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Zusammenfassung

Modelle zu finden und zu untersuchen, welche Graphen erzeugen, die moglichst gut mit
echten Netzwerken tibereinstimmen, ist Kern des Forschungsgebiet ,,Network Science'.
Bestimmte Arten von Zufallsgraphen haben sich dafiir als besonders geeignet gezeigt,
verschiedene Typen von Netzwerke zu modellieren. In dieser Arbeit beschéftigen
wir uns mit der Anzahl Cliquen in verschiedenen Modellen zur Generierung von
Zufallsgraphen.

Wir zeigen fiir das Modell der geometrischen Zufallsgraphen (RGG) mit erwartet
konstantem Knotengrad eine Konzentrationsschranke fiir die Anzahl Cliquen.

Auflerdem zeigen wir, fir eine einfache Form des GIRG-Model fiir einen bestimmten
Parameterbereich eine Konzentrationsschranke fiir die Anzahl inklusionsmaximaler
Cliquen.

In beiden Modellen betrachten wir zundchst Schranken fir den Erwartungswert und
die Varianz einer Abschétzung der Anzahl inklusionsmaximaler Cliquen und zeigen
dann mit der Tschebyscheffschen Ungleichung die Konzentrationsschranke.

Auflerdem zeigen wir in beiden Modellen die Linearitidt des Erwartungswertes der
Anzahl aller Cliquen.

Die Linearitdt des Erwartungswertes der Anzahl aller Cliquen zeigen wir auch in der
Erweiterung des RGG-Modells um das Konzept der Temperatur.
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1. Einleitung

Graphen sind das wichtigste Mittel zur Modellierung von Netzwerken. Es besteht also
ein grofles Interesse daran passende Modelle zu finden, die Graphen erzeugen, die echte
Netzwerke gut abbilden, um dann z.B effiziente Algorithmen fir diese Netzwerke zu finden.

Das einfachste Modell eines Zufallsgraphen ist das sogenannte Erdés-Renyi-Modell [ER59).
Bei diesem Modell werden n Knoten jeweils paarweise mit einer Wahrscheinlichkeit p € (0, 1)
verbunden. Die daraus resultierenden Graphen haben jedoch wenig Gemeinsamkeiten mit
den meisten echten Netzwerken.

Deswegen werden meist andere Modelle, wie z.B. geometrische Zufallsgraphen (RGG) ver-
wendet. In diesem Modell werden Knoten in der Ebene verteilt und mit Kanten verbunden
wenn sie weniger als ein gewisse euklidische Distanz r voneinander entfernt sind. Die
Einfiihrung von Geometrie in das Modell hat den Effekt, dass die Kantenwahrscheinlichkeit
zwischen zwei Knoten mit gemeinsamen Nachbarn hoher ist als die Kantenwahrschein-
lichkeit von Knoten ohne gemeinsamen Nachbarn. Diese Eigenschaft kann durch den
sogenannten Clusterkoeffizient beschrieben werden. RGGs haben einen vergleichsweise
hohen Clusterkoeffizient [Dal02]. Da viele echte Netzwerke einen hohen Clusterkoeffizient
haben, ist dies eine wiinschenswerte Eigenschaft. Dieses Modell eignet sich zum Beispiel zu
Modellierung von Ad-hoc-Netzen wie in von Huson und Sen gemacht .

Bei RGGs haben die meisten Knoten ungefdhr den selben Knotengrad. Diese Homogenitét
ist jedoch bei vielen echten Netzwerken nicht gegeben. Viele echte Netzwerke sind sogenan-
nte Skalenfreie Netzwerke. Das heifit die Verteilung der Knotengrade folgt ungefahr einem
Power-Law. Skalenfreie Modelle mit einem hohen Clusterkoeffizient sind also besonders
interessant.

Das Wahrscheinlich meist untersuchte Modell dieser Art sind hyperbolische geometrische
Zufallsgraphen welche von Krioukov et al. in eingefithrt wurden. In diesem
Modell werden die Knoten in einer hyperbolischen Geometrie Platziert. Dieses Modell
eignet sich zum Beispiel zur Modellierung des Internet-Graph [BPK10].

In dieser Arbeit untersuchen wir allerdings stattdessen ein einfache Variante sogenannter
GIRGs welche von Bringmann Keusch und Lengler in einfithrt wurden. Sie zeigen
unter anderem, dass hyperbolische geometrische Zufallsgraphen als ein Spezialfall von
GIRGs betrachtet werden konnen. Das GIRG-Modell hat jedoch den Vorteil, dass es
Mathematisch meist leichter zu untersuchen ist.



1. Einleitung

Die Anzahl inklusionsmaximaler Cliquen in einem Graphen ist eine interessante Kennzahl
des Graphens. Es gibt einige Arbeiten die versuchen effiziente Algorithmen fiir das Finden
aller Inklusionsmaximaler Cliquen (MCE-Problem) zu entwickeln. Fiir Unit Disk Graphen
sei z.B. genannt. Die aus solchen Algorithmen gewonnen Cliquen kénnen dann
z.B zur zur optimale Ressourcen Allokation in Ad-hoc Netzwerken verwendet werden
[XLNO03]. Aber auch in z.B sozialen Netzwerken, welche eher durch GIRGs modelliert
werden kénnen, haben maximale Cliquen eine wichtige Bedeutung.

Es gibt aber bis jetzt kaum theoretisch fundierte Aussagen zu der Anzahl inklusions-
maximaler Cliquen in diesen Modellen. Mit dieser Arbeit versuchen wir dieses Problem
anzugehen.

1.1 Andere Arbeit zu diesem Thema

FEin Standardwerk zu geometrischen Zufallsgraphen ist das Buch von Mathew Penrose
Pen03]. Dort werden viele Eigenschaften von RGGs wie z.B. zur Konnektivitit gezeigt.

Fir das Thema dieser Arbeit besonders relevant ist die Aussage, dass die Anzahl inklusion-
smaximaler Cliquen in UDGs im Worst Case mit n Knoten 237 grof} sein kann. Ein Beweis

dafur findet sich in [GWGO05].

Die meiste andere Arbeit zu Cliquen in RGGs konzentriert sich auf die sogenannte Cliquen-
zahl (GroBe der grofiten Clique) wie z.B in [DMV13]. Dort finden sich auch Aussagen zu
der erwarteten Anzahl inklusionsmaximaler Cliquen bestimmter Groéfie.

