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Abstract

Treewidth is an important concept in many fields like for example, graph theory and
parameterized algorithms. Determining a graph’s treewidth is necessary for many
applications, but it is, unfortunately, an NP-hard problem. To at least approximate
the treewidth efficiently, several heuristics were introduced, including the MinDegree
heuristic and the MinFillIn heuristic. Although these achieve surprisingly good
results in practice, they are barely studied theoretically. In this thesis, we initiate
this study by investigating the behavior of the two heuristics on grids. Along the
way to grids with arbitrarily large side lengths, we also investigate some superclasses
of small grids like the chordal graphs and series-parallel graphs. We additionally
present a first approach to upper bound the result of the MinDegree heuristic, and
introduce the concept of a border graph; a simple structure that captures all relevant
information at any fixed point in time during the execution of one of the heuristics.
We believe that the border graph provides a useful perspective that will help future
studies of the heuristics.

Zusammenfassung

Das Konzept der Baumweite spielt in vielen Bereichen, wie der parametrisierten
Algorithmik und der Graphentheorie, eine wichtige Rolle. Es ist zwar für viele
Anwendungen notwendig, die Baumweite eines Graphen zu bestimmen, allerdings ist
das Problem für allgemeine Graphen NP-schwer. Um die Baumweite eines Graphens
wenigstens zu approximieren, wurde verschiedenste Heuristiken entwickelt, u.a. die
MinDegree- und die MinFillIn-Heuristik. Obwohl beide Heuristiken überraschend
gute Ergebnisse in der Praxis erzielen, wurde sie theoretisch bisher kaum untersucht.
In dieser Arbeit beginnen wir diese Untersuchung, indem wir uns auf das Verhalten
dieser Heuristiken auf Gittern konzentrieren. Im Laufe der Arbeit untersuchen wir
Gitter mit größer werdenden Seitenlängen, und beschreiben dabei auch das Verhalten
der Heuristiken auf manchen Superklassen kleinerer Gitter, wie zum Beispiel den
chordalen Graphen und den seriell-parallelen Graphen. Außerdem stellen wir eine
Methode vor, mit der eine obere Schranke für das Ergebnis der Heuristiken auf
Graphen gefunden werden kann, und führen die „border graphs“ ein; eine Graph-Art,
die alle relevanten Informationen während des Ablaufes der Heuristiken kompakt
darstellt. Wir glauben, dass das Konzept der „border graphs“ hilfreich für weitere
Arbeiten in diesem Gebiet sein wird.
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1. Introduction

It is well known that some problems are, although being NP-hard on arbitrary graphs,
efficiently solvable on special graph classes. The field of parameterized algorithms studies
for which graph classes this applies by studying the parameters that are responsible for
the exponential running time. If such a parameter can be bounded from above for certain
instances, this directly transfers to an upper bound to the running time of the algorithms.
One of the most used parameters is the treewidth of a graph, which indicates the similarity
of a graph to a tree. The idea of this graph parameter is that trees are algorithmically
easy to handle, and that graphs similar to trees might be manageable as well. In fact,
there exist polynomial algorithms for many generally NP-hard problems on graphs with
bounded treewidth. However, they need to know the treewidth of a graph in advance, and
determining the treewidth of a graph is again NP-hard in general.

In the Parameterized Algorithms and Computational Experiments (PACE) Challenge,
several exact algorithms were proposed that perform well in practice [DHJ+16]. A crucial
part of these algorithms are heuristics to approximate the treewidth of a graph, some
of which are the MinDegree and MinFillIn heuristic. Besides its importance for the
determination and approximation of treewidth, the MinDegree heuristic is a key part in
the field of sparse matrix computation and its applications.

The theoretical basis for the heuristics is the fact that the treewidth of a graph is the
treewidth of a smallest chordal supergraph. The chordal graphs are those graphs with a
perfect elimination scheme, i.e., a vertex ordering such that for each vertex the neighbors
with a higher number form a clique. Their treewidth can be easily determined by finding
the size of a maximal clique, which is possible in linear time on chordal graphs thanks to
their perfect elimination scheme. The heuristics guess an elimination scheme and make
it perfect by adding missing edges if the higher numbered neighborhood of a vertex is
not a clique. The number of edges added that way is the fill-in of a vertex, which is the
namesake for the MinFillIn heuristic. The idea of this heuristic to find a minimal chordal
supergraph is to add as few as possible edges. The MinDegree heuristic, on the other
hand, tries to build only small cliques to keep the treewidth of the chordal supergraph as
small as possible.

Both, the MinDegree as well as the MinFillIn heuristic, achieve results that are
surprisingly close to the instance’s actual treewidth in practice, despite being much faster
than exact algorithms. However, so far there are only a few theoretical investigations on
why they perform so well.
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1. Introduction

A good starting point for these investigations is the behavior of the heuristics on grids. The
class of grid graphs is closely linked to the concept of treewidth due to the excluded grid
theorem presented by Robertson and Seymour in 1986 [RS86b]. It states that every graph
with sufficient large treewidth has an n×n-grid as minor. The proof of this theorem shows
that such a graph contains a series of increasingly ordered structures, the last of which
is a grid. These structures can serve as orientation points in the study of the heuristics
behavior from grids to general graphs.

1.1 Contribution and Outline
In this thesis, we contribute to the theoretical study of the MinDegree and the MinFillIn
heuristic by investigating their behavior on grids. After introducing necessary notations
and concepts in Chapter 2, we construct graph families on which the MinDegree heuristic
returns better approximations than the MinFillIn heuristic, and the other way round.
Then, in the course of this thesis, we consider grids with increasing side lengths, starting
with sides lengths of at most 3 for the MinFillIn and MinDegree heuristic in Chapters 4
and 5 respectively. In Chapter 4 we show that the MinFillIn heuristic returns the correct
treewidth for all chordal graphs, some graphs of treewidth 2 including 2×n-grids, and
3×n-grids. For the MinDegree heuristic we show the same statement for even more
graphs with treewidth at most 3. We, additionally, transfer our findings to the next most
ordered structure, that is used in the proof of the excluded grid theorem. In Chapter 6 we
present two approaches to find an upper bound to the result of the MinDegree heuristic
on larger grids. One approach yields the quadratic upper bound 3/4(n2 − n), where n is
the side length of a quadratic grid. The other one is about how the grid’s structure changes
during the heuristic. In this section, we introduce several concepts and ideas, of which
we think, are helpful for further investigation on these heuristics. Finally, we review our
findings and give remarks about open questions in Chapter 7.

1.2 Related Work
The term treewidth was introduced by Robertson and Seymour in 1986 [RS86a] via tree
decompositions. Over time many new equivalent definitions and characterizations were
introduced using for example minimal triangulations and perfect elimination orderings
[PS97] or brambles [ST93]. An overview over most characterizations was written by
Bodlaender [Bod98]. Since most characterizations are formulated as optimization problems,
they often imply heuristics to find valid but not necessarily optimal structures that have
to be optimized. For example, the MinDegree and MinFillIn heuristic both find valid
elimination orderings, just like many other heuristics that are based on the elimination
game introduced by Bodlaender and Koster [BK10]. Recently, some improvements of these
rather simple heuristics were proposed by Bachoore and Bodlaender [BB05], Clautiaux et
al. [CCMN03] and Berry, Heggernes and Simonet [BHS03]. A survey over further heuristics
and exact algorithms to determine the treewidth of a graph was written by Bodlander
[Bod05]. For the mentioned heuristics MinDegree and MinFillIn experimental studies
showed that both heuristics are often close to the actual treewidth, while the MinFillIn
heuristic is often slightly better [vDvdHS06] [MSJ19a]. Theoretically, it was shown by
Berry et al. that the MinDegree heuristic is robust in the sense that the chance of only
adding edges that belong to a minimal triangulation remains intact even after one undesired
edge was added [BHS03].

2



2. Preliminaries

This chapter provides the basic concepts, notations, and lemmas including treewidth with
several characterizations and the heuristics we analyze in this thesis.

2.1 Basic Concepts
Graphs

An (undirected) graph G is a pair (V,E) of a finite set V and a set E of two-element sets of
V . We call the elements of V vertices and the elements in E edges. Note that, according
to the definition, neither multiple edges nor loops are allowed. Two vertices v1, v2 ∈ V
are called adjacent if there is an edge {v1, v2} = e ∈ E in the graph. In this case v1 and
v2 are incident to the edge e respectively. An edge e = {u,w} ∈ E with u ∈ U ⊆ V and
w ∈ W ⊆ V is called a UW–edge (or WU–edge). If U = W we write U–edge instead of
UU–edge. The neighborhood NG(v) of a vertex v ∈ V is the set of all vertices that are
adjacent to v in G. The number of those vertices is called the degree of v and is denoted as
deg(v). If deg(v) = 1 for some vertex v, it is called a leaf. The minimal degree of a vertex
in G is denoted as δ(G). A graph in which all vertices are pairwise adjacent is called a
clique. A clique with n ∈ N vertices is denoted as Kn or n-clique. The size of the maximal
clique in a graph G is called the clique number ω(G) of G.

Operations on Graphs

If G = (V,E) is a graph then each subset W ⊆ V of its vertices induces a subgraph
G[W ] := (W, {{u, v} ∈ E | u, v ∈W}). As a shorthand, we write G−W for the graph G
without the vertices in W ⊆ V and its incident edges, i.e. G−W := G[V \W ]. If w ∈W
is the only element in W , we write G− w for G− {w}. We sometimes say that a set of
vertices W ⊆ V is a clique, if G[W ] is a clique. The operation in which all necessary edges
are added to G[W ] such that W induces a clique in G is called a fill-in for W . The so
created graph is denoted as G+ clique(W ), where clique(W ) is the set of all missing edges
in G[W ]. The fill-in of a vertex v ∈ V is the the number |clique(NG(v))|.

An edge contraction is an operation on a graph G = (V,E) in which two adjacent vertices
u, v ∈ V and the edge {u, v} ∈ E are replaced by a new vertex v∗ which is adjacent to all
remaining vertices in the neighborhoods of u and v. Now a minor of a graph G = (V,E) is

3



2. Preliminaries

a graph that can be obtained from G by applying a sequence of the following operations:
removing a single edge, removing a vertex and its incident edges, contracting an edge. If
G′ is a minor of G, we write G′ 4 G. Note that 4 is a partial ordering of graphs.

A subdivision of an edge {v, u} is an operation in which a new vertex w is added and the
edge {v, u} is replaced by the two edges {v, w} and {w, u}. If a graph G′ can be constructed
from a graph G by a sequence of edge subdivisions, G′ is called a subdivision of G.

Paths and Connections
A path in a graph G = (V,E) is a sequence of vertices in which all directly consecutive
vertices are adjacent. The first vertex of a path is called the start vertex and the last vertex
in a path is its end vertex. A cycle is a path with the same start and end vertex. Two
vertices u, v are connected if there is a path with u as start vertex and v as end vertex. A
graph in which all its vertices are pairwise connected is called connected itself. In case a
graph G is not connected all non-empty maximally connected subgraphs of G are referred
to as (connected) components of G. A graph G is said to be k-(vertex-)connected if it has
at least k vertices and it remains connected after removing less than k vertices.

Planarity
A graph is called planar if it can be drawn such that its edges only intersect at common
vertices. If D is the set of points covered by this drawing, then the connected areas of
R2 \D are the faces of the drawing (of the graph). The only infinite face is called the outer
face, while all other faces are inner faces. If all vertices of a graph can be drawn such that
they border to the outer face, this graph is called outerplanar. Note that the set of planar
graphs are closed under taking the minor [Wag37] and building subdivisions [Kur30] each.
A general planar drawing can be described by giving the clockwise order of neighbors for
each vertex.

2.2 Treewidth
A connected graph without cycles is called a tree. A tree decomposition of an arbitrary
graph G = (V,E) is a tree T = (B,F ), with bags B ⊆ 2V as vertices, that holds the
following conditions.

•
⋃
X∈BX = V

• for each edge e = {u, v} in G there is a bag X ∈ B with u, v ∈ X
• for each vertex v ∈ V the bags {X ∈ B | v ∈ X} induce a tree in T

The width of a tree decomposition T = (B,F ) is defined as the size of the largest bag
minus 1, i.e. maxX∈B |X| − 1. The treewidth of a graph is the minimum width over all
its tree decompositions. We denote the treewidth of a graph G as tw(G). All graphs with
treewidth of at most k ∈ N are called the partial k-trees. In this thesis, we only consider
connected graphs with at least one edge. Therefore a treewidth of 0 can not occur.

2.3 Bounds for Treewidth
There are several lower and upper bounds to the treewidth of a graph arising from many
different characterizations of treewidth. Most of those characterizations are defined as
optimization problems. For example, the width of each arbitrary tree decomposition of a
graph G is an upper bound to its treewidth tw(G). A simple lower bound is the clique
number of the graph minus one, which can be inferred from the following Lemma 2.1.

4



2.3. Bounds for Treewidth

Lemma 2.1 ([Bod05, Lemma 1]). LetW ⊆ V be a set of vertices of a graph G = (V,E) that
induces a clique in G. Then there is a bag X ∈ B with W ⊆ B for each tree decomposition
T = (B,F ).

The tree decomposition is only one way to characterize the treewidth of a graph. In the
following, we present other characterizations of it and derive their upper and lower bounds
for treewidth.

2.3.1 Forbidden Minors
A forbidden minor characterization is a method to characterize a set of graphs G by another
set of graphs F , called forbidden minors, such that a graph G is a member of G if and only
if G does not have any of the graphs in F as minor. Robertson and Seymour showed that
a graph class G can be characterized by a finite set of forbidden minors if G is closed under
taking minors [RS04]. From the following Lemma 2.2 we can conclude that the partial
k-trees, for some fixed k ∈ N, are closed under taking minors, which is why they have a
finite set of forbidden minors.

Lemma 2.2 ([Bod98, Lemma 16]). If G′ is a minor of G, then tw(G′) ≤ tw(G).

As an example, the forbidden minor sets of partial k-trees for k = 1, 2 only contain K3 and
the K4 respectively. The forbidden minors of partial 3-trees are shown in Fig. 2.1.

Figure 2.1: The four forbidden minors of partial 3-trees.

So, showing that a graph G has a forbidden minor of the partial k-trees as a minor proofs
that the treewidth of G is at least k + 1. It is well known that the K4 is a forbidden
minor of the outerplanar graphs [Die12, Excercise 23], which is why they are closed under
taking the minor and are a subclass of the partial 2-trees. A second crucial corollary from
Lemma 2.2 is that the treewidth of an arbitrary minor of G is a lower bound to tw(G).

2.3.2 Brambles
In contrast to the other characterizations in this thesis, the bramble characterization is based
on a maximization problem. The necessary terminologies from Boadlaender, Grigoriev,
and Koster [BGK08] are introduced in the following.

Two vertex subsets W1,W2 ⊆ V of a graph G = (V,E) are touching each other, if they
share a vertex or are adjacent, i.e., there is an edge {w1, w2} ∈ E with w1 ∈ W1 and
w2 ∈W2. A set of mutual touching and connected vertex subsets is called a bramble of G.
If a vertex subset H ⊆ V intersects each element in a bramble B, H is called a hitting set
of B. The size of a minimal hitting of a bramble is called its order. The maximal order
over all brambles of a graph G is called the bramble number of G. The connection between
the bramble number of a graph and its treewidth is given by Theorem 2.3.

