
Multi Via-Node Alternatives for
Customizable Contraction Hierarchies

Bachelor’s Thesis of

Scott Bacherle

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius
Second reviewer: Prof. Dr. Peter Sanders
Advisors: Michael Zündorf

Adrian Feilhauer

15.12.2023 – 15.04.2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I have not
used any other than the aids that I have mentioned. I have marked all parts of the thesis that
I have included from referenced literature, either in their original wording or paraphrasing
their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, 15.04.2024

. .
(Scott Bacherle)

Abstract

Sometimes in a road network, the shortest path between two points is not the only desirable
path for road users. The problem of finding alternative paths is well studied and there are
many existing algorithms. Alternatives can be found quickly with customizable contraction
hierarchies, however these algorithms are outperformed by others. We propose a novel method
to find alternative paths by splitting a shortest path into smaller subpaths and searching for
alternatives for each one. The alternatives for the subpaths are then linked to form alternatives
for the complete path. We study its performance and success rate compared to existing
CCH-based algorithms, determining that a combined approach finds more paths with only
marginally higher average runtime.

Zusammenfassung

Der kürzeste Weg vom Start- zum Zielpunkt ist nicht immer der einzige erwünschte Weg
von Teilnehmern im Straßenverkehr. Darum wird schon länger am Problem der alternati-
ven Wege geforscht. Viele verschiedene Alorithmen existieren, darunter benutzen einige
anpassbare Kontraktionshierarchien und können so schnell Resultate finden. Allerdings ist
ihre Erfolgsquote niedriger im Vergleich zu anderen Methoden. Darum schlagen wir einen
neuen Algorithmus vor, der auch Kontraktionshierarchien benutzt und Alternativen durch
Aufteilung des kürzesten Weges in mehrere Segmente findet. Alternativrouten werden für
jedes der Segmente gesucht. Durch Verknüpfung der einzelnen Segmente werden Alterna-
tivrouten für den gesamten Weg erzeugt. Es wird die Performance und die Erfolgsquote
des Algorithmus untersucht und mit bestehenden Algorithmen, die Kontraktionshierarchien
verwenden, verglichen. Dies führt zu dem Schluss, dass eine Kombination der Algorithmen
verbesserte Ergebnisse liefern kann, ohne dass die Laufzeit zu stark verlangsamt wird.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1
1.3 Outline . 2

2 Preliminaries 3
2.1 Graph Theory . 3
2.2 Customizable Contraction Hierarchies . 4

2.2.1 Metric Independent Construction . 4
2.2.2 Customization . 4
2.2.3 Shortest Path Queries . 5
2.2.4 Nested Dissection Orders . 6

3 Alternative Paths 7
3.1 Uniformly Bounded Stretch . 7
3.2 Local Optimality . 7
3.3 Limited Sharing . 8
3.4 Single Via-Node Alternatives . 8

3.4.1 Finding Via-Nodes . 8
3.4.2 Shortest Paths . 8
3.4.3 Verification . 9
3.4.4 Detour Adjusted . 10

4 Multi Via-Node Alternatives 11
4.1 Selection of Split Node . 11

4.1.1 Middle . 11
4.1.2 Highest . 13
4.1.3 Highest in the Middle . 13

4.2 Performing Separate Searches . 13
4.2.1 Relaxed Stretch . 14
4.2.2 Relaxed Sharing . 14
4.2.3 Relaxed Local Optimality . 15
4.2.4 Trade-Offs . 16

4.3 Combining Paths . 16
4.3.1 Order . 16
4.3.2 Verification . 17

5 Recursion 19
5.1 Termination . 20
5.2 Algorithm . 20

iii

Contents

6 Evaluation 23
6.1 Split Nodes . 23
6.2 General Performance . 24
6.3 Conditional Performance . 25
6.4 Combined Performance . 26

7 Conclusion 29
7.1 Future Work . 29

Bibliography 31

iv

1 Introduction

In this chapter, the motivation for this work is explained. We take a look at related work,
which includes existing algorithms that use CCHs. Finally, a brief outline of the contents is
given.

1.1 Motivation

Searching for alternative paths in addition to the shortest path is a well studied problem.
Many algorithms exist to find alternative paths, however better results often come with
increased runtimes. In particular, single via-node algorithms using Customizable Contraction
Hierarchies (CCHs) perform comparably fast but find less paths [ADGW13]. We devise an
algorithm using CCHs, that performs better in cases where the single via-node algorithm
fails. This multi via-node algorithm exploits characteristics of these cases but is also useful in
general. By running it when single via-node algorithms fail, the fast query times of CCHs
provide alternative paths quickly in most cases, while still finding alternative paths otherwise.
The proposed algorithm takes advantage of the short runtime of existing algorithms in CCHs
by starting multiple searches on smaller segments of the shortest path.

1.2 Related Work

One method to find alternative paths between two points is to find overlapping branches in
the search trees of a bidirectional search. This is known as the plateau method [CAM09]. To
find the shortest paths between two nodes in a graph, searches are initiated at both. These
branch out to find the node which minimizes the distance between both points. After the
shortest path is found, the resulting trees also contain the shortest path to many other nodes.
By looking for long overlapping sections between both trees, plateaus are found, which are
themselves shortest paths in the graph. Paths containing long plateaus make good alternatives.
This approach produces satisfying results, however searching for plateaus can take very long.

A more efficient version of this method is to find single via-paths like described by Abraham
et al. [ADGW13]. Instead of searching for intersecting arcs in the search trees, only single
via-nodes are compared. If a node appears in both search trees, the shortest path to it from
both start and end node has already been found. By concatenating both paths, an alternative
path is constructed. Different methods to speed up the bidirectional Dijkstra searches are
evaluated. They analyze pruning and contraction hierarchies (CH) which both perform
significantly faster but find less alternatives. To increase the success rate with CHs, they allow
the algorithm to look “downwards” during the searches. However, it still finds significantly less
alternative paths than the other studied approaches. Luxen et al. speed up the CH algorithm by
preprocessing a set of candidate nodes which separate regions of a road network [LS15]. They
reduce the number of via-node candidates which are evaluated by introducing a preprocessing

1

1 Introduction

phase during a query that finds nodes which are part of a separator between the region of
the start and end of a search. This speeds up the algorithm by an order of magnitude and
increases the number of alternative paths found.
Other methods besides plateaus and single via paths use penalties. The penalty method

performs a shortest path search and afterwards increases the length of every arc included
in the path [BDGS11]. This process can be repeated for each new alternative path found,
increasing the arc weights of the previously found path. The resulting alternatives often
snake around the shortest path, detaching and attaching many times. Plateau and single
via paths allow alternatives to only detach and attach to the shortest path once, therefore
the alternatives found by the different methods can vary widely. Like alternatives found
with the penalty method, multi via-node paths that we examine in later analysis can split
away and rejoin the shortest path multiple times. To prevent unattractive routing which is
not locally optimal, Bader et al. propose multiple methods like penalizing adjacent arcs of
the previous path or introducing a cost to re-joining the shortest path. We do not employ
such techniques, opting instead to adapt the approach used for single via paths proposed by
Abraham et al. [ADGW13].

1.3 Outline

In the following chapter, necessary graph theory and the used notation is introduced. Further-
more, the construction of CCHs is explained and nested dissection orders are characterized.
Afterwards, what makes an alternative path approximately admissible is explained. We specify
how to verify this in the fourth chapter and define an algorithm to find alternative paths using
CCHs. In the fifth chapter, the multi via-node algorithm is introduced, its implementation is
explained and multiple iterations are discussed. Afterwards, the recursive variant is explained.
In chapter seven, the different algorithms are evaluated, results from multiple queries in road
networks are compared. The eighth chapter is the conclusion, where results are summarized
and future work is discussed.

2

2 Preliminaries

In the following chapter we define basic graph theory used in this work and introduce
Customizable Contraction Hierarchies, which preprocess a graph to find shortest paths more
efficiently. We talk about how CCHs are constructed and how shortest path queries using an
elimination tree work. Lastly, nested dissection orders for road networks and their usage to
rank nodes is explained.

2.1 Graph Theory

Road networks are modeled as directed graphs. A directed graph is defined as two sets 𝐺 =

(𝑉 ,𝐴), where 𝑉 contains vertices and 𝐴 contains arcs (𝑥,𝑦) connecting the vertices. An
arc (𝑥,𝑦) points from its tail vertex 𝑥 to the head vertex 𝑦. For further analysis all graphs
of road networks are regarded as simple, meaning loops are removed and multi-arcs are
resolved by inserting vertices, as these features are not relevant to finding shortest paths. An
undirected graph 𝐺 = (𝑉 , 𝐸) contains a set of edges {𝑥,𝑦} instead of arcs, where all edges are
bidirectional. Directed Graphs are converted to undirected graphs by ignoring the direction
of each arc. Each arc has a non-negative weight ℓ : 𝐴→ ℝ+ which may denote the travel time
or distance in a road network. Moreover, when converting a directed graph to be undirected,
asymmetric weights for arcs in opposite directions need to be preserved, so two different
weight functions ℓ𝑢𝑝 : 𝐸 → ℝ+ and ℓ𝑑𝑜𝑤𝑛 : 𝐸 → ℝ+ are used. They are defined using a
rank function on 𝐺 . The function 𝑟𝑎𝑛𝑘 : 𝑉 → {0, 1, . . . , |𝑉 | − 1} is bijective and assigns
each vertex a unique integer value 𝑟𝑎𝑛𝑘 (𝜈). Given an edge {𝑠, 𝑡} with 𝑟𝑎𝑛𝑘 (𝑠) < 𝑟𝑎𝑛𝑘 (𝑡), the
weight functions are defined as ℓ𝑢𝑝 ({𝑠, 𝑡}) = ℓ (𝑠, 𝑡) and ℓ𝑑𝑜𝑤𝑛 ({𝑠, 𝑡}) = ℓ (𝑡, 𝑠). If there is no
corresponding arc in the directed graph for a direction of travel, the matching length function
for the edge is set to∞.

The neighborhood 𝑁 : 𝑉 → P (𝑉) of a vertex 𝜈 contains all nodes which are connected via
one arc with 𝜈 , regardless of the direction. A path 𝑃 in a graph connects two vertices, where 𝑠 is
its start and 𝑡 its end vertex. It is a sequence of arcs 𝑃 = (𝑎0, 𝑎1, . . . , 𝑎𝑛) where the head vertex
of the previous arc matches the tail vertex of the following arc. The length ℓ : P (𝐴) → ℝ+ of
a path 𝑃 is calculated as the sum of weights of all arcs in 𝑃 . Given a path in an undirected
graph, the decision of which weight ℓ𝑢𝑝 ({𝑥,𝑦}) or ℓ𝑑𝑜𝑤𝑛 ({𝑥,𝑦}) is added up for each edge is
based upon the direction of travel along the edge {𝑥,𝑦}. In contrast to ℓ (𝑃), the hop-length |𝑃 |
is the number of arcs contained in 𝑃 . Sometimes the order of the arcs in a path is not actually
needed, then 𝑃 can be regarded as a set of arcs. Given a path 𝑃 and another path or set of arcs
𝑆 , the set-operators union (𝑃 ∪ 𝑆), intersection (𝑃 ∩ 𝑆) and subtraction (𝑃 \ 𝑆) are defined as
if 𝑃 were a set of arcs. The distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) of two vertices in 𝐺 is the length of the shortest
path 𝑃𝑂𝑝𝑡 between them. If no path between them exists, 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) is∞.

3

2 Preliminaries

5

4

3

21

0

𝐺 :

62
1

2
1

2

2

1

2

=⇒

5

4
3

2
1

0

𝐺𝑈 :
6|∞

2|1

∞|21|2
2|1

∞|2
=⇒

5

4
3

2
1

0

𝐺𝐶 :

∞|∞ ∞|∞
6|∞

2|1

∞|21|2
2|1

∞|2

Figure 2.1: The metric independent phase of CCH construction. Vertices are labeled with their
rank. At first, vertices are ordered according to their rank and all arcs are converted to edges
with preserved directional weights. All edges 𝑒 are labeled with their weights ℓ𝑢𝑝 (𝑒) |ℓ𝑑𝑜𝑤𝑛 (𝑒).
Lastly, shortcuts are inserted to construct a chordal graph.