Zu dem GIRG-Model selbst gibt es nur wenige Arbeiten. Allerdings sind alle Aussagen
zu hyperbolischen geometrischen Zufallsgraphen auch giiltig fiir das GIRG-Model, da
hyperbolischen geometrischen Zufallsgraphen ja als ein Spezialfall von dem GIRG-Model
betrachtet werden koénnen [BKL15]. Fiir hyperbolische geometrische Zufallsgraphen sei vor
allem das Papier genannt, welches sich mit Cliquen in hyperbolischen geometrischen
Zufallsgraphen auseinandersetzt.

1.2 Mein Beitrag und Gliederung

Nach der Einfihrung der notwendigen Grundlagen in Kapitel 2, zeigen wir in Kapitel 3,
dass fiir RGGs mit r € @(ﬁ) sowohl der Erwartungswert der Anzahl aller Cliquen in ©(n)
liegt als auch der Erwartungswert der Anzahl der inklusionsmaximaler Cliquen in ©(n)

liegt.

AuBlerdem zeigen wir, dass die Anzahl aller Cliquen und damit auch die Anzahl aller
inklusionsmaximaler Cliquen mit hoher Wahrscheinlichkeit (> 1 — O(2)) in O(n) liegt.
Dies machen wir, indem wir fiir eine Abschitzung, der Anzahl Cliquen, zeigen, dass sowohl
der Erwartungswert als auch die Varianz in O(n) liegen. Im Anschluss beweisen wir dann
die Aussage mit der Tschebyscheffschen Ungleichung.

Desweiteren zeigen wir, dass die Ergebnisse fiir den Erwartungswert auch gelten, wenn wir
das RGG-Modell um das Konzept der Temperatur erweitern und die Temperatur 7" im
Interval (0,1) liegt.

In letztem Kapitel zeigen wir fiir eine Vereinfachung des GIRG-Modell ohne Temperatur

und mit konkreter Gewichtsfunktion w, = (%)ﬁ, dass fiir Power-Law Exponent 5 > 3
der Erwartungswert, der Anzahl Cliquen und damit auch der Anzahl Inklusionsmaximaler
Cliquen, in O(n) liegt. Im Anschluss zeigen wir dann, dass die Anzahl aller inklusionsmax-
imalen Cliquen mit hoher Wahrscheinlichkeit (> 1 — O(1)) in O(n) liegt. Ebenso wie im
RGG zeigen wir dies, in dem wir fiir eine Abschitzung der Anzahl inklusionsmaximaler
Cliquen, zeigen, dass sowohl der Erwartungswert als auch die Varianz in O(n) liegen. Im
Anschluss kann die Aussage dann mit der Tschebyscheffschen Ungleichung bewiesen werden.



2. Grundlagen

2.1 Graphentheoretische Grundbegriffe

Ein ungerichteter Graph G ist ein geordnetes Paar (V| E), wobei die Menge V' eine Menge
von Knoten. Die Menge E ist die Kantenmenge bestehend aus zwei-elementigen Teilmengen
von V.

Die Nachbarschaft eines Knotens v bezeichnet die Menge aller Knoten, die durch eine Kante
mit v verbunden sind. In dieser Arbeit werden wir jedoch meistens die Nachbarschaft von
v.

Eine Clique ist eine Teilmenge der Knoten, fiir die gilt, dass jedes Knotenpaar {u,v} der
Teilmenge mit v # v mit einer Kante verbunden ist.

FEine Clique ist inklusionsmaximal wenn es keinen Knoten v € V' gibt, der nicht Teil der
Clique ist, aber zu allen Knoten der Clique mit einer Kante verbunden ist.

2.2 Modelle geometrischer Zufallsgraphen

2.2.1 Geometrische Zufallsgraphen (RGG)

Es werden n Knoten unabhéngig voneinander gleichverteilt auf dem zweidimensionalen
Einheitstorus T? platziert. Alle Knoten deren euklidische Distanz geringer ist als ein
bestimmter Abstand r werden dann mit einer Kante verbunden. Der Torus T? kann
quasi als Einheitsquadrat verstanden werden, bei dem sowohl die obere und untere Seite
miteinander als auch die rechte und linke Seite miteinander verbunden sind. Der Grund
fiir die Verwendung des Torus ist, dass man den Fall, dass Knoten am Rand liegen nicht
extra betrachten muss, da die Oberflidche eine kontinuierliche zusammenhéngende Flédche
ohne Rand ist. Formal gilt fiir die Knoten, dass jeweils die z- und y-Koordinate einer
Gleichverteilung auf dem Intervall [0,1] folgen, wobei die z- und y-Koordinate fiir jeden
Knoten unabhéngig voneinander und auch unabhéngig von den z- und y-Koordinaten aller
anderen Knoten sind. Alle Knoten deren euklidische Distanz geringer ist als ein bestimmter
Abstand r werden dann mit einer Kante verbunden.

Die aus diesem Modell erzeugten Graphen sind sogenannte Unit-Disk Graphen. Unit-Disk
Graphen sind dadurch definiert, dass zwei Knoten genau dann mit einer Kante verbunden
sind, wenn sich die Kreise mit den Knoten als Mittelpunkt und Radius 5 schneiden.



2. Grundlagen

In dieser Arbeit betrachten wir nur den Fall, dass r in @(%) liegt.

Da die Fliche des T? genau 1 gro8 ist, entspricht die Kantenwahrscheinlichkeit p,,, zwischen
beliebigen Knoten v und v, genau dem Flacheninhalt des Kreise mit Radius » um v. Da
der Flicheninhalt 7r? betrigt, und r in © (ﬁ) liegt, liegt py, in © (%) Dies hat den
Effekt, dass der erwartete Knotengrad eines jeden Knoten konstant ist, da der erwartete
Knotengrad np,, betriagt.

2.2.2 Geometrische Zufallsgraphen mit Temperatur

Das einfache Modell der RGGs kann um das Konzept der Temperatur erweitert werden.
Die Knotenpaare deren euklidischer Distanz geringer ist als r werden weiterhin sicher
mit einer Kante verbunden. Die Idee ist nun, dass auch Knoten mit einem groéfleren
Abstand miteinander eine gewisse Wahrscheinlichkeit haben mit einer Kante verbunden
zu sein und dass diese Wahrscheinlichkeit mit steigendem Abstand abnimmt. Wie stark
diese Wahrscheinlichkeit abnimmt wird durch den Parameter T" parametrisiert. In dieser
Arbeit betrachten wir die folgende Funktion mit einem Temperaturparameter 1" fiir die
Kantenwahrscheinlichkeit:

2
Pr[uueE\dist(u,v):ag]:{ ()T, x>r
1, r<r

2
Die 2 im Exponent von (g) T ist ein Normalisierungsfaktor fiir die Dimensionalitdt. Wie in
der folgenden Skizze zu erkennen nimmt die Kantenwahrscheinlichkeit mit sinkendem 7" ab
und im Grenzfall T' = 0 entspricht dieses Modell dem RGG ohne Temperatur.

