
folgen möchte. Diese Routen modellieren wir als Pfade im Graphen. Wir suchen nun ein
Verkehrssystem, mit dem alle Reisenden ihr Ziel erreichen. Deshalb suchen wir eine Menge
an Fahrzeugen, die den Verkehrsbedarf bedienen kann. Jedes Fahrzeug deckt ein Stück der
Routen der Reisenden ab, sodass insgesamt jeder Reisender seine Routen befahren kann.
Da ein Reisender auch mehrere Fahrzeuge nutzen kann, um sein Ziel zu erreichen, müssen
Fahrzeuge anhalten, damit Reisende umsteigen können.
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1. Einleitung

Als Modellierung eines Verkehrsbedarfs interessiert uns aber nicht eine beliebige Zuord-
nung, sondern ein möglichst billige. Ob aus Nachhaltigkeitsgründen oder auch aufgrund
von Operationskosten. Deshalb suchen wir die Lösung, die die gesamte Fahrtzeit aller Fahr-
zeuge gemeinsam mit der benötigten Anzahl Halte der Fahrzeuge minimiert. Denn ein Halt
eines Fahrzeugs bedeutet eine Verschlechterung der Effizienz des Verkehrssystems. Um diese
Verschlechterung zu quantifizieren führen wir globale Kosten für jeden Halt ein.

Teilen sich zwei Reisende eine Strecke, sodass beidemit demselben Fahrzeug fahren könnten,
ist es naheliegend anzunehmen, dass diese auch im selben Fahrzeug fahren sollten. Allerdings
zeigen wir, dass das nicht immer der Fall ist. Ebenso ist es naheliegend, dass Reisende möglichst
lange Strecken verbringen sollten. Insbesondere sollte möglichst wenig Strecke von mehreren
Fahrzeugen befahren werden, wenn diese für Umstiege anhalten. Und dennoch zeigen wir,
dass es nicht immer optimal ist, bei einer Zusammenfahrt die maximal geteilte Strecke im
selben Fahrzeug zu fahren.

Für jedes weitere Fahrzeug, das für Umstiege halten muss, entstehen höhere Kosten. Daher
ist es naheliegend, dass wenige Reisende reichen, um zu bewerten, ob eine Zusammenfahrt
lohnenswert ist. Aber wir zeigen, dass es im Allgemeinen nicht reicht eine beschränkte Anzahl
an Reisenden zu betrachten, um das zu bewerten.

Wir entwickeln einen linearen, optimalen Algorithmus für gerichtete Pfade. Weiter zeigen
wir einige Eigenschaften einer optimalen Lösung auf Einhals-Spinnen. Mit diesen Eigenschaf-
ten reduzieren wir die Existenz eines polynomiellen Algorithmus für Einhals-Spinnen auf das
von uns definierte Problem Gruppenzusammenfahrt. Das Problem Gruppenzusammenfahrt
untersucht auf Einhals-Spinnen für Situationen, in denen bereits einige Reisende zusammen-
fahren – von uns Gruppen genannt –, wie die Gruppen im Problem Fahrzeugzuweisung
mit Haltekosten optimal zusammenfahren. Außerdem stellen wir dar, dass das Problem
Fahrzeugzuweisung mit Haltekosten auf Out-Trees nicht durch direktes mehrmaliges
Berechnen einer optimalen Lösung von Spinnen gelöst werden kann.

Zusätzlich geben wir einen polynomiellen Algorithmus für Einzel-Haushalte an. In einem
Einzel-Haushalt sind alle Starts und Enden der Reisenden verschieden und es begegnen sich
immer nur zwei Reisende gleichzeitig. Außerdem stellen wir einen polynomiellen Algorithmus
für die Problemvariante Fahrzeugzuweisung mit Haltekosten und paarweiser Zusammenfahrt

durch Reduktion auf das Problem Maximum Weight Matching vor. In der Problemvariante
Fahrzeugzuweisung mit Haltekosten und paarweiser Zusammenfahrt darf ein Reisender
zusätzlich nur mit einem anderen Reisenden im selben Fahrzeug fahren.

Mit einer ILP-Formulierung geben wir noch ein Lösungsverfahren für allgemeine Instanzen
des Problems Fahrzeugzuweisung mit Haltekosten an.

Gliederung

Im Kapitel 3 beschäftigen wir uns mit der formalen Problemdefinition. Danach zeigen wir
in Kapitel 4, dass einige lokale Eigenschaften nicht gelten. In Abschnitt 5.1 stellen wir einen
linearen Algorithmus für gerichtete Bäume vor. Weiter zeigen wir in Abschnitt 5.2 Strukturei-
genschaften einer optimalen Lösung auf Einhals-Spinnen. Damit stellen wir eine Algorith-
musidee vor, die wir auf das Problem Gruppenzusammenfahrt reduzieren. Das Problem
Gruppenzusammenfahrt stellen wir in Abschnitt 5.2.4 detaillierter vor. In Abschnitt 5.3
zeigen wir, dass aus einem Algorithmus für Einhals-Spinnen nicht direkt ein Algorithmus für
Out-Trees konstruiert werden kann. In Kapitel 6 stellen wir einen polynomiellen Algorithmus
auf Einzelhaushalten vor. Weiter präsentieren wir in Kapitel 7 einen polynomiellen Algo-
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rithmus für die Problemvariante Fahrzeugzuweisung mit Haltekosten und paarweiser
Zusammenfahrt. Zuletzt konstruieren wir in Kapitel 8 eine Formulierung unseres Problems
als ILP.
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2. Präliminarien

Ein Graph 𝐺 = (𝑉 , 𝐸) besteht aus einer endlichen Menge an Knoten und einer Menge an
Kanten zwischen diesen Knoten.
Bei einem gerichteten Graphen besteht die Kantenmenge aus Knotenpaaren 𝐸 ⊆ 𝑉 2. Eine

Kante verläuft vom ersten zum zweiten Knoten des Paars.
Bei einem ungerichteten Graphen besteht die Kantenmenge aus zwei-elementigen Teilmen-

gen der Kantenmenge 𝐸 ⊆
(
𝑉
2
)
.

Die Kantenzahl eines Graphen 𝐺 ist ∥𝐺 ∥ ≔ |𝐸 |.
Der Grad eines Knotens deg(𝜈) ist die Anzahl inzidenter Kanten. Das heißt, die Anzahl an

Kanten 𝑒 ∈ 𝐸, sodass ein weiterer Knoten𝑤 ∈ 𝑉 existiert mit 𝑒 = (𝜈,𝑤) oder 𝑒 = (𝑤,𝜈).
Die Vereinigung zweier Graphen 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) und 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) besteht aus den Knoten

und Kanten der beiden Graphen. Es gilt 𝐺 ∪ 𝐻 = (𝑉𝐺 ∪𝑉𝐻 , 𝐸𝐺 ∪ 𝐸𝐻 ).
Ein gewichteter Graph𝐺 = (𝑉 , 𝐸, 𝑐) besteht zusätzlich aus einer Kostenfunktion 𝑐 , die jeder

Kante ein Gewicht zuweist.
Ein Kantenzug ist eine endliche Folge an Knoten (𝜈0, . . . , 𝜈𝑛). Jeweils zwei aufeinanderfol-

gende Knoten sind mit einer Kante verbunden. Das heißt, für alle 𝑖 aus {0, . . . , 𝑛 − 1} liegt
(𝜈𝑖 , 𝜈𝑖+1) in 𝐸.
Ein Pfad ist ein Kantenzug, in dem kein Knoten mehrfach vorkommt. Einen Pfad 𝑝 =

(𝜈0, . . . , 𝜈𝑛) bezeichnen wir auch als 𝜈0, 𝜈𝑛-Pfad.
Die Konkatenation 𝑝 ◦ 𝑞 von Pfaden 𝑝 und 𝑞 ist ein Pfad aus den Knoten der beiden Pfade.

Der letzte Knoten von 𝑝 muss mit dem ersten Knoten von 𝑞 übereinstimmen. Formal: Sei
𝑝 = (𝑝1, . . . , 𝑝𝑘 ), 𝑞 = (𝑞1, . . . , 𝑞𝑛) mit 𝑝𝑘 = 𝑞1. Dann ist 𝑝 ◦ 𝑞 = (𝑝1, . . . , 𝑝𝑘 , 𝑞2 . . . , 𝑞𝑛).

Ein (gerichteter) Pfadgraph ist ein Graph dessen Knoten in einem Pfad ausgerichtet sind.
Das heißt, es gibt einen Pfad der jede Kante des Graphen besucht und jeden Knoten genau
einmal enthält.
Ein Graph 𝐺 = (𝑉 , 𝐸) heißt zusammenhängend, wenn für alle Knotenpaare 𝜈,𝑤 ∈ 𝑉 ein

Pfad ohne Beachtung der Richtung der Kanten existiert. Formal heißt das, dass es für alle
Knontenpaare 𝜈,𝑤 ∈ 𝑉 ein endliche Folge an Knoten (𝜈 = 𝜈0, . . . ,𝑤 = 𝜈𝑛) existiert mit
(𝜈𝑖 , 𝜈𝑖+1) oder (𝜈𝑖+1, 𝜈𝑖) in 𝐸.
Ein zusammenhängender Graph 𝐺 = (𝑉 , 𝐸) ist ein Baum, wenn |𝐸 | = |𝑉 | − 1 gilt.
Eine Spinne ist ein Baum mit höchstens einem Knoten 𝜈 von Grad größer 2. Diesen Knoten

𝜈 nennen wir Abspaltungspunkt. Anschaulich handelt es sich um eine Sammlung an Pfaden,
die am Abspaltungspunkt sternförmig verschmolzen sind.

Ein Out-Tree ist ein Baum mit einem Knoten 𝜈 , sodass für jeden Knoten 𝑢 ein 𝜈,𝑢-Pfad gibt.

5





3. Problemdefinition

In der vorliegenden Arbeit untersuchen wir das Optimierungsproblem Fahrzeugzuweisung mit

Haltekosten. Eine Probleminstanz besteht aus einem gerichteten und gewichteten Graphen
𝐺 = (𝑉 , 𝐸, 𝑐) mit nicht-negativen Kantengewichten, einer endlichen Menge Reisender 𝑅 sowie
positiven skalaren Haltekosten 𝛼 . Eine Lösung besteht aus einer Menge an Fahrzeugen 𝐹 und
einer Zuweisung der Reisenden zu Fahrzeugen 𝜁 . Die zu optimierenden Kosten sind gegeben
als Gesamtoperationszeit zuzüglich der Halte gewichtet mit den Haltekosten.
Jeder Reisende 𝑟 ∈ 𝑅 ist gegeben durch einen Pfad 𝑝𝑟 im Graphen 𝐺 . Es bezeichne ∪𝑅 die

Vereinigung aller Reisendenstrecken
⋃

𝑟 ∈𝑅 𝑝𝑟 als Teilgraph von𝐺 . Weiter bezeichne 𝐸𝑅 die
Kanten mit dem jeweiligen Reisenden. Das heißt 𝐸𝑅 ≔

⋃
𝑟 ∈𝑅{(𝑟, 𝑒) | 𝑒 in 𝑝𝑟 }.

Jedes Fahrzeug 𝑓 ∈ 𝐹 ist gegeben durch einen Pfad im Graphen 𝐺 , der erschöpfend in
Teilpfade gegliedert ist. Einen solchen Teilpfad nennen wir Relation. Die Konkatenation aller
Relationen muss gerade den Pfad des Fahrzeugs ergeben. Insbesondere stimmt das Ende einer
Relation mit dem Start der darauffolgenden Relation überein. Jeden Start und jedes Ende einer
Relation nennen wir Halt. Es beschreibe rel(𝑓 ) die Menge aller Relationen des Fahrzeugs 𝑓 .

Die Zuweisung der Reisenden zu Fahrzeugen ist gegeben durch eine Funktion von Reisenden
und Kanten zu Fahrzeugen 𝜁 : 𝐸𝑅 → 𝐹 . In der Situation 𝜁 (𝑟, 𝑒) = 𝑓 sagen wir, das Fahrzeug
𝑓 bedient Reisenden 𝑟 an Kante 𝑒 . Aber auch Reisender 𝑟 fährt an Kante 𝑒 in Fahrzeug 𝑓 .
Legt ein Reisender zwei aufeinanderfolgende Kanten im selben Fahrzeug zurück, müssen die
Kanten auch in dem Fahrzeug aufeinanderfolgen oder der Knoten dazwischen ein Halt sein.
Legt ein Reisender zwei aufeinanderfolgende Kanten in verschiedenen Fahrzeugen zurück,
muss der Knoten dazwischen ein Halt sein. Das heißt, dass das Fahrzeug für die vordere
Kante und das Fahrzeug für die hintere Kante beide an diesem Knoten halten. Einen solchen
Fahrzeugwechsel nennen wir Umstieg.

Die Gesamtoperationszeit ergibt sich aus den Kosten der befahrenen Kanten. Wir erhalten
also für die Gesamtoperationszeit

𝑇 =
∑︁
𝑓 ∈𝐹

∑︁
𝑒∈ 𝑓

𝑐 (𝑒).

Für die Halte wird der Knoten zwischen zwei aufeinanderfolgenden Pfaden eines Fahrzeugs
jeweils nur einmal gezählt. Es folgt, dass die Anzahl der Halte eines Fahrzeugs 𝑓 ∈ 𝐹 gerade
der Anzahl seiner Pfade plus 1 entspricht: Start und Ende sowie die Knoten zwischen den
Pfaden. Wir erhalten somit für die Anzahl Halte

ℎ =
∑︁
𝑓 ∈𝐹
( |rel(𝑓 ) | + 1).

Es folgt für die gesamten Kosten

𝑐 = 𝑇 + 𝛼 · ℎ =
∑︁
𝑓 ∈𝐹

∑︁
𝑒∈ 𝑓

𝑐 (𝑒) + 𝛼
∑︁
𝑓 ∈𝐹
( |rel(𝑓 ) | + 1).
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3. Problemdefinition

𝑎

𝑠0

𝑏

𝑠1

𝑐

𝑑

𝑠2

𝑒 𝑓

𝑔

𝑡1

ℎ

𝑡0, 𝑡2

1

1 2

1

21

1

1

Abbildung 3.1.: Ein Graph, der einen einfachen Verkehrsbedarf abbildet. Jeder Knoten ist mit
einem Namen beschrieben. Zusätzlich geben wir für jeden Reisenden 𝑟𝑖 für 𝑖 ∈ {0, 1, 2} mit
𝑠𝑖 seinen Start und mit 𝑡𝑖 sein Ziel an. Die drei Reisenden verfolgen den einzigen möglichen
Pfad von ihrem Start zu ihrem Ziel.

Gegeben eine Lösung 𝐿 einer Instanz 𝐼 lässt sich leicht in polynomieller Zeit überprüfen,
ob es sich um eine gültige Lösung handelt. Außerdem ist der Wert der Lösung 𝐿 nach obiger
Formel in Linearzeit berechenbar. Demzufolge liegt das Problem Fahrzeugzuweisung mit
Haltekosten beziehungsweise das zugehörige Entscheidungsproblem in NP.

In Abbildung 3.1 finden wir eine grafische Repräsentation einer einfachen Probleminstanz.
Neben einem Namen zur besseren Identifizierbarkeit tragen einige Knoten noch die Angaben
𝑠𝑖 bzw. 𝑡𝑖 für 𝑖 in {0, 1, 2}. Mit 𝑠𝑖 bezeichnen wir den Start- und mit 𝑡𝑖 den Endpunkt der Strecke
des Reisenden 𝑟𝑖 . Die restliche Strecke der Reisenden ergibt sich in diesem Beispiel bereits
aus dem Graphen. Reisender 𝑟0 zum Beispiel folgt dem Pfad (𝑎, 𝑐, 𝑒, 𝑓 , ℎ). Die Zahlen an den
Kanten geben die Zeit an, die es dauert die Kante zu befahren. So benötigt ein Fahrzeug für
die Strecke von Reisendem 𝑟0 insgesamt 1 + 2 + 21 + 1 = 25 Zeiteinheiten.

Setzen wir die Haltekosten auf 5, erhalten wir die folgende optimale Lösung: Reisender 𝑟0
fährt in einem Fahrzeug von 𝑎 bis 𝑒 , dann steigen die Reisenden 𝑟1 und 𝑟2 dazu. Die beiden sind
auch jeweils in einem eigenen Fahrzeug bis zu Knoten 𝑒 gefahren. Zusammen fahren sie die
eine Kante bis Knoten 𝑓 , wo Reisender 𝑟1 für die Kante zu seinem Ziel wieder in ein eigenes
Fahrzeug steigt. Reisende 𝑟0 und 𝑟2 bleiben weiter im selben Fahrzeug und fahren zu ihrem
Ziel ℎ. Dabei halten Fahrzeuge insgesamt 10 Mal: Das Fahrzeug, in dem 𝑟0 die ganze Strecke
fährt, hält an 𝑎, 𝑒 , 𝑓 und ℎ – Start von 𝑟0, Zustiegspunkt, Umsteigepunkt von 𝑟1, Ende von 𝑟0
und 𝑟2. Die eigenen Fahrzeuge zu 𝑒 halten jeweils zweimal: einmal am Start der Reisenden und
einmal an 𝑒 . Zuletzt hält das Fahrzeug, das Reisenden 𝑟1 zu seinem Ziel bringt, noch weitere
zweimal: an 𝑓 und dem Ziel 𝑔. Damit erhalten wir 5 · 10 Kosten für die Halte und insgesamt
einen Aufwand von

(5 · 10) + (1 + 2 + 21 + 1) + (1 + 2) + 1 + 1 = 80.
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4. Unzureichende lokale Eigenschaften

In diesem Kapitel untersuchen wir Eigenschaften, anhand derer sich lokal Entscheidungen tref-
fen ließen. Mit Gegenbeispielen zeigen wir auf, dass diese Eigenschaften nicht auf allgemeine
Probleminstanzen anwendbar sind.

4.1. Präfix ist Suffix

Eine solche Eigenschaft finden wir in Abbildung 4.1. Der Pfad des Reisenden 𝑟1 beinhaltet
als Präfix ein Suffix des Pfads des Reisenden 𝑟0. Fahren die beiden Reisenden also im selben
Fahrzeug, benötigen wir nur vier Halte, denn keiner muss umsteigen. Gleichzeitig befahren
wir die geteilte Strecke, in diesem Fall die Kante (𝑏, 𝑐), nur einmal. Fahren die zwei Reisenden
stattdessen in verschiedenen Fahrzeugen, benötigen wir immer noch vier Halte, müssen den
geteilten Teil jetzt allerdings zweimal befahren. Entsprechend lässt sich vermuten, dass in
einem solchen Fall die zwei Reisenden immer im selben Fahrzeug fahren müssen. Später
werden wir in Lemma 5.7 auch eine Variante dieser Aussage zeigen.

Allerdings dürfen wir nicht allgemein für alle Reisenden, auf die diese Situation zutrifft,
folgern, dass diese im selben Fahrzeug fahren. Betrachte dazu Abbildung 4.2. In diesem Bei-
spiel sehen wir einen dritten Reisenden. Die beiden Reisenden 𝑟1 und 𝑟2 konkurrieren um die
einsparende Zusammenfahrt mit Reisendem 𝑟0. Aufgrund der unterschiedlichen gemeinsa-
men Strecke lässt sich bei 𝑟1 eine gemeinsame Strecke von 11 und bei 𝑟2 hingegen nur eine
gemeinsame Strecke von 1 sparen. Solange 𝛼 > 1

2 lohnt es sich auch nicht alle drei Reisenden
in einem Fahrzeug zu bedienen, weil es zwei Halte benötigt, damit 𝑟1 und 𝑟2 ab 𝑑 verschiedene
Strecken befahren können. Entsprechend fahren in einer optimalen Lösung 𝑟0 und 𝑟2 entgegen
der Vermutung nicht zusammen.

4.2. Maximale Strecken

Eine weitere Eigenschaft ist: Wenn wir zusätzliche Halte aufwenden, sollten wir auch mög-
lichst viel Strecke dafür teilen. Auch diese Eigenschaft findet sich leicht abgewandelt in
späteren Aussagen dieser Arbeit wieder. Allerdings können wir wieder nicht nur anhand
eines Reisendenpaars entscheiden, wie lange die Zusammenfahrt andauern soll. Betrachte die
Instanz aus Abbildung 4.3. Dann teilt sich der Reisende 𝑟1 jeweils mit den Reisenden 𝑟0 und 𝑟2
eine Strecke von 101. Setzen wir die Haltekosten 𝛼 auf 5, so wissen wir, dass Reisender 𝑟1 sich
sowohl Strecke mit 𝑟0 als auch mit Reisendem 𝑟2 teilen sollte. Allerdings ist es nicht optimal,
beide Reisende ihre maximale Strecke von 101 teilen zu lassen.

Lemma 4.1: In dem Beispiel Abbildung 4.3 ist es nicht optimale, wenn Reisender 𝑟0 die komplette

geteilte Strecke mit 𝑟1 und 𝑟2 zusammenfährt.

Beweis. Betrachte eine Lösung gegeben durch die Zusammenfahrt von 𝑟1 mit 𝑟0 und 𝑟2 auf
der kompletten geteilten Strecke. Aufgrund der Struktur der Instanz ist der Wert der Lösung
dadurch bereits eindeutig bestimmt. Eine der möglichen Lösungen 𝐿 lautet wie folgt: Wir
benötigen drei Fahrzeugen 𝑓 , 𝑔 und ℎ̂. Das Fahrzeug 𝑓 befährt den Pfad (𝑎, 𝑏, 𝑑, 𝑒, 𝑓 ) und hält
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4. Unzureichende lokale Eigenschaften

𝑎

𝑠0

𝑏

𝑠1

𝑐

𝑡0

𝑑

𝑡1

1 2 1

Abbildung 4.1.: Die Situation in Präfix ist Suffix: Ein Präfix des Reisenden 𝑟1 ist Suffix des
Reisenden 𝑟0.

𝑎

𝑠0

𝑏

𝑠1

𝑐

𝑠2

𝑑

𝑡0

𝑒

𝑡1

𝑓

𝑡2

1 10 1

1

1

Abbildung 4.2.: Ein Gegenbeispiel für die Situation Präfix ist Suffix. Zwei Reisende 𝑟1 und
𝑟2 teilen sich jeweils ein Präfix mit einem Suffix von Reisendem 𝑟0. Die Reisenden 𝑟1 und 𝑟2
befahren allerdings Strecken, sodass es sich für diese beide nicht lohnt zusammen zu fahren.

an jedem Knoten. Das Fahrzeug 𝑔 befährt den Pfad (𝑐, 𝑑) und hält an Start und Ende. Und
das Fahrzeug ℎ̂ befährt den Pfad (𝑒, 𝑔, ℎ) und hält an jedem Knoten. Der Reisende 𝑟0 fährt
seine komplette Strecke in Fahrzeug 𝑓 . Reisender 𝑟1 fährt bis Knoten 𝑒 in Fahrzeug 𝑓 und
steigt dann für die restliche Strecke in Fahrzeug ℎ̂ um. Und Reisender 𝑟2 beginnt seine Reise
in Fahrzeug 𝑔, steigt an 𝑑 in Fahrzeug 𝑓 und wechselt an 𝑒 noch einmal zu Fahrzeug ℎ̂. Dann
ergibt sich für diese Lösung der Wert

𝑐𝐿 = 𝑐 ((𝑎, 𝑏)) + 𝑐 ((𝑏, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 𝑐 ((𝑒, 𝑓 )) + 𝑐 ((𝑐, 𝑑)) + 𝑐 ((𝑒, 𝑔)) + 𝑐 ((𝑔, ℎ)) + 𝛼 · (5 + 2 + 3)
= 1 + 100 + 1 + 1 + 1 + 100 + 1 + 10𝛼
= 205 + 10 · 5 = 255.

Wandeln wir die Lösung stattdessen leicht ab, sodass nur 𝑟0 die komplette Strecke mit 𝑟1
gemeinsam fährt und 𝑟2 nur die Kante mit Gewicht 100, erhalten wir die folgende Lösung 𝐿′.
In 𝐿′ benötigen wir nur zwei Fahrzeuge 𝑓 und 𝑔. Das Fahrzeug 𝑓 befährt den Pfad (𝑎, 𝑏, 𝑑, 𝑒, 𝑓 )
und hält an den Knoten 𝑎, 𝑏, 𝑒 und 𝑓 . Und das Fahrzeug 𝑔 befährt den Pfad (𝑐, 𝑑, 𝑒, 𝑔, ℎ) und
hält an den Knoten 𝑐 , 𝑒 , 𝑔 und ℎ. Der Reisende 𝑟0 fährt wie in 𝐿 seine komplette Strecke
in Fahrzeug 𝑓 . Reisender 𝑟1 fährt ebenfalls bis Knoten 𝑒 in Fahrzeug 𝑓 und steigt dann für
die restliche Strecke in Fahrzeug 𝑔 um. Und Reisender 𝑟2 fährt seine komplette Strecke in
Fahrzeug 𝑔. Für die Lösung 𝐿′ ergibt sich somit der Wert

𝑐𝐿′ = 𝑐 ((𝑎, 𝑏)) + 𝑐 ((𝑏, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 𝑐 ((𝑒, 𝑓 )) + 𝑐 ((𝑐, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 𝑐 ((𝑒, 𝑔)) + 𝑐 ((𝑔, ℎ)) + 𝛼 · (4 + 4)
= 1 + 100 + 1 + 1 + 1 + 1 + 100 + 1 + 8𝛼
= 206 + 8 · 5 = 246.

Da 𝑐𝐿′ kleiner als 𝑐𝐿 ist, ist 𝐿 somit nicht optimal.
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4.3. Beschränkter Zusammenschluss

𝑎

𝑠0

𝑏

𝑠1

𝑐

𝑠2

𝑑 𝑒

𝑓

𝑡0

𝑔

𝑡1

ℎ

𝑡2

1

100

1

1

1

100

1

Abbildung 4.3.: Ein Gegenbeispiel für die Situation maximale Strecken. Die Reisenden 𝑟0
und 𝑟2 teilen sich jeweils eine Strecke von 101 mit dem Reisenden 𝑟1. Aufgrund der Struktur
ihrer Pfade ist es nicht optimal, dass 𝑟0 und 𝑟2 die komplette Strecke mit 𝑟1 teilen.

4.3. Beschränkter Zusammenschluss

Je mehr Reisende in eine Zusammenfahrt involviert sind, desto teurer wird diese Zusam-
menfahrt potentiell. Denn für jedes verschiedene Fahrzeug, aus dem ein Reisender in ein
gemeinsames Fahrzeug umsteigt, werden Halte benötigt. Und dennoch gibt es keine obere
Schranke für die Anzahl an Reisenden, die betrachtet werden müssen, um zu bestimmen, ob
ein Zusammenschluss lohnenswert ist. Betrachte zum Beispiel die Familie an Instanzen aus
Abbildung 4.4. Dann erhalten wir für jedes 𝑛 ∈ ℕ+ eine Instanz 𝐼𝑛 mit 𝑛 Reisenden. Jeder
Reisende bereist drei Kanten, wobei er sich nur die mittlere Kante teilt. Und das mit allen
anderen Reisenden.

