
Enumerating Alternative Paths

Bachelor’s Thesis of

Tim Domnick

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: TT-Prof. Dr. Thomas Bläsius
Second reviewer: Dr. rer. nat. Torsten Ueckerdt
Advisors: Michael Zündorf

Adrian Feilhauer

13 May 2024 – 13 September 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://scale.iti.kit.edu/people/thomasblaesius
https://i11www.iti.kit.edu/en/members/torsten_ueckerdt/index
https://scale.iti.kit.edu/people/michaelzuendorf
https://scale.iti.kit.edu/people/adrianfeilhauer
https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have not
used any other than the aids that I have mentioned. I have marked all parts of the thesis that
I have included from referenced literature, either in their original wording or paraphrasing
their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, 13 September 2024

. .
(Tim Domnick)

Abstract

Modern navigation systems often provide users with the option of choosing from a selection of
routes, in addition to the shortest available route. Even if the suggested routes are not optimal,
they should nevertheless appear reasonable to the user. These alternative paths are therefore
required not to contain any unnecessary local detours and not to be considerably longer than
the shortest path. In practice, heuristic algorithms are usually employed to efficiently generate
a small set of choices.
In this thesis, we study the theoretical question of how all such alternative paths can be

enumerated exhaustively. We present three algorithmic approaches that are able to solve this
problem. They are based on the enumeration of shortest paths, backtracking and shortest-path
trees, respectively. For all three approaches we demonstrate that they have super-exponential
runtime in the worst case. We further discuss different variations of the problem, namely via
paths, which are composed of several shortest paths between so-called via vertices, unweighted
graphs and alternative paths that contain cycles. Under certain conditions regarding the input
parameters, we can show that the number of via vertices in via paths and the number of
occurrences of a vertex in alternative paths with cycles can be bounded. For unweighted
graphs, we provide an input transformation that allows alternative paths to be computed
more efficiently in certain cases.

Zusammenfassung

Moderne Navigationssysteme bieten ihren Nutzern oft die Möglichkeit, neben der kürzesten
verfügbaren Route auch aus weiteren Routen zu wählen. Selbst wenn die vorgeschlagenen
Routen nicht optimal sind, sollten sie dem Nutzer dennoch sinnvoll erscheinen. Diese Alter-
nativpfade dürfen daher keine unnötigen lokalen Umwege enthalten und nicht wesentlich
länger als der kürzeste Pfad sein. In der Praxis werden in der Regel heuristische Algorithmen
eingesetzt, um effizient eine kleine Menge von Alternativen zu generieren.
In dieser Arbeit untersuchen wir die theoretische Frage, wie alle derartigen Alternativ-

pfade erschöpfend aufgezählt werden können. Wir stellen drei algorithmische Ansätze vor,
mit denen sich dieses Problem lösen lässt. Sie basieren auf der Aufzählung kürzester Pfa-
de, Backtracking bzw. Kürzeste-Wege-Bäumen. Für alle drei Ansätze zeigen wir, dass sie
im schlimmsten Fall eine superexponentielle Laufzeit haben. Darüber hinaus diskutieren
wir verschiedene Varianten des Problems, nämlich Via-Pfade, die aus mehreren kürzesten
Pfaden zwischen sogenannten Via-Knoten zusammengesetzt werden, ungewichtete Graphen
sowie Alternativpfade, die Zyklen enthalten. Unter bestimmten Bedingungen hinsichtlich der
Eingabeparameter können wir zeigen, dass die Anzahl der Via-Knoten in Via-Pfaden und die
Anzahl der Vorkommen eines Knotens in Alternativpfaden mit Zyklen beschränkt werden
kann. Für ungewichtete Graphen stellen wir eine Transformation der Eingabe vor, mithilfe
derer Alternativpfade in bestimmten Fällen effizienter berechnet werden können.

i

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Outline . 2

2 Preliminaries 3
2.1 Graph Theory . 3
2.2 Enumeration Problems . 4

3 Alternative Paths Problem 7

4 Algorithmic Approaches 9
4.1 Shortest Paths . 10
4.2 Backtracking . 13
4.3 Iterative Shortest-Path Trees . 15

5 Problem Variations 19
5.1 Via Paths . 19
5.2 Unweighted Graphs . 23
5.3 Cyclic Paths . 26

6 Conclusion 27

Bibliography 29

iii

1 Introduction

When traveling from one place to another, especially by car, we often turn to navigation
systems for help. Upon request, these systems suggest routes to the desired destination. Many
commercial navigation systems provide the user with a small set of possibly suboptimal
options. The user can then choose the option that best suits their individual preferences.
These preferences can be diverse and are often based on the user’s knowledge and therefore
hard to quantify. A user may, for example, have a preference for or against particular route
sections or road types, such as highways. In addition, a user may prefer routes that offer more
opportunities for refueling, rest stops or similar amenities. All these reasons motivate the
search for such route options, which we call alternative paths. We adapt the definition by
Abraham, Delling, Goldberg, and Werneck and require that alternative paths must not contain
any short detours nor be overly longer than the shortest path [ADGW13]. These criteria
are referred to as local optimality and maximum stretch, respectively. Navigation systems
generally use heuristics to efficiently produce a small number of options. In this thesis, we
are be concerned with finding all such alternative paths. To the best of our knowledge, it is
an open question whether the set of all alternative paths can be computed efficiently.

1.1 Related Work

The problem of finding alternative paths is closely related to the problem of finding the
shortest path. This is a well-established problem in computer science that has been studied
extensively for a long time. Today, there are a variety of algorithms that solve different
variations of the problem on different kinds of graphs. Arguably the best known of these
algorithms is Dijkstra’s algorithm [Dij59], which we use in Section 4.1. Additionally, Yen’s
algorithm can be used for enumerating shortest paths in order [Yen71].

Our definition of alternative paths is based on the work of Abraham, Delling, Goldberg, and
Werneck [ADGW13]. Their definition involves three criteria for alternative paths, namely
limited sharing, local optimality and bounded stretch. We focus on the latter two, because
with limited sharing, the order in which we find alternative paths would affect whether
subsequent paths also qualify as alternative paths. They also introduce the concept of single-
via paths which are obtained by concatenating two shortest paths. This is a restriction of
alternative paths that is easier to deal with in practice. We discuss this in more detail in
Section 5.1. Moreover, they present and analyze several algorithms that employ heuristics to
find alternative paths.

Other work also uses the criterion of local optimality, which is intended to eliminate short,
seemingly unnecessary detours. Döbler and Scheuermann quantify this notion in terms of
a locality optimality ratio [DS16]. Their work includes an algorithm for finding the most
locally-optimal paths while also restricting themselves to single-via paths. Fischer seeks to
identify almost all locally optimal single-via paths between many pairs of vertices, whereby
the number of missed paths can be arbitrarily reduced at the expense of runtime [Fis20]. The
algorithm presented in their work is based on one of the heuristic algorithms by Abraham,
Delling, Goldberg, and Werneck [ADGW13].

1

1 Introduction

Bader, Dees, Geisberger, and Sanders propose alternative graphs as a compact representation
of multiple alternative paths [BDGS11]. For their definition of alternative paths, they provide
several potential criteria that can be used to evaluate the quality of alternative graphs. They
show that the optimization of two such criteria is alreadyNP-hard and therefore also provide
an overview on heuristic algorithms, namely Pareto, Plateau and Penalty methods. They
experimentally compare these methods and evaluate the results through a user study.

1.2 Outline

We begin in Chapter 2 by establishing the fundamental concepts and notation in the field
of graph theory and enumeration problems that we use throughout this thesis. After that,
we formally introduce the notion of alternative paths along with the associated enumeration
problem in Chapter 3. Here, we also briefly address the computational complexity of the
problem by showing that it belongs to the class EnumP. In Chapter 4, we present three
algorithms for solving this problem. The first approach, described in Section 4.1, employs
algorithms for enumerating shortest paths. The algorithm in Section 4.2 applies backtracking.
Lastly, in Section 4.3, we use shortest-path trees to generate alternative paths. In Chapter 5,
we continue with variations of the alternative paths problem. We first discuss via paths in
Section 5.1 and then consider unweighted graphs and cyclic alternative paths in Sections 5.2
to 5.3. Finally, we draw a conclusion in Chapter 6 and provide an outlook on open questions.

2

2 Preliminaries

In this thesis, we focus on enumerating alternative paths in a given graph. We therefore
provide fundamental definitions and notation of both graph theory and enumeration problems
in the following.

2.1 Graph Theory

Graphs A (directed) graph 𝐺 = (𝑉 , 𝐸) is a pair consisting of a finite, non-empty set of
vertices 𝑉 and a set of edges 𝐸 ⊆ 𝑉 ×𝑉 . We denote the cardinalities of these sets by 𝑛 ∶= ∣𝑉 ∣
and𝑚 ∶= ∣𝐸∣. A vertex 𝜈 ∈ 𝑉 is said to be adjacent to another vertex 𝑢 ∈ 𝑉 if (𝜈,𝑢) ∈ 𝐸. The
function 𝑤 ∶ 𝑉 ×𝑉 → ℝ>0 ∪ {∞} assigns a positive weight to every pair of vertices, where
𝑤(𝑒) =∞ ⇐⇒ 𝑒 /∈ 𝐸.

Paths A path in 𝐺 is a sequence 𝑝 = (𝜈1, . . . , 𝜈𝑘) of vertices where 𝑘 ≥ 1 and (𝜈𝑖 , 𝜈𝑖+1) ∈ 𝐸
for all 𝑖 ∈ {1 .. 𝑘 − 1}. The number of edges in 𝑝 is called its length, denoted by ∣𝑝 ∣ ∶= 𝑘 − 1. The
path’s (total) weight 𝑤(𝑝) is the sum of its individual edge weights: 𝑤(𝑝) ∶= ∑𝑘−1𝑖=1 𝑤(𝜈𝑖 , 𝜈𝑖+1).
A path is simple if all its vertices are pairwise distinct; otherwise, it is called cyclic. A graph is
acyclic if all its paths are simple, and cyclic if it contains a cyclic path. Directed, acyclic graphs
are abbreviated as DAGs.

Subpaths The 𝑖-th vertex in a path 𝑝 = (𝜈1, . . . , 𝜈𝑘) is denoted by 𝑝[𝑖] ∶= 𝜈𝑖 for 𝑖 ∈ {1 .. 𝑘}.
A subpath of 𝑝 is a subsequence of vertices 𝑝[𝑖 .. 𝑗] ∶= (𝑝[𝑖], . . . , 𝑝[𝑗]) where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 .
A subpath of 𝑝 is called a prefix of 𝑝 if 𝑖 = 1 and a suffix of 𝑝 if 𝑗 = ∣𝑝 ∣ + 1. Two paths
𝑝1 = (𝜈1, . . . , 𝜈𝑘−1, 𝑥) and 𝑝2 = (𝑥,𝑢2, . . . ,𝑢𝑘′), which share a vertex 𝑥 ∈ 𝑉 , can be concatenated
to a path 𝑝1 + 𝑝2 ∶= (𝜈1, . . . 𝜈𝑘−1, 𝑥,𝑢2, . . .𝑢𝑘′) of length ∣𝑝1 + 𝑝2∣ = ∣𝑝1∣ + ∣𝑝2∣.

