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Abstract

Puzzles and games are widely studied in theoretical computer science in terms of their
computational complexity. In a similar vein, this thesis is devoted to studying the complexity
of some puzzle-like problems involving doors. Although rare in everyday life, doors can cause
problems by getting in the way of each other if they are placed in the wrong way. We build on
this idea by formalizing the problem of determining whether doors can be placed at designated
locations on a given two-dimensional floor plan under certain constraints. We show that door
placement problems are in P or NP-complete, depending on the number of allowed ways
to place each of the given doors. Similarly, we consider door replacement problems where,
given a placement of doors, the problem consists in determining whether one can change
the orientation of a door by a sequence of allowed moves. We show that door replacement
problems are in P or PSPACE-complete, depending on the same dichotomy. Furthermore, we
show NP-completeness for some versions of motion planning on a floor with doors and walls.
Finally, we prove that a variant of the door placement problem, where one can continuously
shift and rotate doors, is ∃ℝ-complete.

Zusammenfassung

Puzzles und Spiele werden in der theoretischen Informatik im Hinblick auf ihre Komplexität
häufig untersucht. In ähnlicher Weise widmet sich diese Arbeit der Untersuchung der Kom-
plexität einiger puzzle-ähnlichen Probleme mit Türen. Obwohl es im Alltag selten vorkommt,
können Türen Probleme verursachen, indem sie sich gegenseitig blockieren, wenn sie falsch
platziert sind. Wir bauen auf dieser Idee auf, indem wir das Entscheidungsproblem formalisie-
ren, ob Türen unter bestimmten Einschränkungen an bestimmten Stellen auf einem gegebenen
zweidimensionalen Grundriss platziert werden können. Wir zeigen, dass Türplatzierungspro-
bleme in P oder NP-vollständig sind, abhängig von der Anzahl der zulässigen Möglichkeiten,
die einzelnen Türen zu platzieren. In ähnlicher Weise betrachten wir Türumplatzierungs-
probleme, bei denen das Problem bei gegebener Türanordnung darin besteht, festzustellen,
ob die Ausrichtung einer Tür durch eine Folge zulässiger Züge geändert werden kann. Wir
beweisen, dass die Türumplatzierungsprobleme in Abhängigkeit von derselben Dichotomie in
P oder PSPACE-vollständig sind. Darüber hinaus zeigen wir die NP-Vollständigkeit für einige
Versionen der Bewegungsplanung auf einem Grundriss mit Türen und Wänden. Schließlich
beweisen wir, dass eine Variante des Türplatzierungsproblems, bei der man Türen stetig
verschieben und drehen kann, ∃ℝ-vollständig ist.

i





Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 5

2.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Door Placement Problems 9

3.1 DoorPlacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 SqaredDoorPlacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Door Replacement Problems 17

4.1 SqaredDoorReplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 DoorReplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Motion Planning Problems 29

5.1 Push-Open-Doors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Push/Pull-Open-Doors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 An ∃ℝ-complete Door Placement Problem 41

6.1 Existential Theory of the Reals . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 RealTriangularDoorPlacement . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusion 51

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

iii





1 Introduction

People have always been interested in puzzles and games. Games have also been the subject
of much research in theoretical computer science. In recent decades, many classic games
have been analyzed in the literature in terms of their computational complexity. There are
some conferences such as the International Conference on FUN with Algorithms where, among
others, results on the computational complexity of puzzles, games and interesting problems
from everyday life have been published.
In this thesis, we want to consider the computational complexity of doors. Doors are

ubiquitous in everyday life. As geometric objects, they are simple enough to formalize and
lead to many interesting problems. For example, consider the scenario where you are in a
building and you have the floor plan. You want to get to a certain place, but there are a lot of
doors to open along the way. How hard is the problem of determining whether you can get to
the place you want? Or suppose you are an architect and you want to place doors on a floor
in such a way that they do not block each other. Is such a placement possible under certain
constraints?

As our contribution, we formalize and answer such questions throughout this thesis.
In defining when doors interfere with each other, we are interested in the area that a door

can possibly occupy, so we formalize doors as quarter circles on a floor plan and say that
they interfere with each other when these quarter circle areas intersect. With the help of this
formalization, we define the door placement problem which asks, given threshold locations for
doors, whether a door can be placed on every threshold without interference. We show that
this problem is NP-complete. In addition, we realize that the same problem becomes tractable
when we consider doors with square opening ranges, as opposed to the quarter-circle opening
ranges of conventional doors. In another variant, this problem becomes ∃ℝ-complete if we
consider doors with triangle opening ranges and we allow to shift and rotate them by real
number amounts in their respective ranges.

Another problem we consider is what we call the door replacement problem where we are
given a floor plan with doors already placed and our goal is to reverse the opening direction
of a single door by a sequence of moves changing door orientations during which we have
to maintain an interference-free arrangement at each step. We prove that this problem is
PSPACE-complete for conventional doors, but can be solved in polynomial time if we consider
doors that open like a square.
Lastly, we consider motion planning problems and prove NP-completeness for deciding

whether two designated locations on a given floor are reachable from each other by an agent
that is allowed to open (but not close) doors, both in the case where the agent is only allowed
to push doors and in the case where both pushing and pulling are allowed.

1.1 Related Work

There are many puzzles and games whose computational complexity has been analyzed in
the literature. Two survey papers on this topic are [DH08] and [UEH23]. The lectures by Erik
D. Demaine at MIT [Dem23] also present many hardness proofs about games and puzzles.

1



1 Introduction

Some examples are the PSPACE-completeness results for the Sokoban puzzle [Cul97], where
the player (a warehouse keeper) pushes boxes around trying to store them at designated
locations as well as the generalized version of the children’s puzzle Rush Hour [FB02], where
the player slides rectangular cars trying to move a given car to the exit.

Several motion planning puzzles resembling Sokoban have been considered in the literature.
These include pushing blocks to reach a target location [DDHO03], one type of which we also
present in Chapter 5, and pulling blocks [PRB16]. The paper [Ani+20] proposes a so-called
walking through doors framework for motion planning problems to determine which types
of gadgets suffice to prove hardness of problems. However, the term door is used for gadgets
with multiple tunnels and are different from the doors we consider in this thesis. In [Gre+21],
motion planning through turnstiles is considered.
In [HD05] a model of computation called Nondeterministic Constraint Logic is proposed,

which is useful for proving hardness of puzzles which contain some kind of reconfiguration
element. We present this model of computation in Chapter 4, as we reduce it to our door
replacement problem.

An NP-hard geometric problem is drawing different-sized discs at certain points on a map
such that the visible boundary of all objects are maximized [CHKS10]. Our door placement
problems in Chapter 3 are somewhat similar to this problem.

In [AMS22], packing problems with different types of polygons are considered and proven
to be ∃ℝ-complete. In our placement problem in Chapter 6, we are allowed to shift and
rotate triangle shaped doors in their respective ranges to achieve a pairwise interior-disjoint
arrangement. This is somewhat similar to the problem of packing triangles inside a rectangular
region.

1.2 Outline

In Chapter 2, we formalize different types of doors and problems. In addition, we give an
overview of the complexity classes we deal with.
In Chapter 3, we deal with door placement problems. These are problems where we are

given a floor plan and a designated location (door threshold) for each door that the door
should occupy when closed. The question is whether we can determine an orientation for
each door such that no doors get potentially in the way of each other. We distinguish between
squared and circular doors. The opening range of the former is a square, while the latter has
a quarter-circle opening range. If the doors are squared, there are two ways of placing each
door. One can only choose the opening side. If the doors are circular (i.e. doors we see in real
life) there are four ways to place each door. One can choose the opening side and the side of
the hinge.
In Chapter 4, we deal with door replacement problems. In these problems, we are given a

floor plan where every door is already placed and we try to reverse the opening direction of a
single door by a sequence of moves, where each move consists in changing the orientation
of a single door resulting in a legal placement. The following table gives an overview of our
results for placement and replacement problems.

Placement Replacement

Squared ∈ P ∈ P
Circular NP-complete PSPACE-complete
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1.2 Outline

In Chapter 5, we consider motion planning problems involving doors. We define two
degrees of freedom when considering different variants. In a given problem, the agent is
either only allowed to open (and not close) doors, or the agent is allowed to open and close
doors arbitrarily many times. Furthermore, the agent is allowed to do one of the following
three things: only push, only pull, or both push and pull. The following table summarizes
our results, where we do not have any hardness results for the problem Pull-Open-Doors as
well as all the Open/Close problems. In particular, the containment of Open/Close problems
in PSPACE is probably not tight, in the sense that any of those problems can turn out to be in
NP or even P.

Push Pull Push/Pull

Open NP-complete ∈ NP NP-complete
Open/Close ∈ PSPACE ∈ PSPACE ∈ PSPACE

In Chapter 6, we consider a variant of the placement problem where doors can be shifted
or rotated by real number amounts under given constraints. Our results are summarized as
below, where it is open whether the problems with squared and circular doors are also hard
for ∃ℝ.

Real Placement

Squared ∈ ∃ℝ
Circular ∈ ∃ℝ

Triangular ∃ℝ-complete

3





2 Preliminaries

In this thesis, we consider doors from a top-down perceptive as they are drawn on a two-
dimensional floor plan and we are interested in the area a given door can possibly occupy,
with the assumption that a door can open at most 90 degrees. So, we define a (circular) door
as a quarter circle which consists of two perpendicular line segments, an arc, and the interior
area enclosed by them (see Figure 2.1 first row). One of the line segments is designated as the
threshold of the door and is drawn as a straight black line. The dashed red lines denote the
opening range of the door. We may call such a circular door just a door.
We generalize the concept of a door in the way that we allow shapes other than quarter

circle, in particular we have squared and triangular doors defined analogously. A squared
door is a square with one edge specified as the threshold, while a triangular door is an
isosceles right triangle with one cathetus specified as the threshold.

Figure 2.1: Circular, squared and triangular doors

Except for Chapter 6, we assume that doors are drawn on a grid, where the downmost and
leftmost corner is denoted by the point (0, 0). Therefore every point of the grid is contained in
ℕ2

0. Door thresholds are line segments on the grid and we denote them by their two endpoints.
So every threshold is contained in ℕ2

0 ×ℕ2
0.

We usually talk about a door opening or being fixed upwards/downwards/leftwards/rightwards.
The opening side is the side of the opening range with respect to the threshold and the fixed
side is the side of the “hinge”. When the door threshold is horizontal or vertical, then these
orientations are clear. For example, the leftmost door in the first row of Figure 2.1 is opening
rightwards and fixed upwards.

Otherwise assume that we have a door threshold (𝑎1, 𝑎2) = ((𝑎1,𝑥 , 𝑎1,𝑦), (𝑎2,𝑥 , 𝑎2,𝑦)) which
is neither vertical nor horizontal. Let us draw a perpendicular line segment of the same
length (𝑏1, 𝑏2) = ((𝑏1,𝑥 , 𝑏1,𝑦), (𝑏2,𝑥 , 𝑏2,𝑦)) such that these two cross with each other at their
middle points. Let us assume that the door is opening towards 𝑏1. We say the door is opening
rightwards if and only if 𝑏1,𝑥 > 𝑏2,𝑥 , leftwards if and only if 𝑏1,𝑥 < 𝑏2,𝑥 . Furthermore, let us
assume that the door is fixed towards 𝑎1. We say the door is fixed rightwards if and only if
𝑎1,𝑥 > 𝑎2,𝑥 , leftwards if and only if 𝑎1,𝑥 < 𝑎2,𝑥 . (Compare Figure 2.2)

5



2 Preliminaries

a1

a2

b1

b2

Figure 2.2: Door is opening rightwards and fixed leftwards

We call an arrangement of doors on the grid a placement. Formally, we denote the set of
orientations with the set𝑂 = {←,→, ↑, ↓}, and a placement is a function 𝑝 : 𝐷 → 𝑂 ×𝑂 for a
set of door thresholds 𝐷 . For a threshold 𝑑 ∈ 𝐷 , 𝑝 (𝑑) = (𝑜, 𝑓 ) denotes the opening (𝑜) and
fixed side (𝑓 ). We call such a tuple (𝑜, 𝑓 ) a door orientation. For squared doors we omit the
fixed side. We say that two doors interferewith each other if they are not pairwise disjoint, i.e.
if they intersect with each other. A legal placement is one in which there are no interfering
doors.
Furthermore we deal with the following door problems throughout the thesis.
A placement problem asks for a given set of thresholds 𝐷 if there is a legal placement for

𝐷 . A replacement problem asks for a given set of thresholds 𝐷 , a threshold 𝑑 ∈ 𝐷 , a legal
placement 𝑝 for 𝐷 , and a door orientation (𝑜, 𝑓 ) whether there is a sequence of moves from 𝑝

to another legal placement 𝑝′ such that 𝑝′(𝑑) = (𝑜, 𝑓 ). A move always consist in changing
the orientation of a single door which results in a new legal placement. A reconfiguration
problem asks for a given set of thresholds 𝐷 and two legal placements 𝑝 and 𝑝′ whether there
is sequence of moves which transforms 𝑝 into 𝑝′.
Another category of problems concerning doors is motion planing. A motion planning

problem asks for a given set of thresholds 𝐷 , a placement 𝑝 for 𝐷 , a set of line segments𝑊
(walls), and two grid cells 𝑠 and 𝑡 whether an agent can reach 𝑡 starting from 𝑠 . The agent
may be allowed to open and close doors by pushing or pulling depending on the problem.

