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Zusammenfassung

Ein breit angenommenes 6ffentliches Verkehrsangebot ist ein wichtiger Baustein zur Re-
duktion zukiinftiger Klimaschéaden. Ein solches Verkehrsangebot sollte die Bediirfnisse der
Verkehrsteilnehmer abdecken, aber gleichzeitig auch eine moglichst geringe Belastung fiir
unser Klima darstellen. Es bietet sich an die Suche nach einem solchen Verkehrsangebot
in zwei Schritte aufzuteilen. Zuerst gilt es fiir die einzelnen Verkehrsteilnehmer Routen zu
bestimmen, die moglichst geeignet sind, um gemeinsam gefahren zu werden. Dann muss im
zweiten Schritt eine moglichst effiziente Bedienung der Routen ermittelt werden. Zur Effizi-
enz eines Verkehrsystems gehort aber nicht nur die Fahrtstrecke, die Fahrzeuge insgesamt
zuriicklegen. Auch Haltestellen, an denen viele Verkehrsteilnehmer umsteigen, verursachen
einen groflen zeitlichen Mehraufwand. Miissen Verkehrsteilnehmer hiufiger umsteigen, kann
das Verkehrsystem also weniger seiner eigentlichen Aufgabe nachgehen: dem Transport. Es
liegt somit im Interesse der Effizienz, dass Fahrzeuge moglichst selten halten.

Zur Bestimmung eines moglichst effizienten Verkehrssystems zu gegebenen Routen fithren
wir das graphentheoretische Optimierungsproblem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN
ein. Wir entwickeln einen optimalen Linearzeitalgorithmus fiir gerichtete Pfade. Weiter zeigen
wir Eigenschaften von optimalen Losungen auf einer Einhals-Spinnne - eine Einschrankung
von Baumen. Auflerdem entwickeln wir einen optimalen Polynomialzeitalgorithmus fiir
Instanzen, in denen sich immer nur die Routen von zwei Reisenden gleichzeitig berithren. Auch
fiir eine Problemvariante, in der ein Reisender insgesamt nur mit einem anderen Reisenden
ein Fahrzeug teilen darf, stellen wir einen optimalen Polynomialzeitalgorithmus vor. Zur
Losung allgemeiner Probleminstanzen entwickeln wir eine ILP-Formulierung des Problems
FAHRZEUGZUWEISUNG MIT HALTEKOSTEN. Auflerdem zeigen wir auf, dass einige Eigenschaften,
die fiir die Konstruktion eines greedy Algorithmus hilfreich wéren, nicht gelten.
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1. Einleitung

In der heutigen Zeit ist das Thema Klimawandel und notwendige Mafinahmen zur Begrenzung
der Klimaschiaden hochrelevant. So auch im Sektor Verkehr — Stichwort Verkehrswende. Eine
Moglichkeit zur Reduktion der Klimaschiden ist die Abwendung vom aktuell gelebten Indivi-
dualverkehr. Anstatt auf das eigene Automobil kénnten wir als Gesellschaft auf multimodale
Transportsysteme im Sinne von klassischem OPNV aber auch von Carsharing-Angebote
zuriickgreifen [CW16].

In bisherigen Arbeiten wird meist nur das Teilen von Taxifahrten zwischen verschiedenen
Verkehrsteilnehmern untersucht [MZW13 | San+14 | Alo+17 | BSW]. Allerdings ist das Problem
die totale Fahrzeit fiir alle Reisende zu minimieren NP-vollstindig [BSW]. Deshalb beruhen die
Algorithmen zur Berechnung einer akzeptablen Losung meist auf einem Online-Ansatz [BSW].
Anfragen werden einzeln bearbeitet und zu méglichst guten Losungen zusammengesetzt
[BSW].

Als ein moglicher Ansatz zur Bestimmung einer ganzheitlichen Losung, die iiber einzelne
Anfragen hinausgeht, bietet sich die Unterteilung des Problems in zwei Schritte an. Zuerst
werden aus dem Verkehrsbedarf fiir die einzelnen Verkehrsteilnehmer Routen mit moglichst
hohem Sharing-Potential berechnet. Dann konnen wir aus den konkreten Routen der Reisen-
den Fahrten bestimmen, um allen Bedarf abzudecken. Fir den ersten Schritt entwickeln Blasius
et al. [Bla+25] einen spieltheoretischen Ansatz im Paper ,Synergistic Traffic Assignment®. Mit
dieser Arbeit betrachten wir den zweiten Schritt, zu den vorgegebenen Fahrtstrecken von
Verkehrsteilnehmern Fahrzeuge zu finden.

Wir wollen ermoéglichen, dass Reisende anders als in der Betrachtung von Taxirouten nicht
immer an das gleiche Fahrzeug gebunden sind. Stattdessen sollen Reisende verschiedene Fahr-
zeuge verwenden kénnen. Dafiir miissen sie die Fahrzeuge wechseln konnen. Halte an Station
verursachen allerdings oft eine signifikante Verlangerung der Reisezeit und dadurch eine
geringere Effizienz des Transportsystems [ZSL17]. Deswegen betrachten wir zur Bewertung
der Operationskosten nicht nur die Fahrtzeiten aller Fahrzeuge, sondern auch die gesamte
Anzahl der Halte aller Fahrzeuge.

Konkret fithren wir das Problem Fahrzeugzuweisung mit Haltekosten ein. Die bestehende
Infrastruktur, in der Fahrzeuge operieren konnen, bildet einen Graphen. Das kann zum
Beispiel ein Straflen- oder Schienennetz sein. Verkehrsknotenpunkte bilden die Knoten des
Graphen und die Verbindungen zwischen Verkehrsknotenpunkte wie Straflen bilden die
Kanten. Da ein Verkehrsfluss von einem Start zu einem Zielverlauft, modellieren wir die
Kanten gerichtet. Damit konnen wir auch zum Beispiel Einbahnstrafien korrekt beschreiben.
Wie bereits disskutiert, gehen wir davon aus jede Reisende einer festen Routen im Verkehrsnetz
folgen mochte. Diese Routen modellieren wir als Pfade im Graphen. Wir suchen nun ein
Verkehrssystem, mit dem alle Reisenden ihr Ziel erreichen. Deshalb suchen wir eine Menge
an Fahrzeugen, die den Verkehrsbedarf bedienen kann. Jedes Fahrzeug deckt ein Stiick der
Routen der Reisenden ab, sodass insgesamt jeder Reisender seine Routen befahren kann.
Da ein Reisender auch mehrere Fahrzeuge nutzen kann, um sein Ziel zu erreichen, miissen
Fahrzeuge anhalten, damit Reisende umsteigen kénnen.



1. Einleitung

Als Modellierung eines Verkehrsbedarfs interessiert uns aber nicht eine beliebige Zuord-
nung, sondern ein moglichst billige. Ob aus Nachhaltigkeitsgriinden oder auch aufgrund
von Operationskosten. Deshalb suchen wir die Losung, die die gesamte Fahrtzeit aller Fahr-
zeuge gemeinsam mit der benttigten Anzahl Halte der Fahrzeuge minimiert. Denn ein Halt
eines Fahrzeugs bedeutet eine Verschlechterung der Effizienz des Verkehrssystems. Um diese
Verschlechterung zu quantifizieren fithren wir globale Kosten fiir jeden Halt ein.

Teilen sich zwei Reisende eine Strecke, sodass beide mit demselben Fahrzeug fahren kénnten,
ist es naheliegend anzunehmen, dass diese auch im selben Fahrzeug fahren sollten. Allerdings
zeigen wir, dass das nicht immer der Fall ist. Ebenso ist es naheliegend, dass Reisende moglichst
lange Strecken verbringen sollten. Insbesondere sollte méglichst wenig Strecke von mehreren
Fahrzeugen befahren werden, wenn diese fiir Umstiege anhalten. Und dennoch zeigen wir,
dass es nicht immer optimal ist, bei einer Zusammenfahrt die maximal geteilte Strecke im
selben Fahrzeug zu fahren.

Fiir jedes weitere Fahrzeug, das fiir Umstiege halten muss, entstehen hohere Kosten. Daher
ist es naheliegend, dass wenige Reisende reichen, um zu bewerten, ob eine Zusammenfahrt
lohnenswert ist. Aber wir zeigen, dass es im Allgemeinen nicht reicht eine beschrankte Anzahl
an Reisenden zu betrachten, um das zu bewerten.

Wir entwickeln einen linearen, optimalen Algorithmus fiir gerichtete Pfade. Weiter zeigen
wir einige Eigenschaften einer optimalen Losung auf Einhals-Spinnen. Mit diesen Eigenschaf-
ten reduzieren wir die Existenz eines polynomiellen Algorithmus fiir Einhals-Spinnen auf das
von uns definierte Problem Gruppenzusammenfahrt. Das Problem GRUPPENZUSAMMENFAHRT
untersucht auf Einhals-Spinnen fiir Situationen, in denen bereits einige Reisende zusammen-
fahren — von uns Gruppen genannt —, wie die Gruppen im Problem FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN optimal zusammenfahren. Aulerdem stellen wir dar, dass das Problem
FAHRZEUGZUWEISUNG MIT HALTEKOSTEN auf Out-Trees nicht durch direktes mehrmaliges
Berechnen einer optimalen Lésung von Spinnen gelést werden kann.

Zusétzlich geben wir einen polynomiellen Algorithmus fiir Einzel-Haushalte an. In einem
Einzel-Haushalt sind alle Starts und Enden der Reisenden verschieden und es begegnen sich
immer nur zwei Reisende gleichzeitig. Auflerdem stellen wir einen polynomiellen Algorithmus
fiir die Problemvariante Fahrzeugzuweisung mit Haltekosten und paarweiser Zusammenfahrt
durch Reduktion auf das Problem Maximum WEIGHT MATCHING vor. In der Problemvariante
FAHRZEUGZUWEISUNG MIT HALTEKOSTEN und paarweiser Zusammenfahrt darf ein Reisender
zusitzlich nur mit einem anderen Reisenden im selben Fahrzeug fahren.

Mit einer ILP-Formulierung geben wir noch ein Losungsverfahren fiir allgemeine Instanzen
des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN an.

Gliederung

Im Kapitel 3 beschiftigen wir uns mit der formalen Problemdefinition. Danach zeigen wir
in Kapitel 4, dass einige lokale Eigenschaften nicht gelten. In Abschnitt 5.1 stellen wir einen
linearen Algorithmus fiir gerichtete Baume vor. Weiter zeigen wir in Abschnitt 5.2 Strukturei-
genschaften einer optimalen Losung auf Einhals-Spinnen. Damit stellen wir eine Algorith-
musidee vor, die wir auf das Problem GRUPPENZUSAMMENFAHRT reduzieren. Das Problem
GRUPPENZUSAMMENFAHRT stellen wir in Abschnitt 5.2.4 detaillierter vor. In Abschnitt 5.3
zeigen wir, dass aus einem Algorithmus fiir Einhals-Spinnen nicht direkt ein Algorithmus fiir
Out-Trees konstruiert werden kann. In Kapitel 6 stellen wir einen polynomiellen Algorithmus
auf Einzelhaushalten vor. Weiter prisentieren wir in Kapitel 7 einen polynomiellen Algo-



rithmus fiir die Problemvariante FAHRZEUGZUWEISUNG MIT HALTEKOSTEN UND PAARWEISER
ZUSAMMENFAHRT. Zuletzt konstruieren wir in Kapitel 8 eine Formulierung unseres Problems
als ILP.






2. Praliminarien

Ein Graph G = (V,E) besteht aus einer endlichen Menge an Knoten und einer Menge an
Kanten zwischen diesen Knoten.

Bei einem gerichteten Graphen besteht die Kantenmenge aus Knotenpaaren E C V2. Eine
Kante verlauft vom ersten zum zweiten Knoten des Paars.

Bei einem ungerichteten Graphen besteht die Kantenmenge aus zwei-elementigen Teilmen-
gen der Kantenmenge E C (}).

Die Kantenzahl eines Graphen G ist ||G|| := |E|.

Der Grad eines Knotens deg(v) ist die Anzahl inzidenter Kanten. Das heif3t, die Anzahl an
Kanten e € E, sodass ein weiterer Knoten w € V existiert mit e = (v, w) oder e = (w, v).

Die Vereinigung zweier Graphen G = (Vi, Eg) und H = (Vy, Ey) besteht aus den Knoten
und Kanten der beiden Graphen. Es gilt GU H = (Vg U Vy, Eg U Eg).

Ein gewichteter Graph G = (V, E, ¢) besteht zusitzlich aus einer Kostenfunktion c, die jeder
Kante ein Gewicht zuweist.

Ein Kantenzug ist eine endliche Folge an Knoten (vy, .. ., v,). Jeweils zwei aufeinanderfol-
gende Knoten sind mit einer Kante verbunden. Das heifit, fiir alle i aus {0,...,n — 1} liegt
(vi, Vig1) in E.

Ein Pfad ist ein Kantenzug, in dem kein Knoten mehrfach vorkommt. Einen Pfad p =
(vo, . . ., vn) bezeichnen wir auch als vy, v,,-Pfad.

Die Konkatenation p o g von Pfaden p und q ist ein Pfad aus den Knoten der beiden Pfade.
Der letzte Knoten von p muss mit dem ersten Knoten von g iibereinstimmen. Formal: Sei
p=1-->Pr)sq9=(q1,--.,qn) mit px = q;. Dannist poq = (p1,-- -, Pk-q2 - - ->qn)-

Ein (gerichteter) Pfadgraph ist ein Graph dessen Knoten in einem Pfad ausgerichtet sind.
Das heifit, es gibt einen Pfad der jede Kante des Graphen besucht und jeden Knoten genau
einmal enthalt.

Ein Graph G = (V,E) heifit zusammenhdngend, wenn fur alle Knotenpaare v,w € V ein
Pfad ohne Beachtung der Richtung der Kanten existiert. Formal heif3t das, dass es fiir alle
Knontenpaare v,w € V ein endliche Folge an Knoten (v = v,,...,w = v,) existiert mit
(vi, vis1) oder (Viy1, v;) in E.

Ein zusammenhingender Graph G = (V, E) ist ein Baum, wenn |E| = |V| — 1 gilt.

Eine Spinne ist ein Baum mit hochstens einem Knoten v von Grad gréf8er 2. Diesen Knoten
v nennen wir Abspaltungspunkt. Anschaulich handelt es sich um eine Sammlung an Pfaden,
die am Abspaltungspunkt sternférmig verschmolzen sind.

Ein Out-Tree ist ein Baum mit einem Knoten v, sodass fiir jeden Knoten u ein v, u-Pfad gibt.






3. Problemdefinition

In der vorliegenden Arbeit untersuchen wir das Optimierungsproblem Fahrzeugzuweisung mit
Haltekosten. Eine Probleminstanz besteht aus einem gerichteten und gewichteten Graphen
G = (V,E, ¢) mit nicht-negativen Kantengewichten, einer endlichen Menge Reisender R sowie
positiven skalaren Haltekosten a. Eine Lésung besteht aus einer Menge an Fahrzeugen F und
einer Zuweisung der Reisenden zu Fahrzeugen . Die zu optimierenden Kosten sind gegeben
als Gesamtoperationszeit zuziiglich der Halte gewichtet mit den Haltekosten.

Jeder Reisende r € R ist gegeben durch einen Pfad p, im Graphen G. Es bezeichne UR die
Vereinigung aller Reisendenstrecken | J,cp pr als Teilgraph von G. Weiter bezeichne Eg die
Kanten mit dem jeweiligen Reisenden. Das heifit Eg = |, cg{(r,€) | e in p,}.

Jedes Fahrzeug f € F ist gegeben durch einen Pfad im Graphen G, der erschépfend in
Teilpfade gegliedert ist. Einen solchen Teilpfad nennen wir Relation. Die Konkatenation aller
Relationen muss gerade den Pfad des Fahrzeugs ergeben. Insbesondere stimmt das Ende einer
Relation mit dem Start der darauffolgenden Relation iiberein. Jeden Start und jedes Ende einer
Relation nennen wir Halt. Es beschreibe rel(f) die Menge aller Relationen des Fahrzeugs f.

Die Zuweisung der Reisenden zu Fahrzeugen ist gegeben durch eine Funktion von Reisenden
und Kanten zu Fahrzeugen {: Ex — F. In der Situation {(r, e) = f sagen wir, das Fahrzeug
f bedient Reisenden r an Kante e. Aber auch Reisender r fahrt an Kante e in Fahrzeug f.
Legt ein Reisender zwei aufeinanderfolgende Kanten im selben Fahrzeug zuriick, miissen die
Kanten auch in dem Fahrzeug aufeinanderfolgen oder der Knoten dazwischen ein Halt sein.
Legt ein Reisender zwei aufeinanderfolgende Kanten in verschiedenen Fahrzeugen zuriick,
muss der Knoten dazwischen ein Halt sein. Das heif3t, dass das Fahrzeug fiir die vordere
Kante und das Fahrzeug fiir die hintere Kante beide an diesem Knoten halten. Einen solchen
Fahrzeugwechsel nennen wir Umstieg.

Die Gesamtoperationszeit ergibt sich aus den Kosten der befahrenen Kanten. Wir erhalten
also fiir die Gesamtoperationszeit

T=% > cle).

feFecf

Fiir die Halte wird der Knoten zwischen zwei aufeinanderfolgenden Pfaden eines Fahrzeugs
jeweils nur einmal gezahlt. Es folgt, dass die Anzahl der Halte eines Fahrzeugs f € F gerade
der Anzahl seiner Pfade plus 1 entspricht: Start und Ende sowie die Knoten zwischen den
Pfaden. Wir erhalten somit fiir die Anzahl Halte

h= ) (rel(f)] +1).
feF

Es folgt fiir die gesamten Kosten

é:T+a-h=ZZc(e)+aZ(|rel(f)|+l).

feF ecf feF



3. Problemdefinition

Abbildung 3.1.: Ein Graph, der einen einfachen Verkehrsbedarf abbildet. Jeder Knoten ist mit
einem Namen beschrieben. Zusitzlich geben wir fiir jeden Reisenden r; fir i € {0, 1, 2} mit
s; seinen Start und mit #; sein Ziel an. Die drei Reisenden verfolgen den einzigen moglichen
Pfad von ihrem Start zu ihrem Ziel.

Gegeben eine Losung L einer Instanz I l4sst sich leicht in polynomieller Zeit tiberpriifen,
ob es sich um eine giiltige Losung handelt. Aufferdem ist der Wert der Losung L nach obiger
Formel in Linearzeit berechenbar. Demzufolge liegt das Problem FAHRZEUGZUWEISUNG MIT
HALTEKOSTEN beziehungsweise das zugehorige Entscheidungsproblem in NP.

In Abbildung 3.1 finden wir eine grafische Reprasentation einer einfachen Probleminstanz.
Neben einem Namen zur besseren Identifizierbarkeit tragen einige Knoten noch die Angaben
s; bzw. t; fur i in {0, 1, 2}. Mit s; bezeichnen wir den Start- und mit #; den Endpunkt der Strecke
des Reisenden r;. Die restliche Strecke der Reisenden ergibt sich in diesem Beispiel bereits
aus dem Graphen. Reisender ry zum Beispiel folgt dem Pfad (a, ¢, e, f, h). Die Zahlen an den
Kanten geben die Zeit an, die es dauert die Kante zu befahren. So benétigt ein Fahrzeug fiir
die Strecke von Reisendem ry insgesamt 1 + 2 + 21 + 1 = 25 Zeiteinheiten.

Setzen wir die Haltekosten auf 5, erhalten wir die folgende optimale Losung: Reisender 7,
fahrt in einem Fahrzeug von a bis e, dann steigen die Reisenden r; und r; dazu. Die beiden sind
auch jeweils in einem eigenen Fahrzeug bis zu Knoten e gefahren. Zusammen fahren sie die
eine Kante bis Knoten f, wo Reisender r; fiir die Kante zu seinem Ziel wieder in ein eigenes
Fahrzeug steigt. Reisende ry und r; bleiben weiter im selben Fahrzeug und fahren zu ihrem
Ziel h. Dabei halten Fahrzeuge insgesamt 10 Mal: Das Fahrzeug, in dem r, die ganze Strecke
fahrt, halt an a, e, f und h - Start von ry, Zustiegspunkt, Umsteigepunkt von r;, Ende von 7,
und r,. Die eigenen Fahrzeuge zu e halten jeweils zweimal: einmal am Start der Reisenden und
einmal an e. Zuletzt halt das Fahrzeug, das Reisenden r; zu seinem Ziel bringt, noch weitere
zweimal: an f und dem Ziel g. Damit erhalten wir 5 - 10 Kosten fiir die Halte und insgesamt
einen Aufwand von

(5:10)+(1+2+21+1)+(1+2)+1+1=280.



4. Unzureichende lokale Eigenschaften

In diesem Kapitel untersuchen wir Eigenschaften, anhand derer sich lokal Entscheidungen tref-
fen lieSen. Mit Gegenbeispielen zeigen wir auf, dass diese Eigenschaften nicht auf allgemeine
Probleminstanzen anwendbar sind.

4.1. Prafix ist Suffix

Eine solche Eigenschaft finden wir in Abbildung 4.1. Der Pfad des Reisenden r; beinhaltet
als Prafix ein Suffix des Pfads des Reisenden ry. Fahren die beiden Reisenden also im selben
Fahrzeug, bendtigen wir nur vier Halte, denn keiner muss umsteigen. Gleichzeitig befahren
wir die geteilte Strecke, in diesem Fall die Kante (b, ¢), nur einmal. Fahren die zwei Reisenden
stattdessen in verschiedenen Fahrzeugen, benétigen wir immer noch vier Halte, miissen den
geteilten Teil jetzt allerdings zweimal befahren. Entsprechend lasst sich vermuten, dass in
einem solchen Fall die zwei Reisenden immer im selben Fahrzeug fahren miissen. Spater
werden wir in Lemma 5.7 auch eine Variante dieser Aussage zeigen.

Allerdings diirfen wir nicht allgemein fiir alle Reisenden, auf die diese Situation zutrifft,
folgern, dass diese im selben Fahrzeug fahren. Betrachte dazu Abbildung 4.2. In diesem Bei-
spiel sehen wir einen dritten Reisenden. Die beiden Reisenden r; und r;, konkurrieren um die
einsparende Zusammenfahrt mit Reisendem 7. Aufgrund der unterschiedlichen gemeinsa-
men Strecke lasst sich bei r; eine gemeinsame Strecke von 11 und bei r; hingegen nur eine
gemeinsame Strecke von 1 sparen. Solange a > } lohnt es sich auch nicht alle drei Reisenden
in einem Fahrzeug zu bedienen, weil es zwei Halte benétigt, damit r; und r, ab d verschiedene
Strecken befahren kénnen. Entsprechend fahren in einer optimalen Lésung r und r, entgegen
der Vermutung nicht zusammen.