2.2 Customizable Contraction Hierarchies

Customizable Contraction Hierarchies (CCH) provide an efficient way to run multiple shortest
path queries on a given graph for different start and end pairs. Specifically using nested
dissection orders, as described in [DSW16]. Given a rank function for a graph𝐺 , a CCH can
be constructed for 𝐺 by converting it to an undirected graph, inserting shortcuts, running
basic customization and then deriving the elimination tree from the resulting graph. The
algorithm used for inserting shortcuts is based on the work by Habib et al. [HMPV00]. Its
implementation and use in CCHs is described in more detail by Buchold et al. [BWZZ20].

2.2.1 Metric Independent Construction

Firstly, 𝐺 is converted to an undirected graph 𝐺𝑈 . Then the 𝑝𝑎𝑟𝑒𝑛𝑡 : 𝑉 → 𝑉 of each
vertex 𝜈 is identified as the vertex with the smallest rank among all neighbors 𝑤 ∈ 𝑁 (𝜈)
with 𝑟𝑎𝑛𝑘 (𝜈) < 𝑟𝑎𝑛𝑘 (𝑤). If 𝜈 has no neighbors with higher rank, 𝑟𝑎𝑛𝑘 (𝜈) is set to ∞.
Afterwards, a chordal graph𝐺𝐶 = (𝑉 , 𝐸𝐶) is constructed by inserting edges from 𝑝𝑎𝑟𝑒𝑛𝑡 (𝜈) to
each neighbor 𝑢 ∈ 𝑁 (𝜈) with 𝑟𝑎𝑛𝑘 (𝑢) > 𝑟𝑎𝑛𝑘 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝜈)). A graph is chordal if all induced
circles 𝐶 with |𝐶 | > 3 have an arc between at least two non-adjacent vertices. The additional
edges in 𝐺𝐶 are called shortcuts and only inserted if the edge {𝑝𝑎𝑟𝑒𝑛𝑡 (𝜈), 𝑢} is not already
in 𝐺𝑈 . Parents of vertices are updated while new edges are inserted. The length of the
shortcuts ℓ𝑢𝑝 and ℓ𝑑𝑜𝑤𝑛 is set to∞ and modified in the following step. Vertices are processed
in ascending order of their rank. This phase is demonstrated for an example graph in Figure 2.1.

2.2.2 Customization

During basic customization, triangle inequality is established for all lower triangles regard-
ing ℓ𝑢𝑝 and ℓ𝑑𝑜𝑤𝑛 . Given an edge {𝑥,𝑦} ∈ 𝐸𝐶 , a lower triangle is formed by the vertices {𝑥,𝑦, 𝑧}
if the edges {𝑧, 𝑥} and {𝑧,𝑦} exist and 𝑟𝑎𝑛𝑘 (𝑧) < 𝑚𝑖𝑛{𝑟𝑎𝑛𝑘 (𝑥), 𝑟𝑎𝑛𝑘 (𝑦)}. To fulfill triangle
inequality, the length of all edges {𝑥,𝑦} may not exceed the sum of the shortest edges {𝑧, 𝑥}
and {𝑧,𝑦} given all lower triangles {𝑥,𝑦, 𝑧}. Let 𝑟𝑎𝑛𝑘 (𝑥) < 𝑟𝑎𝑛𝑘 (𝑦), for all lower trian-
gles {𝑥,𝑦, 𝑧} the equations

ℓ𝑢𝑝 ({𝑥,𝑦}) =𝑚𝑖𝑛
(
ℓ𝑢𝑝 ({𝑥,𝑦}), ℓ𝑑𝑜𝑤𝑛 ({𝑧, 𝑥}) + ℓ𝑢𝑝 ({𝑧,𝑦})

)
4

2.2 Customizable Contraction Hierarchies

5

4
3

2
1

0

4|∞ ∞|4
5|∞

2|1

∞|21|2
2|1

∞|2

Figure 2.2: The chordal graph 𝐺𝐶 af-
ter customization. Note the emphasized
changed weights.

5

4
3

2
1

0

Figure 2.3: The elimination tree 𝑇𝐺 , each
arc oriented towards its parent vertex. The
search spaces of vertex 2 and 0 are marked.
Dotted edges are not part of the elimina-
tion tree.

and
ℓ𝑑𝑜𝑤𝑛 ({𝑥,𝑦}) =𝑚𝑖𝑛

(
ℓ𝑑𝑜𝑤𝑛 ({𝑥,𝑦}), ℓ𝑢𝑝 ({𝑧, 𝑥}) + ℓ𝑑𝑜𝑤𝑛 ({𝑧,𝑦})

)
are set during basic customization. See figure Figure 2.2 for instance. Edges are customized in
ascending order of their lower ranked vertex, this ensures that once the customization starts
for an edge {𝑥,𝑦}, the edges in all lower triangles of {𝑥,𝑦} already have their customized
length.

2.2.3 Shortest PathQueries

To search for shortest paths in the original graph𝐺 , the elimination tree𝑇𝐺 is used as described
in [BSW18]. The root 𝜈𝑟𝑜𝑜𝑡 of 𝑇𝐺 is the vertex with maximum rank, arcs point up from each
vertex 𝜈 to its parent in 𝐺𝐶 . The arcs in the path from any vertex 𝜈 to 𝜈𝑟𝑜𝑜𝑡 consist of the
vertices in the search space 𝑆𝑆 (𝜈) : 𝑉 → P (𝑉) of 𝜈 , like shown in Figure 2.3. When searching
for a shortest path from 𝑠 to 𝑡 , the vertices in 𝑆𝑆 (𝑠) ∪ 𝑆𝑆 (𝑡) are relaxed in ascending order by
climbing up in 𝑇𝐺 .. During the search the current length and ancestor of all vertices in 𝐺 is
tracked twice. For the upward search starting at 𝑠 current upward lengths 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 : 𝑉 → ℝ+

and upwards ancestors 𝑎𝑛𝑐𝑢𝑝 : 𝑉 → 𝑉 are tracked, the downward search from 𝑡 tracks
downward lengths 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 : 𝑉 → ℝ+ and downward ancestors 𝑎𝑛𝑐𝑑𝑜𝑤𝑛 : 𝑉 → 𝑉 . At the
start of the search all values are set to ∞, except 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝑠) and 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝑡), which are
both set to 0.

A vertex 𝜈 in the upward search starting at 𝑠 is relaxed by updating 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 and 𝑎𝑛𝑐𝑢𝑝 of
each upper neighbor𝑤 ∈ 𝑁 (𝜈) in 𝐺𝐶 if 𝑑𝑖𝑠𝑡 (𝑠, 𝜈) + ℓ𝑢𝑝 ({𝜈,𝑤}) is less than the current value
of 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝑤). Similarly, for the downward search starting at 𝑡 , 𝑑𝑖𝑠𝑡 (𝜈, 𝑡) + ℓ𝑑𝑜𝑤𝑛 ({𝜈,𝑤})
is compared with 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝑤). The distances to 𝜈 are read from the currently tracked
lengths, as 𝑑𝑖𝑠𝑡 (𝑠, 𝜈) = 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝜈) and 𝑑𝑖𝑠𝑡 (𝜈, 𝑡) = 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝜈). This is because a vertex
is only relaxed once the shortest path to it has already been found. After relaxation, the
length values are reset. The searches meet as soon as the lowest ranked vertex out of the
intersection of search spaces 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡) is reached. Upward and downward lengths for all
vertices are then relaxed together until a vertex with no parent is reached. During this process,
the vertex 𝑥 ∈ 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡) that minimizes 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝑥) + 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝑥) is kept track of.

5

2 Preliminaries

After the root is reached, the final vertex 𝑥 is contained in the shortest path. By descending
the chain of its ancestors 𝑎𝑛𝑐𝑢𝑝 (𝑥) and 𝑎𝑛𝑐𝑑𝑜𝑤𝑛 (𝑥) until 𝑠 or 𝑡 is reached, the shortest 𝑠 − 𝑥
and 𝑥 − 𝑡 paths are constructed. Combined they form the shortest 𝑠 − 𝑡 path in 𝐺𝐶 , its length
equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝑥) + 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝑥) and is the same as the length of 𝑃𝑂𝑝𝑡 in 𝐺 .
However, some edges in the path were added to 𝐺𝐶 as shortcuts and are therefore not

contained in the original graph𝐺 . These edges have to be deleted and replaced by the original
arcs to construct 𝑃𝑂𝑝𝑡 . This process is called path unpacking, edges are recursively replaced
until the path contains only edges that correspond directly to arcs in 𝐺 . Each edge {𝑥,𝑦}
whose length was updated during customization is deleted from 𝑃𝐶 and replaced by the
edges of the lower triangle {𝑥,𝑦, 𝑧} that caused the weight of {𝑥,𝑦} to be updated during
customization.

To reset the CCH after a search, the weights found by the upwards and downward search
are reset. The weights found for vertices in 𝑆𝑆 (𝑠) \ 𝑆𝑆 (𝑡) and 𝑆𝑆 (𝑡) \ 𝑆𝑆 (𝑠) are reset right
after each vertex is relaxed. Weights in the intersection of search spaces 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡) are
only reset after all paths are constructed. They are reset by iterating through the intersection
and setting all weights to∞.

2.2.4 Nested Dissection Orders

The performance of the CCH queries depends largely on the size of the search spaces of 𝑠
and 𝑡 . In smaller search spaces less vertices need to be relaxed, leading to faster queries. Rank
functions derived from nested dissection orders provide a way to restrict search spaces to
sublinear size on most road graphs[BCRW16].
Using nested dissection, well balanced graph separators for road networks can be found

by repeatedly subdividing a graph and finding separators in all subgraphs [LRT79]. It works
by removing a set of vertices 𝑆 from an undirected graph 𝐺 = (𝑉 , 𝐸) forming at least two
unconnected subgraphs. Afterwards, separators are found in each of the resulting subgraphs,
this process is repeated until all subgraphs only have one vertex remaining. A separator 𝑆
is well balanced if |𝑆 | ≤ 𝑓 (|𝑉 |) and |𝑉𝑗 | ≤ 𝑏 · |𝑉 |, for all resulting subgraphs 𝐺 𝑗 = (𝑉𝑗 , 𝐸 𝑗).
Whereby 𝑏 ∈ (0, 1) is a parameter and 𝑓 : ℕ → ℝ is a monotonically increasing function
with 𝑓 ∈ 𝑂 (

√
𝑛). Usual values for these parameters in road networks are 𝑏 = 2

3 and 𝑓 ∈
𝑂 (3

√︁
|𝑉 |) [DSW16]. A rank function derived from such separators will usually result in search

spaces of sublinear size according to Bauer et al. [BCRW16].
The rank function is derived by assigning vertices in separators of higher order a higher

rank. Separators of higher order are found first, the order of a separator is lower if it is found
later. Given the number of nodes already included in separators 𝐵, the vertices 𝜈 in a newly
found separator 𝑆 have ranks in the range of |𝑉 | − 𝐵 − |𝑆 | ≤ 𝑟𝑎𝑛𝑘 (𝜈) < |𝑉 | − 𝐵.
Given a shortest path 𝑃𝑂𝑝𝑡 in a graph, we identify a vertex 𝜈 in the path as a bottleneck, if

removing it from the graph increases the distances between all other vertices on the path
by at least (1 + 𝜀) for 𝜀 ∈ ℝ. The parameter 𝜀 limits the stretch of an alternative path as
described in Section 3.1. Navigating around a bottleneck comes with a significant cost and is
therefore not feasible when searching for alternative paths, as the necessary detour is too
long. Bottlenecks are often part of natural separators like bridges and tunnels. These are also
good separators in road networks, leading to their inclusion in higher order separators and a
high 𝑟𝑎𝑛𝑘 (𝜈) [EG08].

6

3 Alternative Paths

The problem of alternative paths consists of a start 𝑠 and end node 𝑡 in a graph 𝐺 , the goal
is to find viable alternative paths between the nodes. Simply searching for any paths from 𝑠

to 𝑡 does not yield appealing results for road users. Taking an alternative path is always a
trade off compared to the shortest path. For this reason a path from 𝑠 to 𝑡 is deemed a viable
alternative only if it seems reasonable compared to the shortest path. A path 𝑃 from 𝑠 to 𝑡
must fulfill three criteria to be a viable alternative worth finding. They concern the length of
the alternative, possible detours and the amount of shared sections between paths [ADGW13].