Shortest Paths Given two vertices 𝑠, 𝑡 ∈ 𝑉 , a shortest path 𝑝 is an 𝑠-𝑡 path, i.e. 𝑝 = (𝑠, . . . , 𝑡),
with minimal weight among all 𝑠-𝑡 paths. Shortest paths are said to be optimal. The distance
from 𝑠 to 𝑡 , denoted by 𝑑(𝑠, 𝑡), is defined as 𝑑(𝑠, 𝑡) ∶=𝑤(𝑝), or 𝑑(𝑠, 𝑡) ∶=∞ if no 𝑠-𝑡 path exists.
Many shortest path algorithms find either the shortest paths from a given source vertex to all
other vertices, or the shortest paths between all pairs of source and target vertices. We refer
to these as SSSP (single-source shortest paths) or APSP (all-pair shortest paths) algorithms,
respectively.

Trees A graph𝐺 = (𝑉 , 𝐸) is called a tree if a root vertex 𝑟 ∈ 𝑉 exists such that for every 𝜈 ∈ 𝑉
there is exactly one path from 𝑟 to 𝜈 . In a shortest-path tree, these paths represent the shortest
paths from 𝑟 to all other vertices in an underlying graph. Such a shortest-path tree can be
obtained using an SSSP algorithm.

3

2 Preliminaries

2.2 Enumeration Problems

Many theoretical problems in computer science are decision problems where we are interested
in whether a solution exists to a given problem instance. Most decision problems can also
be stated in the form of search problems or counting problems. With search problems, we
want to find any solution, while counting problems ask for the number of existing solutions.
Enumeration problems add to these classes of problems. In their case, we want to retrieve all
existing solutions. Enumeration problems along with their complexity have been extensively
studied by Strozecki [Str10]. We adapt the following definitions from their work.

Enumeration Problems We call a binary predicateΠ a problem. Values for the first operand
are referred to as instances of Π. A value 𝑦 is called a solution to an instance 𝑥 if Π(𝑥,𝑦)
holds. The corresponding enumeration problem EnumΠ is a function which maps instances
to their set of solutions, i.e., 𝑥 ↦ {𝑦 ∣ Π(𝑥,𝑦)}. We require that the solution set for every
instance is finite. An algorithm A is said to solve the enumeration problem if, given an
instance 𝑥 , it outputs all solutions to 𝑥 without redundancy. In other words, the output of A
is a sequence 𝑦1, . . . ,𝑦𝑛 such that {𝑦1, . . . ,𝑦𝑛} = {𝑦 ∣ Π(𝑥,𝑦)}, and 𝑦𝑖 ≠ 𝑦 𝑗 for all 𝑖 ≠ 𝑗 .

Complexity Like decision problems, enumeration problems can be classified by their com-
putational complexity. The well-known complexity class NP contains all decision problems
for which solutions can be verified in polynomial time by a deterministic Turing machine. The
corresponding complexity class for enumeration problems is EnumP. EnumΠ ∈ EnumP if and
only if, for all instances 𝑥 of Π, the time required to verify whether Π(𝑥,𝑦) holds for a given
𝑦 is polynomial in the size of 𝑥 . The computation model used is a random-access machine

(RAM). A RAM uses registers to store and retrieve arbitrary values in constant time. Other
basic operations, including arithmetic and outputting a solution, also require constant time.
In their work, Strozecki also introduce further complexity classes that may allow a more

precise classification of these problem [Str10]. Those include the classes DelayP (polynomial

delay), where a polynomially bounded time between any two consecutive outputs can be
achieved, IncP (incremental polynomial time), where the delay between two outputs increases
polynomially with each step, and TotalP (polynomial total time), where the time required
to output all solutions is polynomially bounded in the number of solutions. Algorithms that
satisfy the latter property regarding their runtime are also called output polynomial. The
inclusions DelayP ⊆ IncP ⊊ TotalP ⊊ EnumP are known, assuming P ≠ 𝑐𝑜NP ∩NP .
Similarly to the notion of NP-completeness, the hardest problems in EnumP are EnumP-

complete. To show the EnumP-completeness of a problem, one usually proves the existence
of a parsimonious reduction of a known EnumP-complete problem, such as the enumeration
variant of SAT. These kinds of reductions provide a bijection between the solution sets of two
enumeration problems. For EnumP-complete enumeration problems, no output polynomial
algorithm can exist if P ≠ NP .
In Chapter 4, we identify instances for the presented algorithms where the number of

paths in a subgraph increases with the factorial of the number of vertices. To express
this number precisely, we use the upper incomplete gamma function. The upper incom-
plete gamma function Γ is a generalization of the factorial function. For 𝑎 > 0 and 𝑏 ≥ 0,
it is defined as Γ(𝑎,𝑏) = ∫ ∞𝑏 𝑡𝑎−1e−𝑡 d𝑡 . If 𝑎 is an integer, it can also be expressed as

4

2.2 Enumeration Problems

Γ(𝑎,𝑏) = (𝑎 − 1)!𝑒−𝑏∑𝑎−1𝑘=0
𝑏𝑘

𝑘! . We use the case where 𝑎 is an integer and 𝑏 = 1, in which
Γ(𝑎, 1) = 1

𝑒 ∑
𝑎−1
𝑘=0

(𝑎−1)!
𝑘! = 1

e ⋅∑
𝑎−1
𝑘=0 (

𝑎−1
𝑘
) ⋅ 𝑘! holds [PEB53]. For the purposes of our runtime

analysis, the asymptotic growth can be described as Γ(𝑎, 1) ∈ Θ((𝑎 − 1)!).

5

3 Alternative Paths Problem

Given a graph 𝐺 = (𝑉 , 𝐸) with vertices 𝑠, 𝑡 ∈ 𝑉 , our aim is to find other viable options for
𝑠-𝑡 paths in addition to the shortest path, which we call alternative paths. We adapt the
definition of admissible alternative paths from Abraham, Delling, Goldberg, and Werneck
[ADGW13] by simplifying the used criteria and omitting the limited sharing criterion entirely.
The rationale behind this adaption is detailed below. Alternative paths may not be optimal.
However, we require them to still be sensible by disallowing small detours. This intuition
is captured by the notion of local optimality. A path 𝑝 is called locally optimal with respect
to some parameter 𝑇 if every subpath 𝑝′ = (𝑠′, . . . , 𝑡 ′) of 𝑝 , where𝑤(𝑝′) ≤ 𝑇 , is optimal, i.e.,
𝑤(𝑝′) = 𝑑(𝑠′, 𝑡 ′). Moreover, alternative paths should not be substantially longer than the
shortest path. Those two criteria are reflected in the following definition.

Definition 3.1 (Alternative Path): Given a graph𝐺 = (𝑉 , 𝐸)with a source vertex 𝑠 ∈ 𝑉 and a tar-

get vertex 𝑡 ∈ 𝑉 , a local optimality parameter𝑇 ∈ [0, 𝑑(𝑠, 𝑡)], and a stretch parameter 𝑆 ≥ 𝑑(𝑠, 𝑡),
a simple 𝑠-𝑡 path 𝑝 is called an alternative path if

𝑝 is locally optimal with respect to 𝑇 (Local Optimality)

𝑝’s weight is bounded by𝑤(𝑝) ≤ 𝑆 (Maximum Stretch)

The shortest 𝑠-𝑡 path 𝑝 is itself considered an alternative path, according to this definition.

Our definition of alternative paths differs slightly from the definition according to Abraham,
Delling, Goldberg, and Werneck. Regarding local optimality, they introduce rounding for
non-continuous graphs. For the sake of simplicity, we do not consider such rounding in this
thesis, as it does not fundamentally change the problem. However, the routine for verifying
local optimality, which we use in Chapter 4, can easily be adapted if desired. Hence, the
presented algorithms are compatible with both definitions of local optimality. Moreover,
instead of maximum stretch, they use the criterion of uniformly bounded stretch. In the latter
case, the maximum stretch criterion is applied not only to the entire path but also to all
subpaths. They give an example in which an alternative path that does not meet this criterion
is deemed “unnatural”. When considering the runtimes of our algorithms in Chapter 4, the
maximum stretch parameter 𝑆 can be chosen to be arbitrarily large. In the case of uniformly
bounded stretch, the corresponding parameter could also be made sufficiently large so that
the criterion is met. We would therefore make the same observations regarding the runtime.
Those further suggest that the difficulty of the problem rather lies in the criterion of local
optimality.

In addition, Abraham, Delling, Goldberg, and Werneck use a third criterion for alternative
paths, namely limited sharing [ADGW13]. This ensures that alternative paths are sufficiently
different from one another. If we intend to give a user of a navigation system a small selection
of alternative paths, this is reasonable. However, we focus on an exhaustive search of all
alternative paths, for which this restriction has no justification. Furthermore, the order in
which alternative paths are enumerated would otherwise be relevant, as whether a path is
an alternative path would depend on the previous outputs. This would have a fundamental
impact on the difficulty of the problem. For these reasons, we omit this criterion entirely.

7

3 Alternative Paths Problem

Usually, the parameters 𝑇 and 𝑆 are not immediate inputs to alternative path algorithms.
Instead, the parameters 𝛼 ∈ [0, 1] and 𝜀 ≥ 0 are used, from which 𝑇 ∶= 𝛼 ⋅ 𝑑(𝑠, 𝑡) and
𝑆 ∶= (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡) can then be derived using the shortest 𝑠-𝑡 path. This allows us to choose
fixed parameters, eliminating the need to manually scale them with input size. We thus use
this approach for the inputs to the algorithms in Chapter 4.

Having introduced the concept of alternative paths, we now formally define the associated
problem.

Definition 3.2 (Alternative Paths Problem): An instance (𝐺,𝑠, 𝑡, 𝛼, 𝜀) to the Alternative Paths
Problem consists of a graph 𝐺 = (𝑉 , 𝐸) with a source vertex 𝑠 ∈ 𝑉 and a target vertex 𝑡 ∈ 𝑉 , a
local optimality parameter 𝛼 ∈ [0, 1], and a stretch parameter 𝜀 ≥ 0. A solution to the problem is

an alternative path from 𝑠 to 𝑡 , as defined in Definition 3.1.

The corresponding Alternative Paths Enumeration Problem asks for the set of all alternative
paths in a given instance. Our aim is to find an algorithm that solves this problem by outputting
all alternative paths, one by one and non-redundantly.

Before we discuss algorithmic solutions to the problem, we briefly address the complexity
of the Alternative Paths Enumeration Problem. According to the theorem below, it can be
classified in EnumP. To the best of our knowledge, no relationships to other complexity classes
have been identified. Potential candidates for a more precise classification of the complexity
are mentioned in Chapter 6.

Theorem 3.3: The Alternative Paths Enumeration Problem belongs to the complexity class

EnumP.

Proof. Let (𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝛼, 𝜀) be an instance of the Alternative Paths Enumeration Problem.
We show that every solution, i.e., every alternative path, has polynomial size, and it can be
decided whether a given path is an alternative path in polynomial time.
By definition, an alternative path is simple. Therefore, its size is bounded by the total

number of vertices 𝑛.
Let 𝑝 be a possible candidate for an alternative path in 𝐺 . It is easy to verify that 𝑝 is a

simple 𝑠-𝑡 path in polynomial time. We begin at the first vertex of 𝑝 which must be 𝑠 . We
proceed along 𝑝 until we reach the last vertex in 𝑝 which must be 𝑡 . In doing so, we confirm
that each vertex in 𝑝 is indeed adjacent to the subsequent vertex. Along the way, we mark all
vertices as “visited” and abort in case we encounter a previously visited vertex, i.e., we have
detected a cycle.