[}
Pruv € E]

’ >
! dist(u,v)

Figure 2.1: Kantenwahrscheinlichkeit in Abhéngigkeit der Distanz der Knoten von ver-
schiedenen Parametern T

2.2.3 GIRG

In dieser Arbeit werden wir nur die simpelste Form eines GIRG ohne Temperatur, mit
konkreter Gewichtsfunktion und im Eindimensionalen betrachten. Im Gegensatz zu RGGs
platzieren wir die Knoten nicht auf dem zweidimensionalen Torus Einheitstorus T? sondern
auf dem eindimensionalen Einheitstorus T!, welcher dem Einheitskreis entspricht. Wir
erhalten ihn, wenn wir beide Enden des Intervalls [0,1] miteinander verbinden. Als
Distanzfunktion zwischen zwei Knoten nehmen wir die Lange des kiirzeren Kreisabschnitts
zwischen den Knoten.

Der wirklich Entscheidende Unterschied ist zu RGGs ist jedoch, dass in diesem Modell
jeder Knoten u der Knotenmenge V' = {1, ...,n} ein Gewicht w,, zugeordnet bekommt und



2.3. Wahrscheinlichkeitstheoretische Grundlagen

der Abstand bis zu dem zwei Knoten miteinander verbunden sind von den Gewichten der
beiden Knoten abhéngt. Die Summe aller Gewichte bezeichnen wir mit W. Zwei Knoten
werden genau dann mit einer Kante verbunden wenn die Distanz zwischen den beiden

1
Knoten kleiner gleich 37 ist. Als Gewichtsfunktion wihlen wir w, = ()71 mit g > 2.
Diese Funktion erfiillt das Power-Law, was heifit, dass die Anzahl an Knoten mit einem
Gewicht von mindestens w proportional zu w'~? ist.

AuBlerdem gilt, dass die Summe aller Gewichte W in O(n) liegt. Dies ldsst sich mit Lemma
zeigen. In dieser Arbeit werden wir nur den Fall Power-Law Exponent 5 > 3 betrachten.

2.3 Wahrscheinlichkeitstheoretische Grundlagen

In dieser Kapitel werden die wichtigsten wahrscheinlichkeitstheoretischen Grundlagen
erlautert. Die meisten Aussagen finden sich in Standardwerken wie in [MU17].

Erwartungswert

Der Erwartungswert einer Zufallsvariable gibt an welchen Wert eine Zufallsvraiable im
Mittel annimmt. Sei I eine Indexmenge. Sei X eine diskreten Zufallsvariable, die die Werte
x; mit ¢ € I, annehmen kann. Dann ist der Erwartungswert von X definiert als

E[X] = ZaziPr [X = z4].
el

Linearitédt des Erwartungswertes
Seien X7y, ..., X,, beliebige Zufallsvariablen. Seien ag,...,a, beliebige Konstanten. Sei
n

X =3 a;X; Dann gilt
=1

E[X] =Y aE[X].
=1

Multiplikationsformel des Erwartungswertes

n
Seien X1, ..., X, beliebige unabhéngige Zufallsvariablen. Sei X = [] X; Dann gilt
=1

Varianz

Die Varianz ist ein Ma$ fiir die Streuung einer Zufallsvariable. Sie ist die mittlere quadratis-
che Abweichung einer Zufallsvariable von ihrem Mittelwert. Die Varianz einer beliebigen
Zufallsvariable ist definiert als

VX]=E[(X -E[X])?].
Kovarianz
Die Kovarianz ist ein Maf} fiir den monotonen Zusammenhang zweier Zufallsvariablen. Die

Kovarianz zweier Zufallsvariablen X und Y mit einer gemeinsame Wahrscheinlichkeitsverteilung
lautet

Cov (X,Y) =E[(X —~E[X))(Y —E[Y])] = E[XY] - E[X]E[Y].

Mithilfe der Kovarianz lasst sich ein andere Ausdruck fir die Varianz finden.



2. Grundlagen

Lemma 2.1. Seien Xy, ..., X, beliebige Zufallsvariablen. Sei C' = > X} ihre Summe.
k=1

Dann gilt V[C] = i i Cov(Xg, X;).
k=1i=1

Proof. Aus der Definition der Varianz und Kovarianz und einfachen Termumformungen
folgt die Gleichung.

k=11i=1 k=1
Y S EXX] - Y S EXIEX
k=11i=1 k=11i=1
— zn: anE (X X;]) — E[Xg] E [X]
k=11:=1
= zn: Zn: COV(Xk, Xz)
k=11t=1

Tschebyscheffsche Ungleichung

Die Tschebyscheffsche UNgleichung gibt mit Hilfe der Varianz eine Schranke fiir die
Wahrscheinlichkeit, dass eine Zufallsvariable mehr als ein vorgegebenen Schwellenwert
von ihrem Mittelwert abweicht. Fiir eine beliebige Zufallsvariable X und einen beliebigen
Schwellenwert « gilt

ViX]

Pr[X ~E[X]|<a]>1- —5

(07

Chauchy-Schwarz Ungleichung fiir Erwartungswerte
Fiir zwei beliebige Zufallsvariablen X und Y mit einer gemeinsame Wahrscheinlichkeitsverteilung

gilt
E[XY] <\E[X?]E[Y?2].

Gesetzes der totalen Wahrscheinlichkeit
Sei X eine diskrete Zufallsvariable mit Wahrscheinlichkeitsfunktion fx und Y eine stetige
Zufallsvariable mit Wahrscheinlichkeitsdichte fy. Dann gilt

Ix@) = [ fr@)ix(@ Y = y)dy.

Die hier gezeigte Version ist nur eine bestimmte Variante diese Gesetztes.