4.2. Maximale Strecken

Eine weitere Eigenschaft ist: Wenn wir zusétzliche Halte aufwenden, sollten wir auch mog-
lichst viel Strecke dafiir teilen. Auch diese Eigenschaft findet sich leicht abgewandelt in
spateren Aussagen dieser Arbeit wieder. Allerdings konnen wir wieder nicht nur anhand
eines Reisendenpaars entscheiden, wie lange die Zusammenfahrt andauern soll. Betrachte die
Instanz aus Abbildung 4.3. Dann teilt sich der Reisende r; jeweils mit den Reisenden ry und r,
eine Strecke von 101. Setzen wir die Haltekosten « auf 5, so wissen wir, dass Reisender r; sich
sowohl Strecke mit ry als auch mit Reisendem r; teilen sollte. Allerdings ist es nicht optimal,
beide Reisende ihre maximale Strecke von 101 teilen zu lassen.

Lemma 4.1: In dem Beispiel Abbildung 4.3 ist es nicht optimale, wenn Reisender ry die komplette
geteilte Strecke mit ry und ry zusammenfihrt.

Beweis. Betrachte eine Losung gegeben durch die Zusammenfahrt von ry mit 7y und r; auf
der kompletten geteilten Strecke. Aufgrund der Struktur der Instanz ist der Wert der Losung
dadurch bereits eindeutig bestimmt. Eine der méglichen Losungen L lautet wie folgt: Wir
benoétigen drei Fahrzeugen f , g und h. Das Fahrzeug f befihrt den Pfad (a, b, d, e, f) und halt
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m ) m ) m . m
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Abbildung 4.1.: Die Situation in Prafix ist Suffix: Ein Prafix des Reisenden r; ist Suffix des
Reisenden ry.

Abbildung 4.2.: Ein Gegenbeispiel fiir die Situation Préfix ist Suffix. Zwei Reisende r; und
ry teilen sich jeweils ein Prifix mit einem Suffix von Reisendem ry. Die Reisenden r; und r,
befahren allerdings Strecken, sodass es sich fiir diese beide nicht lohnt zusammen zu fahren.

an jedem Knoten. Das Fahrzeug § befahrt den Pfad (c, d) und hilt an Start und Ende. Und
das Fahrzeug h befihrt den Pfad (e, g, h) und hilt an jedem Knoten. Der Reisende ry féhrt
seine komplette Strecke in Fahrzeug f Reisender ry fihrt bis Knoten e in Fahrzeug f und
steigt dann fiir die restliche Strecke in Fahrzeug h um. Und Reisender r, beginnt seine Reise
in Fahrzeug g, steigt an d in Fahrzeug f und wechselt an e noch einmal zu Fahrzeug h. Dann
ergibt sich fiir diese Losung der Wert

¢L = c((a, b)) +c((b,d)) +c((d, e)) +c((e, f)) +c((c,d)) +c((e,9)) +¢((g, b)) + - (5+2+3)
=1+100+1+1+1+100+1+ 10«
=205+ 10 - 5 = 255.

Wandeln wir die Losung stattdessen leicht ab, sodass nur ry die komplette Strecke mit ry
gemeinsam fahrt und r; nur die Kante mit Gewicht 100, erhalten wir die folgende Losung L’.
In L’ bendtigen wir nur zwei Fahrzeuge f und §. Das Fahrzeug f befdhrt den Pfad (a, b, d, e, )
und hilt an den Knoten a, b, e und f. Und das Fahrzeug g befahrt den Pfad (¢, d, e, g, h) und
hélt an den Knoten c, e, g und h. Der Reisende ry fahrt wie in L seine komplette Strecke
in Fahrzeug f . Reisender r; fahrt ebenfalls bis Knoten e in Fahrzeug f und steigt dann fur
die restliche Strecke in Fahrzeug § um. Und Reisender r, fihrt seine komplette Strecke in
Fahrzeug ¢. Fiir die Losung L’ ergibt sich somit der Wert

¢ =c((a, b)) +c((b,d)) +c((d,e)) +c((e, f)) +c((c,d)) +c((d. ) +c((e.9)) +c((9.h) + - (4 +4)
=1+100+1+1+1+1+100+1+ 8
=206 + 8 -5 = 246.

Da ¢1- kleiner als ¢;, ist, ist L somit nicht optimal. a
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4.3. Beschrinkter Zusammenschluss

100

9
Abbildung 4.3.: Ein Gegenbeispiel fiir die Situation maximale Strecken. Die Reisenden r

und r;, teilen sich jeweils eine Strecke von 101 mit dem Reisenden ry. Aufgrund der Struktur
ihrer Pfade ist es nicht optimal, dass ry und r, die komplette Strecke mit r; teilen.

4.3. Beschrankter Zusammenschluss

Je mehr Reisende in eine Zusammenfahrt involviert sind, desto teurer wird diese Zusam-
menfahrt potentiell. Denn fiir jedes verschiedene Fahrzeug, aus dem ein Reisender in ein
gemeinsames Fahrzeug umsteigt, werden Halte benétigt. Und dennoch gibt es keine obere
Schranke fur die Anzahl an Reisenden, die betrachtet werden miissen, um zu bestimmen, ob
ein Zusammenschluss lohnenswert ist. Betrachte zum Beispiel die Familie an Instanzen aus
Abbildung 4.4. Dann erhalten wir fiir jedes n € IN* eine Instanz I, mit n Reisenden. Jeder
Reisende bereist drei Kanten, wobei er sich nur die mittlere Kante teilt. Und das mit allen
anderen Reisenden.

Lemma 4.2: Fahren in einer Instanz I,, aus Abbildung 4.4 in einer optimalen Losung manche
der Reisenden zusammen, so fahren alle zusammen.

Beweis. Die Aussage folgt aus einer einfachen Rechnung. Denn fahren m der Reisenden zu-
sammen, entstehen fiir jeden der m Reisenden zwei neue Halte. Jeder Reisende muss an d in
das gemeinsame Fahrzeug ein- und an e aus dem gemeinsamen Fahrzeug wieder aussteigen.
Oder zumindest mit dem gemeinsamen Fahrzeug anhalten, damit die restlichen Reisenden
umsteigen konnen. Dabei wird fiir jeden Reisenden, bis auf den, der im gemeinsamen Fahr-
zeug bleibt, einmal die Kante (d, e) gespart. Durch die Zusammenfahrt sparen wir also eine
Operationszeit von

(m-1)-c((d,e)) =(m—1) - w.

Dafiir miissen wir allerdings 2m zusitzliche Halte aufwenden. Die gesamten Kosten verbessern
sich also durch die Zusammenfahrt um

b(m) :=(m-1) -w-2ma.

Lohnt sich die Zusammenfahrt fiir m Reisende, verschlechtern sich die gesamten Kosten durch
die Zusammenfahrt nicht. Es gilt also b(m) > 0. Daraus folgt

b(m) 20 & (m-1)-w-2ma >0
— (m-1)-w > 2ma

= w > 2a.

11



4. Unzureichende lokale Eigenschaften

Abbildung 4.4.: Eine Instanzfamilie als Gegenbeispiel fiir die Betrachtung einer beschriankten
Menge an Reisenden fiir eine Zusammenfahrt. Fiir jedes n € N* erhalten wir eine Instanz I,,,
in der n Reisende in einem Graphen fahren. Der Pfad jedes Reisenden besteht aus drei Kanten.
Alle Reisenden teilen sich die mittlere ihrer drei Kanten. Fiir jedes m € IN* gibt es eine Wahl
von w in Abhéngigkeit von «, sodass eine Zusammenfahrt in den Instanzen mit n kleiner m
nicht optimal ist, fiir n mindestens m aber optimal ist.

Leiten wir b nach m ab, erhalten wir
w— 2a.

Da sich die Zusammenfahrt fiir m lohnt, ist b somit eine streng monoton steigende Funktion
in m. Somit folgt die Aussage. a

Lemma 4.3: Fiir jedesm € N*, m > 2 gibt es eine Wahl von w in Abhdngigkeit von a, sodass
eine Zusammenfahrt aller Reisenden in einer Instanz I,, aus Abbildung 4.4 genau dann optimal
ist, wenn n nicht kleiner als m ist.

Beweis. Zunichst halten wir fest, dass eine Zusammenfahrt aller Reisenden in einer Instanz
I, den Wert der Losung der Instanz I im selben Mafie 4ndertn wie die Zusammenfahrt von k
Reisenden in einer Instanz I, mit n > k. Denn in beiden Fallen fahren dadurch k Reisende
zusammen. Wissen wir also fiir ein m € IN*, dass in einer optimalen Losung von I,,, alle
Reisenden zusammenfahren, lohnt es sich auch in einer Lésung I, mit n > m, dass m Reisende
zusammenfahren. Mit Lemma 4.2 fahren in der optimalen Losung von I,, dann auch alle
Reisenden zusammen. Somit folgt, dass es reicht zu zeigen, dass es fir jedes m € N*,m > 2
eine Wahl von w gibt, sodass sich die Zusammenfahrt fiir m lohnt, aber nicht fiir m — 1.
Sei nun m € IN*. Wir setzen

m-(m—2)+1
“m-1-(m-2)

w=2

Aus dem Beweis von Lemma 4.2 wissen wir, dass sich die Kosten durch die Zusammenfahrt
von n Reisenden um

b(n)=(n-1)-w-2na

12
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verringert. Eingesetzt ergibt das fiir m:

b(m)=(m-1)-w-2ma=(m-1) - 2a 2 _2ma
(m-1)-(m-2)
-9 1
— 20" (m )+2—2
m-—2
> m.(m_z)—Zma
m—2
=2ma - 2ma
Und fiir m — 1 ergibt es
m-(m—-2)+3
bm-1)=(m-2)-w-2m—-1Da=(m-2) - 2a -2(m-1a
(m—-1)-(m-2)
. _2 +l
m-—1
— . — _2+l
=2a(m D - (m 2)+2am 2 _2(m-1)a
m-—1 m-—1

m 2+%
=2(m-2)a+2a—= -2(m—Da
m-1

m—l—%
=20+ 2x

m-—1
< -2a+2a

=0

Da b(m) > 0 wissen wir, dass sich die Losung fiir I,;, durch die Zusammenfahrt verbessert.
Analog wissen wir mit b(m — 1) < 0, dass sich die Losung fiir I,,,_; durch die Zusammenfahrt
verschlechtert. Somit lohnt sich die Zusammenfahrt fur m, aber nicht fiir m — 1. a

4.4. Online-Algorithmus

Die letzte Eigenschaft ist eher ein Algorithmus-Ansatz, als ein lokales Entscheidungskrite-
rium. Spezifisch betrachten wir Reisende in einer festen Reihenfolge. Mit jedem weiteren
Reisenden wollen wir die aktuelle Losung erweitern, um eine optimale Losung zu erhalten.
Jeden zusétzlichen Reisenden betrachten wir als einen Schritt des Algorithmus. Dann gibt
es zu jedem Schritt neue Moglichkeiten, wie Reisende zusammenfahren konnen. Jede davon
involviert den neuen Reisenden, denn sonst wire die Zusammenfahrt bereits vorher méglich
gewesen. Um die bisherige Losung zu erweitern, sollen bisher zusammengefahrene Strecken
in jedem Schritt erhalten. In den bisherigen Beispielen ldsst sich eine Reihenfolge finden,
in der wir mit diesem Ansatz eine optimale Losung erhalten. Allerdings zeigen wir anhand
der Instanz aus Abbildung 4.5, dass wir nicht immer mit jeder beliebigen Reihenfolge eine
optimale Losung erhalten. Weiter gibt es |R|! Reihenfolgen an Reisenden. Damit aus dem
Ansatz ein optimaler Algorithmus entstehen kann, wiirde es also eine effiziente Suche nach
der korrekten Reihenfolge benétigen.

Lemma 4.4: In aufsteigend durchnummerierter Reihenfolge liefert der Ansatz eine nicht optimale
Losung fiir die Instanz in Abbildung 4.5.
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100 m
N

Abbildung 4.5.: Ein Gegenbeispiel fiir sequentielles Aufbauen in beliebiger Reihenfolge mit
a = 5. In diesem Beispiel enden alle Reisenden am Knoten f, was wir mit der Markierung ¢
ausdriicken.

Beweis. Zuerst erstellen wir in drei Schritten entsprechend der Reihenfolge eine Losung,
wobei wir zu jedem Zeitpunkt die beste Entscheidung treffen. Dann vergleichen wir diese mit
einer anderen Losung und sehen ein, dass die erstellte Losung nicht optimal ist.

Im ersten Schritt betrachten wir nur den Reisenden ry. Da ry sich mit keinem anderen
Reisenden etwas teilen kann, ist die beste Losung ein Fahrzeug, dass den Pfad von ry bedient
und nur an Start und Ende halt.

Im zweiten Schritt betrachten wir zusétzlich noch r;. Die Reisenden r; und ry haben drei
Maoglichkeiten sich etwas zu teilen: Sie konnen sich nur die Kante (d, ), nur die Kante (e, f)
oder den Pfad (d, e, f) teilen. Fur die Kante (d, e) brauchen sie vier zusétzliche Halte und fiir
die Kante (e, ) oder den Pfad (d, e, f) je zwei zusatzliche Halte. Da sich auf dem Pfad (d, e, f)
am meisten Strecke sparen lasst, ist die beste Losung wie folgt: Ein Fahrzeug g fahrt den Pfad
(a,d, e, f) und hélt an den Knoten g, d und f. Und ein weiteres Fahrzeug h fahrt den Pfad
(b, d) und hélt an Start und Ende. Reisender r, fahrt seine komplette Strecke in g. Reisender
r1 beginnt seinen Pfad in h und steigt an d fir den restlichen Pfad in g um.

Im dritten und letzten Schritt betrachten wir noch r,. Die einzige Strecke, die sich r, mit
anderen Reisenden teilen kann ist die Kante (e, f). Da c((e, f)) = 100 mehr spart als die
zwei zusétzlichen Halte, ergibt sich folgende Losung L: Es fahren drei Fahrzeuge f ,gund h.
Das Fahrzeug f fahrt die Kante (c, ) und hélt an Start und Ende. Das Fahrzeug g fahrt den
Pfad (a,d, e, f) und hélt an jedem Knoten. Und das Fahrzeug h fihrt die Kante (b, d) und halt
an Start und Ende. Insgesamt halten Fahrzeuge achtmal. Reisender r, fahrt seine komplette
Strecke in g. Reisender r; beginn seine Strecke in h und steigt an Knoten d in Fahrzeug g um.
Und Reisender r; beginnt seine Strecke in f und steigt an e in g um.

Dann ergibt sich fiir die Losung L der Wert

¢ =c((c.e)) +c((a.d)) +c((d,e)) +c((e. f)) +c((b,d)) +8a
=1+1+1+100+1+8-5
= 144.

_ Alternativ betrachte die Losung L’ gegeben durch: Drei Fahrzeuge f , g und h. Das Fahrzeug
f befdhrt die Kante (c, e) und hélt an Start und Ende. Das Fahrzeug g befahrt den Pfad
(a,d,e, f) und halt an g, e und f. Und das Fahrzeug h befihrt den Pfad (b, d, ) und hilt an
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Start und Ende. In L’ halten Fahrzeuge somit insgesamt siebenmal. Reisender r, fahrt seine
komplette Strecke in g. Reisender r; fihrt zu Beginn in h und steigt an Knoten e fiir die
restliche Strecke in g. Und Reisender r; beginnt seine Strecke in f und steigt an e fiir die
restliche Strecke in e um. Fir den Wert der Losung L ergibt sich

er =c((ce)) +c((a.d)) +c((d,e)) +c((e, f) +c((b,d)) +c((d,e)) + Tax
=1+1+1+100+1+1+7-5
= 140.
Da ¢;, grofler ist als ¢y, ist die berechnete Losung L nicht optimal. a

15






5. Einschrankung auf Graphenklassen

Auf allgemeinen Graphen gestaltet es sich schwierig, einen polynomiellen Algorithmus zu ent-
wickeln. Deshalb betrachten wir als eine Einschrankung des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN die Beschrankung der moglichen Graphen in der Eingabe auf bestimmte
Graphenklassen. Ohne die Struktur des Problems zu veréndern, konnen wir so den Einfluss
verschiedener Verkehrsnetze auf die Schwierigkeit des Problems FAHRZEUGZUWEISUNG MIT
HALTEKOSTEN untersuchen.

In diesem Kapitel fordern wir, dass die Kostenfunktion c echt positiv ist. Das heifit, fiir alle
e € Egiltc(e) > 0.

5.1. Gerichtete Pfade

Eine einfache Graphenklasse ist die aller gerichteten Pfade. Dazu werden wir zunéchst eine all-
gemeine Erkenntnis einsehen: In jeder beliebigen Instanz des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN sind die nicht von Reisenden befahrenen Kanten fiir eine optimale Losung
nicht relevant. Danach zeigen wir, dass auf gerichteten Pfaden eine optimale Losung auf jeder
Zusammenhangskomponente von UR aus einem Fahrzeug besteht. Mit dieser Erkenntnis
zeigen wir, dass wir eine optimale Lésung einer Instanz des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN auf einem gerichteten Pfad schnell berechnen kénnen.

Lemma 5.1: In einer optimalen Losung einer beliebigen Instanz des Problems FAHRZEUGZUWEI-
SUNG MIT HALTEKOSTEN befihrt kein Fahrzeug eine Kante, an der es keinen Reisenden bedient.

Beweis. Angenommen in einer Losung existiert ein Fahrzeug f, das eine Kante e befahrt, an
der es keinen Reisenden bedient. Dann teile f auf in ein Fahrzeug fi, das alle Reisenden vor e
bedient, und ein Fahrzeug f, das alle Reisenden nach e bedient. f; endet am letzten Halt eines
von f bedienten Reisenden vor e. f; startet am ersten Halt eines von f bedienten Reisenden
nach e. Bedient f vor bzw. nach e keinen Reisenden, fallt das entsprechende Fahrzeug f; bzw.
f> aus der Losung. Dadurch werden es hochstens weniger Halte, wenn f; oder f, wegfallt.
Auflerdem fallt in jedem Fall die Kante e weg. Die Losung war also nicht optimal. a

Satz 5.2: Fiir einen gerichteten Pfad besteht eine optimale Losung aus einem Fahrzeug je Zu-
sammenhangskomponente von UR. Dieses Fahrzeug fihrt genau die Strecke vom Start des ersten
bis zum Ziel des letzten Reisenden. Es hdlt exakt an den Knoten, an denen Reisende starten oder
enden. Dabei hdlt es an jedem dieser Knoten genau einmal.

Beweis. Nach Lemma 5.1 wissen wir, dass kein Fahrzeug eine Kante befahrt, die kein Reisender
befahren mochte. Entsprechend kénnen wir die Losung fiir jede Zusammenhangskomponente
von UR alleine betrachten. Eine solche Zusammenhangskomponente ist ein inklusionsmaxi-
maler zusammenhéngender Teilgraph, sodass es fiir jede Kante einen Reisenden gibt, der diese
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befahren mochte. Somit konnen wir ohne Beschrankung der Allgemeinheit davon ausgehen,
dass unser Pfad bereits eine solche Zusammenhangskomponente bildet. Da jede Kante von
einem Reisenden befahren werden mochte, wissen wir auflerdem, dass ein Reisender am
ersten Knoten des Pfads startet und einer am letzten Knoten des Pfads endet.

Wir wollen also zeigen, dass eine optimale Losung gegeben ist durch ein einziges Fahrzeug
f. f fahrt einmal die Strecke des Pfads und hilt an jedem Knoten genau einmal, an dem ein
Reisender startet oder endet.

Nach Definition fihrt f jede Kante genau einmal. Da jede Kante von zumindest eEinmal-
SelbesFahrzeugImmerSelbesFahrzeuginem Reisendem befahren werden méchte, muss jede
Kante auch mindestens einmal befahren werden. Ebenso hilt dieses Fahrzeug genau an den
Knoten, an denen Reisende starten oder enden. Es hilt an diesen Knoten aber auch jeweils
nur einmal. Somit hat diese Losung sowohl die kleinstmdgliche Zahl an Halten als auch nur
die minimale Menge an Kanten befahren. Also ist sie optimal. a

Korollar 5.3: Auf gerichteten Pfaden kann die FAHRZEUGZUWEISUNG MIT HALTEKOSTEN in
O(|ERr|) berechnet werden.

Beweis. In Satz 5.2 haben wir gezeigt, dass es ein einfaches Schema fiir eine optimale Losung
fiir einen Pfad gibt. Zur Berechnung der Fahrzeugs und der Fahrzeugzuweisung verwenden
wir einen Sweepline-Algorithmus. Die Events sind die Starts und Enden der Reisenden, in der
Reihenfolge des Pfads. Bei jedem auftretenden Event fiigen wir die Strecke vom letzten Event
zum aktuellen Knoten als neuen letzten Teilpfad dem Fahrzeug hinzu. Ist die hinzugefiigte
Strecke von Lange 0 dndert sich das Fahrzeug stattdessen nicht. Endet mit einem Event der
aktuell letzte Reisende, der gestartet aber noch nicht geendet ist, fahren ab diesem Event keine
Reisende. In diesem Fall erstellen wir beim nichsten Event stattdessen ein neues Fahrzeug.
Dadurch haben wir dann gerade Fahrzeuge beschrieben, die die Zusammenhangskomponen-
ten von UR befahren und an jedem enthaltenen Start oder Ende halten. Die Zuweisung {
bestimmen wir, indem wir jeder Kante jedes Reisenden das aktuelle Fahrzeug bei dem Event
ihres Endes zuweisen.

Dann benétigen wir fir die Berechnung des Fahrzeugs Zeit O(|R| + |E|), da wir Start und
Ende eines jeden Reisenden und jede Kante genau einmal betrachten. Fiir die Berechnung der
Fahrzeugzuweisung benétigen wir Zeit O(|Eg|), da wir fiir jede Kante jedes Reisenden eine
Ausgabe tatigen. Somit folgt die geforderte Laufzeit. a

5.2. Einhals-Spinnen

Eine weitere Graphenklasse ist die der Einhals-Spinnen. Mit Einhals-Spinnen beschreiben wir
Spinnen, die auf eine besondere Art gerichtet sind. Wir fordern, dass einer der Pfade auf den
Abspaltungspunkt zu und alle anderen vom Abspaltungspunkt weg gerichtet sind. Den Pfad,
der auf den Abspaltungspunkt zu gerichtet ist, nennen wir Hals. Jeden der restlichen Pfade
nennen wir Bein.

In diesem Abschnitt zeigen wir einige Eigenschaften einer optimalen Losung. Mit die-
sen Eigenschaften stellen wir einen Polynomialzeitalgorithmus vor, der allerdings auf einer
polynomiellen Losbarkeit des Problems GRUPPENZUSAMMENFAHRT beruht. Wir gehen in
Abschnitt 5.2.4 naher darauf ein.