For deciding whether 𝑝 is locally optimal, we need to calculate distances between vertices.
This can be done in polynomial time using a well-known shortest path algorithm, such as
Dijkstra’s algorithm [Dij59]. There are (∣𝑝 ∣2) ∈ Θ(∣𝑝 ∣

2) ⊆ O(𝑛2) pairs of vertices along 𝑝 . For
every vertex pair, we sum the edge weights along the subpath 𝑝′ connecting those two vertices
to receive its total weight 𝑤(𝑝′). This requires time linear in the length of the subpath. If
𝑤(𝑝′) ≤ 𝑇 = 𝛼 ⋅𝑑(𝑠, 𝑡), we need to check whether𝑤(𝑝′) is optimal. We can compare𝑤(𝑝′) to
the weight of the shortest path between those vertices. In total, checking the local optimality
of 𝑝 requires polynomial time.
To check whether 𝑝 adheres to the maximum stretch, we sum the weights along 𝑝 to

obtain𝑤(𝑝). We then confirm that𝑤(𝑝) ≤ 𝑆 = (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡) where 𝑑(𝑠, 𝑡) has already been
calculated in the previous step. This can be done in Θ(∣𝑝 ∣) time.
Altogether, deciding whether 𝑝 is an alternative path is possible in polynomial time. This

implies that the Alternative Paths Enumeration Problem is in EnumP.

8

4 Algorithmic Approaches

In this chapter, we discuss three approaches to solving the Alternative Paths Enumeration
Problem algorithmically. The first approach uses existing algorithms to enumerate shortest
paths and then checks them against the criteria for alternative paths. In the second approach,
backtracking is used to systematically search the space of all paths. In the third approach,
we iteratively perform shortest-path algorithms and concatenate the resulting paths. We
demonstrate that all three approaches encounter a similar issue. If there are many paths
that must first be explored almost to their end until it can be determined that they are not
alternative paths, then enumerating the alternative paths is no longer efficiently possible.
All three approaches involve finding and verifying candidates for alternative paths. The

primary task in deciding whether a given simple path is an alternative path is verifying
its local optimality. This requires a comparison of the weights of several subpaths to the
distances between corresponding vertex pairs. To this end, before enumerating the alternative
paths, we perform a preprocessing step. This step involves an APSP algorithm, such as the
Floyd-Warshall algorithm [Flo62], to calculate the distances between all pairs of vertices. The
calculated values can thereafter be accessed in constant time. Verifying local optimality of a
simple path is then possible in time linear in the path’s length. We use the following fact.

Lemma 4.1: A path 𝑝 is optimal if and only if every subpath of 𝑝 is optimal.

Proof. “⇒”: We prove the contraposition of this statement. Let 𝑝′ ∶= (𝑠′, . . . , 𝑡 ′) be a subpath of
a path 𝑝 = (𝑠, . . . , 𝑠′)+𝑝′+(𝑡 ′, . . . , 𝑡) that is not optimal, i.e.,𝑤(𝑝′) > 𝑑(𝑠′, 𝑡 ′). Then, there exists
a shortest 𝑠′-𝑡 ′ path 𝑝′where𝑤(𝑝′) = 𝑑(𝑠′, 𝑡 ′) <𝑤(𝑝′). However, 𝑝 ∶= (𝑠, . . . , 𝑠′)+𝑝′+(𝑡 ′, . . . , 𝑡)
is also an 𝑠-𝑡 path and𝑤(𝑝) =𝑤(𝑝) − (𝑤(𝑝′) −𝑤(𝑝′)) <𝑤(𝑝). Therefore, 𝑝 is not optimal.
“⇐”: This implication is trivial since 𝑝 is a subpath of 𝑝 .

To determine the local optimality of a simple path, we proceed as follows. Let 𝑝 be a simple
path for which local optimality should be checked with respect to 𝑇 . At a high level, we
iterate over the subpaths of 𝑝 and assess their optimality where necessary. We start by placing
two markers ℓ and 𝑟 on the first vertex in 𝑝 , i.e., ℓ = 𝑟 = 1. These markings denote the first
and last vertex of the subpath 𝑝′ ∶= 𝑝[ℓ .. 𝑟] currently under consideration. Both markings
will be gradually moved forward along 𝑝 until all necessary subpaths have been considered.
For each 𝑝′, we compare its weight 𝑤(𝑝′) to the distance between its first and last vertex
𝑑(𝑝[ℓ], 𝑝[𝑟]). We use Lemma 4.1 tominimize the number of comparisons performed. It suffices
to check only those subpaths 𝑝′ = 𝑝[ℓ ..𝑟]where𝑤(𝑝′) ≤ 𝑇 and𝑤(𝑝[ℓ ..(𝑟+1)]) > 𝑇 . Therefore,
we gradually move the marking 𝑟 along 𝑝 until one more movement would raise𝑤(𝑝′) above𝑇 .
We then check whether 𝑝′ is optimal, i.e.,𝑤(𝑝′) = 𝑑(𝑝[ℓ], 𝑝[𝑟]). If this is not the case, 𝑝 is not
locally optimal, and we abort. Otherwise, we first move the marking 𝑟 by one vertex. Then, we
move the marking ℓ until𝑤(𝑝′) ≤ 𝑇 and repeat the process. We terminate when the marking 𝑟
has reached the last vertex of 𝑝 and the according subpath has been checked for optimality.
Since both markings are only moved by one vertex at a time, we can easily keep track of𝑤(𝑝′)
on the fly by adding or subtracting the according edge’s weight. Furthermore, both markings
are moved by at least one vertex during every iteration. Thus, verifying whether 𝑝 is locally
optimal takes Θ(∣𝑝 ∣) time.

9

4 Algorithmic Approaches

All other tasks, namely calculating 𝑇 and 𝑆 from the parameters and verifying a path’s
adherence to the maximum stretch, are computationally straightforward. The former is a
simple evaluation of the defining formula for 𝑇 and 𝑆 , utilizing the previously computed
distance from 𝑠 to 𝑡 . The latter can be achieved by summing the weights along the path in
linear time and comparing the total weight to the value of 𝑆 . Altogether, the runtime for
verifying whether a given simple path is an alternative path scales linearly with the path’s
length.

4.1 Shortest Paths

A natural approach to enumerating alternative paths involves enumerating shortest paths and
filtering out non-alternative ones. For instance, we can use Yen’s algorithm for enumerating
shortest simple paths [Yen71]. An advantage of this approach is that alternative paths are
enumerated in ascending order of weight. This allows for a simple termination condition
when the weight reaches the maximum stretch.

However, this approach is unsuitable if many short non-alternative paths precede an
alternative path. All these paths have to be checked before the alternative path can be output.
Consider the example shown in Figure 4.1 which scales with ℓ . Here, we choose 𝛿 > 0,𝑇 ≥ 2+𝛿
and 𝑆 ≥ ℓ(2 + 𝛿) + 𝛿 . For now, disregard the edge (𝑠, 𝑡). As we go from 𝑠 to 𝑡 , ℓ decisions
are made regarding whether to take the top or bottom edge. Thus, there are exponentially
many, specifically 2ℓ , 𝑠-𝑡 paths. One of these paths is the shortest path 𝑝 which is obtained
by always choosing the top edge and has weight 𝑤(𝑝) = ℓ ⋅ 2. The remaining 2ℓ − 1 paths
are not alternative paths since choosing one of the bottom edges introduces a local detour of
weight 2 + 𝛿 ≤ 𝑇 . This detour exceeds the optimal subpath’s weight of 2, thereby violating
local optimality. Choosing the bottom edge at each step results in the longest path, with a
weight of ℓ(2 + 𝛿). The path 𝑝 = (𝑠, 𝑡), with weight ℓ(2 + 𝛿) + 𝛿 , is an alternative path, but it
would be the last to be output by a shortest paths algorithm.

In Figure 4.1, there are many paths that are not locally optimal due to the same subpath.
For instance, there are 2𝑙−1 paths that include the bottom edge at 𝑠 , none of which are locally
optimal. However, all of them are output by a 𝑘 shortest paths algorithm and therefore have
to be verified. In order to avoid such cases, we interlink the enumeration of the shortest paths
with their verification.

𝑠 𝑡

1
1 +
𝛿

ℓ(2 + 𝛿) + 𝛿

1 2 ⋯ ℓ

Figure 4.1: A problem instance with 𝑇 ≥ 2 + 𝛿 and 𝑆 ≥ ℓ(2 + 𝛿) + 𝛿 which contains an
exponential number of non-alternative paths. The alternative path (𝑠, 𝑡) is longer than those
paths and will therefore be found last by a shortest paths algorithm.

10

4.1 Shortest Paths

In the following, we modify Dijkstra’s algorithm to achieve this [Dij59]. Similar adaptations
of other 𝑘 shortest path algorithms are also conceivable. See Algorithm 4.1 for a reference in
pseudocode. We utilize a priority queue that initially contains the path (𝑠). Unlike Dijkstra’s
original algorithm, which stores only individual vertices, we store entire paths. This is
necessary in order to enumerate shortest paths as opposed to just finding the shortest one.
At any point, the queue contains only simple paths that are locally optimal and adhere to
the maximum stretch. In each iteration, we remove the shortest path 𝑝min from the queue.
If the last vertex of 𝑝min is 𝑡 , we know that 𝑝min fulfills the criteria of an alternative path, so
we output 𝑝min. Otherwise, for all vertices 𝜈 ′ that are adjacent to the last vertex 𝜈 in 𝑝min,
we consider the path 𝑝′ ∶= 𝑝min + (𝜈,𝜈 ′) obtained by appending 𝜈 ′ to 𝑝min. Because we are
only interested in simple paths, we disregard any neighbors that are already part of 𝑝min. If
this path is locally optimal and adheres to the maximum stretch, we add it to the queue. For
verifying the local optimality of 𝑝′ we can utilize the fact that 𝑝min is already locally optimal.
If 𝑝′ is not locally optimal the violating subpath must contain the newly added edge (𝜈,𝜈 ′).
Therefore, it suffices to only check the subpath 𝑝′[ℓ .. ∣𝑝′∣ + 1] where𝑤(𝑝′[ℓ .. ∣𝑝′∣ + 1]) ≤ 𝑇
and𝑤(𝑝′[(ℓ − 1) .. ∣𝑝′∣ + 1]) > 𝑇 . This subpath can be found similarly to the local optimality
check described in the beginning of Chapter 4 by initially placing both markings on the last
vertex of 𝑝′ and moving the marking ℓ backward. The algorithm terminates when the queue
is empty.

Algorithm 4.1: A Dijkstra-based algorithm for enumerating alternative paths in
ascending order of weight.
Input: A graph 𝐺 = (𝑉 , 𝐸) with weights𝑤 .

A source vertex 𝑠 ∈ 𝑉 and a target vertex 𝑡 ∈ 𝑉 .
The local optimality parameter 𝛼 ∈ [0, 1].
The maximum stretch parameter 𝜀 ≥ 0.

Output: All alternative paths from 𝑠 to 𝑡 in ascending order of weight.