Satz des totalen Erwartungswertes
Sei X eine Zufallsvariable und B eine beliebige Bedingung und —B das entsprechende
Komplementérereigniss . Dann gilt

E[X] =E[X | B]Pr[B] +E[X | ~B]Pr[~B]



2.4. Grenzwerte wichtiger Folgen, Reihen und Produkte

2.4 Grenzwerte wichtiger Folgen, Reihen und Produkte
Lemma 2.2. Jede Folge der Art (1 + O (%))9(") bzw (1 — O (%))6(") liegt in ©(1).

Proof. Nach Definition der O-Notation existieren flir ausreichend grofle n jeweils Konstanten
«a und [ das die Folgenden Ungleichungen gelten.

(07

1< (1+0<i))9<n> <+

1>(1-0 (1>)@(n) > (1— Zybn

n

)"

3

3

Die Folge (1 + %)5” ist monoton steigend und konvergiert gegen . Die Folge (1 — %)/Bn
ist monoton steigend und konvergiert gegen e~®?. Somit liegen beide Folgen in o(1). O

[V

n B—
Lemma 2.3. [BEGY) Die Reihe i liegt in ©(nA-T1)
i=1

-1
Proof. Da i8-1 monoton sinkend ist gilt

zn: T<i1 /iﬂ;—lldi

und

O]

36
Lemma 2.4. Das Produkt H 1+0 ( T > mit B > 3 kann fiir alle v < n durch einen

u=1 (uv

Term beschrankt werden der in O(1) liegt.

=
‘m

Proof. Durch anwenden des Logarithmus folgt

v-1 it v-1 .=
log(Hl—i—@( : )):Zlog(1+@( ))
u=1

(uv)B-1 u=1 (uv) =

Mit der bekannten Ungleichung log(1 + z) < z fiir £ > 0 kann die Summe nach oben
abgeschéitzt werden durch

Z@( o= ):(9(71%)1)_13115716_11

(uv)ﬁ—l

8=
Nach Lemma liegt die Summe Z u ~FT in ©(nA=T) und der Term vereinfacht sich zu

u=1

o (m%s) o) = o

™)
<3
w
I
sy



2. Grundlagen

Da g > 3 gilt ist der Exponent kleiner als als Null. Da v kleiner als n ist ist die Basis
grofer als eins und damit der gesamte Term in O(1). Wir haben somit auch gezeigt, dass
das Produkt in O(1) liegt, da ¢®® auch in O(1) liegt.

O]



3. Geometrische Zufallsgraphen (RGG)

3.1 Erwartungswert der Anzahl Cliquen

In diesem Abschnitt wird der Erwartungswert der Anzahl inklusionsmaximaler Cliquen des
Graphens G = (V, F) betrachtet. Es wird zunéchst gezeigt, dass der Erwartungswert der
Anzahl aller Cliquen in O(n) liegt. Im Anschluss wird gezeigt, dass der Erwartungswert
der Anzahl aller Inklusionsmaximaler Cliquen in Q(n) liegt. Daraus folgt, dass sowohl
der Erwartungswert aller Cliquen als auch der Erwartungswert aller inklusionsmaximaler
Cliquen in ©(n) liegt.

Lemma 3.1. Sei G = (V, E) ein geometrischer Zufallsgraph. Sei py, die Kantenwahrschein-
lichkeit. Sei F eine beliebige nicht leere Teilmenge von V, der Grofie k. Dann ist die
Wahrscheinlichkeit, dass F eine Clique ist, kleiner gleich (puv)k_l.

Proof. Sei x € F ein beliebiger aber fester Knoten aus F'. Die Wahrscheinlichkeit, dass F
eine Clique ist, ist kleiner als die Wahrscheinlichkeit, dass alle Knoten aus F' — {z} mit =
verbunden sind. Dies liegt daran, dass wenn F' eine Clique ist, alle Knoten aus F' — {z}
mit x verbunden sein miissen. Die Wahrscheinlichkeit, dass ein Knoten mit « verbunden
ist, betragt p,,. Die Wahrscheinlichkeiten, dass die Knoten aus F' — {z} mit 2 verbunden
sind, sind unabhéngig voneinander. Da F' — {z} insgesamt k — 1 Knoten enthélt, ist die
Wahrscheinlichkeit, dass alle Knoten aus F — {z} mit = verbunden sind, (py,)*~!.

O]

Theorem 3.2. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und einem
Radius r € @(ﬁ) Sei X die Anzahl Cliquen des Graphens G. Dann gilt dass der

Erwartungswert von X in O(n) liegt.

Proof. Aufgrund der Linearitdt des Erwartungswertes kann der Erwartungswert der Anzahl
der Cliquen als Summe der Wahrscheinlichkeiten fiir jede Teilmenge, dass diese Teilmenge
eine inklusionsmaximale Clique ist, formuliert werden. Da es (}) k-elementige Teilmengen
F von V gibt, gilt fiir den Erwartungswert von X



3. Geometrische Zufallsgraphen (RGG)

EX] =Y (Z) Pr[F mit |F| = k ist eine Clique].
k=1

Darauf kann nun mit Hilfe von Lemma 3.1 der Term nach oben abgeschitzt werden
durch

Zn: (Z) (puv)k_l -1

k=1

— 1 Zn: <Z> (puv)k . 1n—k

Puv k=1

< 1 i (Z) (puv)k . 1nfk.

" Pw [

Auf diesen Term kann der allgemeine Binomische Lehrsatz angewendet werden und der
Term vereinfacht sich zu

(1 + puw)”
Puv

Da die Kantenwahrscheinlichkeit p,, in ©(%) liegt, gilt, dass der Nenner des Bruchs in
@(%) liegt und der Term vereinfacht sich zu

O(n)(1 + puw)".

Da die Kantenwahrscheinlichkeit py, in ©(1) liegt, ist (1 + py,)" eine Folge der Art
(1+0 (%))” und liegt somit in O(1). Insgesamt kann also der Erwartungswert, der Anzahl

aller inklusionsmaximalen Cliquen in einem geometrischen Zufallsgraphen, nach oben durch
©(n) abgeschétzt werden. Damit liegt der Erwartungswert in O(n).

O

Lemma 3.3. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und Kanten-
wahrscheinlichkeit py,. Sei x ein beliebiger Knoten aus V. Dann ist die Wahrscheinlichkeit,
dass x isoliert ist, (1 — puy)" L.