3.1 Uniformly Bounded Stretch

The path 𝑃 may not be significantly longer than the shortest path 𝑃𝑂𝑝𝑡 from 𝑠 to 𝑡 . There is
an upper limit to the travel time road users are willing to spend taking an alternative path.
Dividing the length of an alternative 𝑃 by the length of the shortest path 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) yields the
stretch

𝑠𝑡𝑟𝑒𝑡𝑐ℎ : A→ ℝ+;

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑃) = ℓ (𝑃)
𝑑𝑖𝑠𝑡 (𝑠, 𝑡)

of 𝑃 . By setting a maximum stretch, all alternatives with a higher stretch can be dismissed.
The stretch of all sub-paths 𝑃 ′ of 𝑃 must also be lower than the maximum allowed stretch. If
𝑠′ and 𝑡 ′ are the start and end nodes of a subpath 𝑃 ′, let 𝑃 ′

𝑂𝑝𝑡
be the shortest path between

them. With (1 + 𝜀) denoting the maximum allowed stretch, 𝑃 is only viable if

ℓ (𝑃 ′) ≤ (1 + 𝜀) · ℓ (𝑃 ′𝑂𝑝𝑡) .

This must also be true for 𝑃 ′ = 𝑃 . For further analysis 𝜀 is chosen as 0.25, allowing alternative
paths to be up to 1.25 times longer than the shortest route.

3.2 Local Optimality

Following the path must feel natural, there should be no unnecessary detours. All local routing
decisions must be optimal, otherwise taking a path is not appealing. Let 𝑃 ′ be a sub-path
of a path 𝑃 and let ℓ (𝑃 ′) not exceed a previously chosen length. Local routing decisions are
evaluated by checking wether ℓ (𝑃 ′) = ℓ (𝑃 ′

𝑂𝑝𝑡
) is fulfilled, where 𝑃 ′

𝑂𝑝𝑡
is the shortest path

between the start and end vertices of 𝑃 ′. The subpath 𝑃 ′ must optimal if

ℓ (𝑃 ′) ≤ 𝛼 · ℓ (𝑃𝑂𝑝𝑡)

for 𝛼 ∈ (0, 1). A typically chosen value is 𝛼 = 0.2, which we also use in later analysis.

7

3 Alternative Paths

3.3 Limited Sharing

Findingmany similar alternative paths is not valuable for a user, even if they fulfill the previous
criteria. All paths must only share limited arcs with the shortest path 𝑃𝑂𝑝𝑡 and all other
alternative paths. The length of all arcs used in 𝑃 that are shared with other paths 𝑃1, 𝑃2, . . . 𝑃𝑖
may not exceed 𝛾 · ℓ (𝑃𝑂𝑝𝑡) for 𝛾 ∈ [0, 1]. If 𝐴𝑃𝑟𝑒𝜈 is the set containing all arcs used for
previously found viable paths, then

𝑙 (𝑃 ∩𝐴𝑃𝑟𝑒𝜈) ≤ 𝛾 · ℓ (𝑃𝑂𝑝𝑡)

is the requirement 𝑃 must fulfill for limited sharing. We choose 𝛾 = 0.8 for later analysis.
Subsequently, the admissabilty of an alternative depends on all previous found paths,

increasing the importance of the order in which paths are evaluated. Paths are ranked and
evaluated according to a function 𝑓 (𝑃), whose ideal definition arguably depends on the end
user. Abraham et al. use a multi-dimensional approach, sorting paths in nondecreasing order
among other variables according to their length and overlap [ADGW13]. In contrast, we
always prefer shorter alternatives over longer ones, choosing 𝑓 (𝑃) = ℓ (𝑃). We do this because
shorter paths are more attractive to users.

3.4 Single Via-Node Alternatives

A subset of all alternative 𝑠 − 𝑡 paths are single via-node paths. Given a node 𝜈 , the single
via-node path through 𝜈 is constructed by concatenating the shortest 𝑠 − 𝜈 and 𝜈 − 𝑡 path.
Finding paths this way provides a good set of candidates for viable alternative paths. To find
such paths, first a set of via-nodes is identified, then all 𝑠 −𝜈 and 𝜈 − 𝑡 paths are built and lastly
the concatenated paths are verified. These paths can be found using any search algorithm, in
the following sections we detail how to find them using CCHs.

3.4.1 Finding Via-Nodes

Via-node candidates are all nodes between 𝑠 and 𝑡 which could be used to construct a single
via-node path. Using CCHs, they are found efficiently during a shortest path query in the
intersection of search spaces 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡). The shortest path from 𝑠 to 𝑡 is routed via the
vertex 𝑧 ∈ 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡) that minimizes 𝑑𝑖𝑠𝑡 (𝑠, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑡); Each vertex 𝜈 ∈ 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑡)
besides 𝑧 is a via-node candidate. The length of each via-node path is known once all vertices
in the intersection are relaxed, as it equals 𝑑𝑖𝑠𝑡 (𝑠, 𝜈) + 𝑑𝑖𝑠𝑡 (𝜈, 𝑡). These distances are tracked
by the upwards and downwards searches with 𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑝 (𝜈) and 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑤𝑛 (𝜈). Therefore, a
length limit to via-paths is enabled efficiently by dismissing all via-node candidates whose
path length exceeds the limit. After all vertices in the intersection are filtered, the weights
tracked by the searches are reset.

3.4.2 Shortest Paths

After all via-node candidates are identified, the resulting via-node paths are built in ascending
order of path weight. Each path is constructed the same way as in Section 2.2.3, except
the vertex 𝑧 is replaced with a via-node candidate 𝜈 and the construction stops if the path
routes via any previously used via-node candidate. All via-nodes for which attempts were
already made to construct the via-path, either successfully or not, are tracked. If during the

8

3.4 Single Via-Node Alternatives

s t

𝜈0

𝑥0 𝑦0

𝜈1

𝑥1
𝑦1

T T

T T

𝑑𝑖𝑠𝑡 (𝑥1, 𝑦1) < 2 ·𝑇

Figure 3.1: Two T-locally optimal single via-node paths with their respective via node. The
first one passes the T-test, the second one fails because it is not 2 ·𝑇 -locally optimal, as the
shortest path between 𝑥1 and 𝑦1 (indicated by the dashed line) does not contain 𝜈1.

construction of a path one of these prior vertices is included in the path, the construction
stops and the via-node candidate is discarded. This prevents unnecessary detours, as for any
via-path which includes a prior via-node candidate, a via-path with a shorter detour was
already analyzed.

3.4.3 Verification

To determine whether any path 𝑃 is a viable alternative path, the three criteria need to be
checked with different tests. Limited Sharing can be directly verified by adding up the lengths
of all arcs shared between 𝑃 and previously found paths. Like described in Section 3.3, the
viability of each alternative depends on the arcs used in all previous alternative paths 𝑆 . All
paths must therefore be verified in ascending order of their length. This is accomplished by
sorting all candidates for alternative paths according to their length and verifying limited
sharing in that order. To verify limited sharing, ℓ (𝑃 ∩ 𝑆) is compared against 𝛾 · ℓ (𝑃𝑂𝑝𝑡). If it
is greater, the alternative path is dismissed.
Verifying local optimality and uniformly bounded stretch directly takes more effort, as a

distance query is required for all sub-paths of 𝑃 . This takes too long in practice, so the criteria
are verified indirectly by checking local optimality at via-nodes and only calculating the
stretch of 𝑃 itself. According to Abraham et al., all alternative paths with a stretch of (1 + 𝜀)
that pass a T-test for 𝑇 = 𝛽 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) with 0 < 𝜀 < 𝛽 < 1, have 𝛽

𝛽−𝜀 -uniformly bounded
stretch [ADGW13]. We can therefore verify alternatives 𝑃 by only calculating the stretch of 𝑃
itself and performing a single T-test. The stretch of 𝑃 is verified during the via-node candidate
search, by setting the length limit of admissible via-nodes to (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡).

However, this may discard viable alternatives which are actually locally optimal or include
alternatives whose stretch is not uniformly bounded. A path is only guaranteed to not be
locally optimal on a distance of 2 · 𝑇 if it fails a T-Test. This is illustrated in Figure 3.1. In
contrast, a verified path is only guaranteed to have 𝛽

𝛽−𝜀 -uniformly bounded stretch, which
may exceed 𝜀. Therefore all verified alternative paths are only approximately admissible.

3.4.3.1 T-Test

With a T-test, local optimality is verified only at points along a path where detours can occur.
It checks local optimality for a given length𝑇 = 𝛼 · ℓ (𝑃𝑂𝑝𝑡) and only requires a single shortest
path query. As a single via-node path consists of shortest 𝑠 − 𝜈 and 𝜈 − 𝑡 paths, detours can
only occur around the via-node. The local optimality of a path 𝑃 with via-node 𝜈 is verified by

9

3 Alternative Paths

identifying the first vertex 𝑥 before 𝜈 on 𝑃 which is at least 𝑇 away from 𝜈 . The same is done
for the vertex 𝑦 on the other side of 𝜈 . The vertices 𝑥 and 𝑦 are set to 𝑠 and 𝑡 respectively if the
subpath has a length of less than 𝑇 . Finally, a distance query is performed for 𝑥 and 𝑦 and the
result 𝑑𝑖𝑠𝑡 (𝑥,𝑦) is compared against the combined distance of 𝑥 to 𝑦 on path 𝑃 . If 𝑑𝑖𝑠𝑡 (𝑥,𝑦) is
shorter, 𝑃 includes a detour and fails the T-test. Otherwise, the path 𝑃 is 𝑇 -locally optimal.
Once limited sharing is verified and the alternative 𝑃 passes the T-test, all used arcs are added
to the set of used arcs 𝑆 . Once all alternative paths are verified, they are returned in ascending
order of their length.

3.4.4 Detour Adjusted

Some paths which are 𝑇 -locally optimal may fail the T-test, as it only guarantees paths to not
be 2 ·𝑇 -locally optimal if they do not pass. Therefore alternative paths which share up to 40%
with the shortest path are all dismissed. This effectively reinforces the sharing parameter 𝛾
to 0.6 instead of 0.8. Paths 𝑃 which share up to 80% with 𝑃𝑂𝑝𝑡 may still be viable alternatives,
so local optimality and uniformly bounded stretch are adjusted to only apply to the detour
in 𝑃 , a common solution proposed by Abrahams et al.[ADGW13]. With detour adjusted local
optimality, a T-test is performed with

𝑇 = 𝛼 · ℓ (𝑃 \ 𝑃𝑂𝑝𝑡) .

Uniformly bounded stretch is also applied only to the detour, with

ℓ (𝑃 \ 𝑃𝑂𝑝𝑡) ≤ (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡 \ 𝑃)

being the updated criteria. This can no longer be verified during the via-node candidate
search directly, so an additional step is added afterwards to calculate the overlap between
each alternative path and the shortest path and the updated criteria is checked. The initial
guard during the candidate search is kept, as the stretch of the whole path will always be
lower than the stretch of the detour.

10

4 Multi Via-Node Alternatives

In this chapter we propose a method to search for alternatives by splitting a shortest path
at a node 𝑥 and starting two separate searches. We discuss how this split node is selected
and introduce an algorithm to find multi via-node alternative paths. With 𝑥 being a node on
the shortest path from 𝑠 to 𝑡 , the multi via-node algorithm splits the path at 𝑥 , searches for
alternatives on the section from 𝑠 to 𝑥 and from 𝑥 to 𝑡 , then concatenates the results to form
alternatives for the whole path.

4.1 Selection of Split Node

The success rate of the multi via-node algorithm is largely influenced by the the selection of
split node 𝑥 . If 𝑥 is a random vertex located close to 𝑠 or 𝑡 , the multi via-node algorithm may
not perform better than the single via-node algorithm, as the section from 𝑠 to 𝑥 is too small
to find any alternatives and the 𝑥 − 𝑡 subpath is too similar to the whole 𝑠 − 𝑡 path. Therefore
the location of 𝑥 in relation to the whole 𝑠 − 𝑡 path is important.
However, the rank of 𝑥 also influences the success rate of the multi-via node algorithm.