Lemma 4.2: Fahren in einer Instanz 𝐼𝑛 aus Abbildung 4.4 in einer optimalen Lösung manche

der Reisenden zusammen, so fahren alle zusammen.

Beweis. Die Aussage folgt aus einer einfachen Rechnung. Denn fahren𝑚 der Reisenden zu-
sammen, entstehen für jeden der𝑚 Reisenden zwei neue Halte. Jeder Reisende muss an 𝑑 in
das gemeinsame Fahrzeug ein- und an 𝑒 aus dem gemeinsamen Fahrzeug wieder aussteigen.
Oder zumindest mit dem gemeinsamen Fahrzeug anhalten, damit die restlichen Reisenden
umsteigen können. Dabei wird für jeden Reisenden, bis auf den, der im gemeinsamen Fahr-
zeug bleibt, einmal die Kante (𝑑, 𝑒) gespart. Durch die Zusammenfahrt sparen wir also eine
Operationszeit von

(𝑚 − 1) · 𝑐 ((𝑑, 𝑒)) = (𝑚 − 1) ·𝑤 .

Dafür müssen wir allerdings 2𝑚 zusätzliche Halte aufwenden. Die gesamten Kosten verbessern
sich also durch die Zusammenfahrt um

𝑏 (𝑚) ≔ (𝑚 − 1) ·𝑤 − 2𝑚𝛼 .

Lohnt sich die Zusammenfahrt für𝑚 Reisende, verschlechtern sich die gesamten Kosten durch
die Zusammenfahrt nicht. Es gilt also 𝑏 (𝑚) ≥ 0. Daraus folgt

𝑏 (𝑚) ≥ 0 ⇐⇒ (𝑚 − 1) ·𝑤 − 2𝑚𝛼 ≥ 0
⇐⇒ (𝑚 − 1) ·𝑤 ≥ 2𝑚𝛼

⇒ 𝑤 > 2𝛼 .
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4. Unzureichende lokale Eigenschaften

𝑎

𝑠0

𝑏
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𝑐

𝑠𝑛

𝑑 𝑒

𝑓

𝑡0
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ℎ
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1
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1
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Abbildung 4.4.: Eine Instanzfamilie als Gegenbeispiel für die Betrachtung einer beschränkten
Menge an Reisenden für eine Zusammenfahrt. Für jedes 𝑛 ∈ ℕ+ erhalten wir eine Instanz 𝐼𝑛 ,
in der 𝑛 Reisende in einem Graphen fahren. Der Pfad jedes Reisenden besteht aus drei Kanten.
Alle Reisenden teilen sich die mittlere ihrer drei Kanten. Für jedes𝑚 ∈ ℕ+ gibt es eine Wahl
von𝑤 in Abhängigkeit von 𝛼 , sodass eine Zusammenfahrt in den Instanzen mit 𝑛 kleiner𝑚
nicht optimal ist, für 𝑛 mindestens𝑚 aber optimal ist.

Leiten wir 𝑏 nach𝑚 ab, erhalten wir
𝑤 − 2𝛼 .

Da sich die Zusammenfahrt für𝑚 lohnt, ist 𝑏 somit eine streng monoton steigende Funktion
in𝑚. Somit folgt die Aussage.

Lemma 4.3: Für jedes𝑚 ∈ ℕ+,𝑚 > 2 gibt es eine Wahl von𝑤 in Abhängigkeit von 𝛼 , sodass

eine Zusammenfahrt aller Reisenden in einer Instanz 𝐼𝑛 aus Abbildung 4.4 genau dann optimal

ist, wenn 𝑛 nicht kleiner als𝑚 ist.

Beweis. Zunächst halten wir fest, dass eine Zusammenfahrt aller Reisenden in einer Instanz
𝐼𝑘 , den Wert der Lösung der Instanz 𝐼𝑘 im selben Maße ändertn wie die Zusammenfahrt von 𝑘
Reisenden in einer Instanz 𝐼𝑛 mit 𝑛 ≥ 𝑘 . Denn in beiden Fällen fahren dadurch 𝑘 Reisende
zusammen. Wissen wir also für ein 𝑚 ∈ ℕ+, dass in einer optimalen Lösung von 𝐼𝑚 , alle
Reisenden zusammenfahren, lohnt es sich auch in einer Lösung 𝐼𝑛 mit 𝑛 ≥ 𝑚, dass𝑚 Reisende
zusammenfahren. Mit Lemma 4.2 fahren in der optimalen Lösung von 𝐼𝑛 dann auch alle
Reisenden zusammen. Somit folgt, dass es reicht zu zeigen, dass es für jedes𝑚 ∈ ℕ+,𝑚 > 2
eine Wahl von𝑤 gibt, sodass sich die Zusammenfahrt für𝑚 lohnt, aber nicht für𝑚 − 1.
Sei nun𝑚 ∈ ℕ+. Wir setzen

𝑤 = 2𝛼
𝑚 · (𝑚 − 2) + 1

2
(𝑚 − 1) · (𝑚 − 2) .

Aus dem Beweis von Lemma 4.2 wissen wir, dass sich die Kosten durch die Zusammenfahrt
von 𝑛 Reisenden um

𝑏 (𝑛) = (𝑛 − 1) ·𝑤 − 2𝑛𝛼

12



4.4. Online-Algorithmus

verringert. Eingesetzt ergibt das für𝑚:

𝑏 (𝑚) = (𝑚 − 1) ·𝑤 − 2𝑚𝛼 = (𝑚 − 1) · 2𝛼
𝑚 · (𝑚 − 2) + 1

2
(𝑚 − 1) · (𝑚 − 2) − 2𝑚𝛼

= 2𝛼
𝑚 · (𝑚 − 2) + 1

2
𝑚 − 2 − 2𝑚𝛼

> 2𝛼
𝑚 · (𝑚 − 2)

𝑚 − 2 − 2𝑚𝛼

= 2𝑚𝛼 − 2𝑚𝛼

= 0.

Und für𝑚 − 1 ergibt es

𝑏 (𝑚 − 1) = (𝑚 − 2) ·𝑤 − 2(𝑚 − 1)𝛼 = (𝑚 − 2) · 2𝛼
𝑚 · (𝑚 − 2) + 1

2
(𝑚 − 1) · (𝑚 − 2) − 2(𝑚 − 1)𝛼

= 2𝛼
𝑚 · (𝑚 − 2) + 1

2
𝑚 − 1 − 2(𝑚 − 1)𝛼

= 2𝛼
(𝑚 − 1) · (𝑚 − 2)

𝑚 − 1 + 2𝛼
𝑚 − 2 + 1

2
𝑚 − 1 − 2(𝑚 − 1)𝛼

= 2(𝑚 − 2)𝛼 + 2𝛼
𝑚 − 2 + 1

2
𝑚 − 1 − 2(𝑚 − 1)𝛼

= −2𝛼 + 2𝛼
𝑚 − 1 − 1

2
𝑚 − 1

< −2𝛼 + 2𝛼
= 0

Da 𝑏 (𝑚) > 0 wissen wir, dass sich die Lösung für 𝐼𝑚 durch die Zusammenfahrt verbessert.
Analog wissen wir mit 𝑏 (𝑚 − 1) < 0, dass sich die Lösung für 𝐼𝑚−1 durch die Zusammenfahrt
verschlechtert. Somit lohnt sich die Zusammenfahrt für𝑚, aber nicht für𝑚 − 1.

4.4. Online-Algorithmus

Die letzte Eigenschaft ist eher ein Algorithmus-Ansatz, als ein lokales Entscheidungskrite-
rium. Spezifisch betrachten wir Reisende in einer festen Reihenfolge. Mit jedem weiteren
Reisenden wollen wir die aktuelle Lösung erweitern, um eine optimale Lösung zu erhalten.
Jeden zusätzlichen Reisenden betrachten wir als einen Schritt des Algorithmus. Dann gibt
es zu jedem Schritt neue Möglichkeiten, wie Reisende zusammenfahren können. Jede davon
involviert den neuen Reisenden, denn sonst wäre die Zusammenfahrt bereits vorher möglich
gewesen. Um die bisherige Lösung zu erweitern, sollen bisher zusammengefahrene Strecken
in jedem Schritt erhalten. In den bisherigen Beispielen lässt sich eine Reihenfolge finden,
in der wir mit diesem Ansatz eine optimale Lösung erhalten. Allerdings zeigen wir anhand
der Instanz aus Abbildung 4.5, dass wir nicht immer mit jeder beliebigen Reihenfolge eine
optimale Lösung erhalten. Weiter gibt es |𝑅 |! Reihenfolgen an Reisenden. Damit aus dem
Ansatz ein optimaler Algorithmus entstehen kann, würde es also eine effiziente Suche nach
der korrekten Reihenfolge benötigen.

Lemma 4.4: In aufsteigend durchnummerierter Reihenfolge liefert der Ansatz eine nicht optimale

Lösung für die Instanz in Abbildung 4.5.
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𝑎
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𝑏
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𝑐
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1

1
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Abbildung 4.5.: Ein Gegenbeispiel für sequentielles Aufbauen in beliebiger Reihenfolge mit
𝛼 = 5. In diesem Beispiel enden alle Reisenden am Knoten 𝑓 , was wir mit der Markierung 𝑡
ausdrücken.

Beweis. Zuerst erstellen wir in drei Schritten entsprechend der Reihenfolge eine Lösung,
wobei wir zu jedem Zeitpunkt die beste Entscheidung treffen. Dann vergleichen wir diese mit
einer anderen Lösung und sehen ein, dass die erstellte Lösung nicht optimal ist.
Im ersten Schritt betrachten wir nur den Reisenden 𝑟0. Da 𝑟0 sich mit keinem anderen

Reisenden etwas teilen kann, ist die beste Lösung ein Fahrzeug, dass den Pfad von 𝑟0 bedient
und nur an Start und Ende hält.
Im zweiten Schritt betrachten wir zusätzlich noch 𝑟1. Die Reisenden 𝑟1 und 𝑟0 haben drei

Möglichkeiten sich etwas zu teilen: Sie können sich nur die Kante (𝑑, 𝑒), nur die Kante (𝑒, 𝑓 )
oder den Pfad (𝑑, 𝑒, 𝑓 ) teilen. Für die Kante (𝑑, 𝑒) brauchen sie vier zusätzliche Halte und für
die Kante (𝑒, 𝑓 ) oder den Pfad (𝑑, 𝑒, 𝑓 ) je zwei zusätzliche Halte. Da sich auf dem Pfad (𝑑, 𝑒, 𝑓 )
am meisten Strecke sparen lässt, ist die beste Lösung wie folgt: Ein Fahrzeug 𝑔 fährt den Pfad
(𝑎, 𝑑, 𝑒, 𝑓 ) und hält an den Knoten 𝑎, 𝑑 und 𝑓 . Und ein weiteres Fahrzeug ℎ fährt den Pfad
(𝑏, 𝑑) und hält an Start und Ende. Reisender 𝑟0 fährt seine komplette Strecke in 𝑔. Reisender
𝑟1 beginnt seinen Pfad in ℎ und steigt an 𝑑 für den restlichen Pfad in 𝑔 um.

Im dritten und letzten Schritt betrachten wir noch 𝑟2. Die einzige Strecke, die sich 𝑟2 mit
anderen Reisenden teilen kann ist die Kante (𝑒, 𝑓 ). Da 𝑐 ((𝑒, 𝑓 )) = 100 mehr spart als die
zwei zusätzlichen Halte, ergibt sich folgende Lösung 𝐿: Es fahren drei Fahrzeuge 𝑓 , 𝑔 und ℎ.
Das Fahrzeug 𝑓 fährt die Kante (𝑐, 𝑒) und hält an Start und Ende. Das Fahrzeug 𝑔 fährt den
Pfad (𝑎, 𝑑, 𝑒, 𝑓 ) und hält an jedem Knoten. Und das Fahrzeug ℎ fährt die Kante (𝑏, 𝑑) und hält
an Start und Ende. Insgesamt halten Fahrzeuge achtmal. Reisender 𝑟0 fährt seine komplette
Strecke in 𝑔. Reisender 𝑟1 beginn seine Strecke in ℎ und steigt an Knoten 𝑑 in Fahrzeug 𝑔 um.
Und Reisender 𝑟2 beginnt seine Strecke in 𝑓 und steigt an 𝑒 in 𝑔 um.

Dann ergibt sich für die Lösung 𝐿 der Wert

𝑐𝐿 = 𝑐 ((𝑐, 𝑒)) + 𝑐 ((𝑎, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 𝑐 ((𝑒, 𝑓 )) + 𝑐 ((𝑏, 𝑑)) + 8𝛼
= 1 + 1 + 1 + 100 + 1 + 8 · 5
= 144.

Alternativ betrachte die Lösung 𝐿′ gegeben durch: Drei Fahrzeuge 𝑓 , 𝑔 und ℎ. Das Fahrzeug
𝑓 befährt die Kante (𝑐, 𝑒) und hält an Start und Ende. Das Fahrzeug 𝑔 befährt den Pfad
(𝑎, 𝑑, 𝑒, 𝑓 ) und hält an 𝑎, 𝑒 und 𝑓 . Und das Fahrzeug ℎ befährt den Pfad (𝑏, 𝑑, 𝑒) und hält an
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4.4. Online-Algorithmus

Start und Ende. In 𝐿′ halten Fahrzeuge somit insgesamt siebenmal. Reisender 𝑟0 fährt seine
komplette Strecke in 𝑔. Reisender 𝑟1 fährt zu Beginn in ℎ und steigt an Knoten 𝑒 für die
restliche Strecke in 𝑔. Und Reisender 𝑟2 beginnt seine Strecke in 𝑓 und steigt an 𝑒 für die
restliche Strecke in 𝑒 um. Für den Wert der Lösung 𝐿 ergibt sich

𝑐𝐿′ = 𝑐 ((𝑐, 𝑒)) + 𝑐 ((𝑎, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 𝑐 ((𝑒, 𝑓 )) + 𝑐 ((𝑏, 𝑑)) + 𝑐 ((𝑑, 𝑒)) + 7𝛼
= 1 + 1 + 1 + 100 + 1 + 1 + 7 · 5
= 140.

Da 𝑐𝐿 größer ist als 𝑐𝐿′ , ist die berechnete Lösung 𝐿 nicht optimal.
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5. Einschränkung auf Graphenklassen

Auf allgemeinen Graphen gestaltet es sich schwierig, einen polynomiellen Algorithmus zu ent-
wickeln. Deshalb betrachten wir als eine Einschränkung des Problems Fahrzeugzuweisung
mit Haltekosten die Beschränkung der möglichen Graphen in der Eingabe auf bestimmte
Graphenklassen. Ohne die Struktur des Problems zu verändern, können wir so den Einfluss
verschiedener Verkehrsnetze auf die Schwierigkeit des Problems Fahrzeugzuweisung mit
Haltekosten untersuchen.

In diesem Kapitel fordern wir, dass die Kostenfunktion 𝑐 echt positiv ist. Das heißt, für alle
𝑒 ∈ 𝐸 gilt 𝑐 (𝑒) > 0.

5.1. Gerichtete Pfade

Eine einfache Graphenklasse ist die aller gerichteten Pfade. Dazu werden wir zunächst eine all-
gemeine Erkenntnis einsehen: In jeder beliebigen Instanz des Problems Fahrzeugzuweisung
mit Haltekosten sind die nicht von Reisenden befahrenen Kanten für eine optimale Lösung
nicht relevant. Danach zeigen wir, dass auf gerichteten Pfaden eine optimale Lösung auf jeder
Zusammenhangskomponente von ∪𝑅 aus einem Fahrzeug besteht. Mit dieser Erkenntnis
zeigen wir, dass wir eine optimale Lösung einer Instanz des Problems Fahrzeugzuweisung
mit Haltekosten auf einem gerichteten Pfad schnell berechnen können.

Lemma 5.1: In einer optimalen Lösung einer beliebigen Instanz des Problems Fahrzeugzuwei-

sung mit Haltekosten befährt kein Fahrzeug eine Kante, an der es keinen Reisenden bedient.

Beweis. Angenommen in einer Lösung existiert ein Fahrzeug 𝑓 , das eine Kante 𝑒 befährt, an
der es keinen Reisenden bedient. Dann teile 𝑓 auf in ein Fahrzeug 𝑓1, das alle Reisenden vor 𝑒
bedient, und ein Fahrzeug 𝑓2, das alle Reisenden nach 𝑒 bedient. 𝑓1 endet am letzten Halt eines
von 𝑓 bedienten Reisenden vor 𝑒 . 𝑓2 startet am ersten Halt eines von 𝑓 bedienten Reisenden
nach 𝑒 . Bedient 𝑓 vor bzw. nach 𝑒 keinen Reisenden, fällt das entsprechende Fahrzeug 𝑓1 bzw.
𝑓2 aus der Lösung. Dadurch werden es höchstens weniger Halte, wenn 𝑓1 oder 𝑓2 wegfällt.
Außerdem fällt in jedem Fall die Kante 𝑒 weg. Die Lösung war also nicht optimal.

Satz 5.2: Für einen gerichteten Pfad besteht eine optimale Lösung aus einem Fahrzeug je Zu-

sammenhangskomponente von ∪𝑅. Dieses Fahrzeug fährt genau die Strecke vom Start des ersten

bis zum Ziel des letzten Reisenden. Es hält exakt an den Knoten, an denen Reisende starten oder

enden. Dabei hält es an jedem dieser Knoten genau einmal.

Beweis. Nach Lemma 5.1 wissen wir, dass kein Fahrzeug eine Kante befährt, die kein Reisender
befahren möchte. Entsprechend können wir die Lösung für jede Zusammenhangskomponente
von ∪𝑅 alleine betrachten. Eine solche Zusammenhangskomponente ist ein inklusionsmaxi-
maler zusammenhängender Teilgraph, sodass es für jede Kante einen Reisenden gibt, der diese
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befahren möchte. Somit können wir ohne Beschränkung der Allgemeinheit davon ausgehen,
dass unser Pfad bereits eine solche Zusammenhangskomponente bildet. Da jede Kante von
einem Reisenden befahren werden möchte, wissen wir außerdem, dass ein Reisender am
ersten Knoten des Pfads startet und einer am letzten Knoten des Pfads endet.
Wir wollen also zeigen, dass eine optimale Lösung gegeben ist durch ein einziges Fahrzeug

𝑓 . 𝑓 fährt einmal die Strecke des Pfads und hält an jedem Knoten genau einmal, an dem ein
Reisender startet oder endet.
Nach Definition fährt 𝑓 jede Kante genau einmal. Da jede Kante von zumindest eEinmal-

SelbesFahrzeugImmerSelbesFahrzeuginem Reisendem befahren werden möchte, muss jede
Kante auch mindestens einmal befahren werden. Ebenso hält dieses Fahrzeug genau an den
Knoten, an denen Reisende starten oder enden. Es hält an diesen Knoten aber auch jeweils
nur einmal. Somit hat diese Lösung sowohl die kleinstmögliche Zahl an Halten als auch nur
die minimale Menge an Kanten befahren. Also ist sie optimal.

Korollar 5.3: Auf gerichteten Pfaden kann die Fahrzeugzuweisung mit Haltekosten in

O( |𝐸𝑅 |) berechnet werden.

Beweis. In Satz 5.2 haben wir gezeigt, dass es ein einfaches Schema für eine optimale Lösung
für einen Pfad gibt. Zur Berechnung der Fahrzeugs und der Fahrzeugzuweisung verwenden
wir einen Sweepline-Algorithmus. Die Events sind die Starts und Enden der Reisenden, in der
Reihenfolge des Pfads. Bei jedem auftretenden Event fügen wir die Strecke vom letzten Event
zum aktuellen Knoten als neuen letzten Teilpfad dem Fahrzeug hinzu. Ist die hinzugefügte
Strecke von Länge 0 ändert sich das Fahrzeug stattdessen nicht. Endet mit einem Event der
aktuell letzte Reisende, der gestartet aber noch nicht geendet ist, fahren ab diesem Event keine
Reisende. In diesem Fall erstellen wir beim nächsten Event stattdessen ein neues Fahrzeug.
Dadurch haben wir dann gerade Fahrzeuge beschrieben, die die Zusammenhangskomponen-
ten von ∪𝑅 befahren und an jedem enthaltenen Start oder Ende halten. Die Zuweisung 𝜁

bestimmen wir, indem wir jeder Kante jedes Reisenden das aktuelle Fahrzeug bei dem Event
ihres Endes zuweisen.
Dann benötigen wir für die Berechnung des Fahrzeugs Zeit O( |𝑅 | + |𝐸 |), da wir Start und

Ende eines jeden Reisenden und jede Kante genau einmal betrachten. Für die Berechnung der
Fahrzeugzuweisung benötigen wir Zeit O( |𝐸𝑅 |), da wir für jede Kante jedes Reisenden eine
Ausgabe tätigen. Somit folgt die geforderte Laufzeit.

5.2. Einhals-Spinnen

Eine weitere Graphenklasse ist die der Einhals-Spinnen. Mit Einhals-Spinnen beschreiben wir
Spinnen, die auf eine besondere Art gerichtet sind. Wir fordern, dass einer der Pfade auf den
Abspaltungspunkt zu und alle anderen vom Abspaltungspunkt weg gerichtet sind. Den Pfad,
der auf den Abspaltungspunkt zu gerichtet ist, nennen wir Hals. Jeden der restlichen Pfade
nennen wir Bein.
In diesem Abschnitt zeigen wir einige Eigenschaften einer optimalen Lösung. Mit die-

sen Eigenschaften stellen wir einen Polynomialzeitalgorithmus vor, der allerdings auf einer
polynomiellen Lösbarkeit des Problems Gruppenzusammenfahrt beruht. Wir gehen in
Abschnitt 5.2.4 näher darauf ein.

Zu Beginn noch eine Definition. Ein Knoten 𝜈 heißt höher als ein anderer Knoten 𝑢 ≠ 𝜈 ,
wenn im Graphen ein 𝜈,𝑢-Pfad 𝑝 existiert. In dem Fall sagen wir auch: Der Knoten 𝜈 liegt
oberhalb von 𝑢. Ist die Summe der Kantengewichte von 𝑝 𝑐 , sagen wir auch, dass 𝜈 𝑐 höher
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𝑢 𝜈 𝑥 𝑦
𝑓

𝑓 ′

𝑓 𝑓

Abbildung 5.1.: Die Situation in Lemma 5.4. An der Kante 𝑒 = (𝑢, 𝜈) fahren zwei Reisende in
den verschiedenen Fahrzeugen 𝑓 und 𝑓 ′. Unterhalb von 𝜈 und oberhalb von 𝑦, insbesondere
an der Kante 𝑒′ = (𝑥,𝑦), fahren beide Reisende im selben Fahrzeug 𝑓 . In Lemma 5.4 zeigen
wir, dass eine solche Lösung nicht optimal ist.

ist als 𝑢. Analog erweitern wir das Konzept auf Kanten, Pfade und Kombinationen davon.
Eine Kante (𝑢, 𝜈) ist höher als eine andere Kante (𝑢′, 𝜈 ′), wenn im Graphen ein 𝜈,𝑢′-Pfad
existiert. Eine Kante (𝑢, 𝜈) ist höher als ein Knoten𝑤 , wenn im Graphen ein 𝜈,𝑤-Pfad existiert.
Ein Knoten 𝑤 ist höher als eine Kante (𝑢, 𝜈), wenn im Graphen ein 𝑤,𝑢-Pfad existiert. Ein
Pfad (𝜈0, . . . , 𝜈𝑛) ist höher als ein Knoten 𝑢, wenn im Graphen ein 𝜈𝑛, 𝑢-Pfad existiert. Ein
Knoten 𝑢 ist höher als ein Pfad (𝜈0, . . . , 𝜈𝑛), wenn im Graphen ein 𝑢, 𝜈0-Pfad existiert. Ein
Pfad (𝜈0, . . . , 𝜈𝑛) ist höher als eine Kante (𝑢, 𝜈), wenn im Graphen ein 𝜈𝑛, 𝑢-Pfad existiert. Eine
Kante (𝑢, 𝜈) ist höher als ein Pfad (𝜈0, . . . , 𝜈𝑛), wenn im Graphen ein 𝜈, 𝜈0-Pfad existiert. Ist 𝑎
höher als 𝑏, sagen wir auch 𝑏 ist niedriger als 𝑎 oder 𝑏 liegt unterhalb von 𝑎.

5.2.1. Struktur einer optimalen Lösung

In diesem Abschnitt beschäftigen wir uns mit der Struktur einer optimalen Lösung. Zuerst
wollen wir zeigen, dass nur ein Teil der Graphenstruktur größerer Aufmerksamkeit bedarf.
Denn in den Beinen und auch weit oben im Hals verkehrt jeweils nur ein Fahrzeug. Außerdem
zeigen wir noch weitere Aussagen, mit deren Hilfe wir später den schwierigen Teil in der
Mitte untersuchen.

Wir sprechen häufiger davon, dass wir ein Fahrzeug 𝑓 erweitern, sodass es die Reisenden
eines anderen Fahrzeugs 𝑔 bis zu einem Knoten 𝜈 bedient. In dem Fall verlängern wir den
Pfad von 𝑓 , um den Teilpfad von 𝑔 oberhalb von 𝜈 . Zusätzlich hält 𝑓 oberhalb von 𝜈 an allen
Knoten, an denen 𝑔 hält. Außerdem hält 𝑓 an 𝜈 . Ebenso passen wir die Zuweisung 𝜁 an, sodass
ein Reisender an einer Kante oberhalb von 𝜈 von 𝑓 bedient wird, wenn es vorher von 𝑔 bedient
wurde.

Als erstes zeigen wir in drei Schritten, dass in einer optimalen Lösung in jedem Bein nur
ein Fahrzeug fährt. Dafür zeigen wir zuerst, dass wenn zwei Reisende in einer optimalen
Lösung im selben Fahrzeug sitzen, sie davor schon immer im gleichen Fahrzeug gesessen
haben. Damit zeigen wir dann, dass in jedem Bein an jeder Kante nur ein Fahrzeug verkehrt.
Hieraus folgern wir dann, dass im gesamten Bein schon nur ein Fahrzeug verkehrt.

Lemma 5.4: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne. Seien weiter 𝑟, 𝑟 ′ ∈ 𝑅 zwei Reisende. Seien

außerdem 𝑒, 𝑒′ ∈ 𝐸 mit 𝑒 höher als 𝑒′ zwei Kanten, die von beiden befahren werden. Ist 𝐿 eine

optimale Lösung des Problems Fahrzeugzuweisung mit Haltekosten mit 𝜁 (𝑟, 𝑒′) = 𝜁 (𝑟 ′, 𝑒′),
dann gilt auch 𝜁 (𝑟, 𝑒) = 𝜁 (𝑟 ′, 𝑒).