1 𝑑 ← compute distances using APSP algorithm
2 𝑇 ← 𝛼 ⋅ 𝑑(𝑠, 𝑡)
3 𝑆 ← (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡)
4 𝑄 ← initialize empty min priority queue
5 insert path (𝑠) with priority𝑤((𝑠)) = 0 into 𝑄
6 while 𝑄 is not empty do
7 𝑝min ← remove shortest path from 𝑄

8 𝜈 ← last vertex in 𝑝min
9 if 𝜈 = 𝑡 then output 𝑝min
10 else
11 for 𝜈 ′ ← adjacent vertices of 𝜈 that are not in 𝑝min do
12 𝑝′ ← 𝑝min + (𝜈,𝜈 ′)

// the value of 𝑤(𝑝min) is known from the priority queue

13 𝑤(𝑝′)←𝑤(𝑝min) +𝑤(𝜈,𝜈 ′)
14 if 𝑝′ is locally optimal wrt. 𝑇 and𝑤(𝑝′) ≤ 𝑆 then
15 insert 𝑝′ with priority𝑤(𝑝′) into 𝑄

Theorem 4.2: Algorithm 4.1 is correct.

11

4 Algorithmic Approaches

Proof. For Algorithm 4.1 to be correct, it must output all and only alternative paths in the
input instance.

First, we see that the queue𝑄 contains only paths that are locally optimal and adhere to the
maximum stretch. This is true for both the initial path (𝑠) in Line 5 and every other path that
is inserted into 𝑄 in Lines 14 to 15. Every path in the queue 𝑄 is further simple. This is again
true for the initial path (𝑠). Since 𝑝′ is formed by appending a vertex to a simple path 𝑝min
that is not already part of 𝑝min in Lines 11 to 12, 𝑝′ is also simple. This implies that every path
output in Line 9 is an alternative path.
Next, let 𝑝 be a simple path starting at 𝑠 that is both locally optimal and adheres to the

maximum stretch. We show inductively that 𝑝 will eventually be inserted into 𝑄 if 𝑝 is a
subpath of at least one alternative path. In the base case ∣𝑝 ∣ = 1, meaning 𝑝 = (𝑠, 𝜈 ′) for some
𝜈 ′ ∈ 𝑉 ∖ {𝑠}, 𝑝 is inserted into 𝑄 during the first iteration. This is true since 𝑝min = (𝑠) in
Line 7 and 𝑠 is adjacent to 𝜈 ′. Therefore, 𝑝′ = 𝑝 in Line 12 at some point. For the inductive
step, let ∣𝑝 ∣ > 1 and let 𝑄 contain 𝑝[1 .. ∣𝑝 ∣]. Consider the iteration where 𝑝min = 𝑝[1 .. ∣𝑝 ∣] in
Line 7. If 𝜈 = 𝑡 in Line 9, then 𝑝 cannot be extended to an alternative path since it already
contains 𝑡 . Otherwise, 𝑝′ = 𝑝 in Line 12 since 𝑝[∣𝑝 ∣] is adjacent to 𝑝[∣𝑝 ∣ + 1]. Therefore, 𝑝′ is
inserted into 𝑄 in Lines 14 to 15. We conclude that every alternative path will eventually be
inserted into 𝑄 . Since 𝑝min is unambiguous for every 𝑝′, no path is inserted into 𝑄 more than
once. This implies that the algorithm terminates, because there is only a finite number of
simple paths which 𝑄 can contain.

Algorithm 4.1 handles the instance in Figure 4.1 well. Path prefixes that are not locally
optimal are disregarded in Line 14. Therefore, the algorithm does not consider every single
path with the same violating prefix. However, a similar problem arises when there are many
paths where local optimality is violated near their ends. Given 𝑛 ∈ ℕ, we construct such an
instance with 𝐺 = (𝑉 , 𝐸) as follows. Refer to Figure 4.2 for an example where 𝑛 = 6.

𝑉 ∶={𝜈1, . . . , 𝜈𝑛}
𝐸 ∶={𝜈1, . . . , 𝜈𝑛−3} × {𝜈1, . . . , 𝜈𝑛−2}
∪ {(𝜈1, 𝜈𝑛−1), (𝜈𝑛−2, 𝜈𝑛), (𝜈𝑛−1, 𝜈𝑛)}

𝑠 𝑥

𝑦

𝑡

𝛿 1

𝑛

Figure 4.2: An instance for Algorithm 4.1 where 𝑛 = 6. We choose 0 < 𝛿 < 1
2 , 𝑇 = 1, and

𝑆 ≥ 7. The shortest path is (𝑠, 𝑥, 𝑡). The only other alternative path is (𝑠,𝑦, 𝑡). There are
𝑒Γ(𝑛 − 3, 1) − 1 = 4 paths from 𝑠 to 𝑥 that violate local optimality in their last edge.

12

4.2 Backtracking

We specify 𝑠 ∶= 𝜈1 and 𝑡 ∶= 𝜈𝑛 . Additionally, we denote 𝜈𝑛−2 by 𝑥 and 𝜈𝑛−1 by 𝑦. The edge
weights are defined by the following weight function:

∀(𝜈,𝑢) ∈ 𝐸 ∶ 𝑤(𝜈,𝑢) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛿 (𝜈,𝑢) = (𝑠, 𝑥) or 𝑢 = 𝑠
𝑛 (𝜈,𝑢) = (𝑠,𝑦)
1 otherwise

In this definition, 𝛿 is a small value, such that 0 < 𝛿 < 1
2 . The shortest 𝑠-𝑡 path is given by

𝑝 = (𝑠, 𝑥, 𝑡) with 𝑤(𝑝) = 1 + 𝛿 . We choose 𝛼 ∶= 1
1+𝛿 and 𝜀 ≥ 𝑛−𝛿

1+𝛿 . Then, 𝑇 = 𝛼 ⋅𝑤(𝑝) = 1
and 𝑆 = (1 + 𝜀) ⋅𝑤(𝑝) ≥ 𝑛 + 1. Observe that there are super-exponentially many, specifically
∑𝑛−4𝑘=0 (

𝑛−4
𝑘
) ⋅ 𝑘! = 𝑒Γ(𝑛 − 3, 1) ∈ Θ((𝑛 − 4)!), simple 𝑠-𝑥 paths. Here, 𝑘 is the number of

vertices between 𝑠 and 𝑥 . Each such path has a suffix (𝜈, 𝑥) consisting solely of the last
edge. Apart from the case where 𝜈 = 𝑠 , this suffix violates local optimality due to the shorter
𝜈-𝑥 path (𝜈, 𝑠, 𝑥), where𝑤((𝜈, 𝑠, 𝑥)) = 2𝛿 < 1 =𝑤(𝜈, 𝑥). Note that we cannot actually use this
shorter subpath in an alternative path, as it would introduce a cycle. The algorithm considers
all 𝑒Γ(𝑛 − 3, 1) − 1 of these paths and discards them only after 𝑥 is appended. Besides 𝑝 , the
only alternative path is 𝑝 ∶= (𝑠,𝑦, 𝑡). This is also the longest path and will therefore be output
last. The algorithm thus requires Ω((𝑛 − 4)!) time in total before outputting 𝑝 .

4.2 Backtracking

Instead of enumerating shortest paths, we can also perform a tree search to explore all 𝑠-𝑡 paths.
However, since there are usually too many 𝑠-𝑡 paths for an exhaustive search to be feasible,
we prune non-alternative paths at the earliest opportunity.

In this section, we present an algorithm that conducts a depth-first tree search on the input
graph. Paths are pruned as soon as they violate either of the local optimality or maximum
stretch criteria. See Algorithm 4.2 for a reference in pseudocode. The currently considered
path is denoted by 𝑝 . The search starts in 𝑠 and thus 𝑝 is initially (𝑠). We constantly keep
track of the weight of 𝑝 . This enables verification of the maximum stretch criterion without
any additional runtime overhead. Additionally, we mark all vertices on 𝑝 as visited in order
to prevent cycles. For the local optimality checks, we apply the same routine as in Section 4.1.
Because we prune early, the prefix of 𝑝 up to the second last vertex is always locally optimal.
Thus, verifying local optimality near the last edge of 𝑝 is sufficient. Local optimality and
adherence to the maximum stretch are verified each time the tree search is about to proceed
to the next vertex.

Similarly to the algorithm described in Section 4.1, non-alternative paths are discarded late
if they violate the criteria close to their ends. Consider the instance from Section 4.1 which is
shown in Figure 4.2. In Section 4.1, 𝑦 is traversed last among all vertices adjacent to 𝑠 . This
is guaranteed by the large edge weight 𝑤(𝑠,𝑦). Here, the order in which adjacent vertices
are selected by the tree search is arbitrary and not influenced by edge weights. We therefore
let 𝑤(𝑠,𝑦) = 1 and explicitly require 𝑦 to be traversed last. See Figure 4.3 for an example
where 𝑛 = 6. The tree search traverses all 𝑒Γ(𝑛 − 3, 1) paths from 𝑠 to 𝑥 before discovering the
alternative path (𝑠,𝑦, 𝑡). It backtracks only after the local optimality violation at 𝑥 is found.
Consequently, the algorithm requires Ω((𝑛 − 4)!) time before outputting (𝑠,𝑦, 𝑡), too.

13

4 Algorithmic Approaches

Algorithm 4.2: A backtracking algorithm for enumerating all alternative paths.
Input: A graph 𝐺 = (𝑉 , 𝐸) with weights𝑤 .

A source vertex 𝑠 ∈ 𝑉 and a target vertex 𝑡 ∈ 𝑉 .
The local optimality parameter 𝛼 ∈ [0, 1].
The maximum stretch parameter 𝜀 ≥ 0.

Output: All alternative paths from 𝑠 to 𝑡 .

1 𝑑 ← compute distances using APSP algorithm
2 𝑇 ← 𝛼 ⋅ 𝑑(𝑠, 𝑡)
3 𝑆 ← (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡)
4 𝑝 ← (𝑠)
5 𝑤(𝑝)← 0
6 dfs_recursive(𝑝 ,𝑤(𝑝))
7 Procedure dfs_recursive(𝑝 ,𝑤(𝑝))
8 𝜈 ← last vertex in 𝑝
9 mark 𝜈 as visited

10 if 𝑝 is locally optimal wrt. 𝑇 and𝑤(𝑝) ≤ 𝑆 then
11 if 𝜈 = 𝑡 then output 𝑝
12 else
13 for 𝜈 ′ ← adjacent vertices of 𝜈 that are not visited do
14 𝑝′ ← 𝑝 + (𝜈,𝜈 ′)
15 𝑤(𝑝′)←𝑤(𝑝) +𝑤(𝜈,𝜈 ′)
16 dfs_recursive(𝑝′,𝑤(𝑝′))
17 unmark 𝜈 as visited

𝑠 𝑥

𝑦

𝑡

𝛿 1

Figure 4.3:An instance for Algorithm 4.2 where 𝑛 = 6, adapted from Figure 4.2. The algorithm
traverses all 𝑒Γ(𝑛 − 3, 1) = 5 paths from 𝑠 to 𝑥 , of which only (𝑠, 𝑥) is a prefix of an alternative
path 𝑝 = (𝑠, 𝑥, 𝑡). The alternative path (𝑠,𝑦, 𝑡) is found last if 𝑦 is traversed after all other
vertices adjacent to 𝑠 .