Zu Beginn noch eine Definition. Ein Knoten v heif$t hoher als ein anderer Knoten u # v,
wenn im Graphen ein v, u-Pfad p existiert. In dem Fall sagen wir auch: Der Knoten v liegt
oberhalb von u. Ist die Summe der Kantengewichte von p ¢, sagen wir auch, dass v ¢ héher
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u :f{ 1% f x U y
f/
Abbildung 5.1.: Die Situation in Lemma 5.4. An der Kante e = (u, v) fahren zwei Reisende in
den verschiedenen Fahrzeugen f und f’. Unterhalb von v und oberhalb von y, insbesondere
an der Kante e’ = (x,y), fahren beide Reisende im selben Fahrzeug f . In Lemma 5.4 zeigen
wir, dass eine solche Losung nicht optimal ist.

ist als u. Analog erweitern wir das Konzept auf Kanten, Pfade und Kombinationen davon.
Eine Kante (u, v) ist hoher als eine andere Kante (u’,v’), wenn im Graphen ein v, u’-Pfad
existiert. Eine Kante (u, v) ist hoher als ein Knoten w, wenn im Graphen ein v, w-Pfad existiert.
Ein Knoten w ist hoher als eine Kante (u, v), wenn im Graphen ein w, u-Pfad existiert. Ein
Pfad (vy, ..., v,) ist hoher als ein Knoten u, wenn im Graphen ein v,, u-Pfad existiert. Ein
Knoten u ist hoher als ein Pfad (v, ..., v,), wenn im Graphen ein u, vo-Pfad existiert. Ein
Pfad (v, ..., v,) ist hoher als eine Kante (u, v), wenn im Graphen ein v, u-Pfad existiert. Eine
Kante (u, v) ist hoher als ein Pfad (vy, ..., v,), wenn im Graphen ein v, vo-Pfad existiert. Ist a
hoher als b, sagen wir auch b ist niedriger als a oder b liegt unterhalb von a.

5.2.1. Struktur einer optimalen Losung

In diesem Abschnitt beschiftigen wir uns mit der Struktur einer optimalen Losung. Zuerst
wollen wir zeigen, dass nur ein Teil der Graphenstruktur grofierer Aufmerksambkeit bedarf.
Denn in den Beinen und auch weit oben im Hals verkehrt jeweils nur ein Fahrzeug. Auflerdem
zeigen wir noch weitere Aussagen, mit deren Hilfe wir spater den schwierigen Teil in der
Mitte untersuchen.

Wir sprechen haufiger davon, dass wir ein Fahrzeug f erweitern, sodass es die Reisenden
eines anderen Fahrzeugs g bis zu einem Knoten v bedient. In dem Fall verlangern wir den
Pfad von f, um den Teilpfad von g oberhalb von v. Zusétzlich hélt f oberhalb von v an allen
Knoten, an denen g hélt. Auflerdem hélt f an v. Ebenso passen wir die Zuweisung ¢ an, sodass
ein Reisender an einer Kante oberhalb von v von f bedient wird, wenn es vorher von g bedient
wurde.

Als erstes zeigen wir in drei Schritten, dass in einer optimalen Lésung in jedem Bein nur
ein Fahrzeug fihrt. Dafiir zeigen wir zuerst, dass wenn zwei Reisende in einer optimalen
Losung im selben Fahrzeug sitzen, sie davor schon immer im gleichen Fahrzeug gesessen
haben. Damit zeigen wir dann, dass in jedem Bein an jeder Kante nur ein Fahrzeug verkehrt.
Hieraus folgern wir dann, dass im gesamten Bein schon nur ein Fahrzeug verkehrt.

Lemma 5.4: Sei G = (V,E) eine Einhals-Spinne. Seien weiter r,r’ € R zwei Reisende. Seien
aufserdem e, e’ € E mit e hoher als e’ zwei Kanten, die von beiden befahren werden. Ist L eine
optimale Losung des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN mit {(r,e") = { (v, €’),
dann gilt auch {(r,e) = {(r', e).

Die Situation ist schematisch in Abbildung 5.1 dargestellt. An der Kante e = (u, v) fahren
beide Reisende in verschiedenen Fahrzeugen, aber an der niedrigeren Kante e = (x, y) fahren
beide im selben Fahrzeug.

Beweis. Angenommen L ist eine optimale Losung mit {(r,e’) = {(r’, ¢’),aber {(r,e) # { (1, e).
Ohne Beschrinkung der Allgemeinheit sei (u, v) = e die niedrigsten Kante, die hoher als

e’ liegt und fiir die {(r,e) # {(r',e) gilt. Seien f = {(r,e) und f’ = {(r’, e) die Fahrzeuge,
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Abbildung 5.2.: Die Situation in Lemma 5.5. Das Ziel zweier Reisenden r und r’ liegt im
selben Bein. An der Kante e = (u, v) fahren beide Reisende aber in verschiedenen Fahrzeugen.
In Lemma 5.5 zeigen wir, dass eine solche Losung nicht optimal ist.

in denen die beiden Reisenden die Kante befahren. Sei weiter f das Fahrzeug, indem sie
ab v zusammen fahren. Dabei kann f mit f oder mit f” ibereinstimmen. Sprechen wir im
Folgenden von Anderungen an f oder f”, treffen diese nur zu, wenn das jeweilige Fahrzeug
nicht schon mit f iibereinstimmt.

Dann erhalten wir eine neue Losung L: Wir erweitern f , sodass f alle Reisenden von f
und f” bis v bedient. f und f” hingegen starten erst bei v. Da G eine Einhals-Spinne ist, ist
die Strecke bis v ein Pfad. Somit ist L wohldefiniert. In L befihrt f nur die Strecken mehr, die
in L, aber nicht in ﬁ, von f und f’ befahren werden. Von beiden befahrene Kanten, befahrt
es aber nur einmal. Insbesondere ist L in Bezug auf Strecke um mindestens c(e) besser als L.
Ebenso halt f in [ bis u zusitzlich hochstens an den Knoten, an denen in L, aber nicht in ﬁ, f
und f” halten. Ab v halten alle drei Fahrzeuge in L an den selben Knoten wie in L. Auch an v,
dain L r aus f und r’ aus f” in f umsteigen wollen. Somit haben wir eine bessere Losung L
gefunden. Ein Widerspruch zur Annahme, dass die Lésung L optimal ist. a

Lemma 5.5: Sei G = (V, E) eine Einhals-Spinne. Seien weiter r,r’ € R zwei Reisende, deren Ziel
im selben Bein exklusive dem Abspaltungspunkt liegt. Sei auf3erdem e € E eine Kante, die von
beiden befahren wird. Dann gilt in jeder optimalen Lésung des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN, dass beide Reisenden an der Kante e vom selben Fahrzeug bedient werden:

(r.e) ={(r'e).

Die Situation ist schematisch in Abbildung 5.3 zu sehen. Zwei Reisende fahren ins selbe
Bein, benutzen aber an der Kante e = (u, v) verschiedene Fahrzeuge.

Beweis. Sei also eine Probleminstanz mit zwei Reisenden r,r’ € R mit Ziel im selben Bein
exklusive Abspaltungspunkt gegeben. Sei weiter L eine optimale Losung, in der Kanten
existieren, die von r und r’ in unterschiedlichen Fahrzeugen befahren werden. Sei (u, v) = e €
E die niedrigste solcher Kanten. Seien f = {(r,e) und f’ = {(+’, ) die Fahrzeuge, in denen
die beiden Reisenden die Kante befahren.

Dann unterscheiden wir ob r und r’ ab v noch weiterfahren, oder zumindest einer endet.
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Abbildung 5.3.: In einem Bein verkehrt nur ein Fahrzeug, dass alle Reisenden bedient.

Fahren beide weiter, fahren sie ab v im selben Fahrzeug. Denn ihr Ziel liegt im selben Bein
und e ist die niedrigste Kante, in der sie mit verschiedenen Fahrzeugen fahren. Somit sind
wir in der Situation aus Lemma 5.4 und es folgt bereits, dass f = f” gelten muss, da L eine
optimale Losung ist.

Ende stattdessen mindestens einer der Reisenden am Knoten v. Ohne Beschrankung der
Allgemeinheit ende der Reisende r’. Dann erhalten wir eine neue Losung L’: Verlangere f,
sodass es alle Reisenden von f’ bedient. Das Fahrzeug f” ist nicht mehr Teil der neuen Losung
L’.Dar’ am Knoten v endet, befindet sich dieser bereits im Bein. Deshalb bildet die Vereingung
der Strecken von f und f” einen Pfad. Die neue Lésung L’ ist also wohldefiniert. In L’ halt f
an der Vereinigung der Halte von f und f” in L. Ebenso befahrt f in L’ die Vereinigung der
Strecken von f und f” in L. Allerdings wird e in L’ einmal weniger befahren als in L. Somit
ist die Losung L’ besser als die als optimal angenommen Losung L. Ein Widerspruch. a

Lemma 5.6: Sei G = (V, E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden befahren
wird. Sei B ein Bein der Spinne. Dann existiert in jeder optimalen Losung ein Fahrzeug f, sodass
jeder Reisender r an jeder Kante e im Bein B von f bedient wird. Das heif}t: {(r,e) = f.

Abbildung 5.3 zeigt schematisch die Aussage von Lemma 5.6. In jedem Bein verkehrt genau
ein Fahrzeug, dass alle Reisenden bedient.

Beweis. Seien also eine Probleminstanz und ein Bein B des Graphen gegeben. Seien weiter
r,r’ € R zwei Reisende und e, e’ € E zwei Kanten in B, sodass r die Kante e und r’ die Kante
e’ befahrt. Dabei seien r und v’ sowie e und e’ nicht notwendigerweise verschieden.

Ist bereits e = e’ erhalten wir die Aussage aus Lemma 5.5. Wir wissen also bereits, dass in
jeder optimalen Losung jede Kante innerhalb eines Beins nur von einem Fahrzeug befahren
wird.

Sei nun L eine optimale Losung, fiir die {(r,e) # {(r’, ¢”) gilt. Insbesondere gilt auch e # €.
Sei f das Fahrzeug, das die Kante in B inzident zum Abspaltungspunkt befahrt. Wir verlangern
den Pfad von f bis zum niedgristen Knoten des Beins B. Weiter halte f an jedem Start und
Ende eines Reisenden im Bein B. Dann ersetzen wir alle Fahrten mit Fahrzeugen in B durch
Fahrten mit dem verldngerten f fiir eine neue Losung L’. Alle anderen Fahrzeuge befahren
in L’ keine Kanten aus B. Da nach Voraussetzung jede Kante von einem Reisenden befahren
wird, befahren wir dadurch nicht mehr Kanten mit Fahrzeugen. Weiter miissen auch die
Fahrzeuge vorher an jedem Start und Ende eines Reisenden gehalten haben, also halt f auch
nicht haufiger in B als die Fahrzeuge in L. In L werden die zwei verschiedenen Kanten e und
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Abbildung 5.4.: Die Situation aus Lemma 5.7. Das Fahrzeug f endet am Knoten v. Das
Fahrzeug g befihrt die Kante (v, w) und potentiell noch weitere Kanten. Eine solche Losung
ist nicht optimal.

e’ von verschiedenen Fahrzeugen bedient. Somit existieren auch zwei adjazente Kanten é und
¢’, die in L von verschiedenen Fahrzeugen f und f’ bedient werden. Sei v der zu é und é’
inzidente Knoten. Dann muss ohne Beschrinkung der Allgemeinheit f an v enden und f "an
v starten. In L gibt es also zwei Halte an v. In L’ hingegen halt nur f maximal einmal an v.
Also war die Losung L nicht optimal. Ein Widerspruch. a

Nun wollen wir weiter zeigen, dass in dem Bereich von mindestens 2« tiber dem Abspal-
tungspunkt auch nur ein Fahrzeug verkehrt. Dafiir zeigen wir zuerst, dass kein Fahrzeug an
einem Knoten v enden kann, wenn ein weiteres Fahrzeug noch ab v fahrt. Damit zeigen wir
weiter, dass in dem Bereich an jeder Kante nur ein Fahrzeug verkehrt. Hieraus folgern wir
dann, dass es in dem Bereich des Halses insgesamt nur ein Fahrzeug gibt.

Lemma 5.7: Sei G = (V, E) eine Einhals-Spinne. Sei (u, v, w) ein Teilpfad von G. Sei weiter L
eine optimale Losung mit zwei Fahrzeugen f und g. Dann kann nicht gleichzeitig f an v enden
und g die Kante (v, w) befahren.

Die Situation ist schematisch in Abbildung 5.4 zu sehen. Der Teilpfad (u, v, w) liegt im Hals
und Fahrzeug f endet an Knoten v und Fahrzeug g befahrt die Kante (v, w).

Beweis. Angenommen L ist eine optimale Losung, in der f an v endet und g die Kante (v, w)
befihrt. Konstruiere eine neue Losung L', in der wir g erweitern, sodass es alle Reisenden von
f bedient. Das Fahrzeug f ist nicht Teil der Losung L’. Dann ist L’ wohldefiniert, weil G eine
Einhals-Spinne ist und somit der Teilgraph oberhalb von v ein Pfad ist.

Fall 1, g startet an v. Dann spart die neue Losung L’ gegentiber L einen Halt, weil f nicht
mehr an v halten muss und g in beiden Lésungen an v halt.

Fall 2, g startet schon vor v. Dann befahren f und g in L beide die Kante (u, v). In L” befdhrt
f die Kante nicht.

Also ist die Losung L echt besser als die optimale Losung L. Ein Widerspruch. a

Lemma 5.8: Sei G = (V, E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden befahren
wird. Seien weiter r,r’ € R zwei Reisende und (u,v) = e € E eine Kante, die von beiden befahren
wird. Sei weiter u mehr als 2a hoher als der Abspaltungspunkt. Dann gilt in jeder optimalen
Lésung L des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN { (r,e) = { (1, e).

Diese Situation ist schematisch zu sehen in Abbildung 5.5: Der Knoten u liegt mehr als 2«
héher als der Abspaltungspunkt a. In dem Fall fahrt an e nur ein Fahrzeug.
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Abbildung 5.5.: Die Situation aus Lemma 5.8. Der Knoten u liegt mehr als 2« oberhalb vom
Abspaltungspunkt a. Dann verkehrt an der Kante e nur ein Fahrzeug.

Abbildung 5.6.: Die Situation aus Korollar 5.9. Die Menge E sind die Kanten, fiir die der
Startknoten mehr als 2a¢ vom Abspaltungspunkt a entfernt sind. Die Kanten aus E werden
nur von einem Fahrzeug f befahren.

Beweis. Angenommen es existiert eine optimale Losung L mit f = {(r,e) # {(r',e) = f.
Dann wissen wir nach Lemma 5.7, dass f und f’ nicht im Hals enden kénnen. Somit fahren
beide Fahrzeuge tiber den Abspaltungspunkt. Ohne Beschrankung der Allgemeinheit starte f
héher als f’. Dann erhalten wir eine weitere Losung L', in der f” erst beim Abspaltungspunkt
startet. Stattdessen bedient f alle Reisenden von f” bis zum Abspaltungspunkt. L’ benétigt
bis zu zwei zusatzliche Halte, weil f und f” jetzt beide am Abspaltungspunkt halten. Da aber
die gemeinsame Strecke, die in L’ nur noch von f befahren wird, eine Lange von mehr als 2«
hat, ist die Losung L’ echt besser als L. Ein Widerspruch. a

Korollar 5.9: Sei G = (V,E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden
befahren wird. Sei L eine optimale Losung des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN.
Sei E die Menge aller Kanten im Hals deren Startpunkt mehr als 2a vom Abspaltungspunkt
entfernt sind. Dann existiert in L ein Fahrzeug f, sodass fiir alle e € E und alle Reisenden r, die e

befahren, {(r,e) = f gilt.

Abbildung 5.6 zeigt diese Situation schematisch. Die Kanten mehr als 2a oberhalb dem
Abspaltungspunkt a werden von nur einem Fahrzeug f befahren.

Beweis. Nach Lemma 5.8 wissen wir, dass in L jede Kante von E nur von einem Fahrzeug
befahren wird. Somit folgt die Aussage direkt mit Lemma 5.7. a

Aus Lemma 5.6 und Korollar 5.9 folgt dann, dass der schwierige Teil im Bereich von 2«

iiber dem Abspaltungspunkt liegt. Fiir den Rest sieht eine optimale Losung immer nur genau
ein Fahrzeug vor.
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Abbildung 5.7.: Die Situation aus Lemma 5.10. Jede der drei farbigen Linien symbolisiert ein
Fahrzeug. Sowohl am Knoten u als auch am Knoten d gibt es Umstiege, die das Fahrzeug f
involvieren. Die Umstiege sind dargestellt durch die Pfeile zwischen den Fahrzeugen.

In dem schwierigen Teil miissen wir differenzierter iiber die Zusammenfahrt von Reisenden
reden konnen. Mit dem folgenden Lemma 5.10 sehen wir ein, dass eine Zusammenfahrt
nur an einem Knoten durch einen Umstieg enden kann. Daraus motiviert fithren wir den
Begriff einer Gruppe ein. Eine Gruppe an Reisenden ist eine inklusionsmaximale Menge M
an Reisenden, die bis zu einem Umstieg zusammenfahrt. Ein Reisender aus M muss nicht die
komplette Strecke bis zum Umstieg befahren. Aber jedes Streckenstiick, die er befahrt, befahrt
er gemeinsam mit allen anderen Reisenden aus M. Reisende der Gruppe mégen nach dem
Umstieg noch weiterhin im selben Fahrzeug fahren. Allerdings nur, wenn ihre gemeinsame
Fahrt sie in dasselbe Bein fiithrt. Sie somit nach Lemma 5.6 also ihre gesamte restliche Fahrt
teilen. Ebenso wissen wir nach Lemma 5.4, dass die Zusammenfahrt fiir jeden Reisenden der
Menge M bereits bei seinem Start beginnt. Wir konnen eine Gruppe an Reisenden somit durch
die Menge zusammenfahrender Reisender und den Knoten, der das Ende der Zusammenfahrt
markiert, beschreiben.

Fiir die sukzessive Anwendung innerhalb eines Algorithmus erweitern wir spéter den Begriff
noch zu einer Gruppe an Fahrzeugen. Statt einer Menge an Reisenden lassen wir eine Menge
M an Fahrzeugen zusammenfahren. Effektiv haben wir damit aber nur die Zusammenfahrt der
Reisenden beschrieben. Denn fiir die Reisenden gilt nach Lemma 5.6 und Lemma 5.4 dasselbe
wie wenn wir direkt die Gruppe der Reisenden gegeben durch die Reisenden der Fahrzeuge
aus M betrachten. In einer Losung lasst sich am einfachsten einsehen, dass zwei Fahrzeuge
Teil einer Gruppe sind, wenn entweder Reisende aus einem der beiden Fahrzeuge ins andere
umsteigen oder es ein weiteres Fahrzeug gibt, aus dem Reisende in die beiden Fahrzeuge
umsteigen.

In den folgenden Lemmata betrachten wir dabei meistens eine Gruppe aus zwei Fahrzeugen.
Die gezeigten Aussagen erweitern sich aber auf gréfiere Gruppen.

Lemma 5.10: Sei G = (V, E) eine Einhals-Spinne und R Reisende, sodass jede Kante von einem
Reisenden befahren wird. Seien u,d € V Knoten von G, sodass u oberhalb von d liegt. Sei nun L
eine optimale Losung des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN. Sei f ein Fahrzeug
in L. Dann kénnen nicht an u und an d Umstiege existieren, in die f involviert ist.

Die Situation aus Lemma 5.10 zeigen wir schematisch in Abbildung 5.7. An den beiden
Knoten u und d gibt es Umstiege von oder zu Fahrzeug f.

Beweis. SeienG = (V,E),u,d € V,Lund f wie in der Voraussetzung gegeben. Nach Lemma 5.6
wissen wir, dass in einer optimalen Losung innerhalb eines Beins nur ein Fahrzeug verkehrt.
Somit folgt, dass d nicht niedriger als der Abspaltungspunkt liegt. Angenommen es gibt
an u und an d Umstiege, in die f involviert ist. Das heifit, Reisenden steigen aus einem
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Abbildung 5.8.: Eine Situation, die nach Lemma 5.11 in einer optimalen Lésung nicht auftreten
kann. Fahrzeug f halt an Knoten v — dargestellt durch den Punkt. Das Fahrzeug g beinhaltet
ebenfalls den Knoten v. Allerdings beginnt die gemeinsam gefahrene Strecke von f und g am
Knoten u, der mehr als « hoher ist als v.

anderen Fahrzeug in f oder aus f in ein anderes Fahrzeug um. Da wir die Existenz zu einem
Widerspruch fithren wollen, diirfen wir davon ausgehen, dass unsere Wahl von f, u und d
gerade so ist, dass der Abstand zwischen u und d minimal ist. Da der Abstand zwischen u und
d minimal ist, kann keines der beteiligten Fahrzeuge zwischen u und d in weitere Umstiege
involviert sein. Sei U die Menge an Fahrzeugen, die neben f in Umstiegen an u involviert ist.

Konstruiere nun eine neue Losung L’: Ersetze f durch ein neues Fahrzeug f’, das alle
Reisenden von f und bis d auch alle Reisenden der Fahrzeuge aus U bedient. Jedes Fahrzeug
fu € U ersetzen wir durch ein neues Fahrzeug f;, das ab d startet und ab d alle Reisenden
von fiy bedient. Da keines der Fahrzeuge aus U zwischen u und d hilt, ist diese Losung
wohldefiniert. Weiter finden an u keine Umstiege mehr statt, in die f” involviert ist. Genau
genommen finden sogar von u bis oberhalb von d keine Umstiege mehr statt, in die f” involviert
ist.

Dann ist die Losung L’ besser als die Losung L: Unterhalb von d stimmt die Losung L’
mit der Losung L iiberein. An d werden |U| neue Halte benétigt, die allerdings an u gespart
werden. Weiter tibernimmt f” alle Halte von f und aus U oberhalb von u, sodass sonst keine
zusitzlichen Halte enstehen. Ebenso iibernimmt f die Strecken, sodass keine zusatzlichen
Fahrtstrecken entstehen. Allerdings wird in L’ die Strecke zwischen u und d fiir jedes Fahr-
zeug aus U nicht mehr befahren; also insgesamt |U| > 1 Mal weniger. Wir erhalten einen
Widerspruch zur Optimalitat von L. a

Nun wollen wir noch weitere Eigenschaften tiber Gruppen lernen. So zum Beispiel, dass
wenn ein Fahrzeug f an einem Knoten v hélt, alle Reisenden oder Fahrzeuge, die mehr als
Strecke bis v zurticklegen, mit f in einer Gruppe sind, die sich frithstens an v aufteilt. Weiter
werden wir im Beweis sehen, dass sich bei gemeinsamer Strecke von genau « jede optimale
L6sung immer noch optimal bleibt, wenn diese stattdessen in einer Gruppe sind.

Lemma 5.11: Sei G = (V,E) eine Einhals-Spinne. Sei v € V ein Knoten. Sei L eine optimale
Losung und f, g zwei Fahrzeuge in L, deren Pfad den Knoten v beinhaltet. Hdlt f an v, so beginnt
die gemeinsam gefahrene Strecke hochstens a héher als v.

Abbildung 5.8 zeigt eine solche Situation, die nicht auftreten kann. Wie im Beweis gibt es
zwei Fahrzeuge f und g, deren Zusammenfahrt an Knoten u mehr als « oberhalb von Knoten
v beginnt. Weiter fahren beide Fahrzeuge iiber den Knoten v. Zusétzlich halt f an Knoten v.
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Abbildung 5.9.: Eine Situation, die nach Lemma 5.12 in einer optimalen Lésung nicht auftreten
kann. Die Fahrzeuge f und g halten beide an Knoten v. Allerdings hilt f auflerdem an Knoten
u, der unterhalb von v auf gemeinsamer Strecke von f und g liegt.