If 𝑥 is located near 𝑠 or 𝑡 and its rank is high, it may lead to a small intersection of search
spaces 𝑆𝑆 (𝑠) ∩ 𝑆𝑆 (𝑠) Let 𝑥 be a node with high rank which is located near 𝑠 on the shortest
path and far away from 𝑡 . Because the upward search quickly reaches 𝑥 compared to the
downward search, |𝑆𝑆 (𝑡) \ 𝑆𝑆 (𝑠) | ends up relatively large. This can lead to some via-node
candidates being contained in 𝑆𝑆 (𝑡) \𝑆𝑆 (𝑠) instead of 𝑆𝑆 (𝑠) ∩𝑆𝑆 (𝑡), where they are not found
by a single via-node alternative search. Splitting the path at 𝑥 and searching for via-node
candidates on both subpaths may yield better results.
With 𝑟𝑎𝑛𝑘 (𝑥) preferably being higher, simply starting and ending the search at 𝑥 likely

produces unbalanced search-trees. Because 𝑥 has a high rank, the search space 𝑆𝑆 (𝑠) \ 𝑆𝑆 (𝑥)
would include many via-node candidates, as its size is significantly larger than 𝑆𝑆 (𝑥) \ 𝑆𝑆 (𝑠).
This leads to less alternatives being found, it is therefore assumed in the following that splitting
the route at 𝑥 and starting two searches actually terminates these at the vertices located next
to 𝑥 in the shortest path. Given (𝑥𝑃𝑟𝑒 , 𝑥), (𝑥, 𝑥𝑆𝑢𝑐𝑐) ∈ 𝑃𝑂𝑝𝑡 , the recursive searches actually
go from 𝑠 to 𝑥𝑃𝑟𝑒 and 𝑥𝑆𝑢𝑐𝑐 to 𝑡 . An alternative of the whole 𝑠 − 𝑡 path is then constructed
from three parts, an 𝑠 − 𝑥𝑃𝑟𝑒 path, the shortest path from 𝑥𝑃𝑟𝑒 to 𝑥𝑆𝑢𝑐𝑐 including 𝑥 and an
𝑥𝑆𝑢𝑐𝑐 − 𝑡 path. All alternative paths 𝑃 found this way have the same structure:

𝑃 = ((𝑠, 𝜈0), . . . , (𝑥𝑃𝑟𝑒 , 𝑥), (𝑥, 𝑥𝑆𝑢𝑐𝑐), . . . , (𝜈𝑛, 𝑡))

4.1.1 Middle

Generally, more alternatives are found for longer paths. Choosing the split node 𝑥 in the
middle of the shortest path leads to 𝑥 having the maximum possible distance from 𝑠 and 𝑡 .
This could lead to the most paths being found on both sides of 𝑥 , resulting in more alternatives
being found for the whole path. However, the selected vertex will have a random rank which
can lead to unbalanced sizes of the search spaces of |𝑆𝑆 (𝑠) | and |𝑆𝑆 (𝑡) | with less alternatives

11

4 Multi Via-Node Alternatives

Figure 4.1: Results of a multi via-node search with split node chosen as the node with the
middle index. No T-tests are performed. The shortest path is drawn blue. Left is an overview
of both paths, right is zoomed in. The black alternative seems viable from the overview but
it includes a local detour through the split node. (Map data obtained from OpenStreetMap:
openstreetmap.org/copyright)

being found. The rank of the vertex can also be very low, forcing all alternative paths to
include a minor vertex in their routing even if faster alternatives exist, like in Figure 4.1. This
increases the number of paths being found which fail a T-test later, as the routing via 𝑥 can
be a detour.

4.1.1.1 Geographic Middle

Choosing the vertex on 𝑃𝑂𝑝𝑡 furthest away from 𝑠 and 𝑡 ensures that both subpaths have the
maximum possible length. The distance of 𝑥 from 𝑠 and 𝑡 is calculated with the same metric
as the length of the whole path ℓ (𝑃𝑂𝑝𝑡). Because road networks have discrete distance values
instead of being continuous, both sub-paths are not guaranteed to have the same length. The
exact node chosen is either the first node that has a distance of at least 1

2 · ℓ (𝑃𝑂𝑝𝑡) from 𝑠 or
its predecessor, depending on which node 𝑥 minimizes |𝑑𝑖𝑠𝑡 (𝑠, 𝑥) − 𝑑𝑖𝑠𝑡 (𝑥, 𝑡) |. This ensures
that the node 𝑥 balances the length of both subpaths.

4.1.1.2 Medium Index

Maximizing the number of vertices on both sides of the split node 𝑥 can be done via the hop
length of the shortest path |𝑃𝑂𝑝𝑡 |. The arc in the middle of 𝑃𝑂𝑝𝑡 has the index ⌊ 12 · |𝑃𝑂𝑝𝑡 |⌋.
The split vertex 𝑥 can then be chosen as the head of the arc 𝑃𝑂𝑝𝑡 (⌊ 12 · |𝑃𝑂𝑝𝑡 |⌋). This disregards
the actual distance between vertices, so it does not maximize the size of both sub-paths but
it provides an approximation. Choosing 𝑥 this way also includes the maximum number of
vertices in both subpaths which can also lead to more alternatives being found. Each vertex is
a potential intersection where alternative paths can diverge or converge back with 𝑃𝑂𝑝𝑡 .

12

4.2 Performing Separate Searches

4.1.2 Highest

Choosing a vertex with a higher rank as split node makes routing through it less likely to
be a detour. Vertices with a higher rank are part of higher order separators which makes
the existence of a shorter path between two alternatives for the different sub-paths around
the split node 𝑥 less likely. Because if such an alternative path exists, it must also route via
a vertex from the same separator, so it will likely be found by single via-node searches. If
no single via-node alternative paths are found, then 𝑃𝑂𝑝𝑡 may contain a bottleneck. Like
described in Section 2.2.4, a bottleneck is often part of a high order separator and therefore
has a high rank. The shortest path 𝑃𝑂𝑝𝑡 is split at a bottleneck by choosing the node with the
highest rank 𝑥 as the split node. Given all arcs (𝜈,𝑤) ∈ 𝑃𝑂𝑝𝑡 , the split vertex 𝑥 must fulfill

𝑟𝑎𝑛𝑘 (𝑥) ≥ 𝑚𝑎𝑥 (𝑟𝑎𝑛𝑘 (𝜈), 𝑟𝑎𝑛𝑘 (𝑤)) .

This can lead to one of the subpaths being much shorter than the other, resulting in no
alternatives being found for the shorter subpath. However, alternatives found for the longer
subpath can still be combined with the shorter subpath to form viable alternatives.

4.1.3 Highest in the Middle

Short subpaths can be avoided by limiting the search for the vertex with highest rank to
vertices with a sufficient distance from 𝑠 and 𝑡 . The split node 𝑥 is still the node with the
highest order but only if 𝑑𝑖𝑠𝑡 (𝑠, 𝑥) and 𝑑𝑖𝑠𝑡 (𝑥, 𝑡) is greater than 𝛿 · ℓ (𝑃𝑂𝑝𝑡) for 𝛿 ∈ [0, 12). The
same principle can be applied to hop length, the hop length of the shortest subpaths from 𝑠

to 𝑥 and 𝑥 to 𝑡 must be at least 𝛿 · |𝑃𝑂𝑝𝑡 |. This guarantees a minimum length for both subpaths
while still choosing a potential bottleneck as a split point. This also makes it less likely for
alternatives to include a detour through 𝑥 , as the rank of 𝑥 is higher compared to choosing
the vertex with random rank in the middle of the path. A bottleneck close to 𝑠 or 𝑡 may still
be preferred as a split vertex over one creating more equal subpaths, as the existence of a
bottleneck on a path leads to less alternatives being found with single via-node searches. The
parameter 𝛿 is chosen as 0.3. This ensures a sufficient distance from the start and end node
while leaving enough room to choose a high ranked vertex.

To limit the selection of vertices to that with sufficient length from 𝑠 and 𝑡 , the first
vertex 𝜈 ∈ 𝑃𝑂𝑝𝑡 with 𝑑𝑖𝑠𝑡 (𝑠, 𝜈) ≥ 𝛿 · ℓ (𝑃𝑂𝑝𝑡) is identified. Then the first vertex 𝑤 ∈ 𝑃𝑂𝑝𝑡

with 𝑑𝑖𝑠𝑡 (𝑤, 𝑡) ≥ 𝛿 · ℓ (𝑃𝑂𝑝𝑡) starting from 𝑡 is calculated. Let 𝑃𝜈 be the shortest path from 𝑠

to 𝜈 and 𝑃𝑤 be the shortest path from 𝑤 to 𝑡 . A linear search to find the vertex 𝑥 with
maximum rank is performed on the set 𝑃𝑂𝑝𝑡 \ 𝑃𝜈 \ 𝑃𝑤 of remaining arcs. Concerning hop
length, the selection of nodes is limited by starting the search for the highest-ranked vertex 𝑥
at index ⌊𝛿 · |𝑃𝑂𝑝𝑡 |⌋ and ending it at ⌊|𝑃𝑂𝑝𝑡 | − 𝛿 · |𝑃𝑂𝑝𝑡 |⌋.

4.2 Performing Separate Searches

After choosing a split node 𝑥 , identifying its predecessor 𝑥𝑃𝑟𝑒 and successor 𝑥𝑆𝑢𝑐𝑐 , single
via-node searches on both subpaths are performed. The first one searches for paths from 𝑠

to 𝑥𝑃𝑟𝑒 , the second for paths from 𝑥𝑆𝑢𝑐𝑐 to 𝑡 . These searches run independently from each
other, the found alternatives are combined afterwards. During the combination phase, the
requirements for alternative paths are checked and only routes that fulfill all three are returned.
The algorithm used for the single via-node search is described prior in Section 3.4 and only
needs small adjustments.

13

4 Multi Via-Node Alternatives

The parameters 𝜀, 𝛼 and𝛾 define the requirements uniformly bounded stretch, local optimal-
ity and limited sharing of alternative paths 𝑃𝐴𝑙𝑡 . These same requirements do not need to be
fulfilled by all subpaths of 𝑃𝐴𝑙𝑡 . For instance, choose a maximum stretch of 1.25 and let 𝑃 ′

𝐿
, 𝑃 ′

𝑅

be alternative paths to the 𝑠 − 𝑥 and 𝑥 − 𝑡 subpaths 𝑃𝐿 and 𝑃𝑅 of 𝑃𝑂𝑝𝑡 respectively. Let the
stretch of the alternatives be 𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑃 ′

𝐿
) = 1.3 and 𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑃 ′

𝑅
) = 1.1 with ℓ (𝑃𝐿) = ℓ (𝑃𝑅). The

alternative 𝑃 ′
𝐿
will be discarded by single via-node search using the same parameter 𝜀 = 1.25 as

the multi via-node search. However, combined with 𝑃 ′
𝑅
, the whole alternative has sufficiently

low stretch of 𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑃 ′
𝐿
∪ 𝑃 ′

𝑅
) = 1.2.

4.2.1 Relaxed Stretch

To find the most alternatives with a multi via-node search, the maximum allowed stretch 𝜀

is increased for both single via-node searches. The prior example assumes ℓ (𝑃𝐿) = ℓ (𝑃𝑅), in
general the stretches are weighed against the length of ℓ (𝑃𝐿) and ℓ (𝑃𝑅) in relation to 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
before adding them up. To account for the path in the middle from 𝑥𝑃𝑟𝑒 to 𝑥𝑆𝑢𝑐𝑐 , let 𝑃𝑀 be
the shortest 𝑥𝑃𝑟𝑒 − 𝑥𝑆𝑢𝑐𝑐 path. The maximum allowed stretch for the multi via-node search is
limited by

ℓ (𝑃 ′𝐿 ∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) = ℓ (𝑃 ′𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃 ′𝑅) ≤ (1 + 𝜀) · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
To find the maximum allowed stretch for 𝑃 ′

𝐿
, we assume a minimal stretch of 1 for 𝑃 ′

𝑅
, which

means ℓ (𝑃 ′
𝑅
) = ℓ (𝑃𝑅) and therefore

ℓ (𝑃 ′𝐿) ≤ (1 + 𝜀) · (ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅)) − (ℓ (𝑃𝑀) + ℓ (𝑃𝑅)) .