Proof. Wenn zx isoliert ist, darf kein anderer Punkt mit x verbunden sein. Die Wahrschein-
lichkeit, dass zwei Knoten nicht miteinander verbunden sind betragt 1 — py,. Da die
Wahrscheinlichkeiten, ob die Knoten nicht miteinander verbunden sind , unabhangig
voneinander sind, betrigt die Wahrscheinlichkeit, dass x isoliert ist (1 — py, )™ O

Theorem 3.4. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und einem
Radius r € @(%) Sei X die Anzahl inklusionsmaximaler Cliquen des Graphens G. Dann

gilt dass der Erwartungswert von X in Q(n) liegt.

Proof. Der Erwartungswert, der Anzahl aller inklusionsmaximalen Cliquen in dem ge-
ometrischen Zufallsgraphen, ist grofler als der Erwartungswert der Anzahl inklusionsmaxi-
male Cliquen, der Gréfe eins. Die Anzahl der inklusionsmaximalen Cliquen der Grofle eins
entspricht der Anzahl isolierter Knoten. Aufgrund der Linearitdt des Erwartungswertes
und da es n mogliche Knoten gibt, gilt

E [Anzahl isolierter Knoten] = nPr [z € V ist isoliert] .

10



3.2. Konzentrationsschranke

Mit Lemma 3.3 ist dieser Term gleich
n(1 — puy)™ L.

Da der Radius py, in ©(1) liegt, ist (1 — puy)"~! eine Folge der Art (1—O (%))9(") und
liegt somit in O(1). Somit kann der Erwartungswert, der Anzahl aller inklusionsmaximalen
Cliquen in einem geometrischen Zufallsgraphen, nach unten durch ©(n) abgeschatzt werden.
Damit liegt der Erwartungswert in (n). O

Theorem 3.5. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ)

Dann liegt der Erwartungswert der Anzahl inklusionsmaximaler Cliqguen des Graphens und
der Erwartungswert aller Cliquen in O(n).

Proof. Theorem 3.4 besagt, dass der Erwartungswert aller Cliquen Cliquen in O(n) liegt.
Theorem 3.2 besagt, dass der Erwartungswert aller inklusionsmaximaler Cliquen in (n)
liegt. Da die Anzahl inklsusionsmaximaler Cliquen von der Anzahl aller Cliquen dominiert
wird, liegt sowohl der Erwartungswert der Anzahl aller Cliquen als auch der Erwartungswert
der Anzahl inklusionsmaximaler Cliquen in ©(n). O

3.2 Konzentrationsschranke

In diesem Abschnitt zeigen wir, dass die Anzahl Cliquen mit hoher Wahrscheinlichkeit
kleiner ist als an fiir ausreichend grofie Konstanten «.

Zu Beginn betrachten wir eine Motivation des Beweis. Die Idee ist ein Gitter auf den Torus
zu legen und dann fiir jede Zelle des Gitters die Anzahl an Cliquen mit Knoten in dieser
Zelle zu betrachten. Es zeigt sich, dass die Anzahl Cliquen pro Zelle fiir die meisten Zellen
quasi unabhéngig voneinander ist. Die Summe iiber alle Zellen ist also quasi eine Summe
unabhéngiger gleicher Zufallsvariablen. Nach dem Gesetz der groflen Zahlen folgt, dass die
Summe mit hoher Wahrscheinlichkeit relativ nah an ihrem Erwartungswert liegt. Entlang
dieser Idee orientiert sich der Beweis.

Technisch umgesetzt wird der Beweis mithilfe der tschebyscheffschen Ungleichung, welche
mithilfe der Varianz eine Abschétzung fiir die Abweichung einer Zufallsvariable von ihren
Erwartungswert gibt.

ViX]
a2

PriiX-E[X]|<a]>1-

Da sich die Varianz der Anzahl Cliquen nur schwer berechnen lésst, verwenden wir
stattdessen eine nur leicht abweichende Zufallsvariable, welche die Anzahl Cliquen do-
miniert.

3.2.1 Gittergrofle

Dazu betrachten wir ein Gitter iiber die Oberfliche des Torus. Wir bezeichnen die Menge
aller Zellen mit Z. Die Idee ist, die Grofle des Gitters so zu wahlen, dass wie n gleiche
quadratische Zellen haben. Da die Einteilung in n quadratische Zellen nur moglich ist
wenn n eine Quadratzahl ist, wird n auf die nidchste mindestens so grofie Quadratzahl d
aufgerundet und statt einem /n X \/n - Gitter ein Vd x v/d - Gitter iiber die Oberfliche des
Torus gelegt. Da die néchst groflere Quadratzahl einer Zahl um maximal einen konstanten
Faktor groBer ist, liegt d in ©(n). Somit ist das v/d x v/d - Gitter auch ein ©(y/n) x O(y/n)
- Gitter. Die Flache einer Zelle z ist somit auch © (%) groB.

11



3. Geometrische Zufallsgraphen (RGG)

3.2.2 Nachbarschaft einer Zelle

Sei z € Z eine beliebige Zelle. Knoten aus weit entfernten Zellen kénnen nicht mit Knoten
aus z verbunden sein. Wir bezeichnen die Zellen, die nah genug an z liegen, sodass sie
Knoten enthalten konnen, die mit Knoten aus Zelle z verbunden sind als Nachbarschaft
der Zelle z

L+1ED

@

Figure 3.1: Die diinne orange Linie um das rote Zelle umrandet das Gebiet welches Knoten
enthélt, die mit Knoten aus der roten Zelle verbunden sein kéonnen. Die
gelbe Linie umrandet alle Zellen, die in der Nachbarschaft von der roten Zelle
enthalten sind. Die blaue Linie umrandet (1 + 2[5)2 viele Zellen. Also die
Abschatzung nach Maximumsnorm fiir die Anzahl Zellen in der Nachbarschaft
einer Zelle.

Lemma 3.6. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
Z die Menge aller Zellen eines O(y/n) x ©(y/n) - Gitters. Dann besteht die Nachbarschaft

einer Zelle z € Z aus konstant vielen Zellen.