2.1 Computational Complexity

Computational complexity deals with, among others, how much time and space resources are
required in the worst case to solve a given decision problem.
A decision problem Π is a YES-NO question on a possibly infinite set of instances. An

instance 𝐼 of Π is said to be a YES-instance of Π if the answer to the question posed by Π is
YES in the case of 𝐼 , otherwise 𝐼 is a NO-instance of Π. We use the words problem and decision
problem interchangeably in this thesis.
A decision problem Π is said to be hard for a complexity class CLASS, if every problem

in CLASS is polynomial-time many-one reducible to Π. A problem is CLASS-complete, if
it is contained in CLASS and CLASS-hard. Note that we do not apply this definition to the
complexity class P.
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2.1 Computational Complexity

Apolynomial-timemany-one reduction of a problemΠ to another problemΦ is a polynomial-
time algorithm which transforms every instance 𝐼 of Π to an instance 𝐼 ′ of Φ such that 𝐼 is a
YES-instance of Π if and only if 𝐼 ′ is a YES-instance of Φ. All of our reductions in this thesis
are polynomial-time many-one reductions.
We use reductions to prove hardness of a problem Π for a complexity class by reducing

a known hard problem in this class to Π. We also use reductions to prove containment of
a problem Π in a complexity class by reducing Π to a problem known to be contained in
this class. We usually use gadgets in these reductions which are parts of a reduced problem
instance which simulate the behaviours of some parts of the original problem instance.
We briefly define the complexity classes we deal with in the following. We also define

some Boolean satisfiability problems contained in these classes. In general, we deal with
Boolean formulae in conjunctive normal form (CNF), i.e. formulae which are conjunctions of
disjunctions. Thus, we can represent a Boolean formula 𝐹 as a set of clauses each of which is
a set of literals. We denote the set of variables which appear in 𝐹 as 𝑉𝑎𝑟 (𝐹 ).

Let us first define three satisfiablity problems, which we are going to refer to in the following
chapters:

Definition 2.1: 2-Sat

Instance: A Boolean formula 𝐹 in CNF, in which every clause has at most two literals.

Question: Is there an assignment 𝑠 : 𝑉𝑎𝑟 (𝐹 ) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, which satisfies 𝐹?

Definition 2.2: 3-Sat

Instance: A Boolean formula 𝐹 in CNF, in which every clause has at most three literals.

Question: Is there an assignment 𝑠 : 𝑉𝑎𝑟 (𝐹 ) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, which satisfies 𝐹?

Definition 2.3: True Quantified Boolean Formulae (TQBF)

Instance: A Boolean formula of the form 𝑄1𝑥1𝑄2𝑥2...𝑄𝑛𝑥𝑛𝐹
′
, where 𝑄𝑖 ∈ {∀, ∃} for 𝑖 ∈

{1, ..., 𝑛} and 𝐹 ′ is a Boolean formula with 𝑉𝑎𝑟 (𝐹 ′) = {𝑥1, ..., 𝑥𝑛}.
Question: Is there an assignment 𝑠 : 𝑉𝑎𝑟 (𝐹 ′) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, which satisfies the formula

𝑄1𝑥1𝑄2𝑥2...𝑄𝑛𝑥𝑛𝐹
′
?

Now let us briefly define the complexity classes P, NP and PSPACE.

A problem is in P if and only if it can be solved by a deterministic Turing machine in
polynomial time. 2-Sat is in P.

A problem is in NP if and only if it can solved by a nondeterministic Turing machine
in polynomial time. Intuitively, NP is the class of all problems, for which a solution
can be verified in polynomial time. The canonical NP-complete problem is the general
satisfiability (SAT) problem or its restricted version 3-Sat.

A problem is in PSPACE if and only if it can be solved by a deterministic Turing machine
using polynomial space. The canonical PSPACE-complete problem is TQBF.

In the following chapters, we investigate problems about doors which are contained in the
complexity classes P, NP, ∃ℝ, and PSPACE. For a brief definition of ∃ℝwe refer to Chapter 6.

It is known that
P ⊆ NP ⊆ ∃ℝ ⊆ PSPACE

and widely believed that all of the inclusions are proper.
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3 Door Placement Problems

Suppose that we want to finish the construction of a floor. The walls have already been
planned and it is known where the door thresholds should be. We want to know whether
it is possible to determine an opening orientation for each door, such that every door can
be opened and closed freely without getting in the way of other doors. This is the general
placement problem we mentioned and formalized in Chapter 2. In this chapter we deal with
placement problems and we are going to show that circular door placement is NP-complete,
while squared door placement is in P.

3.1 DoorPlacement

We begin with the definition of the placement problem for circular doors.

Definition 3.1: DoorPlacement

Instance: A set 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛} ⊆ ℕ2
0 ×ℕ2

0 of 𝑛 door thresholds, each of which is a line

segment on the grid.

Question: Is it possible to place a (circular) door on every door threshold in 𝐷 , such that no

two doors interfere with each other?

More formally, we are asking if there is a legal placement 𝑝 : 𝐷 → 𝑂 ×𝑂 which assigns a
door orientation to every threshold as defined in Chapter 2.
One can see all four possible placement options for a given door threshold in Figure 3.1

and interfering doors in Figure 3.2.

Figure 3.1: Possible placements of a door

Figure 3.2: Six doors interfering at 3 different points

Lemma 3.2: DoorPlacement is in NP.

9



3 Door Placement Problems

Proof. To prove the containment in NP, we give a polynomial-time verification algorithm.
Given a problem instance 𝐷 and a placement 𝑝 , we place every door according to 𝑝 and then
pairwise check if any two doors interfere with each other. If this is the case, we return false.
Otherwise we conclude that 𝑝 is a legal placement and 𝐷 is a YES-instance. This can be done
in time O( |𝐷 |2) . Moreover, a placement 𝑝 : 𝐷 → 𝑂 ×𝑂 always takes O( |𝐷 |) space.

To show that DoorPlacement is NP-hard, we are going to reduce from the problem Planar
Monotone 3-Sat, which is a restricted version of 3-Sat. It was introduced and proven to be
NP-complete in [BK10].

In Planar Monotone 3-Sat we require that the 3-Sat formula is monotone, that means in
every clause either all literals are positive or all literals are negative. Note that 3-Sat remains
NP-complete when the formula is restricted to be monotone [GJ79]. We also require that the
so-called variable-clause incidence graph is planar. This is the bipartite graph which has a
vertex for every variable, a vertex for every clause, and an edge between a variable 𝑥 and a
clause𝐶 if and only if either the literal 𝑥 or the literal 𝑥 appears in𝐶 . Note that it was already
proven in [Lic82] that 3-Sat remains NP-complete, when the variable-clause incidence graph
is planar. Furthermore, we require that this graph has a plane rectilinear drawing where all
variables and clauses are drawn as rectangles and all variables are drawn along a horizontal
line, such that the clauses which contain only positive literals are above this line and the
clauses which contain only negative literals are below this line. We call such a drawing a
monotone rectilinear representation of the formula [BK10]. (See Figure 3.3 for an example)

¬x3 ∨ ¬x4

x4x3x1 x2

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x3

Figure 3.3: A monotone rectilinear representation

Definition 3.3: Planar Monotone 3-Sat

Instance: A 3-Sat formula 𝐹 which admits a monotone rectilinear representation together

with such a representation.

Question: Is 𝐹 satisfiable?

Theorem 3.4 ([BK10, Theorem 1]): Planar Monotone 3-Sat is NP-complete.

10



3.1 DoorPlacement

Theorem 3.5: DoorPlacement is NP-complete.

Proof. We showed that the problem is in NP in Lemma 3.2.
To show NP-hardness, we reduce the problem Planar Monotone 3-sat to DoorPlace-

ment using a variable gadget, a transport gadget, a split gadget, and a clause gadget. Let us
introduce these gadgets in the following.
Variable gadget. For every variable in the Planar Monotone 3-sat instance, we draw a

door threshold of length 2 units on the grid and we ensure that all variable gadgets are on a
horizontal line, e.g. like in Figure 3.4. Setting a variable 𝑥𝑖 to 𝑡𝑟𝑢𝑒 (resp. 𝑓 𝑎𝑙𝑠𝑒) corresponds to
placing a door opening downwards (resp. upwards) on the variable gadget 𝑥𝑖 .

true

false

true

false

true

false

x1 x2 x3

Figure 3.4: Variable gadget

Transport gadget. Placing door thresholds in a row as shown in Figure 3.5 allows to
transport the information (the opening side of the door) away from the respective variable
gadget. For example, placing an upwards opening door to 𝑥𝑖 or 𝑥 𝑗 forces the other doors
above them to open upwards.

xi xj

Figure 3.5: Transport gadget

Split gadget. This gadget allows us to make a turn and to make a split while transporting
the information of a variable. On the left-hand side of Figure 3.6, the variable 𝑥𝑖 is set to
𝑓 𝑎𝑙𝑠𝑒 , i.e opening upwards and forces a split rightwards and upwards. Meanwhile, on the
right-hand side the variable 𝑥𝑖 is set to 𝑡𝑟𝑢𝑒 , i.e. the door on 𝑥𝑖 is opening downwards and the
other doors can be placed such that they are opening towards 𝑥𝑖 .
Clause gadget. To simulate a 3-sat clause, we place three door thresholds which contain

information from three variables (through transport and split gadgets) in such a way that at
most two of the doors can be opened towards the inside of the clause as shown in Figure 3.7.
This simulates the fact that in each 3-sat clause at most two of the literals can be set to 𝑓 𝑎𝑙𝑠𝑒 .
We can also simulate a clause with two literals as shown in Figure 3.8.

11



3 Door Placement Problems

xi xi

Figure 3.6: Split gadget

xkxi

xj

xk xk

xj xj

xi xi

Figure 3.7: Clause gadget

xi xj xi xj

Figure 3.8: Clause gadget with 2 variables

Given a Planar Monotone 3-Sat instance 𝐼 = ⟨𝐹, 𝑅⟩ including the formula 𝐹 and its
monotone rectilinear representation 𝑅, we replace clauses in 𝑅 with our clause gadgets and
variables with our variable gadgets as well as edges with our transport and split gadgets and
obtain the DoorPlacement instance 𝐷 . Note that we use the both versions of the transport
gadget in Figure 3.5 interchangeably as needed to align the variables and clause gadgets.
We give in Figure 3.9 a sample reduction from a simple Planar Monotone 3-sat formula,

namely (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥3 ∨ ¬𝑥4), with doors placed
according to a satisfying assignment.
As the transport gadget has polynomial size and all other gadgets have constant size, the

reduction can be done in polynomial time.
Correctness of the reduction.
Let 𝑖 ∈ {1, ..., 𝑘}. Let 𝐼 = ⟨𝐹, 𝑅⟩ be a YES-instance of PlanarMonotone 3-sat. Furthermore,

let 𝑉𝑎𝑟 (𝐹 ) = {𝑥1, ..., 𝑥𝑘 }. Consider a satisfying assignment 𝑠 : 𝑉𝑎𝑟 (𝐹 ) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}. Let
{𝑑1, ..., 𝑑𝑘 } ⊆ 𝐷 be the corresponding variable gadgets. If 𝑠 (𝑥𝑖) = 𝑓 𝑎𝑙𝑠𝑒 then we place an

12



3.1 DoorPlacement

¬x3 ∨ ¬x4

x4x3x1
x2

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x3

Figure 3.9: Reduction from Figure 3.3 with the assignment 𝑥1 = 𝑡𝑟𝑢𝑒 , 𝑥2 = 𝑓 𝑎𝑙𝑠𝑒 , 𝑥3 = 𝑡𝑟𝑢𝑒 ,
and 𝑥4 = 𝑓 𝑎𝑙𝑠𝑒

upwards opening door on 𝑑𝑖 and otherwise a downwards opening door. If the door on 𝑑𝑖 is
opening upwards (resp. downwards), the transport and split gadgets connected to the variable
gadget 𝑑𝑖 from above (resp. below) are forced open away from 𝑑𝑖 , thus occupying a place in
their respective clause gadgets. We make the transport and split gadgets on the remaining
side of 𝑑𝑖 open towards 𝑑𝑖 , thus not occupying a place in their clauses. Consequently, if
𝑠 (𝑥𝑖) = 𝑓 𝑎𝑙𝑠𝑒 (resp. 𝑡𝑟𝑢𝑒), the opening side of 𝑑𝑖 causes, via transport and split gadgets, one
place to be occupied in each of the positive (resp. negative) clauses in which 𝑥𝑖 appears. Since
𝑠 is satisfying, the resulting placement is legal.

Conversely, let a reduced instance 𝐷 have a legal placement 𝑝 . We claim that the opening
sides of the doors which are placed in variable gadgets according to 𝑝 induce a satisfying
assignment for 𝐹 , where a downwards (resp. upwards) opening door on 𝑑𝑖 means that
𝑥𝑖 = 𝑓 𝑎𝑙𝑠𝑒 (resp. 𝑡𝑟𝑢𝑒) in that assignment. Assume that the induced variable assignment is
not satisfying. Then w.l.o.g. there is a clause in 𝐹 containing positive literals in which all the
variables are set to 𝑓 𝑎𝑙𝑠𝑒 . That means, doors at the corresponding variable gadgets are all
opening upwards. Then, in the corresponding clause gadget all the doors are forced to open
towards the inside of the clause creating an interference, so the door placement 𝑝 is not legal,
a contradiction.

Note that in the reduction we only used horizontal and vertical door thresholds of size 2
units. So, we can say the following:

Remark 3.6: DoorPlacement remains NP-complete, even when the problem is restricted to

only horizontal and vertical door thresholds with size 2 units.
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3 Door Placement Problems

Next, we look at the placement problem for squared doors and show that it is in P. The
difference between DoorPlacement and SqaredDoorPlacement is that in the former
there are four ways to place a door at a given threshold while the latter allows only two
options because of the symmetricity of the square.

3.2 SquaredDoorPlacement

We start with the definition of the placement problem for squared doors.

Definition 3.7: SquaredDoorPlacement

Instance: A set 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛} ⊆ ℕ2
0 ×ℕ2

0 of 𝑛 door thresholds, each of which is a line

segment on the grid.

Question: Is it possible to place a squared door on every door threshold in 𝐷 , such that no two

doors interfere with each other?