5



2. Preliminaries

Theorem 2.3 ([ST93]). The treewidth of a graph is equal to its bramble number minus 1.1

A corollary from Theorem 2.3 is that all brambles of a graph G imply a lower bound for
the treewidth of G. This property is noted in the following.

Corollary 2.4 ([BGK08, Corollary 1.5]). Let G be a graph with a bramble B of order k.
Then tw(G) ≥ k − 1 applies.

2.3.3 Triangulation and chordal graphs

The following characterization of treewidth forms the basis for the upper bound heuristics
we analyze in this thesis. For that, we introduce a special graph class, the chordal (or
triangulated) graphs, on which the treewidth can easily be computed. According to
Bodlaender, there are two equivalent ways to define the chordal graphs [BK10, Definition
3].

The first one is based on the idea of perfect elimination orderings. An elimination ordering
of a general graph G = (V,E) is a bijection π : V → {1, . . . , |V |}. An elimination
ordering π is called perfect if for every vertex v ∈ V the set of higher numbered neighbors
Nπ
G(v) := {w ∈ NG(v) | π(w) > π(v)} induce a clique in G. The chordal graphs are exactly

those graphs that have a perfect elimination ordering. In other words, in every elimination
step a vertex, whose whole neighborhood forms a clique, is eliminated. Such a vertex
is called a simplicial vertex. A vertex v is called almost simplicial if at least deg(v) − 1
neighbors of v induce a clique in G. The one vertex that is not included in the clique is
called the non-clique vertex of v.

The second definition is that a graph is chordal if every cycle with at least four vertices
has at least one chord, i.e., an edge between vertices that are not adjacent in the cycle
[BK10, Definition 3]. One subclass of the chordal graphs are trees, since they do not have
a circle of any size. It is well known that the treewidth of a chordal graph is equal to its
clique number minus 1. Finding the maximal clique in an arbitrary graph is an NP-hard
problem, but it can be done on chordal graphs in linear time using Lemma 2.5.

Lemma 2.5. Let G = (V,E) be a chordal graph with perfect elimination ordering π. Then
the treewidth of G is equal to maxv∈V |Nπ

G(v)|.

Proof. The treewidth of a chordal graph G = (V,E) is its clique number minus 1. So we
have to proof that ω(G)− 1 = maxv∈V |Nπ

G(v)|. Let C be a maximal clique in G and let
v ∈ C be the vertex in C with the smallest index according π. Then v has at least ω(G)− 1
higher numbered neighbors, so ω(G)− 1 ≤ maxv∈V |Nπ

G(v)| applies.

It remains to prove that ω(G)− 1 ≥ maxv∈V |Nπ
G(v)| applies too. So, assume ω(G)− 1 is

strictly less than maxv∈V |Nπ
G(v)|. Then, there is a vertex v ∈ V with |Nπ

G(v)| > ω(G)− 1,
i.e., a vertex with at least ω(G) higher numbered neighbors. Since π is a perfect elimination
ordering of G, v ∪ Nπ

G(v) induce a clique in G with a size of ω(G) + 1. Since this is a
contradiction, ω(G)− 1 ≥ maxv∈V |Nπ

G(v)| applies.

To characterize the treewidth of general graphs, we use the fact that all graphs can
be „extended“ to a chordal graph. This is done by triangulating a graph. Formally a
triangulation of a graph G = (V,E) is a chordal graph G∆ = (V,E∆) with E ⊆ E∆. It is
additionally called minimal if it does not contain a triangulation of G with fewer edges.

6



2.4. Triangulation based heuristics

Algorithm 2.1: Triangulation
Input: Graph G = (V,E), Elimination Ordering π
Output: Triangulation G∆ of G

1 G∆ ← G
2 forall i = 1 to |V | do
3 v ← π−1(i)
4 G∆ ← G∆ + clique(Nπ

G∆(v)) // fill-in of v

5 return G∆

Using Algorithm 2.1 we can turn a graph G into a triangulation given an elimination
ordering π.

Considering the transition from G∆ to G in Algorithm 2.1, only edges are deleted. Therefore
G is a minor of G∆, so tw(G) ≤ tw(G∆) applies (see Lemma 2.2). As a result, each
triangulation of a graph G implies an upper bound to tw(G). Additionally, there is the
following characteristic for partial k-trees:

Theorem 2.6 ([BK10, Theorem 6]). Let G = (V,E) be a graph and k ∈ [1; |V |] an integer.
Then the following are equivalent:

i) G is a partial k-tree

ii) G has a triangulation G∆ with ω(G∆) ≤ k + 1

iii) There is an elimination ordering π of G, such that the graph FillIn(G, π) has a
clique number of at most k + 1

iv) There is an elimination ordering π of G, such that for every v ∈ V the number of
higher numbered neighbors in FillIn(G, π) is at most k

A corollary from the equivalence „i) ⇔ iv)“ is that every partial k-tree has at least one
vertex with degree at most k.

2.4 Triangulation based heuristics
As determining the treewidth of an arbitrary graph is NP-hard, heuristics are needed to,
at least, approximate the treewidth of a graph. The ones we work with are based on the
idea of triangulations introduced in Section 2.3.3.

Given a graph G these heuristics work on the space of all possible elimination orderings of
G. Their target is to find a triangulation of G whose clique number is as small as possible,
and is, therefore, a good upper bound of tw(G) (see Theorem 2.6). The heuristics are
based on the same greedy approach shown in Algorithm 2.2, but use different priorities X
to select the next vertex.

The operation described in line five of Algorithm 2.2 is called the elimination of the vertex
v. It is the concatenation of the fill-in operation of v and the deletion of v. The graph
obtained from G by the elimination of v is called the elimination graph of G with respect to
v. If multiple vertices A ⊆ V are eliminated one after another in G, the obtained graph is
called the elimination graph of G with respect to A. The edges involved in an elimination
are the edges that are either added during the fill-in of v or removed by the deletion of

1Note that the authors used the worlds „screen“ and „thickness“ instead of „bramble“ and „order“.
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2. Preliminaries

Algorithm 2.2: TW-Heuristic [Idea]
Input: Graph G = (V,E)
Output: Elimination Ordering π

1 G∆ ← G
2 for i = 1 to |V | do
3 v ← best vertex according to X in G∆

4 π(i) ← v

5 G∆ ← (G∆ − v) + clique(NG∆(v)) // elimination of v

6 return π

v. A (d, f)-elimination is an elimination of a vertex v ∈ V with deg(v) = d and fill-in f .
The parameter d and f are also referred to as the degree and fill-in of the elimination
respectively. If the fill-in is not important in the context we omit the parameter f .
Besides the algorithm [BK10, Algorithm 3] Bodlaender and Koster also gave examples for
possible priorities X. In this thesis we analyze the following two. If G∆

k is the graph after
the k-th iteration, then the . . .
• MinDegree selects one vertex with minimal degree in G∆

k .
• MinFillIn selects one vertex with minimal fill-in in G∆

k .
To argue better about the heuristic we make some adaptions to Algorithm 2.2 that are
explained in the following.
To make the heuristics deterministic we introduce a tiebreaker in case several vertices
have the same priority. Therefore, an internal vertex ordering of the graph is given as a
second input. Like an elimination ordering, vertex orderings are defined as a bijection
ρ : V → {1, . . . , |V |}, but it is used differently. Only if all vertices have the same priority,
the vertex ordering equals the calculated elimination ordering.
The second adoption is that the heuristics also return the calculated upper bound for
the treewidth. Yet the heuristics only return an elimination ordering, from which a
triangulation has to be determined to get the approximated treewidth. This procedure
can be shortened by simply returning the maximum over the degrees of the eliminated
vertices (see Theorem 2.6 and Lemma 2.5). The final version of the heuristics is shown in
Algorithm 2.3.

Algorithm 2.3: TW-Heuristic
Input: Graph G = (V,E), Vertex Ordering ρ of G
Output: Elimination Ordering π, Treewidth tw

1 G∆ ← G
2 tw← 0
3 for i = 1 to |V | do
4 N ← set of vertices with optimal priority in G∆ according to X
5 v ← vertex in N with lowest ρ(v)
6 π(i) ← v
7 tw← max{deg(v), tw}
8 G∆ ← (G∆ − v) + clique(NG∆(v)) // elimination of v

9 return tw, π

If G is a graph and ρ an arbitrary vertex ordering of G, we will denote the elimination
ordering and the treewidth, calculated by a heuristic X ∈ {MinDegree,MinFillIn},
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2.4. Triangulation based heuristics

with X(G, ρ)π and X(G, ρ)tw respectively. If the vertex ordering we are referring to is clear
from context, we omit the second argument from our notation, i.e., we write X(G)π and
X(G)tw.
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3. Comparison of the two Heuristics

A previous experiment showed how the two heuristics behave on real-world graphs [MSJ19a,
Section 4]. One of the findings of this study was that the MinFillIn heuristic often finds
better upper bounds than the MinDegree heuristic, while being a bit slower. While the
running time of the MinFillIn heuristic was O(n3 log(n)), the one of the MinDegree
heuristic was only O(n2 log(n)), where n is the number of vertices in the original graph
[MSJ19b]. In this section, we show that neither of the two heuristics is always better than
the other one. For that, we construct a family of graphs on which the MinDegree can
perform better than the MinFillIn heuristic, and the other way round. We also show that
the MinDegree can be arbitrarily far away from the actual treewidth of a graph.

3.1 MinFillIn better than MinDegree

In Section 5.2 we show that that the MinDegree heuristic does not only work on all
2×n-grids but also on all partial 2-trees. In this section, we show that such a statement
can not be made upon graphs with higher treewidth. For this, we define the graph family
Gk,l with k, l ∈ N. The graph Gk,l, for some fixed k and l, consists out of a Kk and l
almost simplicial vertices that are connected to all vertices in the Kk and share the same
non-clique-vertex v. The structure of these graphs is shown in Figure 3.1.

Kk

. . .l v

Figure 3.1: General structure of the graph Gk,l.

We use these graphs, to build a graph family on which the MinDegree heuristic can work
arbitrarily bad, and on which the MinFillIn heuristic returns the actual treewidth. We
thereby give a graph family on which the MinFillIn heuristic returns a better result than
the MinDegree heuristic. As a part of this proof, we show the treewidth of some of those
graphs with the help of the MinFillIn heuristic in Lemma 3.1.
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3. Comparison of the two Heuristics

Lemma 3.1. Let k, l ≤ 2 with k ≤ l(l − 1)/2, then tw(Gk,l) = k + 1.

Proof. For this proof, we show the lower bound by finding a Kk+2 minor and an upper
bound by the MinFillIn heuristic.

If we contract an arbitrary edge that is incident to the vertex v, we get a graph with a Kk+2
subgraph consisting out of Kk, the vertex from the edge contraction and an untouched
almost simplicial vertex. So Gk,l has a Kk+2 minor and therefore a treewidth of at least
k + 1.

For the upper bound we use the MinFillIn heuristic. The fill-in of all almost simplicial
vertices is k, while all other fill-ins are exactly l(l − 1)/2, i.e., the number of edges that
are necessary to connect the independent set of all almost simplicial vertices. As k is at
most l(l − 1)/2 by assumption, the MinFillIn heuristic can eliminate one of the almost
simplicial vertices. By this elimination, all remaining almost simplicial vertices are now
simplicial, which is why all of them but one are eliminated in the next elimination steps.
The result of those eliminations is a Kk+2, so the MinFillIn heuristic returns an upper
bound of k + 1. The steps of the MinFillIn heuristic are illustrated in the Figure 3.2.

Kk

. . .

l

∗

v
Kk . . .

l − 1

v

Kk
v Kk+2 v

Figure 3.2: Elimination steps of the MinFillIn heuristic on the graph Gk,l with k ≤ l(l − 1)/2.

In the following Theorem 3.2 we give example graphs on which the MinDegree heuristic
does not return the correct result, and on which the difference between the result and
actual values increases with increasing treewidth.

Theorem 3.2. For every k ≥ 3 there is a partial k-tree G with vertex ordering ρ, such that
MinDegree(G, ρ)tw > k. For every k ≥ 4 there is even a graph, such that this statement
holds for every vertex ordering ρ of G, and MinDegree(G)tw − k ∈ O(k).

Proof. For k = 3 the example graph is G2,3, whose treewidth is exactly 3 by Lemma 3.1.
In this graph, both vertices in the clique have a degree of 4, and all other vertices have a
degree of 3. If v has the lowest number in ρ, then v is eliminated first, which results in a
K5. In this case, the MinDegree heuristic returns an upper bound of four.

For k ≥ 4 consider the graph Gk−1,k−1. By Lemma 3.1 the treewidth of Gk−1,k−1 is exactly
k, because of

k − 1 ≤ 1 · (k − 1)
k≤4
≤ k − 2

2 (k − 1).
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3.2. MinDegree better than MinFillIn

The minimum degree of Gk−1,k−1 is k − 1 and is only attained by v. After the elimination
of v the remaining graph is complete with 2(k − 1) vertices, which is why MinDegree
heuristic returns an upper bound of 2k − 3. The difference between k and 2k − 3 increases
linear in k.

Corollary 3.3. For every d ≥ 1 there is a graph G, such that the MinDegree heuristic
returns a result that is d greater than the result of the MinFillIn heuristic on G.

Proof. Let d ≥ 1 and k := d + 3. Now consider the graph Gk−1,k−1. In the proof of
Theorem 3.2 we show that the MinDegree heuristic returns a result of 2k − 3 = 2d+ 3.
In the proof of Lemma 3.1 we show that the MinFillIn heuristic returns the correct
treewidth of k = d+ 3. The difference between these two results is exactly d, which proves
this corollary.

3.2 MinDegree better than MinFillIn

In this section, we first find a partial 2-tree such that the MinFillIn heuristic can return a
higher value than 2. As the MinDegree heuristic always return 2 for every partial 2-tree
(Section 5.2), this graph disproves the claim that the MinFillIn heuristic is always better
than the MinDegree heuristic. After that, we show a technique to create graphs, and
thereby a family of graphs, of arbitrary higher treewidth with the same properties.

Lemma 3.4. It exists a graph G with a vertex ordering ρ of G, such that MinFillIn(G, g)tw
is strictly greater than MinDegree(G, ρ)tw.

Proof. Let G be the graph shown in Figure 3.3 and let v be the first vertex in the vertex
ordering ρ. Then v is eliminated first by the MinFillIn heuristic, which is why it returns
a value of at least 3. As G is a partial 2-tree, the MinDegree heuristic returns the correct
treewidth of 2 (Theorem 5.8).

v

Figure 3.3: Example of a partial 2-tree for that the MinFillIn heuristic can return a value of 3.

Based on the graph presented in Lemma 3.4, we build a whole graph family such that for
every graph in this family the MinFillIn heuristic can return a higher result than the
MinDegree heuristic. This graph family is successively created by adding a vertex that is
adjacent to all other vertices. This operation is inspired by the idea of David Eppstein
[Epp11]. In the following we show the treewidth of the extended graph in Lemma 3.5 and
the behavior of both heuristics on this graph in Lemmas 3.6 and 3.7.