Beweis. Sei L eine optimale Losung mit zwei Fahrzeugen f und g, deren Fahrtstrecke den
Knoten v beinhaltet. Sei u der hochste Knoten, ab dem f und g beide verkehren. Das heifit,
u ist der Start von f oder g, da G eine Einhals-Spinne ist. Sei u ohne Beschrankung der
Allgemeinheit der Start von g. Angenommen f halt an v und u liegt mehr als « hoher als
v. Dann wissen wir, dass f und g die Strecke zwischen u und v befahren. Nun erhalten wir
eine Losung L’, indem wir g erst ab v starten lassen. Bis v bedient f alle Reisenden von g und
iibernimmt dafiir auch alle Halte.

Dann hat L” im Vergleich zu L im Allgemeinen einen Halt mehr, damit g an v halten kann.
Allerdings wird die Strecke zwischen u und v einmal weniger befahren. Da die Strecke zwi-
schen v und v ldnger als « ist, ist die Losung L” echt besser als die Losung L. Ein Widerspruch
zur Optimalitét von L. a

Auflerdem fahren alle Fahrzeuge in einer Gruppe, die sich einen Halt teilen. Diese Aussage
zeigen wir Uiber zwei Teilaspekte: Zum einen halten zwei Fahrzeuge, die sich einen Halt teilen,
nicht mehr unterhalb des geteilten Halts. Ansonsten konnten sie eine Gruppe bilden, die bis
zu dem unteren Halt zusammenfihrt und dadurch eine bessere Losung bilden. Zum anderen
muss auch eines der beiden Fahrzeuge am gemeinsamen Halt starten, da sonst auch hier eine
Loésung mit beiden Fahrzeugen in einer Gruppe, in dem Fall bis zum gemeinsamen Halt, besser
ware.

Lemma 5.12: Sei G = (V,E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden
befahren wird. Sei v € V ein Knoten. Sei L eine optimale Lésung und f, g zwei Fahrzeuge in L,
die am Knoten v halten. Dann hdlt weder f noch g auf gemeinsamer Strecke unterhalb von v.

Abbildung 5.9 zeigt schematisch zwei Fahrzeuge f und g, die beide an einem Knoten v
halten. Weiter halt f auch noch am Knoten u, der auch im von g befahrenen Pfad enthalten
ist. Mit Lemma 5.12 zeigen wir, dass diese Situation in einer optimalen Lsung nicht auftreten
kann.

Beweis. Sei also G = (V, E) eine Einhals-Spinne mit zugehorigen Reisenden R, sodass jede
Kante der Spinne von einem Reisenden befahren wird. Seien weiter v € V ein Knoten, L eine
optimale Losung und f und g zwei Fahrzeuge in L. Halten weiter f und g an v. Angenommen es
halt eines der Fahrzeuge f und g an gemeinsamer Strecke unterhalb von v. Ohne Beschriankung
der Allgemeinheit halte f unterhalb von v, am Knoten u € V auf gemeinsamer Strecke mit g.

Dann konnen wir eine andere Losung L” konstruieren: Wir ersetzen g durch ein neues
Fahrzeug ¢, das ab u startet und ab u alle Reisenden von g bedient, wie auch g es vorher
gemacht hat. Das Fahrzeug f ersetzen wir ebenfalls durch ein Fahrzeug f’, das weiterhin
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Abbildung 5.10.: Eine Situation, die nach Lemma 5.13 in einer optimalen Losung nicht
auftreten kann. Die Fahrzeuge f und g halten beide an Knoten v. Auflerdem starten f und g
beide oberhalb von v.

alle Reisende von f bedient, wie zuvor. Allerdings bedient f zusétzlich noch alle Reisenden
von g oberhalb von u — genau so, wie sie in L von g bedient wurden. An u steigen dann alle
Reisenden von g von f” nach ¢’ um.

Dann ist die Losung L’ aber besser als die als optimal angenommene Losung L: Oberhalb
von u entstehen keine zusitzlichen Halte oder Fahrzeiten, da f’ zusitzlich nur Strecke von g
tibernimmt. Geteilt Halte werden allerdings gespart, ebenso wie gemeinsam gefahrene Strecke.
Insbesondere erfolgt am Knoten v ein Halt weniger. Und die Strecke zwischen v und u wird
einmal gespart. An Knoten u hingegen erfolgt potentiell ein Halt mehr, da g’ an u halten muss.
Unterhalb von u entsprechen f” und g’ gerade f und g. Somit erhalten wir einen Widerspruch
dazu, dass L optimal war. a

Lemma 5.13: Sei G = (V,E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden
befahren wird. Seiv € V ein Knoten. Sei L eine optimale Losung und f, g zwei Fahrzeuge in L,
die am Knoten v halten. Dann startet f oder g bei v.

Abbildung 5.10 zeigt schematisch die Situation, die nicht auftreten kann: Die Fahrzeuge f
und g halten beide an v und starten beide oberhalb von v.

Beweis. Seien G = (V,E), v € V, L sowie f und g wie in der Voraussetzung. Angenommen
weder f noch g startet an v. Dann starten beide oberhalb von v. Aufgrund der Struktur
einer Einhals-Spinne fahren beide Fahrzeuge zuvor dieselbe Strecke. Ohne Beschriankung der
Allgemeinheit startet g an u unterhalb vom Start von f.

Dann erhalten wir eine neue Losung L’: Wir ersetzen g durch ein neues Fahrzeug ¢’, das
ab v startet und ab v alle Reisenden von g bedient, wie auch g es vorher gemacht hat. Das
Fahrzeug f ersetzen wir ebenfalls durch ein Fahrzeug f’, das weiterhin alle Reisende von f
bedient, wie zuvor. Allerdings bedient f zusatzlich noch alle Reisenden von g oberhalb von v
- genau so, wie sie in L von g bedient wurden. An v steigen dann alle Reisenden von g von f’
nach ¢’ um.

Dann ist die Losung L’ aber besser als die als optimal angenommene Lésung L: Oberhalb von
v entstehen keine zusitzlichen Halte oder Fahrzeugzeiten, da f” nur die Strecke von vormals g
ibernimmt. Geteilt Halte werden allerdings gespart, ebenso wie gemeinsam gefahrene Strecke.
Insbesondere erfolgt am Knoten u ein Halt weniger. Und die Strecke zwischen u und v wird
einmal gespart. An Knoten v hingegen erfolgt potentiell ein Halt mehr, da g’ an v halten muss.
Unterhalb von v entsprechen f’ und g’ gerade f und g. Somit erhalten wir einen Widerspruch
dazu, dass L optimal war. a
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Abbildung 5.11.: Eine Situation, die nach Lemma 5.14 in einer optimalen Losung nicht
auftreten kann. Das Fahrzeug g befahrt einen Teilpfad des Fahrzeugs f.

Ebenso kann es auch keine Fahrzeuge geben, deren befahrene Strecke ein Teilpfad der
befahrenen Strecke eines anderen Fahrzeugs ist. Wir sehen hier also einen weiteren Grund,
der erzwingt, dass Reisende Teil einer Gruppe sind.

Lemma 5.14: Sei G = (V, E) eine Einhals-Spinne. Sei L eine optimale Lésung. Dann kann es
nicht zwei Fahrzeuge f und g geben, sodass die von g befahrene Strecke ein Teilpfad der von f
befahrenen Strecke ist.

Abbildung 5.11 zeigt zwei Fahrzeuge f und g. Das Fahrzeug g befihrt dabei nur einen
Teilpfad der Strecke von f. Eine Situation, von der wir jetzt beweisen, dass sie nicht auftreten
kann.

Beweis. Sei G = (V, E) eine Einhals-Spinne, R eine Menge Reisender und L eine optimale
Losung fiir die Instanz. Angenommen es gibt zwei Fahrzeuge f und g in L, sodass die von g
befahrene Strecke ein Teilpfad der von f befahrenen Strecke ist.

Dann erhalten wir eine neue Losung L’: Wir ersetzen f durch ein Fahrzeug f”, dass dieselbe
Strecke wie f befdhrt und auch alle Reisenden von f genauso bedient wie f. Zuséatzliche
bedient f” aber auch die Reisenden von g. Das Fahrzeug g hingegen entfernen wir aus der
Loésung. Da g einen Teilpfad von f befihrt, ist die neue Losung wohldefiniert.

Dann ist die Losung L’ aber besser als die Losung L: Da f” genau die Halte von f und
g Ubernimmt, entstehen keine zusatzlichen Halte im Vergleich zu L. Im Gegenteil wird je
ein Halt gespart, fiir jeden Knoten, an dem f und g halten. Aulerdem wird die komplette
nicht-leere Strecke von g gespart. Ein Widerspruch zur Optimalitat der Losung L. a

Wir zeigen weiter auch noch Einschrankungen fiir das Ende der Zusammenfahrt einer
Gruppe auf. Nach Lemma 5.13 wissen wir bereits, dass nach dem Halt, der das Ende der
Zusammenfahrt der Gruppe bildet, keines der beteiligten Fahrzeuge mehr auf gemeinsamer
Strecke halt. Mit Lemma 5.15 sehen wir ein, dass dieser Halt mit dem Abspaltungspunkt
ibereinstimmt, wenn er nicht bereits Start oder Ende eines der Reisenden der Fahrzeuge
der Gruppe ist. Somit bleiben uns fiir das Ende der Zusammenfahrt einer Gruppe nur zwei
Moglichkeiten: der Abspaltungspunkt oder ein letzter Start oder Ende. Mit Lemma 5.16
schrankt sich die mogliche Wahl noch weiter ein: Das Ende der Zusammenfahrt darf hochstens
« Uber dem Abspaltungspunkt beziehungsweise dem Ende aller Fahrzeuge der Gruppe bis auf
einem liegen. Aus dem Beweis ergibt sich wie bei Lemma 5.11, dass eine optimale Losung
ihre Optimalitit beibehélt, wenn eine Zusammenfahrt verlangert wird, wenn genau « Strecke
nach dem Ende der Zusammenfahrt geteilt wird.

Lemma 5.15: Sei G = (V, E) eine Einhals-Spinne, R eine Menge an Reisenden, sodass jede Kante
von G von einem Reisenden befahren wird. Sei v € V ein Knoten. Sei L eine optimale Losung
und F eine maximale Menge von Fahrzeugen in L, die am Knoten v halten. Weiter beinhalte F
mindestens zwei Fahrzeuge. Startet oder endet keiner der Reisenden der Fahrzeuge aus F an v, so
befahren die Fahrzeuge aus F ab v verschiedene Kanten.
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Abbildung 5.12.: Wir sehen eine Menge F der Fahrzeuge aus Lemma 5.15, die am Knoten v
halt. Mit Lemma 5.13 wissen wir, dass — wie abgebildet — bis auf ein Fahrzeug f alle Fahrzeuge
aus f an v starten. Wir nehmen an, dass kein Reisender an v startet oder endet. Lemma 5.15
liefert uns dann, dass die Fahrtstrecken unterhalb von v verschieden sind. Der Knoten v ist

also der Abspaltungspunkt.
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Abbildung 5.13.: Die Situation aus Lemma 5.16. Der Reisende r stellt einen moglichen Grund
fiir den Halt beider Fahrzeuge an v dar. Denn Reisender r steigt an v von f in g um. Mit
Lemma 5.13 wissen wir bereits, dass dann g an v starten muss. Mit Lemma 5.16 zeigen wir,
dass die gemeinsam gefahrene Strecke nach v hochstens « lang ist.

Diese Situation ist schematisch in Abbildung 5.12 dargestellt. Wir sehen die Menge der an
v haltenden Fahrzeug. Wissen wir, dass kein Reisender an v startet oder endet, erhalten wir,
dass die Fahrtstrecken unterhalb von v verschieden sind.

Beweis. Seien G = (V,E), R, v € V, L und F wie in den Voraussetzungen. Dann beinhaltet
F gerade alle Fahrzeuge, die in L an v halten. Nach Lemma 5.13 wissen wir, dass bis auf
ein Fahrzeug f € F alle Fahrzeuge aus F an v starten. Mit Lemma 5.1 erhalten wir, dass
jedes Fahrzeug in F ab v einen Reisenden bedient. Nach Voraussetzung wissen wir aber,
dass kein Reisender an v startet oder endet. Da F alle Fahrzeuge beinhaltet, die an v halten,
muss es fiir jedes Fahrzeug g € F \ {f} einen Reisenden r, € R geben, der an v von f in g
umsteigt. Mit Lemma 5.7 und Lemma 5.14 wissen wir weiter, dass alle Fahrzeuge aus F tiber
den Abspaltungspunkt hinaus fahren. Lemma 5.12 liefert auflerdem, dass keines der Fahrzeuge
aus F unterhalb von v und oberhalb dem Abspaltungspunkt hilt. Somit startet oder endet
keiner der von einem Fahrzeug aus F bedienten Reisende an einem Knoten auf dem Hals, der
unterhalb von v liegt.

Konstruiere eine neue Losung L’: Ersetze f durch ein Fahrzeug f’, dass alle Reisenden von
F bis zum Abspaltungspunkt und unterhalb dem Abspaltungspunkt weiter die Reisenden
aus f bedient. Jedes andere Fahrzeug g € F \ {f} ersetzen wir durch ein Fahrzeug ¢’, dass
unterhalb dem Abspaltungspunkt alle Reisenden von g bedient. Insbesondere steigen die
Reisenden ry in L’ am Abspaltungspunkt von f” in g’ um.

Dann ist die Losung L’ besser als die Losung L: Da keiner der Reisenden von F an v startet
oder endet, halt f” nicht an v. Stattdessen finden die |F| Halte jetzt statt an v am Abspaltungs-
punkt statt. Unterhalb vom Abspaltungspunkt entspricht L’ gerade L. Oberhalb tibernimmt f”
alle Halte aus F. Insgesamt wird die Strecke zwischen v und dem Abspaltungspunkt einmal
weniger befahren. Wir erhalten einen Widerspruch zur Optimalitét von L. a
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Lemma 5.16: Sei G = (V, E) eine Einhals-Spinne, R eine Menge an Reisenden. Sei v € V und
r € R ein Reisender. Sei L eine optimale Losung. Seien f und g Fahrzeuge in L, sodass f und g an
v halten. Dann fahren f und g unterhalb von v eine Strecke von hichstens a gemeinsam.

In Abbildung 5.13 sehen wir eine mogliche solche Situation. Der Reisende r steigt an v von
f nach g um. Dann erhalten wir, dass die Strecke bis zum Abspaltungspunkt a hochstens «
lang ist.

Beweis. Seien G = (V,E),R,v € V,r € R, L, f und g wie in den Voraussetzungen. Da L
optimal ist, wissen wir nach Lemma 5.7, dass f und g nach dem Ende der gemeinsamen
Strecke verschiedene Kanten befahren. Ihre weitere gemeinsame gefahrene Strecke endet
somit am Abspaltungspunkt. Nach Lemma 5.13 wissen wir auflerdem, dass f oder g erst an v
startet. Ohne Beschrankung der Allgemeinheit, starte g an v. Angenommen v liegt mehr als
oberhalb dem Abspaltungspunkt.

Dann konstruiere eine neue Losung L’ aus L: Ersetze das Fahrzeug f durch ein neues
Fahrzeug f’, dass dieselbe Strecke befihrt wie f. Das Fahrzeug bedient dann oberhalb dem
Abspaltungspunkt alle Reisenden von g und f. Da g erst an v startet und f auch spitestens an
v startet, ist das wohldefiniert. Weiter ersetzen wir das Fahrzeug g durch ein neues Fahrzeug
g’, dass ab dem Abspaltungspunkt startet und unterhalb dieselbe Strecke befahrt wie g. Das
Fahrzeug ¢’ bedient dann alle Reisenden von g unterhalb dem Abspaltungspunkt.

Dann ist die Losung L’ besser als L: Oberhalb des Abspaltungspunkts, iibernimmt f” die
Halte von f und g; es entstehen somit keine zusétzlichen Halte. An v halt aber nur noch f” und
nicht mehr auch ¢g’. Somit sparen wir einen Halt. Weiter wird auch die Strecke unterhalb von v
einmal weniger befahren. Wie sparen also die Strecke zwischen v und dem Abspaltungspunkt
von mehr als a. Unterhalb dem Abspaltungspunkt stimmen f” und ¢’ mit f und g iiberein.
Am Abspaltungspunkt benétigen wir allerdings zwei zusatzliche Halte, weil f' und ¢’ in L’
hier halten miissen. Diese werden aber durch die gesparte Strecke und den gesparten Halt
oberhalb des Abspaltungspunkt mehr als aufgewogen. Somit erhalten wir einen Widerspruch
zur Optimalitét von L. a

Weiter sehen wir ein, dass es fiir jedes Fahrzeug auch einen Grund gibt, Teil der Gruppe zu
sein. So gibt es zumindest ein anderes Fahrzeug, mit dem es sich einen Halt teilt — also zwei
Reisende, die am selben Knoten starten beziehungsweise enden —, oder die Zusammenfahrt
spart die Strecke fiir den benétigten Halt am Ende der Zusammenfahrt. Bezeugt durch einen
Reisenden, der mindestens eine Strecke von « mit den restlichen Reisenden gemeinsam fahrt.

Lemma 5.17: Sei G = (V,E) eine Einhals-Spinne, R eine Menge an Reisenden. Sei v € V ein
Knoten. Sei L eine optimale Losung und f,qg zwei Fahrzeuge in L, deren Pfad den Knoten v

beinhaltet. Gebe es Umstiege an v von f nach g umsteigt. Dann gibt es einen Reisendenr € R,
der eine der folgenden Bedingungen erfiillt:

Der Reisende r startet an v.
Der Reisende r steigt an v von f nach g um und startet mindestens o hoher als v.

Der Reisende r steigt an v von f nach g um und startet am Start oder Ende eines Reisende,
der in f fihrt, aber nicht nach g umsteigt.

30



5.2. Einhals-Spinnen

Beweis. Seien G = (V,E), R, v € V, L, f und g wie in der Voraussetzung. Weiter existiert
nach Voraussetzung einen Reisenden r € R, der an v von f nach g umsteigt. Gebe es keine
Reisenden, der an v startet. Gebe es weiter auch keinen Reisenden, der an v von f nach g
umsteigt und mindestens a hoher startet. Gebe es auflerdem keinen Reisenden, der an v von
f nach g umsteigt und am Start oder Ende eines Reisenden, der in f fiahrt und nicht an v in g
umsteigt, startet. Dann gilt das alles insbesondere nicht fiir . Nach Lemma 5.13 wissen wir,
dass g erst an v startet. Nach Lemma 5.12 wissen wir auferdem, dass kein Reisender von f
oder g unterhalb von v auf gemeinsamer Strecke startet oder endet.

Konstruiere aus L eine neue Losung L’: Wir ersetzen das Fahrzeug f durch ein neues
Fahrzeug f’, das nur noch die Reisenden von f bedient, die nicht an v in g umsteigen. Ebenso
ersetzen wir das Fahrzeug g durch ein Fahrzeug ¢’, das alle Reisenden von g auf ihrer kom-
pletten Strecke bedient. Insbesondere also die Reisenden, die an v von f in g umsteigen, auf
ihrer gesamten Strecke bedient.

Dann ist die Losung L’ besser als die Losung L: Da die Reisenden von g’ keinen Halt mit
einem Reisenden aus f” teilen, entstehen keine zusitzlichen Halte. Weiter wissen wir, weil
kein Reisender von g’ an v startet zusammen mit Lemma 5.13, dass g’ nicht an v halt. Da kein
Reisender aus ¢’ mindestens a hoher als v startet, wissen wir, dass die jetzt zusétzlich von
f’ und ¢’ gleichzeitig befahrene Strecke kiirzer ist als . Die nicht mehr eingesparte Zusam-
menfahrt wird also von dem nicht mehr notwenidgen Halt aufgehoben. Ein Widerspruch zur
Optimalitéit von L. a

Abschlieflend wollen wir noch die Erkenntnis darlegen, die den initialen Anstof} zur Al-
gorithmusidee geliefert hat. Betrachten wir die Bildung von Gruppen, so gibt es zwei grof3e
Griinde fiir die Zusammenfahrt: gemeinsame Halte und gemeinsam befahrene Strecke. Ein
gemeinsamer Halt ist dabei in gewisser Weise ein recht lokales Phdnomen: Zwei oder mehr
Fahrzeuge halten am selben Knoten. Bei gemeinsamer Strecke hingegen legen die beteiligten
Fahrzeuge langere Streckenstiicke zuriick. Aufgrund der mangelnden Ausweichmdglichkeiten
in der eingeschrinkten Struktur einer Einhals-Spinne, kann es in dem Bereich ab 2a tiber
dem Abspaltungspunkt nur eine solche Gruppe geben. Spater im Algorithmus werden wir
dieser Gruppe den Namen grofles Fahrzeug geben. Wie bei Lemma 5.11 ergibt sich aus dem
Beweis, dass wir bei einer gefahrenen Strecke von genau a optimale Losungen finden kénnen,
in denen die Fahrzeuge nicht eine Gruppe bilden. Diese kénnen aber immer auch in optimale
Lésungen transformiert werden, in denen die Fahrzeuge eine Gruppe bilden.

Lemma 5.18: Sei G = (V,E) eine Einhals-Spinne, sodass jede Kante von einem Reisenden
befahren wird. Seien (w, ..., u,v) und (w’,...,u’,v") Pfade in G. Die Knoten v und v’ liegen beide
im interessanten Bereich von hochstens 2a oberhalb und nicht unterhalb dem Abspaltungspunkt.
Weiter seien (v, a), (v,a’), (v/,b) und (v',b") Kanten von G. Seien L eine optimale Losung und
f.f’. f»9,¢ und g Fahrzeuge in L. Dabeisei f # §, f # f und g # ¢ . Es halten aufSerdem f,
f" und f anv sowie g, ¢’ und § an v'. Weiter befahre f den Pfad (w, ...,v), f die Kante (v, a),
f’ die Kante (v,a’), g den Pfad (w’,...,V"), g die Kante (v',b) und g’ die Kante (v',b’). Seien
weiter ry und ry Reisende, sodass rg und rg zumindest von w bis v in ffahren und dann in f
beziehungsweise f’ umsteigen. Sei aufSerdem r, und ry Reisende, sodass ry undry zumindest
von w’ bis V' in § fahren und dann in g beziehungsweise g’ umsteigen. Dann konnen nicht die
Pfade (w,...,v) und (w',...,V’) beide linger als o sein.

Selbiges gilt auch, wenn wir statt einzelnen Reisenden eine Folge an Reisenden betrachten, die
zusammen einen nicht iiberlappenden Pfad bilden.
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Abbildung 5.14.: Die reduzierte Situation aus Lemma 5.18. Die Fahrzeuge f und f sowie
g und g missen nicht notwendigerweise tibereinstimmen. Dennoch fahren die Fahrzeuge f
und g auf jeden Fall in ein Bein. Der Reisende rf, der an v von f nach f umsteigt, ist nicht
dargestellt, da sein Pfad mit dem vom Fahrzeug f beziehungsweise f tibereinstimmt. Analoges
gilt fiir Reisenden r,. Auch das genaue Verhiltnis der Knoten w, w’, u, v/, v und v ist nicht
notwendigerweise wie angegeben. Allerdings ist in jedem Fall der Knoten v" héher als v. Auch
die Knoten a und a’ liegen nicht notwendigerweise in Beinen.