More formally, we are asking if there is a legal placement 𝑝 : 𝐷 → 𝑂 which assigns an
opening side to every door threshold as defined in Chapter 2.

xi

di

dj
(¬xi ∨ xj)

¬xi

¬xj

xj

Figure 3.10: 𝑑𝑖 and 𝑑 𝑗 cannot both open towards the middle

In Figure 3.10, one can see that for each threshold one has two options for how to place a
door.

Theorem 3.8: SquaredDoorPlacement is in P.

Proof. We reduce SqaredDoorPlacement to 2-sat. Given is a problem instance 𝐷 . First,
we compute all the possible interferences by pairwise comparing possible orientations on a
threshold with the other thresholds which can be done in O(𝑛2) time, because the number of
possible interferences between 𝑛 doors is at most 2𝑛 · (2𝑛 − 1). Then, for every door threshold
𝑑𝑖 ∈ 𝐷 (𝑖 = 1, ..., 𝑛) we introduce a variable 𝑥𝑖 . For a threshold 𝑑𝑖 , there are two sides to place a
door. Let a door opening to one of the sides correspond to 𝑥𝑖 being 𝑓 𝑎𝑙𝑠𝑒 and a door opening to
the other side correspond to 𝑥𝑖 being 𝑡𝑟𝑢𝑒 . We fix such a correspondence for every threshold.
Then, we define the reduced 2-sat formula 𝐹 as follows: If a door opening to the side 𝑡𝑟𝑢𝑒
on 𝑑𝑖 interferes with a door opening to the side 𝑡𝑟𝑢𝑒 in 𝑑 𝑗 , we add the clause (¬𝑥𝑖 ∨ 𝑥 𝑗 ) to 𝐹 .
This clause reflects the fact that 𝑑𝑖 must open to the side 𝑓 𝑎𝑙𝑠𝑒 or 𝑑 𝑗 must open to the side
𝑡𝑟𝑢𝑒 so that no interference happens (Compare Figure 3.10). For all the other cases, we add
clauses to 𝐹 analogously and we cover all possible interferences. By construction, it is the
case that 𝐹 is satisfiable if and if only if 𝐷 has a legal placement. Furthermore, the reduction
takes place in polynomial time and the size of 𝐹 is at most 2𝑛 · (2𝑛 − 1) ∈ O(𝑛2).

14



3.2 SquaredDoorPlacement

Note that in the proof above we only used the fact that there are two ways to place a door on
a threshold and not the fact that we have squared doors. So, the construction in Theorem 3.8
with 2-Sat works without the loss of generality for all such door thresholds with two options.
So we can say the following.

Remark 3.9: A door placement problem is contained in P, when for each door threshold there

are only two options for how to place a door on this threshold.
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4 Door Replacement Problems

Imagine that we are given a floor plan where every door is already placed without problems
but we are unsatisfied with the placement of a door and we would rather have it opening to
the other side, i.e. we want to change its orientation. But we do not want to discard the whole
plan and want to change the orientations of doors one by one. In the end, we hope to be able
to change the orientation of our target door to our desired orientation. While doing these
operations we do not want to mess up the plan and we want to play safe by maintaining a
legal placement of doors at all times while we are changing some orientations. This is the
general replacement problem we mentioned and formalized in Chapter 2. In this chapter, we
are going to show that for squared doors the replacement problem is also in P, just like it was
the case with the placement problem. After that, we are going to prove that in the case of
circular doors the replacement problem is PSPACE-complete, so harder than its placement
counterpart, which is NP-complete as we proved in Chapter 3.

4.1 SquaredDoorReplacement

We begin with the replacement problem for squared doors.

Definition 4.1: SquaredDoorReplacement

Instance: A SquaredDoorPlacement instance 𝐷 with a legal placement 𝑝 , which assigns an

orientation to each door threshold, and a specified door threshold 𝑑 ∈ 𝐷 .
Question: Let a move consist in reversing the orientation of a single door such that the

placement remains legal. Is there a sequence of moves that eventually reverses the orientation of

the door on the threshold 𝑑?

In order to prove that the replacement problem is in P, we are going to be concerned with
two similar 2-Sat problems: 2-Sat Reconfiguration and VariableFlip 2-Sat, respectively.
Let us define 2-Sat Reconfiguration.

Definition 4.2: 2-Sat Reconfiguration

Instance: A 2-Sat formula 𝐹 together with two satisfying assignments 𝑠 : 𝑉𝑎𝑟 (𝐹 ) →
{𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} and 𝑡 : 𝑉𝑎𝑟 (𝐹 ) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, where 𝑉𝑎𝑟 (𝐹 ) is the set of variables of 𝐹 .
Question: Let a move consist in flipping the truth value of a single variable, such that the

formula remains satisfied. Is there a sequence of moves that transforms 𝑠 to 𝑡?

Our definition above coincides with the definition of the problem st-connectivity (St-Conn)
from the paper [GKMP06], in the case of a 2-Sat formula.

We first prove the following lemmas which will help us prove that 2-Sat Reconfiguration
is in P.

Lemma 4.3 ([Knu08, p. 72, Theorem S.]): Satisfying assignments for a 2-Sat formula are

closed under the so-called ternary majority operation𝑚𝑎𝑗 . That means, given three satisfying

assignments 𝑎, 𝑏, and 𝑐 for a 2-Sat formula 𝐹 , the assignment𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) constructed by setting
each variable the truth value it has in the majority of the assignments 𝑎, 𝑏, 𝑐 is also satisfying.
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4 Door Replacement Problems

Proof. Let 𝑥,𝑦 ∈ 𝑉𝑎𝑟 (𝐹 ) and w.l.o.g (𝑥 ∨ 𝑦) a clause in 𝐹 . Let us observe the satisfying
assignments 𝑎, 𝑏, 𝑐 : 𝑉𝑎𝑟 (𝐹 ) → {0, 1}, where 1 corresponds to 𝑡𝑟𝑢𝑒 and 0 to 𝑓 𝑎𝑙𝑠𝑒 . We
know that we have (𝑎(𝑥) ∨ 𝑎(𝑦)) = (𝑏 (𝑥) ∨ 𝑏 (𝑦)) = (𝑐 (𝑥) ∨ 𝑐 (𝑦)) = 1. Assume w.l.o.g
𝑎(𝑥) ≤ 𝑏 (𝑥) ≤ 𝑐 (𝑥). Observe that𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) (𝑥) = 𝑏 (𝑥). Then we have

𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) (𝑥) ∨𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) (𝑦) = 𝑏 (𝑥) ∨𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) (𝑦) = 1,

because 𝑏 (𝑥) = 0 implies that 𝑎(𝑥) = 0 and from that 𝑎(𝑦) = 𝑏 (𝑦) = 1 follows. Thus we
proved that (𝑥 ∨𝑦) evaluates to 𝑡𝑟𝑢𝑒 under the assignment𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐). Since this clause was
arbitrary, it follows that𝑚𝑎𝑗 (𝑎, 𝑏, 𝑐) is a satisfying assignment for 𝐹 .

Lemma 4.4 ([GKMP06, Lemma 4.3]): Let 𝐼 = ⟨𝐹, 𝑠, 𝑡⟩ be a 2-Sat Reconfiguration instance

which admits an affirmative answer and let 𝐷 be the set of variables on whose values 𝑠 and 𝑡

disagree. Then there is a sequence of moves from 𝑠 to 𝑡 flipping only the variables in 𝐷 .

Proof. We follow the proof from [GKMP06].
First, note that satisfying assignments for a 2-Sat formula are closed under the majority

operation by Lemma 4.3.
Consider any sequence of moves 𝑀 between 𝑠 and 𝑡 , that means 𝑀 = ⟨𝑠,𝑢1, ..., 𝑢𝑚, 𝑡⟩ is a

sequence of satisfying assignments where consecutive assignments differ in truth value of
only one variable. Let 𝑖 ∈ {1, ...,𝑚}. We construct another sequence𝑀 ′ by replacing every 𝑢𝑖
by 𝜈𝑖 =𝑚𝑎𝑗 (𝑠,𝑢𝑖 , 𝑡), which is also a satisfying assignment. Now observe that because of the
majority operation and the fact that 𝑢𝑖 and 𝑢𝑖+1 differ in only one variable value, either 𝜈𝑖 and
𝜈𝑖+1 are the same or they also differ in only one variable value. Therefore𝑀 ′ is a sequence of
moves transforming 𝑠 to 𝑡 . Moreover, along 𝑀 ′ only the variables in 𝐷 are flipped because
majority operation ensures that every 𝜈𝑖 agrees with 𝑠 and 𝑡 on the common variable values
between 𝑠 and 𝑡 .

Theorem 4.5 ([GKMP06, Corollary 4.4]): 2-Sat Reconfiguration is in P.

Proof. We follow the proof from [GKMP06].
The following algorithm decides the problem: Given is an instance 𝐼 = ⟨𝐹, 𝑠, 𝑡⟩. Let firstly

𝑠′ = 𝑠 , and at each step find a variable 𝑥 with 𝑠′(𝑥) ≠ 𝑡 (𝑥), flip it if doing so keeps the formula
satisfied, and update 𝑠′(𝑥) = 𝑡 (𝑥) until 𝑠′ = 𝑡 . If at any step there is no such variable to flip
then the output is NO.
If the given instance is a NO-instance, then one cannot reach 𝑡 from 𝑠 by a sequence of

moves and this algorithm must fail. So, assume that 𝐼 is a YES-instance, i.e. one can reach
𝑡 from 𝑠 . Let 𝐷 be the set of variables, on whose values 𝑠 and 𝑡 disagree. We prove that the
algorithm reaches 𝑡 by induction on |𝐷 |. For |𝐷 | = 1, there is only one variable to flip and
the algorithm flips it. Assume that the algorithm works for |𝐷 | =𝑚. Let |𝐷 | =𝑚 + 1. Then,
by Lemma 4.4 one can reach 𝑡 from 𝑠 by only flipping the variables in 𝐷 , in particular there
is a possible move on 𝑠 , which consist in flipping a single variable from 𝐷 . Do such a move.
Between the resulting assignment 𝑠′ and 𝑡 there are𝑚 different valued variables. Thus, by
induction hypothesis the algorithm reaches 𝑡 .

So, we proved that the algorithm is correct. Furthermore, observe that if 𝐼 is a YES-instance
then the algorithm reaches 𝑡 from 𝑠 in |𝐷 | moves. Moreover, the algorithm terminates in
O(𝑛2) time where 𝑛 = |𝑉𝑎𝑟 (𝐹 ) |.
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4.1 SquaredDoorReplacement

Analogous to this problem, we can define the problem SqaredDoorReconfiguration
which, given a SqaredDoorPlacement instance 𝐷 with two legal placements 𝑠 and 𝑡 , asks
whether one can transform 𝑠 into 𝑡 by changing the orientation of a single door at every step
while always preserving a legal placement.

Corollary 4.6: SquaredDoorReconfiguration is in P.

Proof. Given a SqaredDoorReconfiguration instance 𝐼 = ⟨𝐷, 𝑠, 𝑡⟩, we first reduce 𝐷 to
a 2-Sat formula 𝐹 using Theorem 3.8. Furthermore, we convert 𝑠 and 𝑡 to assignments 𝑠′
and 𝑡 ′ for 𝐹 in accordance with our reduction to 𝐹 . Thereby, we converted our problem to
a 2-Sat Reconfiguration instance ⟨𝐹, 𝑠′, 𝑡 ′⟩, which can be solved in polynomial time by
Theorem 4.5.

But recall that we were interested in proving that the problem SqaredDoorReplacement
is in P, which is different from SqaredDoorReconfiguration. To prove that, we define the
problem VariableFlip 2-Sat, the 2-Sat-analogue of SqaredDoorReplacement and prove
the stronger statement that VariableFlip 2-Sat is in P.

Definition 4.7: VariableFlip 2-Sat

Instance: A 2-Sat formula 𝐹 together with a satisfying assignment 𝑠 : 𝑉𝑎𝑟 (𝐹 ) → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒},
where 𝑉𝑎𝑟 (𝐹 ) is the set of variables of 𝐹 and a specified variable 𝑥 ∈ 𝑉𝑎𝑟 (𝐹 ).
Question: Let a move consist in flipping the truth value of a single variable, such that the

formula remains satisfied. Starting with the assignment 𝑠 , is there a sequence of moves that

eventually flips the value of 𝑥?

x1 x2

x3

x4

x5

x4

x5

x3

x2 x1

(x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x4 ∨ x5) ∧ (x4 ∨ x1)

Figure 4.1: Implication graph of a 2-Sat formula. In every satisfying assignment where 𝑥3 is
true, all blue literals (𝑥3, 𝑥2, 𝑥4, 𝑥5) must be true.

Theorem 4.8: VariableFlip 2-Sat is in P.