Lemma 3.5. Let G = (V,E) be a graph with treewith k, and let G+ be the graph G with
an additional vertex x that is connected to all vertices in V . Then G+ has a treewidth of
k + 1.

13



3. Comparison of the two Heuristics

Proof. In this proof, we use brambles to show the lower bound and tree decompositions for
the upper bound.

Since G has treewidth k it has a bramble B with order k + 1 (Theorem 2.3). We use
this bramble of G to construct a bramble of G+ with an order of k + 2. This bramble
B+ consists out of the vertex subsets in B and the set {x}. To prove that B+ is indeed
a bramble of G+, we show that every two sets X,Y ∈ B+ are touching each other. If
X and Y are part of B they touch each other because G is a subgraph of G+ and B is
a bramble of G. If one of the sets is {x}, w.l.o.g. X, and Y ∈ B, then X is touching Y
in G+ because v is adjacent to every vertex in G and therefore also to a vertex in Y . It
remains to show that B+ has a minimal hitting set with k + 2 vertices. We know that B
already has a minimal hitting set H ⊆ V with k + 1 vertices, which does not include x.
Therefore H ∪ {x} is a minimal hitting set for G+ with k + 2 vertices. As a result, the
bramble number of G is k + 2, so G+ has a treewidth of at least k + 1.

To show that the treewidth of G+ is at most k + 1, we construct a tree decomposition for
G+ with width k + 1 using a minimum tree decomposition of G. Since G has treewidth k,
it has a minimum tree decomposition T = (B,F ) with width k and therefore only bags
with a size of at most k + 1. We show that T+ := (B+, F ), where B+ is the set of bags B
in which x is added to each bag, is a tree decomposition of G+. For that, we show that
adding x to each bag does not change the properties of a tree decomposition. Since x
is included in all bags, the union of all bags in B+ covers all vertices in V as well as x.
Additionally, there is at last one bag in B+ for each neighbor v of x, such that v and x are
included in that bag, because the union of all bags in B covers all vertices in V . Finally,
the graph induced by all bags that include x in T+, i.e., the whole graph T+, is a tree,
because T is a tree by definition and T is isomorphic to T+.

Using Lemma 3.5 we can successively extend the graph given in the proof of Lemma 3.4 to
a graph family with graphs of arbitrary large treewidth as shown in Figure 3.4.

. . .

Kk

Figure 3.4: Extending the graph from Lemma 3.4 to a family of graphs. In the graph on the right side all
vertices in the clique Kk are connected to all vertices in the graph above.

Now, we show that G and G+ from the previous lemma have similar properties with regards
to the MinFillIn heuristic, in the following sense:

Lemma 3.6. Let G = (V,E) and let G+ be the graph G with an additional vertex
x that is connected to all other vertices. If there is a vertex ordering ρ of G such
that MinFillIn(G, ρ)tw = k then there is also a vertex ordering ρ+ of G+ such that
MinFillIn(G+, ρ+)tw = k + 1.

Proof. Let ρ+(v) := ρ(v) for all v ∈ V and define ρ+(x) := |V | + 1. We show that the
elimination sequences are identical for all vertices in V , and that x is eliminated last in
MinFillIn(G+, ρ+). Note that all vertices in V have the same fill-in G+ as they have in
G, because v is adjacent to all vertices in the G-subgraph of G+. As a basis for our further
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3.2. MinDegree better than MinFillIn

argumentation, we show that a vertex that is connected to all other vertices always has the
highest fill-in in a graph.

Let v be an arbitrary vertex in V and let x be a vertex that is connected to all vertices
in V . If we eliminate v no edge is added that is incident to x, because x already has the
maximum number of incident edges. Therefore the set of all fill-in edges F is added to the
subgraph G+[NG+(v) \ {x}] = G[NG(v)]. Since NG(v) ⊆ V = NG+(x), F is a subset of all
fill-in edges that are added during the elimination of x in G+. As a result, the fill-in of x
in G+ is at least as high as the fill-in of an arbitrary vertex, and thus a maximum fill-in.

Now consider the first elimination step in MinFillIn(G+, ρ+). If we assume, that G+ has
at least two vertices, we know that there is another vertex besides x whose fill-in is at
most the fill-in of x. Since x has the highest number in the vertex ordering ρ+, x is not
chosen in this step. Additionally, we know that the fill-in of all vertices in V is the same
as in G. Therefore MinFillIn(G+, ρ+) eliminates the same vertex as MinFillIn(G, ρ)
does. The elimination graph of this step has again a vertex that is connected to all other
vertices, namely x. So we can use the same argumentation as in the first step for all further
elimination steps. As a result, MinFillIn(G+, ρ+) eliminates the vertices in V in the
same order as MinFillIn(G, ρ) does, and eliminates x last. The only difference is, that
the degree of all vertices in V is increased by 1 due to the additional edge to x. Therefore
the result of MinFillIn(G+, ρ+) is 1 higher than the result of MinFillIn(G, ρ).

Using Lemma 3.6, we show that the graph family given in Figure 3.4 has the property that
the MinFillIn heuristic does not always work optimally on it. Therefore, there is a graph
for each k ≥ 3 such that the MinFillIn heuristic can return a higher value than the actual
treewidth of this graph. With the help of the following Lemma 3.7 we can additionally
state that the graph family in Figure 3.4 contains examples on which the MinDegree
heuristic performs better than the MinFillIn heuristic.

Lemma 3.7. Let G = (V,E) and let G+ be the graph G with an additional vertex
x that is connected to all other vertices. If there is a vertex ordering ρ of G such
that MinDegree(G, ρ)tw = k then there is also a vertex ordering ρ+ of G+ such that
MinDegree(G+, ρ+)tw = k + 1.

Proof. We prove this lemma the same way as Lemma 3.6. So let ρ+(v) := ρ(v) for all v ∈ V
and ρ+(x) := |V |+ 1. Again, we show that a vertex that is connected to all other vertices
has the lowest priority, i.e., the highest degree. Then, we use the same argumentation from
the proof of Lemma 3.6 to derive this lemma. So assume that there is a vertex v with a
higher degree than deg(x). Since x is connected to all other vertices, the vertex v has to
be connected to all other vertices and itself, which is a contradiction to the assumption
that G, and therefore G+, is simple.

This technique can be used to extend a graph to a whole family of graphs, such that each
one of them adopts the graph’s properties with respect to the behavior of both heuristics.
As a result, as soon as one finds a single graph G on which for example two possible results
of the MinDegree and the MinFillIn heuristic are more than 1 apart, one can give a
whole family of graphs with that property, covering all treewidths above tw(G).
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4. The MinFillIn Heuristic on Small Grids

One main focus of this thesis is the study of the heuristics behavior on grids. An m×n-grid
is the graph with vertices V = {(i, j) | i = 1 . . .m, j = 1 . . . n}, where every two vertices
(i1, j1), (i2, j2) ∈ V are adjacent if ||(i1, j1)− (i2, j2)||1 = 1. The treewidth of an m×n-grid
is proven by Chlebikova [Chl92, Theorem 16] and Bodlaender [Bod98, Corollary 89] to be
min{n,m}. A planar drawing of a general grid is given in Figure 4.1. All vertices that lie
on the outer face of this drawing form the grid’s border. The values of n and m are called
the side lengths of the grid.

m

n

Figure 4.1: The general structure of a m×n-grid.

In the following three sections we show that the MinFillIn heuristic returns the correct
treewidth for every m×n-grid with n ∈ N and m = 1, 2, 3 respectively. We even show that
this applies to certain superclasses of 1×n-grids and 2×n-grids respectively. Before we deal
with these graph classes, we show two simple facts that are needed for many proofs of this
thesis, but are omitted for reasons of clarity in all following sections.

Lemma 4.1. The connected graphs are closed under eliminations.

Proof. Let G = (V,E) be a connected graph, v ∈ V a vertex and G′ their elimination graph.
Further, let u,w ∈ V \ {v} be two connected vertices in G and S = (u = s1, . . . , sp = w)
a path between them. If v is not included in S the same path exists in G′ as only edges
incident to v are removed during the elimination. If, otherwise, v is part of S at index
i ∈ {2, . . . , p − 1} the path can be modified to exist in G′ in the following way. At first,
si = v have to be removed from S, as v does not exist in G′ anymore. It remains a path
S = (u = s1, s2 . . . , si−1, si+1, . . . , sp−1, sp = w). Because si−1 and si+1 were neighbors of
v in G, they are adjacent in G′ after the elimination of v (in particular after its fill-in).
Therefore, S′ is already a valid path between u and w in G′. Because u and w are chosen
arbitrarily from the set of vertices of G′, the graph G′ is connected.
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4. The MinFillIn Heuristic on Small Grids

Lemma 4.2. The connected graphs are closed under edge contractions.

Proof. Let G = (V,E) be a connected graph, and let G′ = (V ′, E′) be the graph G after
contracting an edge {x, y} ∈ E to a vertex z ∈ V ′. To prove that G′ is connected, we show
that every pair of vertices u, v ∈ V is connected in G′. If there is a path between u and v
in G that neither includes x nor y, then this path exists in G′ too. Otherwise, let P be a
path between u and v without cycles. We know that z is connected in G′ to all neighbors
of x and y in G. Therefore P ′, the path that remains after replacing all occurrences of
(. . . , x, y, . . . ), (. . . , x, . . . ) and (. . . , y, . . . ) by (. . . , z, . . . ) in P (in that order), is a path in
G′.

4.1 Chordal Graphs and Trees
To prove that the MinFillIn heuristic returns the correct treewidth for every 1×n-grid,
we show that this even applies to the superclass of chordal graphs. An important part of
this proof is to show that the chordal graphs are closed under elimination (Corollary 4.4).
For this, we show that an elimination does not increase the size of an induced cycle in the
following sense.

Lemma 4.3. Let G = (V,E) be a graph, v ∈ V a vertex and G′ = (V ′, E′) their elimination
graph. Further, let C ′ ⊆ V ′ be a vertex subset with |C ′| ≥ 4 that induces a chordless cycle
in G′. Then there is a set of vertices C ⊆ V in G such that C ′ ⊆ C and G[C] is a chordless
cycle.

Proof. Let G, v, G′ and C ′ be chosen as in the lemma. Now there are three cases to be
considered:

• If |C ′ ∩NG(v)| ≤ 1, then C ′ induces a cycle in G too, because no edge in G[C ′] could
be involved in the elimination of v.

• If C ′ ∩NG(v) = {u,w} and {u,w} ∈ E, then C ′ induces a cycle in G too. The only
edge that is involved in the elimination of v is the edge {u,w}, as it could be added
if it did not already exist in G. But because of {u,w} ∈ E, this is not the case.

• If C ′ ∩NG(v) = {u,w} and {u,w} /∈ E, then C ′ only induces a path in G, because
all edge but {u,w} are not involved in the elimination of v. From u,w ∈ NG(v) we
know, that G contains the edges {u, v} and {v, w}. As {u,w} /∈ E the set C ′ ∪ {v}
induces a cycle in G that is even larger than the cycle G′[C ′].

As a result, there is a set C ⊆ V fulfilling the conditions in the lemma for each case. Note
that this case distinction is complete, because if |C ′ ∩NG(v)| was higher than 2, there was
at least one chord in G′[C ′]. So C ′ would not induce a cycle in G′.

Using Lemma 4.3 we now show that chordal graphs are closed under eliminations.

Corollary 4.4. The chordal graphs are closed under elimination.

Proof. Let G = (V,E) be a chordal graph and v ∈ V an arbitrary vertex in G. Because G
is chordal, the maximum size of an induced cycle in G is 3. From Lemma 4.3 we know,
that the elimination graph G′ of G with respect to v does not have an induced cycle of
length 4 either. Therefore G′ is also chordal.

It remains to prove that any possible elimination in the MinFillIn heuristic does not
increase the largest clique in a graph. This is the key part of the following proof.
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Theorem 4.5. The MinFillIn heuristic returns the correct treewidth for all chordal
graphs.

Proof. Let G = (V,E) be a chordal graph and let v ∈ V be a vertex with minimum fill-in in
G. We show that the elimination graph of G and v is a chordal graph that does not have a
larger maximum clique than G. This implies that in each elimination step of the MinFillIn
heuristic only a vertex with a smaller degree than the treewidth of G is eliminated.

It can be seen, that the minimum fill-in of a chordal graph is 0, since there is always a
simplicial vertex by definition. Therefore v has to be a simplicial vertex. As a simplicial
vertex with degree k implies a clique with size k + 1, and such a clique implies a treewidth
of at most k, the eliminated vertex v has a degree of at most tw(G). We additionally know
that G′ is a proper subgraph of G, since edges and vertices are only removed and not added
during the elimination of v. The graph G′ is also chordal by Corollary 4.4.

As a result, only vertices with a degree of at most tw(G) are eliminated during the
MinFillIn heuristic. Therefore, MinFillIn(G)tw is at most tw(G), and, because it is an
upper-bound heuristic, exactly tw(G).

A direct corollary from Theorem 4.5 is that the MinFillIn heuristic returns 1 for every
tree, since trees are a subclass of chordal graphs. This additionally applies to all 1×n-grids,
since they are just paths, which is a subclass of trees.

4.2 2xn-Grids
In this section, we show that the MinFillIn heuristic works optimally on all 2×n-grids.
In Lemma 3.4 we show that there is a partial 2-tree, on which the MinFillIn heuristic
does not return 2. Therefore we need to narrow down the graph class for which this is
true. The superclass of 2×n-grids we consider are the outerplanar 2-connected graphs with
maximum degree 3, abbreviated with G2. To achieve this, we show that the minimum
fill-in of a graph in G2 is at most 1 in Lemma 4.6, and that G2 is closed under all possible
eliminations with this fill-in in Lemma 4.7.

Lemma 4.6. Let G be an outerplanar 2-connected graph with maximum degree 3. Then
the minimum fill-in of G is 1.

Proof. As a member of the outerplanar graphs, G also has a treewidth of at most 2.
Since every graph with treewidth k has at least one vertex with degree at most k, every
outerplanar graph has a vertex with degree at most 2. Because vertices with a degree of at
most 2 have a fill-in of at most 1, the minimum fill-in of G is at most 1.

Lemma 4.7. Let G = (V,E) be an outerplanar 2-connected graph with maximum degree
3 (called G2), and let v ∈ V be a vertex with minimum fill-in. Then G′, the elimination
graph of G and v, is either a tree or in G2.

Proof. To rule out a simple base case, note that if G is a chordless cycle, every possible
elimination graph of G is also a chordless cycle. So the statement holds in this case. In the
following, we make a case distinction over the minimum fill-in of G.