In Abbildung 5.14 sehen wir eine bereits reduzierte Version der Situation. Wir wissen,
dass v und v’ verschieden und v’ oberhalb von v liegt. Somit liegt b = b’ im Hals. Auch das
genau Verhiltnis der Pfade (w,...,v) und (w’,...,v") kann von der dargestellten Situation
abweichen. Die Fahrzeuge f und f sowie § und g stimmen nicht notwendigerweise wie
dargestellt iiber. In jedem Fall, enden all diese Fahrzeuge aber in einem Bein.

Beweis. Seien die Variablen gegeben wie in der Voraussetzung. Nach Lemma 5.6 wissen wir,
dass v und v/ nicht unterhalb dem Abspaltungspunkt liegen. Denn a und @’ bzw. b und b’
missen entweder beide im Hals oder auf verschiedenen Beinen liegen. Somit kann ich also
die Positionen von v und v’ vergleichen. Ohne Beschrankung der Allgemeinheit liege v" nicht
unterhalb von v. Da f an v und g an v’ halt, wissen wir mit Lemma 5.13, dass v nicht mit v/
iibereinstimmt. Es liegt v/ somit echt oberhalb von v. Nach Lemma 5.7 wissen wir aulerdem,
dass die Fahrt von g und f in verschiedenen Beinen endet. Also insbesondere unterhalb von v.
Angenommen es seien nun (w,...,v) und (w’,..., V") beide langer als a.

Dann konstruiere aus L eine neue Losung L’: Ersetze f durch ein neues Fahrzeug f ’. Dieses
Fahrzeug f " bedient alle Reisenden von f und oberhalb von v auch alle Reisenden von 4.
Ersetze ebenso § durch ein neues Fahrzeug §’, das erst an v startet und ab v alle Reisenden
von g bedient. Dann ist die neue Lésung L’ wohldefiniert, weil v unterhalb von v auf dem
Hals liegt.

Die Losung L’ ist besser als die Losung L: Unterhalb von v stimmen f "und ¢’ mit f und
g iberein. An v muss ¢’ einmal zusétzlich halten. Oberhalb von v iibernimmt f " alle Halte
von f und g; hier entstehen keine zuséatzlichen Halte. Allerdings wird eine Strecke von mehr
als a oberhalb von v einmal weniger befahren. Denn ¢ fahrt in L von w’ bis v, wovon die
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Teilstrecke w’ bis v’ ldnger als « ist. Ebenso fahrt f in L von w bis v, eine Strecke von mehr
als a. f und g fahren in L also eine Strecke von mehr als & zusammen, die in L’ nur noch von

A

f’ zuriickgelegt wird. Somit erhalten wir einen Widerspruch zu L optimal. a

5.2.2. Polynomieller Algorithmus

Als Néchstes stellen wir unseren Ansatz fiir einen polynomiellen Algorithmus zur Losung des
Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN vor. Dieser nutzt allerdings die Annahme,
dass es einen polynomiellen Algorithmus fiir das in Abschnitt 5.2.4 beschriebene Problem
GRUPPENZUSAMMENFAHRT gibt. Im Algorithmus nehmen wir an, dass jede Kante unserer
Einhals-Spinnen auch von einem Reisenden befahren wird. Wir werden spéiter zeigen, dass
wir diesen Algorithmus einfach auf den allgemeinen Fall erweitern kénnen.

Im Algorithmus nutzen wir zuerst aus, dass nach Lemma 5.6 jedes Bein von nur einem
Fahrzeug bedient wird. Dann untersuchen wir den Bereich von 2« oberhalb des Abspaltungs-
punkts und versuchen Fahrzeuge zusammenzulegen: auf Basis von gemeinsamen Halten, aber
auch von mehreren Fahrzeugen befahrener Strecke. Als Grundkonzept dient ein sogenanntes
grofles Fahrzeug, dass alle Reisenden im oberen Teil des Halses bedient. Das grofie Fahrzeug
ist das einzige Fahrzeug, das einzelne andere Reisende mitnimmt, weil sie ausreichend Strecke
miteinander teilen. Dementsprechend handelt es sich bei dem Konzept des groflen Fahrzeugs
um eine Gruppe mit einem ausgewiesenen Fahrzeug, dass die Reisenden wahrend der Zusam-
menfahrt bedient. Nach Lemma 5.10 teilt sich das grofie Fahrzeug nur an einem Knoten auf.
Diesen Knoten nennen wir Trennungsstelle. Nach Lemma 5.15 ist die Trennungsstelle entweder
der Abspaltungspunkt oder ein Start oder ein Ende eines Reisenden. Nach Lemma 5.16 liegt
die Trennungsstelle gleichzeitig hochstens a oberhalb dem Abspaltungspunkt. Denn wenn wir
die Trennungsstelle nicht auf einen erzwungenen Halt, also Start oder Ende eines Reisenden,
legen, verursachen wir einen zusitzlichen Halt. Dieser Halt verursacht zusétzliche Kosten
von «a. Gleichzeitig kann umso mehr Fahrzeugoperationszeit eingespart werden, je langer
die Reisenden zusammenfahren, also je tiefer die Trennungsstelle liegt. Deshalb konnen wir
die Trennungsstelle auf den tiefstmoglichen Punkt verschieben — den Abspaltungspunkt.
Der Algorithmus versucht dann dem grof3en Fahrzeug moglichst viele Reisende zuzuweisen,
fur die sich die Zusammenfahrt wegen langerer gemeinsamer Strecke oder gemeinsamen
Halten lohnt. Auch sonstige Fahrzeuge, die sich Halte teilen, lassen wir zusammenfahren.
Zuletzt werden Reisende, deren Fahrzeuge vor dem Abspaltungspunkt enden, noch von einem
Fahrzeug bedient, das in ein Bein hinein fahrt. Denn je mehr Reisende gemeinsam fahren,
desto mehr ausnutzbares Sparpotential gibt es.

Nach der grundsitzlichen Algorithmusidee kommt jetzt noch die konkretere Algorithmus-
beschreibung:

Initialisierung Zu Beginn initialisieren wir eine vorlaufige Losung: Jedes Bein wird von
einem Fahrzeug bedient und auch jeder Reisende, der nicht in einem Bein fahrt, bekommt ein
eigenes Fahrzeug.

Erzeuge fiir jedes Bein B ein Fahrzeug fg. Das Fahrzeug fp bedient alle Reisenden Rp, deren
Ziel im Bein B liegt. Zumindest vorlaufig wird ein Reisender r € Rp von seinem Start aus von
fB bedient. Das Fahrzeug fp startet am obersten Start aller Reisenden Rg und fahrt den Hals
hinunter bis zum Ende des Beins. Zwischendrin hilt es an jedem Knoten, an dem einer der
Reisenden Rp startet oder endet.

Erzeuge nun fiir jeden Reisenden, dessen Strecke vollstandig im Hals enthalten ist, ein
eigenes Fahrzeug. Dieses fiahrt vom Start zum Ziel des Reisenden.
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Das grof3e Fahrzeug Wir erinnern uns: Das grofie Fahrzeug ist die in einer optimalen
Lésung eindeutige Gruppe, die eine Strecke von mehr als « zuriicklegt. Eine Gruppe ist eine
Menge M an Reisenden, die zusammenfahren. Konkret existiert ein Knoten ¢, sodass oberhalb
von t alle Reisenden aus M in nur einem Fahrzeug fahren. Unterhalb von t fahren die Reisenden
aus M in mehreren Fahrzeugen. Wir wollen das Konzept auf Fahrzeuge erweitern, um das
algorithmische Vorgehen von zusatzlichen Zusammenfahrten von Reisenden zu beschreiben.
Dann besteht die Menge M aus Fahrzeugen. In dem Fall bedeutet die Zusammenfahrt die
folgende Anderung der Losung: Es gibt einen Knoten ¢, den die Fahrtstrecken aller Fahrzeuge
aus M beinhalten. Oberhalb von t fahrt nur eines der Fahrzeuge aus M, nennen wir es fy;. Das
Fahrzeug fis bedient alle Reisende, die vorher mit einem der Fahrzeuge aus M gefahren sind.
Erst ab t fahren dann auch wieder die restlichen Fahrzeuge aus M und die Reisenden steigen
wieder in das Fahrzeug, in dem sie urspriinglich gefahren sind. Wir nennen ¢t Trennungsstelle.
Oft bezeichnen wir mit dem groflen Fahrzeug auch das Fahrzeug fy, das oberhalb von ¢ fahrt.

Nun wollen wir bestimmen, ob es ein grof3es Fahrzeug geben sollte. Denn es kann sein,
dass es sich nicht lohnt, mit den anderen Fahrzeugen zusammenzufahren, obwohl jeweils
der Halt fiir die anderen Fahrzeuge eingespart wird. Dazu betrachten wir jede mogliche
Trennungsstelle und berechnen fiir diese die beste Losung. Auflerdem berechnen wir noch
die Losung ohne ein grofies Fahrzeug und wahlen dann die insgesamt beste Losung aus.
Zur Berechnung der Losung ohne ein grofes Fahrzeug lassen wir den aktuellen Schritt zur
Berechnung des grofien Fahrzeugs weg und fahren mit dem restlichen Algorithmus fort.

Um die beste Losung fiir eine Trennungsstelle ¢ zu berechnen, gehen wir wie folgt vor:

Zuerst wihlen wir ein beliebiges Fahrzeug, das zumindest « oberhalb der Trennungsstelle
startet, aber nach dieser noch weiter fahrt, als grofies Fahrzeug aus. Alle weiteren Fahrzeuge,
die zumindest a oberhalb der Trennungsstelle starten, bilden dann mit dem grof3en Fahrzeug
eine Gruppe. Das heifit, alle Fahrzeuge aufler dem grofien Fahrzeug, die zumindest & oberhalb
der Trennungsstelle starten, fahren erst ab der Trennungsstelle. Die Reisenden, die jetzt
oberhalb der Trennungsstelle im grofien Fahrzeug fahren, steigen an der Trennungsstelle in
das Fahrzeug, in dem sie urspriinglich gefahren sind.

Ebenso fiigen wir noch alle Fahrzeuge, die sich einen Halt mit dem groflen Fahrzeug teilen,
der Gruppe hinzu. Allerdings nur, wenn der geteilte Halt nicht unterhalb der Trennungsstelle
liegt. Auch fiigen wir ein Fahrzeug f nicht der Gruppe des grofien Fahrzeugs hinzu, wenn der
geteilte Halt gleichzeitig die Trennungsstelle und Start von f ist. Dies wiederholen wir, bis es
keine mit dem groflen Fahrzeug geteilte Halte mehr gibt, die die Lésung verandern.

Zusammenfahrt wegen gemeinsamer Halte Neben der Gruppe des grof3en Fahrzeugs
kann es noch weitere Fahrzeuge geben, die sich Halte teilen. Diese miissen wir auch noch
zusammenfahren lassen.

Spezifisch bilden wir Gruppen aus Fahrzeugen, die sich transitiv Halte teilen. Allerdings
fugen wir ein Fahrzeug f nicht hinzu, wenn der geteilte Halt Start von f ist und Trennungs-
stelle der Gruppe wére. Diese neuen Gruppen fahren bis zum letzten Halt der vorherigen
Fahrzeuge zusammen. Nun erhalten wir als Teilproblem zu bestimmen, wie die Gruppen,
die wir erhalten zusammenfahren. Auch, ob wir die Zusammenfahrt von Gruppen bis zum
Abspaltungspunkt verlangern. In Abschnitt 5.2.4 beschéftigen wir uns mit diesem Teilproblem
GRUPPENZUSAMMENFAHRT noch eingehender. Wir betrachten einen Algorithmus fiir dieses
Teilproblem und fithren diesen aus.
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Ende vor Trennungsstelle Alle Fahrzeuge, die nicht unterhalb der Trennungsstelle enden,
werden aus der Losung entfernt. Thre Reisenden werden stattdessen vom grof3en Fahrzeug
bedient. Gibt es kein grofies Fahrzeug, werden sie stattdessen von dem Fahrzeug bedient, das
unter den in ein Bein fahrenden Fahrzeugen am héchsten startet.

Polynomialitat

Nun wollen wir noch zeigen, dass der beschriebene Algorithmus sein Ergebnis auch in
polynomieller Zeit berechnet.

Satz 5.19: Der in diesem Abschnitt beschriebene Algorithmus berechnet ohne Beachtung des
Algorithmus fiir das Teilproblem GRUPPENZUSAMMENFAHRT sein Ergebnis in O(|V| - |R| - |Eg]).

Beweis. Die Aussage erhalten wir durch einfaches Nachzéhlen der Operationen des Algorith-
muses.

Um die Fahrzeuge fiir die Beine zu erzeugen, miissen wir fiir potentiell jeden Reisenden zwei
Halte erzeugen. Ebenso fiir die eigenen Fahrzeuge fir die restlichen Reisenden. Aufierdem
missen wir den Fahrzeugen die entsprechenden Kanten zuweisen und den Reisenden fiir
die Kanten das Fahrzeug zuweisen. Daraus ergibt sich eine Laufzeit fiir diesen Schritt von
O(|Eg|).

Dann schauen wir uns jede mogliche Trennungsstelle an, das heif}t hochstens O(|V]) Kno-
ten. Fiir jede Trennstelle vereinigen wir dann schrittweise Fahrzeuge. Bei jeder Vereinigung
konnen jeweils zwei Fahrzeuge nicht mehr vereinigt werden. Somit kann es hochstens O(|R|)
Vereinigungen geben. Jede der Vereinigungen dauert wie oben maximal O(|Eg|). Den gleichen
Aufwand haben wir nicht nur fir jede Trennungsstelle, sondern auch fiir die Méglichkeit,
dass es kein grofles Fahrzeug gibt. Somit erhalten wir fiir die restlichen Schritte insgesamt
eine Laufzeit von O(|V| - |R| - |ER]).

Es folgt insgesamt die Laufzeit von O(|V| - |R| - |ER]). a

5.2.3. Optimalitat

Nun zeigen wir noch, dass der in Abschnitt 5.2.2 beschriebene Algorithmus eine optimale
Losung berechnet. Dafiir setzen wir voraus, dass ein optimaler Polynomialzeit-Algorithmus fiir
das Teilproblem GRUPPENZUSAMMENFAHRT gegeben ist. Damit folgern wir, dass die optimale
Lo6sung fir das Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN auf allen Einhals-Spinnen
in polynomieller Zeit berechnet werden kann. Ebenfalls unter Voraussetzung eines optimalen
Polynomialzeit-Algorithmus fiir das Teilproblem GRUPPENZUSAMMENFAHRT.

Satz 5.20: Sei ein optimaler Polynomialzeit-Algorithmus fiir das Teilproblem GRUPPENZUSAM-
MENFAHRT gegeben. Dann berechnet der in Abschnitt 5.2.2 beschriebene Algorithmus eine optimale
Losung fiir das Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN auf Einhals-Spinnen, fiir die
jede Kante von einem Reisenden befahren wird.

Beweis. Sei Loyt eine optimale Losung. Sei weiter L die Losung, die der Algorithmus berechnet.
Zunachst betrachten wir die Situation, wenn es in den Gruppen des Teilproblems Grup-
PENZUSAMMENFAHRT keine Zusammenfahrt gibe.
Mit Korollar 5.9 und Lemma 5.6 erhalten wir, dass in Ly, wie in L in jedem Bein und ab 2«
iiber dem Abspaltungspunkt nur ein eindeutiges Fahrzeug fahrt.
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Nach Lemma 5.18 wissen wir, dass es in Lo, nur ein Fahrzeug geben kann, das mehrere
Reisende mitnimmt, sodass die Zusammenfahrt jeweils den zusitzlichen Halt einspart. In
L entspricht dieses Fahrzeug gerade dem grofien Fahrzeug. Entsprechend verwenden wir
die Terminologie analog fiir dieses Fahrzeug in Lop;. Mit Lemma 5.10 erhalten wir, dass sich
das grofie Fahrzeug auch in Ly, nur an einem Punkt aufteilt. Das heifit wir kénnen auch
in Loyt von einer Trennungsstelle reden. Nach Lemma 5.12 und Lemma 5.15 ist dies der
letzte Halt der Reisenden des grofien Fahrzeugs oder der Abspaltungspunkt. Mit Lemma 5.7
erhalten wir, dass ab der Trennungsstelle alle Fahrzeuge in Lop bis in ein Bein fahren. Somit
liefert uns Lemma 5.16, dass auch in Loy die Trennungsstelle héchstens a oberhalb dem
Abspaltungspunkt liegt.

Betrachten wir nun die Iteration des Algorithmus, in der gerade die Losung fiir die Tren-
nungsstelle des groflen Fahrzeugs in L,y berechnet wird. Nach Konstruktion fahren in L
gerade die folgenden Reisenden mit dem groflen Fahrzeug: Alle Reisenden, die zumindest
a oberhalb der Trennungsstelle starten oder am selben Knoten starten oder enden wie ein
anderer Reisender des groflen Fahrzeugs. Ebenso alle Reisenden, die im selben Bein enden
wie einer dieser Reisenden und bereits oberhalb der Trennungsstelle fahren. Auf3erdem alle
Reisenden, die sich keine Halte mit Reisenden aus den Beinen teilen und nicht unterhalb der
Trennungsstelle enden. Ist die Trennungsstelle der Abspaltungspunkt, zusétzlich noch alle
Reisenden aus Gruppen, fir die sich die Zusammenfahrt insgesamt bis zum Abspaltungspunkt
lohnt.

Dann erhalten wir mit Lemma 5.11, das Reisende, die mehr als & oberhalb der Trennungs-
stelle starten und nicht vor der Trennungsstelle enden, auch in Lo mit dem grofien Fahrzeugs
fahren. Weiter wissen wir auch, dass, falls ein Reisender in Ly, der genau a oberhalb der
Trennungsstelle startet und nicht vor der Trennungsstelle endet, nicht im grofien Fahrzeug
fahrt, die Losung nicht schlechter wird, wenn er stattdessen im grofien Fahrzeug fahrt. Mit
Lemma 5.13 erhalten wir weiter, dass alle Reisenden, die sich Start oder Ende mit einem
anderen Reisenden des grofien Fahrzeugs teilen, auch in L,,; mit dem groflen Fahrzeug fahren.
Mit Lemma 5.5 wissen wir selbiges auch fiir die Reisenden, die im selben Bein enden wie ein
Reisender im groflen Fahrzeug. Weiter liefert Lemma 5.14, dass jeder Reisender von einem
Fahrzeug bedient wird, das in ein Bein fahrt. Fiir Reisende, die mangels geteilter Halte und
mangelnder Streckenldnge kein weiteres Einsparpotential generieren, ist es optimal, diese
moglichst lange mit anderen zusammenfahren zu lassen. Da das grofie Fahrzeug die langste
Strecke zuriicklegt, ist es daher optimal, diese vom grof3en Fahrzeug fahren zu lassen. Wir
konnen daher annehmen, dass auch in L, diese Reisenden im grofien Fahrzeug fahren.

Die Reisenden, die in L nicht im grofien Fahrzeug fahren, fahren in Fahrzeugen, die in ein
Bein fithren und sich keinen Halt mit dem grof3en Fahrzeug teilen. Diese Reisenden kénnen
entweder bis in ein Bein fahren oder vorher enden. Fahren sie bis in ein Bein, ist dieses
insbesondere von allen Beinen verschieden, in die Reisende wollen, die im grof3en Fahrzeug
fahren. Deshalb miissten diese Reisenden aus dem grofien Fahrzeug in das Fahrzeug fiir ihr
Bein umsteigen. Entsprechend gilt nach Lemma 5.17, dass diese auch in Loy nicht im grofien
Fahrzeug fahren. Enden die Reisenden vor dem Abspaltungspunkt, wissen wir, dass diese
sich zumindest transitiv einen Halt mit Reisenden teilen, die in ein Bein fahren wollen, in
das keiner der Reisenden des grofien Fahrzeugs fihrt. Ebenso wissen wir, dass keiner dieser
Reisenden zumindest « oberhalb der Trennungsstelle startet oder sich einen Halt mit einem
Reisenden des grofien Fahrzeugs teilt. Somit gilt nach dem selben Argument, dass auch diese
Reisenden in Lo, ebenso nicht im grofien Fahrzeug fahren. Daraus erhalten wir, dass L durch
eine andere Reisendenzuweisung zum grofien Fahrzeug nicht besser sein kann als die optimale
Losung Lopt.
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Zuletzt wollen wir noch fiir die restlichen Reisenden &hnliche Aussagen treffen. Die restli-
chen Reisenden sind gerade die Reisenden, die nicht im grofien Fahrzeug fahren. Fiir diese
gibt es zwei Moglichkeiten: Sie haben gemeinsame Halte mit anderen Reisenden oder nicht.

Im ersten Fall wissen wir nach Lemma 5.13, dass in Lop; wie in L alle solchen Reisenden
zusammenfahren, die sich einen Halt teilen. Mit Lemma 5.12 und Lemma 5.15 wissen wir
weiterhin, dass sich in L, die gleichen beiden Optionen fiir das Ende der Zusammenfahrt
ergeben wie in L. Ebenso fahren nach Lemma 5.12 und Lemma 5.13 die Gruppen in Loy wWie
in L nur bis zu ihrem jeweils letzten Halt zusammen. Es sei dennn, nach dem optimalen
Algorithmus fiir das Teilproblem GRUPPENZUSAMMENFAHRT ist das Ende der Zusammenfahrt
auf den Abspaltungspunkt verschoben. Nach Lemma 5.16 und Lemma 5.17 erhalten wir, dass
auch alle Reisenden, die in L nicht in diesen Fahrzeugen zusammenfahren, dies auch nicht in
Lopt tun.

Im zweiten Fall gibt es nochmal zwei weitere Moglichkeiten: Entweder der Reisende endet
im Hals oder fahrt noch in ein Bein. Endet er im Hals kann es gar kein grofies Fahrzeug
geben, sonst wiirden diese in L bereits im grof3en Fahrzeug fahren. Dann erhalten wir mit
Lemma 5.7, dass in Ly, wie in L, diese Reisenden von einem im Bein endenden Fahrzeug
bedient werden. Da mit dem Fahrzeug, das am hochsten startet, die meiste Strecke geteilt
werden kann, ist die erhaltene Einsparung in L und L,y gleich. Fahrt er in ein Bein, wissen wir
nach Lemma 5.5, dass alle anderen Reisenden in dasselbe Bein an den selben Kanten im selben
Fahrzeug sitzen. Ebenso behandelt auch der Algorithmus diese Kanten fiir den Reisenden wie
die anderen Reisenden. Fahrt er dennoch nicht erst in einem anderen Fahrzeug als dem seines
Beins, wissen wir, dass entweder eine bestehende Zusammenfahrt auch im optimalen Fall
vorher endet oder der Algorithmus gar keine Zusammenfahrt erzeugt. Dann teilen sich all
diese Reisenden keine Halte mit Reisenden, die in andere Beine wollen und nach Lemma 5.18
und Lemma 5.17 erhalten wir somit, dass diese Reisenden auch in der optimalen Losung Loyt
nur im Fahrzeug ihres Beins fahren.