Proof. Let 𝐼 = ⟨𝐹, 𝑠, 𝑥⟩ be a VariableFlip 2-Sat instance. The following algorithm decides
whether 𝐼 admits an affirmative answer:

Consider the directed implication graph𝐺 of 𝐹 defined as follows: the vertices are positive
and negative literals of the variables 𝑉𝑎𝑟 (𝐹 ). There is a directed edge from a literal 𝑙 to a
literal 𝑙 ′ if and only if 𝐹 contains a clause involving 𝑙 ′ and the negation of 𝑙 . Note that if 𝑙 is a
negative literal 𝑦, then the negation of 𝑙 is 𝑦. (See Figure 4.1 for an example.)
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4 Door Replacement Problems

Assume w.l.o.g. we want to flip the variable 𝑥 from 𝑡𝑟𝑢𝑒 to 𝑓 𝑎𝑙𝑠𝑒 by a sequence of moves.
Take the literal 𝑥 in 𝐺 . Consider the subgraph 𝐺 ′ constructed by taking all vertices reachable
from 𝑥 , including 𝑥 . (If we had the graph in Figure 4.1 with 𝑥 = 𝑥3, 𝐺 ′ would correspond to
blue vertices.)
If 𝐺 ′ contains 𝑦 and 𝑦 for some variable 𝑦, then there is no satisfying assignment of 𝐹 in

which 𝑥 is assigned the value 𝑓 𝑎𝑙𝑠𝑒 . In this case, the algorithm outputs NO. Otherwise there
are no contradicting literals in 𝐺 ′. So, consider the assignment 𝑡 constructed in the following
way: For a variable 𝑧 ∈ 𝑉𝑎𝑟 (𝐹 ):

𝑡 (𝑧) =


𝑡𝑟𝑢𝑒 if 𝑧 appears in 𝐺 ′

𝑓 𝑎𝑙𝑠𝑒 if 𝑧 appears in 𝐺 ′

𝑠 (𝑧) otherwise

The algorithm decides whether the 2-Sat Reconfiguration instance ⟨𝐹, 𝑠, 𝑡⟩ is a YES-
instance using the algorithm in Theorem 4.5 and gives the answer as output.
First, we prove that 𝑡 is satisfying. Assume for the sake of contradiction that 𝑡 is not

satisfying. Take a clause (𝑙 ∨ 𝑙 ′) in 𝐹 which evaluates to 𝑓 𝑎𝑙𝑠𝑒 under 𝑡 . Then it follows that
neither the literal 𝑙 nor the literal 𝑙 ′ is in𝐺 ′. That means (𝑙 ∨ 𝑙 ′) also evaluates to 𝑓 𝑎𝑙𝑠𝑒 under
𝑠 . But we know that 𝑠 is satisfying, a contradiction. Therefore 𝑡 is also a satisfying assignment.

Next, we show that the algorithm is correct. If 𝐼 is a NO-instance, then there is no sequence
of moves transforming 𝑠 into 𝑡 , because 𝑥 appears flipped in 𝑡 and thus the algorithm fails. So,
assume that 𝐼 is a YES-instance. Then, there is an assignment 𝑠′ so that 𝑠′(𝑥) = 𝑓 𝑎𝑙𝑠𝑒 which
is reachable from 𝑠 .
By Lemma 4.4, it follows that in order to reach 𝑠′ from 𝑠 , one only has to flip variables on

which 𝑠 and 𝑠′ disagree. Furthermore, note that 𝑠′ agrees with 𝑡 on the values of the variables
which has a literal in 𝐺 ′. Because 𝑥 = 𝑓 𝑎𝑙𝑠𝑒 implies these values. So assume 𝑠′ ≠ 𝑡 , then they
must disagree on a variable value, which has no literal in 𝐺 ′.
Consider a sequence of satisfying assignments𝑀 , which transforms 𝑠 into 𝑠′:

𝑀 = ⟨𝑠 = 𝑠0, 𝑠1, ..., 𝑠
′ = 𝑠𝑛⟩

Let 𝑖 ∈ {0, ..., 𝑛}. We construct another sequence 𝑀 ′ by replacing every 𝑠𝑖 by 𝜈𝑖 =

𝑚𝑎𝑗 (𝑠, 𝑠𝑖 , 𝑡) which is also a satisfying assignment. Now observe that because of the ma-
jority operation and the fact that 𝑠𝑖 and 𝑠𝑖+1 differ in only one variable value, either 𝜈𝑖 and
𝜈𝑖+1 are the same or they also differ in only one variable value. Moreover, it holds that
𝑚𝑎𝑗 (𝑠, 𝑠′, 𝑡) = 𝑡 , because 𝑡 agrees with 𝑠 on the values of the variables which has no literal in
𝐺 ′ and 𝑡 agrees with 𝑠′ on the values of the variables which has a literal in 𝐺 ′. Therefore,𝑀 ′
is a sequence of satisfying assignments transforming 𝑠 into 𝑡 .
That means, if there is an 𝑠′ with 𝑠′(𝑥) = 𝑓 𝑎𝑙𝑠𝑒 and which is reachable from 𝑠 then 𝑡 is also

reachable from 𝑠 and the algorithm outputs YES.

Corollary 4.9: SquaredDoorReplacement is in P.

Proof. Given a SqaredDoorReplacement instance 𝐼 = ⟨𝐷, 𝑝, 𝑑⟩, we first reduce𝐷 to a 2-Sat
formula 𝐹 using Theorem 3.8. Furthermore, we convert the placement 𝑝 to an assignment for 𝐹
in accordance with our reduction to 𝐹 . Thereby, we converted our problem to a VariableFlip
2-Sat instance ⟨𝐹, 𝑠, 𝑥⟩, where 𝑥 ∈ 𝑉𝑎𝑟 (𝐹 ) is the variable corresponding to 𝑑 . This can be
solved in polynomial time by Theorem 4.8.

20



4.2 DoorReplacement

As the proofs do not rely on the specific geometry of the doors, the construction in Corol-
lary 4.9 with 2-Sat works without the loss of generality for all such door thresholds with two
options. So, we can say the following.

Remark 4.10: A door replacement problem is contained in Pwhen for each door threshold, there

are only two options for how to place a door on this threshold.

4.2 DoorReplacement

We continue with the replacement problem for circular doors and show that it is complete for
PSPACE.

Definition 4.11: DoorReplacement

Instance: A DoorPlacement instance 𝐷 together with a legal placement 𝑝 , a specified door

threshold 𝑑 ∈ 𝐷 with its desired orientation (𝑜, 𝑓 ) ∈ 𝑂 ×𝑂 , where 𝑜 denotes the opening side

and 𝑓 the fixed side as before.

Question: Let a move consist in removing a door from a threshold and placing it to the same

threshold with another orientation such that the resulting placement is legal. Is there sequence of

moves that eventually result in a legal placement 𝑝′ such that 𝑝′(𝑑) = (𝑜, 𝑓 )?

Lemma 4.12: DoorReplacement is in PSPACE.

Proof. The current placement 𝑝 of an instance at any given time takes only O( |𝐷 |) amount of
space. The possible moves at any given time can be computed in polynomial time by iterating
over each door and listing possible replacement options by checking possible inteference
around that door. Therefore, at any given move we can nondeterministically guess a move
and make it while only keeping track of the current placement and not the previous ones.
That means, the problem is in NPSPACE and thus in PSPACE, by Savitch’s theorem that
PSPACE = NPSPACE [Sav70].

To prove the PSPACE-hardness of the problem, we want to reduce from Nondeterministic
Constraint Logic (NCL). NCL was proposed in [HD05] as a model of computation based on
making moves by reversing weighted edges in a directed multigraph (self-loops are allowed
in our defintion of a multigraph) while maintaining certain minimum in-flow constraints of
the vertices. A move from one configuration to another consist in the reversal of a single
edge, such that the constraints remain satisfied. This problem has turned out to be helpful in
simplifying PSPACE-hardness proofs of several motion planning and sliding block puzzles
like Generalized-Rush-Hour and Sokoban [HD05]. Two of the decision problems arising
from this model of computation are the configuration-to-edge problem and the configuration-
to-configuration problem. The former asks whether, given a configuration of the multigraph,
a specified edge can be eventually reversed by sequence of moves. The latter asks whether,
given two configurations of the multigraph, one can be transformed into the other by a
sequence of moves. Both were proven to be PSPACE-complete in [HD05].
In NCL every vertex 𝜈 is assigned a nonnegative integer minimum in-flow constraint 𝑐𝜈

and every edge 𝑒 is assigned a nonnegative integer weight𝑤𝑒 . A configuration (direction of
the edges in the NCL instance) is legal if and only if the weights of the edges directed towards
a vertex 𝜈 sum up to 𝑐𝜈 , for all vertices 𝜈 in the NCL instance.

So, the definition of NCL in its configuration-to-edge variant, which we simply call NCL, is
as follows.
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4 Door Replacement Problems

Definition 4.13 ([HD05]): Nondeterministic Constraint Logic (NCL)
Instance: An undirected multigraph 𝐺 = (𝑉 , 𝐸) together with an assignment of nonnegative

integer weights to edges and nonnegative integer minimum in-flow constraints to vertices, and a

configuration 𝐸𝐶 of 𝐺 which specifies a direction for every edge in 𝐸 such that this configuration

satisfies the minimum in-flow constraints. Furthermore a target edge 𝑒 ∈ 𝐸 is specified.

Question: Let a move from one configuration to another consist in the reversal of a single edge,

such that the constraints remain satisfied. Is there sequence of moves that eventually reverses the

target edge 𝑒?

However, we want to use a restricted version of NCL, namely when the multigraph is
restricted to be planar and a so-called AND/OR constraint graph.
An AND/OR constraint graph is a multigraph which consists only of vertices of the kind

shown in Figure 4.2 and Figure 4.3. The blue edges have a weight of 2, while the red edges
have a weight of 1. For every vertex, the minimum-inflow constraint is 2. AND vertices are
incident to 2 red edges and 1 blue edge, whereas OR vertices are incident to 3 blue edges.
That means, in an AND vertex the blue edge could face outwards if and only if both of the
red edges are facing inwards. In an OR vertex, at least one of the three edges has to face
inwards to satisfy the constraint. In that sense, these vertices simulate the logical AND and
OR operators. Since we might want to connect e.g. the edge from an OR vertex to an edge
from an AND vertex, a conversion gadget is employed which has the effect that one end of an
edge can be blue while the other end can be red.

A B

C

1 1

2

2

Figure 4.2: AND vertex with edges A (red), B (red) and C (blue): Either C is directed inwards
or both A and B are directed inwards.

A B

C2

2 2

2

Figure 4.3: OR vertex with edges A (blue), B (blue) and C (blue): At least one of A, B, and C
is directed inwards.

Theorem 4.14 ([HD05]): NCL is PSPACE-complete, even when the multigraph is planar and

restricted to be a so-called AND/OR constraint graph.

Proof Sketch. NCL is in NPSPACE = PSPACE, because the configuration takes only linear
amount of space at a current state, the possible moves in a state can be computed in polynomial
time and one can nondeterministically guess a move to make while only keeping track of the
current configuration.
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∀x1 ∃x2 ∀x3 ∃xn

satisfied
try out

satisfied in

try in

satisfied out

conversion

gadget

Unquantified CNF formula

Figure 4.4: Reduction from TQBF to NCL. (taken from [HD05], redrawn)

To show PSPACE-hardness, [HD05] gives a reduction from TQBF to an AND/OR constraint
graph and an edge in that graph is specified which can be reversed as a sequence of moves
if and only if the TQBF formula is satisfiable. Furthermore, planar crossover gadgets are
presented to prove that NCL remains PSPACE-complete even in its planar version.

The reduction is based on the idea that one can determine if a TQBF formula is satisfiable
with the following recursive algorithm: One begins with the first quantifier in the formula and
sets its variable to 𝑡𝑟𝑢𝑒 and then to 𝑓 𝑎𝑙𝑠𝑒 , recursively checking for both cases if the remaining
formula is satisfiable with this (partial) assignment. In the case of an existential quantifier, the
algorithm returns true if at least of one assignment of this variable succeeds. In the case of a
universal quantifier, the algorithm returns true if both assignments of this variable succeed.
The base case of the recursion is checking if the formula is satisfiable when all the variables
are assigned.

The reduction is as follows: Given is a TQBF instance 𝐼 . Firstly, with AND and OR vertices
a so-called CNF network is built which corresponds to the unquantified version of 𝐼 . Further-
more, for each quantifier, a quantifier gadget is used which outputs two edges corresponding
to two different assignments of the variable it quantifies, which go into the CNF network.
These quantifier gadgets are connected with each other in a string. Every quantifier gadget
has a “try in”, a “try out”, a “satisfied in”, and a “satisfied out” edge as shown in Figure 4.4.
The graph has a legal configuration when all “try in” edges are directed leftwards and thus 𝐼
is reduced to such a configuration. Now, the goal is to reverse edges one by one maintaining
a legal configuration in the graph to eventually reverse the target edge 𝑒 (from rightwards to
leftwards), which is the “satisified out” edge of the leftmost quantifier. This will be possible if
and only if 𝐼 is satisfiable.

A quantifier gadget becomes active when the quantifier gadgets to its left have fixed their
variable assignments and its “try in” edge is thus directed inwards. Loosely speaking, a
quantifier gadget can nondeterministically choose a variable assignment by directing one of
its two output edges outwards and tries to satisfy the remaining formula under that assignment.
This happens in that the quantifier gadget directs its “try out” edge outwards. The output
from the CNF network which is the edge labeled “satisfied” is connected to the rightmost
quantifier. A quantifier gadget can direct its “satisfied out” edge outwards if and only if
the CNF network with quantifiers to the right (including itself) is satisfiable given the fixed
variable assignments on the left and its “satisfied in” is directed inwards. The existential
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4 Door Replacement Problems

(resp. universal) quantifier gadgets are built accordingly to ensure that at least one variable
assignment (resp. both variable assignments) are required for it to direct its “satisfied out”
edge outwards.

Theorem 4.15: DoorReplacement is PSPACE-complete.

Proof. Lemma 4.12 proves that the problem is in PSPACE. We show that the problem is
PSPACE-hard by a reduction from NCL restricted to be a planar AND/OR constraint graph.

Given is a NCL instance 𝐼 which contains a planar multigraph𝐺 = (𝑉 , 𝐸) which consists of
AND and OR vertices exclusively, the configuration 𝐸𝐶 (i.e. direction of the edges) and the
target edge 𝑒 ∈ 𝐸. We are going to simulate AND and OR vertices directly in our replacement
problem, thus we make no distinction between doors, i.e. there are no red or blue doors.
Therefore, we do not need a red-to-blue conversion gadget, as is the case in the reduction
from Theorem 4.14.
In the following, we look at AND, OR and the edge gadget we use for our reduction.