Proof. Sei s die Seitenlédnge einer Zelle. Dann enthélt die Nachbarschaft von z sicher
weniger als (1 +2[Z])? Zellen, da dies die Zellen sind, welche nach Maximumnorm Knoten
enthalten kénnen, die weniger als r von Knoten aus z entfernt sein kénnen (sieche Abbildung
1). Die Anzahl (1 + 2[%7)? liegt in O(1), da sowohl der Radius r als auch die Seitenlénge s

in @(ﬁ) liegt. O

3.2.3 Abschitzung der Anzahl Cliquen

Um die Anzahl Cliquen abzuschétzen ordnen wir jeder Zelle alle Cliquen zu, die Knoten
in dieser Zelle haben. Beachte, dass jede Clique Da jede Clique immer in mindestens
einer Zelle liegt, ist die Summe tiber alle Zellen groer als die Anzahl Cliquen. einer oder
mehreren Zellen zugewiesen wird. Die Anzahl zugewiesener Zellen summiert iiber alle
Zellen ist also grofler als die Anzahl aller Cliquen. Die Anzahl Cliquen mit Knoten in
Zelle z kann also durch 2/V:l abgeschitzt werden, wobei N, die Menge Knoten in der
Nachbarschaft von Zelle z bezeichnet. Insgesamt kénnen wir die Anzahl Cliquen nach oben
abschétzen durch C = Y 2IV:l. Diese Zufallsvariable C' domiert also die Anzahl aller

z€Z
Cliquen X

3.2.4 Erwartungswert einer Zelle

Um spéter die Tschebyscheffsche Ungleichung auf C' anzuwenden benétigen wir den Er-
wartungswert von C. Dazu betrachten wir zunéchst den Erwartungswert E {2|N zq einer

12



3.2. Konzentrationsschranke

einzelnen Zelle z . Dafiir brauchen wir noch eine weitere Zufallsvariable als Hilfe.
Sei N? die Indikatorvariable dafiir ob Knoten v in Nachbarschaft von Zelle z liegt. Sie ist
also 1, wenn v in der Nachbarschaft von z liegt und 0 wenn v auflerhalb der Nachbarschaft

von z liegt und Prv € N,| = Pr[N? = 1]. Damit gilt fiir die Anzahl der Knoten in der
Nachbarschaft einer Zelle |N,| = >~ N?.
2€Z

Es sei angemerkt, dass das folgende Lemma etwas allgemeiner formuliert ist, da wir
es fiir den Beweis der Varianz brauchen.

Lemma 3.7. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei

Z die Menge der Zellen des ©(y/n) x ©(y/n)-Gitters. Sei N, die Menge aller Knoten in
der Nachbarschaft einer Zelle z . Dann gilt fiir eine beliebige Konstante a € N und eine

beliebige Zelle z € Z, dass E {a'qu =1+ (a—1)Prjve N,])" € O(1) (firveV).

Proof. Aus der Definition fiir die Indikatorvariable N? wissen wir, dass die Anzahl der
Knoten in der Nachbarschaft von z als Summe iiber die einzelnen Indikatorvariablen der
Knoten formuliert werden kann. Wir erhalten

E [alNzl} ) [az;zNﬂ ) [H aN.:} _
2€Z

Da die Wahrscheinlichkeit ob ein Knoten innerhalb der Nachbarschaft eines Zelle liegt,
fir alle Knoten unabhéngig voneinander ist, kann der Erwartungswert in das Produkt
hereingezogen werden. Damit gilt

E [H aNz] TIE ]

2€Z z2€Z
= H a'Pr[N? = 1] + a°Pr [N? = 0]
2€Z
Da N? nur entweder 1 oder 0 sein kann, ist N7 = 0 das Gegenereignis zu N, = 1 und
Pr[N? =0] =1 —Pr[N? = 1]. Damit vereinfacht sich der obige Term zu

[T (@Pr[N?=1]+ (1 —Pr[N! =1]))
z€Z

= [ 0+ (a—1)Pr[N? =1]).
z€Z

Da die Wahrscheinlichkeit, dass ein Knoten innerhalb der Nachbarschaft einer Zelle liegt,
fir alle Knoten und Zellen gleich ist, kann das Produkt als Potenz mit der Basis eines
beliebigen Knotens v und einer beliebigen Zelle 2

(14 (a—1)Pr[N] =1])"
=1+ (a—1)Prfv e N,])"

formuliert werden. Nach Lemma 3.6 besteht die Nachbarschaft einer Zelle aus konstant
vielen Zellen. Da die Fléache einer Zelle O (%) grof} ist, ist auch die Nachbarschaft einer Zelle

(@) (%) grof}. Damit liegt auch die Wahrscheinlichkeit, dass ein Knoten in der Nachbarschaft

liegt, in O (%) Der obige Term kann also umgeformt werden zu
1 n
(o i)
n
Aus den Grundlagen wissen wir, dass diese Folge in O(1) liegt. O]

13



3. Geometrische Zufallsgraphen (RGG)

3.2.5 Erwartungswert aller Zellen

Nun kann der der Erwartungswert von C', also der Summe tiiber alle Zellen, berechnet
werden. Wir zeigen, dass der Erwartungswert von C, ebenso wie der Erwartungswert der
Anzahl Cliquen in O(n) liegt.

Lemma 3.8. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
Z die Menge der Zellen eines ©(y/n) x O(y/n)-Gitters. Sei N, die Menge aller Knoten in

der Nachbarschaft einer Zelle z € Z. Sei C = Y. 2IN:I. Dann ist E[C] € O(n).
z2€Z

Proof. Durch Einsetzen der Definition von C' folgt

E[C]=E
keZ

> 2Nk|] .

Aufgrund der Linearitdt des Erwartungswert kann der Erwartungswert in die Summe
hereingezogen werden. Damit gilt

E[C] = > E[2M]

keZ

Da die Anzahl Zellen |Z| in ©(n) liegt ( siehe ) und der Erwartungswert von 2/N=|
nach Lemma in O(1) liegt, liegt der Erwartungswert von C' somit in O(n). O

Da C ein Abschétzung nach oben fiir die Anzahl an Cliquen ist, folgt aus diesem Lemma
automatisch, dass die Anzahl Cliquen auch in O(n) liegt. Es ist also ein alternativer aber
etwas komplizierterer Beweis als der Beweis aus dem ersten Kapitel. Der Vorteil von C' ist
jedoch, dass wir nun leichter die Varianz berechnen koénnen.