If the minimum fill-in of G is 0, a simplicial vertex is eliminated in the next step. Let v ∈ V
be this vertex, whose degree can only be 2 or 3 by definition of G2. If the degree of v was 3
there would be a K4-subgraph in G, which is the forbidden minor for treewidth 2, i.e., the
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treewidth of G. If deg(v) = 2 then G is either K3, i.e., a chordless cycle, or v is adjacent
to two vertices u and w that are connected by a chord. As shown in Figure 4.2, this chord
closes the cycle after the elimination of v. Note that elimination of v does neither change
any other vertices than u,v and w, nor the degree of u and w. As a result the elimination
graph is a member of G2.

v

u

w

u

w

Figure 4.2: An outerplanar 2-connected graph G with maximum degree of 3 (left) and the elimination
graph of G with respect to a vertex with fill-in 1 and degree 2 (right). The gray areas are
placeholders for an arbitrary number of chords.

Now, let the fill-in of v be 1. Again, only the cases deg(v) = 2 and deg(v) = 3 have to
be considered. The case deg(v) = 2 is already covered by Figure 4.2, if we ignore the
dotted chord before the elimination. In the following, we show by contradiction that case
deg(v) = 3 can not occur. So assume v has a degree of 3 and a minimum fill-in of 1 in G.
The only way v can have a degree of 3, is that it is incident to two edges on the cycle of the
outerplanar graph G and one chord. Let u,w ∈ V be the neighbors of v on the cycle and
x ∈ V the vertex on the other side of the chord. Since there is a chord in G, there are at
least four vertices, which is why u and w are not adjacent. But because v has a fill-in of 1,
these vertices have to be adjacent to x. Therefore, we already know all neighbors of x in G.
As a result, the graph illustrated in Figure 4.3 is the only possible graph for this situation.

v

u w

x

Figure 4.3: The only graph in which v has a degree of 3 and a fill-in of 1.

As a result, both u and w are vertices with fill-in 0, which is a contradiction to v being a
vertex with minimum fill-in.

Corollary 4.8. The MinFillIn heuristic returns the correct treewidth for all 2×n-grids.

Proof. From Theorem 4.5 we know that this statement applies for all 1×n-grids. So it
only remains to prove that the MinFillIn heuristic returns a value of at most 2 for every
2×n-grid with n ≥ 2. For this, we use the previous lemmas. These state that in a graph of
G2 only vertices with a degree of at most 2 are eliminated by the MinFillIn heuristic, and
that G2 is closed under these eliminations. As members of G2 this applies to all 2×n-grid
with n ≥ 2 and their elimination graphs under the MinFillIn heuristic.
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In the following, we show that there is at least a vertex ordering for every partial 2-tree,
such that the MinFillIn returns the correct treewidth.

Lemma 4.9. For every partial 2-tree G there is a vertex ordering ρ such that the MinFillIn
heuristic returns a value that is at most 2.

Proof. In this proof we use the MinFillIn heuristic with a minimum-degree-tiebreaker
instead of a vertex ordering for G, i.e., if there are several vertices with the same (minimum)
fill in, the one with the smallest degree is chosen. We show that this alternated heuristic
only eliminates vertices with a degree of at most 2. The resulting elimination sequence can
then be used as the ρ mentioned in the lemma.

Since G is a partial 2-tree, there is at least one vertex with degree at most 2. Therefore,
the only chance that a vertex with degree 3 or higher is chosen by this alternated heuristic
is, that this vertex has a fill-in of 0 and all other have a higher fill-in. This is not possible
because such a vertex implies a K4 minor in G, i.e., a forbidden minor for partial 2-trees.
Therefore, one of the vertices with degree of at most 2 is eliminated in the first step. Since
all eliminations with degree at most 2 can be seen as an edge contraction, the remaining
graph G′ is a minor of G and therefore again a partial 2-tree. We can show inductively
with the same argumentation that this alternated heuristic only eliminates vertices with
degree of at most 2 in its course on G.

4.3 3xn-Grids
In contrast to the previous two sections of this chapter, we only focus on the grids themselves
in this section. For this, we give a step-by-step argumentation of why the MinFillIn
heuristic only eliminates vertices with degree at most 3 on 3×n-grids in the following
Lemma 4.10.

Lemma 4.10. The MinFillIn heuristic returns the correct treewidth for all 3×n-grids.

Proof. For n ≤ 2 the proof is already done by Corollary 4.8. For n ≥ 3, we show that the
MinFillIn heuristic only eliminates vertices on the short side of the grid (Figure 4.4),
until only two rows of vertices remain.

At the beginning, all corners have a fill-in of 1, every border vertex has a fill-in of 3 and
every inner vertex has a fill-in of 6. To show that only vertices on the short side are
eliminated, we show that every elimination has a fill-in that is strictly less than 3, because
otherwise arbitrary border vertices could be eliminated. The elimination steps of the
MinFillIn heuristic are shown in Figure 4.4. At first, both corner vertices on the short
side are eliminated, which results in a 3×(n− 1)-grid with a vertex, that is connected to
all three vertices in the next row, called a peak. After the elimination of this peak, there
are two different kinds of vertices with a minimum fill-in, that are marked with „1“ and
„2“. No matter which of those vertices is chosen, the next elimination results again in a
grid with a peak, but this time with one row less, as shown in Figure 4.4.

These, elimination steps can happen independently on both 3-sides of the grid, until both
sides are too close to each other. In this case, two rows of vertices remain. The elimination
steps for this graph are shown in Figure 4.5. The left graph consists of two 3-cliques
whose vertices have exactly one edge that is incident to the other clique. Therefore the
eliminations of all vertices would result in the same graph shown in the middle. This graph
is a 4-cycle with a vertex that is connected to all vertices in the cycle. Since the single
vertex has a fill-in of 2 and the vertices on the cycle only have a fill-in of 1, one of them
is eliminated in the next step of the MinFillIn heuristic. The elimination graph of this
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Figure 4.4: Elimination steps of the MinFillIn heuristic on a 3×n-grid. The vertices marked with a
cross are eliminated in the next step. If multiple vertices can be eliminated in the next step,
they are marked with different numbers.

elimination is a complete graph with four vertices, which is why no vertices with a degree
higher than 3 can be eliminated in the remaining eliminations. Since no vertices with a
degree of 4 or higher were eliminated, the MinFillIn heuristic returns a value of 3, i.e.,
the correct treewidth of a 3×n-grid.

Figure 4.5: Last elimination steps of the MinFillIn heuristic on a 3×n-grid. The vertices marked with a
cross are eliminated in the next step. The elimination of a vertex that is marked with a cycle
would result in the same graph as the elimination of the „cross“-vertex.
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In the course of this chapter we often prove, that, for a graph G from a graph family G,
MinDegree(G)tw is at most k for some k ∈ N. A sufficient condition for that is that
G is closed under all minimum-degree eliminations with a degree at most k. Under this
condition, only vertices with a degree of at most k are eliminated by the MinDegree
heuristic, which is why MinDegree(G)tw is at most k.

5.1 Chordal Graphs
As with the other heuristic, we also show for the MinDegree heuristic that it performs
optimally on all chordal graphs, and therefore also on all 1×n-grids. In Corollary 4.4 of the
previous chapter, we show that the class of chordal graphs is closed under elimination. It
remains to prove that all possible eliminations with respect to the MinDegree heuristic
do not increase the clique number ω(G) of a chordal graph G. This is shown in Lemma 5.2
with the help of the following Lemma 5.1.

Lemma 5.1. Let G = (V,E) be a chordal graph, then δ(G) < ω(G) applies.

Proof. Assume δ(G) ≥ ω(G). Since G is a chordal graph, it has a perfect elimination
ordering and therefore has a simplicial vertex x ∈ V . Since δ(G) is the minimum degree
of G, the degree of x is at least δ(G). Because x is simplicial, it is part of a clique with
size δ(G) + 1. Because of the assumption, this is a clique with a larger size than the clique
number of G, which is a contradiction.

Lemma 5.2. If G = (V,E) is a chordal graph and v ∈ V a vertex with minimum degree
in G. Then the elimination of v does not create a clique with size higher than deg(v) + 1.

Proof. Let G′ be the elimination graph of G with respect to v. Now assume the elimination
of v creates a clique Kl with l > deg(v) + 1 in G′ that does not exist in G. Therefore,
the elimination creates at least one edge {u1, u2} that is not in G. Moreover, because the
neighbors of v just form a clique with size deg(v) after the elimination of v, there is at least
one vertex w ∈ Kl \NG(v). Since Kl is a clique and the elimination can not create edges
that are incident to w, the vertex w has to be adjacent to all neighbors of v, including u1
and u2, already in G. Now, it is shown that under the assumption there is a chordless
cycle (v, u1, w, u2, v) with size 4 in G, because {u1, u2} is not an edge in G and w is not
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in the neighborhood of v. The existence of such a cycle is a contradiction to G being a
chordal graph.

Using the previous Lemma 5.2, we now show that MinDegree heuristic performs optimally
on all chordal graphs in Theorem 5.3. As all 1×n-grids are chordal, this also applies to
them.

Theorem 5.3. The MinDegree heuristic returns the actual treewidth of a chordal graph.

Proof. Let G = (V,E) be a chordal graph and let v ∈ V be a vertex with minimum degree.
We know from Lemma 5.1 that the minimum degree of G is at most its clique number
minus one, which is exactly the treewidth of G, i.e., δ(G) ≤ ω(G)− 1 = tw(G) applies. For
the proof of this lemma, we show that the elimination graph of G with respect to v has
again a minimum degree of at most tw(G). This allows us to prove inductively that the
MinDegree heuristic only eliminates vertices with degree of at most tw(G) in G.

Let G′ be the elimination graph of G with respect to v. We know that the degree of v
is at most the treewidth of G. Therefore, the elimination of v does not create a clique
with more than tw(G) + 1 vertices ( Lemma 5.2). As such a clique does not exist in G
either, every maximal clique in G′ has a size of at most tw(G) + 1. Because G′ is chordal
by Corollary 4.4, the treewidth of G′ is at most tw(G). As a result, there is at least one
vertex with degree of at most tw(G) in G′.

5.2 Partial 2-Trees
In this section, we show that the MinDegree heuristic is not optimal for all partial 2-trees,
and therefore also for all 2×n-grid. This statement is shown in Theorem 5.8. For this, we
introduce another characterization of partial 2-trees in Definition 5.4.

Definition 5.4. A DSP-graph is a graph that can be constructed by the following rules:

• the K2 is a DSP-graph

• if G = (V,E) is a DSP-graph, then the following operations result in a DSP-graph

– D: adding a leaf (also called dangling vertex) to a DSP-graph result in a DSP-
graph

– S: replacing an edge {a, b} ∈ E by two edges {a, c} and {c, b} with c /∈ V . This
procedure is also called a subdivision of the edge {a, b}

– P: adding two edges {a, c} and {c, b} with c /∈ V for an existing edge {a, b} ∈ E

Note that the defined operations D, S and P are the inverses of all possible eliminations the
MinDegree heuristic may perform if the input graph has a minimum degree of 2 or lower.

Lemma 5.5. A graph is a 2-tree if and only if it is a DSP-graph.

Proof. Let G be a graph with tw(G) ≤ 2. Then there is a minimum triangulation G∆ of G
with maximum clique size 3 (see Theorem 2.6). Furthermore, there is a perfect elimination
ordering π of G∆, such that 2 = tw(G) = maxv∈V |Nπ(v)| (Lemma 2.5). Now, if we
eliminate all vertices step by step from G according to π, we only use the inverse operations
of D,S or P per definition. Therefore there is an operation sequence that constructs G from
K2.
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We prove the other implication by induction over the number of vertices. In the base case
the K2 has a treewidth of 1. Now assume that all DSP-graphs with n vertices have a
treewidth of 2 or lower. Let G = (V,E) be a DSP-graph with |V | = n+ 1 vertices for n ≥ 2.
Per definition there is a sequence S = (s1, . . . , s|V |−2 = sn−1) of D-,S- or P-operations that
constructs the graph G from K2. Now let G′ = (V ′, E′) be the DSP-graph constructed by
the sequence (s1, . . . , sn−2). Since G′ has n vertices, the treewidth of G′ is less than or
equal to 2. So there is a tree decomposition T = (B, I) of G′ with width 2. Now we will
show that T can be extended to form a tree decomposition of G with width of 2. Since G
can be constructed by applying the operation sn−2 on G′, we will do a case distinction on
sn−2:

• If sn−2 is a D-operation adding the leaf c /∈ V \ V ′ to a vertex v ∈ V ′, T can be
extended by a bag {c, v} that is connected to the subtree of v in T .

• If sn−2 is a S- or a P-operation adding a vertex c to an edge {a, b} ∈ E′, T can be
extended as follows: since {a, b} is a clique, there is a bag W with {a, b} ⊆W . If we
add the bag {a, b, c} and connect it to W , T is still a tree decomposition with width
2.

Now we show that the MinDegree heuristic always works optimally on partial 2-trees.
For that, we show that every partial 2-tree has a minimum degree of at most 2, and that
the partial 2-trees are closed under all eliminations with a degree of at most 2. Actually,
we show a slightly stronger property of DSP-graphs in Lemma 5.6, which helps us in the
subsequent lemmas.

Lemma 5.6. If G is a DSP-graph, then G has at least two vertices with a degree of at
most 2. If G is not complete there are two such vertices that are not adjacent.

Proof. At first, we prove the second part by induction over the number of vertices in
G = (V,E). To make sure that G is not complete the base case in this induction starts
with |V | = 4, since the K4 is the forbidden minor of the DSP-graphs. The base case is
illustrated in Figure 5.1.

Figure 5.1: All DSP-graphs with four vertices. For each one of them, two vertices with a degree of at
most 2 are colored in blue.

For the induction step let o ∈ {D,S, P} be the last operation in the construction of G, v
the vertex that was added during o, and G′ the DSP-graph G before o was performed. By
induction hypotheses, we know that G′ has at least two non-adjacent vertices u,w ∈ V
with a degree of at most 2. If we apply o to G′ the degree of at most one of those vertices
can change, because o only affects one vertex (D) or two adjacent vertices (S and P). Let
u be the vertex that is not affected by o. Since each possible operation o creates a new
vertex v with a degree of at most 2, u and v are two non-adjacent vertices with a degree of
at most 2.
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As a result, we proved the second statement in the lemma, and therefore also the first one,
for every DSP-graph with at least four vertices. For every other DSP-graph the lemma
holds too, because: if |V | ≤ 3, G can only be K2,K3 or a path with length 3. Since all
those graphs have a maximum degree of 2, the lemma now holds for every DSP-graph.

Lemma 5.7. Let G = (V,E) be a partial 2-tree and let G′ be the elimination graph of G
with respect to a vertex v ∈ V with deg(v) ≤ 2. Then G′ is a partial 2-tree.

Proof. Lets assume that G′ is not a partial 2-tree, i.e., K4 4 G′. Because G′ is obtained by
an elimination of a vertex v with deg(v) ≤ 2 and all possible elimination steps of v create
minors of G, G′ is a minor of G. Since K4 4 G′ 4 G, the graph G is not a partial 2-tree,
which is a contradiction.

Theorem 5.8. The MinDegree heuristic returns the correct treewidth for every partial
2-tree.

Proof. We know that the MinDegree heuristic returns the correct treewidth for trees
(Theorem 5.3). So it remains to show that the MinDegree heuristic returns an upper
bound of at most 2 for every partial 2-tree. This is done by Lemma 5.6 and Lemma 5.7.