Die Situation ist schematisch in Abbildung 5.1 dargestellt. An der Kante 𝑒 = (𝑢, 𝜈) fahren
beide Reisende in verschiedenen Fahrzeugen, aber an der niedrigeren Kante 𝑒 = (𝑥,𝑦) fahren
beide im selben Fahrzeug.

Beweis. Angenommen 𝐿 ist eine optimale Lösungmit 𝜁 (𝑟, 𝑒′) = 𝜁 (𝑟 ′, 𝑒′), aber 𝜁 (𝑟, 𝑒) ≠ 𝜁 (𝑟 ′, 𝑒).
Ohne Beschränkung der Allgemeinheit sei (𝑢, 𝜈) ≔ 𝑒 die niedrigsten Kante, die höher als
𝑒′ liegt und für die 𝜁 (𝑟, 𝑒) ≠ 𝜁 (𝑟 ′, 𝑒) gilt. Seien 𝑓 = 𝜁 (𝑟, 𝑒) und 𝑓 ′ = 𝜁 (𝑟 ′, 𝑒) die Fahrzeuge,
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𝑎 𝑢 𝜈 𝑏

𝑐

𝑑

𝑒

𝑟

𝑟 ′

Abbildung 5.2.: Die Situation in Lemma 5.5. Das Ziel zweier Reisenden 𝑟 und 𝑟 ′ liegt im
selben Bein. An der Kante 𝑒 = (𝑢, 𝜈) fahren beide Reisende aber in verschiedenen Fahrzeugen.
In Lemma 5.5 zeigen wir, dass eine solche Lösung nicht optimal ist.

in denen die beiden Reisenden die Kante befahren. Sei weiter 𝑓 das Fahrzeug, indem sie
ab 𝜈 zusammen fahren. Dabei kann 𝑓 mit 𝑓 oder mit 𝑓 ′ übereinstimmen. Sprechen wir im
Folgenden von Änderungen an 𝑓 oder 𝑓 ′, treffen diese nur zu, wenn das jeweilige Fahrzeug
nicht schon mit 𝑓 übereinstimmt.
Dann erhalten wir eine neue Lösung 𝐿̂: Wir erweitern 𝑓 , sodass 𝑓 alle Reisenden von 𝑓

und 𝑓 ′ bis 𝜈 bedient. 𝑓 und 𝑓 ′ hingegen starten erst bei 𝜈 . Da 𝐺 eine Einhals-Spinne ist, ist
die Strecke bis 𝜈 ein Pfad. Somit ist 𝐿̂ wohldefiniert. In 𝐿̂ befährt 𝑓 nur die Strecken mehr, die
in 𝐿, aber nicht in 𝐿̂, von 𝑓 und 𝑓 ′ befahren werden. Von beiden befahrene Kanten, befährt
es aber nur einmal. Insbesondere ist 𝐿̂ in Bezug auf Strecke um mindestens 𝑐 (𝑒) besser als 𝐿.
Ebenso hält 𝑓 in 𝐿̂ bis 𝑢 zusätzlich höchstens an den Knoten, an denen in 𝐿, aber nicht in 𝐿̂, 𝑓
und 𝑓 ′ halten. Ab 𝜈 halten alle drei Fahrzeuge in 𝐿̂ an den selben Knoten wie in 𝐿. Auch an 𝜈 ,
da in 𝐿 𝑟 aus 𝑓 und 𝑟 ′ aus 𝑓 ′ in 𝑓 umsteigen wollen. Somit haben wir eine bessere Lösung 𝐿̂
gefunden. Ein Widerspruch zur Annahme, dass die Lösung 𝐿 optimal ist.

Lemma 5.5: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne. Seien weiter 𝑟, 𝑟 ′ ∈ 𝑅 zwei Reisende, deren Ziel

im selben Bein exklusive dem Abspaltungspunkt liegt. Sei außerdem 𝑒 ∈ 𝐸 eine Kante, die von

beiden befahren wird. Dann gilt in jeder optimalen Lösung des Problems Fahrzeugzuweisung

mit Haltekosten, dass beide Reisenden an der Kante 𝑒 vom selben Fahrzeug bedient werden:

𝜁 (𝑟, 𝑒) = 𝜁 (𝑟 ′, 𝑒).

Die Situation ist schematisch in Abbildung 5.3 zu sehen. Zwei Reisende fahren ins selbe
Bein, benutzen aber an der Kante 𝑒 = (𝑢, 𝜈) verschiedene Fahrzeuge.

Beweis. Sei also eine Probleminstanz mit zwei Reisenden 𝑟, 𝑟 ′ ∈ 𝑅 mit Ziel im selben Bein
exklusive Abspaltungspunkt gegeben. Sei weiter 𝐿 eine optimale Lösung, in der Kanten
existieren, die von 𝑟 und 𝑟 ′ in unterschiedlichen Fahrzeugen befahren werden. Sei (𝑢, 𝜈) = 𝑒 ∈
𝐸 die niedrigste solcher Kanten. Seien 𝑓 = 𝜁 (𝑟, 𝑒) und 𝑓 ′ = 𝜁 (𝑟 ′, 𝑒) die Fahrzeuge, in denen
die beiden Reisenden die Kante befahren.

Dann unterscheiden wir ob 𝑟 und 𝑟 ′ ab 𝜈 noch weiterfahren, oder zumindest einer endet.
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𝑎 𝑢 𝜈 𝑏

𝑐

𝑑

𝑒

𝑓 ′

𝑓

𝑓

Abbildung 5.3.: In einem Bein verkehrt nur ein Fahrzeug, dass alle Reisenden bedient.

Fahren beide weiter, fahren sie ab 𝜈 im selben Fahrzeug. Denn ihr Ziel liegt im selben Bein
und 𝑒 ist die niedrigste Kante, in der sie mit verschiedenen Fahrzeugen fahren. Somit sind
wir in der Situation aus Lemma 5.4 und es folgt bereits, dass 𝑓 = 𝑓 ′ gelten muss, da 𝐿 eine
optimale Lösung ist.
Ende stattdessen mindestens einer der Reisenden am Knoten 𝜈 . Ohne Beschränkung der

Allgemeinheit ende der Reisende 𝑟 ′. Dann erhalten wir eine neue Lösung 𝐿′: Verlängere 𝑓 ,
sodass es alle Reisenden von 𝑓 ′ bedient. Das Fahrzeug 𝑓 ′ ist nicht mehr Teil der neuen Lösung
𝐿′. Da 𝑟 ′ am Knoten 𝜈 endet, befindet sich dieser bereits im Bein. Deshalb bildet die Vereingung
der Strecken von 𝑓 und 𝑓 ′ einen Pfad. Die neue Lösung 𝐿′ ist also wohldefiniert. In 𝐿′ hält 𝑓
an der Vereinigung der Halte von 𝑓 und 𝑓 ′ in 𝐿. Ebenso befährt 𝑓 in 𝐿′ die Vereinigung der
Strecken von 𝑓 und 𝑓 ′ in 𝐿. Allerdings wird 𝑒 in 𝐿′ einmal weniger befahren als in 𝐿. Somit
ist die Lösung 𝐿′ besser als die als optimal angenommen Lösung 𝐿. Ein Widerspruch.

Lemma 5.6: Sei𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden befahren

wird. Sei 𝐵 ein Bein der Spinne. Dann existiert in jeder optimalen Lösung ein Fahrzeug 𝑓 , sodass

jeder Reisender 𝑟 an jeder Kante 𝑒 im Bein 𝐵 von 𝑓 bedient wird. Das heißt: 𝜁 (𝑟, 𝑒) = 𝑓 .

Abbildung 5.3 zeigt schematisch die Aussage von Lemma 5.6. In jedem Bein verkehrt genau
ein Fahrzeug, dass alle Reisenden bedient.

Beweis. Seien also eine Probleminstanz und ein Bein 𝐵 des Graphen gegeben. Seien weiter
𝑟, 𝑟 ′ ∈ 𝑅 zwei Reisende und 𝑒, 𝑒′ ∈ 𝐸 zwei Kanten in 𝐵, sodass 𝑟 die Kante 𝑒 und 𝑟 ′ die Kante
𝑒′ befährt. Dabei seien 𝑟 und 𝑟 ′ sowie 𝑒 und 𝑒′ nicht notwendigerweise verschieden.

Ist bereits 𝑒 = 𝑒′ erhalten wir die Aussage aus Lemma 5.5. Wir wissen also bereits, dass in
jeder optimalen Lösung jede Kante innerhalb eines Beins nur von einem Fahrzeug befahren
wird.

Sei nun 𝐿 eine optimale Lösung, für die 𝜁 (𝑟, 𝑒) ≠ 𝜁 (𝑟 ′, 𝑒′) gilt. Insbesondere gilt auch 𝑒 ≠ 𝑒′.
Sei 𝑓 das Fahrzeug, das die Kante in 𝐵 inzident zum Abspaltungspunkt befährt. Wir verlängern
den Pfad von 𝑓 bis zum niedgristen Knoten des Beins 𝐵. Weiter halte 𝑓 an jedem Start und
Ende eines Reisenden im Bein 𝐵. Dann ersetzen wir alle Fahrten mit Fahrzeugen in 𝐵 durch
Fahrten mit dem verlängerten 𝑓 für eine neue Lösung 𝐿′. Alle anderen Fahrzeuge befahren
in 𝐿′ keine Kanten aus 𝐵. Da nach Voraussetzung jede Kante von einem Reisenden befahren
wird, befahren wir dadurch nicht mehr Kanten mit Fahrzeugen. Weiter müssen auch die
Fahrzeuge vorher an jedem Start und Ende eines Reisenden gehalten haben, also hält 𝑓 auch
nicht häufiger in 𝐵 als die Fahrzeuge in 𝐿. In 𝐿 werden die zwei verschiedenen Kanten 𝑒 und
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𝑎 𝑢 𝜈 𝑤

𝑏

𝑐

𝑓 𝑓 𝑔

𝑔

Abbildung 5.4.: Die Situation aus Lemma 5.7. Das Fahrzeug 𝑓 endet am Knoten 𝜈 . Das
Fahrzeug 𝑔 befährt die Kante (𝜈,𝑤) und potentiell noch weitere Kanten. Eine solche Lösung
ist nicht optimal.

𝑒′ von verschiedenen Fahrzeugen bedient. Somit existieren auch zwei adjazente Kanten 𝑒 und
𝑒′, die in 𝐿 von verschiedenen Fahrzeugen 𝑓 und 𝑓 ′ bedient werden. Sei 𝜈 der zu 𝑒 und 𝑒′

inzidente Knoten. Dann muss ohne Beschränkung der Allgemeinheit 𝑓 an 𝜈 enden und 𝑓 ′ an
𝜈 starten. In 𝐿 gibt es also zwei Halte an 𝜈 . In 𝐿′ hingegen hält nur 𝑓 maximal einmal an 𝜈 .
Also war die Lösung 𝐿 nicht optimal. Ein Widerspruch.

Nun wollen wir weiter zeigen, dass in dem Bereich von mindestens 2𝛼 über dem Abspal-
tungspunkt auch nur ein Fahrzeug verkehrt. Dafür zeigen wir zuerst, dass kein Fahrzeug an
einem Knoten 𝜈 enden kann, wenn ein weiteres Fahrzeug noch ab 𝜈 fährt. Damit zeigen wir
weiter, dass in dem Bereich an jeder Kante nur ein Fahrzeug verkehrt. Hieraus folgern wir
dann, dass es in dem Bereich des Halses insgesamt nur ein Fahrzeug gibt.

Lemma 5.7: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne. Sei (𝑢, 𝜈,𝑤) ein Teilpfad von 𝐺 . Sei weiter 𝐿

eine optimale Lösung mit zwei Fahrzeugen 𝑓 und 𝑔. Dann kann nicht gleichzeitig 𝑓 an 𝜈 enden

und 𝑔 die Kante (𝜈,𝑤) befahren.

Die Situation ist schematisch in Abbildung 5.4 zu sehen. Der Teilpfad (𝑢, 𝜈,𝑤) liegt im Hals
und Fahrzeug 𝑓 endet an Knoten 𝜈 und Fahrzeug 𝑔 befährt die Kante (𝜈,𝑤).

Beweis. Angenommen 𝐿 ist eine optimale Lösung, in der 𝑓 an 𝜈 endet und 𝑔 die Kante (𝜈,𝑤)
befährt. Konstruiere eine neue Lösung 𝐿′, in der wir 𝑔 erweitern, sodass es alle Reisenden von
𝑓 bedient. Das Fahrzeug 𝑓 ist nicht Teil der Lösung 𝐿′. Dann ist 𝐿′ wohldefiniert, weil𝐺 eine
Einhals-Spinne ist und somit der Teilgraph oberhalb von 𝜈 ein Pfad ist.
Fall 1, 𝑔 startet an 𝜈 . Dann spart die neue Lösung 𝐿′ gegenüber 𝐿 einen Halt, weil 𝑓 nicht

mehr an 𝜈 halten muss und 𝑔 in beiden Lösungen an 𝜈 hält.
Fall 2, 𝑔 startet schon vor 𝜈 . Dann befahren 𝑓 und 𝑔 in 𝐿 beide die Kante (𝑢, 𝜈). In 𝐿′ befährt

𝑓 die Kante nicht.
Also ist die Lösung 𝐿′ echt besser als die optimale Lösung 𝐿. Ein Widerspruch.

Lemma 5.8: Sei𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden befahren

wird. Seien weiter 𝑟, 𝑟 ′ ∈ 𝑅 zwei Reisende und (𝑢, 𝜈) = 𝑒 ∈ 𝐸 eine Kante, die von beiden befahren

wird. Sei weiter 𝑢 mehr als 2𝛼 höher als der Abspaltungspunkt. Dann gilt in jeder optimalen

Lösung 𝐿 des Problems Fahrzeugzuweisung mit Haltekosten 𝜁 (𝑟, 𝑒) = 𝜁 (𝑟 ′, 𝑒).

Diese Situation ist schematisch zu sehen in Abbildung 5.5: Der Knoten 𝑢 liegt mehr als 2𝛼
höher als der Abspaltungspunkt 𝑎. In dem Fall fährt an 𝑒 nur ein Fahrzeug.
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𝑢 𝜈 𝑎

𝑏
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𝑒
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Abbildung 5.5.: Die Situation aus Lemma 5.8. Der Knoten 𝑢 liegt mehr als 2𝛼 oberhalb vom
Abspaltungspunkt 𝑎. Dann verkehrt an der Kante 𝑒 nur ein Fahrzeug.

𝑥 𝑦 𝑢 𝜈 𝑎

𝑏

𝑐

𝑓 𝑓 𝑓

> 2𝛼

𝐸

Abbildung 5.6.: Die Situation aus Korollar 5.9. Die Menge 𝐸 sind die Kanten, für die der
Startknoten mehr als 2𝛼 vom Abspaltungspunkt 𝑎 entfernt sind. Die Kanten aus 𝐸 werden
nur von einem Fahrzeug 𝑓 befahren.

Beweis. Angenommen es existiert eine optimale Lösung 𝐿 mit 𝑓 B 𝜁 (𝑟, 𝑒) ≠ 𝜁 (𝑟 ′, 𝑒) C 𝑓 ′.
Dann wissen wir nach Lemma 5.7, dass 𝑓 und 𝑓 ′ nicht im Hals enden können. Somit fahren
beide Fahrzeuge über den Abspaltungspunkt. Ohne Beschränkung der Allgemeinheit starte 𝑓
höher als 𝑓 ′. Dann erhalten wir eine weitere Lösung 𝐿′, in der 𝑓 ′ erst beim Abspaltungspunkt
startet. Stattdessen bedient 𝑓 alle Reisenden von 𝑓 ′ bis zum Abspaltungspunkt. 𝐿′ benötigt
bis zu zwei zusätzliche Halte, weil 𝑓 und 𝑓 ′ jetzt beide am Abspaltungspunkt halten. Da aber
die gemeinsame Strecke, die in 𝐿′ nur noch von 𝑓 befahren wird, eine Länge von mehr als 2𝛼
hat, ist die Lösung 𝐿′ echt besser als 𝐿. Ein Widerspruch.

Korollar 5.9: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden

befahren wird. Sei 𝐿 eine optimale Lösung des Problems Fahrzeugzuweisung mit Haltekosten.

Sei 𝐸 die Menge aller Kanten im Hals deren Startpunkt mehr als 2𝛼 vom Abspaltungspunkt

entfernt sind. Dann existiert in 𝐿 ein Fahrzeug 𝑓 , sodass für alle 𝑒 ∈ 𝐸 und alle Reisenden 𝑟 , die 𝑒

befahren, 𝜁 (𝑟, 𝑒) = 𝑓 gilt.

Abbildung 5.6 zeigt diese Situation schematisch. Die Kanten mehr als 2𝛼 oberhalb dem
Abspaltungspunkt 𝑎 werden von nur einem Fahrzeug 𝑓 befahren.

Beweis. Nach Lemma 5.8 wissen wir, dass in 𝐿 jede Kante von 𝐸 nur von einem Fahrzeug
befahren wird. Somit folgt die Aussage direkt mit Lemma 5.7.

Aus Lemma 5.6 und Korollar 5.9 folgt dann, dass der schwierige Teil im Bereich von 2𝛼
über dem Abspaltungspunkt liegt. Für den Rest sieht eine optimale Lösung immer nur genau
ein Fahrzeug vor.
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Abbildung 5.7.: Die Situation aus Lemma 5.10. Jede der drei farbigen Linien symbolisiert ein
Fahrzeug. Sowohl am Knoten 𝑢 als auch am Knoten 𝑑 gibt es Umstiege, die das Fahrzeug 𝑓

involvieren. Die Umstiege sind dargestellt durch die Pfeile zwischen den Fahrzeugen.

In dem schwierigen Teil müssen wir differenzierter über die Zusammenfahrt von Reisenden
reden können. Mit dem folgenden Lemma 5.10 sehen wir ein, dass eine Zusammenfahrt
nur an einem Knoten durch einen Umstieg enden kann. Daraus motiviert führen wir den
Begriff einer Gruppe ein. Eine Gruppe an Reisenden ist eine inklusionsmaximale Menge𝑀
an Reisenden, die bis zu einem Umstieg zusammenfährt. Ein Reisender aus𝑀 muss nicht die
komplette Strecke bis zum Umstieg befahren. Aber jedes Streckenstück, die er befährt, befährt
er gemeinsam mit allen anderen Reisenden aus 𝑀 . Reisende der Gruppe mögen nach dem
Umstieg noch weiterhin im selben Fahrzeug fahren. Allerdings nur, wenn ihre gemeinsame
Fahrt sie in dasselbe Bein führt. Sie somit nach Lemma 5.6 also ihre gesamte restliche Fahrt
teilen. Ebenso wissen wir nach Lemma 5.4, dass die Zusammenfahrt für jeden Reisenden der
Menge𝑀 bereits bei seinem Start beginnt. Wir können eine Gruppe an Reisenden somit durch
die Menge zusammenfahrender Reisender und den Knoten, der das Ende der Zusammenfahrt
markiert, beschreiben.

Für die sukzessive Anwendung innerhalb eines Algorithmus erweiternwir später den Begriff
noch zu einer Gruppe an Fahrzeugen. Statt einer Menge an Reisenden lassen wir eine Menge
𝑀 an Fahrzeugen zusammenfahren. Effektiv haben wir damit aber nur die Zusammenfahrt der
Reisenden beschrieben. Denn für die Reisenden gilt nach Lemma 5.6 und Lemma 5.4 dasselbe
wie wenn wir direkt die Gruppe der Reisenden gegeben durch die Reisenden der Fahrzeuge
aus𝑀 betrachten. In einer Lösung lässt sich am einfachsten einsehen, dass zwei Fahrzeuge
Teil einer Gruppe sind, wenn entweder Reisende aus einem der beiden Fahrzeuge ins andere
umsteigen oder es ein weiteres Fahrzeug gibt, aus dem Reisende in die beiden Fahrzeuge
umsteigen.

In den folgenden Lemmata betrachten wir dabei meistens eine Gruppe aus zwei Fahrzeugen.
Die gezeigten Aussagen erweitern sich aber auf größere Gruppen.

Lemma 5.10: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne und 𝑅 Reisende, sodass jede Kante von einem

Reisenden befahren wird. Seien 𝑢,𝑑 ∈ 𝑉 Knoten von𝐺 , sodass 𝑢 oberhalb von 𝑑 liegt. Sei nun 𝐿

eine optimale Lösung des Problems Fahrzeugzuweisung mit Haltekosten. Sei 𝑓 ein Fahrzeug

in 𝐿. Dann können nicht an 𝑢 und an 𝑑 Umstiege existieren, in die 𝑓 involviert ist.

Die Situation aus Lemma 5.10 zeigen wir schematisch in Abbildung 5.7. An den beiden
Knoten 𝑢 und 𝑑 gibt es Umstiege von oder zu Fahrzeug 𝑓 .

Beweis. Seien𝐺 = (𝑉 , 𝐸),𝑢,𝑑 ∈ 𝑉 , 𝐿 und 𝑓 wie in der Voraussetzung gegeben. Nach Lemma 5.6
wissen wir, dass in einer optimalen Lösung innerhalb eines Beins nur ein Fahrzeug verkehrt.
Somit folgt, dass 𝑑 nicht niedriger als der Abspaltungspunkt liegt. Angenommen es gibt
an 𝑢 und an 𝑑 Umstiege, in die 𝑓 involviert ist. Das heißt, Reisenden steigen aus einem
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Abbildung 5.8.: Eine Situation, die nach Lemma 5.11 in einer optimalen Lösung nicht auftreten
kann. Fahrzeug 𝑓 hält an Knoten 𝜈 – dargestellt durch den Punkt. Das Fahrzeug 𝑔 beinhaltet
ebenfalls den Knoten 𝜈 . Allerdings beginnt die gemeinsam gefahrene Strecke von 𝑓 und 𝑔 am
Knoten 𝑢, der mehr als 𝛼 höher ist als 𝜈 .

anderen Fahrzeug in 𝑓 oder aus 𝑓 in ein anderes Fahrzeug um. Da wir die Existenz zu einem
Widerspruch führen wollen, dürfen wir davon ausgehen, dass unsere Wahl von 𝑓 , 𝑢 und 𝑑
gerade so ist, dass der Abstand zwischen 𝑢 und 𝑑 minimal ist. Da der Abstand zwischen 𝑢 und
𝑑 minimal ist, kann keines der beteiligten Fahrzeuge zwischen 𝑢 und 𝑑 in weitere Umstiege
involviert sein. Sei𝑈 die Menge an Fahrzeugen, die neben 𝑓 in Umstiegen an 𝑢 involviert ist.
Konstruiere nun eine neue Lösung 𝐿′: Ersetze 𝑓 durch ein neues Fahrzeug 𝑓 ′, das alle

Reisenden von 𝑓 und bis 𝑑 auch alle Reisenden der Fahrzeuge aus𝑈 bedient. Jedes Fahrzeug
𝑓𝑈 ∈ 𝑈 ersetzen wir durch ein neues Fahrzeug 𝑓 ′

𝑈
, das ab 𝑑 startet und ab 𝑑 alle Reisenden

von 𝑓𝑈 bedient. Da keines der Fahrzeuge aus 𝑈 zwischen 𝑢 und 𝑑 hält, ist diese Lösung
wohldefiniert. Weiter finden an 𝑢 keine Umstiege mehr statt, in die 𝑓 ′ involviert ist. Genau
genommen finden sogar von𝑢 bis oberhalb von𝑑 keine Umstiegemehr statt, in die 𝑓 ′ involviert
ist.
Dann ist die Lösung 𝐿′ besser als die Lösung 𝐿: Unterhalb von 𝑑 stimmt die Lösung 𝐿′

mit der Lösung 𝐿 überein. An 𝑑 werden |𝑈 | neue Halte benötigt, die allerdings an 𝑢 gespart
werden. Weiter übernimmt 𝑓 ′ alle Halte von 𝑓 und aus𝑈 oberhalb von 𝑢, sodass sonst keine
zusätzlichen Halte enstehen. Ebenso übernimmt 𝑓 die Strecken, sodass keine zusätzlichen
Fahrtstrecken entstehen. Allerdings wird in 𝐿′ die Strecke zwischen 𝑢 und 𝑑 für jedes Fahr-
zeug aus 𝑈 nicht mehr befahren; also insgesamt |𝑈 | ≥ 1 Mal weniger. Wir erhalten einen
Widerspruch zur Optimalität von 𝐿.

Nun wollen wir noch weitere Eigenschaften über Gruppen lernen. So zum Beispiel, dass
wenn ein Fahrzeug 𝑓 an einem Knoten 𝜈 hält, alle Reisenden oder Fahrzeuge, die mehr als 𝛼
Strecke bis 𝜈 zurücklegen, mit 𝑓 in einer Gruppe sind, die sich frühstens an 𝜈 aufteilt. Weiter
werden wir im Beweis sehen, dass sich bei gemeinsamer Strecke von genau 𝛼 jede optimale
Lösung immer noch optimal bleibt, wenn diese stattdessen in einer Gruppe sind.

Lemma 5.11: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne. Sei 𝜈 ∈ 𝑉 ein Knoten. Sei 𝐿 eine optimale

Lösung und 𝑓 , 𝑔 zwei Fahrzeuge in 𝐿, deren Pfad den Knoten 𝜈 beinhaltet. Hält 𝑓 an 𝜈 , so beginnt

die gemeinsam gefahrene Strecke höchstens 𝛼 höher als 𝜈 .

Abbildung 5.8 zeigt eine solche Situation, die nicht auftreten kann. Wie im Beweis gibt es
zwei Fahrzeuge 𝑓 und 𝑔, deren Zusammenfahrt an Knoten 𝑢 mehr als 𝛼 oberhalb von Knoten
𝜈 beginnt. Weiter fahren beide Fahrzeuge über den Knoten 𝜈 . Zusätzlich hält 𝑓 an Knoten 𝜈 .
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Abbildung 5.9.: Eine Situation, die nach Lemma 5.12 in einer optimalen Lösung nicht auftreten
kann. Die Fahrzeuge 𝑓 und 𝑔 halten beide an Knoten 𝜈 . Allerdings hält 𝑓 außerdem an Knoten
𝑢, der unterhalb von 𝜈 auf gemeinsamer Strecke von 𝑓 und 𝑔 liegt.

Beweis. Sei 𝐿 eine optimale Lösung mit zwei Fahrzeugen 𝑓 und 𝑔, deren Fahrtstrecke den
Knoten 𝜈 beinhaltet. Sei 𝑢 der höchste Knoten, ab dem 𝑓 und 𝑔 beide verkehren. Das heißt,
𝑢 ist der Start von 𝑓 oder 𝑔, da 𝐺 eine Einhals-Spinne ist. Sei 𝑢 ohne Beschränkung der
Allgemeinheit der Start von 𝑔. Angenommen 𝑓 hält an 𝜈 und 𝑢 liegt mehr als 𝛼 höher als
𝜈 . Dann wissen wir, dass 𝑓 und 𝑔 die Strecke zwischen 𝑢 und 𝜈 befahren. Nun erhalten wir
eine Lösung 𝐿′, indem wir 𝑔 erst ab 𝜈 starten lassen. Bis 𝜈 bedient 𝑓 alle Reisenden von 𝑔 und
übernimmt dafür auch alle Halte.