A B

C

Figure 4.5: AND gadget

A B

C

A B

C

Figure 4.6: Simulating the direction of edges in an AND vertex. Inward edges correspond to
outward doors and vice versa

AND gadget. We simulate an AND vertex with door thresholds as shown in Figure 4.5.
All the door thresholds have length 4 units. Observe that because of the threshold locations,
either the door on threshold𝐶 has to face outwards (i.e. upwards in the drawing) or the doors
on the thresholds 𝐴 and 𝐵 both have to face outwards (i.e. downwards in the drawing) in
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4.2 DoorReplacement

order that there are no interference. The fixed sides of the doors do not matter here. So, in
the reduction, an inward edge in an AND vertex of the NCL instance corresponds to a door
opening outwards and vice versa as one can see in Figure 4.6.

A B

C

Figure 4.7: OR gadget

A B

C

A B

C

Figure 4.8: Simulating the direction of edges in an OR vertex. Inward edges correspond to
outward doors and vice versa

OR gadget. Similarly, we simulate an OR vertex with door thresholds as shown in Figure 4.7.
All the door threshold have length 4 units. Observe that because of the threshold locations, at
least one of the doors has to face outwards in order that there are no interference. This is
essentially the clause gadget we build in the DoorPlacement problem from Theorem 3.5.
In Figure 4.8, one can see how an OR vertex is reduced. Again, an inward edge in the NCL
instance corresponds to a door opening outwards and vice versa.
Note that a move consists in changing the placement of a single door and not necessarily

reversing it. So, it is also a valid move when one changes the fixed side of a door while keeping
the opening side same. Such a move might be needed in an OR vertex. For example, assume
that in Figure 4.3 the door on threshold C is fixed leftwards and directed downwards whilst A
and B are directed leftwards and rightwards respectively. Then it should be possible to reverse
the door at A because the OR gadget has one more free “slot”. However, in order to reverse A,
one first makes a move changing the fixed of the door at C while keeping the opening side
the same and then reverses A.
Edge gadget. To simulate edges, one places thresholds 5 or 6 units apart from each other

like in Figure 4.9 and the information gets transported along the edge gadget. One can also
make arbitrary turns. Compare Figure 4.11 to see the edge gadgets in action. Furthermore,
we can easily simulate self-loops like in Figure 4.10. Note that self-loops only appear in the
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Figure 4.9: Edge gadget

A B

B

B

A

Figure 4.10: Simulating a self-loop

context of OR vertices in the reduction from TQBF to NCL and reversing a self-loop edge
does not make any sense, a self-loop edge just indicates that the remaining edge in the OR
vertex is free to have either direction.

Let us refer to the thresholds in AND and OR gadgets of the reduced DoorReplacement
instance which are denoted with the letters 𝐴, 𝐵 and 𝐶 in our drawings as vertex gadgets and
all the other thresholds as edge gadgets.

Recall that we are promised that the multigraph𝐺 is planar and consists of only AND/OR
vertices. So, in particular it has maximum degree 3. Thus, we compute a plane rectilinear
drawing of it which can be done in polynomial time using algorithms from [NR04]. We
replace every vertex with the corresponding gadgets shifting and aligning the thresholds in
edge gadgets when necessary. Then, we place the doors on the thresholds according to the
orientation of the edges 𝐸𝐶 and obtain a placement 𝑝 together with a set of thresholds 𝐷 . This
is a legal placement because by construction of the AND and OR gadgets they simulate the NCL
vertices and we have no interference between doors, since the configuration 𝐸𝐶 is legal. As
the edge gadget has polynomial size and the other gadgets have constant size, this can be done
in polynomial time. We pick as our target door any door threshold 𝑑 along the edge gadget
corresponding to the target edge 𝑒 in the NCL instance. So, we want reverse the opening side
𝑜 of 𝑑 while keeping its fixed side 𝑓 same. Thus, we obtain the DoorReplacement instance
𝐼 ′ = ⟨𝐷, 𝑝, (𝑜𝑟𝑒𝜈 , 𝑓 )⟩, where 𝑜𝑟𝑒𝜈 is the reverse direction of 𝑜 . In Figure 4.11, one can see a
sample reduction.
Correctness of the reduction. Recall that we have an NCL instance 𝐼 . Let 𝐼 be a YES-

instance. Then there is a sequence of moves 𝑀 which eventually reverses the target edge
𝑒 and we can simulate the moves in 𝐼 ′ as follows: We start with the first move in 𝑀 and
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Figure 4.11: Reduction from a small part of an NCL instance

consider the edge gadget of the edge it reverses. At the two ends of this edge gadget we have
two thresholds which are part of vertex gadgets. We can assume that exactly one of these
thresholds has a door directed outwards from its vertex gadget. We replace this door with a
door of reverse opening direction and then one by one replace all the doors of the edge gadget
and then the door of the vertex gadget at the other end also with doors of reverse opening
direction (Compare Figure 4.12). Thus, we completed the first move and essentially reversed
the edge. We continue with the other moves in the same way. At the end, we have a move in
𝐼 which reverses 𝑒 . When we simulate this move in 𝐼 ′, we replace every door along the edge
gadget of 𝑒 with a door of reverse opening direction, in particular we replace the door on 𝑑 .

Conversely, assume that the reduced DoorReplacement instance 𝐼 ′ admits an affirmative
answer. So there is a sequence of moves which replaces the door on 𝑑 with a door having a
reverse opening side but the same fixed side. If we can replace this door right away or just by
reversing the doors along the same edge gadget (including the vertex gadget doors at both
ends of the edge gadget), then we can also reverse the edge in 𝐼 right away. Otherwise we
have a sequence of moves in 𝐼 ′ that will lead to making room in the needed vertex gadget so
that we can reverse doors along the edge gadget including 𝑑 . This sequence of moves can
always look like described in the previous paragraph, i.e. at each step reversing the doors at
an edge gadget completely corresponding to an edge reversal in 𝐼 . Because, observe that a
single move in 𝐼 takes more than one move in 𝐼 ′ (Compare Figure 4.12). So, we are essentially
building an asynchronous version of NCL similar to [Vig13], in the sense that while we are at
the process of replacing doors along an edge gadget in 𝐼 ′ (i.e. doing the analogue of reversing
an edge in 𝐼 ), the doors on the thresholds at the both ends of the edge gadget are both directed
inwards to their vertex gadgets. But this temporary situation creates only a disadvantage
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4 Door Replacement Problems

Figure 4.12: Reversing an edge gadget starting with the reversal of the rightmost door and
continuing towards left. The OR vertex gadgets marked with blue.

because this edge gadget basically occupies a place in both of the vertex gadgets. So, we may
reverse the remaining doors along this edge gadget to create us an advantage for further
moves. Thus, the equivalent of reversing an edge in 𝐼 take more than one move in 𝐼 ′ and
in the temporary phase it is as if the edge being reversed in 𝐼 is pointing away from both
ends. Therefore, we can translate the sequence of moves that will lead to reversing 𝑑 in 𝐼 ′ to a
sequence of moves in 𝐼 that will lead to the reversal of 𝑒 .

Note that analogous to the configuration-to-configuration variant of NCL, we can also
define the problem DoorReconfiguration which asks, given two placements 𝑝 and 𝑝′ for a
set of door thresholds 𝐷 , whether one can transform 𝑝 into 𝑝′ by replacing a single door at a
time and maintaining a legal placement at each step.

Corollary 4.16: DoorReconfiguration is PSPACE-complete.

Proof Sketch. By the same argument as in Lemma 4.12, one can show that DoorRecon-
figuration is in NPSPACE = PSPACE. For PSPACE-hardness, one can reduce from the
configuration-to-configuration variant of NCL using the same gadgets as in Theorem 4.15
and by using the asynchronous correspondence between moves and configuration in NCL
and those in DoorReplacement or DoorReconfiguration.

Note that in the reduction we only used horizontal and vertical door thresholds of size 4
units. So, we can say the following:

Remark 4.17: DoorReplacement remains PSPACE-complete, even when the problem is re-

stricted to only horizontal and vertical door thresholds with size 4 units.
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5 Motion Planning Problems

Suppose that we already have a finished floor plan with doors and walls placed. Now, imagine
a scenario where an agent must navigate through this floor filled with doors and walls. The
natural question arising from a scenario like that is whether the agent can reach a specific
location starting from another specific location. This type of questions are broadly called
motion planning problems. In this chapter we want to look at motion planning problems
involving doors. Depending on how we restrict the capabilities of the agent (doors can only
be pushed or pulled etc.), we identify several problems and analyze the complexities of them.
In motion planning problems, we have a grid consisting of points with natural number

coordinates as before, where the leftmost and downmost point is (0, 0). Additionally we
have 1 × 1 square cells whose corner points are the grid points. We denote every cell by its
down-left corner point. We call the edges of these cells cell borders. Each cell border is a line
segment and is denoted by its two endpoints.
Moreover, we are given a set of door thresholds 𝐷 , each of which is a single cell border

on the grid, in particular they are 1 unit long and either horizontal or vertical. We are also
given a placement 𝑝 : 𝐷 → 𝑂 ×𝑂 , which assigns every threshold a door orientation (𝑜, 𝑓 )
that denotes the opening and fixed side of the door on this threshold as before.
For a door on a threshold 𝑑 ∈ 𝐷 there are two possible states: open and closed. When

closed, it occupies the cell border 𝑑 . When open, 𝑑 is no longer occupied and the door occupies
the perpendicular cell border in its opening range which is determined by its orientation
given in 𝑝 .

Additionally, we are given a set of walls𝑊 , where each element of𝑊 is a single cell border
on the grid. A wall𝑤 ∈𝑊 occupies a cell border 𝑏 if𝑤 = 𝑏.

At a given time the agent is on a single cell. The agent can move to an adjacent cell if and
only if the common border of two cells is free. A cell border 𝑏 is free if and only if 𝑏 is not
currently occupied by a wall or a door. Note that a cell border can be occupied by both a door
and a wall at the same time but cannot be occupied by two doors at the same time.
So, the current state of a motion planning instance ⟨𝐷, 𝑝,𝑊 ⟩ is fully determined by the

current cell 𝑐 of the agent and the current states of doors 𝑧 : 𝐷 → {𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒𝑑}.

5.1 Push-Open-Doors

Figure 5.1: An agent opens a door by pushing and then moves two cells to the right.
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In the problem Push-Open-Doors, the agent can interact with the doors by pushing them.
The agent at a cell 𝑐 can only push a door, if

the door is at its closed state,

the door occupies one of the four borders of 𝑐 ,

the door opens away from the agent (opening range of the door is not at the cell 𝑐),

and the cell border, which the door will occupy in its open state, is not occupied by any
door (but possibly occupied by a wall).

After this interaction, the agent is still at 𝑐 but the door is at its open state. In particular, an
opened door cannot be closed, hence every door can be interacted with at most once.
Let us sum up the definition of the decision problem Push-Open-Doors, which we are

going to prove to be NP-complete.

Definition 5.1: Push-Open-Doors

Instance: A set 𝐷 ⊆ ℕ2
0 × ℕ2

0 of 𝑛 door thresholds, a set𝑊 ⊆ ℕ2
0 × ℕ2

0 of walls, where

each threshold and each wall is a horizontal or vertical line segment on the grid of length 1 unit

(hence a cell border); a (not necessarily legal) placement 𝑝 : 𝐷 → 𝑂 ×𝑂 and two cells 𝑠, 𝑡 ∈ ℕ2
0.

Furthermore, we require that there is a rectangular region enclosed by walls such that all the

other objects of the problem instance are contained inside this region.

Question: Can an agent in the cell 𝑠 reach the cell 𝑡 by doing a sequence of actions, where a

single action consists in moving to an adjacent cell or opening a door by pushing?

Lemma 5.2: Push-Open-Doors is in NP.

Proof. Let 𝐼 = ⟨𝐷,𝑊 , 𝑝, 𝑠, 𝑡⟩ be a Push-Open-Doors instance and 𝑔 : {1, ..., 𝑘} → {1, ..., 𝑛} an
injective function. Since every door can be opened at most once, if 𝑡 can be reached from 𝑠

in 𝐼 , then there is an ordered sequence 𝐷 ′ = ⟨𝑑 (1) , ..., 𝑑 (𝑘 )⟩ where 𝑑 (𝑖 ) = 𝑑𝑔 (𝑖 ) ∈ 𝐷 , such that
𝐷 ′ specifies the order in which the agent can visit and open the doors to reach 𝑡 from 𝑠 . As
𝑘 ≤ 𝑛, 𝐷 ′ is in particular of linear size. Given an 𝐼 and a witness 𝐷 ′, we can verify whether
the agent can reach 𝑡 from 𝑠 in 𝐼 as follows:
Let 𝐺𝑧 be the graph where every cell of the problem instance is a vertex and there is

an edge between two cells if they are adjacent and their common border is free in state
𝑧 : 𝐷 → {𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒𝑑}. Furthermore let 𝑧0 be the state where all the doors are closed and 𝑧𝑖
be the state where 𝑑 (1) , ..., 𝑑 (𝑖 ) are opened and the rest is closed. Let 𝑐𝑖 be the cell which is
neighbouring 𝑑 (𝑖 ) from the opposite of its opening side, i.e. one can possibly open 𝑑 (𝑖 ) at 𝑐𝑖 .
First, check with a breadth-first-search algorithm if the cell 𝑐1 is reachable from 𝑠 in 𝐺𝑧0 ,

then if 𝑐𝑖 is reachable from 𝑐𝑖−1 in𝐺𝑧𝑖−1 for all 𝑖 ∈ {1, ..., 𝑘} and at last if 𝑡 is reachable from 𝑐𝑘
in 𝐺𝑧𝑘 . As everything is inside a rectangular region enclosed by walls, |𝐺𝑧 | is in particular
bounded by |𝑊 |2. So this can be done in polynomial time as breadth-first-search algorithm is
linear in |𝐺𝑧 | and it is used 𝑘 times.