5.3 From Grid to Grill
Using the findings from the previous section, we show the behavior of the MinDegree
heuristic on a more general form of grids that is based on partial 2-trees. This kind of
graph, called grill, was mentioned by Sergey Norin in his lecture about minor theory during
the proof of the grid theorem [Nor17, Theorem 6.1]. This theorem states that for every
n ∈ N it exists an N ∈ N such that all graphs G with tw(G) ≥ N have an n×n-grid as
minor. The idea of the proof is to show step by step that such a graph G contains a
hierarchy of increasingly structured but smaller subgraphs, the most grid-like of which is
the grill. Informally, a grill is a grid, in which every edge can be replaced by a whole path
and all outer vertices may have an additional path as shown in Figure 5.2.

Figure 5.2: The general structure of a grill (left) in comparison to a general grid (right). The curly lines
represent whole paths.

In this section, we show that the MinDegree heuristic returns the same result on an
n ×m-grill as on a n×m-grid. In fact, we show this statement for a superclass of grills,
in which every edge of a grill can be replaced by a whole series-parallel graph, i.e., a
kind of partial 2-tree. We call the elements of this superclass fat n×m-grills, since these
series-parallel graphs, which are defined in the following, can be seen as bloated paths.
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Definition 5.9 ([Bod98]). An s, t-series-parallel graph G = (V,E, s, t) is a graph G =
(V,E) with two specific vertices s ∈ V and t ∈ V called source and sink respectively. This
graph class is characterized by the following constructive definition:

• G = ({s, t}, {{s, t}}, s, t) is a series-parallel graph

• Ff G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) are series-parallel graphs, then:

– the parallel composition G1 and G2 is a series-parallel graph, which can be
constructed by the following steps: take the disjoint union of G1 and G2, add
the edges {s1, s2} and {t1, t2} and contract them afterwards. The so created
vertices of these edges are the source and sink of the remaining graph respectively.

– the series composition of G1 and G2 is series-parallel, which can be constructed
by the following steps: take the disjoint union of G1 and G2, add the edge
{t1, s2} and contract it. Then s1 is the new source, and t2 the new sink.

A graph G = (V,E) is called series-parallel if there are vertices s, t ∈ V such that (V,E, s, t)
is a series-parallel-graph.

It is well known that every s, t-series-parallel graph is a partial 2-tree [Bod98, Theorem
41]. Based on this fact, we transfer the ideas about partial 2-trees made in Section 5.2
to s, t-series-parallel graph. We know that the MinDegree heuristic always returns the
correct value for series-parallel graph (Theorem 5.8). In the following, we show that the
MinDegree heuristic does the same, even if the vertices s and t are somehow blocked,
i.e., have a higher degree as in fat grills (Figure 5.3).

G
ts

Figure 5.3: A cutout from a fat grill. Each of the grey areas represents a series-parallel graph.

Lemma 5.10. If G = (V,E, s, t) is a series-parallel subgraph of a graph in which s and
t have at least degree 3. Then the MinDegree heuristic will reduce G to a single edge
between s and t without eliminating a vertex with a higher degree than 2.

Proof. The key part of this proof is to show that every s, t-series-parallel graph G = (V,E)
with at least 3 vertices has at least one vertex v ∈ V \ {s, t} with deg(v) ≤ 2. We prove
this claim by induction over the composition steps of an s− t-series-parallel graph. In the
base case, every graph with at most three vertices has a maximum degree of 2. Therefore
it either has less than three vertices or a vertex v ∈ V \ {s, t} with deg(v) ≤ 2. Now let G1
and G2 be two s, t-series-parallel graphs. We show that both the series-composition as well
as the parallel composition of G1 and G2 have a vertex with a degree of at least 2 besides
their dedicated source and sink vertices. If one of the graphs G1 and G2 has more than
three vertices, there is at least one vertex v with a degree of at most 2 whose degree is
not changed during any of these compositions. Otherwise, if both G1 and G2 only have
two vertices, a parallel composition does not increase the number of vertices, and a series
composition results in a path with length 3. Since we know from the base case that this
path has a third vertex with a degree of at most 2, the proof of this claim is finished.

Using this claim, we can show that the MinDegree heuristic eliminates only vertices with
a degree of at most 2, until only an edge between s and t remains. If G has more than two
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vertices, there is at least one vertex with a degree of at most 2. Therefore there is vertex v
with minimum degree besides s and t. If we eliminate this vertex, the resulting graph is
again a series-parallel graph (Lemma 5.7), which is why we can use the same argumentation
in all the following steps until G has only two vertices, i.e., s and t, left. Since s and t were
connected (but not necessarily adjacent), they are adjacent in the resulting graph, which
proves this lemma.

Based on this Lemma 5.10 and the fact that only vertices with degree 2 and smaller are
eliminated, we can say that the MinDegree heuristic reduces the series-parallel subgraphs
of a graph first without eliminating a vertex with a degree higher than 2. As a result, a fat
n×m-grill is reduced to an n×m-grid where the four corner vertices are already eliminated
(since they are series-parallel subgraphs themselves in a grid). The transition from a fat
n× n-grill to a grid with eliminated corners is shown in Figure 5.4.

Figure 5.4: The transition from a fat grill (left) to a grid with eliminated corners (right). The grey
areas are series-parallel graphs. The figure in the middle shows the state where all outer
series-parallel graphs are completely eliminated, and inner series-parallel graphs remain, that
are perhaps a bit thinner.

From this point on, the MinDegree heuristic behaves the same as on grids, because an
n×m-grid is also reduced to such a grid with rounded corners first. Consequently, the result
for a fat n×m-grill is the maximum of the results of an n×m-grid and the series-parallel
parts of the grill.

5.4 3xn-Grids
In this section we proof that the MinDegree heuristic returns the correct treewidth of
3 for every 3×n-grid with n ∈ N. For this, we show that this statement holds for the
following graph class G3 that includes all 3×n-grids.

Definition 5.11. A graph G = (V,E) is a member of G3 if:

(1) there is a subset of vertices C ⊆ V such that
• G[C] is a chordless cycle with length |C| ≥ 0 and
• P := V \ C induces a path with length |P | ≥ 0 in G, and

(2) G is connected, and
(3) G is planar

Note that we still call C a circle, if |C| is 1 or 2. In this case, C is only one vertex or two
vertices that are connected by an edge, respectively.
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A structure of a graph G ∈ G3 is shown in Figure 5.5. Note that every 3×n-grid with n ≥ 3
is part of this graph class.

C

P

C

P

Figure 5.5: Two possible viewpoints on a graph in the graph class G3. The dotted-dashed lines are
placeholders for vertices that are connected along these lines. Solid lines represent edges. An
arbitrary number of edges connecting P and C can be located in the grey area. One of those
edges has to exist if P and C are not empty to ensure that the graph is connected.

To show that the MinDegree heuristic returns a value of at most 3 for all graphs in G3,
we prove that a graph in G3 has a minimum degree of at most 3, and that G3 is closed
under matching eliminations.

Lemma 5.12. If G ∈ G3 then δ(G) ≤ 3.

Proof. Let G = (V,E) be a graph in G3 with cycle C and path P . If |C| = 0, then G is
only a path where the minimum degree is at most 1. If |P | = 0, then G is only a chordless
cycle, in which the minimum degree is at most 2. Otherwise, let v ∈ V be a leaf in G[P ].
If we assume δ(G) > 3, then v has at least three neighbors in C. Now let c1, c2, c3 ∈ C be
those neighbors ordered clockwise by the angle in which their respective edge enters the
vertex v. An illustration of this situation is shown in Figure 5.6.

C

c1

c2

c3

vP

Figure 5.6: Illustration of the neighborhood of v in a graph of G2.

By assumption c1 and c3 have a degree of at least 4. The problem is that c2 can not be
adjacent to another vertex anymore because:

• If c2 was adjacent to a vertex in C, G[C] would not be a chordless cycle.
• If c2 was adjacent to another vertex in P , the edge had to cross at least one other

edge.

As a consequence, there is a vertex with degree less than the minimum degree, which is a
contradiction.

Next, we show that G3 is closed under all eliminations with degree of at most 3 that can
occur during the MinDegree heuristic. To prove that planarity remains after eliminating
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a vertex in a graph G ∈ G3, we introduce the following class of eliminations. Let G = (V,E)
be a planar graph, v ∈ V a vertex and G′ their elimination graph. Then the elimination of
v is called a planar elimination if G′ is also a planar graph. In Lemma 5.13 we show that
all eliminations possible for a G3 graph remain planarity, and therefore property (3) of the
Definition 5.11.

Lemma 5.13. All eliminations with degree of at most 3 are planar eliminations.

Proof. Most eliminations with a degree at most 3 are planar eliminations by the fact that
planar graphs are closed under taking the minor. For that, note that the elimination
graph of a graph G with respect to an almost simplicial vertex is a minor of G. The
reason for that is, that the elimination of an almost simplicial vertex can be simulated by
contracting the edge between the eliminated vertex and its non-clique vertex. Since all
eliminations with degree of at most 3 and fill-in of at most 2 eliminate an almost simplicial
vertex, these eliminations are planar eliminations. Consequently, it remains to show that
(3, 3)-eliminations remain planarity too. Let G = (V,E) be a planar graph and let v ∈ V
be a vertex whose elimination is a (3, 3)-elimination. Because G is planar, the edges from
v to its neighbors do not take up space that is taken by other edges. This space can be
used to connect the neighbors of v to a 3-clique in the elimination graph of G and v, as
shown in Figure 5.7.

Figure 5.7: Illustration for a planar (3, 3)-elimination.

That the elimination graph of a graph in G3 is still connected is shown in Lemma 4.1.
Therefore it remains to show that the elimination graph G′ of a graph G ∈ G3 with respect
to a vertex with minimum degree can also be partitioned into a chordless cycle and a path
(property (1) in Definition 5.11 of G3). We proof this in Lemmas 5.16 to 5.18 separated
by the degree of the elimination, after showing some helpful properties in Corollary 5.14
and Lemma 5.15.

Corollary 5.14 (from Definition 5.11). Let G = (V,E) ∈ G3 with dedicated cycle C ⊆ V
and path P ⊆ V . Further, let G′ be the graph G after adding or removing arbitrary
CP–edges. Then G′ ∈ G3 if G′ is planar and connected.

Proof. Adding or removing CP–edges does neither affect the sets C and P , nor the edges
in G[P ] and G[C]. Therefore C and P remain a cycle and a path in G′ respectively. Since
G′ is planar and connected by assumption, all conditions for G′ ∈ G3 are fulfilled.

Lemma 5.15. Let G = (V,E) ∈ G3 with dedicated cycle C ⊆ V and path P ⊆ V , and let
G′ be the graph G after contracting an P– or C–edge. Then G′ is in G3.

Proof. The graph G′ is planar, because G is planar, and G′ is by definition a minor of G.
It is also connected by Lemma 4.2. Let e = {x, y} ∈ E be an edge in G, and z the vertex e
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is contracted to. If x, y ∈ C, then G[P ] is not changed at all during the contraction of e,
and (C ∪ {z}) \ {x, y} induces a cycle in G′. This cycle is additionally chordless, because
G would otherwise have a chord too. If x, y ∈ P , then G[C] is not changed at all during
the contraction of e, and (P ∪ {z}) \ {x, y} induces a path in G′. Therefore G′ fulfills all
conditions for G3.

With those properties of G3, we prove for every elimination with minimum degree, that
the elimination graph is still in G3. Since the minimum degree in a graph of G3 is 3
(Lemma 5.12), it is sufficient to show this for eliminations with degree of at most 3. In
the following lemmas, we consider the possible eliminations separately depending on their
degree.

Lemma 5.16. The graph class G3 is closed under eliminating leaves.

Proof. Let G = (V,E) be a graph in G3 with dedicated cycle C ⊆ V and path P ⊆ V ,
v ∈ V a leaf in G, and G′ the elimination graph of G with respect to v. Because v is a
leaf it has only one neighbor w ∈ V . Now there are the following two cases. If v and w
are both in G[C] (or G[P ]), then G′ ∈ G3 according to Lemma 5.15. If, otherwise, v ∈ P
and w ∈ C, then v is the last vertex in P and {v, w} is the only edge connecting P and C.
Therefore G′ = G[C], which is planar, connected and has a chordless cycle C and a path
P = ∅. So G′ ∈ G3 applies. For v ∈ C and w ∈ P the proof is analog.

Lemma 5.17. Let G = (V,E) be a graph in G3 with dedicated cycle C ⊆ V and path
P ⊆ V . Further, let δ(G) = 2 and let v ∈ V be a vertex with minimum degree. Then G′,
the elimination graph of G respect to v, is in G3.

Proof. The graph G′ is connected and planar by Lemmas 4.2 and 5.13 respectively. Let
a, b ∈ V be the two neighbors of v. Since a vertex with degree 2 is always an almost
simplicial vertex, the elimination of v can be simulated by either contracting {v, a} or {v, b}.
If one of those edges is either a P - or a C–edge, then G′ ∈ G3 according to Lemma 5.15.

If otherwise both edges are CP–edges, we show that the vertices of G can be partitioned
into a path P ′ and a cycle C ′, such that v is incident to a C ′–edge. Then we can use
Lemma 5.15 again to show G′ ∈ G3. Both cases are illustrated in Figure 5.8. If v ∈ P , then
v have to be the only vertex in P , because it is not incident to a P–edge by assumption.
Now, let a, b ∈ C the two neighbors of V . Because a and b both lie on the cycle, they
are connected by two path S1 and S2. One of those paths, w.l.o.g. S1, forms a cycle C ′
together with the edges {v, a} and {v, b}, while the other one remains a path. If v is a
vertex in C and a, b ∈ P the two neighbors of v, then v is the only vertex in C. Since we
assumed a minimum degree of 2, a and b have to be the leafs of G[P ]. Therefore the whole
graph is a single cycle with vertices C ′ = V .

Lemma 5.18. Let G = (V,E) be a graph in G3 with dedicated cycle C ⊆ V and path
P ⊆ V . Further, let δ(G) = 3 and let v ∈ V be a vertex with minimum degree. Then G′,
the elimination graph of G respect to v, is in G3.

Proof. Again, G′ is connected and planar by Lemmas 4.2 and 5.13 respectively. To
proof that G′ also fulfills the third property of Definition 5.11, we show that all possible
eliminations of v can be simulated by a sequence of operations described in Lemma 5.15
and Corollary 5.14. For this, we make a case distinction over the position of v in G, i.e.,
we consider the situations where v is a vertex in the cycle or the path.
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Figure 5.8: Proof that the vertices of G can be partitioned into a path P ′ and a cycle C′, such that v is
incident to a C′–edge.

Let v be a vertex in the cycle C. In the following we make a case distinction over the
size of C: If |C| ≥ 3, v has exactly two neighbors a, b ∈ C and, because of δ(G) = 3, a
neighbor c ∈ P . In this case, a single edge contraction is not always sufficient to simulate
the elimination of v. After the elimination of v, the edges {a, b}, {a, c} and {b, c} have
to exist in G, while contracting the C–edge {v, a} (or {v, b}) in G only ensures the edges
{a, b} & {v, a} (or {a, b} & {v, b}) to exist afterwards. In both cases the only missing edges
are CP–edges, which can safely be added without loosing the properties of G3, according
to Corollary 5.14.