Dann hat 𝐿′ im Vergleich zu 𝐿 im Allgemeinen einen Halt mehr, damit 𝑔 an 𝜈 halten kann.
Allerdings wird die Strecke zwischen 𝑢 und 𝜈 einmal weniger befahren. Da die Strecke zwi-
schen 𝑢 und 𝜈 länger als 𝛼 ist, ist die Lösung 𝐿′ echt besser als die Lösung 𝐿. Ein Widerspruch
zur Optimalität von 𝐿.

Außerdem fahren alle Fahrzeuge in einer Gruppe, die sich einen Halt teilen. Diese Aussage
zeigen wir über zwei Teilaspekte: Zum einen halten zwei Fahrzeuge, die sich einen Halt teilen,
nicht mehr unterhalb des geteilten Halts. Ansonsten könnten sie eine Gruppe bilden, die bis
zu dem unteren Halt zusammenfährt und dadurch eine bessere Lösung bilden. Zum anderen
muss auch eines der beiden Fahrzeuge am gemeinsamen Halt starten, da sonst auch hier eine
Lösung mit beiden Fahrzeugen in einer Gruppe, in dem Fall bis zum gemeinsamen Halt, besser
wäre.

Lemma 5.12: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden

befahren wird. Sei 𝜈 ∈ 𝑉 ein Knoten. Sei 𝐿 eine optimale Lösung und 𝑓 , 𝑔 zwei Fahrzeuge in 𝐿,

die am Knoten 𝜈 halten. Dann hält weder 𝑓 noch 𝑔 auf gemeinsamer Strecke unterhalb von 𝜈 .

Abbildung 5.9 zeigt schematisch zwei Fahrzeuge 𝑓 und 𝑔, die beide an einem Knoten 𝜈

halten. Weiter hält 𝑓 auch noch am Knoten 𝑢, der auch im von 𝑔 befahrenen Pfad enthalten
ist. Mit Lemma 5.12 zeigen wir, dass diese Situation in einer optimalen Lösung nicht auftreten
kann.

Beweis. Sei also 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne mit zugehörigen Reisenden 𝑅, sodass jede
Kante der Spinne von einem Reisenden befahren wird. Seien weiter 𝜈 ∈ 𝑉 ein Knoten, 𝐿 eine
optimale Lösung und 𝑓 und𝑔 zwei Fahrzeuge in 𝐿. Halten weiter 𝑓 und𝑔 an 𝜈 . Angenommen es
hält eines der Fahrzeuge 𝑓 und𝑔 an gemeinsamer Strecke unterhalb von 𝜈 . Ohne Beschränkung
der Allgemeinheit halte 𝑓 unterhalb von 𝜈 , am Knoten 𝑢 ∈ 𝑉 auf gemeinsamer Strecke mit 𝑔.
Dann können wir eine andere Lösung 𝐿′ konstruieren: Wir ersetzen 𝑔 durch ein neues

Fahrzeug 𝑔′, das ab 𝑢 startet und ab 𝑢 alle Reisenden von 𝑔 bedient, wie auch 𝑔 es vorher
gemacht hat. Das Fahrzeug 𝑓 ersetzen wir ebenfalls durch ein Fahrzeug 𝑓 ′, das weiterhin
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Abbildung 5.10.: Eine Situation, die nach Lemma 5.13 in einer optimalen Lösung nicht
auftreten kann. Die Fahrzeuge 𝑓 und 𝑔 halten beide an Knoten 𝜈 . Außerdem starten 𝑓 und 𝑔
beide oberhalb von 𝜈 .

alle Reisende von 𝑓 bedient, wie zuvor. Allerdings bedient 𝑓 zusätzlich noch alle Reisenden
von 𝑔 oberhalb von 𝑢 – genau so, wie sie in 𝐿 von 𝑔 bedient wurden. An 𝑢 steigen dann alle
Reisenden von 𝑔 von 𝑓 ′ nach 𝑔′ um.
Dann ist die Lösung 𝐿′ aber besser als die als optimal angenommene Lösung 𝐿: Oberhalb

von 𝑢 entstehen keine zusätzlichen Halte oder Fahrzeiten, da 𝑓 ′ zusätzlich nur Strecke von 𝑔
übernimmt. Geteilt Halte werden allerdings gespart, ebenso wie gemeinsam gefahrene Strecke.
Insbesondere erfolgt am Knoten 𝜈 ein Halt weniger. Und die Strecke zwischen 𝜈 und 𝑢 wird
einmal gespart. An Knoten 𝑢 hingegen erfolgt potentiell ein Halt mehr, da 𝑔′ an 𝑢 halten muss.
Unterhalb von 𝑢 entsprechen 𝑓 ′ und 𝑔′ gerade 𝑓 und 𝑔. Somit erhalten wir einen Widerspruch
dazu, dass 𝐿 optimal war.

Lemma 5.13: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden

befahren wird. Sei 𝜈 ∈ 𝑉 ein Knoten. Sei 𝐿 eine optimale Lösung und 𝑓 , 𝑔 zwei Fahrzeuge in 𝐿,

die am Knoten 𝜈 halten. Dann startet 𝑓 oder 𝑔 bei 𝜈 .

Abbildung 5.10 zeigt schematisch die Situation, die nicht auftreten kann: Die Fahrzeuge 𝑓
und 𝑔 halten beide an 𝜈 und starten beide oberhalb von 𝜈 .

Beweis. Seien 𝐺 = (𝑉 , 𝐸), 𝜈 ∈ 𝑉 , 𝐿 sowie 𝑓 und 𝑔 wie in der Voraussetzung. Angenommen
weder 𝑓 noch 𝑔 startet an 𝜈 . Dann starten beide oberhalb von 𝜈 . Aufgrund der Struktur
einer Einhals-Spinne fahren beide Fahrzeuge zuvor dieselbe Strecke. Ohne Beschränkung der
Allgemeinheit startet 𝑔 an 𝑢 unterhalb vom Start von 𝑓 .

Dann erhalten wir eine neue Lösung 𝐿′: Wir ersetzen 𝑔 durch ein neues Fahrzeug 𝑔′, das
ab 𝜈 startet und ab 𝜈 alle Reisenden von 𝑔 bedient, wie auch 𝑔 es vorher gemacht hat. Das
Fahrzeug 𝑓 ersetzen wir ebenfalls durch ein Fahrzeug 𝑓 ′, das weiterhin alle Reisende von 𝑓

bedient, wie zuvor. Allerdings bedient 𝑓 zusätzlich noch alle Reisenden von 𝑔 oberhalb von 𝜈
– genau so, wie sie in 𝐿 von 𝑔 bedient wurden. An 𝜈 steigen dann alle Reisenden von 𝑔 von 𝑓 ′

nach 𝑔′ um.
Dann ist die Lösung 𝐿′ aber besser als die als optimal angenommene Lösung 𝐿: Oberhalb von

𝜈 entstehen keine zusätzlichen Halte oder Fahrzeugzeiten, da 𝑓 ′ nur die Strecke von vormals 𝑔
übernimmt. Geteilt Halte werden allerdings gespart, ebenso wie gemeinsam gefahrene Strecke.
Insbesondere erfolgt am Knoten 𝑢 ein Halt weniger. Und die Strecke zwischen 𝑢 und 𝜈 wird
einmal gespart. An Knoten 𝜈 hingegen erfolgt potentiell ein Halt mehr, da 𝑔′ an 𝜈 halten muss.
Unterhalb von 𝜈 entsprechen 𝑓 ′ und 𝑔′ gerade 𝑓 und 𝑔. Somit erhalten wir einen Widerspruch
dazu, dass 𝐿 optimal war.
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Abbildung 5.11.: Eine Situation, die nach Lemma 5.14 in einer optimalen Lösung nicht
auftreten kann. Das Fahrzeug 𝑔 befährt einen Teilpfad des Fahrzeugs 𝑓 .

Ebenso kann es auch keine Fahrzeuge geben, deren befahrene Strecke ein Teilpfad der
befahrenen Strecke eines anderen Fahrzeugs ist. Wir sehen hier also einen weiteren Grund,
der erzwingt, dass Reisende Teil einer Gruppe sind.

Lemma 5.14: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne. Sei 𝐿 eine optimale Lösung. Dann kann es

nicht zwei Fahrzeuge 𝑓 und 𝑔 geben, sodass die von 𝑔 befahrene Strecke ein Teilpfad der von 𝑓

befahrenen Strecke ist.

Abbildung 5.11 zeigt zwei Fahrzeuge 𝑓 und 𝑔. Das Fahrzeug 𝑔 befährt dabei nur einen
Teilpfad der Strecke von 𝑓 . Eine Situation, von der wir jetzt beweisen, dass sie nicht auftreten
kann.

Beweis. Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, 𝑅 eine Menge Reisender und 𝐿 eine optimale
Lösung für die Instanz. Angenommen es gibt zwei Fahrzeuge 𝑓 und 𝑔 in 𝐿, sodass die von 𝑔
befahrene Strecke ein Teilpfad der von 𝑓 befahrenen Strecke ist.

Dann erhalten wir eine neue Lösung 𝐿′: Wir ersetzen 𝑓 durch ein Fahrzeug 𝑓 ′, dass dieselbe
Strecke wie 𝑓 befährt und auch alle Reisenden von 𝑓 genauso bedient wie 𝑓 . Zusätzliche
bedient 𝑓 ′ aber auch die Reisenden von 𝑔. Das Fahrzeug 𝑔 hingegen entfernen wir aus der
Lösung. Da 𝑔 einen Teilpfad von 𝑓 befährt, ist die neue Lösung wohldefiniert.
Dann ist die Lösung 𝐿′ aber besser als die Lösung 𝐿: Da 𝑓 ′ genau die Halte von 𝑓 und

𝑔 übernimmt, entstehen keine zusätzlichen Halte im Vergleich zu 𝐿. Im Gegenteil wird je
ein Halt gespart, für jeden Knoten, an dem 𝑓 und 𝑔 halten. Außerdem wird die komplette
nicht-leere Strecke von 𝑔 gespart. Ein Widerspruch zur Optimalität der Lösung 𝐿.

Wir zeigen weiter auch noch Einschränkungen für das Ende der Zusammenfahrt einer
Gruppe auf. Nach Lemma 5.13 wissen wir bereits, dass nach dem Halt, der das Ende der
Zusammenfahrt der Gruppe bildet, keines der beteiligten Fahrzeuge mehr auf gemeinsamer
Strecke hält. Mit Lemma 5.15 sehen wir ein, dass dieser Halt mit dem Abspaltungspunkt
übereinstimmt, wenn er nicht bereits Start oder Ende eines der Reisenden der Fahrzeuge
der Gruppe ist. Somit bleiben uns für das Ende der Zusammenfahrt einer Gruppe nur zwei
Möglichkeiten: der Abspaltungspunkt oder ein letzter Start oder Ende. Mit Lemma 5.16
schränkt sich die möglicheWahl noch weiter ein: Das Ende der Zusammenfahrt darf höchstens
𝛼 über dem Abspaltungspunkt beziehungsweise dem Ende aller Fahrzeuge der Gruppe bis auf
einem liegen. Aus dem Beweis ergibt sich wie bei Lemma 5.11, dass eine optimale Lösung
ihre Optimalität beibehält, wenn eine Zusammenfahrt verlängert wird, wenn genau 𝛼 Strecke
nach dem Ende der Zusammenfahrt geteilt wird.

Lemma 5.15: Sei𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, 𝑅 eine Menge an Reisenden, sodass jede Kante

von 𝐺 von einem Reisenden befahren wird. Sei 𝜈 ∈ 𝑉 ein Knoten. Sei 𝐿 eine optimale Lösung

und 𝐹 eine maximale Menge von Fahrzeugen in 𝐿, die am Knoten 𝜈 halten. Weiter beinhalte 𝐹

mindestens zwei Fahrzeuge. Startet oder endet keiner der Reisenden der Fahrzeuge aus 𝐹 an 𝜈 , so

befahren die Fahrzeuge aus 𝐹 ab 𝜈 verschiedene Kanten.
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𝑢 𝜈

𝑓

Abbildung 5.12.: Wir sehen eine Menge 𝐹 der Fahrzeuge aus Lemma 5.15, die am Knoten 𝜈
hält. Mit Lemma 5.13 wissen wir, dass – wie abgebildet – bis auf ein Fahrzeug 𝑓 alle Fahrzeuge
aus 𝑓 an 𝜈 starten. Wir nehmen an, dass kein Reisender an 𝜈 startet oder endet. Lemma 5.15
liefert uns dann, dass die Fahrtstrecken unterhalb von 𝜈 verschieden sind. Der Knoten 𝜈 ist
also der Abspaltungspunkt.

𝑢 𝜈 𝑎

𝑏

𝑐

𝑓

𝑔

𝑟

≤ 𝛼

Abbildung 5.13.: Die Situation aus Lemma 5.16. Der Reisende 𝑟 stellt einen möglichen Grund
für den Halt beider Fahrzeuge an 𝜈 dar. Denn Reisender 𝑟 steigt an 𝜈 von 𝑓 in 𝑔 um. Mit
Lemma 5.13 wissen wir bereits, dass dann 𝑔 an 𝜈 starten muss. Mit Lemma 5.16 zeigen wir,
dass die gemeinsam gefahrene Strecke nach 𝜈 höchstens 𝛼 lang ist.

Diese Situation ist schematisch in Abbildung 5.12 dargestellt. Wir sehen die Menge der an
𝜈 haltenden Fahrzeug. Wissen wir, dass kein Reisender an 𝜈 startet oder endet, erhalten wir,
dass die Fahrtstrecken unterhalb von 𝜈 verschieden sind.

Beweis. Seien 𝐺 = (𝑉 , 𝐸), 𝑅, 𝜈 ∈ 𝑉 , 𝐿 und 𝐹 wie in den Voraussetzungen. Dann beinhaltet
𝐹 gerade alle Fahrzeuge, die in 𝐿 an 𝜈 halten. Nach Lemma 5.13 wissen wir, dass bis auf
ein Fahrzeug 𝑓 ∈ 𝐹 alle Fahrzeuge aus 𝐹 an 𝜈 starten. Mit Lemma 5.1 erhalten wir, dass
jedes Fahrzeug in 𝐹 ab 𝜈 einen Reisenden bedient. Nach Voraussetzung wissen wir aber,
dass kein Reisender an 𝜈 startet oder endet. Da 𝐹 alle Fahrzeuge beinhaltet, die an 𝜈 halten,
muss es für jedes Fahrzeug 𝑔 ∈ 𝐹 \ {𝑓 } einen Reisenden 𝑟𝑔 ∈ 𝑅 geben, der an 𝜈 von 𝑓 in 𝑔

umsteigt. Mit Lemma 5.7 und Lemma 5.14 wissen wir weiter, dass alle Fahrzeuge aus 𝐹 über
den Abspaltungspunkt hinaus fahren. Lemma 5.12 liefert außerdem, dass keines der Fahrzeuge
aus 𝐹 unterhalb von 𝜈 und oberhalb dem Abspaltungspunkt hält. Somit startet oder endet
keiner der von einem Fahrzeug aus 𝐹 bedienten Reisende an einem Knoten auf dem Hals, der
unterhalb von 𝜈 liegt.

Konstruiere eine neue Lösung 𝐿′: Ersetze 𝑓 durch ein Fahrzeug 𝑓 ′, dass alle Reisenden von
𝐹 bis zum Abspaltungspunkt und unterhalb dem Abspaltungspunkt weiter die Reisenden
aus 𝑓 bedient. Jedes andere Fahrzeug 𝑔 ∈ 𝐹 \ {𝑓 } ersetzen wir durch ein Fahrzeug 𝑔′, dass
unterhalb dem Abspaltungspunkt alle Reisenden von 𝑔 bedient. Insbesondere steigen die
Reisenden 𝑟𝑔 in 𝐿′ am Abspaltungspunkt von 𝑓 ′ in 𝑔′ um.

Dann ist die Lösung 𝐿′ besser als die Lösung 𝐿: Da keiner der Reisenden von 𝐹 an 𝜈 startet
oder endet, hält 𝑓 ′ nicht an 𝜈 . Stattdessen finden die |𝐹 | Halte jetzt statt an 𝜈 am Abspaltungs-
punkt statt. Unterhalb vom Abspaltungspunkt entspricht 𝐿′ gerade 𝐿. Oberhalb übernimmt 𝑓 ′
alle Halte aus 𝐹 . Insgesamt wird die Strecke zwischen 𝜈 und dem Abspaltungspunkt einmal
weniger befahren. Wir erhalten einen Widerspruch zur Optimalität von 𝐿.
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Lemma 5.16: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, 𝑅 eine Menge an Reisenden. Sei 𝜈 ∈ 𝑉 und

𝑟 ∈ 𝑅 ein Reisender. Sei 𝐿 eine optimale Lösung. Seien 𝑓 und 𝑔 Fahrzeuge in 𝐿, sodass 𝑓 und 𝑔 an

𝜈 halten. Dann fahren 𝑓 und 𝑔 unterhalb von 𝜈 eine Strecke von höchstens 𝛼 gemeinsam.

In Abbildung 5.13 sehen wir eine mögliche solche Situation. Der Reisende 𝑟 steigt an 𝜈 von
𝑓 nach 𝑔 um. Dann erhalten wir, dass die Strecke bis zum Abspaltungspunkt 𝑎 höchstens 𝛼
lang ist.

Beweis. Seien 𝐺 = (𝑉 , 𝐸), 𝑅, 𝜈 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝐿, 𝑓 und 𝑔 wie in den Voraussetzungen. Da 𝐿

optimal ist, wissen wir nach Lemma 5.7, dass 𝑓 und 𝑔 nach dem Ende der gemeinsamen
Strecke verschiedene Kanten befahren. Ihre weitere gemeinsame gefahrene Strecke endet
somit am Abspaltungspunkt. Nach Lemma 5.13 wissen wir außerdem, dass 𝑓 oder 𝑔 erst an 𝜈
startet. Ohne Beschränkung der Allgemeinheit, starte 𝑔 an 𝜈 . Angenommen 𝜈 liegt mehr als 𝛼
oberhalb dem Abspaltungspunkt.
Dann konstruiere eine neue Lösung 𝐿′ aus 𝐿: Ersetze das Fahrzeug 𝑓 durch ein neues

Fahrzeug 𝑓 ′, dass dieselbe Strecke befährt wie 𝑓 . Das Fahrzeug bedient dann oberhalb dem
Abspaltungspunkt alle Reisenden von 𝑔 und 𝑓 . Da 𝑔 erst an 𝜈 startet und 𝑓 auch spätestens an
𝜈 startet, ist das wohldefiniert. Weiter ersetzen wir das Fahrzeug 𝑔 durch ein neues Fahrzeug
𝑔′, dass ab dem Abspaltungspunkt startet und unterhalb dieselbe Strecke befährt wie 𝑔. Das
Fahrzeug 𝑔′ bedient dann alle Reisenden von 𝑔 unterhalb dem Abspaltungspunkt.
Dann ist die Lösung 𝐿′ besser als 𝐿: Oberhalb des Abspaltungspunkts, übernimmt 𝑓 ′ die

Halte von 𝑓 und 𝑔; es entstehen somit keine zusätzlichen Halte. An 𝜈 hält aber nur noch 𝑓 ′ und
nicht mehr auch 𝑔′. Somit sparen wir einen Halt. Weiter wird auch die Strecke unterhalb von 𝜈
einmal weniger befahren. Wie sparen also die Strecke zwischen 𝜈 und dem Abspaltungspunkt
von mehr als 𝛼 . Unterhalb dem Abspaltungspunkt stimmen 𝑓 ′ und 𝑔′ mit 𝑓 und 𝑔 überein.
Am Abspaltungspunkt benötigen wir allerdings zwei zusätzliche Halte, weil 𝑓 ′ und 𝑔′ in 𝐿′

hier halten müssen. Diese werden aber durch die gesparte Strecke und den gesparten Halt
oberhalb des Abspaltungspunkt mehr als aufgewogen. Somit erhalten wir einen Widerspruch
zur Optimalität von 𝐿.

Weiter sehen wir ein, dass es für jedes Fahrzeug auch einen Grund gibt, Teil der Gruppe zu
sein. So gibt es zumindest ein anderes Fahrzeug, mit dem es sich einen Halt teilt – also zwei
Reisende, die am selben Knoten starten beziehungsweise enden –, oder die Zusammenfahrt
spart die Strecke für den benötigten Halt am Ende der Zusammenfahrt. Bezeugt durch einen
Reisenden, der mindestens eine Strecke von 𝛼 mit den restlichen Reisenden gemeinsam fährt.

Lemma 5.17: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, 𝑅 eine Menge an Reisenden. Sei 𝜈 ∈ 𝑉 ein

Knoten. Sei 𝐿 eine optimale Lösung und 𝑓 , 𝑔 zwei Fahrzeuge in 𝐿, deren Pfad den Knoten 𝜈

beinhaltet. Gebe es Umstiege an 𝜈 von 𝑓 nach 𝑔 umsteigt. Dann gibt es einen Reisenden 𝑟 ∈ 𝑅,
der eine der folgenden Bedingungen erfüllt:

1 Der Reisende 𝑟 startet an 𝜈 .

2 Der Reisende 𝑟 steigt an 𝜈 von 𝑓 nach 𝑔 um und startet mindestens 𝛼 höher als 𝜈 .

3 Der Reisende 𝑟 steigt an 𝜈 von 𝑓 nach 𝑔 um und startet am Start oder Ende eines Reisende,

der in 𝑓 fährt, aber nicht nach 𝑔 umsteigt.

30



5.2. Einhals-Spinnen

Beweis. Seien 𝐺 = (𝑉 , 𝐸), 𝑅, 𝜈 ∈ 𝑉 , 𝐿, 𝑓 und 𝑔 wie in der Voraussetzung. Weiter existiert
nach Voraussetzung einen Reisenden 𝑟 ∈ 𝑅, der an 𝜈 von 𝑓 nach 𝑔 umsteigt. Gebe es keine
Reisenden, der an 𝜈 startet. Gebe es weiter auch keinen Reisenden, der an 𝜈 von 𝑓 nach 𝑔

umsteigt und mindestens 𝛼 höher startet. Gebe es außerdem keinen Reisenden, der an 𝜈 von
𝑓 nach 𝑔 umsteigt und am Start oder Ende eines Reisenden, der in 𝑓 fährt und nicht an 𝜈 in 𝑔
umsteigt, startet. Dann gilt das alles insbesondere nicht für 𝑟 . Nach Lemma 5.13 wissen wir,
dass 𝑔 erst an 𝜈 startet. Nach Lemma 5.12 wissen wir außerdem, dass kein Reisender von 𝑓

oder 𝑔 unterhalb von 𝜈 auf gemeinsamer Strecke startet oder endet.
Konstruiere aus 𝐿 eine neue Lösung 𝐿′: Wir ersetzen das Fahrzeug 𝑓 durch ein neues

Fahrzeug 𝑓 ′, das nur noch die Reisenden von 𝑓 bedient, die nicht an 𝜈 in 𝑔 umsteigen. Ebenso
ersetzen wir das Fahrzeug 𝑔 durch ein Fahrzeug 𝑔′, das alle Reisenden von 𝑔 auf ihrer kom-
pletten Strecke bedient. Insbesondere also die Reisenden, die an 𝜈 von 𝑓 in 𝑔 umsteigen, auf
ihrer gesamten Strecke bedient.
Dann ist die Lösung 𝐿′ besser als die Lösung 𝐿: Da die Reisenden von 𝑔′ keinen Halt mit

einem Reisenden aus 𝑓 ′ teilen, entstehen keine zusätzlichen Halte. Weiter wissen wir, weil
kein Reisender von 𝑔′ an 𝜈 startet zusammen mit Lemma 5.13, dass 𝑔′ nicht an 𝜈 hält. Da kein
Reisender aus 𝑔′ mindestens 𝛼 höher als 𝜈 startet, wissen wir, dass die jetzt zusätzlich von
𝑓 ′ und 𝑔′ gleichzeitig befahrene Strecke kürzer ist als 𝛼 . Die nicht mehr eingesparte Zusam-
menfahrt wird also von dem nicht mehr notwenidgen Halt aufgehoben. Ein Widerspruch zur
Optimalität von 𝐿.

Abschließend wollen wir noch die Erkenntnis darlegen, die den initialen Anstoß zur Al-
gorithmusidee geliefert hat. Betrachten wir die Bildung von Gruppen, so gibt es zwei große
Gründe für die Zusammenfahrt: gemeinsame Halte und gemeinsam befahrene Strecke. Ein
gemeinsamer Halt ist dabei in gewisser Weise ein recht lokales Phänomen: Zwei oder mehr
Fahrzeuge halten am selben Knoten. Bei gemeinsamer Strecke hingegen legen die beteiligten
Fahrzeuge längere Streckenstücke zurück. Aufgrund der mangelnden Ausweichmöglichkeiten
in der eingeschränkten Struktur einer Einhals-Spinne, kann es in dem Bereich ab 2𝛼 über
dem Abspaltungspunkt nur eine solche Gruppe geben. Später im Algorithmus werden wir
dieser Gruppe den Namen großes Fahrzeug geben. Wie bei Lemma 5.11 ergibt sich aus dem
Beweis, dass wir bei einer gefahrenen Strecke von genau 𝛼 optimale Lösungen finden können,
in denen die Fahrzeuge nicht eine Gruppe bilden. Diese können aber immer auch in optimale
Lösungen transformiert werden, in denen die Fahrzeuge eine Gruppe bilden.

Lemma 5.18: Sei 𝐺 = (𝑉 , 𝐸) eine Einhals-Spinne, sodass jede Kante von einem Reisenden

befahren wird. Seien (𝑤, . . . , 𝑢, 𝜈) und (𝑤 ′, . . . , 𝑢′, 𝜈 ′) Pfade in𝐺 . Die Knoten 𝜈 und 𝜈 ′ liegen beide
im interessanten Bereich von höchstens 2𝛼 oberhalb und nicht unterhalb dem Abspaltungspunkt.