By solving

(1 + 𝜀𝐿) · ℓ (𝑃𝐿) = (1 + 𝜀) · (ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅)) − (ℓ (𝑃𝑀) + ℓ (𝑃𝑅))

for (1 + 𝜀𝐿) we get the maximum allowed stretch for the first search

1 + 𝜀𝐿 = 1 + 𝜀 · ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅)
ℓ (𝑃𝐿)

= 1 + 𝜀 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
ℓ (𝑃𝐿)

.

The maximum stretch for the second search (1 + 𝜀𝑅) is calculated the same way by assuming
ℓ (𝑃 ′

𝐿
) = ℓ (𝑃𝐿):

1 + 𝜀𝑅 = 1 + 𝜀 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
ℓ (𝑃𝑅)

.

4.2.2 Relaxed Sharing

The same principle is applied to limited sharing, defined by the parameter 𝛾 . If the same
value for 𝛾 is used in the single via-node search, paths that share more than 𝛾 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑥𝑃𝑟𝑒)
or𝛾 ·𝑑𝑖𝑠𝑡 (𝑥𝑆𝑢𝑐𝑐 , 𝑡) are discarded even though they could fulfill the requirement when combined
with other paths. To prevent this, the sharing parameter 𝛾 needs to be raised for the single
via-node searches. Let 𝑆 contain all arcs from other paths, let 𝑃 ′

𝐿
and 𝑃 ′

𝑅
be paths from and

to 𝑥 that form a viable alternative with limited sharing ℓ ((𝑃 ′
𝐿
∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) ∩ 𝑆) ≤ 𝛾 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡).

As an aside, it is assumed here that the subpaths are disjunct (𝑃 ′
𝐿
∩ 𝑃 ′

𝑅
) = ∅ but because

both searches are performed separately this cannot be guaranteed. However, paths that are
not disjunct must include a local detour and will later fail a T-test that prevents them from
being included in the results, see Section 4.3. Therefore

ℓ
(
(𝑃 ′𝐿 ∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) ∩ 𝑆

)
= ℓ (𝑃 ′𝐿 ∩ 𝑆) + ℓ (𝑃𝑀 ∩ 𝑆) + ℓ (𝑃 ′𝑅 ∩ 𝑆)

14

4.2 Performing Separate Searches

is assumed. The maximum admissible amount of sharing for the first search 𝛾𝐿 is calculated
by assuming ℓ (𝑃 ′

𝑅
∩ 𝑆) = 0,

ℓ
(
(𝑃 ′𝐿 ∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) ∩ 𝑆

)
= ℓ (𝑃 ′𝐿 ∩ 𝑆) + ℓ (𝑃𝑀 ∩ 𝑆) ≤ 𝛾 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)

and using 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅) for the shortest 𝑠 −𝑥𝑃𝑟𝑒 and 𝑥𝑆𝑢𝑐𝑐 − 𝑡 paths 𝑃𝐿 , 𝑃𝑅 :

𝛾𝐿 · ℓ (𝑃𝐿) = 𝛾 · (ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅)) − ℓ (𝑃𝑀 ∩ 𝑆) .

Solving for 𝛾𝐿 results in

𝛾𝐿 = 𝛾 · ℓ (𝑃𝐿) + ℓ (𝑃𝑀) + ℓ (𝑃𝑅)
ℓ (𝑃𝐿)

− ℓ (𝑃𝑀 ∩ 𝑆)
ℓ (𝑃𝐿)

= 𝛾 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) − ℓ (𝑃𝑀 ∩ 𝑆)
ℓ (𝑃𝐿)

.

For the second search, 𝛾𝑅 is calculated accordingly as

𝛾𝑅 = 𝛾 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) − ℓ (𝑃𝑀 ∩ 𝑆)
ℓ (𝑃𝑅)

.

4.2.3 Relaxed Local Optimality

The length of the subpath on which a T-test needs to be performed 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡), does not
change between the multi via-node search and both single via-node searches. The parameter 𝛼
is adjusted to

𝛼𝐿 = 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
ℓ (𝑃𝐿)

for the first search. This way

𝛼𝐿 · ℓ (𝑃𝐿) = 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
ℓ (𝑃𝐿)

· ℓ (𝑃𝐿) = 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)

remains unchanged. The parameter 𝛼𝑅 of the second search is set to

𝛼𝑅 = 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)
ℓ (𝑃𝑅)

.

Subsequently, if ℓ (𝑃𝐿) or ℓ (𝑃𝑅) is smaller than 2 · 𝛼 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) most alternative paths found by
the respective search will be discarded. This is because alternatives in the single via-node
searches can share more than 𝛾 = 80% with 𝑃𝑂𝑝𝑡 , so they always fail a T-test with 𝛼 = 0.2.
To avoid this, detour adjusted local optimality like described in Section 3.4.4 can be used.

To verify local optimality for subpaths without discarding paths that can be combined to
form viable alternative paths, the distances 𝑇𝐿 and 𝑇𝑅 tested by the single via-node searches
need to be relaxed. The distance 𝑇 = 𝛼 · ℓ (𝑃𝐴𝑙𝑡 \ 𝑃𝑂𝑝𝑡) verified by the multi via-node search
depends on the amount of sharing of 𝑃𝐴𝑙𝑡 with 𝑃𝑂𝑝𝑡 and is therefore unknown before the
combination phase. Discarding viable alternatives is avoided by setting 𝑇𝐿 and 𝑇𝑅 relative to
an ideal corresponding alternative in the other search. For the first search, this assumes a
maximum overlap of 𝑃𝑀 and 𝑃 ′

𝑅
with 𝑃𝑂𝑝𝑡 , ℓ (𝑃𝑀 \ 𝑃𝑂𝑝𝑡) = ℓ (𝑃 ′

𝑅
\ 𝑃𝑂𝑝𝑡) = 0. Therefore the

parameter 𝛼𝐿 is set to 𝛼 , as 𝑇𝐿 = 𝛼𝐿 · ℓ (𝑃 ′𝐿 \ 𝑃𝐿) then equals

𝑇𝐿 = 𝛼 ·
(
ℓ (𝑃 ′𝐿 \ 𝑃𝑂𝑝𝑡) + ℓ (𝑃𝑀 \ 𝑃𝑂𝑝𝑡) + ℓ (𝑃 ′𝑅 \ 𝑃𝑂𝑝𝑡)

)
= 𝛼 · ℓ

(
(𝑃 ′𝐿 ∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) \ 𝑃𝑂𝑝𝑡

)
= 𝑇 .

Like in Section 4.2.2 we assume no sharing between paths from both searches. Additionally,
the stretch of the detour is bounded by (1+𝜀𝐿) = (1+𝜀), which can be shown by also assuming
no overlap between 𝑃𝑀 , 𝑃 ′

𝑅
and 𝑃𝑂𝑝𝑡 :

(1+𝜀𝐿)·ℓ (𝑃𝐿\𝑃 ′𝐿) = (1+𝜀𝐿)·ℓ
(
(𝑃𝐿∪𝑃𝑀∪𝑃𝑅)\(𝑃 ′𝐿∪𝑃𝑀∪𝑃𝑅)

)
= (1+𝜀)·ℓ

(
(𝑃𝑂𝑝𝑡)\(𝑃 ′𝐿∪𝑃𝑀∪𝑃𝑅)

)
.

The parameters for the second search are set correspondingly to 𝛼𝑅 = 𝛼 and (1 + 𝜀𝑅) = (1 + 𝜀).

15

4 Multi Via-Node Alternatives

Figure 4.2: The results of a single via-node search with adjusted parameters before T-tests
are performed. The shortest path is blue. The black alternative path splits off from blue and
takes a long detour before rejoining blue. The routing of black is unappealing because it is
not locally optimal. (Map data obtained from OpenStreetMap: openstreetmap.org/copyright)

4.2.4 Trade-Offs

Adjusting the parameters 𝜀, 𝛼 and 𝛾 is necessary when trying to find as many alternative
paths as possible. It also increases the number of alternatives taken into consideration during
the combination phase, hindering performance. Paths 𝑃 found by single via-node searches
with 𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑃) > (1 + 𝜀) or sharing higher than 𝛾 often take long detours and are not viable
alternatives, regardless of what other path they are combined with. For instance, see Figure 4.2.
Such paths are not locally optimal and will therefore be discarded by a T-test. A more efficient
solution would be to filter them out sooner in the process by not relaxing the parameters for
the single via-node searches, using 𝜀1 = 𝜀2 = 𝜀 and 𝛾1 = 𝛾2 = 𝛾 instead. However, this also
decreases the total number of alternatives found.

4.3 Combining Paths

During the combination phase, alternative paths from both single via-node searches are
combined to form alternatives for the whole path 𝑃𝑂𝑝𝑡 . All single via-node paths from one
search are combined with the single via-node paths from the other search and the three
criteria for alternative paths are checked. To make this process more efficient, the weight
calculated by the single via-node searches is reused. The order in which alternatives are
combined and checked is relevant to which alternative paths are returned.

4.3.1 Order

Like described in Section 3.3, the order in which paths are verified changes the results, as
sharing between paths depends onwhich paths are verified first. In multi via-node searches the
importance is even greater as it has to be decided which paths are combined to form complete
alternatives. We use the same function to evaluate paths as in Section 3.3, namely 𝑓 (𝑃) =
ℓ (𝑃). So shorter alternatives are always preferred to longer ones. Let the results of two
searches be 𝑅𝐿 = (𝑃0

𝐿
, 𝑃1

𝐿
, · · · , 𝑃𝑛

𝐿
) and 𝑅𝑅 = (𝑃0

𝑅
, 𝑃1

𝑅
, · · · , 𝑃𝑚

𝑅
) be two sequences of paths

sorted in ascending order of their length. They include the shortest 𝑠 − 𝑥 path 𝑃0
𝐿
and the

shortest 𝑥 − 𝑡 path 𝑃0
𝑅
.

16

4.3 Combining Paths

Firstly, all paths are combined to form paths of the form 𝑃𝑖
𝐿
∪ 𝑃𝑀 ∪ 𝑃 𝑗

𝑅
. A greedy algorithm

minimizing ℓ (𝑃𝑖
𝐿
∪ 𝑃𝑀 ∪ 𝑃 𝑗

𝑅
) is used to combine them. At the beginning, the shortest path 𝑃0

𝐿

in 𝑅𝐿 is concatenated with the middle segment 𝑃𝑀 and the shortest path 𝑃0
𝑅
in 𝑅𝐵 . Then 𝑃0

𝐿

is concatenated with 𝑃𝑀 and the second shortest path in 𝑅𝐵 . This process repeats until 𝑃0
𝐿

is combined with the longest path 𝑃𝑚
𝑅

in 𝑅𝐵 or the length of the resulting path is higher
than (1 + 𝜀) ·𝑑𝑖𝑠𝑡 (𝑠, 𝑡). As all subpaths are sorted in ascending order, the length of subsequent
combinations will also exceed this limit. By discarding such combinations, all paths have
bounded stretch and no unnecessary T-tests or sharing calculations are performed. Afterwards,
the second shortest path in 𝑅𝐴 is combined with the paths in 𝑅𝐵 in ascending order. This
process stops after the longest path 𝑃𝑛

𝐿
in 𝑅𝐴 is combined with the paths in 𝑅𝐵 .

The length of combined paths can be calculated efficiently by reusing the lengths of the
paths calculated by the single via-node searches, as ℓ (𝑃𝑖

𝐿
∪𝑃𝑀∪𝑃 𝑗

𝑅
) = ℓ (𝑃𝑖

𝐿
)+ℓ (𝑃𝑀)+ℓ (𝑃 𝑗

𝑅
). To

calculate the length of themiddle segment ℓ (𝑃𝑀), the lengths of the arcs (𝑥𝑃𝑟𝑒 , 𝑥) and (𝑥, 𝑥𝑆𝑢𝑐𝑐)
are added. To ensure shorter alternatives are verified before longer ones, all combined paths
are sorted in increasing order according to 𝑓 (𝑃) = ℓ (𝑃) before verification.