14

4.3 Iterative Shortest-Path Trees

4.3 Iterative Shortest-Path Trees

In both previous approaches, we generate a potentially large number of candidate paths and
then verify which ones qualify as alternative paths. We apply pruning to reduce the number
of candidates at an early stage. In the following, we approach the problem from a different
angle. We try to generate the candidates in such a way that they are already locally optimal.
To do this, we combine shortest paths which, in themselves, are trivially locally optimal. A
possible violation of local optimality must then be checked around the vertices where two
shortest paths are concatenated. For this purpose, we consider subgraphs with a radius 𝑇
around a center vertex, i.e., all vertices in the subgraph have a maximum distance of 𝑇 from
this center vertex.
In this section, we iteratively compute shortest-path trees. We use an SSSP algorithm,

such as Dijkstra’s algorithm [Dij59], for this purpose. In the following, we assume that all
shortest paths are unique. This guarantees that the shortest paths beginning at a source vertex
indeed form a tree. Otherwise, we would generally only receive a DAG of shortest paths. The
algorithm also works in this case. We merely have to consider several shortest paths to the
same vertex independently of each other.

We begin the first iteration at the source vertex 𝑠 and form a shortest-path tree with radius𝑇 ,
i.e., we only include vertices 𝜈 for which 𝑑(𝑠, 𝜈) ≤ 𝑇 . Every vertex 𝜈 now represents a shortest
path from 𝑠 to 𝜈 . In the second step, we consider all edges (𝜈,𝑢) that raise the according
𝑠-𝑢 path’s weight above𝑇 , i.e., 𝑑(𝑠, 𝜈) ≤ 𝑇 , but 𝑑(𝑠, 𝜈)+𝑤(𝜈,𝑢) > 𝑇 . Here, we ignore vertices 𝑢
that are already contained in the 𝑠-𝜈 path in order to prevent cycles.

The latter step is necessary for two reasons so that no alternative paths are missed. Firstly,
individual edges can have weights > 𝑇 . If we were to limit ourselves to paths of weight ≤ 𝑇 in
each step, those edges would never be considered. Therefore, we explicitly include such edges.
Secondly, the resulting paths can subsequently be used as the basis for the next iteration of
the algorithm. This is because, on the one hand, we ensure that we do not miss any relevant
paths. Obviously, this step considers paths that exceed the radius 𝑇 , i.e., 𝑑(𝑠,𝑢) > 𝑇 . Yet paths
that remain within the radius 𝑇 , i.e., 𝑑(𝑠,𝑢) ≤ 𝑇 , are also taken into account. Those are either
optimal and therefore already covered by the shortest-path tree. Or they are not optimal,
but must then be longer than 𝑇 in order not to violate local optimality. In this case, they
are included in the second step. On the other hand, we ensure that no paths are considered
more than once. If, in the next iteration, we were to start generating a shortest-path tree at a
path that is shorter than 𝑇 , we would likely recreate paths that are already included in the
shortest-path tree of the current iteration.
Note that there may be multiple of those edges leading to the same vertex 𝑢. In this case,

we handle the according 𝑠-𝑢 paths independently of each other. All resulting 𝑠-𝑢 paths are
checked for local optimality and adherence to the maximum stretch. Paths that violate one of
these criteria are discarded. We repeat the whole process of computing a shortest-path tree
at 𝑢 followed by the second step for every remaining 𝑠-𝑢 path. To prevent cycles, those trees
must not include vertices that are already part of the corresponding 𝑠-𝑢 path. The resulting
paths in each iteration are concatenated. Paths are continued until they reach 𝑡 . This can
happen both while forming the shortest-path trees or when appending the additional edges
in the second step. If those paths meet the criteria for alternative paths, they are output. The
algorithm terminates once there are no more 𝑠-𝑢 paths remaining to form a shortest-path tree.
To perform the second step, we need to find edges that raise the according path’s weight

above 𝑇 and verify whether it is locally optimal and adheres to the maximum stretch. This
can be done on the fly while forming the shortest-path trees. Edges that exceed weight

15

4 Algorithmic Approaches

𝑇 are considered anyway when searching for the shortest paths. They can then be stored
immediately for further processing in the next step. If the shortest paths are found edge by
edge, we can easily keep track of the paths’ total weights and abort if 𝑆 is exceeded. We can
further apply the routine from Section 4.1 to verify local optimality.

Algorithm 4.3:An algorithm for enumerating all alternative paths using shortest-path
trees (or DAGs).
Input: A graph 𝐺 = (𝑉 , 𝐸) with weights𝑤 .

A source vertex 𝑠 ∈ 𝑉 and a target vertex 𝑡 ∈ 𝑉 .
The local optimality parameter 𝛼 ∈ [0, 1].
The maximum stretch parameter 𝜀 ≥ 0.

Output: All alternative paths from 𝑠 to 𝑡 .

1 𝑑 ← compute distances using APSP algorithm
2 𝑇 ← 𝛼 ⋅ 𝑑(𝑠, 𝑡)
3 𝑆 ← (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡)
4 𝑄 ← initialize empty priority queue
5 insert (𝑠) with priority𝑤((𝑠)) = 0 into 𝑄
6 while 𝑄 is not empty do
7 𝑝 ← remove shortest path from 𝑄

// We can skip paths that go beyond 𝑡.

8 for 𝑞 ← enumerate SSSP from the last vertex in 𝑝 in ascending order do
// The following can be done on the fly during SSSP enumeration.

9 if 𝑤(𝑞) > 𝑇 then break
10 if 𝑝 + 𝑞 is simple, locally optimal wrt. 𝑇 and𝑤(𝑝 + 𝑞) ≤ 𝑆 then
11 𝜈 ← last vertex in 𝑞
12 if 𝜈 = 𝑡 then output 𝑝 + 𝑞
13 else
14 insert 𝑝 + 𝑞 with priority𝑤(𝑝′) into 𝑄
15 for 𝑢 ← adjacent vertices of 𝜈 that are not part of 𝑝 + 𝑞 do
16 𝑞′ ← 𝑞 + (𝜈,𝑢)
17 𝑝′ ← 𝑝 + 𝑞′
18 if 𝑤(𝑞′) > 𝑇 , 𝑝′ is locally optimal wrt. 𝑇 and𝑤(𝑝′) ≤ 𝑆 then
19 𝜈 ′ ← last vertex in 𝑝′
20 if 𝜈 ′ = 𝑡 then output 𝑝′

21 else
22 insert 𝑝′ with priority𝑤(𝑝′) into 𝑄

As with the two previous algorithms, problems arise when there are many paths with a
late violation of local optimality. We take the instance from Section 4.1, shown in Figure 4.2,
and tailor it to this algorithm. Refer to the example in Figure 4.4 where 𝑛 = 7. Given 𝑛 ∈ ℕ,
the graph 𝐺 = (𝑉 , 𝐸) is defined as follows.

𝑉 ∶={𝜈1, . . . , 𝜈𝑛}
𝐸 ∶={𝜈1, . . . , 𝜈𝑛−3} × {𝜈1, . . . , 𝜈𝑛−3}
∪ {(𝜈1, 𝜈𝑛−2), (𝜈1, 𝜈𝑛−1), (𝜈𝑛−3, 𝜈𝑛−2), (𝜈𝑛−2, 𝜈𝑛−1), (𝜈𝑛−1, 𝜈𝑛)}

16

4.3 Iterative Shortest-Path Trees

𝑠 𝑥

𝑦

𝑧𝑡

8

𝛿

2

1

1

1

Figure 4.4: An instance for Algorithm 4.3 where 𝑛 = 7. We choose 0 < 𝛿 < 1
2 and 𝑇 = 1. There

are 𝑒Γ(3, 1) = 5 simple paths from 𝑠 to 𝑥 , none of which is a prefix of an alternative path. The
algorithm extends paths in the clique subgraph by one vertex per iteration. The alternative
path (𝑠, 𝑧, 𝑡) is found only after all of those 𝑠-𝑥 paths have been considered.

We specify 𝑠 ∶= 𝜈1 and 𝑡 ∶= 𝜈𝑛 , and we denote 𝜈𝑛−3 by 𝑥 , 𝜈𝑛−2 by 𝑦, and 𝜈𝑛−1 by 𝑧. The edge
weights are defined by the following weight function:

∀(𝜈,𝑢) ∈ 𝐸 ∶ 𝑤(𝜈,𝑢) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛿 (𝜈,𝑢) = (𝑠,𝑦) or (𝜈,𝑢) = (𝑥, 𝑠)
2 (𝜈,𝑢) ∈ {𝜈1, . . . , 𝜈𝑛−3} × {𝜈1, . . . , 𝜈𝑛−3} ∖ {(𝑥, 𝑠)}
2(𝑛 − 3) (𝜈,𝑢) = (𝑠, 𝑧)
1 otherwise

Again, 𝛿 is a small value, such that 0 < 𝛿 < 1
2 . The shortest path is 𝑝 = (𝑠,𝑦, 𝑧, 𝑡) with𝑤(𝑝) =

2 + 𝛿 . We choose 𝛼 ∶= 1
2+𝛿 and 𝜀 ≥ 2𝑛−7−𝛿

2+𝛿 so that 𝑇 = 𝛼 ⋅𝑤(𝑝) = 1 and 𝑆 = (1 + 𝜀) ⋅𝑤(𝑝) ≥
2(𝑛 − 3) + 1. Apart from (𝑥, 𝑠), the edge weights in the subgraph consisting of the vertices
𝑠, . . . , 𝑥 are equal to 2 > 𝑇 . As a consequence, each shortest-path tree formed by the algorithm
within this subgraph consist only of the root itself since other vertices lie outside the 𝑇
radius. Therefore, the paths progress by only one vertex in each iteration. Because there
are ∑𝑛−5𝑘=0 (

𝑛−5
𝑘
) ⋅ 𝑘! = 𝑒Γ(𝑛 − 4, 1) ∈ Θ((𝑛 − 5)!) simple 𝑠-𝑥 paths, the algorithm performs

Θ((𝑛 − 5)!) iterations on that subgraph. As before, none of these paths can be extended to a
locally optimal path since𝑤(𝑥,𝑦) = 1 > 2𝛿 =𝑤((𝑥, 𝑠,𝑦)). The only alternative path besides 𝑝
is 𝑝 ∶= (𝑠, 𝑧, 𝑡). The algorithm inserts the path (𝑠, 𝑧) into the queue during the first iteration.
However, all 𝑠-𝑥 paths are shorter than (𝑠, 𝑧), so it is only removed again after all 𝑠-𝑥 paths
have been considered. Therefore, 𝑝 is being output after Ω((𝑛 − 5)!) iterations.

17

5 Problem Variations

In this chapter, we explore some restrictions and variations of the Alternative Paths Enumera-
tion Problem. In Section 5.1, we examine so-called via paths, which are a subset of alternative
paths. Afterward, in Section 5.2 we focus on unweighted input graphs. The motivation is
to develop more efficient approaches than those discussed in Chapter 4 when the output or
input is restricted to a specific case. Lastly, we generalize the problem by briefly addressing
cyclic alternative paths in Section 5.3.