Weiter seien (𝜈, 𝑎), (𝜈, 𝑎′), (𝜈 ′, 𝑏) und (𝜈 ′, 𝑏′) Kanten von 𝐺 . Seien 𝐿 eine optimale Lösung und

𝑓 , 𝑓 ′, 𝑓 , 𝑔, 𝑔′ und 𝑔 Fahrzeuge in 𝐿. Dabei sei 𝑓 ≠ 𝑔, 𝑓 ≠ 𝑓 ′ und 𝑔 ≠ 𝑔′. Es halten außerdem 𝑓 ,

𝑓 ′ und 𝑓 an 𝜈 sowie 𝑔, 𝑔′ und 𝑔 an 𝜈 ′. Weiter befahre 𝑓 den Pfad (𝑤, . . . , 𝜈), 𝑓 die Kante (𝜈, 𝑎),
𝑓 ′ die Kante (𝜈, 𝑎′), 𝑔 den Pfad (𝑤 ′, . . . , 𝜈 ′), 𝑔 die Kante (𝜈 ′, 𝑏) und 𝑔′ die Kante (𝜈 ′, 𝑏′). Seien
weiter 𝑟 𝑓 und 𝑟 𝑓 ′ Reisende, sodass 𝑟 𝑓 und 𝑟 𝑓 ′ zumindest von𝑤 bis 𝜈 in 𝑓 fahren und dann in 𝑓

beziehungsweise 𝑓 ′ umsteigen. Sei außerdem 𝑟𝑔 und 𝑟𝑔′ Reisende, sodass 𝑟𝑔 und 𝑟𝑔′ zumindest

von𝑤 ′ bis 𝜈 ′ in 𝑔 fahren und dann in 𝑔 beziehungsweise 𝑔′ umsteigen. Dann können nicht die

Pfade (𝑤, . . . , 𝜈) und (𝑤 ′, . . . , 𝜈 ′) beide länger als 𝛼 sein.

Selbiges gilt auch, wenn wir statt einzelnen Reisenden eine Folge an Reisenden betrachten, die

zusammen einen nicht überlappenden Pfad bilden.
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Abbildung 5.14.: Die reduzierte Situation aus Lemma 5.18. Die Fahrzeuge 𝑓 und 𝑓 sowie
𝑔 und 𝑔 müssen nicht notwendigerweise übereinstimmen. Dennoch fahren die Fahrzeuge 𝑓
und 𝑔 auf jeden Fall in ein Bein. Der Reisende 𝑟 𝑓 , der an 𝜈 von 𝑓 nach 𝑓 umsteigt, ist nicht
dargestellt, da sein Pfad mit dem vom Fahrzeug 𝑓 beziehungsweise 𝑓 übereinstimmt. Analoges
gilt für Reisenden 𝑟𝑔. Auch das genaue Verhältnis der Knoten𝑤 ,𝑤 ′, 𝑢, 𝑢′, 𝜈 und 𝜈 ′ ist nicht
notwendigerweise wie angegeben. Allerdings ist in jedem Fall der Knoten 𝜈 ′ höher als 𝜈 . Auch
die Knoten 𝑎 und 𝑎′ liegen nicht notwendigerweise in Beinen.

In Abbildung 5.14 sehen wir eine bereits reduzierte Version der Situation. Wir wissen,
dass 𝜈 und 𝜈 ′ verschieden und 𝜈 ′ oberhalb von 𝜈 liegt. Somit liegt 𝑏 = 𝑏′ im Hals. Auch das
genau Verhältnis der Pfade (𝑤, . . . , 𝜈) und (𝑤 ′, . . . , 𝜈 ′) kann von der dargestellten Situation
abweichen. Die Fahrzeuge 𝑓 und 𝑓 sowie 𝑔 und 𝑔 stimmen nicht notwendigerweise wie
dargestellt über. In jedem Fall, enden all diese Fahrzeuge aber in einem Bein.

Beweis. Seien die Variablen gegeben wie in der Voraussetzung. Nach Lemma 5.6 wissen wir,
dass 𝜈 und 𝜈 ′ nicht unterhalb dem Abspaltungspunkt liegen. Denn 𝑎 und 𝑎′ bzw. 𝑏 und 𝑏′
müssen entweder beide im Hals oder auf verschiedenen Beinen liegen. Somit kann ich also
die Positionen von 𝜈 und 𝜈 ′ vergleichen. Ohne Beschränkung der Allgemeinheit liege 𝜈 ′ nicht
unterhalb von 𝜈 . Da 𝑓 an 𝜈 und 𝑔 an 𝜈 ′ hält, wissen wir mit Lemma 5.13, dass 𝜈 nicht mit 𝜈 ′
übereinstimmt. Es liegt 𝜈 ′ somit echt oberhalb von 𝜈 . Nach Lemma 5.7 wissen wir außerdem,
dass die Fahrt von 𝑔 und 𝑓 in verschiedenen Beinen endet. Also insbesondere unterhalb von 𝜈 .
Angenommen es seien nun (𝑤, . . . , 𝜈) und (𝑤 ′, . . . , 𝜈 ′) beide länger als 𝛼 .

Dann konstruiere aus 𝐿 eine neue Lösung 𝐿′: Ersetze 𝑓 durch ein neues Fahrzeug 𝑓 ′. Dieses
Fahrzeug 𝑓 ′ bedient alle Reisenden von 𝑓 und oberhalb von 𝜈 auch alle Reisenden von 𝑔.
Ersetze ebenso 𝑔 durch ein neues Fahrzeug 𝑔′, das erst an 𝜈 startet und ab 𝜈 alle Reisenden
von 𝑔 bedient. Dann ist die neue Lösung 𝐿′ wohldefiniert, weil 𝜈 unterhalb von 𝜈 ′ auf dem
Hals liegt.
Die Lösung 𝐿′ ist besser als die Lösung 𝐿: Unterhalb von 𝜈 stimmen 𝑓 ′ und 𝑔′ mit 𝑓 und

𝑔 überein. An 𝜈 muss 𝑔′ einmal zusätzlich halten. Oberhalb von 𝜈 übernimmt 𝑓 ′ alle Halte
von 𝑓 und 𝑔; hier entstehen keine zusätzlichen Halte. Allerdings wird eine Strecke von mehr
als 𝛼 oberhalb von 𝜈 einmal weniger befahren. Denn 𝑔 fährt in 𝐿 von 𝑤 ′ bis 𝜈 , wovon die
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Teilstrecke𝑤 ′ bis 𝜈 ′ länger als 𝛼 ist. Ebenso fährt 𝑓 in 𝐿 von𝑤 bis 𝜈 , eine Strecke von mehr
als 𝛼 . 𝑓 und 𝑔 fahren in 𝐿 also eine Strecke von mehr als 𝛼 zusammen, die in 𝐿′ nur noch von
𝑓 ′ zurückgelegt wird. Somit erhalten wir einen Widerspruch zu 𝐿 optimal.

5.2.2. Polynomieller Algorithmus

Als Nächstes stellen wir unseren Ansatz für einen polynomiellen Algorithmus zur Lösung des
Problems Fahrzeugzuweisung mit Haltekosten vor. Dieser nutzt allerdings die Annahme,
dass es einen polynomiellen Algorithmus für das in Abschnitt 5.2.4 beschriebene Problem
Gruppenzusammenfahrt gibt. Im Algorithmus nehmen wir an, dass jede Kante unserer
Einhals-Spinnen auch von einem Reisenden befahren wird. Wir werden später zeigen, dass
wir diesen Algorithmus einfach auf den allgemeinen Fall erweitern können.

Im Algorithmus nutzen wir zuerst aus, dass nach Lemma 5.6 jedes Bein von nur einem
Fahrzeug bedient wird. Dann untersuchen wir den Bereich von 2𝛼 oberhalb des Abspaltungs-
punkts und versuchen Fahrzeuge zusammenzulegen: auf Basis von gemeinsamen Halten, aber
auch von mehreren Fahrzeugen befahrener Strecke. Als Grundkonzept dient ein sogenanntes
großes Fahrzeug, dass alle Reisenden im oberen Teil des Halses bedient. Das große Fahrzeug
ist das einzige Fahrzeug, das einzelne andere Reisende mitnimmt, weil sie ausreichend Strecke
miteinander teilen. Dementsprechend handelt es sich bei dem Konzept des großen Fahrzeugs
um eine Gruppe mit einem ausgewiesenen Fahrzeug, dass die Reisenden während der Zusam-
menfahrt bedient. Nach Lemma 5.10 teilt sich das große Fahrzeug nur an einem Knoten auf.
Diesen Knoten nennen wir Trennungsstelle. Nach Lemma 5.15 ist die Trennungsstelle entweder
der Abspaltungspunkt oder ein Start oder ein Ende eines Reisenden. Nach Lemma 5.16 liegt
die Trennungsstelle gleichzeitig höchstens 𝛼 oberhalb dem Abspaltungspunkt. Denn wenn wir
die Trennungsstelle nicht auf einen erzwungenen Halt, also Start oder Ende eines Reisenden,
legen, verursachen wir einen zusätzlichen Halt. Dieser Halt verursacht zusätzliche Kosten
von 𝛼 . Gleichzeitig kann umso mehr Fahrzeugoperationszeit eingespart werden, je länger
die Reisenden zusammenfahren, also je tiefer die Trennungsstelle liegt. Deshalb können wir
die Trennungsstelle auf den tiefstmöglichen Punkt verschieben – den Abspaltungspunkt.
Der Algorithmus versucht dann dem großen Fahrzeug möglichst viele Reisende zuzuweisen,
für die sich die Zusammenfahrt wegen längerer gemeinsamer Strecke oder gemeinsamen
Halten lohnt. Auch sonstige Fahrzeuge, die sich Halte teilen, lassen wir zusammenfahren.
Zuletzt werden Reisende, deren Fahrzeuge vor dem Abspaltungspunkt enden, noch von einem
Fahrzeug bedient, das in ein Bein hinein fährt. Denn je mehr Reisende gemeinsam fahren,
desto mehr ausnutzbares Sparpotential gibt es.

Nach der grundsätzlichen Algorithmusidee kommt jetzt noch die konkretere Algorithmus-
beschreibung:

Initialisierung Zu Beginn initialisieren wir eine vorläufige Lösung: Jedes Bein wird von
einem Fahrzeug bedient und auch jeder Reisende, der nicht in einem Bein fährt, bekommt ein
eigenes Fahrzeug.

Erzeuge für jedes Bein 𝐵 ein Fahrzeug 𝑓𝐵 . Das Fahrzeug 𝑓𝐵 bedient alle Reisenden 𝑅𝐵 , deren
Ziel im Bein 𝐵 liegt. Zumindest vorläufig wird ein Reisender 𝑟 ∈ 𝑅𝐵 von seinem Start aus von
𝑓𝐵 bedient. Das Fahrzeug 𝑓𝐵 startet am obersten Start aller Reisenden 𝑅𝐵 und fährt den Hals
hinunter bis zum Ende des Beins. Zwischendrin hält es an jedem Knoten, an dem einer der
Reisenden 𝑅𝐵 startet oder endet.
Erzeuge nun für jeden Reisenden, dessen Strecke vollständig im Hals enthalten ist, ein

eigenes Fahrzeug. Dieses fährt vom Start zum Ziel des Reisenden.
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Das große Fahrzeug Wir erinnern uns: Das große Fahrzeug ist die in einer optimalen
Lösung eindeutige Gruppe, die eine Strecke von mehr als 𝛼 zurücklegt. Eine Gruppe ist eine
Menge𝑀 an Reisenden, die zusammenfahren. Konkret existiert ein Knoten 𝑡 , sodass oberhalb
von 𝑡 alle Reisenden aus𝑀 in nur einem Fahrzeug fahren. Unterhalb von 𝑡 fahren die Reisenden
aus 𝑀 in mehreren Fahrzeugen. Wir wollen das Konzept auf Fahrzeuge erweitern, um das
algorithmische Vorgehen von zusätzlichen Zusammenfahrten von Reisenden zu beschreiben.
Dann besteht die Menge 𝑀 aus Fahrzeugen. In dem Fall bedeutet die Zusammenfahrt die
folgende Änderung der Lösung: Es gibt einen Knoten 𝑡 , den die Fahrtstrecken aller Fahrzeuge
aus𝑀 beinhalten. Oberhalb von 𝑡 fährt nur eines der Fahrzeuge aus𝑀 , nennen wir es 𝑓𝑀 . Das
Fahrzeug 𝑓𝑀 bedient alle Reisende, die vorher mit einem der Fahrzeuge aus𝑀 gefahren sind.
Erst ab 𝑡 fahren dann auch wieder die restlichen Fahrzeuge aus𝑀 und die Reisenden steigen
wieder in das Fahrzeug, in dem sie ursprünglich gefahren sind. Wir nennen 𝑡 Trennungsstelle.
Oft bezeichnen wir mit dem großen Fahrzeug auch das Fahrzeug 𝑓𝑀 , das oberhalb von 𝑡 fährt.
Nun wollen wir bestimmen, ob es ein großes Fahrzeug geben sollte. Denn es kann sein,

dass es sich nicht lohnt, mit den anderen Fahrzeugen zusammenzufahren, obwohl jeweils
der Halt für die anderen Fahrzeuge eingespart wird. Dazu betrachten wir jede mögliche
Trennungsstelle und berechnen für diese die beste Lösung. Außerdem berechnen wir noch
die Lösung ohne ein großes Fahrzeug und wählen dann die insgesamt beste Lösung aus.
Zur Berechnung der Lösung ohne ein großes Fahrzeug lassen wir den aktuellen Schritt zur
Berechnung des großen Fahrzeugs weg und fahren mit dem restlichen Algorithmus fort.
Um die beste Lösung für eine Trennungsstelle 𝑡 zu berechnen, gehen wir wie folgt vor:
Zuerst wählen wir ein beliebiges Fahrzeug, das zumindest 𝛼 oberhalb der Trennungsstelle

startet, aber nach dieser noch weiter fährt, als großes Fahrzeug aus. Alle weiteren Fahrzeuge,
die zumindest 𝛼 oberhalb der Trennungsstelle starten, bilden dann mit dem großen Fahrzeug
eine Gruppe. Das heißt, alle Fahrzeuge außer dem großen Fahrzeug, die zumindest 𝛼 oberhalb
der Trennungsstelle starten, fahren erst ab der Trennungsstelle. Die Reisenden, die jetzt
oberhalb der Trennungsstelle im großen Fahrzeug fahren, steigen an der Trennungsstelle in
das Fahrzeug, in dem sie ursprünglich gefahren sind.

Ebenso fügen wir noch alle Fahrzeuge, die sich einen Halt mit dem großen Fahrzeug teilen,
der Gruppe hinzu. Allerdings nur, wenn der geteilte Halt nicht unterhalb der Trennungsstelle
liegt. Auch fügen wir ein Fahrzeug 𝑓 nicht der Gruppe des großen Fahrzeugs hinzu, wenn der
geteilte Halt gleichzeitig die Trennungsstelle und Start von 𝑓 ist. Dies wiederholen wir, bis es
keine mit dem großen Fahrzeug geteilte Halte mehr gibt, die die Lösung verändern.

Zusammenfahrt wegen gemeinsamer Halte Neben der Gruppe des großen Fahrzeugs
kann es noch weitere Fahrzeuge geben, die sich Halte teilen. Diese müssen wir auch noch
zusammenfahren lassen.
Spezifisch bilden wir Gruppen aus Fahrzeugen, die sich transitiv Halte teilen. Allerdings

fügen wir ein Fahrzeug 𝑓 nicht hinzu, wenn der geteilte Halt Start von 𝑓 ist und Trennungs-
stelle der Gruppe wäre. Diese neuen Gruppen fahren bis zum letzten Halt der vorherigen
Fahrzeuge zusammen. Nun erhalten wir als Teilproblem zu bestimmen, wie die Gruppen,
die wir erhalten zusammenfahren. Auch, ob wir die Zusammenfahrt von Gruppen bis zum
Abspaltungspunkt verlängern. In Abschnitt 5.2.4 beschäftigen wir uns mit diesem Teilproblem
Gruppenzusammenfahrt noch eingehender. Wir betrachten einen Algorithmus für dieses
Teilproblem und führen diesen aus.
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Ende vor Trennungsstelle Alle Fahrzeuge, die nicht unterhalb der Trennungsstelle enden,
werden aus der Lösung entfernt. Ihre Reisenden werden stattdessen vom großen Fahrzeug
bedient. Gibt es kein großes Fahrzeug, werden sie stattdessen von dem Fahrzeug bedient, das
unter den in ein Bein fahrenden Fahrzeugen am höchsten startet.

Polynomialität

Nun wollen wir noch zeigen, dass der beschriebene Algorithmus sein Ergebnis auch in
polynomieller Zeit berechnet.

Satz 5.19: Der in diesem Abschnitt beschriebene Algorithmus berechnet ohne Beachtung des

Algorithmus für das Teilproblem Gruppenzusammenfahrt sein Ergebnis in O( |𝑉 | · |𝑅 | · |𝐸𝑅 |).

Beweis. Die Aussage erhalten wir durch einfaches Nachzählen der Operationen des Algorith-
muses.

Um die Fahrzeuge für die Beine zu erzeugen, müssen wir für potentiell jeden Reisenden zwei
Halte erzeugen. Ebenso für die eigenen Fahrzeuge für die restlichen Reisenden. Außerdem
müssen wir den Fahrzeugen die entsprechenden Kanten zuweisen und den Reisenden für
die Kanten das Fahrzeug zuweisen. Daraus ergibt sich eine Laufzeit für diesen Schritt von
O( |𝐸𝑅 |).

Dann schauen wir uns jede mögliche Trennungsstelle an, das heißt höchstens O( |𝑉 |) Kno-
ten. Für jede Trennstelle vereinigen wir dann schrittweise Fahrzeuge. Bei jeder Vereinigung
können jeweils zwei Fahrzeuge nicht mehr vereinigt werden. Somit kann es höchstens O( |𝑅 |)
Vereinigungen geben. Jede der Vereinigungen dauert wie oben maximalO( |𝐸𝑅 |). Den gleichen
Aufwand haben wir nicht nur für jede Trennungsstelle, sondern auch für die Möglichkeit,
dass es kein großes Fahrzeug gibt. Somit erhalten wir für die restlichen Schritte insgesamt
eine Laufzeit von O( |𝑉 | · |𝑅 | · |𝐸𝑅 |).
Es folgt insgesamt die Laufzeit von O( |𝑉 | · |𝑅 | · |𝐸𝑅 |).

5.2.3. Optimalität

Nun zeigen wir noch, dass der in Abschnitt 5.2.2 beschriebene Algorithmus eine optimale
Lösung berechnet. Dafür setzen wir voraus, dass ein optimaler Polynomialzeit-Algorithmus für
das Teilproblem Gruppenzusammenfahrt gegeben ist. Damit folgern wir, dass die optimale
Lösung für das Problem Fahrzeugzuweisung mit Haltekosten auf allen Einhals-Spinnen
in polynomieller Zeit berechnet werden kann. Ebenfalls unter Voraussetzung eines optimalen
Polynomialzeit-Algorithmus für das Teilproblem Gruppenzusammenfahrt.

Satz 5.20: Sei ein optimaler Polynomialzeit-Algorithmus für das Teilproblem Gruppenzusam-

menfahrt gegeben. Dann berechnet der in Abschnitt 5.2.2 beschriebene Algorithmus eine optimale

Lösung für das Problem Fahrzeugzuweisung mit Haltekosten auf Einhals-Spinnen, für die

jede Kante von einem Reisenden befahren wird.

Beweis. Sei 𝐿opt eine optimale Lösung. Sei weiter 𝐿 die Lösung, die der Algorithmus berechnet.
Zunächst betrachten wir die Situation, wenn es in den Gruppen des Teilproblems Grup-

penzusammenfahrt keine Zusammenfahrt gäbe.
Mit Korollar 5.9 und Lemma 5.6 erhalten wir, dass in 𝐿opt wie in 𝐿 in jedem Bein und ab 2𝛼

über dem Abspaltungspunkt nur ein eindeutiges Fahrzeug fährt.
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Nach Lemma 5.18 wissen wir, dass es in 𝐿opt nur ein Fahrzeug geben kann, das mehrere
Reisende mitnimmt, sodass die Zusammenfahrt jeweils den zusätzlichen Halt einspart. In
𝐿 entspricht dieses Fahrzeug gerade dem großen Fahrzeug. Entsprechend verwenden wir
die Terminologie analog für dieses Fahrzeug in 𝐿opt. Mit Lemma 5.10 erhalten wir, dass sich
das große Fahrzeug auch in 𝐿opt nur an einem Punkt aufteilt. Das heißt wir können auch
in 𝐿opt von einer Trennungsstelle reden. Nach Lemma 5.12 und Lemma 5.15 ist dies der
letzte Halt der Reisenden des großen Fahrzeugs oder der Abspaltungspunkt. Mit Lemma 5.7
erhalten wir, dass ab der Trennungsstelle alle Fahrzeuge in 𝐿opt bis in ein Bein fahren. Somit
liefert uns Lemma 5.16, dass auch in 𝐿opt die Trennungsstelle höchstens 𝛼 oberhalb dem
Abspaltungspunkt liegt.

Betrachten wir nun die Iteration des Algorithmus, in der gerade die Lösung für die Tren-
nungsstelle des großen Fahrzeugs in 𝐿opt berechnet wird. Nach Konstruktion fahren in 𝐿

gerade die folgenden Reisenden mit dem großen Fahrzeug: Alle Reisenden, die zumindest
𝛼 oberhalb der Trennungsstelle starten oder am selben Knoten starten oder enden wie ein
anderer Reisender des großen Fahrzeugs. Ebenso alle Reisenden, die im selben Bein enden
wie einer dieser Reisenden und bereits oberhalb der Trennungsstelle fahren. Außerdem alle
Reisenden, die sich keine Halte mit Reisenden aus den Beinen teilen und nicht unterhalb der
Trennungsstelle enden. Ist die Trennungsstelle der Abspaltungspunkt, zusätzlich noch alle
Reisenden aus Gruppen, für die sich die Zusammenfahrt insgesamt bis zum Abspaltungspunkt
lohnt.

Dann erhalten wir mit Lemma 5.11, das Reisende, die mehr als 𝛼 oberhalb der Trennungs-
stelle starten und nicht vor der Trennungsstelle enden, auch in 𝐿opt mit dem großen Fahrzeugs
fahren. Weiter wissen wir auch, dass, falls ein Reisender in 𝐿opt, der genau 𝛼 oberhalb der
Trennungsstelle startet und nicht vor der Trennungsstelle endet, nicht im großen Fahrzeug
fährt, die Lösung nicht schlechter wird, wenn er stattdessen im großen Fahrzeug fährt. Mit
Lemma 5.13 erhalten wir weiter, dass alle Reisenden, die sich Start oder Ende mit einem
anderen Reisenden des großen Fahrzeugs teilen, auch in 𝐿opt mit dem großen Fahrzeug fahren.
Mit Lemma 5.5 wissen wir selbiges auch für die Reisenden, die im selben Bein enden wie ein
Reisender im großen Fahrzeug. Weiter liefert Lemma 5.14, dass jeder Reisender von einem
Fahrzeug bedient wird, das in ein Bein fährt. Für Reisende, die mangels geteilter Halte und
mangelnder Streckenlänge kein weiteres Einsparpotential generieren, ist es optimal, diese
möglichst lange mit anderen zusammenfahren zu lassen. Da das große Fahrzeug die längste
Strecke zurücklegt, ist es daher optimal, diese vom großen Fahrzeug fahren zu lassen. Wir
können daher annehmen, dass auch in 𝐿opt diese Reisenden im großen Fahrzeug fahren.

Die Reisenden, die in 𝐿 nicht im großen Fahrzeug fahren, fahren in Fahrzeugen, die in ein
Bein führen und sich keinen Halt mit dem großen Fahrzeug teilen. Diese Reisenden können
entweder bis in ein Bein fahren oder vorher enden. Fahren sie bis in ein Bein, ist dieses
insbesondere von allen Beinen verschieden, in die Reisende wollen, die im großen Fahrzeug
fahren. Deshalb müssten diese Reisenden aus dem großen Fahrzeug in das Fahrzeug für ihr
Bein umsteigen. Entsprechend gilt nach Lemma 5.17, dass diese auch in 𝐿opt nicht im großen
Fahrzeug fahren. Enden die Reisenden vor dem Abspaltungspunkt, wissen wir, dass diese
sich zumindest transitiv einen Halt mit Reisenden teilen, die in ein Bein fahren wollen, in
das keiner der Reisenden des großen Fahrzeugs fährt. Ebenso wissen wir, dass keiner dieser
Reisenden zumindest 𝛼 oberhalb der Trennungsstelle startet oder sich einen Halt mit einem
Reisenden des großen Fahrzeugs teilt. Somit gilt nach dem selben Argument, dass auch diese
Reisenden in 𝐿opt ebenso nicht im großen Fahrzeug fahren. Daraus erhalten wir, dass 𝐿 durch
eine andere Reisendenzuweisung zum großen Fahrzeug nicht besser sein kann als die optimale
Lösung 𝐿opt.
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Zuletzt wollen wir noch für die restlichen Reisenden ähnliche Aussagen treffen. Die restli-
chen Reisenden sind gerade die Reisenden, die nicht im großen Fahrzeug fahren. Für diese
gibt es zwei Möglichkeiten: Sie haben gemeinsame Halte mit anderen Reisenden oder nicht.
Im ersten Fall wissen wir nach Lemma 5.13, dass in 𝐿opt wie in 𝐿 alle solchen Reisenden

zusammenfahren, die sich einen Halt teilen. Mit Lemma 5.12 und Lemma 5.15 wissen wir
weiterhin, dass sich in 𝐿opt die gleichen beiden Optionen für das Ende der Zusammenfahrt
ergeben wie in 𝐿. Ebenso fahren nach Lemma 5.12 und Lemma 5.13 die Gruppen in 𝐿opt wie
in 𝐿 nur bis zu ihrem jeweils letzten Halt zusammen. Es sei dennn, nach dem optimalen
Algorithmus für das Teilproblem Gruppenzusammenfahrt ist das Ende der Zusammenfahrt
auf den Abspaltungspunkt verschoben. Nach Lemma 5.16 und Lemma 5.17 erhalten wir, dass
auch alle Reisenden, die in 𝐿 nicht in diesen Fahrzeugen zusammenfahren, dies auch nicht in
𝐿opt tun.

Im zweiten Fall gibt es nochmal zwei weitere Möglichkeiten: Entweder der Reisende endet
im Hals oder fährt noch in ein Bein. Endet er im Hals kann es gar kein großes Fahrzeug
geben, sonst würden diese in 𝐿 bereits im großen Fahrzeug fahren. Dann erhalten wir mit
Lemma 5.7, dass in 𝐿opt wie in 𝐿, diese Reisenden von einem im Bein endenden Fahrzeug
bedient werden. Da mit dem Fahrzeug, das am höchsten startet, die meiste Strecke geteilt
werden kann, ist die erhaltene Einsparung in 𝐿 und 𝐿opt gleich. Fährt er in ein Bein, wissen wir
nach Lemma 5.5, dass alle anderen Reisenden in dasselbe Bein an den selben Kanten im selben
Fahrzeug sitzen. Ebenso behandelt auch der Algorithmus diese Kanten für den Reisenden wie
die anderen Reisenden. Fährt er dennoch nicht erst in einem anderen Fahrzeug als dem seines
Beins, wissen wir, dass entweder eine bestehende Zusammenfahrt auch im optimalen Fall
vorher endet oder der Algorithmus gar keine Zusammenfahrt erzeugt. Dann teilen sich all
diese Reisenden keine Halte mit Reisenden, die in andere Beine wollen und nach Lemma 5.18
und Lemma 5.17 erhalten wir somit, dass diese Reisenden auch in der optimalen Lösung 𝐿opt
nur im Fahrzeug ihres Beins fahren.
Da der Algorithmus für das Teilproblem Gruppenzusammenfahrt optimal ist, sind auch

die restlichen Zusammenfahrten der Gruppen so optimal wie in 𝐿opt. Somit erhalten wir
insgesamt, dass 𝐿opt nicht besser als 𝐿 ist. Somit ist 𝐿 bereits optimal.