4.3.2 Verification

While the single via-node searches verify all found alternatives, this does not guarantee
all possible combinations to be viable alternatives. Two combined paths which are viable
alternatives for their respective segment of the shortest path may not be viable alternatives
for the whole path. This is not only because of the relaxed search parameters but also
because of the routing via a split node, which bears potential for local detours. As such,
uniformly bounded stretch, limited sharing and local optimality are verified for the combined
alternatives. Uniformly bounded stretch is already certified while ordering the paths, as
described in Section 4.3.1.

4.3.2.1 Limited Sharing

Limited sharing is verified by intersecting each alternative 𝑃𝐴𝑙𝑡 with the set of arcs used in
previously verified paths 𝑆 . Then the length of all arcs in the intersection is calculated and
compared with the maximum permissible length

ℓ (𝑃𝐴𝑙𝑡 ∩ 𝑆) ≤ 𝛼 · ℓ (𝑃𝑂𝑝𝑡)

The set 𝑆 initially contains all arcs used in the shortest path, ensuring alternatives of one
section can be combined with the shortest path of the other section, provided the resulting
path has sufficiently low sharing. Unlike the length of combined paths, limited sharing needs
to be calculated again and cannot be reused from the single via-node searches. As sharing
is calculated in respect to all previously found paths, the set of previously used arcs can
differ between the single and multi via-node search. For instance, let 𝑃1

𝐿
and 𝑃2

𝐿
be alternative

paths found by the first search with shared sections, so 𝑃1
𝐿
∩ 𝑃2

𝐿
≠ ∅. If no combined path

containing 𝑃1
𝐿
is admitted, its arcs are never added to 𝑆 . Therefore the length of shared arcs

between 𝑃2
𝐿
and 𝑆 can decrease compared to the single via-node search.

4.3.2.2 Local Optimality

After verifying the limited sharing of a combined path, a T-test is performed at the split node
of the path. If it passes the test, all its arcs are added to the set of previously used arcs. In
conjunction with the T-tests already performed by the single via-node searches, the single

17

4 Multi Via-Node Alternatives

T-test sufficiently proves that the path is locally optimal. Let 𝑥 be the used split node, while
𝑃𝐿 and 𝑃𝑅 are the subpaths of a combined alternative 𝑃 found by the single via-node searches.
Furthermore, let 𝜈 be the end node of path 𝑃𝐿 , while𝑤 is the start node of path 𝑃𝑅 .

Theorem 4.1: If 𝑃𝐿 and 𝑃𝑅 are 𝑇 -locally optimal and 𝑃 = 𝑃𝐿 ∪
(
(𝜈, 𝑥), (𝑥,𝑤)

)
∪ 𝑃𝑅 passes a

T-test at 𝑥 , then 𝑃 is T-locally optimal.

Proof. Suppose 𝑃 passes the test and let 𝑃 ′ be a subpath of 𝑃 with ℓ (𝑃 ′) ≤ 𝑇 . If 𝑃 ′ does
not contain 𝑥 , then 𝑃 ′ is a subpath of 𝑃𝐿 or 𝑃𝑅 and therefore a shortest path. Otherwise 𝑃
contains 𝑥 and is a subpath of the portion covered by the T-test performed at 𝑥 and therefore
also a shortest path.

Additional T-tests on 𝑃 at all via-nodeswould only confirm previous results and are therefore
omitted.

4.3.2.3 Detour-Adjusted

Using detour adjusted local optimality and stretch requires some modifications. The basic
process remains unchanged, alternative paths from both searches are combined to form
alternatives for the whole path. The combined paths are filtered according to stretch and
sorted in ascending order of their length. Limited Sharing and local optimality are verified
and valid alternative paths are returned.
First alternative paths 𝑃 ′

𝐿
of one segment are combined with all paths 𝑃 ′

𝑅
from the other

segment and 𝑃𝑀 to form 𝑃𝐴𝑙𝑡 . The stretch of 𝑃𝐴𝑙𝑡 is the same as the combined stretch of the
paths:

ℓ (𝑃𝐴𝑙𝑡 \ 𝑃𝑂𝑝𝑡) = ℓ
(
(𝑃 ′𝐿 ∪ 𝑃𝑀 ∪ 𝑃 ′𝑅) \ (𝑃𝐿 ∪ 𝑃𝑀 ∪ 𝑃𝑅)

)
= ℓ (𝑃 ′𝐿 \ 𝑃𝐿) + ℓ (𝑃 ′𝑅 \ 𝑃𝑅).

We assume 𝑃 ′
𝐿
∩ 𝑃𝑅 = 𝑃 ′

𝑅
∩ 𝑃𝐿 = ∅. Graphs could be constructed where this assumption

is broken, however we could not observe this in real road graphs. Because 𝑃𝑀 is always
included in all paths and has a fixed direction of travel, paths that share arcs with 𝑃𝑅 before
reaching 𝑥𝑃𝑟𝑒 must include a detour. The same holds true for paths that share arcs with 𝑃𝐿
after crossing 𝑥𝑆𝑢𝑐𝑐 .

Combined alternatives whose stretch exceeds (1+𝜀) · (𝑃𝑂𝑝𝑡 \𝑃𝐴𝑙𝑡) are discarded. Afterwards,
the remaining alternatives are sorted in ascending order of their length. Limited sharing and
detour adjusted local optimality are then verified for all alternatives. For local optimality,
the T-tests run by the single via-nodes cannot sufficiently prove that the resulting combined
alternative is T-locally optimal, as the exact length of 𝑡 is unknown before combining alterna-
tives. Let 𝑇𝐿 = 𝛼 ·

(
(𝑃 ′

𝐿
∪ 𝑃𝑅) \ 𝑃𝐿

)
= be the value of 𝑇 used in the first search. If 𝑃 ′

𝐿
is then

combined with an alternative path 𝑃 ′
𝑅
with 𝑃 ′

𝑅
∩ 𝑃𝑅 ≠ ∅, the distance for which 𝑃𝐴𝑙𝑡 needs

to be locally optimal 𝑇 is greater than𝑚𝑖𝑛(𝑇𝐿,𝑇𝑅). Therefore additional T-tests are run at all
via-nodes with parameter 𝑇 . All paths which fulfill both limited sharing and local optimality
are returned.

18

5 Recursion

A path can includemultiple bottlenecks, whichmakes it difficult to find a single good split node.
For instance, see Figure 5.1. If the path is split at a bottleneck 𝑥 , the 𝑠 −𝑥 path or 𝑥 − 𝑡 path still
includes another bottleneck, so a single via-node search will likely not find any alternatives.
Instead of running a single via-node search on the path including another bottleneck, a multi
via-node search can be initiated. The resulting paths from the multi via-node search can then
be combined with the paths from the other search to find alternatives for the whole 𝑠 − 𝑡 path.
This is not limited to only one side of 𝑥 , both single via-node searches can be replaced with
multi via-node searches. The process can also be repeated recursively, as each multi-via node
search can initiate new multi via-node searches.

Multiple bottlenecks are not necessarily the only instance where more alternatives are
found with recursion. A vertex does not need to be a bottleneck to have a high rank, as
high order separators do not have to include bottlenecks. See Figure 5.1 for instance. Simply
splitting a path at the node 𝑥 with the highest rank does not guarantee 𝑥 to be a bottleneck. If a
path contains a bottleneck 𝜈 , as well as a vertex𝑤 from a high order separator with 𝑟𝑎𝑛𝑘 (𝜈) <
𝑟𝑎𝑛𝑘 (𝑤), then 𝑤 is chosen as split vertex during a multi via-node search instead of 𝜈 . A
recursive multi via-node search will eventually choose 𝜈 as the split node, increasing the
likelihood of alternatives being found.

Figure 5.1: Successful recursive multi-via node searches. The shortest path on the left
crosses two bottlenecks, their location is marked with B. The path on the right crosses
multiple high order separators (location marked with B) with only the upper one being a
bottleneck. Shortest paths are drawn in blue. (Map data obtained from OpenStreetMap:
openstreetmap.org/copyright)

19

5 Recursion

5.1 Termination

The recursion must terminate at some point, as generally less alternatives are found for shorter
paths. However, we do not know an absolute length value for when diminishing returns are
expected, so a minimal distance between start 𝑠′ and end node 𝑡 ′ is chosen relative to the
length of the original path. If 𝑑𝑖𝑠𝑡 (𝑠′, 𝑡 ′) < 𝜂 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) for 𝜂 ∈ (0, 1), the recursion is stopped
and a single via-node search is performed. With the vertices 𝑠 and 𝑡 being the start and end
points of the original path, we call 𝜂 · 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) the termination distance 𝑑 of the recursive
search.
Choosing a smaller 𝜂 increases the number of initiated recursive searches, which leads to

longer runtimes in exchange for more alternatives found. To determine a good value for 𝜂,
5000 random queries were ran for different 𝜂 ∈ (0, 1) using the same testing environment as
in Chapter 6. The results are displayed in Figure 5.2. Choosing 𝜂 = 0.3 guarantees at least
a single alternative path is found in 90% of cases. Pushing 𝜂 above 0.5 will allow at most a
single new recursive search at each level, lowering the number of paths 𝑝 being found. As 𝜂
approaches zero, the success rate converges around 90% for 𝑝 = 1, 70% for 𝑝 = 2 and 45%
for 𝑝 = 3 but the average runtime increases by up to 45%. We choose 𝜂 = 0.3 for further
analysis as this presents a sensible compromise between success rate and runtime.

Figure 5.2: Tracking success rate and average runtime as 𝜂 changes. A recursive search
is successful if at least 𝑝 alternative paths are found. Each point in the plot is the resultfor
different 𝜂. The gray line marks 𝜂 = 0.3.

40 60 80 100 120 140
0

20

40

60

80

100

Average Runtime [ms]

Su
cc
es
sR

at
e
[%
]

𝑝=1
𝑝=2
𝑝=3

Success Rate Average
𝜂 𝑝=1 𝑝=2 𝑝=3 Runtime

[%] [%] [%] [𝑚𝑠]

0.1 91.0 71.3 47.1 145.3
0.2 90.7 71.0 46.5 119.2
0.3 90.2 69.9 45.4 101.7
0.4 89.4 67.9 43.5 87.3
0.5 88.2 64.9 40.9 75.0
0.6 86.8 61.5 38.4 64.4
0.7 85.2 58.8 35.8 56.2
0.8 84.1 56.3 33.8 49.9
0.9 83.4 55.4 32.3 45.2

5.2 Algorithm

Only minor modifications need to be made to the multi via-node algorithm to add recursion.
Extra measures are added to keep track of the termination criteria. First an unmodified single
via-node search is run and all paths are added to the set of potential alternative paths. Then
the length of the shortest path is checked against the termination criteria and if it does not
exceed 𝑑 , the recursive search stops and returns the paths found prior.
Otherwise, a split node is chosen according to any of the methods detailed in Section 4.1.

New smaller recursive searches are initiated for the segments on both sides of the split
node. The smaller searches are both launched with relaxed parameters. Local optimality

20

5.2 Algorithm

and stretch can also be adjusted to detour, like described in Section 4.2.3. The stretch of
combined alternative paths found for the different segments is first verified, then they are
sorted in ascending order of their length. The criteria for alternative paths are verified like in
Section 4.3. Depending on whether detour adjusted local optimality is used, either a T-test is
performed only at the split node or at each via-node. A version without adjusting to detour is
sketched in Algorithm 5.1.
If local optimality is not detour-adjusted, all searches will already use the final distance

parameter 𝑇 in the T-test. Therefore, local optimality can only be violated at the split-node.
However, with detour adjusted local optimality, only a minimal value for𝑇 is used during each
search, therefore after combining two subpaths, another T-test is required at each via-node.
Paths found from normal multi via-node searches have a single split node and up to two
via-nodes originating from single via-node searches. The recursive algorithm can combine
manymore single via-node paths, leading to paths having manymore via-nodes where detours
can occur. We want to filter out non-viable alternative paths early, so a T-test is performed
on each level of recursion at every via-node. As a result, verifying local optimality can take
significantly more effort when adjusting for detour. Skipping these prior T-tests would not
necessarily increase performance, as it increases the number of considered paths, leading to
more T-tests in the final combination phase.
Algorithm 5.1: A simplified recursive algorithm utilizing the median index to deter-
mine the split node.
Input: A shortest path 𝑃𝑂𝑝𝑡 , parameters 𝛼 ∈ ℝ+ characterizing locally optimal

distances, 𝛾 ∈ ℝ+ defining maximum sharing, 𝜀 ∈ ℝ+ bounding stretch and
termination distance 𝑑 ∈ ℝ+.