In order to prove NP-hardness, we are going to reduce from the problem Push-1 which
was proved to be NP-hard in [DDHO03]. It is a pushing-block puzzle similar to the classic
Sokoban.

Definition 5.3 ([DDHO03]): Push-1
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Instance: A rectangular grid of square cells, where each cell is either occupied by a block/the

agent or free. The agent can move horizontally and vertically and push blocks but only at most

one block at a time. When pushed, a block changes its location to the adjacent cell in the direction

it was pushed, which is only possible if this adjacent cell is free. Furthermore, two cells 𝑠 and 𝑡

are marked on the puzzle.

Question: Is there a sequence of actions such that by doing them the agent can move from 𝑠

to 𝑡 , where an action consists in moving to a free adjacent cell or pushing a block on an adjacent

cell?

A

B

Figure 5.2: A simple Push-1 puzzle

In Figure 5.2, one can see a simple instance. The agent can reach 𝐵 from 𝐴 by first pushing
the purple-striped block downwards and then moving leftwards. However, if the agent would
be located initially at 𝐵, then the agent could not reach 𝐴 because the purple-striped block
cannot be pushed. This is in fact the one-way gadget from [DDHO03]. Observe how the
blocks which are filled with brown colour cannot be pushed because the agent can push only
one block at a time, i.e. the agent is not “powerful” enough to push two blocks at once. In
that sense, these blocks effectively act like a wall.

u

v

w

Figure 5.3: Building a planar Eulerian tour

Theorem 5.4 ([DDHO03, Theorem 6]): Push-1 is NP-hard.

Proof Sketch. We sketch the proof given in [DDHO03].
The reduction is from Planar-3 Coloring, a well-known NP-complete problem [GJ79],

which asks whether the vertices of a given planar graph can be colored with 3 colors in total
such that no two adjacent vertices have the same color. Let 𝐺 be a planar graph and ⇀

𝐺 the
directed multi-graph resulting from 𝐺 by replacing every undirected edge by two opposite
directed edges. By [BKM98], it can be shown that there is a planar Eulerian tour 𝐸 in ⇀

𝐺 . Planar
means that 𝐸 does not cross itself at vertices. In Figure 5.3, one can see an undirected graph
(on the left) turned into a directed one (in the middle) and a planar Eulerian tour for this graph
(on the right). The idea of the proof is to replace every edge and vertex of ⇀𝐺 by sub-puzzles
and connect them together to a single Push-1 puzzle, such that the agent is forced to traverse
the equivalent of 𝐸 in the puzzle in order reach from 𝑠 to 𝑡 when 𝑠 and 𝑡 are selected as two
points at the ends of the sub-puzzle representing an arbitrary vertex.
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While traversing the equivalent of 𝐸 in the puzzle, the agent is forced to choose the color
of a vertex, whenever it is leaving the vertex, by choosing one of the three corridors labeled 1,
2, and 3. These three corridors represent a single outgoing edge in ⇀

𝐺 from that vertex. A so-
called fork gadget is employed to force the agent to choose exactly one of the three corridors.
Similarly, a so-called one-way gadget is employed when the three corridors are rejoining at
the other vertex, to block the agent from going back to another corridor. Furthermore, the
two edges of opposite direction between every two adjacent vertices in ⇀

𝐺 are connected via
the so-called coloring gadget, which ensures that adjacent vertices are colored with different
colors. For example, if in one direction the path number 1 is traversed, then it is not possible
to traverse the path number 1 in the opposite direction. Another so-called consistency gadget
ensures in a similar fashion that in all of the outgoing edges from a vertex the same color is
chosen. That means, for example if in one direction the path number 1 is traversed then it is
not possible to traverse the paths number 2 and 3 in the opposite direction.

Therefore, the agent can move from 𝑠 to 𝑡 in the reduced Push-1 instance if and only if it
could traverse the Eulerian path 𝐸 assigning different colors to adjacent vertices along the
way by choosing from a total number of 3 colors. That is the case if and only if the planar
graph 𝐺 is 3-colorable.

In Figure 5.4, one can see how consistency and coloring gadgets are placed. Note that the
fork gadget depicted in the figure has three exits. This can be simulated by two fork gadgets
with two exits. The fork and one-way gadgets ensure that the edges are always traversed in
the intended direction.
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Figure 5.4:Modelling vertices and edges (from [DDHO03], redrawn)
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Figure 5.5: Coloring gadget (taken from [DDHO03], redrawn)
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Figure 5.6: Consistency gadget (taken from [DDHO03], redrawn)

To implement thementioned coloring and consistency gadgets (see Figure 5.5 and Figure 5.6),
the authors use three different gadgets as building blocks. So, together with the mentioned
one-way and fork gadgets, there are in total five essential gadgets, which we should further
analyze. Intuitively, the XOR gaadget allows traversal either in west-to-east or in north-to-
south direction, the NAND-1 gadget either in north-to-west or in south-to-east direction, the
NAND-2 gadget either in south-to-east or west-to-north direction. We describe the features
of the actual gadgets from the paper. In the following, the path notation we use (e.g. A-B is
open/closed) means that the agent can/cannot do a full traversal in the given direction, i.e
enter the gadget from the former location and exit from the latter.

1 One-way gadget
Locations: A, B
Initial state: Only A-B open
After A-B traversal: B-A becomes open

2 Fork gadget
Locations: A, B, C
Initial state: All paths open
After A-C traversal: A-B and C-B become closed
After A-B traversal: A-C and B-C become closed
Note that initially a fork gadget cannot be traversed starting from B or C because the
ends of the fork gadget are protected by one-way gadgets. (see Figure 5.4)
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3 XOR gadget
Locations: N (north), S (south), W (west), E (east)
Initial state: Only N-S, W-E, S-E, E-S open
After N-S traversal: S-N, W-N, E-N become open. W-E, S-E, E-S become closed
After W-E traversal: E-W, N-W, S-W become open. N-S, E-S become closed.
Note that the XOR gadget is only used as a part of the coloring and consistency gadgets
and since one-way and fork gadgets are placed to the both ends of these gadgets, the
XOR gadget cannot initially be traversed from S or E. (see Figure 5.4)

4 NAND-1 gadget
Locations: N (north), W (west), S (south), E (east)
Initial state: Only N-W and S-E open
After N-W traversal: W-N becomes open. S-E becomes closed
After S-E traversal: E-S becomes open. N-W becomes closed.

5 NAND-2 gadget
Locations: N (north), W (west), S (south), E (east)
Initial state: Only W-N and S-E open
After W-N traversal: N-W becomes open. S-E becomes closed.
After S-E traversal: E-S becomes open. W-N becomes closed.

Lemma 5.5: The functionality of the fork gadget from Theorem 5.4 is also ensured by the

following altered definition:

Locations: A, B, C

Initial state: Only A-B and A-C open

After A-C traversal: C-A becomes open. A-B becomes closed.

After A-B traversal: B-A becomes open. A-C becomes closed.

Proof. The intended functionality of the gadget is that on first traversal, it forces an agent in
location A to choose one of B and C. After the agent moves to one of B and C, the other one
becomes inaccessible from A. As mentioned in Theorem 5.4, the exits B and C are protected
by one-way gadgets, thus initially the agent is forced to enter from A. Therefore, the feature
that all paths are open in the initial state in the original definition is not necessary. Thus, our
new definition is stricter in the sense that it closes some of the paths which are available but
cannot be used in the original definition.

Lemma 5.6: The functionality of the XOR gadget from Theorem 5.4 is also ensured by the

following altered definition:

Locations: N (north), S (south), W (west), E (east)

Initial state: Only N-S and W-E open

After N-S traversal: S-N and W-N becomes open, W-E becomes closed

After W-E traversal: E-W and N-W becomes open, N-S becomes closed

Proof. The intended functionality of the gadget is that it lets the agent move either from N to
S or from W to E and choosing one of them blocks the other. As mentioned in Theorem 5.4,
the gadget can be initially only entered from one of N or W because coloring and consistency
gadgets are protected by fork and one-way gadgets. Thus, again, our new definition is stricter
in the sense that it closes some of the paths which are available but cannot be used in the
original definition.
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Lemma 5.7: The functionality of the NAND-1 gadget from Theorem 5.4 is also ensured by the

following altered definition:

Locations: N (north), W (west), S (south), E (east)

Initial state: Only N-W and S-E open

After N-W traversal: S-E becomes closed. (added: S-N becomes open)

After S-E traversal: N-W becomes closed. (added: N-S becomes open)

Lemma 5.8: The functionality of the NAND-2 gadget from Theorem 5.4 is also ensured by the

following altered definition:

Locations: N (north), W (west), S (south), E (east)

Initial state: Only W-N and S-E open

After W-N traversal: S-E becomes closed. (added: S-W becomes open)

After S-E traversal: W-N becomes closed. (added: W-S becomes open)

Proof of Lemma 5.7 and Lemma 5.8. Observe that in the consistency and the coloring gadget
(see Figure 5.5 and Figure 5.6), NAND gadgets are used between opposite edges to ensure
that if one of the two paths going through a NAND gadget is traversed, then the other one is
blocked. The new definitions for the gadgets given here are the same as in Theorem 5.4 except
for the ones marked as “added”. The added features allow that on a second traversal of the
gadget from the other entrance (i.e from W if the agent entered from S on the first traversal
and vice versa), the agent could exit the gadget through the entrance which was used on the
first traversal. However, this does not create any advantage for the agent in trying to find a
way from 𝑠 to 𝑡 , because this action has the same effect as though the agent goes back in its
own route to that point and this is anyways at any time possible because none of the gadgets
from Theorem 5.4 employ any structure which would block the agent to go back in its own
route.

Theorem 5.9: Push-Open-Doors is NP-complete.

Proof. Lemma 5.2 proves that the problem is in NP. For the proof of NP-hardness, we rely
heavily on the proof of Theorem 5.4. Namely, by implementing the functionality of the five
essential gadgets mentioned there, we can apply the same reduction to Push-Open-Doors.
Door one-way gadget. (Figure 5.7) This gadget can only be traversed from A to B by

pushing the door. Once traversed, it is open from both sides. It replicates the one-way gadget
in Theorem 5.4.
Door fork gadget. (Figure 5.8) This gadget can only be traversed starting at A. There are

two options: If the right door is pushed, B is permanently blocked and the agent can continue
to C. If the left door is pushed, C is permanently blocked and the agent can continue to B. It
implements the fork gadget defined in Lemma 5.5.
Door XOR gadget. (Figure 5.9) This gadget can only be traversed starting at N or at

W. If traversed starting at N, E gets permanently blocked and the agent can continue to S.
If traversed starting at W, S gets permanently blocked and the agent can continue to D. It
implements the XOR gadget defined in Lemma 5.6

Door NAND-1 gadget. (Figure 5.10) This gadget can only be traversed starting at N or at
W. If traversed starting at N, E gets permanently blocked and the agent can continue to S. If
traversed starting at W, S gets permanently blocked and the agent can continue to E. It has
the same functionality as the NAND-1 gadget in Theorem 5.4 except for the fact that once the
N-S path (resp. W-E path) is traversed an agent coming from W (resp. N) can reach N (resp.
W). Thus, it implements the NAND-1 gadget defined in Lemma 5.7
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Figure 5.7: Door one-way
gadget

A

C B

Figure 5.8: Door fork gadget
N

E

W

S

Figure 5.9: Door XOR gadget

Door NAND-2 gadget. (Figure 5.11) This gadget can only be traversed starting at W or at
S. If traversed starting at W, E gets permanently blocked and the agent can continue to N. If
traversed starting at S, N gets permanently blocked and the agent can continue to E. It has
the same functionality as the NAND-2 gadget in Theorem 5.4 except for the fact that once the
W-N path (resp. S-E path) is traversed an agent coming from S (resp. W) can reach W (resp.
S). Thus, it implements the NAND-2 gadget defined in Lemma 5.8

Note that our XOR and NAND gadgets in Theorem 5.9 use the same gadget drawn on
the left in Figure 5.12. This gadget is employed to ensure that opening a door blocks access
to another door. That means traversing A-B, blocks any future access to C. As shown in
Figure 5.12, this gadget can be replicated in the Push-1 setting. That means, the original fork,
XOR and NAND gadgets of [DDHO03] mentioned in Theorem 5.4 could be in a sense unified
by rebuilding all of them according to our door gadgets using this single gadget.
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Figure 5.10: Door NAND-1 gadget
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S E

Figure 5.11: Door NAND-2 gadget

Let us call this gadget the block gadget. Then, we can simplify all of our door gadgets as
shown in Figure 5.13, by turning and mirroring the block gadget as needed. That means, for a
door motion planning problem it is enough to implement a one-way and a block gadget to
show that it is NP-hard.

A

B

C

C

B

A

Figure 5.12: Replicating door gadgets in Push-1

Note that all of our gadgets have legal door placements in the sense that none of the doors
interfere with each other. That means the hardness of Push-Open-Doors does not rely on
the specific geometry of the doors (circular, squared etc.).

Remark 5.10: Push-Open-Doors remains NP-complete even when the given placement is

restricted to be legal and even when the doors are squared.

5.2 Push/Pull-Open-Doors

Analogous to pushing, we can also define pulling a door.
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Figure 5.13: Building all gadgets out of the block gadget

The agent at a cell 𝑐 can only pull a door, if

the door is at its closed state,

the door occupies one of the four borders of 𝑐 ,

the door opens towards the agent (opening range of the door is at the cell 𝑐),

and the cell border, which the door will occupy in its open state, is not occupied by any
door (but possibly occupied by a wall).

After this interaction, the agent is still at 𝑐 but the door is at its open state. In particular, an
opened door cannot be closed, hence every door can be interacted with at most once.

Figure 5.14: An agent opens the door by pulling and moves one cell to the right.