3.3 Varianz der Abschitzung

Um die Varianz von C = 3. 2/V: abschétzen zu kénnen, reicht es die Kovarianzen, der
z2€Z

Zufallsvariablen 2/V=| zu betrachten (siehe . Zuerst machen wir eine Abschitzung fiir
die Kovarianz von 2/™V=1! und 21V=2! fiir beliebige Zellen z; und 25. Es kann also insbesondere
auch sein, dass die Nachbarschaften von z5 und 2 sich iiberschneiden oder sogar zo = 21
gilt und damit 2/N=11 und 2/¥=2| eine relativ hohe Kovarianz haben. Danach machen wir
eine Abschétzung fiir die Kovarianz von 21Nz und 212! fiir Zellen 2z, und 21, deren
Nachbarschaften sich nicht iiberschneiden. Fiir diese Zellen zeigen wir, dass 2/V=1 und
2IN=1 gogar eine negative Kovarianz haben.

3.3.1 Kovarianz benachbarter Zellen

Lemma 3.9. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei

Z die Menge der Zellen eines ©(y/n) x ©(y/n)-Gitters. Sei N, die Menge aller Knoten
in der Nachbarschaft einer Zelle z € Z. Dann gilt fiir zwei beliebige Zellen i,k € Z, dass
Cov (2Nl 2INily € O(1).

Proof. Nach der Definition der Kovarianz gilt die folgende Gleichung.

Cov (26l 2INily = [2|Nk|2\Niq -k {QINH} E [QINiq

14



3.3. Varianz der Abschitzung

Da der Erwartungswert von von 2/Vkl und 21Vl groer als Null ist kann der Term nach
oben abgeschétzt werden durch

E [Q‘Nk‘2|Ni|}

Aufgrund der Cauchy-Schwarz Ungleichung (siehe kann dieser Term noch weiter nach
oben abgeschétzt weren durch

V/E [2IVeI21Nel] E [21Nl 21V

Da sich die Zellen k und k nicht unterscheiden ist auch der Erwartungswert von 2/Vil2INil
und 2/Vk2INVkl fiir alle Zellen gleich. Somit gilt

VE [2IVeI2Nel] E [218:121M1] = /E [2INel2INel] E [21e121Vi]
-k [2|Nk‘2|Nk|}
—E {4|qu

Mit Lemma 3.7 folgt, dass dieser Erwartungswert in O(1) liegt. Damit liegt auch die
Kovarianz von 21Vl und 2/Vil in O(1). O

3.3.2 Kovarianz nicht benachbarter Zellen

Lemma 3.10. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
Z die Menge der Zellen eines ©(y/n) x ©(y/n)-Gitters. Sei N, die Menge aller Knoten
in der Nachbarschaft einer Zelle z € Z. Dann gilt fiir zwei beliebige Zellen i,k € Z deren

Nachbarschaften sich nicht iberschneiden, dass Cov(2/Vsl 2INil) < 0.

Proof. Nach der Definition der Kovarianz gilt
Cov(2Nkl 2INily = E [QINkIQ\Niq ) {2|qu E |:2|Ni|:|

Da die Zellen i und k gleich sind ist auch der Erwartungswert der Zufallsvariablen 2¥¢ und
2Ni gleich. Somit vereinfacht sich der obige Term zu

E [Q\Nkwguviq _E [2|Nk|]2,

Wie im Beweis des Lemma 3.7 kann |Ng| auch als Summe iiber die Indikatorvariablen N ]k’
geschrieben werden. Damit kann der obige Term umgeformt werden zu

[ SN YN
E|[2i= o7t —E[QlNk‘r

[ ijerNg
—E |27 —E[QW}Q.

Nach Lemma 3.7 ist E [2|Nk|} = (14 Pr[v € N,])" fiir ein beliebigen Knoten v und eine
beliebige Zelle z. Damit kann der obige Term umgeformt werden zu

[ > N
E |27 —(1+Prjve N,)*™

i n . .
=E | [] 2V | - @ +Prlv e N>
7j=1
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3. Geometrische Zufallsgraphen (RGG)

Da die Positionen der Knoten unabhingig voneinander gewahlt werden, sind auch die

Zufallsvariablen 2Vt fiir alle Knoten J unabhéngig voneinander. Der Erwartungswert
kann somit in das Produkt rein gezogen werden. Damit kann der obige Term umgeformt
werden zu

(ﬁ E [2Ni+Nf}) — (1+Prfv e N,

=1

Der Erwartungswert von oNi+N] st fiir alle Knoten gleich. Das Produkt kann also als

Potenz mit der Basis eines beliebigen Knotens j geschrieben werden. Damit kann der obige
Term umgeformt werden zu

_ (IE [QNZJ“NZJDH —(14Prve N,

Die Nachbarschaften von ¢ und k tiberschneiden sich nicht. Damit kann ein Knoten j nicht
in beiden Nachbarschaften gleichzeitig sein. Die Zufallsvariable Nj + N} kann also nur
entweder 1 oder 0 sein. Damit kann der obige Term umgeformt werden zu

(2'Pr [N} + N7 = 1] +2°Pr [N] + N/ = OD" —(1+Prjve N>

Da die Zufallsvariable N g+NZ-j entweder 1 oder 0 sein kann ist NV, g+NZ-j = 0 das Gegenereignis
zu N,z +Nij = 1 und damit ist Pr [N,g + Nij = 0} =1-Pr [N,g + Nij = 1}. Der obige Term
kann damit umgeformt werden zu

=(2Pr [NV} + N/ =1] + (1=Pr [N} + N/ =1]))" = (1 + Pr[v e N>

Da die Nachbarschaften von Zelle £ und Zelle 7 sich nicht tiberschneiden, ist die Wahrschein-
lichkeit, dass ein Knoten innerhalb einer der beiden Nachbarschaften liegt, die Summe der
Fléachen der beiden Nachbarschaften und damit doppelt so grofl wie die Wahrscheinlichkeit,
dass ein Knoten z innerhalb der Nachbarschaft einer Zelle k liegt. Der obige Term kann
damit umgeformt werden zu

=(4Pr[v e N,J+ (1 —2Pr[v € N,]))" — (1 + Prv € N,])*"
=(1+42Prjve N.))" — (1+2Pr[v e N,]+ Prv e N,J*)"
<0

3.3.3 Abschiatzung der Varianz

Um nun den Beweis fiir die Varianz von C' zusammenzusetzen, ist es noch notwendig zu
wissen, fiir wie viele Zellen wir die zweite bessere Abschitzung der Kovarianz verwenden
konnen. Wir hatten bereits gezeigt, dass die Nachbarschaft einer Zelle nur aus konstant
vielen Zellen besteht. Nun wollen wir zeigen, dass es fiir jede Zelle z nur konstant viele
Zellen gibt deren Nachbarschaft sich mit der Nachbarschaft von z {iberschneidet.