Da der Algorithmus fiir das Teilproblem GRUPPENZUSAMMENFAHRT optimal ist, sind auch
die restlichen Zusammenfahrten der Gruppen so optimal wie in Lqy. Somit erhalten wir
insgesamt, dass L, nicht besser als L ist. Somit ist L bereits optimal. a

Mit einem solchen Algorithmus auf Einhals-Spinnen, fiir die jede Kante von einem Rei-
senden befahren werden will, kénnen wir dann auch einen Algorithmus angeben, der in
polynomieller Zeit eine optimale Losung fiir beliebige Probelminstanzen auf Einhals-Spinnen
berechnet.

Theorem 5.21: Unter Annahme eines optimalen Polynomialzeitalgorithmus fiir das Teilproblem
GRUPPENZUSAMMENFAHRT, existiert ein polynomieller Algorithmus, der fiir Probleminstanzen des
Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN auf Einhals-Spinnen eine optimale Losung
berechnet.

Beweis. Sei A der Algorithmus fiir Einhals-Spinnen, sodass jede Kante von einem Reisenden
befahren wird, aus Abschnitt 5.2.2. Dabei verwenden wir die Annahme eines optimalen
Polynomialzeitalgorithmus fiir das Teilproblem GRUPPENZUSAMMENFAHRT. Nach Lemma 5.1
wissen wir, dass auf Kanten, die nicht von Reisenden befahren werden wollen, in einer
optimalen Losung keine Fahrzeuge fahren. Somit zerfallt eine Instanz in hochstens linear-viele
Teilinstanzen. Jede dieser Teilinstanzen ist eine Einhals-Spinne, sodass jede Kante von einem
Reisenden befahren wird. Somit konnen wir die Teilinstanzen mit dem Algorithmus A in
polynomieller Zeit optimal 16sen kénnen. Insgesamt erhalten wir in polynomieller Zeit eine
optimale Losung fiir die gesamte Instanz. a
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5.2.4. Zusammenfahrt von Gruppen

In diesem Abschnitt betrachten wir das Teilproblem aus dem Algorithmus in Abschnitt 5.2.2
genauer. Wir erinnern uns an die Situation: Wir haben bereits viele Reisende zu Gruppen
zusammengefasst. Dabei konnen wir uns sicher sein, dass jeder der Reisenden mit allen
Reisenden in der eigenen Gruppe zusammenfahren muss. Auflerdem haben wir auch alle
Reisenden zu Gruppen zusammengefasst, von denen wir uns sicher sind, dass sie zusam-
menfahren miissen. Wir wissen auch, dass der Bereich, in dem wir noch etwas entscheiden
missen, klein ist. Denn nur im Bereich von 2« oberhalb des Abspaltungspunkts gibt es noch
mehrere Gruppen. Und unterhalb des Abspaltungspunkts fihrt nach Lemma 5.6 nur ein Fahr-
zeug pro Bein. Jetzt stehen wir vor dem Problem, dass wir nicht wissen, welche Reisenden
der erhaltenen Gruppen weiter zusammenfahren und welche getrennt bleiben sollten. Wir
erhalten ein neues Optimierungsproblem als Teilproblem des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN auf Einhals-Spinnen. Mit Lemma 5.15 und Lemma 5.12 wissen wir, dass
zusétzliche Zusammenfahrten der Reisenden der Gruppen weiterhin an einem letzten Halt
eines der Reisenden oder dem Abspaltungspunkt enden muss. Nach Lemma 5.13 wissen
wir, dass ein geteilter Halt zwischen zwei Gruppen Start der einen und der letzte Halt von
beiden Gruppen sein miisste. Da die Gruppe dann aber nichts spart, diirfen die Reisenden gar
nicht zusammen in derselben Gruppe fahren. Also wissen wir, dass Gruppen sich keine Halte
teilen. Da wir auBerdem wissen, dass die bisherigen Gruppen erhalten bleiben, sind fiir dieses
Teilproblem von jeder Gruppe nur Start, Ende der Zusammenfahrt und Anzahl Beine relevant.

Insgesamt erhalten wir das Optimierungsproblem Gruppenzusammenfahrt. Eine Instanz
besteht aus einem gewichteten, gerichteten Pfadgraphen, skalaren Haltekosten o sowie einer
Menge an Gruppen. Die Gewichte jeder Kante sind echt positiv. Jede Gruppe ist gegeben
durch zwei Knoten, den Start sowie die Trennungsstelle, und eine Anzahl involvierter Beine.
Dabei ist jeder Start und jede Trennungsstelle von jedem anderen Start und jeder anderen
Trennungsstelle verschieden. Insbesondere sind auch der Start und die Trennungsstelle einer
Gruppe verschieden. Auflerdem ist die Strecke zwischen dem zweithochsten Start und dem
tiefsten Punkt hochstens 2a lang. Wir suchen eine Partitionierung der Gruppen in soge-
nannte Hypergruppen. Jede Hypergruppe besteht aus einer Menge an Gruppen, sowie einer
Trennungsstelle. Die Trennungsstelle einer Hypergruppe ist die niedrigste Trennungsstelle
einer der enthaltenen Gruppen oder der tiefste Knoten des Pfadgraphens. Allerdings darf nur
fir maximal eine Hypergruppe die Trennungsstelle mit dem tiefsten Knoten des Graphen
tibereinstimmen. Die Minimierungsfunktion besteht aus mehreren Summanden. Der erste
Summand ist das Produkt der Haltekosten mit der Anzahl an Gruppen, deren Trennungsstelle
nicht mit der Trennungsstelle ihrer Hypergruppe iibereinstimmen. Der zweite Summand
die Summe iiber alle Hypergruppen von der Strecke von Start der Hypergruppe bis zu ih-
rer Trennungsstelle. Der dritte und letzte Summand ist die Summe tiber alle Gruppen von
dem Produkt der Anzahl Beine mit der Strecke von der Trennungsstelle der zugeordneten
Hypergruppe bis zum tiefsten Knoten des Pfadgraphen.

Betrachten wir eine Einhals-Spinne zusammen mit Gruppen, von denen wir wissen, dass
gerade diese Gruppen zusammenfahren miissen. Dann erhalten wir dazu eine Instanz I
des Problems GRUPPENZUSAMMENFAHRT mit denselben Haltekosten. Dann entspricht der
tiefste Knoten des Pfadgraphen von I gerade dem Abspaltungspunkt der Einhals-Spinne. Der
Hals der Einhals-Spinne liefert uns den Pfadgraphen von I. Die Gruppen in I entsprechen
den Gruppen fiir eine Einhals-Spinne S, von denen wir wissen, dass gerade diese Gruppen
zusammenfahren miissen. Der Start einer Gruppe G fiir S entspricht dem Start des ersten
Reisenden der entsprechenden Gruppe in I. Der Knoten, an dem die Zusammenfahrt von
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Abbildung 5.15.: Ein Beispiel, in dem die Zusammenfassung in dieselbe Hypergruppe von
einer (Hyper-)Gruppe mit immer der besten lohnenswerten (Hyper-)Gruppe eine suboptimales
Ergebnis liefert. Fir die vier Gruppen g; mit i € {0, 1, 2, 3} markieren wir mit s; den jeweiligen
Start und mit ¢; die jeweilige Trennungsstelle. Mit ¢ bezeichnen wir Kantenkosten, die viel
kleiner sind als a. Die Anzahl involvierter Beine der Gruppe g, ist fiinf und die Anzahl
involvierter Beine der restlichen Gruppen ist zwei.

G endet, entspricht der Trennungsstelle der entsprechenden Gruppe in I. Und die Anzahl
involvierter Beine der entsprechenden Gruppe in I, entspricht gerade der Anzahl verschiedener
Beine, in die Reisende aus G fahren. Wir wissen nach Lemma 5.13, dass Gruppen sich keine
Halte teilen. Somit sind die Starte und Trennungsstellen in I voneinander verschieden.

Fiir jede Gruppe auf der Einhals-Spinne bedeutet ein spiteres Ende der Zusammenfahrt
einen zusatzlichen Halt. Denn der vorherige Halt war noch oberhalb des Abspaltungspunkts
und somit ein Start oder Ende eines Reisenden, an dem weiterhin gehalten werden muss.
Auflerdem stimmen keine zwei Halte der Gruppen auf der Einhals-Spinne tiberein. Lassen
wir Reisende zusammenfahren, befihrt ab dem Start des ersten Reisenden ein Fahrzeug die
gesamte Strecke bis zum Ende der Zusammenfahrt. Ab dann fahrt in jedes Bein ein Fahrzeug,
denn in den Beinen fahrt nur ein Fahrzeug. Insbesondere fahren auf der restlichen Strecke
vom Ende der Zusammenfahrt bis zum Abspaltungspunkt fiir jedes Bein, in das ein Reisender
der Gruppe fahrt, ein Fahrzeug. Somit entspricht die Optimierung der Instanz I gerade der
Optimierung der Zusammenfahrt der Reisenden aus den Gruppen auf der Einhals-Spinne.

Wir zeigen, dass ein Algorithmus, der eine optimale Losung fiir das Problem GRupPPENZU-
SAMMENFAHRT berechnet, nicht offensichtlich ist. Ein solcher Algorithmus benétigt also eine
gewisse Komplexitat. Denn die beiden offensichtlichen Méglichkeiten fithren nicht zum Erfolg.
Zum einen betrachten wir einen Algorithmus .4, der mit einer Hypergruppe fir jede Gruppe
beginnt nacheinander Hypergruppen vereinigt. Der Algorithmus A vereinigt dabei jede Hy-
pergruppe solange mit der Hypergruppe, mit der die Losung am meisten besser wird, bis keine
Verbesserung mehr erzielt werden kann. Zum anderen betrachten wir einen Algorithmus B,
der andersrum mit einer Hypergruppe fiir alle Reisenden beginnt nacheinander Gruppen aus
der Hypergruppe entfernt. Dabei erzeugt der Algorithmus B eine eigene Hypergruppe fiir
jede Gruppe, fiir die eine eigene Hypergruppe besser wire. Wir zeigen gleich, dass weder A
noch B immer eine optimale Losung liefert.

Zuerst betrachten wir den Algorithmus A. Wir sehen ein, dass wir nicht immer eine
optimale Lésung erhalten, wenn wir mit einer Hypergruppe fiir jede Gruppe mit aktueller
Trennungsstelle starten und dann nacheinander Hypergruppen vereinigen. Wir sehen sogar
ein, dass wir immer die beste mogliche Vereinigung wiahlen kénnen und dennoch keine
optimale Losung erhalten.
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Lemma 5.22: Die in Abbildung 5.15 beschriebene Beispielinstanz liefert in einer Reihenfolge mit
Vereinigung mit bester anderer Hypergruppe keine optimale Losung.

Beweis. Da die Gruppe g5 am tiefsten Knoten endet, ist die Trennungsstelle einer Hypergruppe
auf dem tiefsten Knoten gleichbedeutend mit einer Zusammenfahrt mit gs.

Beginnen wir mit der Gruppe g;. Dann gilt fiir die Vereinigung mit gy, dass eine Hypergruppe
weniger die Kante (c, d) beinhaltet sowie fiir zwei Beine die Strecke ab der Trennungsstelle
um den Pfad (d, e, f, g) kirzer ist. Dafiir untescheidet sich dann die Trennungsstelle der
gemeinsamen Hypergruppe von der Trennungsstelle von g;. Wir erhalten eine Ersparnis von

a
£+2-(§+£+£)—(x:5£.

Bei einer Vereinigung mit der Gruppe g;, beinhaltet eine Hypergruppe weniger den Pfad
(b, ¢, d) und fiir zwei Beine verkiirzt sich die Strecker ab der Trennungsstelle um den Pfad Kante
(d, e, ). Ebenso unterscheidet sich dann die Trennungsstelle der gemeinsamen Hypergruppe
von der Trennungsstelle von g;. Wir erhalten eine Ersparnis von

a
£+€+2-(E+5)—0{=45.

Bei einer Vereinigung mit der Gruppe gs, verkiirzt sich die Strecke von einem Bein um den
Pfad (d, e, f, g, h) und fiir ein weiteres Bein um den Pfad (e, f, g, h). Auch hier unterscheidet
sich die Trennungsstelle der gemeinsamen Hypergruppe von der Trennungsstelle von g;. Wir
erhalten eine Ersparnis von

a a a a
(—+£+£+—)+(£+£+—) —a=4c— —.
2 5 5 10
Insgesamt ist somit die Vereinigung von g; mit g, am besten und wir erhalten stattdessen die
neue Hypergruppe gog; mit Trennungsstelle g und Start b sowie vier involvierten Beinen.
Als nichstes vereinigen wir die Gruppe g,. Mit der Hypergruppe gog; fahrt eine Hyper-
gruppe weniger den Pfad (b, c, d, e, f) und fiir fiinf Beine wird die Strecke um die Kante (f, g)
kiirzer. Zusatzlich weicht dann noch die Gruppe g, von der Trennungsstelle der gemeinsamen
Hypergruppe ab. Wir erhalten eine Ersparnis von

a a
£+£+§+£+5£—a:8£—§.

Mit der Gruppe g3 fahrt eine Hypergruppe weniger die Kante (e, ) und fiir finf Beine wird die
Strecke um den Pfad (f, g, h) kiirzer. Die Trennungsstelle einer gemeinsamen Hypergruppe
wiirde von der Trennungsstelle von Gruppe g, abweichen. Wir erhalten eine Ersparnis von

a
5+5-(£+§)—a=6£.

Insgesamt ist somit die Vereinigung von g, mit g3 am besten und wir erhalten stattdessen die
neue Hypergruppe g,g; mit Trennungsstelle h und Start a sowie sieben involvierten Beinen.

Bleiben noch die Hypergruppen gog; und g,gs. Bei einer Vereinigung dieser beiden Hyper-
gruppen befihrt eine Hypergruppe weniger den Pfad (b, c,d, e, f, g). AuBlerdem beinhaltet die
Strecke von vier Beinen die Kante (g, h) weniger. Die Vereinigung der beiden Hypergruppen
bedeutet, dass die Trennungsstelle der Vereinigung zusatzlich noch von der Trennungsstelle
von gy abweicht. Somit erhalten wir eine Ersparnis von

a a 3
Ete+—+etetd——a= —a+4e
2 5 10
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Abbildung 5.16.: Ein Beispiel, in dem das Entfernen von Gruppen aus der Hypergruppe
der Vereinigung aller Gruppen eine suboptimale Losung liefert. Fiir die vier Gruppen g; mit
i € {0, 1, 2,3} markieren wir mit s; den jeweiligen Start und mit ¢; die jeweilige Trennungsstelle.
Mit ¢ bezeichnen wir Kantenkosten, die viel kleiner sind als «. Die Anzahl involvierter Beine
der Gruppen g; und g3 ist 100 und die Anzahl involvierter Beine der Gruppen g, und g, ist
zwei.

Somit ist die Vereinigung der beiden Hypergruppen lohnenswert und wir erhalten insgesamt
die Hypergruppe gog1g29gs mit Start a, Trennungsstelle 1 und elf involvierten Beinen.

Fiir die Losung L, die nur aus der Hypergruppe gog1g29s besteht, fahrt nur eine Hypergruppe
den kompletten Pfad, somit gibt es auch keine Strecke zwischen Trennungsstelle und tiefstem
Knoten. Weiter weicht die Trennungsstelle der Hypergruppe von der Trennungsstelle von
drei Gruppen ab. Wir erhalten insgesamt den Wert

a a 37
Etetet —+e+e+—+3a= —a+Se
2 5 10

Betrachten wir alternativ die Losung L’ mit zwei Hypergruppen, eine die der Gruppe g
entspricht sowie die Hypergruppe g1g29s, die die restlichen Gruppen enthalt. Dann ist die
Trennungsstelle der Hypergruppe g1g.g3s am Knoten h und der Start an Knoten a. Somit ist
die Trennungsstelle von den Gruppen g; und g, von der Trennungsstelle der Hypergruppe
919295 verschieden. Auflerdem sind neun Reisende in die Hypergruppe g1g29; involviert. Wir
erhalten einen Wert von

a a a 36
E+—+e+e+-a +(€+€+€+—+€+e+—+2a) = —a+8e.
2 5 2 5 10

Da ¢ deutlich kleiner ist als «, ist somit die Losung L” besser als die Losung L. Die Losung L
kann also nicht optimal sein. a

Jetzt betrachten wir den Algorithmus B. Wir sehen ein, dass wir auch nicht immer eine
optimale Losung erhalten, wenn wir mit einer Hypergruppe der Vereinigung aller Gruppen
beginnen und dann alle Gruppen rauswerfen, fiir die es besser ist, nicht mit den anderen
Gruppen vereinigt zu sein.

Lemma 5.23: Wir betrachten die Beispielinstanz in Abbildung 5.16. Beginnen wir mit einer
Hypergruppe mit allen Gruppen und entfernen Gruppen, fiir die die Vereinigung nicht lohnt,
erhalten wir keine optimale Losung.

Beweis. Die Hypergruppe gog19293 involviert 204 Beine. Der Start der Hypergruppe gog19293
liegt an Knoten a und die Trennungsstelle an Knoten h. Aufler fiir die Gruppe g, ist die Tren-
nungsstelle der Gruppe g; von der Trennungsstelle der Hypergruppe gog19293 verschieden.
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5. Einschrdnkung auf Graphenklassen

Erstellen wir stattdessen eine neue Hypergruppe fiir gy, beinhaltet eine Hypergruppe mehr
den Pfad (b, ¢, d, e, f, g) und zwei Beine beinhalten zusatzlich die Kante (g, h). Daftir stimmt
die Trennungsstelle von g, jetzt mit der Trennungsstelle seiner Hypergruppe iiberein. Eine
eigene Gruppe fiir g, bietet also einen Vorteil von

a a
a—(—+5+£+£+—)—25>0.
1010 100

Wir erzeugen also eine eigene Hypergruppe fiir go. Dann ist der Start restliche Hypergruppe
919293 jetzt an Knoten b und die Trennungsstelle weiterhin an Knoten h. Auflerdem sind nur
noch 202 Beine involviert.

Eine eigene Hypergruppe fiir g; bedeutet: Eine weitere Hypergruppe beinhaltet den Pfad
(c.d,e, f) und 100 Beine beinhalten zusatzlich den Pfad (f, g, h). Die restliche Hyperguppe
9293 startet erst an Knoten c. Auflerdem stimmt die Trennungsstelle der Gruppe g; mit der
Trennungsstelle der eigenen Gruppe tberein. Eine eigene Gruppe fiir g; bietet also einen
Vorteil von a

a—(e+e+¢e)—100- (—+£) < 0.
100

Die Losung bleibt somit unveréndert.

Eine eigene Hypergruppe fiir g, bedeutet: Eine weitere Hypergruppe beinhaltet den Pfad
(c.d,e, f) und 102 Beine beinhalten zuséatzlich den Pfad (f, g, h). Die Trennungsstelle der
restlichen Hyperguppe g;g5 liegt schon an Knoten f. Auflerdem stimmt die Trennungsstelle
der Gruppe g; mit der Trennungsstelle der eigenen Gruppe tiberein. Eine eigene Gruppe fiir
g2 bietet also einen Vorteil von

(4
a—(5+e+e)—102-(—+5) <0.
100

Die Losung bleibt somit unveréndert.

Eine eigene Hypergruppe fiir g; bedeutet: Eine weitere Hypergruppe beinhaltet die Kante
(d, e) und 100 Beine beinhalten zusétzlich den Pfad (e, f, g, h). Aulerdem stimmt die Tren-
nungsstelle der Gruppe g3 mit der Trennungsstelle der eigenen Gruppe tiberein. Eine eigene
Gruppe fiir g3 bietet also einen Vorteil von

o
0(—6—100'(£+—+€) < 0.
100

Die Lésung bleibt somit unveréndert.
Der Wert der so erhaltenen Losung L mit einer Hypergruppe fiir g, und einer Hypergruppe
919295 fur die restlichen drei Gruppen hat dann den Wert

a a a a 2 2
(5+ — tetetet — +2£)+(— +et+etet —+£+20{) = —a+—a+2a+10e.
1010 100 1010 100 1010 100

Betrachte stattdessen die Losung L’ mit zwei Hypergruppen ¢og; und g,gs. Die Hypergruppe
gdog1 besteht aus den Gruppen ¢, und g;. Somit ist der Start der Hypergruppe gog; an Knoten a
und die Trennungsstelle an Knoten g. Die Anzahl involvierter Beine ist 102. Die Hypergruppe
9293 besteht aus den Gruppen g; und gs. Somit ist der Start der Hypergruppe g.gs am Knoten
¢ und die Trennungsstelle an Knoten h. Die Anzahl involviert Beine ist ebenfalls 102. Dann
erhalten wir fur die Losung L’ den Wert

a a a 1 2
(£+ ——tetetet — +102£+a)+(5+£+£+ — +e+a) = ——a+—a+2a+110e.
1010 100 100 1010 100
Dann ist aber der Wert der Losung L’ geringer als der Wert der Losung L. Somit kann L
nicht optimal sein. a
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5.3. Out-Trees

5.3. OQut-Trees

Eine weitere Graphenklasse sind die Out-Trees. Out-Trees beschreibt eine Teilklasse der
Baume. Genauer ist ein Out-Tree ein gerichteter Baum, sodass von der Wurzel zu jedem
Knoten ein Pfad existiert.

Betrachten wir einen Out-Tree lokal in Blattnidhe, dhnelt er einer Einhals-Spinne. Es ist
somit naheliegend, einen Algorithmus fiir Einhals-Spinnen durch sukzessives Lésen von
Spinnen zu einem Algorithmus fiir Out-Trees zu erweitern. In diesem Abschnitt zeigen wir
aber, dass wir keinen Algorithmus konstruieren kénnen, der die Losungen der Spinnen direkt
verwendet.

Dazu erinnern wir uns an die Bezeichnung aus Abschnitt 5.2, dass ein Knoten u bezie-
hungsweise ein Bereich B unterhalb eines Knoten v liegt, und erweitern diese auf Out-Trees.
Dabei bedeutet die Aussage, dass der Knoten u unterhalb eines Knotens v # u liegt, dass
der eindeutige Pfad von der Wurzel zu u durch den Knoten v geht. Analog gilt fiir einen
zusammenhingenden Teilgraph B, dass dieser unterhalb des Knotens v liegt, wenn jeder
Knoten von B unterhalb von v liegt. Auch definieren wir den Begriff fiir eine Kante (u, v). Eine
Kante (u, v) ist unterhalb eines Knotens w, wenn u unterhalb des Knotens w liegt oder mit
diesem tibereinstimmt. Wir bezeichnen die Kante (u, v) als direkt unterhalb des Knotens u.

Damit definieren wir Spinnenenden. Spinnenenden sind eine formale Beschreibung der
Beobachtung, dass Out-Trees lokal in Blattniahe Einhals-Spinnen &hneln.