If v ∈ C with |C| = 2, then the vertices of G can be partitioned in another way, such that
there is a path P ′ with |P ′| ≥ 0 and a cycle C ′ := V \ P ′ with |C ′| ≥ 3 and v ∈ C ′. As a
result, one of the cases above can be applied. Note that in this case both leafs of G[P ] have
to be adjacent to both vertices in C to ensure the minimum degree of 3. If C had only one
vertex there would not be enough CP–edges for the leafs of P to have degree 3. Since this
would imply the existence of a vertex with degree of at most 2, this is a contradiction to
δ(G) = 3. Both cases for |C| ≤ 2 are illustrated in Figure 5.9.

C

P

v

C

P

v
C ′

P ′P ′

v

Figure 5.9: Illustration for δ(G) = 3 and |C| = 2 (upper figure) and |C| = 1 (lower figure). The gray area
in the upper case is a placeholder for any number of CP–edges. The red vertices in the lower
figure have to have a degree of 2, which is a contradiction in this case.

Now, let v be a vertex on the path P of G. In the following, we make a case distinction
over the degree of v in G[P ]. Note that this degree can not be greater than 2, because
otherwise G[P ] was not a path.

If v has a degree of 2 in G[P ], then v has exactly two neighbors a, b ∈ P and one neighbor
c ∈ C. Now the argumentation is the same as in the case „|C| ≥ 3“.
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If, otherwise, v has a degree of 1 in G[P ], let w ∈ V be the only neighbor of v in G[P ]. In
this case, we can show that contracting the edge {v, w} simulates all possible eliminations
of v. As this is an operation according to Lemma 5.15, we can conclude G′ ∈ G3. For this,
we show that w is always an almost-clique-vertex of v. If a, b ∈ C are the other neighbors
of v in G[C], we have to show that they are adjacent. So, assume they are not adjacent.
Then there is at least one vertex m ∈ C that lies between a and b on the cycle G[C]. This
vertex m can not be adjacent to any other vertex as its two neighbors in C, because all
three neighbors of v already mentioned, and any other edge would be a chord in G[C].
Therefore m is a vertex with degree 2, which is a contradiction to v being a vertex with
minimum degree. As a consequence, a and b are adjacent and therefore also a clique with
size 2 = deg(v) − 1. This implies that w is an almost-clique-vertex of v, which is why
contracting the edge {v, w} simulates all possible eliminations of v in this case.

If v ∈ P has a degree of 0 in P , v is the only vertex in P . With the same argumentation
we can show that G = K4 is the only graph in G3 meeting these conditions. In this case we
show that the vertices of G can be partitioned in another way, such that there is path P ′
with |P ′| ≥ 0 and a cycle C ′ := V \ P ′ with |C ′| ≥ 3 that includes v. Therefore a subcase
in „|C| ≥ 3“ can be applied. This situation is shown in Figure 5.10.

=
C

P C ′

P ′

Figure 5.10: The red vertices and edges in the left graph show that there can not be any vertices between
the neighbors of the center vertex v. As a result, the graph in the middle is the only one of
this kind. In this graph, there is a cycle C′ with at least three vertices that includes the
center vertex v. This cycle is shown in the right graph.

With those lemmas, we can prove the following Theorem 5.19.

Theorem 5.19. The MinDegree heuristic returns the correct treewidth for every 3×n-
grid.

Proof. In Lemma 5.12 and the Lemmas 5.16 to 5.18 we prove the necessary conditions
to show that the MinDegree heuristic returns a value of at most 3 for every graph in
G3. Since each 3×n-grid is a member of G3, this applies to every 3×n-grid too. From
Theorem 5.8 we know that the MinDegree heuristic returns the correct treewidth for the
3×1-grid and the 3×2-grid. For all other 3×n-grids the MinDegree heuristic returns a
value that is at most the actual value. Since this heuristic is an upper-bound heuristic, the
theorem holds for every 3×n-grid.
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6. Approaches for MinDegree on Larger
Grids

This chapter is about finding an upper bound to the results of the MinDegree heuristic
on larger grids, i.e., n×m-grids with n,m ≥ 4. For this, we show in Section 6.1 why the
size of the first clique, that occurs in the sequence of elimination graphs of the heuristic, is
so important. Using these findings, we present two approaches in Sections 6.2 and 6.3 to
find such upper bounds.

6.1 The First Clique
In Theorem 6.3 we show how the size of the first clique and the heuristic result are related
to each other. For this, we first consider chordal graphs in Lemma 6.1 and then extend the
statement to general graphs.

In the proofs of the following lemmas, we argue with the sequence of elimination graphs of
a graph G = (V,E) in the course of the MinDegree heuristic. These graphs are denoted
as G = G0, G1, . . . , G|V |, where Gi is the graph G after the i-th iteration of the heuristic.
In the next lemma, we show an interesting property of the graph Gk, where k is the highest
number such that Gk has minimum degree t = MinDegree(G)tw. This k exists, because
there has to be at least one graph with the minimum degree t in the sequence G1, . . . , G|V |
if the MinDegree heuristic returns the value t.

Lemma 6.1. Let G = (V,E) be a chordal graph and Gi the graph G after the i-th iteration
of the MinDegree heuristic. Further, let Gk with k = 1, . . . , |V | be the last graph with a
minimum degree of MinDegree(G)tw in the sequence G1, . . . , G|V |. Then Gk is a clique
with size tw(G) + 1.

Proof. Assume Gk = (V,E) is not a clique. Because G is chordal and chordal graphs are
closed under eliminations according to Corollary 4.4, Gk is also a chordal graph. Since Gk
is not complete, Gk has at least two non-adjacent simplicial vertices u and v [Jr.83]. In
the following, we show that, under these assumptions, the elimination graph of Gk with
respect to an arbitrary vertex x with minimum degree has a clique with size tw(G) + 1.
Therefore the MinDegree heuristic is forced to eliminate at least one vertex with degree
tw(G) at some point, which is a contradiction to Gk being the last graph in the sequence
with that minimum degree.
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First, we show that the degree of u and v is exactly tw(G). If we assume that they have a
higher degree than tw(G), there is a clique in Gk with a size of at least tw(G) + 2. This
implies that Gk has a treewidth of at last tw(G) + 1. Therefore the MinDegree heuristic
would return a higher value than the actual treewith of G if Gk is in the sequence. Since the
MinDegree heuristic works optimal on chordal graphs (Theorem 5.3), Gk can not be part
of the sequence G1, . . . , G|V |, which is a contradiction. Therefore deg(u), deg(v) ≤ tw(G)
applies. Additionally, u and v have a degree of at least tw(G) because Gk has a minimum
degree of tw(G).

Let x be a vertex with minimum degree in Gk (not necessarily u or v). In the following
we show that the elimination graph of Gk with respect to x still has a clique with size
tw(G) + 1. For this, we show that the elimination of x can only change the degree of at
most one of the vertices u or v. If x ∈ {u, v}, w.l.o.g x = u, then the elimination of x does
not change the neighborhood of v, because u and v are not adjacent (but simplicial). If
otherwise x /∈ {u, v}, it remains to show that x is not in the neighborhood of both u and
v. So assume x was a neighbor of u and v. Since v is simplicial in Gk, x is also adjacent
to all neighbors of v. Therefore x has at least tw(G) neighbors. But because x is also
adjacent to u, and u /∈ NGk

(v), the vertex x even has at last tw(G) + 1 neighbors. This is
a contradiction to x being a vertex with minimum degree.

As a result, Gk+1, the elimination graph of Gk with respect to x, still has a simplicial
vertex with degree tw(G). Therefore there is a clique of size tw(G) + 1 in Gk+1, which
forces the MinDegree heuristic to eliminate at least one vertex with degree tw(G) at
some point. This is a contradiction to Gk being the last graph in which such a vertex is
eliminated. As a consequence, the assumption that Gk is not complete was wrong. Since
Gk has a minimum degree of MinDegree(G)tw = tw(G) by assumption, Gk is a clique
with size tw(G) + 1.

In the following, we extend the idea to general graphs. For this, we show the connection of
a general graph G and one of its triangulations in Lemma 6.2.

Lemma 6.2. Let G = (V,E) be a graph and G∆ = (V,E∆) the triangulation of G according
to MinDegree(G)π. Then MinDegree(G, ρ) and MinDegree(G∆, ρ) have the same
elimination ordering and the same sequence of degrees.

Proof. For this proof, we show that MinDegree(G, ρ) and MinDegree(G∆, ρ) eliminate
the same vertex v ∈ V with the same degree in the first step. Each further step works
with the same arguments if we replace G with the elimination graph of G and v. Let v
be the first vertex that is eliminated in MinDegree(G, ρ), i.e., the vertex with minimum
degree that has the lowest value in g(v). Since v was eliminated first, there cannot be any
additional fill-in edges in G∆ that are incident to v. Therefore v has the same degree in
G∆ as in G. Since all other vertices in G∆ have at least the degree that they have in G, v
is also eliminated first in MinDegree(G∆, ρ).

Theorem 6.3. Let G = (V,E) be a graph, ρ a vertex ordering of G, and G0 = G,G1, . . . , G|V |
the sequence of elimination graphs of the MinDegree heuristic with ρ. Then the first com-
plete elimination graph in this sequence has the index k = |V | − (MinDegree(G, ρ)tw + 1).

Proof. For reasons of clarity let t = MinDegree(G, ρ)tw. Further, let k be the index of
the first complete graph in the sequence G1, . . . , G|V |. We show that k = |V | − (t+ 1) by
leading both k < |V | − (t+ 1) and k > |V | − (t+ 1) to a contradiction.

Assume k < |V | − (t + 1). In general the graph Gi with i ∈ [1; |V |] has |V | − i vertices.
Therefore the graph Gk has strictly more than t+ 1 vertices. Since Gk is a complete graph,
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the minimum degree of Gk is strictly greater than t. As a consequence, the MinDegree
heuristic eliminates a vertex with a degree of at least t+ 1 next, which is a contradiction to
the definition of t = MinDegree(G, ρ)tw being the highest degree of eliminated vertices
in the sequence G1, . . . , G|V |.

To prove k > |V |−(t+1) wrong, letG∆ be the triangulation ofG according to the elimination
ordering MinDegree(G, ρ)π, and let G∆

1 , . . . , G
∆
|V | be the sequence of elimination graphs

of the MinDegree heuristic with ρ. Then MinDegree(G, ρ) and MinDegree(G∆, ρ)
have the same elimination ordering and the same sequence of degrees (Lemma 6.2). Now
assume that the first complete graph Gk has less than t+ 1 vertices, i.e., k > |V | − (t+ 1).
In the following we lead this to a contradiction by finding an l < k such that Gl is
already a complete graph, which is a contradiction to the definition of k. Since Gk has by
assumption less than t+ 1 vertices, its minimum degree is strictly less than t. Therefore
there has to be a graph earlier in the sequence G1, . . . , G|V | that has a minimum degree
of t = MinDegree(G, ρ)tw. Let l be highest index with l < k, such that the minimum
degree of Gl is t. Because G and G∆ have the same degree sequence of eliminated vertices
(Lemma 6.2), Gl and G∆

l have the same minimal degree, namely MinDegree(G, ρ)tw. As
G∆
l has minimal degree t = MinDegree(G, ρ)tw, it is complete (Lemma 6.1). As the

graph Gl has as many vertices as G∆
l , namely t+ 1, and has a minimum degree of t, it has

to have at least (t+ 1)t/2 edges, making it complete.

As a result, the key idea to get an upper bound to the result of the MinDegree on an
arbitrary graph is to bound the size of the first clique in an elimination sequence from
above. Different approaches to that idea are presented in the following two sections.

6.2 Counting argument
The first approach ignores the structure of a grid and focuses only on the distribution of all
degrees. We assume that all vertices have the same degree, i.e., the average degree of the
graph, to raise the minimum degree. In the following, we present a procedure to gradually
increase the average degree by eliminations with maximal fill-in. For that, we describe this
procedure for the first step and then generalize the idea, that leads to Theorem 6.6, in
which we give an upper bound to the result of the MinDegree heuristic on n×n-grids.

An n×n-grid has |V | = n2 vertices and |E| = 2n2 − 2n edges, so the average degree is

2 |E|
|V |

= 22n2 − 2n
n2 = 4n2

n2 −
4n
n2 < 4.

As the average degree is strictly less than 4, there has to be a vertex with a degree of at
most 3. Actually, there are even four vertices with a degree of 2, but as we search for an
upper bound, we take the highest possible value for the minimum degree. In the next step,
we eliminate as many vertices with degree 3 as necessary to reach an average degree of 4.
For that, let k be the number of such vertices. It is easy to see that the number of vertices
decreases by k during these eliminations. To see how the number of edges changes, we
consider the fill-in of all possible elimination with degree 3, and find an upper bound. In
an elimination with degree 3 at most 3 ∗ (3− 1)/2 = 3 edges can be added in between the
neighbors of the eliminated vertex. Since the three edges from the eliminated vertex to its
neighbors are removed by that, the edge difference is at most 0. To increase the average
degree to 4, k has to fulfill
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4 ≤ 2 |E
′|

|V ′|
= |E|+ 0 · k
|V | − k

= 22n2 − 2n
n2 − k

⇔ 4n2 − 4k ≤ 4n2 − 4n
⇔ k ≥ n.

Consequently, after at least n eliminations the average degree rises to 4. After exactly n
eliminations, there are n2 − n vertices and exactly twice as many edges. Since this term
will occur frequently in this section, we define N(n) = n2 − n.

Now, we check for which n there are more edges in the new graph than the number of
vertices even allows. A graph with l vertices is complete if and only if it has l(l − 1)/2
edges. If the new graph has more edges than possible, an elimination with degree 3 resulted
in a complete graph. According to Theorem 6.3 the result of the MinDegree heuristic is
then 3. Therefore the MinDegree heuristic returns at most 3 for all n×n-grids such that

|E′| ≥ |V
′|(|V ′| − 1)

2
⇔ 4|V | ≥ |V |(|V | − 1)
⇔ 4(n2 − n) ≥ (n2 − n)(n2 − n− 1)
⇔ 0 ≤ −n4 + 2n3 + 4n2 − 5n = x · (x− 1) · (−x2 + x+ 5)

⇔ n ∈
[
−
√

21 + 1
1 ; 0

]
,

[
1;
√

21 + 1
2

]
.

As a result, 3 is an upper bound for all n×n-grids with n ≤ (
√

21 + 1)/2 < 3, which is
already shown by Theorem 5.8. To find upper bounds for larger grids we repeat this step
gradually for all average degrees. So, in the next step we to increase the average degree to
5 by eliminations with degree 4. Since computing all steps one after another is elaborate,
we generalize the ideas presented so far and find a closed formula for an upper bound of
the MinDegree heuristic that only depends on n.