Mit einem solchen Algorithmus auf Einhals-Spinnen, für die jede Kante von einem Rei-
senden befahren werden will, können wir dann auch einen Algorithmus angeben, der in
polynomieller Zeit eine optimale Lösung für beliebige Probelminstanzen auf Einhals-Spinnen
berechnet.

Theorem 5.21: Unter Annahme eines optimalen Polynomialzeitalgorithmus für das Teilproblem

Gruppenzusammenfahrt, existiert ein polynomieller Algorithmus, der für Probleminstanzen des

Problems Fahrzeugzuweisung mit Haltekosten auf Einhals-Spinnen eine optimale Lösung

berechnet.

Beweis. Sei A der Algorithmus für Einhals-Spinnen, sodass jede Kante von einem Reisenden
befahren wird, aus Abschnitt 5.2.2. Dabei verwenden wir die Annahme eines optimalen
Polynomialzeitalgorithmus für das Teilproblem Gruppenzusammenfahrt. Nach Lemma 5.1
wissen wir, dass auf Kanten, die nicht von Reisenden befahren werden wollen, in einer
optimalen Lösung keine Fahrzeuge fahren. Somit zerfällt eine Instanz in höchstens linear-viele
Teilinstanzen. Jede dieser Teilinstanzen ist eine Einhals-Spinne, sodass jede Kante von einem
Reisenden befahren wird. Somit können wir die Teilinstanzen mit dem Algorithmus A in
polynomieller Zeit optimal lösen können. Insgesamt erhalten wir in polynomieller Zeit eine
optimale Lösung für die gesamte Instanz.
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5.2.4. Zusammenfahrt von Gruppen

In diesem Abschnitt betrachten wir das Teilproblem aus dem Algorithmus in Abschnitt 5.2.2
genauer. Wir erinnern uns an die Situation: Wir haben bereits viele Reisende zu Gruppen
zusammengefasst. Dabei können wir uns sicher sein, dass jeder der Reisenden mit allen
Reisenden in der eigenen Gruppe zusammenfahren muss. Außerdem haben wir auch alle
Reisenden zu Gruppen zusammengefasst, von denen wir uns sicher sind, dass sie zusam-
menfahren müssen. Wir wissen auch, dass der Bereich, in dem wir noch etwas entscheiden
müssen, klein ist. Denn nur im Bereich von 2𝛼 oberhalb des Abspaltungspunkts gibt es noch
mehrere Gruppen. Und unterhalb des Abspaltungspunkts fährt nach Lemma 5.6 nur ein Fahr-
zeug pro Bein. Jetzt stehen wir vor dem Problem, dass wir nicht wissen, welche Reisenden
der erhaltenen Gruppen weiter zusammenfahren und welche getrennt bleiben sollten. Wir
erhalten ein neues Optimierungsproblem als Teilproblem des Problems Fahrzeugzuweisung
mit Haltekosten auf Einhals-Spinnen. Mit Lemma 5.15 und Lemma 5.12 wissen wir, dass
zusätzliche Zusammenfahrten der Reisenden der Gruppen weiterhin an einem letzten Halt
eines der Reisenden oder dem Abspaltungspunkt enden muss. Nach Lemma 5.13 wissen
wir, dass ein geteilter Halt zwischen zwei Gruppen Start der einen und der letzte Halt von
beiden Gruppen sein müsste. Da die Gruppe dann aber nichts spart, dürfen die Reisenden gar
nicht zusammen in derselben Gruppe fahren. Also wissen wir, dass Gruppen sich keine Halte
teilen. Da wir außerdem wissen, dass die bisherigen Gruppen erhalten bleiben, sind für dieses
Teilproblem von jeder Gruppe nur Start, Ende der Zusammenfahrt und Anzahl Beine relevant.

Insgesamt erhalten wir das Optimierungsproblem Gruppenzusammenfahrt. Eine Instanz
besteht aus einem gewichteten, gerichteten Pfadgraphen, skalaren Haltekosten 𝛼 sowie einer
Menge an Gruppen. Die Gewichte jeder Kante sind echt positiv. Jede Gruppe ist gegeben
durch zwei Knoten, den Start sowie die Trennungsstelle, und eine Anzahl involvierter Beine.
Dabei ist jeder Start und jede Trennungsstelle von jedem anderen Start und jeder anderen
Trennungsstelle verschieden. Insbesondere sind auch der Start und die Trennungsstelle einer
Gruppe verschieden. Außerdem ist die Strecke zwischen dem zweithöchsten Start und dem
tiefsten Punkt höchstens 2𝛼 lang. Wir suchen eine Partitionierung der Gruppen in soge-
nannte Hypergruppen. Jede Hypergruppe besteht aus einer Menge an Gruppen, sowie einer
Trennungsstelle. Die Trennungsstelle einer Hypergruppe ist die niedrigste Trennungsstelle
einer der enthaltenen Gruppen oder der tiefste Knoten des Pfadgraphens. Allerdings darf nur
für maximal eine Hypergruppe die Trennungsstelle mit dem tiefsten Knoten des Graphen
übereinstimmen. Die Minimierungsfunktion besteht aus mehreren Summanden. Der erste
Summand ist das Produkt der Haltekosten mit der Anzahl an Gruppen, deren Trennungsstelle
nicht mit der Trennungsstelle ihrer Hypergruppe übereinstimmen. Der zweite Summand
die Summe über alle Hypergruppen von der Strecke von Start der Hypergruppe bis zu ih-
rer Trennungsstelle. Der dritte und letzte Summand ist die Summe über alle Gruppen von
dem Produkt der Anzahl Beine mit der Strecke von der Trennungsstelle der zugeordneten
Hypergruppe bis zum tiefsten Knoten des Pfadgraphen.
Betrachten wir eine Einhals-Spinne zusammen mit Gruppen, von denen wir wissen, dass

gerade diese Gruppen zusammenfahren müssen. Dann erhalten wir dazu eine Instanz 𝐼

des Problems Gruppenzusammenfahrt mit denselben Haltekosten. Dann entspricht der
tiefste Knoten des Pfadgraphen von 𝐼 gerade dem Abspaltungspunkt der Einhals-Spinne. Der
Hals der Einhals-Spinne liefert uns den Pfadgraphen von 𝐼 . Die Gruppen in 𝐼 entsprechen
den Gruppen für eine Einhals-Spinne 𝑆 , von denen wir wissen, dass gerade diese Gruppen
zusammenfahren müssen. Der Start einer Gruppe 𝐺 für 𝑆 entspricht dem Start des ersten
Reisenden der entsprechenden Gruppe in 𝐼 . Der Knoten, an dem die Zusammenfahrt von
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Abbildung 5.15.: Ein Beispiel, in dem die Zusammenfassung in dieselbe Hypergruppe von
einer (Hyper-)Gruppe mit immer der besten lohnenswerten (Hyper-)Gruppe eine suboptimales
Ergebnis liefert. Für die vier Gruppen 𝑔𝑖 mit 𝑖 ∈ {0, 1, 2, 3} markieren wir mit 𝑠𝑖 den jeweiligen
Start und mit 𝑡𝑖 die jeweilige Trennungsstelle. Mit 𝜀 bezeichnen wir Kantenkosten, die viel
kleiner sind als 𝛼 . Die Anzahl involvierter Beine der Gruppe 𝑔2 ist fünf und die Anzahl
involvierter Beine der restlichen Gruppen ist zwei.

𝐺 endet, entspricht der Trennungsstelle der entsprechenden Gruppe in 𝐼 . Und die Anzahl
involvierter Beine der entsprechenden Gruppe in 𝐼 , entspricht gerade der Anzahl verschiedener
Beine, in die Reisende aus 𝐺 fahren. Wir wissen nach Lemma 5.13, dass Gruppen sich keine
Halte teilen. Somit sind die Starte und Trennungsstellen in 𝐼 voneinander verschieden.
Für jede Gruppe auf der Einhals-Spinne bedeutet ein späteres Ende der Zusammenfahrt

einen zusätzlichen Halt. Denn der vorherige Halt war noch oberhalb des Abspaltungspunkts
und somit ein Start oder Ende eines Reisenden, an dem weiterhin gehalten werden muss.
Außerdem stimmen keine zwei Halte der Gruppen auf der Einhals-Spinne überein. Lassen
wir Reisende zusammenfahren, befährt ab dem Start des ersten Reisenden ein Fahrzeug die
gesamte Strecke bis zum Ende der Zusammenfahrt. Ab dann fährt in jedes Bein ein Fahrzeug,
denn in den Beinen fährt nur ein Fahrzeug. Insbesondere fahren auf der restlichen Strecke
vom Ende der Zusammenfahrt bis zum Abspaltungspunkt für jedes Bein, in das ein Reisender
der Gruppe fährt, ein Fahrzeug. Somit entspricht die Optimierung der Instanz 𝐼 gerade der
Optimierung der Zusammenfahrt der Reisenden aus den Gruppen auf der Einhals-Spinne.
Wir zeigen, dass ein Algorithmus, der eine optimale Lösung für das Problem Gruppenzu-

sammenfahrt berechnet, nicht offensichtlich ist. Ein solcher Algorithmus benötigt also eine
gewisse Komplexität. Denn die beiden offensichtlichen Möglichkeiten führen nicht zum Erfolg.
Zum einen betrachten wir einen Algorithmus A, der mit einer Hypergruppe für jede Gruppe
beginnt nacheinander Hypergruppen vereinigt. Der Algorithmus A vereinigt dabei jede Hy-
pergruppe solange mit der Hypergruppe, mit der die Lösung am meisten besser wird, bis keine
Verbesserung mehr erzielt werden kann. Zum anderen betrachten wir einen Algorithmus B,
der andersrum mit einer Hypergruppe für alle Reisenden beginnt nacheinander Gruppen aus
der Hypergruppe entfernt. Dabei erzeugt der Algorithmus B eine eigene Hypergruppe für
jede Gruppe, für die eine eigene Hypergruppe besser wäre. Wir zeigen gleich, dass weder A
noch B immer eine optimale Lösung liefert.
Zuerst betrachten wir den Algorithmus A. Wir sehen ein, dass wir nicht immer eine

optimale Lösung erhalten, wenn wir mit einer Hypergruppe für jede Gruppe mit aktueller
Trennungsstelle starten und dann nacheinander Hypergruppen vereinigen. Wir sehen sogar
ein, dass wir immer die beste mögliche Vereinigung wählen können und dennoch keine
optimale Lösung erhalten.
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Lemma 5.22: Die in Abbildung 5.15 beschriebene Beispielinstanz liefert in einer Reihenfolge mit

Vereinigung mit bester anderer Hypergruppe keine optimale Lösung.

Beweis. Da die Gruppe𝑔3 am tiefsten Knoten endet, ist die Trennungsstelle einer Hypergruppe
auf dem tiefsten Knoten gleichbedeutend mit einer Zusammenfahrt mit 𝑔3.

Beginnenwirmit der Gruppe𝑔1. Dann gilt für die Vereinigungmit𝑔0, dass eineHypergruppe
weniger die Kante (𝑐, 𝑑) beinhaltet sowie für zwei Beine die Strecke ab der Trennungsstelle
um den Pfad (𝑑, 𝑒, 𝑓 , 𝑔) kürzer ist. Dafür untescheidet sich dann die Trennungsstelle der
gemeinsamen Hypergruppe von der Trennungsstelle von 𝑔1. Wir erhalten eine Ersparnis von

𝜀 + 2 ·
(𝛼
2
+ 𝜀 + 𝜀

)
− 𝛼 = 5𝜀.

Bei einer Vereinigung mit der Gruppe 𝑔2, beinhaltet eine Hypergruppe weniger den Pfad
(𝑏, 𝑐, 𝑑) und für zwei Beine verkürzt sich die Strecker ab der Trennungsstelle um den Pfad Kante
(𝑑, 𝑒, 𝑓 ). Ebenso unterscheidet sich dann die Trennungsstelle der gemeinsamen Hypergruppe
von der Trennungsstelle von 𝑔1. Wir erhalten eine Ersparnis von

𝜀 + 𝜀 + 2 ·
(𝛼
2
+ 𝜀

)
− 𝛼 = 4𝜀.

Bei einer Vereinigung mit der Gruppe 𝑔3, verkürzt sich die Strecke von einem Bein um den
Pfad (𝑑, 𝑒, 𝑓 , 𝑔, ℎ) und für ein weiteres Bein um den Pfad (𝑒, 𝑓 , 𝑔, ℎ). Auch hier unterscheidet
sich die Trennungsstelle der gemeinsamen Hypergruppe von der Trennungsstelle von 𝑔1. Wir
erhalten eine Ersparnis von(𝛼

2
+ 𝜀 + 𝜀 + 𝛼

5

)
+
(
𝜀 + 𝜀 + 𝛼

5

)
− 𝛼 = 4𝜀 − 𝛼

10
.

Insgesamt ist somit die Vereinigung von 𝑔1 mit 𝑔0 am besten und wir erhalten stattdessen die
neue Hypergruppe 𝑔0𝑔1 mit Trennungsstelle 𝑔 und Start 𝑏 sowie vier involvierten Beinen.
Als nächstes vereinigen wir die Gruppe 𝑔2. Mit der Hypergruppe 𝑔0𝑔1 fährt eine Hyper-

gruppe weniger den Pfad (𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ) und für fünf Beine wird die Strecke um die Kante (𝑓 , 𝑔)
kürzer. Zusätzlich weicht dann noch die Gruppe 𝑔2 von der Trennungsstelle der gemeinsamen
Hypergruppe ab. Wir erhalten eine Ersparnis von

𝜀 + 𝜀 + 𝛼
2
+ 𝜀 + 5𝜀 − 𝛼 = 8𝜀 − 𝛼

2
.

Mit der Gruppe 𝑔3 fährt eine Hypergruppe weniger die Kante (𝑒, 𝑓 ) und für fünf Beine wird die
Strecke um den Pfad (𝑓 , 𝑔, ℎ) kürzer. Die Trennungsstelle einer gemeinsamen Hypergruppe
würde von der Trennungsstelle von Gruppe 𝑔2 abweichen. Wir erhalten eine Ersparnis von

𝜀 + 5 ·
(
𝜀 + 𝛼

5

)
− 𝛼 = 6𝜀.

Insgesamt ist somit die Vereinigung von 𝑔2 mit 𝑔3 am besten und wir erhalten stattdessen die
neue Hypergruppe 𝑔2𝑔3 mit Trennungsstelle ℎ und Start 𝑎 sowie sieben involvierten Beinen.

Bleiben noch die Hypergruppen 𝑔0𝑔1 und 𝑔2𝑔3. Bei einer Vereinigung dieser beiden Hyper-
gruppen befährt eine Hypergruppe weniger den Pfad (𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔). Außerdem beinhaltet die
Strecke von vier Beinen die Kante (𝑔, ℎ) weniger. Die Vereinigung der beiden Hypergruppen
bedeutet, dass die Trennungsstelle der Vereinigung zusätzlich noch von der Trennungsstelle
von 𝑔0 abweicht. Somit erhalten wir eine Ersparnis von

𝜀 + 𝜀 + 𝛼
2
+ 𝜀 + 𝜀 + 4𝛼

5
− 𝛼 =

3
10

𝛼 + 4𝜀.
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Abbildung 5.16.: Ein Beispiel, in dem das Entfernen von Gruppen aus der Hypergruppe
der Vereinigung aller Gruppen eine suboptimale Lösung liefert. Für die vier Gruppen 𝑔𝑖 mit
𝑖 ∈ {0, 1, 2, 3}markieren wir mit 𝑠𝑖 den jeweiligen Start undmit 𝑡𝑖 die jeweilige Trennungsstelle.
Mit 𝜀 bezeichnen wir Kantenkosten, die viel kleiner sind als 𝛼 . Die Anzahl involvierter Beine
der Gruppen 𝑔1 und 𝑔3 ist 100 und die Anzahl involvierter Beine der Gruppen 𝑔0 und 𝑔2 ist
zwei.

Somit ist die Vereinigung der beiden Hypergruppen lohnenswert und wir erhalten insgesamt
die Hypergruppe 𝑔0𝑔1𝑔2𝑔3 mit Start 𝑎, Trennungsstelle ℎ und elf involvierten Beinen.

Für die Lösung 𝐿, die nur aus der Hypergruppe𝑔0𝑔1𝑔2𝑔3 besteht, fährt nur eine Hypergruppe
den kompletten Pfad, somit gibt es auch keine Strecke zwischen Trennungsstelle und tiefstem
Knoten. Weiter weicht die Trennungsstelle der Hypergruppe von der Trennungsstelle von
drei Gruppen ab. Wir erhalten insgesamt den Wert

𝜀 + 𝜀 + 𝜀 + 𝛼
2
+ 𝜀 + 𝜀 + 𝛼

5
+ 3𝛼 =

37
10

𝛼 + 5𝜀.

Betrachten wir alternativ die Lösung 𝐿′ mit zwei Hypergruppen, eine die der Gruppe 𝑔0
entspricht sowie die Hypergruppe 𝑔1𝑔2𝑔3, die die restlichen Gruppen enthält. Dann ist die
Trennungsstelle der Hypergruppe 𝑔1𝑔2𝑔3 am Knoten ℎ und der Start an Knoten 𝑎. Somit ist
die Trennungsstelle von den Gruppen 𝑔1 und 𝑔2 von der Trennungsstelle der Hypergruppe
𝑔1𝑔2𝑔3 verschieden. Außerdem sind neun Reisende in die Hypergruppe 𝑔1𝑔2𝑔3 involviert. Wir
erhalten einen Wert von(

𝜀 + 𝛼
2
+ 𝜀 + 𝜀 + 2

5
𝛼

)
+
(
𝜀 + 𝜀 + 𝜀 + 𝛼

2
+ 𝜀 + 𝜀 + 𝛼

5
+ 2𝛼

)
=
36
10

𝛼 + 8𝜀.

Da 𝜀 deutlich kleiner ist als 𝛼 , ist somit die Lösung 𝐿′ besser als die Lösung 𝐿. Die Lösung 𝐿
kann also nicht optimal sein.

Jetzt betrachten wir den Algorithmus B. Wir sehen ein, dass wir auch nicht immer eine
optimale Lösung erhalten, wenn wir mit einer Hypergruppe der Vereinigung aller Gruppen
beginnen und dann alle Gruppen rauswerfen, für die es besser ist, nicht mit den anderen
Gruppen vereinigt zu sein.

Lemma 5.23:Wir betrachten die Beispielinstanz in Abbildung 5.16. Beginnen wir mit einer

Hypergruppe mit allen Gruppen und entfernen Gruppen, für die die Vereinigung nicht lohnt,

erhalten wir keine optimale Lösung.

Beweis. Die Hypergruppe 𝑔0𝑔1𝑔2𝑔3 involviert 204 Beine. Der Start der Hypergruppe 𝑔0𝑔1𝑔2𝑔3
liegt an Knoten 𝑎 und die Trennungsstelle an Knoten ℎ. Außer für die Gruppe 𝑔2 ist die Tren-
nungsstelle der Gruppe 𝑔𝑖 von der Trennungsstelle der Hypergruppe 𝑔0𝑔1𝑔2𝑔3 verschieden.

41



5. Einschränkung auf Graphenklassen

Erstellen wir stattdessen eine neue Hypergruppe für 𝑔0, beinhaltet eine Hypergruppe mehr
den Pfad (𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔) und zwei Beine beinhalten zusätzlich die Kante (𝑔, ℎ). Dafür stimmt
die Trennungsstelle von 𝑔0 jetzt mit der Trennungsstelle seiner Hypergruppe überein. Eine
eigene Gruppe für 𝑔0 bietet also einen Vorteil von

𝛼 −
( 𝛼

1010
+ 𝜀 + 𝜀 + 𝜀 + 𝛼

100

)
− 2𝜀 > 0.

Wir erzeugen also eine eigene Hypergruppe für 𝑔0. Dann ist der Start restliche Hypergruppe
𝑔1𝑔2𝑔3 jetzt an Knoten 𝑏 und die Trennungsstelle weiterhin an Knoten ℎ. Außerdem sind nur
noch 202 Beine involviert.
Eine eigene Hypergruppe für 𝑔1 bedeutet: Eine weitere Hypergruppe beinhaltet den Pfad
(𝑐, 𝑑, 𝑒, 𝑓 ) und 100 Beine beinhalten zusätzlich den Pfad (𝑓 , 𝑔, ℎ). Die restliche Hyperguppe
𝑔2𝑔3 startet erst an Knoten 𝑐 . Außerdem stimmt die Trennungsstelle der Gruppe 𝑔1 mit der
Trennungsstelle der eigenen Gruppe überein. Eine eigene Gruppe für 𝑔1 bietet also einen
Vorteil von

𝛼 − (𝜀 + 𝜀 + 𝜀) − 100 ·
( 𝛼

100
+ 𝜀

)
< 0.

Die Lösung bleibt somit unverändert.
Eine eigene Hypergruppe für 𝑔2 bedeutet: Eine weitere Hypergruppe beinhaltet den Pfad
(𝑐, 𝑑, 𝑒, 𝑓 ) und 102 Beine beinhalten zusätzlich den Pfad (𝑓 , 𝑔, ℎ). Die Trennungsstelle der
restlichen Hyperguppe 𝑔1𝑔3 liegt schon an Knoten 𝑓 . Außerdem stimmt die Trennungsstelle
der Gruppe 𝑔1 mit der Trennungsstelle der eigenen Gruppe überein. Eine eigene Gruppe für
𝑔2 bietet also einen Vorteil von

𝛼 − (𝜀 + 𝜀 + 𝜀) − 102 ·
( 𝛼

100
+ 𝜀

)
< 0.

Die Lösung bleibt somit unverändert.
Eine eigene Hypergruppe für 𝑔3 bedeutet: Eine weitere Hypergruppe beinhaltet die Kante
(𝑑, 𝑒) und 100 Beine beinhalten zusätzlich den Pfad (𝑒, 𝑓 , 𝑔, ℎ). Außerdem stimmt die Tren-
nungsstelle der Gruppe 𝑔3 mit der Trennungsstelle der eigenen Gruppe überein. Eine eigene
Gruppe für 𝑔3 bietet also einen Vorteil von

𝛼 − 𝜀 − 100 ·
(
𝜀 + 𝛼

100
+ 𝜀

)
< 0.

Die Lösung bleibt somit unverändert.
Der Wert der so erhaltenen Lösung 𝐿 mit einer Hypergruppe für 𝑔0 und einer Hypergruppe

𝑔1𝑔2𝑔3 für die restlichen drei Gruppen hat dann den Wert(
𝜀 + 𝛼

1010
+ 𝜀 + 𝜀 + 𝜀 + 𝛼

100
+ 2𝜀

)
+
( 𝛼

1010
+ 𝜀 + 𝜀 + 𝜀 + 𝛼

100
+ 𝜀 + 2𝛼

)
=

2
1010

𝛼 + 2
100

𝛼 +2𝛼 +10𝜀.

Betrachte stattdessen die Lösung 𝐿′mit zwei Hypergruppen𝑔0𝑔1 und𝑔2𝑔3. Die Hypergruppe
𝑔0𝑔1 besteht aus den Gruppen 𝑔0 und 𝑔1. Somit ist der Start der Hypergruppe 𝑔0𝑔1 an Knoten 𝑎
und die Trennungsstelle an Knoten 𝑔. Die Anzahl involvierter Beine ist 102. Die Hypergruppe
𝑔2𝑔3 besteht aus den Gruppen 𝑔2 und 𝑔3. Somit ist der Start der Hypergruppe 𝑔2𝑔3 am Knoten
𝑐 und die Trennungsstelle an Knoten ℎ. Die Anzahl involviert Beine ist ebenfalls 102. Dann
erhalten wir für die Lösung 𝐿′ den Wert(
𝜀 + 𝛼

1010
+ 𝜀 + 𝜀 + 𝜀 + 𝛼

100
+ 102𝜀 + 𝛼

)
+
(
𝜀 + 𝜀 + 𝜀 + 𝛼

100
+ 𝜀 + 𝛼

)
=

1
1010

𝛼 + 2
100

𝛼 +2𝛼 +110𝜀.

Dann ist aber der Wert der Lösung 𝐿′ geringer als der Wert der Lösung 𝐿. Somit kann 𝐿

nicht optimal sein.

42



5.3. Out-Trees

5.3. Out-Trees

Eine weitere Graphenklasse sind die Out-Trees. Out-Trees beschreibt eine Teilklasse der
Bäume. Genauer ist ein Out-Tree ein gerichteter Baum, sodass von der Wurzel zu jedem
Knoten ein Pfad existiert.
Betrachten wir einen Out-Tree lokal in Blattnähe, ähnelt er einer Einhals-Spinne. Es ist

somit naheliegend, einen Algorithmus für Einhals-Spinnen durch sukzessives Lösen von
Spinnen zu einem Algorithmus für Out-Trees zu erweitern. In diesem Abschnitt zeigen wir
aber, dass wir keinen Algorithmus konstruieren können, der die Lösungen der Spinnen direkt
verwendet.

Dazu erinnern wir uns an die Bezeichnung aus Abschnitt 5.2, dass ein Knoten 𝑢 bezie-
hungsweise ein Bereich 𝐵 unterhalb eines Knoten 𝜈 liegt, und erweitern diese auf Out-Trees.
Dabei bedeutet die Aussage, dass der Knoten 𝑢 unterhalb eines Knotens 𝜈 ≠ 𝑢 liegt, dass
der eindeutige Pfad von der Wurzel zu 𝑢 durch den Knoten 𝜈 geht. Analog gilt für einen
zusammenhängenden Teilgraph 𝐵, dass dieser unterhalb des Knotens 𝜈 liegt, wenn jeder
Knoten von 𝐵 unterhalb von 𝜈 liegt. Auch definieren wir den Begriff für eine Kante (𝑢, 𝜈). Eine
Kante (𝑢, 𝜈) ist unterhalb eines Knotens𝑤 , wenn 𝑢 unterhalb des Knotens𝑤 liegt oder mit
diesem übereinstimmt. Wir bezeichnen die Kante (𝑢, 𝜈) als direkt unterhalb des Knotens 𝑢.
Damit definieren wir Spinnenenden. Spinnenenden sind eine formale Beschreibung der

Beobachtung, dass Out-Trees lokal in Blattnähe Einhals-Spinnen ähneln.