Definition 5.24: Sei v ein maximal von der Wurzel entfernter Knoten von Grad grofler 2. Das
heif3t, auf jedem Pfad, der v beinhaltet, ist v der letzte Knoten von Grad grifler 2. Insbesondere ist
v nicht zwingend der Knoten von Grad griéfier 2 von maximaler Distanz zu der Wurzel. Sei weiter
u der letzte Knoten auf dem Pfad von der Wurzel zu v aber noch vor v, der einen Grad grofSer
2 hat. Gibt es auf dem Pfad von der Wurzel zu v neben v keinen Knoten von Grad grofier 2, so
setze stattdessen u auf die Wurzel. Sei nun R die Menge aller Reisenden, deren Strecke zumindest
teilweise unterhalb v liegt. Sei weiter G der Teilgraph aller Knoten und Kanten, die von zumindest
einem Reisenden von R befahren werden. Dann ist G eine Einhals-Spinne und der urspriingliche
Graph ohne G noch immer ein Out-Tree. Weiter erhalten wir mit G und R ein Teilproblem unseres
urspriinglichen Problems. Wir nennen dieses Teilproblem Spinnenende. Den Knoten u nennen
wir Anfang des Spinnenendes.

Die Kante direkt unterhalb des Anfangs eines Spinnenendes ist nach Defintion nur Teil
dieses einen Spinnenendes. Angenommen es gibt einen Algorithmus A, der sukzessive Spinne-
nenden 16st und deren optimale Losungen zu einer gesamten optimalen Losung erweitert. Wie
wir gleich zeigen, kann A - selbst unterhalb des Anfangs des Spinnendes — nicht unbedingt
eine optimale Losung des Spinnenendes unverandert wiederverwenden. Wir sehen also ein,
dass der Algorithmus A die optimalen Losungen der Spinnenenden weitergehend bearbeiten
muss, um eine optimale Lésung zu erhalten. Insbesondere gibt es keinen Algorithmus, der
sukzessive Spinnenenden 16st und aus der Zusammensetzung dieser Teillosungen direkt eine
optimale Losung erhalt.

Satz 5.25: Sei Ls eine optimale Losung des Spinnenendes S der Instanz aus Abbildung 5.17. Sei
weiter L eine optimale Losung der gesamten Instanz. Dann fahren die Reisenden ry undr, in Lg
an der Kante (b, d) in einem gemeinsamen Fahrzeug, aber nicht in L.

Beweis. Wir betrachten die in Abbildung 5.17 beschriebene Beispielinstanz. Es sei ¢ deutlich
kleiner als a. Dann besteht das einzige Spinnenende S aus dem Teilgraphen ohne den Knoten
c und zugehorige Kante (b, ¢) sowie den Reisende r; und r,.
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5. Einschrdnkung auf Graphenklassen

Abbildung 5.17.: Alle Reisenden starten an Knoten a markiert mit s. Das einzige Spinnenende
S der Instanz beinhaltet die Reisende r; und r, sowie den Graphen ohne den Knoten b und
die zugehorige Kante (a, b). Dann fahren in einer optimalen Lésung von S r; und r; an (b, d)
zusammen, aber in nicht in einer optimalen Ldsung von der gesamten Instanz.

Nach Lemma 5.4 wissen wir, dass eine mogliche Zusammenfahrt von den Reisenden in
einer optimalen Losung von S an a beginnen muss. Weiter wissen wir nach Lemma 5.15, dass
eine mogliche Zusammenfahrt der beiden Reisenden in einer optimalen Losung von S bis
zum Knoten d anhélt. Uns bleiben also noch zwei mogliche Klassen fiir eine optimale Losung
von S: Erstens beide Reisenden fahren in getrennten Fahrzeugen, oder zweitens die beiden
Reisenden fahren bis d in einem gemeinsamen Fahrzeug, bevor einer der beiden Reisenden
in ein eigenes Fahrzeug umsteigt. Sei L; eine Losung, in der beide Reisenden in getrennten
Fahrzeugen fahren. Sei weiter Lg eine Losung, in der die beiden Reisenden r; und r; bis d in
einem gemeinsamen Fahrzeug fahren. Dann steigt einer der beiden Reisenden in Lg an d in
ein eigenes Fahrzeug um.

Dann gibt es in der Losung L vier Halte — fiir jeden Start und jedes Ende eines Reisenden
einen. Weiter befahren die zwei Fahrzeuge jeweils eine Strecke von a + ¢ + ¢. Insgesamt
erhalten wir fiir Lg einen Wert von

sy =2 (a+2¢) +4a = 6a + 4e.

In der Losung Lg gibt es fiinf Halte: Einen fiir den gemeinsamen Start, zwei fiir den Umstieg
und je einen fiir die beiden Enden. Ein Fahrzeug befiahrt neben dem Bein eines der Reisenden
noch die gemeinsam befahrene Strecke, also wie in Lg eine Strecke von « + 2¢. Das andere
Fahrzeug befahrt nur die Strecke im Bein, also nur eine Strecke von ¢. Insgesamt erhalten wir
fiir L einen Wert von

Cs=a+2e+e+5a =6a+3ec.

Folglich ist die Losung Lg fir S optimal.

Betrachte die folgende Losung L auf der gesamten Instanz. Alle Reisenden fahren in einem
gemeinsamen Fahrzeug die Kante (g, b). Dann steigen die beiden Reisenden r; und r; in eigene
Fahrzeuge fiir ihre restliche Strecken um. Reisender ry verbleibt fiir seine restliche Strecke im
gemeinsamen Fahrzeug. Dann fiahrt das gemeinsame Fahrzeug die Strecke (a, b, ¢) und hélt
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an jedem Knoten: am gemeinsamen Start, fiir den Umstig und das Ende von ry. Die Fahrzeuge,
die die Reisenden r; und r, unterhalb von b bedienen, fahren jeweils eine Strecke von 2¢ und
halten nur an Start und Ende. Es ergibt sich fiir die Losung ein Wert von

CL=a+e+2c+2e+(3+2+4+2) aa=8a+b5e.

Die einzige in L ungenutzte Zusammenfahrt ist die Kante (b, d). Fahren in einer Losung
ri und ry an (b, d) zusammen, so brauchen wir entweder mindestens einen Halt mehr oder
es fahren zwei Fahrzeuge an der Kante (a, ). Durch die gemeinsam gefahrene Kante wird
eine Strecke von ¢ von einem Fahrzeug weniger befahren. Eine Lésung, in der r; und r; an
(b, d) wie in Lg in einem gemeinsamen Fahrzeug fahren, ist also schlechter als die Losung L.
Somit konnen die Reisenden r; und r; in keiner optimalen Losung der gesamten Instanz an
(b, d) in einem gemeinsamen Fahrzeug fahren. Anders als in der optimalen Losung Ls des
Spinnenendes. a
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6. Reisendeneinschrankung

In Kapitel 5 diskutieren wir die Moglichkeit das Problem einzuschrinken, indem wir uns auf
bestimmte Graphenklassen einschranken. In diesem Kapitel schranken wir den anderen Teil
einer Probleminstanz ein: die Reisenden. Konkret schranken wir ein, wie viele Reisenden sich
begegnen kénnen. Dann betrachten wir, wie eine solche Instanz lokal fiir einen Reisenden
aussieht. Damit konstruieren wir dann einen polynomiellen Algorithmus, der eine optimale
Loésung berechnen kann.

Die Instanzen nennen wir Einzelhaushalt. In einem Einzelhaushalt beginnt und endet fiir
jeden Reisenden r der Pfad p, an Knoten, die nur im Pfad dieses Reisenden vorkommen.
Daher auch der Name Einzelhaushalt. Weiter fordern wir, dass jeder Knoten nur in Pfaden
von maximal zwei Reisenden vorkommen.

In Abbildung 6.1 finden wir eine schematische Darstellung der Situation aus der Sicht
eines Reisenden. Wie wir nach Lemma 5.1 wissen, sind fiir eine optimale Losung nur die
von Reisenden befahrenen Kanten relevant. Entsprechend fehlen eventuelle weitere Kanten
in Abbildung 6.1. Da die Starts und Enden nur in den Pfaden eines Reisenden vorkommen,
fahrt jeder Reisende wie abgebildet getrennt auf eine gemeinsame Strecke zu. Weiter ist jeder
Knoten nur in der Strecke von maximal zwei Reisenden enthalten. Deswegen kénnen keine
Teilpfade der Reisendenpfade entstehen, die von mehr als drei Reisenden bereist werden.
Anders als abgebildet, konnen Reisende sich auch mehrmals eine Strecke teilen. Allerdings
sind die geteilten Strecken voneinander unabhingig: Da jeder Reisender einen Knoten nur
einmal besucht steht zwischen zwei gemeinsamen Streckenstiicke zweier Reisende, auch bei
beiden Reisenden mindestens ein Streckenstiick, auf dem sie alleine fahren. Zwei geteilte
Streckenstiicke mit demselben Reisenden sind also nicht von zwei mit zwei verschiedenen
Reisenden geteilten Streckenstiicken unterscheidbar. Weiter konnen sich auch Reisende einen
Knoten teilen, ohne sich Kanten zu teilen. In dem Fall ist keine Moglichkeit der Verbesserung
vorhanden, da um diesen geteilten Knoten nur genau fiir jeden der beiden Reisenden zwei
Kanten liegen, die nur von diesem Reisenden befahren werden. Entsprechend findet sich diese
Situation nicht in Abbildung 6.1.

Soll ein geteiltes Stiick von zwei Reisenden r und r’ im selben Fahrzeug zuriickgelegt werden,
entstehen dadurch vier neue Halte. Denn die beiden Fahrzeuge der Reisenden miissen einmal
anhalten damit ohne Beschriankung der Allgemeinheit r* zu r steigen kann und noch ein
weiteres Mal anhalten, damit 7’ wieder auf seine Strecke zuriick umsteigen kann. Durch solche
vier Halte lasst sich jeder beliebige nicht leere Teilpfad der gemeinsamen Strecke einsparen.
Demzufolge ist die einzige Entscheidung, die wir fiir eine optimale Losung treffen miissen,
ob wir vier Halte aufwenden wollen, um die komplette gemeinsame Strecke einmal weniger
zu befahren, oder die Strecke zweimal befahren wollen. Da keine der Knoten auf geteilten
Strecken iibereinstimmen, lassen sich auch keine Halte durch gemeinsame Zusammenfahrt
mehrerer gemeinsamer Strecken sparen. Deshalb sind diese Entscheidungen unabhéingig
voneinander.

Mit diesen Erkenntnissen zeigen wir nun die polynomielle Berechenbarkeit einer optimalen
Losung.

47



6. Reisendeneinschrinkung

Abbildung 6.1.: Eine schematische Darstellung eines Einzelhaushalts aus Sicht des Reisenden
ro. Die gestrichelten Linien zwischen den Knoten symbolisieren méglicherweise mehrere
Kanten. Fiir unsere Zwecke konnte es sich aber genauso gut um eine Kante handeln. Die
gestrichelte Linie zwischen d und g symbolisiert, dass sich diese Situation beliebig oft wieder-
holen kann. Wie hier gezeigt, kann sich ry Strecken mit zwei Reisenden teilen. Genauso aber
auch mit keinem, einem, drei oder einer anderen natiirlichen Anzahl.

Satz 6.1: Fiir einen Einzelhaushalt ldsst sich in linearer Zeit eine optimale Losung berechnen.

Beweis. Wie wir zuvor gezeigt haben, kommen fiir jede geteilte Strecke nur zwei Moglichkei-
ten infrage: Nichts oder alles teilen. Weiter sind die Entscheidungen zwischen diesen zwei
Moglichkeiten unabhingig voneinander. Folglich lasst sich eine optimale Losung bestimmen,
indem alle Reisenden in einer beliebigen Reihenfolge iteriert werden. Fiir jedes inklusions-
maximale geteilte Streckenstiick des Reisenden r wird die Entscheidung der Zusammenfahrt
getroffen. Fahren die beiden Reisenden r und r’ zusammen, tibernimmt das Fahrzeug von r
die geteilte Strecke. Das Fahrzeug von r’ wird in zwei Fahrzeuge aufgeteilt, wovon das eine
vor dem geteilten Streckenstiick und das andere nach dem geteilten Streckenstiick fahrt.

Da es keinen Unterschied macht, ob r bei v’ oder 7’ bei r mitfahrt, werden die Entscheidun-
gen lokal optimal getroffen. Da die Entscheidungen unabhingig voneinander sind, ermitteln
wir insgesamt eine optimale Losung.

Wir betrachten fir jeden Reisenden jede Kante einmal und treffen dabei Entscheidungen
iiber die Zusammenfahrt. Deshalb berechnet dieser Algorithmus seine Losung in linearer Zeit
O(|ERr]). .
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7. Problemvariante paarweise
Zusammenfahrt

In diesem Kapitel betrachten wir die Problemvariante Fahrzeugzuweisung mit Haltekosten und
paarweiser Zusammenfahrt. Die Problemvariante FAHRZEUGZUWEISUNG MIT HALTEKOSTEN
UND PAARWEISER ZUSAMMENFAHRT ist das Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN
mit der zusatzlichen Einschrinkung, dass jeder Reisende nur mit einem anderen zusammen-
fahren kann. Formell bedeutet das, dass jeder Reisende nur maximal ein Fahrzeug benutzt,
das von mehr als einem Reisenden benutzt wird. Weiter darf jedes Fahrzeug nur von maximal
zwei Reisenden benutzt werden.

Dadurch muss auch in einer Situation wie in Abbildung 7.1, wo die Pfade dreier Reisender
direkt aufeinander folgen, eine Losung aus mindestens zwei Fahrzeugen bestehen. Wir miissen
also fiir jeden Reisenden maximal einen Teilpfad auswihlen, den dieser mit einem anderen
Reisenden teilt. Deshalb bietet es sich an, die Problemvariante auf das Problem MAXxiMmum
WEIGHT MATCHING zu reduzieren.

Eine Instanz des Problems Maximum WEIGHT MATCHING ist ein gewichteter, ungerichteter
Graph [Kor08, vgl. S. 281]. Ein Matching ist eine Menge paarweise disjunkter Kanten [Kor08,
S. 18]. Eine Losung des Problems MaximuM WEIGHT MATCHING ist ein Matching mit maxi-
malem Gewicht [Kor08, vgl. S. 281]. Eine Losung fiir das Problem Maximum Weight Matching
kann in kubischer Zeit berechnet werden [Kor08, S. 281].

Konstruktion 7.1: Sei I eine Instanz der Problemvariante FAHRZEUGZUWEISUNG MIT HALTE-
KOSTEN UND PAARWEISER ZUSAMMENFAHRT. Dann konstruieren wir die folgende Instanz H des
Problems MaxiMmum WEIGHT MATCHING.

Die Reisenden der Instanz I bilden die Knoten des Graphen H. Seien r und r’ zwei Reisende in
I. Dann sind diese beiden Reisenden in H durch eine Kante verbunden genau dann, wenn r und
r’ zusammenfahren kénnen. Das Gewicht der Kante {r,r’} entspricht der grofsten Verbesserung
einer Losung durch die Zusammenfahrt vonr und r’.

Um die bestmogliche Zusammenfahrt zwischen r und r’ zu bestimmen, betrachten wir den
Teilgraphen S des Graphen aus I, der durch die Vereinigung von p, und p, gegeben ist. Da r und
r’ jeweils nur mit einem anderen Reisenden zusammen fahren diirfen, ist fiir die Zusammenfahrt
zwischen p, und p, nur der Teilgraph S relevant. Wir betrachten jede mégliche Zusammenfahrt
zwischenr undr’. Fiir jede mogliche Zusammenfahrt z bestimmen wir die gesparte Strecke s, und
die dafiir benétigten Halte h,. Teilen sich r und r’ Halte, kann die Anzahl benétigter Halte auch
negativ sein. Dann gibt c, := s, — ah, die Verbesserung durch die Zusammenfahrt z an. Dann
bestimmen wir die Zusammenfahrt z, fiir die c, maximal ist. Somit erhalten wir das Gewicht c,
der Kante {r,r’}.

Satz 7.2: Die Problemvariante FAHRZEUGZUWEISUNG MIT HALTEKOSTEN UND PAARWEISER ZU-
SAMMENFAHRT ist in O(|R|> + |R|?|V|? + |Eg|) l6sbar.

Beweis. In Konstruktion 7.1 haben wir gesehen, dass wir eine Instanz I der Problemvariante
FAHRZEUGZUWEISUNG MIT HALTEKOSTEN UND PAARWEISER ZUSAMMENFAHRT in eine Instanz
H des Problems MaxiMmuM WEIGHT MATCHING transformieren kénnen. In der Konstruktion
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m 1 m 1 m 1 m
Abbildung 7.1.: Ein Pfad, der aufeinanderfolgend von drei Reisenden befahren wird. In der
Problemvariante FAHRZEUGZUWEISUNG MIT HALTEKOSTEN UND PAARWEISER ZUSAMMENFAHRT
diirfen nicht alle drei Reisende vom selben Fahrzeug bedient werden.

betrachten wir fiir jedes Paar an Reisenden jede mogliche Zusammenfahrt. Da eine mégliche
Zusammenfahrt einen Teilpfad des Pfads beider Reisenden darstellt, gibt es nur quadratisch
viele mégliche Zusammenfahrten. Somit ergibt sich eine Laufzeit der Transformation von
O(|R|?|V|?). Weiter ist die Laufzeit der Berechnung einer Losung der transformierten Instanz
kubisch in der Anzahl an Knoten. Da die Reisenden die Knoten der Instanz H bilden, konnen
wir eine Losung fiir H in O(|R|?) Zeit bestimmen.

Betrachten wir eine Losung Ly der Instanz H, so kénnen wir daraus auch eine Losung
L; der Instanz I rekonstruieren. Wahle fiir jede Kante aus dem Matching der Losung Ly die
Zusammenfahrt z, die zu dem Gewicht dieser Kante gefiihrt hat. Alle Reisenden, die in keiner
ausgewihlten Zusammenfahrt vorkommen, werden von einem eigenen Fahrzeug bedient. Bei
einer Zusammenfahrt fahren die beiden beteiligten Reisenden auflerhalb der zusammengefah-
renen Strecke in einem eigenen Fahrzeug. Dabei fahrt einer der beiden Reisenden immer im
selben Fahrzeug, das auch das gemeinsam genutzte Fahrzeug wihrend der Zusammenfahrt ist.
Somit erhalten wir eine giiltige Lésung fiir das Problem FAHRZEUGZUWEISUNG MIT HALTEKOS-
TEN. Da zusitzlich fiir jeden Reisenden nur eine Kante, also eine Zusammenfahrt, ausgewahlt
wird, erhalten wir sogar eine giiltige Losung fiir die Problemvariante FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN UND PAARWEISER ZUSAMMENFAHRT. Zuletzt haben wir fiir jedes Reisenden-
paar die optimale Wahl der Zusammenfahrt fiir H gewahlt. Denn jede Zusammenfahrt z spart
einmal s, Strecke fiir Kosten von ah,. Da eine Losung Ly ein gewichtsmaximales Matching
ist, erhalten wir somit, dass die rekonstruierte Losung L; eine optimale Losung von I ist.

In der Rekonstruktion miissen wir jeden Reisenden nur einmal betrachten, um alle Zusam-
menfahrten zu ermitteln. Weiter kénnen wir mitden Zusammenfahrten direkt die Fahrzeuge
und die Zuweisung der Reisenden auf die Fahrzeuge angeben. Somit ist die Rekonstruktion
linear in |Eg|. Insgesamt folgt die geforderte Laufzeit von O(|R|* + |R|?|V | + |Eg]). a
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8. ILP-Formulierung

In diesem Kapitel geben wir eine Reduktion des Problems FAHRZEUGZUWEISUNG MIT HALTE-
KOSTEN auf das Problem INTEGER LINEAR PROGRAMMING (kurz ILP) an. Da ILP ein extensiv
untersuchtes Problem ist, erhalten wir somit einen allgemeinen Losungsansatz [CL25]. Eine
Instanz des Problems ILP besteht aus einer Menge an Integer-Variablen, einer Menge an
affinen Nebenbedinungen an diese Variablen und einer affinen Minimierungsfunktion [Wil09,
vgl. S. 25, 35]. Eine affine Nebenbedinung ist eine Linearkombination der Variablen, die in
Verhiltnis zu einer Konstanten gesetzt wird [Wil09, vgl. S. 25]. Also von der Form:

Z a;ix; <d.

i

Durch Multiplikation mit -1 lasst sich auch ,>“ darstellen. Ebenso konnen wir durch die
Kombination von ,,<“ und ,>“ auch ein ,,=* darstellen [Wil09, vgl. S. 26]. Eine 0-1-Variable
ist eine Variable, deren Wertebereich auf {0, 1} beschriankt ist. Wie in unserem Fall sind
0-1-Variablen die in Praxis am meisten verwendeten Integer-Variablen [Wil09, vgl. S. 49].

Um die Reduzierbarkeit auf ILP zu zeigen, werden wir zunéchst aus einer Instanz des
Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN in polynomieller Zeit eine Instanz des
Problems ILP konstruieren. Dann werden wir zeigen, dass wir aus der Losung des transfor-
mierten Problems eine Losung fiir unser urspriingliches Problem erhalten. Zuletzt zeigen wir,
dass die Optimalitit wihrend der Transformation erhalten bleibt.

Die Idee der Transformation beruht auf der Erkenntnis, dass jeder Reisender an jeder Kante
nur in hochstens einem Fahrzeug sitzen kann. Hatten wir ein Fahrzeug, dass sich zusétzlich
zur Befolgung eines Pfads teleportieren konnte, miisste dieses hochstens |Er| Kanten befahren.
Fiir jeden Reisenden jede seiner Kanten. Die Grof3e |Eg| ist aber linear in der Eingabe, sodass
wir ein solches Meta-Fahrzeug betrachten konnen. Zur Transformation der Losung erzeugen
wir immer ein neues Fahrzeug, wenn sich das Meta-Fahrzeug teleportiert.

Zur Konstruktion der Losung wollen wir zunéchst sicherstellen, dass unser Meta-Fahrzeug
auch eine Menge an Pfaden zuriicklegt; also wohldefinierte Fahrzeuge beschreibt. Weiter
stellen wir sicher, dass Reisende alle ihre Kanten von einem Fahrzeug bedient bekommen.
Dann definieren wir Variablen, die die Anzahl Halte berechnen. Mit diesen Variablen stellen
wir dann noch die Minimierungsfunktion auf.

Konstruktion 8.1: Sei eine Instanz G = (V,E), R und « des Problems FAHRZEUGZUWEISUNG
MIT HALTEKOSTEN gegeben. Dann konstruieren wir die folgende ILP-Instanz.

Fiir jeden Schritt des Meta-Fahrzeugsi € {0, ..., |Er|} = M benétigen wir die Information an
welcher Kante das Fahrzeug fahrt. Entsprechend fiigen wir fiir jede Kante e € E und jeden Schritt
i € M die 0-1-Variabel f; . ein. Die Variable f; . ist eins genau dann, wenn das Meta-Fahrzeug am
i-ten Schritt Kante e befihrt. Da das Fahrzeug zu jedem Schritt nur eine Kante befahren kann,
bendtigen wir fiir jedes i € M die Einschrinkung

D fest

ecE
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8. ILP-Formulierung

Weiter muss jeder Reisende an jeder Kante von einem Fahrzeug bedient werden. Entsprechend
fithren wir fiir jeden Schritti € M, jeden Reisendenr € R und jede Kante e von p, die 0-1-Variable
Zyre.i ein. Die Variable z, . ; ist eins genau dann, wenn Reisender r an Kante e im i-ten Schritt des
Meta-Fahrzeugs fahrt. Dann muss jede Kante eines jeden Reisenden von genau einem Schritt des
Meta-Fahrzeugs bedient werden. Entsprechend erhalten wir fiir jeden Reisenden r und jede Kante
e seines Pfads p, die Einschrdnkung

Z Zr,e,i =1.

ieM
Gleichzeitig muss das Meta-Fahrzeug im jeweiligen Schritt auch die entsprechende Kante befahren.
Wird also ein Reisender r an einer Kante e im i-ten Schritt des Meta-Fahrzeugs bedient, so befihrt
das Meta-Fahrzeug im i-ten Schritt die Kante e. Somit erhalten wir fiir jeden Reisenden r, jede
Kante e seines Pfads p, und jeden Schritt i € M des Meta-Fahrzeugs die Einschrinkung

ﬁ,g — Zrei 2 0.