For that, we generalize the formula that we used to calculate the necessary number of
eliminations to increase the average degree to the next higher integer. Let d = 2|E|/|V | ∈ N
be the current average degree of an elimination graph of the n×n-grid (V,E). Additionally,
let f(d) be the maximum edge difference between the current graph and an elimination
graph with respect to a vertex with degree d. This edge difference is at most d(d− 1)/2−d,
because at most a clique with size d is created and the d edges between the eliminated
vertex and its neighbors are removed. In general we can find an a ∈ [3/8, 1/2] such that
f(d) = ad2 − d is an upper bound to edge difference of an elimination with degree d. The
lower bound to a comes from the fact, that the maximum edge difference of an elimination
with degree 4 is 2. Substituting those two numbers into the function f gives

a · 42 − 4 ≥ 2 ⇒ a ≥ 6
16 = 3

8 .

Now, the general formula for k to increase the average degree to the next integer d+ 1 is

2 |E| − f · k
|V | − k

≥ d+ 1 ⇒ k ≥ (d+ 1)|V | − 2|E|
2 · f(d) + (d+ 1) .
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Substituting this lower bound for k into the fraction results in an average degree of exactly
d+ 1. Additionally, we get the following upper bound to the new number of vertices |V ′|.

|V ′| = |V | − k

≤ |V | − (d+ 1)|V | − 2|E|
2 · f(d) + (d+ 1)

= |V |

1−
(d+ 1)− 2 |E||V |

2 · f(d) + (d+ 1)


In the previous step of this procedure, we increased the average degree to exactly d.
Therefore we can substitute d for 2|E|/|V |.

= |V |
(

1− (d+ 1)− d
2 · f(d) + (d+ 1)

)
= |V |

(
1− 1

2 · f(d) + (d+ 1)

)

Using this estimation repeatedly, we get an upper bound to the number of remaining
vertices |Vd| after all eliminations with a degree smaller than d, for some d ≥ 3, that only
depends on N(n) and the function f .

|Vd| ≤ |Vd−1|
(

1− 1
2 · f(d) + (d+ 1)

)
≤ |Vd−2|

(
1− 1

2 · f(d− 1) + d

)(
1− 1

2 · f(d) + (d+ 1)

)
. . .

≤ N(n) ·
d∏
i=4

(
1− 1

2 · f(i) + (i+ 1)

)
︸ ︷︷ ︸

:=Πd

To get the new number of edges |E′| after all eliminations with a degree smaller than d, we
use d+ 1 = 2|E′|/|V ′|, and get

|E′| = d+ 1
2 |V ′|.

Now, we find the smallest d ≥ 4, such that the number of edges |Ed|, that remains after
all eliminations with a degree smaller than d, exceeds the maximum number of edges in a
graph with |Vd| vertices. This is the case if

|Ed| ≥
|Vd|(|Vd| − 1)

2

⇔ d+ 1
2 · |Vd| ≥

|Vd|(|Vd| − 1)
2

⇔ d+ 1 ≥ |Vd| − 1.
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By substituting N(n) ·Πd for |Vd|, we increase the smallest d, than fulfills this inequality.
But, since we just need to find an upper bound to the smallest d, we can find the smallest
d, that fulfills the inequality

d+ 1 ≥ N(n) ·Πd − 1

⇔ N(n) ≤ d+ 2
Πd

instead. To prove that the smallest d that fulfills this new condition is in Ω(n2), we need
the following technical Lemma 6.4.

Lemma 6.4. For every d ≥ 4 and a ∈ [3/8, 1/2], Πd ≥ 1/d+ 1/2 applies.

Proof. We prove this inequality by induction over d with an arbitrary but fixed a ∈ [3/8, 1/2].
In the base case let d = 4.

Π4 −
(1

4 + 1
2

)
=
(

1− 1
2 · f(4) + (4 + 1)

)
−
(1

4 + 1
2

)
=
(

1− 1
2 · (16a− 4) + 5

)
− 3

4

=
(

1− 1
32a− 3

)
− 3

4

= 32a− 3− 1
32a− 3 − 3

4 = 4(32a− 4)− 3(32a− 3)
4(32a− 3)

= 32a− 7
128a− 12

Since both numerator and denominator are positive for all a ∈ [3/8, 1/2], the whole fraction
is always positive. Therefore Π4 is at least 1/4 + 1/2. In the induction step, the following
applies.

Πd+1 −
( 1
d+ 1 + 1

2

)
=

d∏
i=4

(
1− 1

2 · f(i) + (i+ 1)

)
−
( 1
d+ 1 + 1

2

)
≥
(1
d

+ 1
2

)(
1− 1

2 · f(d+ 1) + (d+ 2)

)
−
( 1
d+ 1 + 1

2

)
=
(1
d

+ 1
2

)
−
( 1
d+ 1 + 1

2

)
−
(1
d

+ 1
2

) 1
2 · f(d+ 1) + (d+ 2)

=
(1
d
− 1
d+ 1

)
− 2 + d

2d · 1
2 · (a(d+ 1)2 − (d+ 1)) + (d+ 2)

= 1
d(d+ 1) −

2 + d

2d(2(ad2 + 2ad+ a− d− 1) + d+ 2)

= 1
d(d+ 1) −

2 + d

2d(2ad2 + 4ad+ 2a− 2d− 2 + d+ 2)

= 1
d(d+ 1) −

2 + d

2d(2ad2 + (4a− 1)d+ 2a)

= 2d(2ad2 + (4a− 1)d+ 2a)− d(d+ 1)(2 + d)
d(d+ 1) · 2d(2ad2 + (4a− 1)d+ 2a)
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Because 4a− 1 ≥ 4 · 3/8− 1 = 1/2 ≥ 0, the denominator only has positive factors, which is
why it is positive too. Therefore, it remains to show that the numerator

2d(2ad2 + (4a− 1)d+ 2a)− d(d+ 1)(d+ 2)
= 4ad3 + (8a− 2)d2 + 4ad− d3 − 2d2 − d2 − 2d
= (4a− 1)d3 + (8a− 5)d2 + (4a− 2)d

= d
(
(4a− 1)d2 + (8a− 5)d+ (4a− 2)

)
.

is positive too. Because d is always positive, we only consider the inner polynomial p(d) in
the following. Since p is a quadratic polynomial with a positive leading coefficient, it is
sufficient to show that p(5) and p′(5) are positive.

p(5) =(4a− 1)52 + (8a− 5)5 + (4a− 2)
=100a− 25 + 40a− 25 + 4a− 2
=144a− 52

Therefore p(5) is greater than 0 if a ≥ 52/144 = 0.361 which is true for all a ≥ 3/8. The
derivative of p is p′(d) = (8a− 2)a+ (8a− 5). If we substitute 5 for a, we get

0
!
≤ p′(5) = (8a− 2) · 5 + (8a− 5)
= 40a− 10 + 8a− 5 = 48a− 15.

which is true for all a ≥ 15/48 = 0.3125. Therefore p′(d) is in particular positive for all
a ≥ 3/8. As a result Πd+1 is at least 1/(d+ 1) + 1/2, which concludes the proof for the
induction step.

Using this lower bound for Πd, we get d ≥ 1/2(n2−n) from the inequality N(n) ≤ (d+2)/Πd.
Consequently, the upper bound, we get from this approach, is at least quadratic. With the
help of the next Lemma, we show that d actually is quadratic.

Lemma 6.5. For every d ≥ 4 and a ∈ [3/8, 1/2], Πd ≥ 1/a(1/d+ 1/2) applies.

Proof. We prove this by showing that Πd is always smaller than 1, and 1/a ∗ (1/d+ 1/2) is
always greater than 1, for every d ≥ 4 and fixed a ∈ [3/8, 1/2]. The first inequality can be
shown by using the lower bound to a:

1
a

(1
d

+ 1
2

)
a≤0.5
≥ 2

d︸︷︷︸
≥0

+1 ≥ 1

For the second inequality, we show that every factor (∗) of Πd is smaller than 1 but greater
as 0, which is sufficient to show that Πd itself is always smaller than 1. At first, we show
that denominator of each factor is at least 1 and therefore positive.

1 ≤ 2 · f(i) + (i+ 1) = 2ai2 + 3i+ 1

⇔ i2 ≥ − 3i
2a
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This is true for every i ≥ 0 and a ∈ [3/8, 1/2] because the left side is always greater than 0
and the left side is always smaller than 0. As a result, each factor can be bounded from
above and below by

0 = 1− 1
(∗)≥1
≤ 1− 1

2 · f(i) + (i+ 1)
(∗)≥0
≤ 1.

Since all factors of Πd are greater than 0 and smaller than 1, Πd is too. Consequently,
Πd ≥ 1 ≥ 1/a(1/d+ 1/2) applies.

Using this inequality we get d ≤ 2a(n2 − n) from the inequality N(n) ≤ (d+ 2)/Πd. As a
result, we get an upper bound to the result of the MinDegree heuristic on an n×n-grid,
that is recorded in the following Theorem 6.6.

Theorem 6.6. The MinDegree heuristic returns at most 3/4(n2 − n) for an n×n-grid.

Proof. Substituting the lowest a, i.e., a = 3/8, into d ≤ 2a(n2 − n) results in the desired
upper bound for d.

One could improve this result by finding a better function f(d), but as long as f(d) ∈ O(d2)
this method still yields a quadratic upper bound.

6.3 Structural Investigation
In this section, we focus on the structure of possible elimination graphs of large grids under
the MinDegree heuristic. We first point out the problem that arises in grids with sides
length higher than 3, and give an alternative view on elimination graphs by introducing
eliminated components in Section 6.3.1. We then find a way to illustrate the compressed
information of eliminated components by introducing the border graph of an elimination
graph in Section 6.3.2. Using this type of illustration, we finally describe the behavior of
the MinDegree heuristic on large grids in Section 6.3.3.

6.3.1 Eliminated Components

The reason why we only consider grids with side lengths larger than 3 is, that in these and
larger grids there is the possibility to eliminate an inner vertex, i.e., a vertex with degree 4.
For all smaller grids, we figured out, that they are dismantled from the outside somehow.
By eliminations of inner vertices, the neighborhood of outer vertices gets increasingly
unpredictable. Additionally, Figure 6.1 shows that the whole grid can lose its uniform
structure completely in the course of the MinDegree heuristic.

As a solution to this problem, we introduce a way to describe the structure of such
elimination graphs properly and simpler by reducing the complexity of their cliques. It can
be seen in Figure 6.1 that every clique only becomes bigger or merges with other neighboring
cliques in the course of the heuristic. This idea leads to the following Lemma 6.7, which
shows a connection between arbitrary graphs and the cliques of their elimination graphs.

Lemma 6.7. Let G = (V,E) be a graph, A ⊆ V a set of vertices, and let G′ = (V ′, E′) be
the graph G after all vertices in A are eliminated. Further, let x, y ∈ V \A be two vertices
that are not eliminated. Then the following equivalence applies: x and y are adjacent in G′
if and only if there is a path P = (x, a1, . . . , ap, y) in G with a1, . . . , ap ∈ A and p ≥ 0.
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. . . . . . . . .

Figure 6.1: An example of the elimination of a 5×8-grid grid with random vertex ordering under the
MinDegree heuristic. The graphs show the state of the grid after all 3-eliminations, 4-
eliminations and 5-eliminations (from left to right). The last graph is the first complete graph
in the series.

Proof. We first show the backward direction. We do this by proving the following statement:
If all vertices C ⊆ V of a connected subgraph of G are eliminated, then all vertices in
the united neighborhood NG(C) are adjacent in the elimination graph. We prove this
by induction over the size of C. In the base case |C| is either 0 or 1. If |C| = 0, then
NG(C) is empty and therefore a clique with size 0. If |C| = 1, the neighborhood of the one
vertex v ∈ C becomes a clique by the fill-in-operation during the elimination of v. In the
induction step let v ∈ C be a vertex and w ∈ NG(v) a neighbor of v. This vertex w exists
because the subgraph induced by C is connected and |C| ≥ 2. If we eliminate v from G,
then all neighbors of v become neighbors of w in the elimination graph of G and v. By the
induction hypothesis, all vertices in the new neighborhood of w will be a clique after all
vertices in C \ {w} are eliminated. Since the neighbors of v are a subset of those vertices
the induction step is done. With this statement, we can show the backward direction. Let
A′ ⊆ A be the set of vertices that are used in a path P between x and y. If we eliminate
all vertices along this path, we know that the united neighborhood of these vertices will
form a clique afterward. Since x and y are in this neighborhood, they are connected in G′.

For the other direction, we assume there is no such path P in G. Then x and y are not
adjacent in G and there is an x, y-separator S ⊆ V \A. This separator also exists in G′,
because no vertex in the separator is eliminated. Therefore x and y are not adjacent in
G′.

So, if we consider the components in the induced subgraph G[A] of all eliminated vertices
A ⊆ V , we can say something about the cliques in G′. Let C ⊆ A be the vertices of a single
component in G[A], then the neighborhood NG(C) is a clique in G′ according to Lemma 6.7,
because for every pair of vertices x, y ∈ NG(C) there is a path P = (x, c1, . . . , cp, y) with
c1, . . . , cp ∈ A and p ≥ 0 in G. Additionally for every edge (x, y) ∈ E′ \E there is such a
component that has x and y in its neighborhood. We call such components C eliminated
components of G with respect to A. The order of an eliminated component C is the size of
its neighborhood NG(C).

6.3.2 The Border Graph

Figure 6.2 shows an example of how the eliminated components of a grid can be illustrated
based on the area its neighborhood takes up.

The advantage of the right illustration in Figure 6.2 is that we can omit many interfering
edges of the cliques, which makes the elimination graph structurally simpler. Additionally,
no information is lost, since the size of the clique is represented by the number of vertices
lying on the border of the areas. We call this kind of graph the border graph of an
elimination graph. In the following, we show that the border graph of every elimination
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Figure 6.2: One possible elimination graph of a grid, where its the areas of eliminated components are
colored in gray (left) or only displayed by their borders (right).

graph of a grid is planar by describing the construction of a planar embedding based on
the uniform planar embedding of a grid. For this, we introduce a method to simulate
eliminations that only uses edge contraction and the structure defined in the following
Definition 6.8.

Definition 6.8. A clique graph of a graph G = (V,E) is a bipartite graph G~ = (V,K, F )
such that:

1. each k ∈ K represents a clique in G. Those are called clique vertices, while all v ∈ V
are just called vertices.

2. an edge {v, k} ∈ F exists if and only if the vertex v ∈ V is part of the clique k ∈ K

3. for every {x, y} ∈ E there is a k ∈ K such that {x, k}, {y, k} ∈ F

Let G = (V,E) be a graph. The method starts with the construction of a clique graph
of G by converting every edge {u,w} ∈ E of the original graph into a clique vertex, that
is connected to u and w. Then every elimination of a vertex v ∈ V is simulated in the
perspective of clique graphs by the contraction of all edges that are incident to v in the
clique graph. Lemma 6.9 shows that the so constructed graph is in fact a clique graph of
the matching elimination graph of G. After each step, the original elimination graph can
be constructed from the clique graph by eliminating all clique vertices (Lemma 6.10). A
sketch of this process is given by Figure 6.3.

G

6.9

∗G

6.10GA
∗GA

Figure 6.3: Process to simulate the elimination of a set vertices A ⊆ V from a graph G = (V,E) in the
perspective of clique graphs. The graph GA is the elimination graph of G with respect to A.
The bold arrow indicates the actual elimination procedure, while the thin arrows describe the
detour via the clique graphs. The graph G~ is obtained by the subdivision of all edges in G.
The graph GA

~ is graph the graph G~ after the simulation of all eliminations of A.