Output: A set of alternative paths including 𝑃𝑂𝑝𝑡 .

1 Function recursiveSearch(𝑃𝑂𝑝𝑡 ,𝛼 ,𝛾 ,𝜀):
2 𝑅 ←− 𝑠𝑖𝑛𝑔𝑙𝑒𝑉 𝑖𝑎𝑆𝑒𝑎𝑟𝑐ℎ(𝑃𝑂𝑝𝑡 ,𝛼 ,𝛾 ,𝜀)
3 if ℓ (𝑃𝑂𝑝𝑡) < 𝑑 then
4 return 𝑅

5 𝑛 ←− |𝑃𝑂𝑝𝑡 |
6 𝑚 ←− ⌊𝑛2 ⌋
7 𝑃𝐿 ←− 𝑃𝑂𝑝𝑡 [0, 1, . . . ,𝑚 − 2]
8 𝑃𝑀 ←− 𝑃𝑂𝑝𝑡 [𝑚 − 1,𝑚]
9 𝑃𝑅 ←− 𝑃𝑂𝑝𝑡 [𝑚 + 1, . . . , 𝑛 − 1]
10 𝑅𝐿 ←− 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝜈𝑒𝑆𝑒𝑎𝑟𝑐ℎ

(
𝑃𝐿, 𝛼 ·

ℓ (𝑃𝑂𝑝𝑡)
ℓ (𝑃𝐿) , 𝛾 ·

ℓ (𝑃𝐿)+ℓ (𝑃𝑅)
ℓ (𝑃𝐿) , 𝜀 · ℓ𝑃𝑂𝑝𝑡

ℓ (𝑃𝐿)

)
11 𝑅𝑅 ←− 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝜈𝑒𝑆𝑒𝑎𝑟𝑐ℎ

(
𝑃𝑅, 𝛼 ·

ℓ (𝑃𝑂𝑝𝑡)
ℓ (𝑃𝑅) , 𝛾 ·

ℓ (𝑃𝐿)+ℓ (𝑃𝑅)
ℓ (𝑃𝑅) , 𝜀 · ℓ𝑃𝑂𝑝𝑡

ℓ (𝑃𝑅)

)
12 𝑅 ←− 𝑠𝑜𝑟𝑡 (𝑅 ∪ (𝑅𝐿 × 𝑃𝑀 × 𝑅𝑅))
13 𝑆,𝑉 ←− ∅
14 forall 𝑃 ∈ 𝑅 do
15 if ℓ (𝑃) ≤ (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡) and ℓ (𝑃 ∩ 𝑆) < 𝛾 · ℓ (𝑃𝑂𝑝𝑡) then
16 if 𝑇 −𝑇𝑒𝑠𝑡 (𝑃, 𝛼) then
17 𝑆 ←− 𝑆 ∪ 𝑃
18 𝑉 ←− 𝑉 ∪ {𝑃}
19 return 𝑉

21

6 Evaluation

In this chapter we evaluate the different algorithms presented in prior chapters. The single-via
node algorithm is denoted as SV and represents the baseline of our analysis. The algorithmHV
splits at the highest node, MV and GV use either the medium index or the geographic middle
as a split point respectively. Restricting the selection of highest nodes to the middle regarding
hop-length is done by HMV, doing the same for the geographic middle yields HGV. Detour-
adjusted algorithms are denoted by the prefix D, recursive variants use the prefix R.

We evaluate all methods on the DIMACS graph of Europe [DGJ09]. This graph has already
been used in prior works, for instance to evaluate the single via-node algorithm in Abraham
et al.[ADGW13]. The used length function is travel time. The graph is preprocessed using an
order obtained through nested dissection.
The parameters characterizing admissible alternative paths are set to 𝜀 = 0.25, 𝛾 = 0.8

and 𝛼 = 0.2 for all queries. A total of 50000 queries are run for every test. The program was
compiled with gcc version 12.3.0 using −𝑂3- compliation. All experiments were performed
on a machine with an Intel Xeon Skylake SP Gold 6144 CPU using 192 GB of DDR4 2666 MHz
RAM. Initializing the CCH with the pre-computed order took 19.9 seconds.

6.1 Split Nodes

We find the best method to choose the split node by comparing all algorithms in Table 6.1.
The success rate in relation to the number of desired alternatives 𝑝 is recorded, along with the
average and maximum query time. The average and maximum stretch of the whole alternative
path is also tracked. Lastly, the average and maximum percentage of sharing between paths
is included. We also include the baseline SV and D-SV to increase comparability.
The split node chosen by D-HV has the highest overall success rate, MV finds the least

amount of routes. This confirms that vertices with high rank hinder single via-node searches,
as cutting out a high ranked vertex from a shortest path increases success rates. This can
also be seen by the increased number of routes found by HMV and HGV compared to their
counterpartsMV and GV. WhileMV and GV both choose vertices with random rank as a split
point, HMV and HGV will favor higher ranked vertices. We also observe that adjusting local
optimality to detour increases the success rate for every algorithm and lowers the average
runtime at the cost of higher sharing.

While D-HV has the highest success rate, it also has the highest average runtime among the
detour adjusted algorithms. The same is true for the non-detour adjusted algorithms, HV finds
the most routes and needs longer on average than all comparable algorithms. However, the
difference is not very high,D-HV takes ca. twice as long as baseline, the fastest algorithmD-GV
takes ca. 1.4 times as long.

As a result of adjusting local optimality and stretch of every path to the length of its detour,
the maximum stretch of alternatives found using detour-adjusted algorithms is reduced. All
algorithms using normal local optimality find routes with a maximum stretch of 25%, however
this is not the case for their detour adjusted counterpart. This can be explained by the stretch

23

6 Evaluation

Table 6.1: Comparison of multi via-node algorithms using different split nodes. Success rate
is tracked as the number of desired alternative paths 𝑝 varies.

Success Rate Time Stretch Sharing

Algo 𝑝=1 𝑝=2 𝑝=3 Average Max Average Max Average Max
[%] [%] [%] [𝑚𝑠] [𝑚𝑠] [%] [%] [%] [%]

HV 41.9 12.7 2.7 52.3 217.3 2.9 25.0 23.9 80.0
MV 29.5 6.3 0.9 40.4 206.0 2.2 25.0 18.6 80.0
GV 31.8 7.6 1.3 42.7 198.0 2.5 25.0 18.9 80.0
HMV 37.9 9.7 1.9 45.7 203.2 2.7 25.0 23.5 80.0
HGV 40.1 10.8 2.1 47.4 200.1 2.8 25.0 25.0 80.0

D-HV 54.5 19.7 5.5 30.1 293.6 2.1 23.3 34.6 80.0
D-MV 35.4 9.6 1.7 19.8 216.3 1.2 20.1 23.7 80.0
D-GV 37.0 11.1 2.3 19.4 221.1 1.4 21.6 24.0 80.0
D-HMV 47.2 15.3 3.6 24.5 274.1 1.6 19.3 31.3 80.0
D-HGV 49.5 16.2 4.0 26.1 274.3 1.7 19.3 32.8 80.0

SV 52.9 26.3 9.6 15.1 123.1 4.6 25.0 23.4 80.0
D-SV 61.4 33.8 13.8 13.1 120.0 3.5 24.9 31.7 80.0

not being limited by the length of the path but by the length of its detour. To have a limited
stretch of 25% for its whole length, the overlap of an alternative 𝑃 with the shortest path
needs to be zero, as

ℓ (𝑃 \ 𝑃𝑂𝑝𝑡) ≤ (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡 \ 𝑃)

is equivalent to
ℓ (𝑃) ≤ (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡) − 𝜀 · ℓ (𝑃 ∩ 𝑃𝑂𝑝𝑡),

which implies ℓ (𝑃) ≤ (1 + 𝜀) · ℓ (𝑃𝑂𝑝𝑡). A multi via-node search will never find an alternative
path with no overlap, as each path found contains the same middle section around the split
node.

6.2 General Performance

We compare the performance of multi via-node searches against single via-node algorithms in
Table 6.2. The structure of Table 6.2 is the same as explained in Section 6.1. The comparison
is limited to the best performing multi via-node searches HV and D-HV. We also include the
recursive algorithm.

All detour adjusted algorithms perform better than their non detour adjusted counterpart,
as they have a higher success rate and lower average runtime. By focusing on the detour
adjusted algorithms, we see that D-HV has a lower success rate than D-SV, while also taking
approximately twice as long. The lower success rate is explained by the requirement of
including the split node in every alternative path, limiting the available selection of via-node
candidates.

24

6.3 Conditional Performance

Table 6.2: Comparison between the best performing single via-node, multi via-node and
recursive algorithms. Success rate is tracked as the number of desired alternative paths 𝑝 is
varied.

Success Rate Time Stretch Sharing

Algo 𝑝=1 𝑝=2 𝑝=3 Average Max Average Max Average Max
[%] [%] [%] [𝑚𝑠] [𝑚𝑠] [%] [%] [%] [%]

SV 52.9 26.3 9.6 15.1 123.1 4.6 25.0 23.4 80.0
HV 41.9 12.7 2.7 52.3 217.3 2.9 25.0 23.9 80.0
R-HV 76.0 49.4 28.1 189.0 589.5 5.5 25.0 41.0 80.0

D-SV 61.4 33.8 13.8 13.1 120.0 3.5 24.9 31.7 80.0
D-HV 54.5 19.7 5.5 30.1 293.6 2.1 23.3 34.6 80.0
DR-HV 90.2 69.1 45.3 101.2 803.2 3.9 24.9 55.4 80.0

The recursive algorithm finds the most alternative paths, with the success rate of DR-HV be-
ing 90% for 𝑝 = 1. This is almost as high as the algorithms detailed byAbraham et al. [ADGW13].
DR-HV being more successful than D-SV is expected, as the former will find all via-node
candidates of the latter. However, the average runtime of DR-HV is an order of magnitude
higher than D-SV.

Therefore, the multi via-node search is not very attractive to use instead of a single via-node
search, due to its lower success rate. The recursive search is also unattractive because of
its significantly increased runtime. This leads us to conclude that multi via-node searches
should not be performed instead of single via-node searches but in addition to them. If multi
via-node algorithms find alternative paths in cases where single via-node algorithms fail, then
a combined approach can increase success in return for longer runtimes. A multi via-node
search may only be performed in cases where the single via-node search does not find the
number of desired alternative paths.

6.3 Conditional Performance

To test whether multi via-node searches find alternative paths in cases where single via-node
searches fail, we restrict our testing in this section to cases where D-SV finds no alternative
paths. We restrict the analysis to detour-adjusted searches, as they have a higher success rate
and lower runtime. The analysis contains algorithms with all methods to find different split
nodes. For each different method we also include the recursive version. The result can be
seen in Table 6.3. It is immediately clear that all recursive algorithms produce better results
than their non-recursive counterpart but take roughly three times as long.
The results confirm our theories regarding bottlenecks and higher ranked vertices on

shortest paths, as the success rate and performance of D-HV remains almost unchanged.
In approximately 54% of cases it finds at least a single alternative, compared to 54.5% in
general. This means that the performance of D-HV on a given shortest path is almost entirely
unaffected by whether D-SV finds any alternatives for the path. Therefore, the usage of D-HV
lends itself exceptionally well to a combination with D-SV. When D-SV does not find any

25

6 Evaluation

alternatives, we can run D-HV to still return an alternative in more than half of all cases. The
runtime of D-HV is approximately twice that of D-SV meaning a combined approach takes
roughly three times longer than running D-SV.
Combining D-SV with any other non-recursive algorithm is not really useful, as they

perform worse than in general. Only DR-HV has a higher success rate than D-HV, but its
average runtime is ca. three times longer than D-HV and almost 10 times longer than D-SV.
The non-recursive algorithm D-HV is faster than every recursive variant. It also finds routes
more often except for DR-HV. We conclude that the best trade-off between success rate and
runtime is a combined approach of running D-HV in cases where D-SV fails.