5.1 Via Paths

Abraham, Delling, Goldberg, and Werneck argue that, due to the possibly large number
of alternative paths, finding the best one may be impractical [ADGW13]. They therefore
study so-called single-via paths, which are formed by concatenating two shortest paths. We
define 𝑘-via paths as the natural generalization of such single-via paths in order to extend the
solution set. Single-via paths are the special case for 𝑘 = 1.
Definition 5.1 (𝑘-via Path): Let 𝑘 ∈ ℕ. A path 𝑝 is a 𝑘-via path if it is a concatenation of 𝑘 + 1
shortest paths. Specifically, 𝑝 = (𝑠, . . . , 𝜈(1), . . . , 𝜈(2), . . . , 𝜈(𝑘), . . . , 𝑡) where (𝜈(𝑖), . . . , 𝜈(𝑖+1)) is
the shortest path from 𝜈(𝑖) to 𝜈(𝑖+1) for 1 ≤ 𝑖 < 𝑘 . A 𝑘-via path is induced by a sequence of via
vertices 𝜈(1), . . . , 𝜈(𝑘).

Note that the sequence of via vertices for a given 𝑘-via path is not necessarily unique.
Additionally, the same path 𝑝 can be expressed with varying numbers of via vertices. In
particular, for a 𝑘-via path 𝑝 , we can insert any vertex along 𝑝 into the sequence of via vertices,
thus obtaining 𝑝 as a (𝑘 + 1)-via path. We refer to 𝑝 as minimal with respect to its sequence
of via vertices if no via vertex can be omitted while still inducing the same path 𝑝 . When the
actual value of 𝑘 is arbitrary at some point, we use the general term via path.

In this section, we focus on enumerating all via paths in a given instance of the Alternative
Paths Enumeration Problem. Note however that not every alternative path is a via path.
Consequently, this approach may identify only a strict subset of the solutions for certain
instances. Refer to Figure 5.1 for an example of such an instance.

In order to enumerate all via alternative paths in a graph, a naive algorithm would iterate
over all sequences of 𝑘 via vertices where 𝑘 ranges from 1 to 𝑛 − 2. For every sequence of
via vertices it would have to determine whether the induced via path fulfills the criteria of
being an alternative path. For a given 𝑘 , there are 𝑛!

(𝑛−𝑘)! possible sequences of 𝑘 via vertices.
However, we can establish an upper bound on the number of via vertices 𝑘 which is necessary
to cover all via alternative paths.

Theorem 5.2: Given an instance (𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝛼, 𝜀) for the Alternative Paths Enumeration

Problem, for every minimal 𝑘-via alternative path, the inequality 𝑘 ≤ ⌈2 ⋅ 1+𝜀
𝛼
− 1⌉ must hold.

Proof. Let 𝑝 be a minimal 𝑘-via alternative path with via vertices 𝜈(1), . . . , 𝜈(𝑘) and let 𝜈(𝑗),
𝜈(𝑗+1), 𝜈(𝑗+2) for 1 ≤ 𝑗 ≤ 𝑘 − 2 be any three consecutive via vertices in 𝑝 . Let further
𝑝′ ∶= (𝜈(𝑗), . . . , 𝜈(𝑗+2)) denote the subpath of 𝑝 from 𝜈(𝑗) to 𝜈(𝑗+2). If 𝑤(𝑝′) ≤ 𝑇 , then 𝑝′

19

5 Problem Variations

𝑠 𝑥

𝑦

𝑧 𝑡

> 𝑇

<𝑤(𝑥, 𝑧)

Figure 5.1: An example for an alternative path (𝑠, . . . , 𝑥, 𝑧, . . . , 𝑡) which is not a via path
for any sequence of via vertices. Let 𝑤(𝑥, 𝑧) > 𝑇 and let the edges (𝑥,𝑦), (𝑦, 𝑧) be short
enough, such that 𝑤((𝑥,𝑦, 𝑧)) < 𝑤(𝑥, 𝑧). The alternative path (𝑠, . . . , 𝑥, 𝑧, . . . , 𝑡) is not a via
path, because no via path can contain the edge (𝑥, 𝑧) which is not a part of any shortest path
between two vertices.

is a shortest path by the definition of alternative paths. Therefore, we can omit 𝜈(𝑗+1) from
the sequence of via vertices since the shortest path from 𝜈(𝑗) to 𝜈(𝑗+2) runs through 𝜈(𝑗+1)
anyway, assuming unique shortest paths. This contradicts the fact that 𝑝 is minimal. It follows
that𝑤((𝜈(𝑖), . . . , 𝜈(𝑖+2))) > 𝑇 for every 1 ≤ 𝑖 ≤ 𝑘 − 2.
Thus, the following relationship holds for the total weight of 𝑝 . If 𝑘 is odd, then

𝑤(𝑝) =𝑤 ((𝑠, . . . , 𝜈(2))) +
𝑘−3
2

∑
𝑖=1
𝑤 ((𝜈(2𝑖), . . . , 𝜈(2𝑖+2))) +𝑤 ((𝜈(𝑘−1), . . . , 𝑡)) > ⌈𝑘

2
⌉ ⋅𝑇 .

If 𝑘 is even, then

𝑤(𝑝) =𝑤 ((𝑠, . . . , 𝜈(2))) +
𝑘−2
2

∑
𝑖=1
𝑤 ((𝜈(2𝑖), . . . , 𝜈(2𝑖+2))) +𝑤 ((𝜈(𝑘), . . . , 𝑡)) > 𝑘

2
⋅𝑇 = ⌈𝑘

2
⌉ ⋅𝑇 .

Note that in the latter case, 𝑤((𝜈(𝑘), . . . , 𝑡)) can be arbitrarily small. 𝑤(𝑝) is further upper
bounded by 𝑆 since 𝑝 is an alternative path. By combining these two bounds for 𝑤(𝑝),
⌈𝑘2 ⌉ ⋅𝑇 < 𝑆 , or equivalently ⌈

𝑘
2 ⌉ <

𝑆
𝑇
= 1+𝜀

𝛼
, holds. It follows that 𝑘 < 2 ⋅ 1+𝜀

𝛼
, or 𝑘 ≤ ⌈2 ⋅ 1+𝜀

𝛼
− 1⌉.

This relationship holds regardless of the size of the input graph. In many applications, the
parameters 𝛼 and 𝜀 often take on typical values, such as 𝜀 = 0.25 and 𝛼 = 0.25. Observe that if
we consider these parameters as constants, then the number 𝑘 of necessary via vertices to
cover all via paths is upper bounded by some constant 𝐾 , according to Theorem 5.2. For the
above parameter choices, 𝑘 ≤ 10 = 𝐾 . The naive algorithm described above would therefore
only have to iterate over all sequences of 𝑘 via vertices where 𝑘 ranges from 1 to 𝐾 . There
exist ∑𝐾𝑘=1 𝑛!

(𝑛−𝑘)! ≤ ∑
𝐾
𝑘=1𝑛

𝑘 ∈ O (𝑛𝐾) such sequences of via vertices. Given that verifying
whether a given path is an alternative path can be done in polynomial time, this algorithm
would output all via alternative paths in polynomial time.

However, in the general case, 𝑘 cannot be bounded by a constant. In particular, this implies
that 𝑘-via alternative paths comprise strictly more solutions than single-via alternative paths.

Lemma 5.3: For every 𝑘 ∈ ℕ, there exists an instance of the Alternative Paths Enumeration

Problem with a minimal 𝑘-via alternative path.

Proof. Given 𝑘 ∈ ℕ, we define a graph 𝐺 = (𝑉 , 𝐸) as follows:

𝑉 ∶= {𝜈0, 𝜈1, . . . , 𝜈𝑘 , 𝜈𝑘+1}
𝐸 ∶= {(𝜈𝑖 , 𝜈𝑖+1) ∣ 0 ≤ 𝑖 < 𝑘 + 1} ∪ {(𝜈𝑖 , 𝜈𝑖+2) ∣ 0 ≤ 𝑖 < 𝑘}

20

5.1 Via Paths

𝜈0 𝜈1 𝜈2 𝜈3 𝜈4 𝜈5 𝜈6
2

3

Figure 5.2: An example for an instance containing a minimal 5-via alternative path, which is
induced by the via vertices 𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5.

The edge weights are defined by the following weight function:

∀(𝜈𝑖 , 𝜈 𝑗) ∈ 𝐸 ∶ 𝑤(𝜈𝑖 , 𝜈 𝑗) ∶=
⎧⎪⎪⎨⎪⎪⎩

2 𝑗 = 𝑖 + 1
3 𝑗 = 𝑖 + 2

We specify 𝑠 ∶= 𝜈0 and 𝑡 ∶= 𝜈𝑘+1. See Figure 5.2 for an example where 𝑘 = 5.
For two vertices 𝜈𝑖 and 𝜈𝑖+2, the shortest path between those vertices is (𝜈𝑖 , 𝜈𝑖+2) with

weight 3. There is also a second path (𝜈𝑖 , 𝜈𝑖+1, 𝜈𝑖+2) of weight 4. When 𝑘 is odd, the
shortest 𝑠-𝑡 path is 𝑝 = (𝜈0, 𝜈2, 𝜈4, . . . , 𝜈𝑘+1) with 𝑤(𝑝) = 𝑘+1

2 , or when 𝑘 is even, 𝑝 =
(𝜈0, 𝜈2, 𝜈4, . . . , 𝜈𝑘−2, 𝜈𝑘 , 𝜈𝑘+1)with𝑤(𝑝) = 𝑘

2+2. Also, 𝑝 = (𝜈0, 𝜈1, . . . , 𝜈𝑘+1)with𝑤(𝑝) = 2(𝑘+1),
is a 𝑘-via path since each edge (𝜈𝑖 , 𝜈𝑖+1) is the only and therefore the shortest path between
𝜈𝑖 and 𝜈𝑖+1. 𝑝 is further minimal. We cannot omit any via vertex 𝜈𝑖 since the shortest path
between 𝜈𝑖−1 and 𝜈𝑖+1 does not run through 𝜈𝑖 . It remains to show that 𝑝 is an alternative
path. If 𝑘 is odd, we choose 𝛼 < 8

𝑘+1 and 𝜀 ≥ 3. Then, 𝑇 = 𝛼 ⋅ 𝑤(𝑝) < 8
𝑘+1 ⋅

𝑘+1
2 = 4 and

𝑆 = (1 + 𝜀) ⋅𝑤(𝑝) ≥ 4 ⋅ 𝑘+12 = 2(𝑘 + 1). If 𝑘 is even, we choose 𝛼 < 8
𝑘+4 and 𝜀 ≥

3𝑘
𝑘+4 . Similarly,

𝑇 = 𝛼 ⋅𝑤(𝑝) < 8
𝑘+4 ⋅(

𝑘
2 +2) = 4 and 𝑆 = (1+𝜀) ⋅𝑤(𝑝) ≥ (1+

3𝑘
𝑘+4) ⋅(

𝑘
2 +2) =

𝑘
2 +2+

3𝑘
2 = 2(𝑘 +1).

In both cases, 𝑝 is locally optimal with respect to 𝑇 , and satisifies𝑤(𝑝) ≤ 𝑆 .

Many such instances that contain a minimal 𝑘-via alternative path where 𝑘 is relatively
large, also contain a 𝑘 ′-via alternative path where 𝑘 ′ < 𝑘 . In Figure 5.2 for instance, there is a
single-via alternative path for the via vertex 𝜈1. In this case, the naive algorithm described
above would be able to find and output a via alternative path early on. The question arises as
to whether there are also instances where a 𝑘-via alternative path only exists for large 𝑘 .

Theorem 5.4: For every 𝑘 ∈ ℕ, there exists an instance of the Alternative Paths Enumeration

Problem which contains a minimal 𝑘-via alternative path, but no 𝑘 ′-via alternative path where

𝑘 ′ < 𝑘 .