Definition 5.24: Sei 𝜈 ein maximal von der Wurzel entfernter Knoten von Grad größer 2. Das

heißt, auf jedem Pfad, der 𝜈 beinhaltet, ist 𝜈 der letzte Knoten von Grad größer 2. Insbesondere ist

𝜈 nicht zwingend der Knoten von Grad größer 2 von maximaler Distanz zu der Wurzel. Sei weiter

𝑢 der letzte Knoten auf dem Pfad von der Wurzel zu 𝜈 aber noch vor 𝜈 , der einen Grad größer

2 hat. Gibt es auf dem Pfad von der Wurzel zu 𝜈 neben 𝜈 keinen Knoten von Grad größer 2, so

setze stattdessen 𝑢 auf die Wurzel. Sei nun 𝑅 die Menge aller Reisenden, deren Strecke zumindest

teilweise unterhalb 𝜈 liegt. Sei weiter𝐺 der Teilgraph aller Knoten und Kanten, die von zumindest

einem Reisenden von 𝑅 befahren werden. Dann ist𝐺 eine Einhals-Spinne und der ursprüngliche

Graph ohne𝐺 noch immer ein Out-Tree. Weiter erhalten wir mit𝐺 und 𝑅 ein Teilproblem unseres

ursprünglichen Problems. Wir nennen dieses Teilproblem Spinnenende. Den Knoten 𝑢 nennen

wir Anfang des Spinnenendes.

Die Kante direkt unterhalb des Anfangs eines Spinnenendes ist nach Defintion nur Teil
dieses einen Spinnenendes. Angenommen es gibt einen AlgorithmusA, der sukzessive Spinne-
nenden löst und deren optimale Lösungen zu einer gesamten optimalen Lösung erweitert. Wie
wir gleich zeigen, kann A – selbst unterhalb des Anfangs des Spinnendes – nicht unbedingt
eine optimale Lösung des Spinnenendes unverändert wiederverwenden. Wir sehen also ein,
dass der Algorithmus A die optimalen Lösungen der Spinnenenden weitergehend bearbeiten
muss, um eine optimale Lösung zu erhalten. Insbesondere gibt es keinen Algorithmus, der
sukzessive Spinnenenden löst und aus der Zusammensetzung dieser Teillösungen direkt eine
optimale Lösung erhält.

Satz 5.25: Sei 𝐿𝑆 eine optimale Lösung des Spinnenendes 𝑆 der Instanz aus Abbildung 5.17. Sei

weiter 𝐿 eine optimale Lösung der gesamten Instanz. Dann fahren die Reisenden 𝑟1 und 𝑟2 in 𝐿𝑆
an der Kante (𝑏, 𝑑) in einem gemeinsamen Fahrzeug, aber nicht in 𝐿.

Beweis. Wir betrachten die in Abbildung 5.17 beschriebene Beispielinstanz. Es sei 𝜀 deutlich
kleiner als 𝛼 . Dann besteht das einzige Spinnenende 𝑆 aus dem Teilgraphen ohne den Knoten
𝑐 und zugehörige Kante (𝑏, 𝑐) sowie den Reisende 𝑟1 und 𝑟2.
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Abbildung 5.17.:Alle Reisenden starten an Knoten 𝑎 markiert mit 𝑠 . Das einzige Spinnenende
𝑆 der Instanz beinhaltet die Reisende 𝑟1 und 𝑟2 sowie den Graphen ohne den Knoten 𝑏 und
die zugehörige Kante (𝑎, 𝑏). Dann fahren in einer optimalen Lösung von 𝑆 𝑟1 und 𝑟2 an (𝑏, 𝑑)
zusammen, aber in nicht in einer optimalen Lösung von der gesamten Instanz.

Nach Lemma 5.4 wissen wir, dass eine mögliche Zusammenfahrt von den Reisenden in
einer optimalen Lösung von 𝑆 an 𝑎 beginnen muss. Weiter wissen wir nach Lemma 5.15, dass
eine mögliche Zusammenfahrt der beiden Reisenden in einer optimalen Lösung von 𝑆 bis
zum Knoten 𝑑 anhält. Uns bleiben also noch zwei mögliche Klassen für eine optimale Lösung
von 𝑆 : Erstens beide Reisenden fahren in getrennten Fahrzeugen, oder zweitens die beiden
Reisenden fahren bis 𝑑 in einem gemeinsamen Fahrzeug, bevor einer der beiden Reisenden
in ein eigenes Fahrzeug umsteigt. Sei 𝐿′

𝑆
eine Lösung, in der beide Reisenden in getrennten

Fahrzeugen fahren. Sei weiter 𝐿𝑆 eine Lösung, in der die beiden Reisenden 𝑟1 und 𝑟2 bis 𝑑 in
einem gemeinsamen Fahrzeug fahren. Dann steigt einer der beiden Reisenden in 𝐿𝑆 an 𝑑 in
ein eigenes Fahrzeug um.

Dann gibt es in der Lösung 𝐿′
𝑆
vier Halte – für jeden Start und jedes Ende eines Reisenden

einen. Weiter befahren die zwei Fahrzeuge jeweils eine Strecke von 𝛼 + 𝜀 + 𝜀. Insgesamt
erhalten wir für 𝐿′

𝑆
einen Wert von

𝑐𝑆 ′ = 2 · (𝛼 + 2𝜀) + 4𝛼 = 6𝛼 + 4𝜀.

In der Lösung 𝐿𝑆 gibt es fünf Halte: Einen für den gemeinsamen Start, zwei für den Umstieg
und je einen für die beiden Enden. Ein Fahrzeug befährt neben dem Bein eines der Reisenden
noch die gemeinsam befahrene Strecke, also wie in 𝐿𝑆 eine Strecke von 𝛼 + 2𝜀. Das andere
Fahrzeug befährt nur die Strecke im Bein, also nur eine Strecke von 𝜀. Insgesamt erhalten wir
für 𝐿𝑆 einen Wert von

𝑐𝑆 = 𝛼 + 2𝜀 + 𝜀 + 5𝛼 = 6𝛼 + 3𝜀.

Folglich ist die Lösung 𝐿𝑆 für 𝑆 optimal.
Betrachte die folgende Lösung 𝐿 auf der gesamten Instanz. Alle Reisenden fahren in einem

gemeinsamen Fahrzeug die Kante (𝑎, 𝑏). Dann steigen die beiden Reisenden 𝑟1 und 𝑟2 in eigene
Fahrzeuge für ihre restliche Strecken um. Reisender 𝑟0 verbleibt für seine restliche Strecke im
gemeinsamen Fahrzeug. Dann fährt das gemeinsame Fahrzeug die Strecke (𝑎, 𝑏, 𝑐) und hält
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an jedem Knoten: am gemeinsamen Start, für den Umstig und das Ende von 𝑟0. Die Fahrzeuge,
die die Reisenden 𝑟1 und 𝑟2 unterhalb von 𝑏 bedienen, fahren jeweils eine Strecke von 2𝜀 und
halten nur an Start und Ende. Es ergibt sich für die Lösung ein Wert von

𝑐𝐿 = 𝛼 + 𝜀 + 2𝜀 + 2𝜀 + (3 + 2 + 2) · 𝛼 = 8𝛼 + 5𝜀.

Die einzige in 𝐿 ungenutzte Zusammenfahrt ist die Kante (𝑏, 𝑑). Fahren in einer Lösung
𝑟1 und 𝑟2 an (𝑏, 𝑑) zusammen, so brauchen wir entweder mindestens einen Halt mehr oder
es fahren zwei Fahrzeuge an der Kante (𝑎, 𝑏). Durch die gemeinsam gefahrene Kante wird
eine Strecke von 𝜀 von einem Fahrzeug weniger befahren. Eine Lösung, in der 𝑟1 und 𝑟2 an
(𝑏, 𝑑) wie in 𝐿𝑆 in einem gemeinsamen Fahrzeug fahren, ist also schlechter als die Lösung 𝐿.
Somit können die Reisenden 𝑟1 und 𝑟2 in keiner optimalen Lösung der gesamten Instanz an
(𝑏, 𝑑) in einem gemeinsamen Fahrzeug fahren. Anders als in der optimalen Lösung 𝐿𝑆 des
Spinnenendes.
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6. Reisendeneinschränkung

In Kapitel 5 diskutieren wir die Möglichkeit das Problem einzuschränken, indem wir uns auf
bestimmte Graphenklassen einschränken. In diesem Kapitel schränken wir den anderen Teil
einer Probleminstanz ein: die Reisenden. Konkret schränken wir ein, wie viele Reisenden sich
begegnen können. Dann betrachten wir, wie eine solche Instanz lokal für einen Reisenden
aussieht. Damit konstruieren wir dann einen polynomiellen Algorithmus, der eine optimale
Lösung berechnen kann.
Die Instanzen nennen wir Einzelhaushalt. In einem Einzelhaushalt beginnt und endet für

jeden Reisenden 𝑟 der Pfad 𝑝𝑟 an Knoten, die nur im Pfad dieses Reisenden vorkommen.
Daher auch der Name Einzelhaushalt. Weiter fordern wir, dass jeder Knoten nur in Pfaden
von maximal zwei Reisenden vorkommen.

In Abbildung 6.1 finden wir eine schematische Darstellung der Situation aus der Sicht
eines Reisenden. Wie wir nach Lemma 5.1 wissen, sind für eine optimale Lösung nur die
von Reisenden befahrenen Kanten relevant. Entsprechend fehlen eventuelle weitere Kanten
in Abbildung 6.1. Da die Starts und Enden nur in den Pfaden eines Reisenden vorkommen,
fährt jeder Reisende wie abgebildet getrennt auf eine gemeinsame Strecke zu. Weiter ist jeder
Knoten nur in der Strecke von maximal zwei Reisenden enthalten. Deswegen können keine
Teilpfade der Reisendenpfade entstehen, die von mehr als drei Reisenden bereist werden.
Anders als abgebildet, können Reisende sich auch mehrmals eine Strecke teilen. Allerdings
sind die geteilten Strecken voneinander unabhängig: Da jeder Reisender einen Knoten nur
einmal besucht steht zwischen zwei gemeinsamen Streckenstücke zweier Reisende, auch bei
beiden Reisenden mindestens ein Streckenstück, auf dem sie alleine fahren. Zwei geteilte
Streckenstücke mit demselben Reisenden sind also nicht von zwei mit zwei verschiedenen
Reisenden geteilten Streckenstücken unterscheidbar. Weiter können sich auch Reisende einen
Knoten teilen, ohne sich Kanten zu teilen. In dem Fall ist keine Möglichkeit der Verbesserung
vorhanden, da um diesen geteilten Knoten nur genau für jeden der beiden Reisenden zwei
Kanten liegen, die nur von diesem Reisenden befahren werden. Entsprechend findet sich diese
Situation nicht in Abbildung 6.1.

Soll ein geteiltes Stück von zwei Reisenden 𝑟 und 𝑟 ′ im selben Fahrzeug zurückgelegt werden,
entstehen dadurch vier neue Halte. Denn die beiden Fahrzeuge der Reisenden müssen einmal
anhalten damit ohne Beschränkung der Allgemeinheit 𝑟 ′ zu 𝑟 steigen kann und noch ein
weiteres Mal anhalten, damit 𝑟 ′ wieder auf seine Strecke zurück umsteigen kann. Durch solche
vier Halte lässt sich jeder beliebige nicht leere Teilpfad der gemeinsamen Strecke einsparen.
Demzufolge ist die einzige Entscheidung, die wir für eine optimale Lösung treffen müssen,
ob wir vier Halte aufwenden wollen, um die komplette gemeinsame Strecke einmal weniger
zu befahren, oder die Strecke zweimal befahren wollen. Da keine der Knoten auf geteilten
Strecken übereinstimmen, lassen sich auch keine Halte durch gemeinsame Zusammenfahrt
mehrerer gemeinsamer Strecken sparen. Deshalb sind diese Entscheidungen unabhängig
voneinander.

Mit diesen Erkenntnissen zeigen wir nun die polynomielle Berechenbarkeit einer optimalen
Lösung.
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Abbildung 6.1.: Eine schematische Darstellung eines Einzelhaushalts aus Sicht des Reisenden
𝑟0. Die gestrichelten Linien zwischen den Knoten symbolisieren möglicherweise mehrere
Kanten. Für unsere Zwecke könnte es sich aber genauso gut um eine Kante handeln. Die
gestrichelte Linie zwischen 𝑑 und 𝑔 symbolisiert, dass sich diese Situation beliebig oft wieder-
holen kann. Wie hier gezeigt, kann sich 𝑟0 Strecken mit zwei Reisenden teilen. Genauso aber
auch mit keinem, einem, drei oder einer anderen natürlichen Anzahl.

Satz 6.1: Für einen Einzelhaushalt lässt sich in linearer Zeit eine optimale Lösung berechnen.

Beweis. Wie wir zuvor gezeigt haben, kommen für jede geteilte Strecke nur zwei Möglichkei-
ten infrage: Nichts oder alles teilen. Weiter sind die Entscheidungen zwischen diesen zwei
Möglichkeiten unabhängig voneinander. Folglich lässt sich eine optimale Lösung bestimmen,
indem alle Reisenden in einer beliebigen Reihenfolge iteriert werden. Für jedes inklusions-
maximale geteilte Streckenstück des Reisenden 𝑟 wird die Entscheidung der Zusammenfahrt
getroffen. Fahren die beiden Reisenden 𝑟 und 𝑟 ′ zusammen, übernimmt das Fahrzeug von 𝑟

die geteilte Strecke. Das Fahrzeug von 𝑟 ′ wird in zwei Fahrzeuge aufgeteilt, wovon das eine
vor dem geteilten Streckenstück und das andere nach dem geteilten Streckenstück fährt.

Da es keinen Unterschied macht, ob 𝑟 bei 𝑟 ′ oder 𝑟 ′ bei 𝑟 mitfährt, werden die Entscheidun-
gen lokal optimal getroffen. Da die Entscheidungen unabhängig voneinander sind, ermitteln
wir insgesamt eine optimale Lösung.
Wir betrachten für jeden Reisenden jede Kante einmal und treffen dabei Entscheidungen

über die Zusammenfahrt. Deshalb berechnet dieser Algorithmus seine Lösung in linearer Zeit
O( |𝐸𝑅 |).
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7. Problemvariante paarweise
Zusammenfahrt

In diesem Kapitel betrachten wir die Problemvariante Fahrzeugzuweisung mit Haltekosten und

paarweiser Zusammenfahrt. Die Problemvariante Fahrzeugzuweisung mit Haltekosten
und paarweiser Zusammenfahrt ist das Problem Fahrzeugzuweisung mit Haltekosten
mit der zusätzlichen Einschränkung, dass jeder Reisende nur mit einem anderen zusammen-
fahren kann. Formell bedeutet das, dass jeder Reisende nur maximal ein Fahrzeug benutzt,
das von mehr als einem Reisenden benutzt wird. Weiter darf jedes Fahrzeug nur von maximal
zwei Reisenden benutzt werden.

Dadurch muss auch in einer Situation wie in Abbildung 7.1, wo die Pfade dreier Reisender
direkt aufeinander folgen, eine Lösung aus mindestens zwei Fahrzeugen bestehen. Wir müssen
also für jeden Reisenden maximal einen Teilpfad auswählen, den dieser mit einem anderen
Reisenden teilt. Deshalb bietet es sich an, die Problemvariante auf das Problem Maximum
Weight Matching zu reduzieren.

Eine Instanz des Problems Maximum Weight Matching ist ein gewichteter, ungerichteter
Graph [Kor08, vgl. S. 281]. Ein Matching ist eine Menge paarweise disjunkter Kanten [Kor08,
S. 18]. Eine Lösung des Problems Maximum Weight Matching ist ein Matching mit maxi-
malem Gewicht [Kor08, vgl. S. 281]. Eine Lösung für das Problem Maximum Weight Matching

kann in kubischer Zeit berechnet werden [Kor08, S. 281].

Konstruktion 7.1: Sei 𝐼 eine Instanz der Problemvariante Fahrzeugzuweisung mit Halte-

kosten und paarweiser Zusammenfahrt. Dann konstruieren wir die folgende Instanz 𝐻 des

Problems Maximum Weight Matching.

Die Reisenden der Instanz 𝐼 bilden die Knoten des Graphen 𝐻 . Seien 𝑟 und 𝑟 ′ zwei Reisende in
𝐼 . Dann sind diese beiden Reisenden in 𝐻 durch eine Kante verbunden genau dann, wenn 𝑟 und

𝑟 ′ zusammenfahren können. Das Gewicht der Kante {𝑟, 𝑟 ′} entspricht der größten Verbesserung

einer Lösung durch die Zusammenfahrt von 𝑟 und 𝑟 ′.
Um die bestmögliche Zusammenfahrt zwischen 𝑟 und 𝑟 ′ zu bestimmen, betrachten wir den

Teilgraphen 𝑆 des Graphen aus 𝐼 , der durch die Vereinigung von 𝑝𝑟 und 𝑝𝑟 ′ gegeben ist. Da 𝑟 und

𝑟 ′ jeweils nur mit einem anderen Reisenden zusammen fahren dürfen, ist für die Zusammenfahrt

zwischen 𝑝𝑟 und 𝑝𝑟 ′ nur der Teilgraph 𝑆 relevant. Wir betrachten jede mögliche Zusammenfahrt

zwischen 𝑟 und 𝑟 ′. Für jede mögliche Zusammenfahrt 𝑧 bestimmen wir die gesparte Strecke 𝑠𝑧 und

die dafür benötigten Halte ℎ𝑧 . Teilen sich 𝑟 und 𝑟 ′ Halte, kann die Anzahl benötigter Halte auch

negativ sein. Dann gibt 𝑐𝑧 ≔ 𝑠𝑧 − 𝛼ℎ𝑧 die Verbesserung durch die Zusammenfahrt 𝑧 an. Dann

bestimmen wir die Zusammenfahrt 𝑧, für die 𝑐𝑧 maximal ist. Somit erhalten wir das Gewicht 𝑐𝑧
der Kante {𝑟, 𝑟 ′}.

Satz 7.2: Die Problemvariante Fahrzeugzuweisung mit Haltekosten und paarweiser Zu-

sammenfahrt ist in O( |𝑅 |3 + |𝑅 |2 |𝑉 |2 + |𝐸𝑅 |) lösbar.

Beweis. In Konstruktion 7.1 haben wir gesehen, dass wir eine Instanz 𝐼 der Problemvariante
Fahrzeugzuweisung mit Haltekosten und paarweiser Zusammenfahrt in eine Instanz
𝐻 des Problems Maximum Weight Matching transformieren können. In der Konstruktion
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Abbildung 7.1.: Ein Pfad, der aufeinanderfolgend von drei Reisenden befahren wird. In der
Problemvariante Fahrzeugzuweisung mit Haltekosten und paarweiser Zusammenfahrt
dürfen nicht alle drei Reisende vom selben Fahrzeug bedient werden.

betrachten wir für jedes Paar an Reisenden jede mögliche Zusammenfahrt. Da eine mögliche
Zusammenfahrt einen Teilpfad des Pfads beider Reisenden darstellt, gibt es nur quadratisch
viele mögliche Zusammenfahrten. Somit ergibt sich eine Laufzeit der Transformation von
O( |𝑅 |2 |𝑉 |2). Weiter ist die Laufzeit der Berechnung einer Lösung der transformierten Instanz
kubisch in der Anzahl an Knoten. Da die Reisenden die Knoten der Instanz 𝐻 bilden, können
wir eine Lösung für 𝐻 in O( |𝑅 |3) Zeit bestimmen.

Betrachten wir eine Lösung 𝐿𝐻 der Instanz 𝐻 , so können wir daraus auch eine Lösung
𝐿𝐼 der Instanz 𝐼 rekonstruieren. Wähle für jede Kante aus dem Matching der Lösung 𝐿𝐻 die
Zusammenfahrt 𝑧, die zu dem Gewicht dieser Kante geführt hat. Alle Reisenden, die in keiner
ausgewählten Zusammenfahrt vorkommen, werden von einem eigenen Fahrzeug bedient. Bei
einer Zusammenfahrt fahren die beiden beteiligten Reisenden außerhalb der zusammengefah-
renen Strecke in einem eigenen Fahrzeug. Dabei fährt einer der beiden Reisenden immer im
selben Fahrzeug, das auch das gemeinsam genutzte Fahrzeug während der Zusammenfahrt ist.
Somit erhalten wir eine gültige Lösung für das Problem Fahrzeugzuweisung mit Haltekos-
ten. Da zusätzlich für jeden Reisenden nur eine Kante, also eine Zusammenfahrt, ausgewählt
wird, erhalten wir sogar eine gültige Lösung für die Problemvariante Fahrzeugzuweisung
mit Haltekosten und paarweiser Zusammenfahrt. Zuletzt haben wir für jedes Reisenden-
paar die optimale Wahl der Zusammenfahrt für 𝐻 gewählt. Denn jede Zusammenfahrt 𝑧 spart
einmal 𝑠𝑧 Strecke für Kosten von 𝛼ℎ𝑧 . Da eine Lösung 𝐿𝐻 ein gewichtsmaximales Matching
ist, erhalten wir somit, dass die rekonstruierte Lösung 𝐿𝐼 eine optimale Lösung von 𝐼 ist.

In der Rekonstruktion müssen wir jeden Reisenden nur einmal betrachten, um alle Zusam-
menfahrten zu ermitteln. Weiter können wir mitden Zusammenfahrten direkt die Fahrzeuge
und die Zuweisung der Reisenden auf die Fahrzeuge angeben. Somit ist die Rekonstruktion
linear in |𝐸𝑅 |. Insgesamt folgt die geforderte Laufzeit von O( |𝑅 |3 + |𝑅 |2 |𝑉 |2 + |𝐸𝑅 |).
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8. ILP-Formulierung

In diesem Kapitel geben wir eine Reduktion des Problems Fahrzeugzuweisung mit Halte-
kosten auf das Problem Integer Linear Programming (kurz ILP) an. Da ILP ein extensiv
untersuchtes Problem ist, erhalten wir somit einen allgemeinen Lösungsansatz [CL25]. Eine
Instanz des Problems ILP besteht aus einer Menge an Integer-Variablen, einer Menge an
affinen Nebenbedinungen an diese Variablen und einer affinen Minimierungsfunktion [Wil09,
vgl. S. 25, 35]. Eine affine Nebenbedinung ist eine Linearkombination der Variablen, die in
Verhältnis zu einer Konstanten gesetzt wird [Wil09, vgl. S. 25]. Also von der Form:∑︁

𝑖

𝑎𝑖𝑥𝑖 ≤ 𝑑 .

Durch Multiplikation mit -1 lässt sich auch „≥“ darstellen. Ebenso können wir durch die
Kombination von „≤“ und „≥“ auch ein „=“ darstellen [Wil09, vgl. S. 26]. Eine 0-1-Variable
ist eine Variable, deren Wertebereich auf {0, 1} beschränkt ist. Wie in unserem Fall sind
0-1-Variablen die in Praxis am meisten verwendeten Integer-Variablen [Wil09, vgl. S. 49].
Um die Reduzierbarkeit auf ILP zu zeigen, werden wir zunächst aus einer Instanz des

Problems Fahrzeugzuweisung mit Haltekosten in polynomieller Zeit eine Instanz des
Problems ILP konstruieren. Dann werden wir zeigen, dass wir aus der Lösung des transfor-
mierten Problems eine Lösung für unser ursprüngliches Problem erhalten. Zuletzt zeigen wir,
dass die Optimalität während der Transformation erhalten bleibt.

Die Idee der Transformation beruht auf der Erkenntnis, dass jeder Reisender an jeder Kante
nur in höchstens einem Fahrzeug sitzen kann. Hätten wir ein Fahrzeug, dass sich zusätzlich
zur Befolgung eines Pfads teleportieren könnte, müsste dieses höchstens |𝐸𝑅 | Kanten befahren.
Für jeden Reisenden jede seiner Kanten. Die Größe |𝐸𝑅 | ist aber linear in der Eingabe, sodass
wir ein solches Meta-Fahrzeug betrachten können. Zur Transformation der Lösung erzeugen
wir immer ein neues Fahrzeug, wenn sich das Meta-Fahrzeug teleportiert.

Zur Konstruktion der Lösung wollen wir zunächst sicherstellen, dass unser Meta-Fahrzeug
auch eine Menge an Pfaden zurücklegt; also wohldefinierte Fahrzeuge beschreibt. Weiter
stellen wir sicher, dass Reisende alle ihre Kanten von einem Fahrzeug bedient bekommen.
Dann definieren wir Variablen, die die Anzahl Halte berechnen. Mit diesen Variablen stellen
wir dann noch die Minimierungsfunktion auf.

Konstruktion 8.1: Sei eine Instanz 𝐺 = (𝑉 , 𝐸), 𝑅 und 𝛼 des Problems Fahrzeugzuweisung

mit Haltekosten gegeben. Dann konstruieren wir die folgende ILP-Instanz.

Für jeden Schritt des Meta-Fahrzeugs 𝑖 ∈ {0, . . . , |𝐸𝑅 |} ≕ 𝑀 benötigen wir die Information an

welcher Kante das Fahrzeug fährt. Entsprechend fügen wir für jede Kante 𝑒 ∈ 𝐸 und jeden Schritt

𝑖 ∈ 𝑀 die 0-1-Variabel 𝑓𝑖,𝑒 ein. Die Variable 𝑓𝑖,𝑒 ist eins genau dann, wenn das Meta-Fahrzeug am

𝑖-ten Schritt Kante 𝑒 befährt. Da das Fahrzeug zu jedem Schritt nur eine Kante befahren kann,

benötigen wir für jedes 𝑖 ∈ 𝑀 die Einschränkung∑︁
𝑒∈𝐸

𝑓𝑖,𝑒 ≤ 1.
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Weiter muss jeder Reisende an jeder Kante von einem Fahrzeug bedient werden. Entsprechend

führen wir für jeden Schritt 𝑖 ∈ 𝑀 , jeden Reisenden 𝑟 ∈ 𝑅 und jede Kante 𝑒 von 𝑝𝑟 die 0-1-Variable

𝑧𝑟,𝑒,𝑖 ein. Die Variable 𝑧𝑟,𝑒,𝑖 ist eins genau dann, wenn Reisender 𝑟 an Kante 𝑒 im 𝑖-ten Schritt des

Meta-Fahrzeugs fährt. Dann muss jede Kante eines jeden Reisenden von genau einem Schritt des

Meta-Fahrzeugs bedient werden. Entsprechend erhalten wir für jeden Reisenden 𝑟 und jede Kante

𝑒 seines Pfads 𝑝𝑟 die Einschränkung ∑︁
𝑖∈𝑀

𝑧𝑟,𝑒,𝑖 = 1.

Gleichzeitig muss das Meta-Fahrzeug im jeweiligen Schritt auch die entsprechende Kante befahren.

Wird also ein Reisender 𝑟 an einer Kante 𝑒 im 𝑖-ten Schritt des Meta-Fahrzeugs bedient, so befährt

das Meta-Fahrzeug im 𝑖-ten Schritt die Kante 𝑒 . Somit erhalten wir für jeden Reisenden 𝑟 , jede

Kante 𝑒 seines Pfads 𝑝𝑟 und jeden Schritt 𝑖 ∈ 𝑀 des Meta-Fahrzeugs die Einschränkung

𝑓𝑖,𝑒 − 𝑧𝑟,𝑒,𝑖 ≥ 0.