Jetzt haben wir sichergestellt, dass das Meta-Fahrzeug eine Abfolge an Kanten befdihrt und
jeder Reisenden r an jeder Kante e in p, von genau einem Schritt des Meta-Fahrzeugs bedient
wird, zu dem auch die Kante e vom Meta-Fahrzeug befahren wird. Eine Losung der bisherigen
Instanz ldsst sich also schon in eine korrekte Losung des Problems FAHRZEUGZUWEISUNG MIT
HALTEKOSTEN transformieren. Allerdings fehlt die Betrachtung der zu minimierenden Funktion.
Ebenso wie die Definition der Halte.

Fiir jeden Schritt kann ein Halt vor oder nach der Kante erfolgen. Da der Halt von der befahrenen
Kante abhdngt, fithren wir fiir eine Kante e € E und einen Schritt i € M die neuen 0-1-Variablen
hi. und H; . ein. Die Variable h; . gibt an, dass das Meta-Fahrzeug wdhrend es im i-ten Schritt
die Kante e = (u, v) befihrt am Knoten u hdlt. Die Variable H; . gibt analog an, dass das Meta-
Fahrzeug wihrend es im i-ten Schritt die Kante e = (u, v) befdhrt am Knoten v hdlt. Da das
Fahrzeug nur halten kann, wenn es die Kante auch befihrt, erhalten wir die Einschrdnkungen

fie — hie = 0 und
ﬁ,e - Hi,e > 0.
Fiir jeden Reisenden r € R muss das Meta-Fahrzeug vor dem Schritt, in dem es die erste Kante

e = (u,v) des Reisenden r bedient, also am Start v halten. Hieraus ergibt sich fiir jeden Schritt
i € M, jeden Reisenden r € R und dessen erste Kante e die Einschrinkung

hi,e —Zrei 2 0.

Analog muss das Meta-Fahrzeug nach dem Schritt, der die letzte Kante eines Reisendenr € R
bedient, an dessen Ziel, also nach der Kante halten. Wir erhalten fiir jeden Schritt i € M, jeden
Reisenden r € R und dessen letzte Kante e die Einschrinkung

Hie = zpei 2 0.

Zuletzt muss das Meta-Fahrzeug auch zu Schritten halten, zu denen Reisende umsteigen. Ein
Umstieg ist daran erkennbar, dass die bedienenden Schritt eines Reisenden einen Sprung machen.
Somit erhalten wir fiir jeden Schritt i € M, jeden spdteren Schritt j € M\ {0, ..., i, i+ 1}, jeden
Reisenden r € R und jedes aufeinanderfolgende Kantenpaar e, e’ im Pfad p, des Reisenden die
Einschrdankungen

—1 und
—1.

\2

Hi,e - fi,e - f}',e’
hj,e’ - fi,e - f}',e’

(\2
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Ebenso erforderlich ist ein Umstieg, wenn ein Reisender die Schritte entgegen ihrer natiirlichen
Reihenfolge verwenden machte. Wir erhalten fiir jeden Schritt i € M, jeden vorherigen Schritt
j€{0,...,i—1}, jeden Reisenden r € R und jedes aufeinanderfolgende Kantenpaar e, e’ im Pfad
pr des Reisenden die Einschrdnkungen

Hi,e - ﬁ,e - fj,e’
hje = fie = fie

Entspricht jeder Schritt des Meta-Fahrzeugs einem eigenen Fahrzeug, haben wir die Halte
richtig gezdhlt. Innerhalb eines Fahrzeugs ist allerdings der Halt nach einer Kante und vor der
darauffolgenden Kante gleichbedeutend. Entsprechend bendtigen wir noch Variablen, die uns
angeben, wann wir Halte doppelt gezdihlt haben. Dafiir fiihren wir fiir jede Kante e € E und jeden
Schritti € M\ {0} die 0-1-Variable lAz,;e ein. Die Variable ﬁi’e ist eins genau dann, wenn der Halt
an der Kante e vor Schritt i bereits von dem Halt nach Schritt i —1 gezdhlt wird. Zur Formulierung
der Bedingung bendtigen wir noch fiir jeden Pfad (u, v, w) und jeden Schritti € M \ {0} die
0-1-Variable I:Ii,(u’v,w), die angibt, dass das Meta-Fahrzeug nach Schritt i — 1 an Kante (u, v) und
vor Schritt i an Kante (v, w) halt. Dafiir benotigen wir die Einschriankungen

-1 und
—1.

v

\

FI"’(“:%W) _Hi—l,(u,v) - hi,(v,w) > -1,
Hi 1w — Hi,(u,v,w) > 0 und
hi,(v,w) _HAi,(u,V,w) > 0.

Dann miissen wir sicherstellen, dass fz,-,e = 0 gilt, wenn das Meta-Fahrzeug nicht nach Schritt
i — 1 und vor Schritt i hdlt. Es ergibt sich fiir jeden Pfad (u, v, w), der Teilgraph von G ist, und
jeden Schritti € M \ {0} die Einschrdnkung

A A

Hi,(u,v,w) - hi,(v,w) _fi—l,(u,v) _fi,(v,w) = —2.

Ebenso muss fzi,e = 0 gelten, wenn das Meta-Fahrzeug zwischen Schritt i — 1 und Schritt i einen
Sprung gemacht hat. Wir erhalten fiir jedes Kantenpaare = (u,v),e’ = (u’,v') € E mitv # v’
und jeden Schritti € M \ {0} die Einschrankung

~

hie + ficie + fier < 2.

Zuletzt muss auch fzi,e = 0 gelten, wenn das Meta-Fahrzeug im Schritt i — 1 keine Kante befdhrt,
denn dies entspricht einem anderen Fahrzeug. Es gilt also fiir jede Kante e € E und jeden Schritt
i € M\ {0} die Einschrdnkung

Z ﬁ—l,e’ - hi,e > 0.

e’€E
Nachdem wir jetzt alle Variablen und Nebenbedinungen definiert haben, fehlt uns noch die
Minimierungsfunktion. Wir erinnern uns an die zu minimierende Kostenfunktion aus Kapitel 3:

¢c=T+a-hmitT = Z Z c(e) und h Anzahl Halte.
feF eef

Ubertragen auf unsere Variablen in der teiltransformierten Instanz ergibt sich die Minimierungs-

funktion
m= "> (cle)- fi) + ). > (aHie + ahie — ahiy).

ecE ieM ecE ieM
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8. ILP-Formulierung

Wir bemerken, dass unsere Konstruktion nur aus polynomiell vielen Variablen besteht, die
auch nur polynomiell oft in Nebenbedingungen oder der Minimierungsfunktion vorkommen.
Deshalb ist die Konstruktion polynomielle.

Satz 8.2: Aus einer optimalen Losung einer transformierten ILP-Instanz aus Konstruktion 8.1
ldsst sich in polynomieller Zeit eine optimale Losung der urspriinglichen Fahrzeugzuweisung-
mit-Haltekosten-Instanz rekonstruieren.

Beweis. Eine Losung der transformierten ILP-Instanz besteht aus einer Variablenbelegung,
die die gegebenen Nebenbedingungen einhalt und dabei die Minimierungsfunktion minimiert.
Entsprechend miissen wir aus der Variablenbelegung die Losung der Fahrzeugzuweisung-mit-
Haltekosten-Instanz rekonstruieren, eine Menge an Fahrzeugen sowie eine Zuweisung von
Eg auf die Fahrzeuge. Dann versichern wir uns, dass wir auch eine giiltige Losung erhalten
haben. Wir schlieflen mit der Polynomialitat der Rekonstruktion.

Da nach Konstruktion 8.1 fiir jeden Schritt i € M nur hdchstens eine Variable f; . gleich
eins ist, konnen wir fiir jeden Schritt die entsprechende Variable ermitteln. Ist f;. = 1, so
befahrt der i-te Schritt des Meta-Fahrzeugs die Kante e. Ist fiir ein i € M f;, = 0 fur alle
e € E, so befihrt das Meta-Fahrzeug zum i-ten Schritt keine Kante. Um die Fahrzeuge aus dem
Meta-Fahrzeug zu konstruieren, gehen wir die Schritte von 0 bis Eg durch. Wann immer die
von zwei aufeinanderfolgenden Schritten befahrenen Kanten keinen Pfad bilden, wechseln wir
zum néchsten Fahrzeug. Zu jedem Zeitpunkt weisen wir allen Reisenden, die zu diesem Schritt
an der entsprechenden Kante bedient werden, das aktuelle Fahrzeuge zu. Gleichzeitig bilden
wir an jedem Halt aus den Kanten seit dem vorherigen Halt eine der Relationen des aktuellen
Fahrzeugs. Konkreter: Ist (u, v, w) ein Pfad in der Fahrzeugzuweisung-mit-Haltekosten-Instanz,
sodass (u, v) an Schritt i — 1 und (v, w) an Schritt i vom Meta-Fahrzeug befahren wird. Dann
ist Halt dadaurch definiert, dass H;_; (,,,) = 1 oder h; (,,.,) = 1 gilt.

Da wir bei jedem Sprung des Meta-Fahrzeugs ein neues Fahrzeug definieren, befahrt jedes
Fahrzeug einen Pfad. Der Pfad eines jeden Fahrzeugs ist erschopfend in Teilpfade gegliedert.
Da wir immer die Teilpfade zwischen zwei Halten der ILP-Losung als eine Relation ausweisen,
bildet die Abfolge aller Relationen gerade den Pfad des Fahrzeugs. Nach Konstruktion haben
wir sichergestellt, dass jede Kante des Pfads eines jeden Reisenden von genau einem Schritt
bedient wird. Deshalb ist die Zuweisung von Eg zu Fahrzeugen wohldefiniert. Ebenso haben
wir sichergestellt, dass wenn zwei aufeinanderfolgende Schritte nicht von zwei aufeinanderfol-
genden Schritten des Meta-Fahrzeugs bedient werden, dazwischen beide involvierten Schritte
halten. Da zwei aufeinanderfolgende Schritte, die aufeinanderfolgende Kanten bedienen, ge-
rade den aufeinanderfolgenden Kante im selben Fahrzeug entsprechen, fordern wir einen
Halt, wenn ein Reisender das Fahrzeug wechselt und im selben Fahrzeug die Zeit wechselt.
Entsprechend ist die erhaltene Losung eine wohldefinierte, giiltige Losung der urspriinglichen
Fahrzeugzuweisung-mit-Haltekosten-Instanz.

Da wir die zu minimierende Funktion der Fahrzeugzuweisung-mit-Haltekosten-Instanzen
gleichbedeutend in die Sprache der transformierten ILP-Instanz tibersetzt haben, ist die re-
konstruierte Losung einer optimalen Losung der transformierten Instanz optimal. Weiter
betrachten wir jede Variable nur konstant oft und haben jeweils nur maximal linearen Zusatz-
aufwand. Somit lasst sich in polynomieller Zeit aus einer optimalen Losung der transformierten
Instanz eine optimale Losung der urspringlichen Instanz rekonstruieren. a
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9. Ausblick

Wie schon in Abschnitt 4.4 bemerkt, scheint es fur die von uns untersuchten Instanzen
eine Reihenfolge zu geben, in der wir die Reisenden betrachten konnen, um eine optimale
Losung zu ermitteln. Leider mussten wir aber auch einsehen, dass es Instanzen gibt, fiir die
manche Reihenfolgen zu einer suboptimale Losung fithren. Hier stellen sich somit zwei Fragen,
die tiefergehend untersucht werden konnen. Zum einen die Frage nach der Existenz einer
optimalen Reihenfolge:

Frage 9.1: Gibt es fiir jede Instanz des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN eine
Reihenfolge, in der wir die Reisenden betrachten konnen, um mit dem Ansatz aus Abschnitt 4.4
eine optimale Losung zu erhalten?

Daran angekniipft stellt sich die Frage nach der effizienten Suche einer solchen Reihenfolge.

Frage 9.2: Kann eine Reihenfolge, in der mit dem Ansatz aus Abschnitt 4.4 eine optimale Losung
erhalten wird, fiir jede Instanz des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN effizient
berechnet werden?

Und gebe es ein solches Verfahren, ergibt sich daraus ein effizienter Losungsalgorithmus
fiir das Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN.

In Abschnitt 5.2.1 haben wir viele Eigenschaften gezeigt, die eine optimale Losung auf
einer Einhals-Spinne erfiillen muss. Daraus haben wir das Problem GRUPPENZUSAMMENFAHRT
abgeleitet. Wegen unseres Algorithmus fiir Einhals-Spinnen wissen wir, dass eine polynomielle
Losbarkeit von GRUPPENZUSAMMENFAHRT dquivalent ist zu einer polynomiellen Losbarkeit
von FAHRZEUGZUWEISUNG MIT HALTEKOSTEN. Deswegen ergibt sich die folgende Frage:

Frage 9.3: Ist das Problem GRUPPENZUSAMMENFAHRT in polynomieller Zeit losbar?

Neben der von uns untersuchten, in Polynomialzeit Isbaren Problemvariante FAHRZEUG-
ZUWEISUNG MIT HALTEKOSTEN UND PAARWEISER ZUSAMMENFAHRT sind noch viele weitere
spannenden Problemvarianten denkbar. Eine Moglichkeit ist die starkere Beachtung der Be-
diirfnisse der Reisenden. Im Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN ist es irrelevant,
wie lang ein Reisender an einem Umstieg warten muss. Unter Beachtung der Zeit ergibt sich
zum Beispiel das folgende Problem:

Frage 9.4: Betrachte eine Variante V; des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN.
Diese Variante V; beachtet zusdtzlich noch den Fahrtzeitpunkt der Reisenden. Als Nebenbedingung
darf die Wartezeit aller Umstiege einen gewissen Wert nicht iiberschreiten. Ist V; effizient losbar?

Auch ignorieren wir die in echt sehr endliche Kapazitat von Fahrzeugen. Daraus ergibt sich
ebenso ein weiteres Problem:

Frage 9.5: Betrachte eine Variante V, des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN. In
der Variante V, gibt es zusdtzlich einen Fahrzeugfuhrpark mit Fahrzeugen beschrinkter Grifse.
Die Reisenden, die ein Fahrzeug verwenden, diirfen zu jedem Zeitpunkt die Kapazitit dieses
Fahrzeugs nicht iiberschreiten. Ist V, effizient l6sbar?
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9. Ausblick

Weiter sind die Kosten eines jeden Halts in FAHRZEUGZUWEISUNG MIT HALTEKOSTEN iden-
tisch. Wie aber ist der Einfluss von variablen Haltekosten? Daraus ergibt sich zum Beispiel
das folgende Problem:

Frage 9.6: Betrachte eine Variante V3 des Problems FAHRZEUGZUWEISUNG MIT HALTEKOSTEN. In
der Variante Vs gibt es nicht einen globalen Skalar fiir die Haltekosten. Stattdessen gibt es eine
Funktion, die jedem Knoten seine Haltekosten zuweist. Ist V5 effizient lésbar?

Wir halten fest: Es gibt noch viele weitere spannende Varianten des Problems FAHRZEUG-
ZUWEISUNG MIT HALTEKOSTEN, die untersucht werden konnen.
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A. Anhang

A.1. Konstante Zusatzhalte

In diesem Abschnitt betrachten wir die Problemvariante FAHRZEUGZUWEISUNG MIT HALTE-
KOSTEN UND k ZUSATZHALTEN. Die Problemvariante FAHRZEUGZUWEISUNG MIT HALTEKOSTEN
UND k ZUSATZHALTEN ist das Problem FAHRZEUGZUWEISUNG MIT HALTEKOSTEN mit der zusitz-
lichen Einschrénkung, dass es in einer Losung hochstens k zusitzliche Halte gibt. Die Anzahl
zusitzlicher Halte ist die Anzahl an Halte abziiglich der Anzahl an Halte in einer Basis-Losung.
Die Basis-Losung Lyase ist gegeben durch ein eigenes Fahrzeug fiir jeden Reisenden.

Der Brute-Force-Algorithmus A.1 16st die Problemvariante FAHRZEUGZUWEISUNG MIT HAL-
TEKOSTEN UND k ZUSATZHALTEN. Der Algorithmus A.1 trifft sukzessive Entscheidungen, ob
zwei Reisende zusammenfahren. Als initialer Zustand dient die Zuweisung eines eigenen
Fahrzeugs zu jedem Reisenden. In diesem initialien Zustand wird noch keine Strecke geteilt.
Somit entspricht dieser Zustand noch keiner getroffener Entscheidung. Entscheidet der Algo-
rithmus zwei Reisende r und r’ auf einem Pfad p zusammenfahren zu lassen, so fahrt r’ auf
p in den Fahrzeugen, in denen auch r fahrt. Diese Entscheidung wird transitiv gefillt. Das
heiflt, wenn ein Reisender 7 auf einem Teilpfad p von p mit r’ zusammenfahrt, fahrt 7 auf
p auch mit r zusammen. Dafiir ibernehmen die Fahrzeuge von r auf p auch die Halte von
Fahrzeugen von r’. Die Fahrzeuge von r’ fahren auf p nicht mehr und werden auf Strecken
auflerhalb von p verkiirzt. Fahrt »” am Beginn und Ende von p im selben Fahrzeug, so teilt
sich dieses in zwei Fahrzeuge auf. Eines fiir den Bereich vor und eines fiir den Bereich nach p.
Der Algorithmus wiederholt die Entscheidungsfindung, bis keine zusatzlichen Halte mehr
verfiigbar sind. Von allen Entscheidungen, die er in jedem Schritt betrachtet, wahlt er die
beste aus. In dem Ausdruck min findet sich die Berechnung des Werts der beiden Losungen
und die Auswahl der Losung mit dem geringeren Wert wider.

Lemma A.1: Der Algorithmus A.1 l6st die Problemvariante Fahrzeugzuweisung mit Haltekosten
und konstanten Zusatzhalten.

Beweis. Der Algorithmus betrachtet jede mogliche Menge an Zusammenfahrten. Denn er
beginnt mit keiner getroffenen Entscheidung und trifft dann jede beliebige Wahl. Dabei ist die
Erweiterung einer Algorithmus-Entscheidung r und r’ zusammenfahren zu lassen auf einen
weiteren Reisenden 7, der auf einem Teilpfad bereits mit ’ zusammenfahrt, notwendig. Denn
nur so kann die vorherige Entscheidung, dass 7 und »’ zusammenfahren, honoriert werden.
Weiter ist es ausreichend nur Pfade zu betrachten, die auch neue Pfade zusammenfahren
zu lassen. Denn eine Zusammenfahrt eines Teilpfads zusitzlicher zu einer Zusammenfahrt
eines grofieren Pfads, fiigt hochstens neue Halte hinzu. Werden diese fiir eine andere Zusam-
menfahrt benoétigt, konnen diese auch mit dieser hinzugefiigt werden. Somit berechnet der
Algorithmus eine optimale Losung der Problemvariante Fahrzeugzuweisung mit Haltekosten
und konstanten Zusatzhalten. a
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A. Anhang

Algorithmus A.1 : Ein Brute-Force-Algorithmus fiir die Problemvariante FAHRZEUG-
ZUWEISUNG MIT HALTEKOSTEN UND k ZUSATZHALTEN. Der rekursive Algorithmus
probiert jede mogliche Zusammenfahrt mit maximal k zusétzlichen Halten und gibt
die beste dieser Losungen zuriick. Als Basisfall im ersten Aufruf verwenden wir die
Basislosung gegeben durch ein eigenes Fahrzeug fiir jeden Reisenden.

1 Funktion BFBH:

Eingabe : Vorlaufige Losung w bestehend aus Fahrzeugen und
Reisende-Fahrzeug-Zuordnung
Ausgabe : Optimale Losung unter Beibehaltung der Zusammenfahrten und Halte

inw

2 me—w

3 fiir alle Reisenden r tue

4 fiir alle Reisenden r’ tue

5 fiir alle von r und r” gemeinsam befahrenen Pfad p mit p kein Teilpfad

einer Zusammenfahrt von r und r’ in w tue

6 wenn Eine Zusammenfahrt z von r und r’ beinhaltet Teilpfad von p

dann
7 | n «— w mit Zusammenfahrt z von r und r’ erweitert auf p
8 sonst
9 | n «— w mit zusitzlicher Zusammenfahrt von r und r’ auf p

10 wenn Anzahl zusatzlicher Halte in n weniger als k dann

11 L i «— BFBH(n)

12 m «— min(m, 1)

13 wenn sonst Anzahl zusitzlicher Halte in n genau k dann

14 L L L L me min(m, n)

15 return m

Ginge jede Zusammenfahrt mit einem zusatzlichen Halt einher, hétte der Algorithmus A.1
eine polynomielle Laufzeit. Denn in jeder Rekursionsstufe kommt eine weitere Zusammenfahrt
hinzu. Es wire also die Rekursionstiefe konstant beschrankt. Weiter wird in jeder Rekursions-
stufe nur polynomielle Arbeit verrichtet, sodass die Polynomialitit des Algorithmus folgen
wiirde.

Allerdings entstehen die Zusammenfahrten nicht immer nur zwischen zwei Reisenden. Wie
beispielhaft in der Situation in Abbildung A.1 dargestellt konnen geteilte Strecke verschiedener
Reisender ibereinstimmen. So teilen sich in diesem Beispiel alle vier Reisende eine Kante
(e, f). Fahren in der bisherigen Losung bereits ry und r; sowie r; und r; die Kante (e, f)
zusammen, bendtigt dies bereits acht zusatzliche Halte. Fiir jeden Reisenden gibt es einen Halt
am Beginn und einen am Ende der Zusammenfahrt. Da es sich aber immer um dieselbe Kante
handelt, benétigt es genausoviele Halte, wenn alle vier Reisenden die Kante (e, f) gemeinsam
zuriicklegen. Betrachtet der Algorithmus nun eine mégliche Zusammenfahrt von r; und r;, auf
der Kante (e, f), so fahren durch die Transitivitét alle vier Reisenden zusammen. Es werden
also trotz einer zusatzlichen Zusammenfahrt keine zusatzlichen Halte benétigt. Somit kénnen
wir keine konstante Beschriankung fiir die Rekursionstiefe mehr angeben und deshalb auch
keine Polynomialitit folgern.
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A.1. Konstante Zusatzhalte

Abbildung A.1.: Vier Reisende teilen sich die Kante (e, f). Fahren je zwei der Reisenden
bereits zusammen — beispielsweise ry mit r; und r, mit r3 — benétigt es keine Zusatzhalt,
damit auch r; und r» zusammenfahren.
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