Proof. Given the number of via vertices 𝑘 ∈ ℕ, we construct a graph 𝐺 = (𝑉 , 𝐸) as follows:

𝑉 ∶={𝑠, 𝑡} ∪ {𝜈𝑖 ∣ 0 ≤ 𝑖 ≤ 𝑘 + 1}
𝐸 ∶={(𝜈0, 𝜈𝑘+1)} ∪ {(𝜈𝑖 , 𝜈 𝑗) ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1}

The edge weights are defined by the following weight function:

𝑤(𝑠, 𝜈0) ∶= 2
𝑤(𝜈𝑘+1, 𝑡) ∶= 2

∀(𝜈𝑖 , 𝜈 𝑗) ∈ 𝐸 ∶ 𝑤(𝜈𝑖 , 𝜈 𝑗) ∶=
⎧⎪⎪⎨⎪⎪⎩

2 𝑗 − 𝑖 = 1
1 𝑗 − 𝑖 > 1

21

5 Problem Variations

𝜈0

𝜈1

𝜈2 𝜈3

𝜈4

𝜈5

𝑠 𝑡

2

1

Figure 5.3: An example instance for Theorem 5.4 where 𝑘 = 4. 𝑝 = (𝑠, 𝜈0, 𝜈5, 𝑡) is the shortest
path. 𝑝 = (𝑠, 𝜈0, 𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5, 𝑡) is a 4-via alternative path and there are no other 𝑘 ′-via
alternative paths where 𝑘 ′ < 4.

See Figure 5.3 for an example with 𝑘 = 4 via vertices.
For the problem instance, we specify the source vertex 𝑠 ∶= 𝜈0, the target vertex 𝑡 ∶= 𝜈𝑘 and

the parameters 𝛼 ∶= 3
5 and 𝜀 ∶=

(𝑘+3)⋅2
5 −1. We see that 𝑝 = (𝑠, 𝜈0, 𝜈𝑘+1, 𝑡) is the shortest path and

has weight𝑤(𝑝) = 2+1+2 = 5. Therefore,𝑇 = 𝛼 ⋅5 = 3 and 𝑆 = (1+𝜀) ⋅5 = (𝑘+3) ⋅2. Choosing
𝜈1, . . . , 𝜈𝑘 as via vertices, we receive the simple 𝑘-via path 𝑝 = (𝑠, 𝜈0, 𝜈1, . . . , 𝜈𝑘 , 𝜈𝑘+1, 𝑡). We
show that 𝑝 is minimal and the only via alternative path. Hereafter, we refer to an edge 𝑒 ∈ 𝐸
as an outer edge if𝑤(𝑒) = 2, and as an inner edge if𝑤(𝑒) = 1.

For two vertices 𝜈𝑖 and 𝜈 𝑗 , where 𝑗 − 𝑖 > 1, the shortest path from 𝜈𝑖 to 𝜈 𝑗 is always (𝜈𝑖 , 𝜈 𝑗)
with𝑤((𝜈𝑖 , 𝜈 𝑗)) = 1. In particular, it does not pass through any 𝜈ℓ for 𝑖 < ℓ < 𝑗 . Thus, omitting
𝜈ℓ from the sequence of via vertices would also remove it from 𝑝 . Therefore, 𝜈ℓ cannot be
omitted for 0 < ℓ < 𝑘 + 1, implying that 𝑝 is minimal.

𝑝 is also an alternative path. Consider a subpath 𝑝′ of 𝑝 . Since all edges along 𝑝 have
the same weight, 𝑤(𝑝′) = 2 ⋅ ∣𝑝′∣. We need to confirm the optimality of 𝑝′ if 𝑤(𝑝′) ≤ 𝑇 = 3.
This holds only for ∣𝑝′∣ = 1, i.e., if 𝑝′ contains only a single (outer) edge. Such 𝑝′ is trivially
optimal since there are no other paths from 𝑝′[1] to 𝑝′[2]. It follows that 𝑝 is locally optimal.
𝑝 further adheres to the maximum stretch since𝑤(𝑝) = ∣𝑝 ∣ ⋅ 2 = (𝑘 + 3) ⋅ 2 ≤ 𝑆 . Therefore, 𝑝 is
an alternative path.

There is no other alternative path besides 𝑝 and 𝑝 . Consider an 𝑠-𝑡 path 𝑝′ ≠ 𝑝 that contains
a subpath 𝑝′′ ∶= (𝜈𝑖1, 𝜈𝑖2, 𝜈𝑖3) with two edges 𝑒1 ∶= (𝜈𝑖1, 𝜈𝑖2) and 𝑒2 ∶= (𝜈𝑖2, 𝜈𝑖3). Note that, by
construction of 𝐺 , 𝑖1 < 𝑖2 < 𝑖3 holds. If both 𝑒1 and 𝑒2 are inner edges, then𝑤(𝑝′′) = 1 + 1 = 2.
If exactly one of the two edges is an inner edge, then 𝑤(𝑝′′) = 2 + 1 = 3. In both cases,
𝑤(𝑝′′) ≤ 3 = 𝑇 . However, there is a path (𝜈𝑖1, 𝜈𝑖3) with𝑤((𝜈𝑖1, 𝜈𝑖3)) = 1 < 𝑤(𝑝′′). Therefore,
𝑝′ is not locally optimal. Thus, for 𝑝′ to be an alternative path, all edges along 𝑝′ must be outer
edges. Since there is exactly one 𝑠-𝑡 path 𝑝 consisting of only outer edges, this completes the
proof.

22

5.2 Unweighted Graphs

5.2 Unweighted Graphs

In this section, we consider unweighted graphs. A graph 𝐺 = (𝑉 , 𝐸) is called unweighted if
𝑤(𝑢,𝜈) = 1 for all edges (𝑢,𝜈) ∈ 𝐸. Therefore, the weight of a path is equal to its length. In
particular, the length of subpaths, which must be locally optimal, is bounded for a given 𝑇 .
Let the local optimality parameter 𝑇 ≥ 2 be a constant. Without loss of generality, we

can assume that 𝑇 ∈ ℕ. Otherwise, 𝑇 could simply be rounded down, as each path has an
integer weight. We apply the following transformation on the unweighted input graph which
enables us to easily identify alternative paths. Given 𝐺 = (𝑉 , 𝐸), we construct a new graph
𝐺 ′ = (𝑉 ′, 𝐸′). The set of vertices𝑉 ′ contains all paths in𝐺 that have length𝑇 and are shortest
paths. When determining the local optimality of an 𝑠-𝑡 path in 𝐺 , the subpaths that we have
to consider are exactly those of length 𝑇 , according to Lemma 4.1. Consequently, an 𝑠-𝑡 path
in𝐺 is locally optimal if and only if all its subpaths of length𝑇 lie in𝑉 ′. We therefore connect
these subpaths in such a way that the paths extracted from the transformed graph𝐺 ′ can only
contain subpaths of length 𝑇 that are in 𝑉 ′. To this end, a path 𝑝 ∈ 𝑉 ′ is adjacent to another
path 𝑞 ∈ 𝑉 ′ if the last 𝑇 vertices of 𝑝 are equal to the first 𝑇 vertices of 𝑞. We further add two
auxiliary vertices 𝑠 and 𝑡 , along with edges connecting them to paths that begin at 𝑠 or end
at 𝑡 , respectively. For an example of this transformation, see Figure 5.4.

𝑉 ′ ∶={𝑝 ∣ 𝑝 ∶= (𝜈1, . . . , 𝜈𝑇+1) is a path in 𝐺 and 𝑑(𝜈1, 𝜈𝑇+1) = 𝑇}
∪ {𝑠, 𝑡}

𝐸′ ∶={(𝑝,𝑞) ∣ 𝑝,𝑞 ∈ 𝑉 ′ ∖ {𝑠, 𝑡}, 𝑝[2 .. 𝑇 + 1] = 𝑞[1 .. 𝑇]}
∪ {(𝑠, 𝑝) ∣ 𝑝 ∈ 𝑉 ′ ∖ {𝑠, 𝑡}, 𝑝[1] = 𝑠}
∪ {(𝑝, 𝑡) ∣ 𝑝 ∈ 𝑉 ′ ∖ {𝑠, 𝑡}, 𝑝[𝑇 + 1] = 𝑡}

Paths in the transformed graph can be mapped back to paths in the original graph. This is
done by concatenating the paths represented by the vertices in the path of the transformed
graph. The matching subpath of two subsequent paths must only occur once in the resulting
path. Formally, a path 𝑝′ = (𝑝1, . . . , 𝑝𝑘) in the transformed graph corresponds to the path
𝑝 = (𝑝1[1], 𝑝2[1], . . . , 𝑝𝑘−1[1], 𝑝𝑘[1], 𝑝𝑘[2], . . . , 𝑝𝑘[𝑇 + 1]) in the original graph. The result of
the transformation now allows us to extract alternative paths in the original graph. To this
end, we first establish the following two statements.

Lemma 5.5: Every alternative path 𝑝 in the input graph𝐺 = (𝑉 , 𝐸) corresponds to an 𝑠-𝑡 path
𝑝′ in the transformed graph.

Proof. Let 𝑝 = (𝜈1, . . . , 𝜈𝑘) be an alternative path in 𝐺 where 𝑠 = 𝜈1 and 𝑡 = 𝜈𝑘 with respect
to parameters 𝑇 and 𝑆 . We know that ∣𝑝 ∣ = 𝑘 − 1 ≥ 𝑇 since 𝑇 = 𝛼 ⋅ 𝑑(𝑠, 𝑡) ≤ 𝑑(𝑠, 𝑡) ≤ ∣𝑝 ∣. For
every 1 ≤ 𝑖 ≤ 𝑘 −𝑇 the subpath 𝑝𝑖 ∶= (𝜈𝑖 , . . . , 𝜈𝑖+𝑇) has weight 𝑤(𝑝𝑖) = ∣𝑝𝑖 ∣ = 𝑇 . By the local
optimality criterion, it follows that 𝑝𝑖 is optimal. Therefore, there exists a corresponding vertex
for 𝑝𝑖 in the transformed graph. For every 1 ≤ 𝑖 < 𝑘 −𝑇 , there is also an edge (𝑝𝑖 , 𝑝𝑖+1) in the
transformed graph, since 𝑝𝑖[2..𝑇 +1] = 𝑝𝑖+1[1..𝑇]. With 𝑝1[1] = 𝜈1 = 𝑠 and 𝑝𝑘−𝑇 [𝑇 +1] = 𝜈𝑘 = 𝑡 ,
the edges (𝑠, 𝑝1) and (𝑝𝑘−𝑇 , 𝑡) exist. Thus, the path (𝑠, 𝑝1, . . . , 𝑝𝑘−𝑇 , 𝑡) exists in the transformed
graph, and 𝑝 = (𝑠) + 𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑘−𝑇 + (𝑡).

Lemma 5.6: Every 𝑠-𝑡 path 𝑝′ in the transformed graph corresponds to an 𝑠-𝑡 path 𝑝 in the input

graph that is locally optimal with respect to 𝑇 .

23

5 Problem Variations

𝑠

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑡

(a) The unweighted input graph.