Now, we can define the problem Push/Pull-Open-Doors analogously to Push-Open-
Doors. In Push/Pull-Open-Doors, the agent is allowed to open doors both by pushing and
pulling.
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Theorem 5.11: Push/Pull-Open-Doors is NP-complete.

Proof. The problem is in NP by a similar argument to Lemma 5.2. The only difference is
that the witness is like 𝐷 ′ = ⟨(𝑑 (1) , 𝑜𝑝 (1) ), ..., (𝑑 (𝑘 ) , 𝑜𝑝 (𝑘 ) )⟩, where 𝑜𝑝 (𝑖 ) ∈ {𝑝𝑢𝑠ℎ, 𝑝𝑢𝑙𝑙}. That
means, when giving a an ordered sequence of doors to open as a witness, one has to specify
for each of them if it is to be pushed or pulled.

For NP-hardness, we build the one-way and the block gadget to imitate the reduction from
Planar 3-Coloring, because all of the gadgets in Theorem 5.9 can be built out of these two
gadgets (Figure 5.13).

One-way gadget. (Figure 5.15) This one-way gadget is stricter than the one-way gadget in
Theorem 5.9, in the sense that once A-B path is traversed by opening the door by pulling, it is
not possible to go back to A from B and a second A-B traversal is also not possible. But this is
not a problem as each of these gadgets are only used once to go from A to B.

Block gadget. (Figure 5.16) This block gadget is also stricter than the one in Figure 5.13, in
the sense that once A-B or B-C is traversed, the traversals B-A and C-B as well as future A-B
and B-C traversals are not possible. This is not a problem, because in the reduction each of
these paths are only used once. Apart from that, an A-B traversal blocks all future exits to C
as usual.

A

B

Figure 5.15: One-way gad-
get

A

B

C

Figure 5.16: Block gadget

Note that we can define the problem Pull-Open-Doors analogously. This problem is in
NP by the similar argument to Lemma 5.2. It is open, whether it is also hard for NP.

Furthermore, we can also define the problems Push-Open/Close-Doors, Pull-Open/Close-
Doors, and Push/Pull-Open/Close-Doors, where we also allow the agent to close doors.
These problems are clearly inNPSPACE=PSPACE, because we can nondeterminitically “guess”
a move while only keeping track of the state of the doors and the location of the agent. It is
open, whether some of these problems are in NP or even P and whether some of them are
hard for NP or PSPACE. We suspect that Push-Open/Close-Doors could be NP-complete by
a reduction to and from Push-Open-Doors. Namely, it could be the case that the ability to
close doors does not create an advantage for the agent in that case.
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6 An ∃ℝ-complete Door Placement Problem

In this chapter, we change the placement problem to include real number ranges to place
doors and we are going to show ∃ℝ-completeness in the case of triangular doors. But we first
begin with a brief introduction to the existential theory of the reals and ∃ℝ.

6.1 Existential Theory of the Reals

The existential theory of the reals (ETR) is the set of all true sentences of the from

∃𝑥1, ..., 𝑥𝑛 (Φ(𝑥1, ..., 𝑥𝑛)),

where Φ is a quantifier-free Boolean formula which may include the symbols {0, 1, +,−, ·, <, ≤
, >, ≥,=,≠} and connectives {∨,∧,¬,⇔} having their usual meanings and where all variables
range over the real numbers [Mat14]. So, we can pose ETR as a decision problem:

Definition 6.1: Existential Theory of the Reals (ETR)

Instance: A quantifier-free formula Φ(𝑥1, 𝑥2, ..., 𝑥𝑛) with variables 𝑥1, 𝑥2, ..., 𝑥𝑛 over the sig-

nature {0, 1, +,−, ·, <, ≤, >, ≥,=,≠} and connectives {∨,∧,¬,⇔}.
Question: Do there exist real numbers 𝑥1, 𝑥2, ..., 𝑥𝑛 , such that Φ(𝑥1, 𝑥2, ..., 𝑥𝑛) is true?

This leads us to the definition of the complexity class ∃ℝ, which was introduced by [Sch10].

Definition 6.2: The complexity class ∃ℝ consists of all decision problems which are reducible to

ETR in polynomial time. A decision problem Π is ∃ℝ-hard if ETR is reducible to Π in polynomial

time.

So, we can say that ETR has the same meaning for ∃ℝ, as the satisfiability problem (SAT)
forNP. Since one can easily write any SAT formula as an ETR formula and ETR can be decided
in polynomial space [Can88], it follows that

NP ⊆ ∃ℝ ⊆ PSPACE.

Intuitively, one can say that an ∃ℝ-hard problem is at least as hard as finding real number
solutions to a system of equalities and inequalities of polynomials with integer coefficients.

6.2 RealTriangularDoorPlacement

Imagine that we are given a floor plan and doors (or objects for that matter) have to be placed.
Every door has a designated area so that it should be placed somewhere inside that area
and we do not want any door to come into the way of each other. We can also think of this
problem as if we are given a placement and we are allowed to shift and rotate some doors
inside their respective allowed space to resolve the conflicts between them and have them all
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pairwise interior-disjoint in the end. In the following, we define this problem formally and
prove that it is ∃ℝ-complete for triangular doors when we allow real numbers to make shifts
and rotations. In the case of circular doors, we could not in particular build the gadgets we
have for triangular doors. So, we leave the question for circular doors open.

In the problem RealTriangularDoorPlacement, every door is opening like an isosceles
right triangle. So, in input, we are given a set of isosceles right triangles𝑇𝑠 and we are allowed
to shift them by a real number amount horizontally and vertically. The maximum shift we
can apply to a triangle in the horizontal and the vertical dimension is given separately by
the function 𝑠 : 𝑇𝑠 → ℕ2

0. Let 𝑡𝑠 ∈ 𝑇𝑠 and 𝑠 (𝑡𝑠) = (𝑥,𝑦). Then 𝑡𝑠 can be moved in the positive
x-direction (resp. y-direction) by a non-negative real number amount but at most 𝑥 (resp. 𝑦)
units. Note that 𝑥 and 𝑦 are allowed to be zero. Thus, some doors may not be able move at all,
some may be allowed to move only move horizontally or only vertically, while others can
move in two dimensions. Furthermore, we are given another set of triangles𝑇𝑟 , which we can
rotate freely around their middle point of their hypotenuse. The question is if we can apply
shifts and rotations to doors such that in the end the interiors of the triangles (i.e. interior
areas of the triangles excluding the edges) are pairwise disjoint.

Definition 6.3: RealTriangularDoorPlacement

Instance: Two sets 𝑇𝑠 and 𝑇𝑟 of isosceles right triangles, each denoted by three corner points

with integer coordinates and a function 𝑠 : 𝑇𝑠 → ℕ2
0.

Question: Let 𝑡𝑠 ∈ 𝑇𝑠 , 𝑠 (𝑡𝑠) = (𝑥,𝑦), and shifted be a function that maps every triangle

𝑡𝑠 in 𝑇𝑠 to a triangle 𝑡
′
𝑠 such that 𝑡 ′𝑠 is the same triangle as 𝑡𝑠 shifted along positive x-direction

(resp. y-direction) by a non-negative real number amount at most x (resp. y) units. Moreover let

𝑡𝑟 ∈ 𝑇𝑟 and rotated be function that maps every triangle 𝑡𝑟 in 𝑇𝑟 to a triangle 𝑡
′
𝑟 such that 𝑡 ′𝑟 is

the same triangle as 𝑡𝑟 rotated around the middle point of its hypotenuse by some degree. Do

there exist such functions(i.e. shift and rotation operations for triangles in 𝑇𝑠 and 𝑇𝑟 ) so that the

set of triangles 𝑇 = {shifted(𝑡𝑠) |𝑡𝑠 ∈ 𝑇𝑠 } ∪ {rotated(𝑡𝑟 ) |𝑡𝑟 ∈ 𝑇𝑟 } is pairwise interior-disjoint?

Lemma 6.4: RealTriangularDoorPlacement is in ∃ℝ.

Proof Sketch. Let 𝐼 = ⟨𝑇𝑠 , 𝑠,𝑇𝑟 ⟩ be a RealTriangularDoorPlacement instance with 𝑇𝑠 =

{𝑡𝑠,1, ..., 𝑡𝑠,𝑛} and𝑇𝑟 = {𝑡𝑟,1, ..., 𝑡𝑟,𝑚}. Let 𝑠 (𝑡𝑠,𝑖) = (𝑠𝑖,𝑥 , 𝑠𝑖,𝑦) and 𝑡𝑠,𝑖 = ⟨(𝑎𝑠,𝑖 , 𝑏𝑠,𝑖), (𝑐𝑠,𝑖 , 𝑑𝑠,𝑖), (𝑒𝑠,𝑖 , 𝑓𝑠,𝑖)⟩
for all 𝑖 ∈ {1, ..., 𝑛} and finally 𝑡𝑟,𝑗 = ⟨(𝑎𝑟,𝑗 , 𝑏𝑟,𝑗 ), (𝑐𝑟,𝑗 , 𝑑𝑟, 𝑗 ), (𝑒𝑟, 𝑗 , 𝑓𝑟, 𝑗 )⟩ for all 𝑗 ∈ {1, ...,𝑚}.
We reduce 𝐼 to the following ETR formula

∃𝑡 ′𝑠,1, ..., 𝑡 ′𝑠,𝑛, 𝑡 ′𝑟,1, ..., 𝑡 ′𝑟,𝑚
©«

∧
𝑖,𝑗 ∈{1,...,𝑛}

𝑖≠𝑗

Shifted(𝑡 ′𝑠,𝑖 , 𝑡𝑠,𝑖 , 𝑠𝑖,𝑥 , 𝑠𝑖,𝑦) ∧ InteriorDisjoint(𝑡 ′𝑠,𝑖 , 𝑡 ′𝑠,𝑗 )
ª®®¬∧©«

∧
𝑖,𝑗 ∈{1,...,𝑚}

𝑖≠𝑗

Rotated(𝑡 ′𝑟,𝑖 , 𝑡𝑟,𝑗 ) ∧ InteriorDisjoint(𝑡 ′𝑟,𝑖 , 𝑡 ′𝑟, 𝑗 )
ª®®¬ ∧

©«
∧

𝑖∈{1,...,𝑛}
𝑗 ∈{1,...,𝑚}

InteriorDisjoint(𝑡 ′𝑠,𝑖 , 𝑡 ′𝑟,𝑗 )
ª®®¬

where

Shifted(𝑡 ′𝑠,𝑖 , 𝑡𝑠,𝑖 , 𝑠𝑖,𝑥 , 𝑠𝑖,𝑦) returns true iff 𝑡 ′𝑠,𝑖 is the same triangle as 𝑡𝑠,𝑖 but shifted along
x-axis at most 𝑠𝑖,𝑥 units and along y-axis at most 𝑠𝑖,𝑦 units.

Rotated(𝑡 ′𝑟,𝑖 , 𝑡𝑟, 𝑗 ) returns true iff 𝑡 ′𝑟,𝑖 is the same triangle as 𝑡𝑟, 𝑗 but rotated around the
middle point of its hypotenuse.
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InteriorDisjoint(𝑡 ′𝑟,𝑖 , 𝑡 ′𝑟, 𝑗 ) returns true iff the edges of 𝑡 ′𝑟,𝑖 and 𝑡
′
𝑟,𝑗 do not pairwise cross

(but may touch) with each other and no corner point of either triangle is in the interior
of the other triangle.

To prove ∃ℝ-hardness, we reduce from a problem called Planar-ETR-INV*.

Definition 6.5 ([LMM18]): Planar-ETR-INV*
Instance: A set of variables {𝑥1, ..., 𝑥𝑛} and a set of equations and inequalities of the form

𝑥 = 1, 𝑥 + 𝑦 ≤ 𝑧, 𝑥 + 𝑦 ≥ 𝑧, 𝑥 · 𝑦 ≤ 1, 𝑥 · 𝑦 ≥ 1, for 𝑥,𝑦, 𝑧 ∈ {𝑥1, ..., 𝑥𝑛}. Moreover, the so-called

variable-constraint incidence graph, i.e the bipartite graph which has a vertex for every variable

and every constraint and an edge between a variable and a constraint if the former appears in

the latter, is planar.

Question: Do there exist real numbers 𝑥1, ..., 𝑥𝑛 ∈ [ 12 , 4] such that they are a solution to the

given system of equations and inequalities?

This problem was introduced and proven to be ∃ℝ-complete by [LMM18] as a planar
version of ETR-INV. In [LMM18], Planar-ETR-INV* is then reduced to the graph drawing
problem the paper deals with. The problem ETR-INV, which was introduced and proven to
be ∃ℝ-complete by [AAM18], allows only equations of the form 𝑥 +𝑦 = 𝑧, 𝑥 = 1 and 𝑥 · 𝑦 = 1
for 𝑥,𝑦, 𝑧 ∈ {𝑥1, ..., 𝑥𝑛} and asks whether a given system of equations has a solution over real
numbers, when each variable is restricted to the range [ 12 , 2].

Theorem 6.6 ([LMM18, Theorem 3]): Planar-ETR-INV* is ∃ℝ-complete.

Theorem 6.7: RealTriangularDoorPlacement is ∃ℝ-complete.

Proof. The membership in ∃ℝ is already shown in Lemma 6.4. To prove ∃ℝ-hardness, we
reduce from the problem Planar-ETR-INV*. Given a Planar-ETR-INV* instance 𝐼 with its
planar variable-constraint incidence graph, we create a RealTriangularDoorPlacement
instance which admits an affirmative answer if and only if 𝐼 is a YES-instance. The idea,
which is similar to the idea of the reduction from Planar-ETR-INV* given in [LMM18], is
to construct gadgets representing variables as well as copy and split gadgets to reuse and
transport variables according to the incidence graph and gadgets to enforce addition and
inversion inequalities.