Table 6.3: Comparison of multi via-node and recursive algorithms in cases where D-SV finds
no alternative paths. Success rate is tracked as the number of desired alternative paths 𝑝
varies.

Success Rate Time Stretch Sharing

Algo 𝑝=1 𝑝=2 𝑝=3 Average Max Average Max Average Max
[%] [%] [%] [𝑚𝑠] [𝑚𝑠] [%] [%] [%] [%]

D-HV 53.7 17.6 5.4 33.8 209.6 1.7 23.0 34.2 80.0
D-MV 14.9 1.6 0.2 16.5 181.0 0.5 14.6 10.0 80.0
D-GV 10.6 1.6 0.4 15.4 199.5 0.3 18.2 7.0 80.0
D-HMV 31.7 7.7 1.7 22.6 178.4 0.9 17.1 21.1 80.0
D-HGV 38.9 10.5 2.7 26.9 199.1 1.1 15.6 25.8 80.0

DR-HV 74.3 40.0 17.7 99.8 722.7 2.3 23.0 49.5 80.0
DR-MV 17.1 2.1 0.3 44.2 334.2 0.5 14.6 11.6 80.0
DR-GV 18.9 4.7 1.4 51.8 487.1 0.6 18.2 12.8 80.0
DR-HMV 39.0 11.7 3.1 59.7 376.7 1.1 17.1 26.7 80.0
DR-HGV 45.4 14.5 3.9 64.5 381.1 1.2 15.6 30.9 80.0

6.4 Combined Performance

We evaluate a combination of the algorithms D-SV and D-HV called D-CHV. It works by
first running D-SV. If it does not find the desired number of alternatives 𝑝 , the results are
stored and D-HV runs. All resulting and stored paths are sorted in ascending order of their
length and the checks to only admit viable alternative paths like described in Section 4.3.2
are performed. All viable paths are then returned. Table 6.4 shows the result of running the
algorithms for different desired numbers of alternatives 𝑝 . We also include the combined
recursive variant DR-CHV in the analysis.
The average runtime increases with 𝑝 , this effect is more noticeable for D-CHV and DR-

CHV compared to D-SV. Searching for at least 𝑝 = 2 routes with DR-CHV takes 57% longer
than for 𝑝 = 1. This is a stark contrast to D-SV, which only takes approximately 13% longer.
The increase for D-CHV lays between both values and is approximately 37%. Increasing 𝑝 to 3
also incurs a more significant performance penalty with DR-CHV than with D-SV or D-CHV.
Compared to 𝑝 = 2, DR-CHV takes 28% longer, D-CHV takes 21% longer and the runtime
of D-SV only increases by 9%. This is mostly due to the decreasing success rate of D-SV

26

6.4 Combined Performance

Table 6.4: Comparison of D-CHV and DR-CHV with D-SV. Searches are stopped after the
desired number of alternatives is found. Success rate is tracked as the number of desired
alternative paths 𝑝 varies.

Time Stretch Sharing

p Algo Success Rate Average Max Average Max Average Max
[%] [𝑚𝑠] [𝑚𝑠] [%] [%] [%] [%]

1 D-SV 61.4 9.8 72.9 2.5 24.9 31.1 80.0
D-CHV 86.2 22.5 234.2 3.4 24.9 47.4 80.0
DR-CHV 90.0 46.2 756.9 3.4 24.9 50.0 80.0

2 D-SV 33.8 11.1 103.1 3.2 24.9 31.6 80.0
D-CHV 59.9 31.3 307.4 3.9 24.9 49.8 80.0
DR-CHV 68.6 71.2 821.2 3.9 24.9 52.9 80.0

3 D-SV 13.8 12.1 111.1 3.4 24.9 31.7 80.0
D-CHV 35.7 37.9 308.7 4.0 24.9 51.1 80.0
DR-CHV 44.7 91.4 842.3 3.9 24.9 54.4 80.0

with higher values of 𝑝 . The less succesful D-SV is, the cases where a longer multi via-
node search is initiated rises. With the number of cases rising, the runtime of the combined
algorithms increases. By multiplying the average runtime of the multi via-node algorithm
with the percentage of cases where D-SV fails, we get an estimate for the runtime of the
combined algorithm in those cases. This product is added to the average runtime of D-SV
to estimate the runtime of the combined algorithm. From this, the runtime changes due
to the decreasing success rate of D-SV can be calculated, They are displayed in Table 6.5
and differ only slightly from our measurements. The higher increases in runtime of D-CHV
and DR-CHV are therefore mostly caused by the decreasing success rate of D-SV and not
because multi via-node searches take significantly longer to find more routes.
The recursive variant DR-CHV still has the highest success rate, however D-CHV comes

close for 𝑝 = 1, with alternative paths found in approximately 86% of cases compared to 90%.
This gap increases for 𝑝 = 2 and 𝑝 = 3, where DR-CHV performs significantly better. Both
combined approaches find routes in significantly more cases than D-SV but the average
sharing is higher.
The single via-node approach is by far the fastest algorithm, with lower average and

maximum runtime. To find a single alternative route, the runtime of D-CHV is more than
twice as high on average and DR-CHV even needs at least four times as long. For a single
alternative route, it therefore seems most effective to use D-CHV, as DR-CHV only finds
marginally more routes but needs almost twice as long. With the number of desired routes
increasing, the success rate of DR-CHV stays higher compared to the other algorithms,
however its runtime is also double that of D-CHV. The algorithm D-CHV sits between D-SV
and DR-CHV in terms of success rate and runtime, representing a sensible compromise.

27

6 Evaluation

Table 6.5: Comparison of inferred and measured runtime change of D-CHV and DR-CHV
as 𝑝 increases.

Runtime Change

Increase of p Algo Inferrred Measured
[%] [%]

1-2 D-CHV 46.5 39.1
DR-CHV 59.7 54.1

2-3 D-CHV 23.2 21.1
DR-CHV 27.2 28.4

28

7 Conclusion

We detailed how multi via-node alternative paths can be successfully constructed using single
via-node alternatives. The methods to confirm approximate admissibility were adapted to
multi via-node paths and the resulting algorithm was detailed. Different methods to determine
split nodes were introduced and the evaluation showed that vertices of higher rank make good
split nodes. Splitting a path at the highest ranked vertex leads to the most paths being found
compared to all other split nodes. We confirmed experimentally that more multi via-node
paths can be found through recursion, exceeding the results possible with a single split node.
However, the runtime of the recursive algorithms is an order of magnitude higher than that
of existing single via-node algorithms.

Our evaluation also proved that multi via-node paths can be found in cases where the single
via-node algorithm fails. In fact, we found no correlation between the performance of the
multi via-node algorithm and the success rate of the single via-node algorithm. This leads us
to conclude that multi via-node algorithms are best used in conjunction with single via-node
algorithms. When a single via-node search fails, the multi via-node algorithm which splits
the path at the highest ranked node can be initiated to still return a viable alternative path
more than 50% of the time.

7.1 Future Work

This analysis proved that multiple via-nodes are a viable method to find alternatives using
CCHs. Different approaches could be pursued to increase the success rate and optimize the
used algorithm. Optimizations for the CCH and single via-node algorithm used during the
analysis are possible. Like described by Dibbelt et al. the search can be pruned to reduce
the number of nodes which are relaxed [DSW16]. This could also be implemented for our
queries as it does not significantly effect the number of available via-node candidates. Another
technique they discussed is using vectors to store multiple weights for each edge directly,
which is also not implemented in our CCH.

Using recursion simplified the implementation of an algorithm using multiple split nodes,
however this could also be achieved iteratively. The k-highest split nodes on a path could
be identified directly, increasing predictability and preventing long runtimes. After the split
nodes are identified, single via-searches could be initiated between them. Another possible
improvement is to not discard alternative paths which fail the T-test and instead try to replace
local detours with locally optimal paths. If a T-test finds a shorter path between two nodes, the
shorter subpath could be inserted into the tested path to produce a locally optimal alternative.

29

Bibliography

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
“Alternative routes in road networks”. In: ACM J. Exp. Algorithmics Volume 18
(2013). ISSN: 1084-6654. DOI: 10.1145/2444016.2444019.

[BCRW16] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. “Search-
space size in contraction hierarchies”. In: Theoretical Computer Science Vol-
ume 645 (2016), pp. 112–127. ISSN: 0304-3975. DOI: https : //doi . org/10 . 1016/
j.tcs.2016.07.003.

[BDGS11] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. “Alternative
Route Graphs in Road Networks”. In: Theory and Practice of Algorithms in
(Computer) Systems. Edited by Alberto Marchetti-Spaccamela and Michael Segal.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 21–32. ISBN: 978-3-
642-19754-3.

[BSW18] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. “Real-Time Traffic
Assignment Using Fast Queries in Customizable Contraction Hierarchies”. In:
17th International Symposium on Experimental Algorithms (SEA 2018). Edited
by Gianlorenzo D’Angelo. Vol. 103. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018, 27:1–27:15. ISBN: 978-3-95977-070-5.
DOI: 10.4230/LIPIcs.SEA.2018.27 .

[BWZZ20] Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zuendorf. “Cus-
tomizable Contraction Hierarchies with Turn Costs”. In: 20th Symposium on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2020). Edited by Dennis Huisman and Christos D. Zaroliagis. Vol. 85.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020,
9:1–9:15. ISBN: 978-3-95977-170-2. DOI: 10.4230/OASIcs.ATMOS.2020.9.

[CAM09] CAMVIT. “Choice Routing”. In: (http://www.camvit.com) (2009).

[DGJ09] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The shortest path
problem: Ninth DIMACS implementation challenge. Vol. 74. American Mathemat-
ical Soc., 2009.

[DSW16] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable Contraction
Hierarchies”. In: Experimental Algorithms (2016), 1.5:1–1.5:49. DOI: 10.1145/
2886843.

[EG08] David Eppstein and Michael T. Goodrich. “Studying (non-planar) road networks
through an algorithmic lens”. In: Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. Irvine,
California: Association for Computing Machinery, 2008. ISBN: 9781605583235.
DOI: 10.1145/1463434.1463455.

31

https://doi.org/10.1145/2444016.2444019
https://doi.org/https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.4230/LIPIcs.SEA.2018.27
https://doi.org/10.4230/OASIcs.ATMOS.2020.9
https://doi.org/10.1145/2886843
https://doi.org/10.1145/2886843
https://doi.org/10.1145/1463434.1463455

Bibliography

[HMPV00] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. “Lex-BFS
and partition refinement, with applications to transitive orientation, interval
graph recognition and consecutive ones testing”. In: Theoretical Computer Science
Volume 234 (2000), pp. 59–84. ISSN: 0304-3975. DOI: https://doi.org/10.1016/S0304-
3975(97)00241-7 .

[LRT79] Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. “Generalized nested
dissection”. In: SIAM journal on numerical analysis Volume 16 (1979), pp. 346–
358.

[LS15] Dennis Luxen andDennis Schieferdecker. “Candidate Sets for Alternative Routes
in Road Networks”. In: ACM J. Exp. Algorithmics Volume 19 (2015). ISSN: 1084-
6654. DOI: 10.1145/2674395.

32

https://doi.org/https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1145/2674395

	Introduction
	Motivation
	Related Work
	Outline

	Preliminaries
	Graph Theory
	Customizable Contraction Hierarchies
	Metric Independent Construction
	Customization
	Shortest Path Queries
	Nested Dissection Orders

	Alternative Paths
	Uniformly Bounded Stretch
	Local Optimality
	Limited Sharing
	Single Via-Node Alternatives
	Finding Via-Nodes
	Shortest Paths
	Verification
	Detour Adjusted

	Multi Via-Node Alternatives
	Selection of Split Node
	Middle
	Highest
	Highest in the Middle

	Performing Separate Searches
	Relaxed Stretch
	Relaxed Sharing
	Relaxed Local Optimality
	Trade-Offs

	Combining Paths
	Order
	Verification

	Recursion
	Termination
	Algorithm

	Evaluation
	Split Nodes
	General Performance
	Conditional Performance
	Combined Performance

	Conclusion
	Future Work

	Bibliography