𝑠

𝑠𝑎𝑐

𝑠𝑏𝑐

𝑠𝑏𝑓

𝑎𝑐𝑒

𝑎𝑐𝑑

𝑏𝑐𝑒

𝑏𝑐𝑑

𝑐𝑑 𝑓

𝑐𝑒𝑡

𝑑 𝑓 𝑒

𝑑 𝑓 𝑡

𝑏 𝑓 𝑒

𝑏𝑓 𝑡

𝑡

(b) The transformed graph. Vertices that represent optimal paths are rectan-
gular. Note that there is no vertex for the path (𝑓 , 𝑒, 𝑡) in the transformed
graph since this path is not optimal.

Figure 5.4: An example for the transformation of an unweighted graph into the graph of
optimal paths of length 𝑇 ∶= 2.

24

5.2 Unweighted Graphs

𝑠

𝑥

𝑦

𝑡

Figure 5.5: An example for a graph with an exponential number of cyclic, but locally optimal
paths. The cycle (𝑥,𝑦, . . . , 𝑥) must have length > 𝑇 since shorter cycles can never be (locally)
optimal.

Proof. Let 𝑝′ = (𝑠, 𝑝1, . . . , 𝑝𝑘 , 𝑡) be an 𝑠-𝑡 path in the transformed graph with ∣𝑝′∣ = 𝑘 + 1. Then
𝑝 = (𝑝1[1], 𝑝2[1], . . . , 𝑝𝑘−1[1], 𝑝𝑘[1], 𝑝𝑘[2], . . . , 𝑝𝑘[𝑇 + 1]) is an 𝑠-𝑡 path in the original graph.
It is obtained by reconstructing 𝑝 from 𝑝′, as described above, after dropping the auxiliary
vertices 𝑠 and 𝑡 . Every subpath of 𝑝 with length ∣𝑝 ∣ = 𝑇 is a vertex in the transformed graph
and therefore optimal. It follows that 𝑝 is locally optimal with respect to 𝑇 .

Although we can now easily find locally optimal paths in the original graph using 𝑠-𝑡
paths in the transformed graph, not every such path is also an alternative path. A locally
optimal path might not be an alternative path for two reasons. Firstly, a path might exceed the
maximum stretch 𝑆 . This can be addressed straightforwardly, as the transformation preserves
the relative lengths of paths. We can therefore simply enumerate 𝑠-𝑡 paths in the transformed
graph ordered by their length and terminate as soon as the corresponding paths in the original
graph exceed 𝑆 . Secondly, a path might contain cycles. There might even be an exponential
number of cyclic, but locally optimal, paths in the input graph. Figure 5.5 shows an example
of such a graph. Therefore, filtering out cyclic paths while enumerating all paths in the
transformed graph may not be feasible for cyclic graphs. However, depending on the choice
of the local optimality and maximum stretch parameters 𝛼 and 𝜀, we can even rule out this
case.

Lemma 5.7: If 𝛼 > 𝜀, then there exist no cyclic 𝑠-𝑡 paths that are both locally optimal with

respect to 𝑇 and of weight ≤ 𝑆 .

Proof. Let 𝑝 = (𝑠, . . . , 𝑥, . . . , 𝑥, . . . , 𝑡) be an 𝑠-𝑡 path in 𝐺 with a cycle subpath (𝑥, . . . , 𝑥). If
∣(𝑥, . . . , 𝑥)∣ ≤ 𝑇 , then this subpath is not optimal due to the cycle and therefore 𝑝 is not locally
optimal with respect to𝑇 . Otherwise, if ∣(𝑥, . . . , 𝑥)∣ > 𝑇 , then𝑤(𝑝) >𝑤((𝑠, . . . , 𝑥, . . . , 𝑡))+𝑇 ≥
𝑑(𝑠, 𝑡) +𝑇 = (1 + 𝛼) ⋅ 𝑑(𝑠, 𝑡) > (1 + 𝜀) ⋅ 𝑑(𝑠, 𝑡) = 𝑆 , if 𝛼 > 𝜀.

25

5 Problem Variations

Combining Lemmas 5.5 to 5.7, we obtain an algorithm for enumerating alternative paths
when the input graph fulfills certain restrictions. If the unweighted input graph is a DAG
or 𝛼 > 𝜀 holds, then we can apply the transformation described above. Since there exist
(𝑛
𝑇
) ∈ Θ(𝑛𝑇) paths of length 𝑇 , the transformation requires polynomial time if 𝑇 is a constant.

This demonstrates that the problem tends to be simpler for smaller values of 𝑇 , provided that
𝑆 is also sufficiently small. On the other hand, individual edges in unweighted graphs are
always shortest paths, so any alternative path can be represented as a via path. As seen in
Section 5.1, the problem becomes simpler for large 𝑇 too, by bounding the number of via
vertices.

Following the transformation, we enumerate shortest 𝑠-𝑡 paths in the transformed graph,
following the same idea as described in Section 4.1. This can also be accomplished in time
polynomial in the number of paths [Yen71]. These paths can be converted back into paths in
the original graph according to Lemma 5.6. Enumeration terminates when the paths exceed
length 𝑆 . All resulting paths are indeed alternative paths as per Lemma 5.7. As a result of
Lemma 5.5, all alternative paths in the original graph have then been enumerated. Thus, under
the specified conditions, it is possible to enumerate all alternative paths in time polynomial in
the number of alternative paths.

5.3 Cyclic Paths

Having considered two constrained variations of the problem, we now turn to a generalization
of the concept of alternative paths. In this section, we briefly discuss cyclic alternative paths
by lifting the restriction that alternative paths need to be simple. Note that this consideration
is only applicable with our adapted definition of alternative paths, since we do not require a
uniformly bounded stretch. In the original definition by Abraham, Delling, Goldberg, and
Werneck [ADGW13], cycles are already entirely eliminated by this criterion, since cycles
trivially exceed any stretch.
However, for our definition, we can show the following statement about the maximum

number of times the same vertex can occur in a path, depending on the local optimality and
maximum stretch parameters 𝛼 and 𝜀.

Lemma 5.8: For a cyclic alternative path 𝑝 and a vertex 𝑥 , the number of occurrences of 𝑥 in 𝑝

is bounded by ⌊ 1+𝜀
𝛼
⌋ + 1.

Proof. Let 𝑝 be a cyclic alternative path and let 𝑥 be a vertex that occurs multiple times in 𝑝 .
Consider any subpath 𝑝′ = (𝑥, . . . , 𝑥) of 𝑝 that is a cycle starting and ending at 𝑥 . By the
local optimality criterion, we know that 𝑤(𝑝′) > 𝑇 must hold, since 𝑝′ cannot be optimal.
Therefore, there can be at most ⌊ 𝑆

𝑇
⌋ = ⌊ 1+𝜀

𝛼
⌋ of such cycles in 𝑝 . It follows that 𝑥 can occur at

most ⌊ 1+𝜀
𝛼
⌋ + 1 times in 𝑝 .

26

6 Conclusion

In this thesis, we have addressed the theoretical problem of enumerating alternative paths in
a graph. In contrast to practical navigation systems, our goal throughout has been to find
the entire solution set. We presented three algorithms that are capable of enumerating all
alternative paths in Chapter 4. In all three cases, we were able to construct an input instance
for which the respective algorithm must consider a super-exponential number of paths that
are not alternative paths. It remains an open question whether there is an algorithm that
solves the Alternative Paths Enumeration Problem efficiently. Closely related is the question
of the problem’s computation complexity. In Chapter 3, we proved that the problem lies in
EnumP. However, we do not know whether it can be further classified using either of the
complexity classes DelayP, IncP or TotalP, as defined by Strozecki [Str10]. In other words,
we are interested in an algorithm whose runtime grows at most polynomially with the size of
the output, i.e., the number of alternative paths. Future research could explore the existence
of algorithms with this property.

On the other hand, it may be difficult or even impossible to find such an algorithm. This is
the case, for example, if the enumeration problem proves to be EnumP-complete. Our attempts
to find a parsimonious reduction of 3-SAT were fruitless, both for our definition of alternative
paths and for the original definition by Abraham, Delling, Goldberg, and Werneck [ADGW13].
The same applies to a possible polynomial-time many-one reduction to the decision problem
of whether there exists another alternative path besides the shortest path. Therefore, the
question remains whether there is a reduction that demonstrates the difficulty of the problem.
This could also be a starting point for future research.

Apart from complexity, all sorts of variations of the problem could be studied in order to
find more efficient approaches for constrained cases. In particular, restrictions of the concept
of alternative paths and the input graphs could be considered, as we did in Sections 5.1 to 5.2.
For example, there may be algorithms for which the original definition of alternative paths by
Abraham, Delling, Goldberg, and Werneck [ADGW13] makes a significant difference. The
criterion of limited sharing, where the order of the enumeration is relevant, could also be
explored. Moreover, there is a variety of graph classes for which one could design tailored
enumeration algorithms, such as undirected graphs, planar graphs, graphs with restricted
weights, or parameterized graphs.

27

Bibliography

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
“Alternative routes in road networks”. In: ACM J. Exp. Algorithmics Volume 18
(Apr. 2013). ISSN: 1084-6654. DOI: 10.1145/2444016.2444019.

[BDGS11] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. “Alternative
Route Graphs in Road Networks”. In: Theory and Practice of Algorithms in

(Computer) Systems. Edited by Alberto Marchetti-Spaccamela and Michael Segal.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 21–32. ISBN: 978-3-
642-19754-3.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Nu-
merische Mathematik Volume 1 (Dec. 1959), pp. 269–271. ISSN: 0945-3245. DOI:
10.1007 /BF01386390.

[DS16] Holger Döbler and Björn Scheuermann. “On Computation and Application of k
Most Locally-Optimal Paths in Road Networks”. In: Fachgespräch Inter-Vehicle

Communication 2016. 2016, pp. 32–35. DOI: http://dx.doi.org/10.18452/1440.

[Fis20] Samuel M. Fischer. “Locally optimal routes for route choice sets”. In: Trans-
portation Research Part B: Methodological Volume 141 (2020), pp. 240–266. ISSN:
0191-2615. DOI: https://doi.org/10.1016/j.trb.2020.09.007 .

[Flo62] Robert W. Floyd. “Algorithm 97: Shortest path”. In: Commun. ACM Volume 5
(June 1962), p. 345. ISSN: 0001-0782. DOI: 10.1145/367766.368168.

[PEB53] Bateman Manuscript Project, A. Erdélyi, and H. Bateman. Higher Transcendental
Functions. Vol. 2. McGraw-Hill Book Company, 1953.

[Str10] Yann Strozecki. “Enumeration complexity and matroid decomposition”. Univer-
sité Paris Diderot - Paris 7, 2010.

[Yen71] Jin Y. Yen. “Finding the K Shortest Loopless Paths in a Network”. In:Management

Science Volume 17 (1971), pp. 712–716. ISSN: 00251909, 15265501.

29

https://doi.org/10.1145/2444016.2444019
https://doi.org/10.1007/BF01386390
https://doi.org/http://dx.doi.org/10.18452/1440
https://doi.org/https://doi.org/10.1016/j.trb.2020.09.007
https://doi.org/10.1145/367766.368168

	Introduction
	Related Work
	Outline

	Preliminaries
	Graph Theory
	Enumeration Problems

	Alternative Paths Problem
	Algorithmic Approaches
	Shortest Paths
	Backtracking
	Iterative Shortest-Path Trees

	Problem Variations
	Via Paths
	Unweighted Graphs
	Cyclic Paths

	Conclusion
	Bibliography