Jetzt haben wir sichergestellt, dass das Meta-Fahrzeug eine Abfolge an Kanten befährt und

jeder Reisenden 𝑟 an jeder Kante 𝑒 in 𝑝𝑟 von genau einem Schritt des Meta-Fahrzeugs bedient

wird, zu dem auch die Kante 𝑒 vom Meta-Fahrzeug befahren wird. Eine Lösung der bisherigen

Instanz lässt sich also schon in eine korrekte Lösung des Problems Fahrzeugzuweisung mit

Haltekosten transformieren. Allerdings fehlt die Betrachtung der zu minimierenden Funktion.

Ebenso wie die Definition der Halte.

Für jeden Schritt kann ein Halt vor oder nach der Kante erfolgen. Da der Halt von der befahrenen

Kante abhängt, führen wir für eine Kante 𝑒 ∈ 𝐸 und einen Schritt 𝑖 ∈ 𝑀 die neuen 0-1-Variablen

ℎ𝑖,𝑒 und 𝐻𝑖,𝑒 ein. Die Variable ℎ𝑖,𝑒 gibt an, dass das Meta-Fahrzeug während es im 𝑖-ten Schritt

die Kante 𝑒 = (𝑢, 𝜈) befährt am Knoten 𝑢 hält. Die Variable 𝐻𝑖,𝑒 gibt analog an, dass das Meta-

Fahrzeug während es im 𝑖-ten Schritt die Kante 𝑒 = (𝑢, 𝜈) befährt am Knoten 𝜈 hält. Da das

Fahrzeug nur halten kann, wenn es die Kante auch befährt, erhalten wir die Einschränkungen

𝑓𝑖,𝑒 − ℎ𝑖,𝑒 ≥ 0 und
𝑓𝑖,𝑒 − 𝐻𝑖,𝑒 ≥ 0.

Für jeden Reisenden 𝑟 ∈ 𝑅 muss das Meta-Fahrzeug vor dem Schritt, in dem es die erste Kante

𝑒 = (𝑢, 𝜈) des Reisenden 𝑟 bedient, also am Start 𝜈 halten. Hieraus ergibt sich für jeden Schritt

𝑖 ∈ 𝑀 , jeden Reisenden 𝑟 ∈ 𝑅 und dessen erste Kante 𝑒 die Einschränkung

ℎ𝑖,𝑒 − 𝑧𝑟,𝑒,𝑖 ≥ 0.

Analog muss das Meta-Fahrzeug nach dem Schritt, der die letzte Kante eines Reisenden 𝑟 ∈ 𝑅
bedient, an dessen Ziel, also nach der Kante halten. Wir erhalten für jeden Schritt 𝑖 ∈ 𝑀 , jeden

Reisenden 𝑟 ∈ 𝑅 und dessen letzte Kante 𝑒 die Einschränkung

𝐻𝑖,𝑒 − 𝑧𝑟,𝑒,𝑖 ≥ 0.

Zuletzt muss das Meta-Fahrzeug auch zu Schritten halten, zu denen Reisende umsteigen. Ein

Umstieg ist daran erkennbar, dass die bedienenden Schritt eines Reisenden einen Sprung machen.

Somit erhalten wir für jeden Schritt 𝑖 ∈ 𝑀 , jeden späteren Schritt 𝑗 ∈ 𝑀 \ {0, . . . , 𝑖, 𝑖 + 1}, jeden
Reisenden 𝑟 ∈ 𝑅 und jedes aufeinanderfolgende Kantenpaar 𝑒, 𝑒′ im Pfad 𝑝𝑟 des Reisenden die

Einschränkungen

𝐻𝑖,𝑒 − 𝑓𝑖,𝑒 − 𝑓𝑗,𝑒′ ≥ −1 und
ℎ 𝑗,𝑒′ − 𝑓𝑖,𝑒 − 𝑓𝑗,𝑒′ ≥ −1.

52



Ebenso erforderlich ist ein Umstieg, wenn ein Reisender die Schritte entgegen ihrer natürlichen

Reihenfolge verwenden möchte. Wir erhalten für jeden Schritt 𝑖 ∈ 𝑀 , jeden vorherigen Schritt

𝑗 ∈ {0, . . . , 𝑖 − 1}, jeden Reisenden 𝑟 ∈ 𝑅 und jedes aufeinanderfolgende Kantenpaar 𝑒, 𝑒′ im Pfad

𝑝𝑟 des Reisenden die Einschränkungen

𝐻𝑖,𝑒 − 𝑓𝑖,𝑒 − 𝑓𝑗,𝑒′ ≥ −1 und
ℎ 𝑗,𝑒′ − 𝑓𝑖,𝑒 − 𝑓𝑗,𝑒′ ≥ −1.

Entspricht jeder Schritt des Meta-Fahrzeugs einem eigenen Fahrzeug, haben wir die Halte

richtig gezählt. Innerhalb eines Fahrzeugs ist allerdings der Halt nach einer Kante und vor der

darauffolgenden Kante gleichbedeutend. Entsprechend benötigen wir noch Variablen, die uns

angeben, wann wir Halte doppelt gezählt haben. Dafür führen wir für jede Kante 𝑒 ∈ 𝐸 und jeden

Schritt 𝑖 ∈ 𝑀 \ {0} die 0-1-Variable ℎ̂𝑖,𝑒 ein. Die Variable ℎ̂𝑖,𝑒 ist eins genau dann, wenn der Halt

an der Kante 𝑒 vor Schritt 𝑖 bereits von dem Halt nach Schritt 𝑖−1 gezählt wird. Zur Formulierung

der Bedingung benötigen wir noch für jeden Pfad (𝑢, 𝜈,𝑤) und jeden Schritt 𝑖 ∈ 𝑀 \ {0} die
0-1-Variable 𝐻̂𝑖,(𝑢,𝜈,𝑤 ) , die angibt, dass das Meta-Fahrzeug nach Schritt 𝑖 − 1 an Kante (𝑢, 𝜈) und
vor Schritt 𝑖 an Kante (𝜈,𝑤) hält. Dafür benötigen wir die Einschränkungen

𝐻̂𝑖,(𝑢,𝜈,𝑤 ) − 𝐻𝑖−1,(𝑢,𝜈 ) − ℎ𝑖,(𝜈,𝑤 ) ≥ −1,
𝐻𝑖−1,(𝑢,𝜈 ) − 𝐻̂𝑖,(𝑢,𝜈,𝑤 ) ≥ 0 und

ℎ𝑖,(𝜈,𝑤 ) − 𝐻̂𝑖,(𝑢,𝜈,𝑤 ) ≥ 0.

Dann müssen wir sicherstellen, dass ℎ̂𝑖,𝑒 = 0 gilt, wenn das Meta-Fahrzeug nicht nach Schritt

𝑖 − 1 und vor Schritt 𝑖 hält. Es ergibt sich für jeden Pfad (𝑢, 𝜈,𝑤), der Teilgraph von 𝐺 ist, und

jeden Schritt 𝑖 ∈ 𝑀 \ {0} die Einschränkung

𝐻̂𝑖,(𝑢,𝜈,𝑤 ) − ℎ̂𝑖,(𝜈,𝑤 ) − 𝑓𝑖−1,(𝑢,𝜈 ) − 𝑓𝑖,(𝜈,𝑤 ) ≥ −2.

Ebenso muss ℎ̂𝑖,𝑒 = 0 gelten, wenn das Meta-Fahrzeug zwischen Schritt 𝑖 − 1 und Schritt 𝑖 einen
Sprung gemacht hat. Wir erhalten für jedes Kantenpaar 𝑒 = (𝑢, 𝜈), 𝑒′ = (𝑢′, 𝜈 ′) ∈ 𝐸 mit 𝜈 ≠ 𝑢′

und jeden Schritt 𝑖 ∈ 𝑀 \ {0} die Einschränkung

ℎ̂𝑖,𝑒′ + 𝑓𝑖−1,𝑒 + 𝑓𝑖,𝑒′ ≤ 2.

Zuletzt muss auch ℎ̂𝑖,𝑒 = 0 gelten, wenn das Meta-Fahrzeug im Schritt 𝑖 − 1 keine Kante befährt,
denn dies entspricht einem anderen Fahrzeug. Es gilt also für jede Kante 𝑒 ∈ 𝐸 und jeden Schritt

𝑖 ∈ 𝑀 \ {0} die Einschränkung ∑︁
𝑒′∈𝐸

𝑓𝑖−1,𝑒′ − ℎ̂𝑖,𝑒 ≥ 0.

Nachdem wir jetzt alle Variablen und Nebenbedinungen definiert haben, fehlt uns noch die

Minimierungsfunktion. Wir erinnern uns an die zu minimierende Kostenfunktion aus Kapitel 3:

𝑐 = 𝑇 + 𝛼 · ℎ mit 𝑇 =
∑︁
𝑓 ∈𝐹

∑︁
𝑒∈ 𝑓

𝑐 (𝑒) und ℎ Anzahl Halte.

Übertragen auf unsere Variablen in der teiltransformierten Instanz ergibt sich die Minimierungs-

funktion

𝑚 =
∑︁
𝑒∈𝐸

∑︁
𝑖∈𝑀
(𝑐 (𝑒) · 𝑓𝑖,𝑒) +

∑︁
𝑒∈𝐸

∑︁
𝑖∈𝑀
(𝛼𝐻𝑖,𝑒 + 𝛼ℎ𝑖,𝑒 − 𝛼ℎ̂𝑖,𝑒).
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8. ILP-Formulierung

Wir bemerken, dass unsere Konstruktion nur aus polynomiell vielen Variablen besteht, die
auch nur polynomiell oft in Nebenbedingungen oder der Minimierungsfunktion vorkommen.
Deshalb ist die Konstruktion polynomielle.

Satz 8.2: Aus einer optimalen Lösung einer transformierten ILP-Instanz aus Konstruktion 8.1

lässt sich in polynomieller Zeit eine optimale Lösung der ursprünglichen Fahrzeugzuweisung-

mit-Haltekosten-Instanz rekonstruieren.

Beweis. Eine Lösung der transformierten ILP-Instanz besteht aus einer Variablenbelegung,
die die gegebenen Nebenbedingungen einhält und dabei die Minimierungsfunktion minimiert.
Entsprechend müssen wir aus der Variablenbelegung die Lösung der Fahrzeugzuweisung-mit-
Haltekosten-Instanz rekonstruieren, eine Menge an Fahrzeugen sowie eine Zuweisung von
𝐸𝑅 auf die Fahrzeuge. Dann versichern wir uns, dass wir auch eine gültige Lösung erhalten
haben. Wir schließen mit der Polynomialität der Rekonstruktion.
Da nach Konstruktion 8.1 für jeden Schritt 𝑖 ∈ 𝑀 nur höchstens eine Variable 𝑓𝑖,𝑒 gleich

eins ist, können wir für jeden Schritt die entsprechende Variable ermitteln. Ist 𝑓𝑖,𝑒 = 1, so
befährt der 𝑖-te Schritt des Meta-Fahrzeugs die Kante 𝑒 . Ist für ein 𝑖 ∈ 𝑀 𝑓𝑖,𝑒 = 0 für alle
𝑒 ∈ 𝐸, so befährt das Meta-Fahrzeug zum 𝑖-ten Schritt keine Kante. Um die Fahrzeuge aus dem
Meta-Fahrzeug zu konstruieren, gehen wir die Schritte von 0 bis 𝐸𝑅 durch. Wann immer die
von zwei aufeinanderfolgenden Schritten befahrenen Kanten keinen Pfad bilden, wechseln wir
zum nächsten Fahrzeug. Zu jedem Zeitpunkt weisen wir allen Reisenden, die zu diesem Schritt
an der entsprechenden Kante bedient werden, das aktuelle Fahrzeuge zu. Gleichzeitig bilden
wir an jedem Halt aus den Kanten seit dem vorherigen Halt eine der Relationen des aktuellen
Fahrzeugs. Konkreter: Ist (𝑢, 𝜈,𝑤) ein Pfad in der Fahrzeugzuweisung-mit-Haltekosten-Instanz,
sodass (𝑢, 𝜈) an Schritt 𝑖 − 1 und (𝜈,𝑤) an Schritt 𝑖 vom Meta-Fahrzeug befahren wird. Dann
ist Halt dadaurch definiert, dass 𝐻𝑖−1,(𝑢,𝜈 ) = 1 oder ℎ𝑖,(𝜈,𝑤 ) = 1 gilt.

Da wir bei jedem Sprung des Meta-Fahrzeugs ein neues Fahrzeug definieren, befährt jedes
Fahrzeug einen Pfad. Der Pfad eines jeden Fahrzeugs ist erschöpfend in Teilpfade gegliedert.
Da wir immer die Teilpfade zwischen zwei Halten der ILP-Lösung als eine Relation ausweisen,
bildet die Abfolge aller Relationen gerade den Pfad des Fahrzeugs. Nach Konstruktion haben
wir sichergestellt, dass jede Kante des Pfads eines jeden Reisenden von genau einem Schritt
bedient wird. Deshalb ist die Zuweisung von 𝐸𝑅 zu Fahrzeugen wohldefiniert. Ebenso haben
wir sichergestellt, dass wenn zwei aufeinanderfolgende Schritte nicht von zwei aufeinanderfol-
genden Schritten des Meta-Fahrzeugs bedient werden, dazwischen beide involvierten Schritte
halten. Da zwei aufeinanderfolgende Schritte, die aufeinanderfolgende Kanten bedienen, ge-
rade den aufeinanderfolgenden Kante im selben Fahrzeug entsprechen, fordern wir einen
Halt, wenn ein Reisender das Fahrzeug wechselt und im selben Fahrzeug die Zeit wechselt.
Entsprechend ist die erhaltene Lösung eine wohldefinierte, gültige Lösung der ursprünglichen
Fahrzeugzuweisung-mit-Haltekosten-Instanz.

Da wir die zu minimierende Funktion der Fahrzeugzuweisung-mit-Haltekosten-Instanzen
gleichbedeutend in die Sprache der transformierten ILP-Instanz übersetzt haben, ist die re-
konstruierte Lösung einer optimalen Lösung der transformierten Instanz optimal. Weiter
betrachten wir jede Variable nur konstant oft und haben jeweils nur maximal linearen Zusatz-
aufwand. Somit lässt sich in polynomieller Zeit aus einer optimalen Lösung der transformierten
Instanz eine optimale Lösung der ursprünglichen Instanz rekonstruieren.
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9. Ausblick

Wie schon in Abschnitt 4.4 bemerkt, scheint es für die von uns untersuchten Instanzen
eine Reihenfolge zu geben, in der wir die Reisenden betrachten können, um eine optimale
Lösung zu ermitteln. Leider mussten wir aber auch einsehen, dass es Instanzen gibt, für die
manche Reihenfolgen zu einer suboptimale Lösung führen. Hier stellen sich somit zwei Fragen,
die tiefergehend untersucht werden können. Zum einen die Frage nach der Existenz einer
optimalen Reihenfolge:

Frage 9.1: Gibt es für jede Instanz des Problems Fahrzeugzuweisung mit Haltekosten eine

Reihenfolge, in der wir die Reisenden betrachten können, um mit dem Ansatz aus Abschnitt 4.4

eine optimale Lösung zu erhalten?

Daran angeknüpft stellt sich die Frage nach der effizienten Suche einer solchen Reihenfolge.

Frage 9.2: Kann eine Reihenfolge, in der mit dem Ansatz aus Abschnitt 4.4 eine optimale Lösung

erhalten wird, für jede Instanz des Problems Fahrzeugzuweisung mit Haltekosten effizient

berechnet werden?

Und gebe es ein solches Verfahren, ergibt sich daraus ein effizienter Lösungsalgorithmus
für das Problem Fahrzeugzuweisung mit Haltekosten.
In Abschnitt 5.2.1 haben wir viele Eigenschaften gezeigt, die eine optimale Lösung auf

einer Einhals-Spinne erfüllen muss. Daraus haben wir das Problem Gruppenzusammenfahrt
abgeleitet. Wegen unseres Algorithmus für Einhals-Spinnenwissen wir, dass eine polynomielle
Lösbarkeit von Gruppenzusammenfahrt äquivalent ist zu einer polynomiellen Lösbarkeit
von Fahrzeugzuweisung mit Haltekosten. Deswegen ergibt sich die folgende Frage:

Frage 9.3: Ist das Problem Gruppenzusammenfahrt in polynomieller Zeit lösbar?

Neben der von uns untersuchten, in Polynomialzeit lösbaren Problemvariante Fahrzeug-
zuweisung mit Haltekosten und paarweiser Zusammenfahrt sind noch viele weitere
spannenden Problemvarianten denkbar. Eine Möglichkeit ist die stärkere Beachtung der Be-
dürfnisse der Reisenden. Im Problem Fahrzeugzuweisung mit Haltekosten ist es irrelevant,
wie lang ein Reisender an einem Umstieg warten muss. Unter Beachtung der Zeit ergibt sich
zum Beispiel das folgende Problem:

Frage 9.4: Betrachte eine Variante 𝑉1 des Problems Fahrzeugzuweisung mit Haltekosten.

Diese Variante𝑉1 beachtet zusätzlich noch den Fahrtzeitpunkt der Reisenden. Als Nebenbedingung

darf die Wartezeit aller Umstiege einen gewissen Wert nicht überschreiten. Ist 𝑉1 effizient lösbar?

Auch ignorieren wir die in echt sehr endliche Kapazität von Fahrzeugen. Daraus ergibt sich
ebenso ein weiteres Problem:

Frage 9.5: Betrachte eine Variante 𝑉2 des Problems Fahrzeugzuweisung mit Haltekosten. In

der Variante 𝑉2 gibt es zusätzlich einen Fahrzeugfuhrpark mit Fahrzeugen beschränkter Größe.

Die Reisenden, die ein Fahrzeug verwenden, dürfen zu jedem Zeitpunkt die Kapazität dieses

Fahrzeugs nicht überschreiten. Ist 𝑉2 effizient lösbar?
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9. Ausblick

Weiter sind die Kosten eines jeden Halts in Fahrzeugzuweisung mit Haltekosten iden-
tisch. Wie aber ist der Einfluss von variablen Haltekosten? Daraus ergibt sich zum Beispiel
das folgende Problem:

Frage 9.6: Betrachte eine Variante 𝑉3 des Problems Fahrzeugzuweisung mit Haltekosten. In

der Variante 𝑉3 gibt es nicht einen globalen Skalar für die Haltekosten. Stattdessen gibt es eine

Funktion, die jedem Knoten seine Haltekosten zuweist. Ist 𝑉3 effizient lösbar?

Wir halten fest: Es gibt noch viele weitere spannende Varianten des Problems Fahrzeug-
zuweisung mit Haltekosten, die untersucht werden können.
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A. Anhang

A.1. Konstante Zusatzhalte

In diesem Abschnitt betrachten wir die Problemvariante Fahrzeugzuweisung mit Halte-
kosten und 𝑘 Zusatzhalten. Die Problemvariante Fahrzeugzuweisung mit Haltekosten
und 𝑘 Zusatzhalten ist das Problem Fahrzeugzuweisung mit Haltekosten mit der zusätz-
lichen Einschränkung, dass es in einer Lösung höchstens 𝑘 zusätzliche Halte gibt. Die Anzahl
zusätzlicher Halte ist die Anzahl an Halte abzüglich der Anzahl an Halte in einer Basis-Lösung.
Die Basis-Lösung 𝐿base ist gegeben durch ein eigenes Fahrzeug für jeden Reisenden.

Der Brute-Force-Algorithmus A.1 löst die Problemvariante Fahrzeugzuweisung mit Hal-
tekosten und 𝑘 Zusatzhalten. Der Algorithmus A.1 trifft sukzessive Entscheidungen, ob
zwei Reisende zusammenfahren. Als initialer Zustand dient die Zuweisung eines eigenen
Fahrzeugs zu jedem Reisenden. In diesem initialien Zustand wird noch keine Strecke geteilt.
Somit entspricht dieser Zustand noch keiner getroffener Entscheidung. Entscheidet der Algo-
rithmus zwei Reisende 𝑟 und 𝑟 ′ auf einem Pfad 𝑝 zusammenfahren zu lassen, so fährt 𝑟 ′ auf
𝑝 in den Fahrzeugen, in denen auch 𝑟 fährt. Diese Entscheidung wird transitiv gefällt. Das
heißt, wenn ein Reisender 𝑟 auf einem Teilpfad 𝑝 von 𝑝 mit 𝑟 ′ zusammenfährt, fährt 𝑟 auf
𝑝 auch mit 𝑟 zusammen. Dafür übernehmen die Fahrzeuge von 𝑟 auf 𝑝 auch die Halte von
Fahrzeugen von 𝑟 ′. Die Fahrzeuge von 𝑟 ′ fahren auf 𝑝 nicht mehr und werden auf Strecken
außerhalb von 𝑝 verkürzt. Fährt 𝑟 ′ am Beginn und Ende von 𝑝 im selben Fahrzeug, so teilt
sich dieses in zwei Fahrzeuge auf. Eines für den Bereich vor und eines für den Bereich nach 𝑝 .
Der Algorithmus wiederholt die Entscheidungsfindung, bis keine zusätzlichen Halte mehr
verfügbar sind. Von allen Entscheidungen, die er in jedem Schritt betrachtet, wählt er die
beste aus. In dem Ausdruck min findet sich die Berechnung des Werts der beiden Lösungen
und die Auswahl der Lösung mit dem geringeren Wert wider.

Lemma A.1: Der Algorithmus A.1 löst die Problemvariante Fahrzeugzuweisung mit Haltekosten

und konstanten Zusatzhalten.

Beweis. Der Algorithmus betrachtet jede mögliche Menge an Zusammenfahrten. Denn er
beginnt mit keiner getroffenen Entscheidung und trifft dann jede beliebige Wahl. Dabei ist die
Erweiterung einer Algorithmus-Entscheidung 𝑟 und 𝑟 ′ zusammenfahren zu lassen auf einen
weiteren Reisenden 𝑟 , der auf einem Teilpfad bereits mit 𝑟 ′ zusammenfährt, notwendig. Denn
nur so kann die vorherige Entscheidung, dass 𝑟 und 𝑟 ′ zusammenfahren, honoriert werden.
Weiter ist es ausreichend nur Pfade zu betrachten, die auch neue Pfade zusammenfahren
zu lassen. Denn eine Zusammenfahrt eines Teilpfads zusätzlicher zu einer Zusammenfahrt
eines größeren Pfads, fügt höchstens neue Halte hinzu. Werden diese für eine andere Zusam-
menfahrt benötigt, können diese auch mit dieser hinzugefügt werden. Somit berechnet der
Algorithmus eine optimale Lösung der Problemvariante Fahrzeugzuweisung mit Haltekosten
und konstanten Zusatzhalten.
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A. Anhang

Algorithmus A.1 : Ein Brute-Force-Algorithmus für die Problemvariante Fahrzeug-
zuweisung mit Haltekosten und 𝑘 Zusatzhalten. Der rekursive Algorithmus
probiert jede mögliche Zusammenfahrt mit maximal 𝑘 zusätzlichen Halten und gibt
die beste dieser Lösungen zurück. Als Basisfall im ersten Aufruf verwenden wir die
Basislösung gegeben durch ein eigenes Fahrzeug für jeden Reisenden.
1 Funktion bfbh:

Eingabe : Vorläufige Lösung𝑤 bestehend aus Fahrzeugen und
Reisende-Fahrzeug-Zuordnung

Ausgabe : Optimale Lösung unter Beibehaltung der Zusammenfahrten und Halte
in𝑤

2 𝑚 ←− 𝑤
3 für alle Reisenden 𝑟 tue
4 für alle Reisenden 𝑟 ′ tue
5 für alle von 𝑟 und 𝑟 ′ gemeinsam befahrenen Pfad 𝑝 mit 𝑝 kein Teilpfad

einer Zusammenfahrt von 𝑟 und 𝑟 ′ in𝑤 tue
6 wenn Eine Zusammenfahrt 𝑧 von 𝑟 und 𝑟 ′ beinhaltet Teilpfad von 𝑝

dann
7 𝑛 ←− 𝑤 mit Zusammenfahrt 𝑧 von 𝑟 und 𝑟 ′ erweitert auf 𝑝
8 sonst
9 𝑛 ←− 𝑤 mit zusätzlicher Zusammenfahrt von 𝑟 und 𝑟 ′ auf 𝑝

10 wenn Anzahl zusätzlicher Halte in 𝑛 weniger als 𝑘 dann
11 𝑛̃ ←− bfbh(𝑛)
12 𝑚 ←− min(𝑚, 𝑛̃)
13 wenn sonst Anzahl zusätzlicher Halte in 𝑛 genau 𝑘 dann
14 𝑚 ←− min(𝑚,𝑛)
15 return𝑚

Ginge jede Zusammenfahrt mit einem zusätzlichen Halt einher, hätte der Algorithmus A.1
eine polynomielle Laufzeit. Denn in jeder Rekursionsstufe kommt eine weitere Zusammenfahrt
hinzu. Es wäre also die Rekursionstiefe konstant beschränkt. Weiter wird in jeder Rekursions-
stufe nur polynomielle Arbeit verrichtet, sodass die Polynomialität des Algorithmus folgen
würde.

Allerdings entstehen die Zusammenfahrten nicht immer nur zwischen zwei Reisenden. Wie
beispielhaft in der Situation in Abbildung A.1 dargestellt können geteilte Strecke verschiedener
Reisender übereinstimmen. So teilen sich in diesem Beispiel alle vier Reisende eine Kante
(𝑒, 𝑓 ). Fahren in der bisherigen Lösung bereits 𝑟0 und 𝑟1 sowie 𝑟2 und 𝑟3 die Kante (𝑒, 𝑓 )
zusammen, benötigt dies bereits acht zusätzliche Halte. Für jeden Reisenden gibt es einen Halt
am Beginn und einen am Ende der Zusammenfahrt. Da es sich aber immer um dieselbe Kante
handelt, benötigt es genausoviele Halte, wenn alle vier Reisenden die Kante (𝑒, 𝑓 ) gemeinsam
zurücklegen. Betrachtet der Algorithmus nun eine mögliche Zusammenfahrt von 𝑟1 und 𝑟2 auf
der Kante (𝑒, 𝑓 ), so fahren durch die Transitivität alle vier Reisenden zusammen. Es werden
also trotz einer zusätzlichen Zusammenfahrt keine zusätzlichen Halte benötigt. Somit können
wir keine konstante Beschränkung für die Rekursionstiefe mehr angeben und deshalb auch
keine Polynomialität folgern.
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A.1. Konstante Zusatzhalte

𝑎

𝑠0

𝑏

𝑠1

𝑐

𝑠2

𝑑

𝑠3

𝑒 𝑓

𝑔

𝑡0

ℎ

𝑡1

𝑖

𝑡2

𝑗

𝑡3

Abbildung A.1.: Vier Reisende teilen sich die Kante (𝑒, 𝑓 ). Fahren je zwei der Reisenden
bereits zusammen – beispielsweise 𝑟0 mit 𝑟1 und 𝑟2 mit 𝑟3 – benötigt es keine Zusatzhalt,
damit auch 𝑟1 und 𝑟2 zusammenfahren.
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