In the following we explain these gadgets.

xi = 0, 5 xj = 2, 5 xk = 4
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Figure 6.1: Variable gadget
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6 An ∃ℝ-complete Door Placement Problem

Variable gadget. We represent every variable with four isosceles right triangles of cathesus
length 8 units, where all the catheti are parallel to either x or y-axis. As shown in the Figure 6.1,
every triangle is movable in one dimension within the drawn range [ 12 , 4], which corresponds
to the range of the variables in 𝐼 . The ranges are drawn according to the possible positions
of the corner of every triangle where the right angle is formed. 1

2 units of the drawn range
corresponds to 1 unit in our drawing, hence the range [ 12 , 4] is 7 units long and every 1

2
step of a range coincides with an integer coordinate in the drawing. The only possible legal
placement of these four triangles is such, that all of them are touching each other creating a
windmill-like structure with a square in the middle as in the Figure 6.1. Furthermore, with
a thought experiment one can convince himself that if we, for example, shift the upmost
triangle to the left, then the triangle on the left is forced to move down, the downmost triangle
is forced to move to the right and the triangle on the right is forced to move up, all of them
the same amount to maintain a legal position. Because of that and the way the ranges are
given, all the four triangles are forced to take the same value in the drawn ranges. Moreover,
because of the same reason, in every variable gadget the size of the square in the middle
positively correlates with the value of the variable the gadget represents.

x = 1

1

1

1

1

Figure 6.2: Gadget enforcing 𝑥 = 1

𝑥 = 1 gadget. In order to force a variable to be equal to one, we have simply a normal
variable gadget but the triangles are not allowed to move, as shown in Figure 6.2. That means,
in input they have a possible maximum shift of 0 units in either direction.
Copy and split gadget. As the variables may come up in more than one constraint in

Planar-ETR-INV* instance 𝐼 , we need a gadget to copy them as well as a so-called split or
transport gadget to use them in the constraint gadgets. Say, we want to transport a variable to
the right, then we replace the triangle on the right of a variable gadget, which may move up
and down, with an isosceles right triangle double its size mirrored along the vertical cathetus
of the original triangle, to extend it further to the right as shown in Figure 6.3. In this way,
we can draw the mirrored version of the variable gadget to the right and we can transport
the variable arbitrarily far, make arbitrarily many copies by splitting up, down, right and left
and make turns resembling edges of a plane rectilinear drawing of a graph. Note that the
triangle connecting two blocks of variable gadgets (4 triangles each) have cathetus length of
8
√
2 units which is equal to the hypotenuse length of one of the small triangles and the ranges

for these big triangles are drawn according to the possible positions of the middle point of the
triangle’s hypotenuse. One can think of these big triangles as doors opening to both sides.
One can convince herself that in Figure 6.3, if one shifts an arbitrary triangle, then all of the
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Figure 6.3: Copy and split gadget

remaining ones have to be shifted the same amount to maintain a legal position and the size
of the squares in the middle regions of the blocks have always the same size with each other
indicating the value of the variable which is being transported.

Addition gadgets. In order to enforce the addition constraints between three variables
𝑥,𝑦, 𝑧; we need two gadgets, one modelling 𝑥 + 𝑦 ≥ 𝑧 and one modelling 𝑧 ≥ 𝑥 + 𝑦. To
model the former constraint 𝑥 + 𝑦 ≥ 𝑧, we use the gadget in Figure 6.4. The variables are
transported to come together at the biggest triangle in the middle, which is allowed to shift in
two dimensions. We can call this the addition triangle. The triangles in the variable gadgets
which may touch the addition triangle are drawn bigger so that there is no conflict between
variable gadgets and the addition triangle. Let us call these triangles the pusher triangles
of the variable gadgets. Observe that these triangles are just scaled up versions of a normal
triangle in that position of a variable gadget. In such, they serve the same functionality,
meaning that they shift the same amount if the value of the variable gets bigger or smaller.
They can be drawn arbitrarily bigger to resolve alignment issues between transport gadgets.
When 𝑥 = 1

2 and 𝑦 = 1
2 hold, then the addition triangle must be in its downmost and leftmost

position and therefore the variable gadget representing 𝑧 can have the value at most 1. If the
variables 𝑥 and 𝑦 get bigger, then the pusher triangles of the variable gadgets shift and the
addition triangle can move by 𝑦 − 1

2 units up and by 𝑥 − 1
2 units to the right, which add up

to 𝑦 − 1
2 + 𝑥 −

1
2 = 𝑥 + 𝑦 − 1 units. Then, the pusher triangle of the gadget representing 𝑧 is

allowed to move right by the same amount. Therefore it holds that 𝑧 ≤ 𝑥 + 𝑦 − 1 + 1, and our
constraint is satisfied.

To model the latter constraint 𝑧 ≥ 𝑥 + 𝑦, we use the gadget in Figure 6.5. This is a very
similar setup to the other addition gadget, but roles of the variables are changed. Here, if
the addition triangle is in its upmost and rightmost position, then the variables 𝑥 and 𝑦 are
forced to have the value 1

2 and the variable gadget representing 𝑧 can have the value at least 1.
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Figure 6.4: Gadget enforcing 𝑥 + 𝑦 ≥ 𝑧

If 𝑧 gets bigger, than the addition triangle is allowed to shift down and to the left by a total
amount of 𝑧 − 1. As a result of this, the pusher triangles of 𝑥 and 𝑦 can also move and thus
the sum 𝑥 + 𝑦 can have a value of at most 1 + 𝑧 − 1, thereby satisfying our constraint.
Note that we can mirror the additions gadgets vertically so that the orientation of the

variables gadgets y-z-x can be both counter-clockwise and clockwise. This is important when
we are reducing from the variable-constraint incidence graph.

Inversion gadgets. In order to enforce inversion constraints between two variables 𝑥 and
𝑦, we need two gadgets, one modelling 𝑥 · 𝑦 ≥ 1 and the other modelling 𝑥 · 𝑦 ≤ 1.

The essential idea is the same as in [LMM18]. In both inversion gadgets, we have triangle
which can be rotated around the middle point of its hypotenuse. We can call this triangle
the inversion triangle. We have the ranges of the triangles which may touch the inversion
triangle as shown in Figure 6.6. A line intersecting the blue fixed point and the two ranges
create two triangles Δ1 and Δ2. Observe that the triangle Δ1 has always cathetus lenghts 𝑥
and 1, while the triangle Δ2 has always cathetus lenghts 1 and 𝑦. As, by construction, these
two triangles are always similar triangles, we have 𝑥

1 = 1
𝑦
and therefore 𝑥 · 𝑦 = 1.

In the gadget enforcing the constraint 𝑥 · 𝑦 ≥ 1 (Figure 6.7), the variables 𝑥 and 𝑦 are
always forced to be above the hypotenuse of the inversion triangle, which marks the 𝑥 · 𝑦 = 1
boundary, so the inequality holds. If, for example, the variable gadget representing 𝑥 gets
smaller, the pusher triangle of 𝑥 turns the inversion triangle counter-clockwise around the
fixed point and 𝑦 has to get bigger to satisfy the constraint. Note that we have an additional
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Figure 6.5: Gadget enforcing 𝑧 ≥ 𝑥 + 𝑦

triangle below the big triangle in the variable gadget representing 𝑦. This has the same value
in the range as triangle above it as long as it is forced to touch the inversion triangle. If 𝑦 gets
bigger, it is allowed to move up so as to act like the variable 𝑦.
In order to model the constraint 𝑥 · 𝑦 ≤ 1, we use a very similar setup (Figure 6.8). Here,

instead of above, the variables 𝑥 and 𝑦 are always forced to be under the hypotenuse of the
inversion triangle, satisfying the constraint.
Summing up the reduction. Remember that we are given a Planar-ETR-INV* instance 𝐼

with variables 𝑥1, ..., 𝑥𝑁 , where we are promised that the variable-constraint incidence graph is
planar. Note that every constraint vertex has maximum degree 3 in this graph, because every
constraint includes at most 3 variables. However, a variable may come up in every constraint
at worst case. Therefore, we modify this graph such that a variable vertex of degree more
than 3 is splitted into vertices of degree at most 3 (Compare Figure 6.9). Therefore, there is a
plane rectilinear drawing of this graph and we compute such a drawing 𝐷 in polynomial time
using algorithms from [NR04]. We replace every variable vertex in 𝐷 with a variable gadget
and replace edges with copy and split gadgets. Note that while splitting we are basically
making 90 degree turns (see Figure 6.3) and transport the value of the variable. Finally we
replace constraints with the corresponding addition and inversion gadgets and obtain the
RealTriangularDoorPlacement instance. Note that in inversion constraints we have two
variables. Therefore, the ordering of the edges at the inversion constraint vertices in 𝐷 does
not matter for our reduction, as we can do further turns with our copy and split gadgets and
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Figure 6.7: Gadget enforcing 𝑥 · 𝑦 ≥ 1

our inversion gadgets are indifferent to the ordering of 𝑥 and 𝑦, because the multiplication
operation is commutative. We have to be more careful with addition gadgets, as there the
variable 𝑧 has a different role from the variables 𝑥 and 𝑦 in our addition gadgets, whose
ordering does not matter because addition is commutative. But further consideration makes it
clear that this is not a problem, as we can mirror addition gadgets to have the desired ordering
(counter-clockwise or clockwise) of the variable gadgets 𝑥,𝑦, 𝑧. Also note that we draw every
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Figure 6.8: Gadget enforcing 𝑥 · 𝑦 ≤ 1

triangle in its downmost and leftmost position in its range to ensure that all coordinates we
use in defining the reduced RealTriangularDoorPlacement instance 𝐼 ′ are integer and
recall that in the problem definition we allowed shifting triangles given in input, only up and
to the right for the sake of simplicity of the definition. Moreover, to resolve alignment issues
we can always make the pusher triangles in addition and inversion gadgets bigger, which are
already drawn bigger than the normal triangles in variable gadgets. As all the gadgets have
polynomial size, the reduction can be done in polynomial time.
Furthermore, if 𝐼 is as YES-instance then there are real numbers 𝑥1, ..., 𝑥𝑁 that satisfy the

constraints in 𝐼 . Every variable gadget in 𝐼 ′ can be adjusted according to these values and and
since the constraint gadgets simulate the constraints in 𝐼 , 𝐼 ′ is a YES-instance. Conversely,
if 𝐼 ′ is a YES-instance, one can read off the values from the variable gadgets and these are a
solution for 𝐼 .

Note that in the definition of RealTriangularDoorPlacement we did not require that
the sets of shifting and rotating triangles are disjoint. But in the reduction we did not use any
triangle which we both shift and rotate so we proved that RealTriangularDoorPlacement
is ∃ℝ-complete, even when 𝑇𝑠 and 𝑇𝑟 are required to be disjoint.
Also note that one can generalize RealTriangularDoorPlacement to allow arbitrary

triangles. Now, consider the case where four triangles are placed such that they enclose a
rectangular region between them and these triangles cannot be shifted nor rotated. Let each
of the remaining (not necessarily right isosceles) triangles be both in 𝑇𝑠 and 𝑇𝑟 and initially
placed at the bottom left corner of this rectangular region. Furthermore, let their shifting
ranges correspond to the rectangular region. So, they can be moved and rotated freely inside
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Figure 6.9: Converting variable-constraint incidence graph

the rectangular region. This is a special case of RealTriangularDoorPlacement (when
we allow arbitrary triangles) and a triangle packing problem. This problem is clearly in ∃ℝ.
Although packing convex polygons inside a square container is proven to be ∃ℝ-complete
[AMS22], to the best of our knowledge triangle packing inside a rectangular region is only
known to be NP-hard [Cho16].
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7 Conclusion

In this thesis, we considered several types of problems related to doors. We proved that
both the placement and the replacement problem are tractable for squared doors, while these
problems are NP-complete and PSPACE-complete, respectively, for circular doors. In such, we
realized that there is a dichotomy between squared and circular doors, caused by the number
of placement options for the respective door shape. Namely, one can see a correspondence
between 2-Sat and squared doors and between 3-Sat and circular doors.
We then proved that two motion planning problems where an agent can move and open

doors (but not close them) in an environment with walls are NP-complete. One of these
problems only allows pushing doors, while the other allows both pushing and pulling doors.
So, in that case the ability to pull doors does not make the problem “easier”. Furthermore, we
simplified the motion planning gadgets from [DDHO03] and showed that the one-way gadget
and the block gadget are sufficient to make a reduction from Planar 3-Coloring and thus to
prove NP-hardness.

We also showed that a packing-like placement problem involving triangular doors and real
number shifts and rotations is complete for ∃ℝ.

7.1 Future work

Placement and Replacement. It might be interesting to know if there are any interesting
tractable door problems where we have more than two ways of placing a door. Furthermore,
a more general framework could be established for determining exactly in which cases these
problems are tractable/intractable.
Motion planning. The complexity of the remaining variants of door motion planning

problems (see section 1.2), in particular Pull-Open-Doors and Push-Open/Close-Doors,
are open questions. We suspect that Push-Open/Close-Doors could be NP-complete by a
reduction to and from Push-Open-Doors. Namely, it could be the case that the ability to
close doors does not create an advantage for the agent. One variant we did not explicitly
mention, but which is interesting, is motion planning through doors that can be pushed more
than 90 degrees, for example a simple single door turnstile that can be freely rotated around
its hinge, where each push rotates the door 90 degrees. This is also an open problem from
[Gre+21]. It might also be interesting to know if there are any PSPACE-complete motion
planning problems with doors similar to the ones we have considered.
Problems related to ∃ℝ. It remains open, whether the problems RealSqaredDoor-

Placement and RealCircularDoorPlacement, defined analogously to RealTriangular-
DoorPlacement, are also hard for ∃ℝ. They can be shown to be contained in ∃ℝ by a
similar argument to Lemma 6.4. Another open problem is, whether triangle packing inside a
rectangular region is hard for ∃ℝ.
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