In Lemma 6.9, we show that, given a clique graph G~ of G, the simulation step actually
results in a clique graph of G’s elimination graph. We prove this property for one vertex,
which is sufficient to show the same statement inductive for a whole subset of vertices.
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Lemma 6.9. Let G = (V,E) be a graph, v ∈ V a vertex, G′ their elimination graph and
G~ = (V,K, F ) a clique graph of G. Further, let G′~ be the graph G~ after all incident
edge of v were contracted to a new clique k′. Then G′~ is a clique graph of G′.
Proof. For this proof, we show that G′~ is still bipartite and that the neighborhood of every
k in G′~ induces a clique in G′. We show the first property with the help of Figure 6.4.
Before the contraction, all edges are incident to exactly one vertex v ∈ V and one clique
k ∈ K. After the contraction, all vertices on the second cycle are adjacent to v. Since v is
now transformed to a clique vertex, and no other edges were changed, the graph remains
bipartite.

v v

Figure 6.4: Before (left) and after (right) the elimination of v in G in the perspective of G~. Left: The
vertex v is surrounded by clique vertices represented by a single ◦ and the dotted circle
through it. This clique vertex is connected to several more vertices represented by the gray
cone. Right: After the elimination of v (in G), v becomes a clique vertex in G′

~.

To show the second property, let x and y be two vertices in G′~ that are adjacent to the
clique vertex v. We now show that x and y are adjacent in G′. At first we show that x
and y are adjacent to v in G. By construction of the clique vertex v, we know that there
are clique vertices kx, ky ∈ K such that x (or y) and v were connected over kx (or ky) in
G~. Therefore there are cliques in G that included v and x (or y), which is why they were
adjacent in G. Now, because the elimination of v creates a clique out of all its neighbors, x
and y are adjacent in the elimination graph G′.

It remains to show that the original elimination graph GA can be constructed from the
clique graph GA~ by eliminating all clique vertices. This is done in Lemma 6.10.
Lemma 6.10. Let G = (V,E) be a graph and G~ = (V,K, F ) a clique graph of G. Then
G is the elimination graph of G~ with respect to K.
Proof. We show that the elimination graph of G~ with respect to K has the same set of
vertices and the same set of edges as G. The sets of vertices match because, after the
elimination of all clique vertices in G~ only the vertices V ′ := (V ∪K) \K = V remain.
Now, let E′ be the set of vertices of G~ after the elimination of all clique vertices. We show
that E = E′, by showing both inclusions. Let {x, y} ∈ E be an arbitrary edge in G, then
there are edges {x, k}, {y, k} ∈ F for some k ∈ K in G~ by property 3. As neighbors of an
eliminated vertex x and y are adjacent in the elimination graph of G~ with respect to K,
so E ⊆ E′ applies. Now, let {u, v} ∈ E′. Since G~ is bipartite, and u and v are members
of V ′ = V , there has to be a clique vertex k ∈ K in G~ that is adjacent to both u and v.
As G~ is a clique graph of G, both u and v are part of the same clique in G by property 2
and therefore adjacent in G. It follows that E = E′.

After showing how to simulate eliminations in the perspective of clique graphs and how
to construct the original elimination graph back, we finally give a formal definition of the
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border graph and show a way to construct a planar embedding of it from the clique graph
of an elimination graph, as depicted in Figure 6.5.

Figure 6.5: A clique graph (left) and the border graph (right).

For this, note that all clique graphs, used in this method are planar, if the input graph G is
itself planar, e.g., a grid. The creation of the clique graph G~ from G is a subdivision of all
edges, i.e., an operation that preserves the planarity of G. Moreover, every elimination in
the perspective of clique graphs is a sequence of edge contractions, which also preserves the
planarity. As a result, the basis for the definition of the border graph and the construction
of its planar embedding is a planar graph.

To define the border graph properly, we first define the neighborhood area of a vertex on
planar graphs. Let G = (V,E) be a graph with planar embedding and v ∈ V a vertex in
G. Because G is planar, the neighbors of v can be ordered according to the angle of their
outgoing edges of v. Let w1, . . . , wl be these vertices in the mentioned order. Now the
neighborhood area of v is defined by the area the polygon formed by the lines between wl
and w1 as well as wi and wi+1 for all i ∈ [1; l − 1]. The rhombus in Figure 6.5 for example
is the neighborhood area of the vertex that once was in the middle of the rhombus. Finally,
the border graph of an elimination graph G′ of G is constructed by, first, constructing the
planar clique graph described in Figure 6.3 and then replacing every clique vertex k (and
its adjacent edges) by the edges that form the border of its neighborhood area. These edges
exist because of Lemma 6.10. It remains to argue, that this embedding of a border graph
is planar for every elimination graph of a grid. The reason for that is the property of the
uniform grid embedding, that for every non-adjacent vertices x and y the neighborhood
areas do not intersect. This way there can not be intersecting edges in the border graphs.

6.3.3 Observations on Large Grids

Using the border graph, we now have a simpler way to illustrate elimination graphs, which
makes the observation of large cliques easier. In this subsection, we record some observations
on how the MinDegree eliminates a grid and why it works the way it works. We motivate
our observations based on the sequence of elimination graphs of an exemplary 10×16-grid
grid given in Figure 6.6. The elimination graphs were generated by our program1.

To discuss the behavior of the MinDegree heuristic on large grids for a small minimum
degree, we introduce the concept of degree-independent vertices. For that let G = (V,E)
be a graph and let u, v ∈ V two vertices. We say that u is degree-independent (under
elimination) from v, if the elimination of v doe not change the degree of u. In Lemma 6.11
we give a characterization for degree-independent vertices.

1https://github.com/Wombyte/thesis_tw_heuristics
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Figure 6.6: A sequence of border graphs of a 10×16-grid grid with random vertex ordering created by
the MinDegree heuristic. For the sake of clarity, only elimination graphs are shown that
are important for the following explanation. The red crosses mark the vertices that were
eliminated since the last elimination graph.

Lemma 6.11. Let G = (V,E) be a graph with vertices u, v ∈ V . Then u is degree-
independent from v if and only if {u, v} /∈ E, or {u, v} ∈ E and |(N(v)\u)\(N(u)\{v})| = 1.

Proof. If u and v are not adjacent, then u is not involved in the elimination of v, so its
degree cannot be changed. Otherwise, let u and v be adjacent such that v has exactly one
vertex w in its neighborhood that is not in the neighborhood of u. In this case, the degree
of u stays the same because one edge, namely {u, v} is removed, and one edge, namely
{u,w} is added in the course of the elimination of v.

For the other direction, we know that the elimination of v does not change the degree of u,
i.e., the number of removed and added edges that are incident to u is the same. In the
following, we make a case distinction over the number of removed edges incident to u. This
value can only be zero if u and v are not adjacent, or one otherwise. In the case that u
and v are adjacent, exactly one edge, namely {u, v} is removed during the elimination. To
keep its degree, u has to get one additional edge during the elimination of v. Therefore
there is exactly one vertex in the neighborhood of v (besides u itself) that is not in the
neighborhood of u.

As a corollary, we can say that the minimum degree is not changed by one step of the
MinDegree heuristic, if there are vertices u and v with minimum degree such that u
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is degree-independent from v. Based on that we can understand the first steps of the
MinDegree heuristic on large grids. The minimum degree of a large grid is 2 due to the
vertices in the four corners of the grid. Since they are pairwise degree-independent each
of them has to be eliminated before the minimum degree rises to three. The reason why
exactly those four vertices are eliminated before the minimum degree increases is that the
elimination of one corner vertex does not create a new vertex with degree 2.

The elimination graph after all corner vertices are eliminated is shown in the upper left
corner of Figure 6.6. It has a minimum degree of 3, and all vertices on the border of the
grid have this degree. Note that only the four pairs of vertices that were adjacent to a
corner vertex are degree independent among the vertices with minimum degree. Therefore
the four sides are independent in the sense that an elimination on one of the four sides does
not affect the degree of a vertex on another side. So consider one of the sides with length
n. Since every elimination removes one vertex and increases the degree of the two adjacent
vertices (on the rim), at least dn/3e are eliminated on this side. Additionally, at most
dn/2e vertices can be eliminated on such a side. The left side on the second elimination
graph in Figure 6.6 shows an example of that.

As soon as the minimum degree of an elimination graph is 4, the behavior of the MinDegree
heuristic becomes much harder to predict, since every set of pairwise degree-independent
vertices can be eliminated due to the random vertex ordering. After such a set is eliminated
the minimum degree increases to 5 (for sufficiently large grids), which means that for every
vertex at least one of its neighbors is eliminated as the maximum degree in the original
grid was 4.

To talk about the 5-eliminations, we divide the remaining vertices into two groups according
to their horizontal and vertical neighbors. A vertex v is a horizontal (vertical) neighbor of
a vertex u, if they are adjacent and lie on the same horizontal (vertical) line in the uniform
embedding. It is easy to see that each vertex is adjacent to its horizontal and vertical
neighbors in each elimination graph of a grid. We call a vertex with two horizontal and
two vertical neighbors an enclosed vertex. Now consider an enclosed vertex v. Because the
minimum degree is five, we know that at least one vertex u in the neighborhood of v already
is eliminated. If u is an enclosed vertex itself, it creates a 4-clique during its elimination,
which means that v got three new neighbors. Therefore no such vertex is eliminated until
the minimum degree is lower than 6. As a result, only non-enclosed vertices are eliminated
until then. This is shown in the fourth graph of Figure 6.6. The enclosed vertices that are
part of one 4-clique can be eliminated afterward when the minimum degree is 6.

With the beginning of the second column in Figure 6.6 the eliminated components are clearly
visible. At this point, the maximal cliques of the elimination graphs are mostly non-trivial,
which is why we can reformulate the rule according to which the MinDegree heuristic
chooses the next vertex. In the perspective of eliminated components, the MinDegree
heuristic chooses a vertex whose neighboring eliminated components have as few vertices
as possible in total and as many as possible vertices in common. At first, these vertices
can be part of three or even four eliminated components, but with increasing iteration
number it is more likely that an eliminated vertex was only part of at most two eliminated
components. This applies to all eliminations after the second graph in the second column
of Figure 6.6.

The bigger the eliminated components become the larger become their common borders,
i.e., the vertices they share. If one of those vertices is eliminated the whole border is
eliminated afterward. Therefore those steps are skipped in Figure 6.6, where this behavior
can easily be seen in the last column. To give a formal reason for that let W be a border
of the eliminated components C1 and C2, and let v ∈W a vertex with minimum degree.
In fact, we know that all vertices that only belong to C1 and C2 have the same degree, i.e.,
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the minimum degree. If we eliminate v, the degree of all those vertices is decreased by one
because they had the same neighborhood as v in the previous elimination graph. Therefore
they all take the new minimum degree and are consequently eliminated next.

We know from Theorem 6.3 that the size of the first complete elimination graph is the
result of the MinDegree heuristic. In the viewpoint of eliminated components, one could
think that this is only the case if there is only one eliminated component left, but actually,
this may be the case sooner. The last border graph of Figure 6.6 for example belongs to a
complete clique because for every vertex pair there is at least one eliminated component
that contains both vertices of the pair.

In this section we have introduced the viewpoint of eliminated components, to bring some
order in the seemingly chaotic structure of elimination graphs. We have used the border
graphs to visualize these eliminated components in a clear way. During the definition of
border graphs, we have introduced the concept of clique graphs and presented a method to
simulate elimination on them only by edge contractions. With the help of the clique graphs,
we have constructed planar embeddings for border graphs of grid eliminations-graphs, and
thus showed that these border graphs are planar. Using their planar embeddings, we have
described how the MinDegree heuristic behaves on large grids. We think that with the
help of these findings, especially the concept of eliminated components, one can find a
better upper bound than we found in Section 6.2.
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In this thesis, we have shown that the MinDegree heuristic is not only faster than the
MinFillIn heuristic, but that there are also graphs on which the MinDegree heuristic
achieves better results than the MinFillIn heuristic. For that, we have introduced a
concept, that allowed us to transfer the behavior of the heuristics from one single graph
to a whole family with arbitrary treewidth. We have thereby discovered that there is a
series-parallel graph and a vertex ordering such that the MinFillIn heuristic, in contrast
to the MinDegree heuristic, does not return the correct treewidth, while both heuristics
always work optimally on chordal graphs and grids whose smaller side consists out of at
most three vertices. During our investigations of the MinDegree heuristic on large grids,
we have introduced a general technique to upper bound the heuristic’s result by gradually
increasing the minimum degree by eliminations with maximal fill-in. We have used this
technique to find a quadratic upper bound to the heuristic’s result on quadratic grids with
respect to their side length. We have also presented new ideas to think about eliminations
on grids and general graphs based on the idea of eliminated components. With the help
of border graphs, we have visualized the eliminated components and, thus, described the
behavior of MinDegree heuristic on grids in a clearer way. While proving the planarity
of the border graphs of grids, we have introduced a method to simulate eliminations by
edge contractions in the perspective of cliques graphs. We have, additionally, showed that
these clique graphs are planar if the input graph is itself planar.

Since planar graphs have nice algorithmic properties, it would be interesting to see if this
purely theoretical definition of clique graphs can be used to implement a faster version of
the MinDegree heuristic for planar graphs. The problem that remains to be solved is
how to chose the next vertex in the clique graph since the degree of a vertex in this graph
does not necessarily correspond to the actual degree. If this problem is solved also the
MinFillIn heuristic could be implemented fast. Besides that, also some of the other ideas
presented in Section 6.3.3 could be used algorithmically to speed up the heuristic at least
for some graph classes, if not for all. For example, the gradual elimination of a border with
more than one vertex could be shortened.

Another direction for future work can be the improvement of the upper bound we have
found in Section 6.2. A linear fill-in function f(d), that could arise from considering the
fill-in of eliminations with the same degree amortized, can result in a linear upper bound
for the MinDegree heuristic on quadratic grids. But even finding a smaller quadratic
factor for f could decrease the constant in the quadratic upper bound. However, we
conjecture, based on the findings in Section 6.3, that there is an upper bound for the result
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of the MinDegree heuristic on an n×m-grid that is linear in n+m or even in min{n,m}.
Although we have not studied it much, a similar upper bound for the MinFillIn heuristic
seems to be possible.

In general, we have mostly looked at grids in this thesis and only made a small detour to the
other structures presented in the proof of the excluded grid theorem. Once better results
for grids have been established, one could investigate if these results can be transferred
to the more general structure beyond the grill. This would get us closer to answering the
question of how good the heuristics are on general graphs. Of course, this target can also be
reached from another starting point on, i.e., the chordal graphs. We have shown that both
heuristics return the correct treewidth for all chordal graphs, but what about weaker forms
of chordal graphs? Unfortunately, only weakening the definition of chordal graphs just by
allowing larger chordless cycles will not bring the desired result, because in Section 3.1 we
have already shown that the MinDegree heuristic can return an arbitrarily bad result on
graphs with chordless cycles with length at most 5. Nevertheless, there are several other
ways to extend the idea of chordal graphs that can be used.
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