Lemma 3.11. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
Z die Menge aller Zellen eines ©(y/n) x ©(y/n) - Gitters. Sei z € Z eine beliebige Zelle.
Dann gibt es nur konstant viele Zellen deren Nachbarschaften sich mit der Nachbarschaft

von z Uberschneiden.
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3.3. Varianz der Abschitzung

Proof. Sei i eine weitere beliebige Zelle deren Nachbarschaft sich mit der Nachbarschaft
von z iiberschneidet. Dann gibt es eine Zelle k die sowohl in der Nachbarschaft von z als
auch in der Nachbarschaft ¢ liegt. Da i in der Nachbarschaft von k liegt, liegt auch k in
der Nachbarschaft von i. Zelle ¢ muss somit in der Nachbarschaft einer Zelle liegen, die in
der Nachbarschaft von z liegt. Da die Nachbarschaft einer Zelle aus O(1) Zellen besteht
kann es nur O(1) - O(1) = O(1) Zellen k geben die in Nachbarschaft einer Zelle liegen, die
in der Nachbarschaft von z liegt. O

Mit diesen Lemmata kénnen wir nun endlich zeigen, dass die Varianz in O(n) liegt.

Lemma 3.12. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
Z die Menge der Zellen des ©(y/n) x O(y/n)-Gitters. Sei N, die Menge aller Knoten in

der Nachbarschaft einer Zelle z € Z. Sei C = Y. 2=, Dann ist V[C] € O(n).
2€Z

Proof. Da C eine Summe von Zufallsvariablen ist, kann die Varianz von C' als Summe tiber
alle paarweisen Kovarianzen der Summanden geschrieben werden (siehe 2.1). Damit gilt

VIiC] = Z ZCOV(Z'N’“‘,Q‘N”)

keZieZ

Da alle Zellen gleich sind, ist auch die Summe iiber die Kovarianzen mit allen Zellen fiir alle
Zellen gleich. Somit entspricht der Term genau |Z|-mal der Summe tiber die Kovarianzen
mit allen Zellen fiir eine beliebige Zelle z. Somit gilt

ViC] = 17| ZCOV(2‘NZ|72|N2~I)
i€z

Wir wissen aus Lemma dass es nur konstant viele Zellen i gibt deren Nachbarschaft
sich mit der Nachbarschaft von z schneidet. Auf diese Kovarianzen miissen wir die O(1)-
Abschétzung von Lemma verwenden. Fir die restlichen Zellen kénnen wir allerdings
die kleiner 0 Abschéitzung aus Lemma verwenden. Der obige Term kann somit nach
oben abgeschétzt werden durch

|Z|(O(1) * O(1) + O(n) % 0)
Da die Anzahl an Zellen |Z| in O(n) liegt (siehe [3.2.1), gilt, dass die Varianz von C' in
O(n) liegt. O
3.3.4 Konzentrationsschranke

Mithilfe der Erkenntnis, dass sowohl der Erwartungswert als auch die Varianz der Zufallsvari-
able C in O(n) liegt, kann nun mit der tschebyscheffschen Ungleichung, die eigentliche
Konzentrationsschranke fiir die Anzahl Cliquen gezeigt werden. Der nun folgende Beweis
ist im Prinzip eine Formalisierung des in Abbildung dargestellten Beweis.
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3. Geometrische Zufallsgraphen (RGG)

C mit hoher

Wahrscheinlichkeit
L im Intervall X < O | X mit hoher Wahrecheinlichkeit im Intervall |
| | 1

| | | ;"":>| >

0 E[C] —©(n) E[C] E[C]+©(n) 0 E[C] 4+ ©(n)

Figure 3.2: Mithilfe der tschebyscheffschen Ungleichung ergibt sich die linke Seite der Skizze.
Durch die im voherigen Abschnitt gezeigten Eigenschaften ergibt sich die rechte
Seite.

Theorem 3.13. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) Sei
X die Anzahl an Cliquen in G. Dann existiert ein Konstante «, sodass gilt Pr[X < an] >

1-0(1).

Proof. Sei « eine Konstante fiir die gilt, dass an —E[C] € ©(n). Da E[C] € O(n) (Lemma
3), existiert diese Konstante auch wirklich.

Die Zufallsvariable C' dominiert die Anzahl Cliquen X (siehe [3.2.3). Somit gilt

Pr[X < an] >Pr[C < an]
=Pr[C —E[C] < an—E|[C]]

An dieser Stelle kann die Voraussetzung fiir a eingesetzt werden und es gilt
PriC-E[C]<an—-E[C]]=Pr[|C -E[C]]| < O(n)]

Mithilfe der tschebyscheffschen Ungleichung kann die Wahrscheinlichkeit nach unten
abgeschitzt werden durch

Da die Varianz nach Lemma 13 in O(n) liegt kann dieser Term nach unten abgeschétzt
werden durch

O]

Die eben gezeigte Konzentrationsschranke gilt ebenfalls fiir die Anzahl an inklusionsmaxi-
maler Cliquen, da die Anzahl inklusionsmaximaler Cliquen auf jeden Fall kleiner ist als die
Anzahl Cliquen.
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4. Geometrische Zufallsgraphen (RGG)
mit Temperatur

4.1 Erwartungswert der Anzahl Cliquen

In diesem Abschnitt wird fiir T € (0,1) gezeigt, dass die Kantenwahrscheinlichkeit p,,, in
@(%) liegt. Damit folgt mit Lemma dass dann auch der Erwartungswert der Anzahl
Cliquen in ©(n) liegt.

4.1.1 Wahrscheinlichkeitsverteilung des Abstands

Die Wahrscheinlichkeit p,,, dass zwei beliebige Knoten u und v miteinander verbunden
sind, ist abhéngig von dem Abstand der Knoten dist(u,v). Da der Abstand der Knoten
dist(u,v) eine Zufallsvariable ist, miissen zunéchst dessen Wahrscheinlichkeitsverteilung
Fy;st betrachten um p,,, berechnen zu kénnen.

Fiir einen beliebigen Knoten u gilt, dass alle Knoten innerhalb eines Kreises mit Radius
r um u ein Abstand weniger als r von u haben. Die Wahrscheinlichkeit, dass beliebiger
Knoten v # u einen Abstand kleiner gleich r zu w hat, entspricht also genau der Flache
des Kreises mr2. Dies gilt allerdings nur fiir einen Abstand kleiner als %, da sich ein Kreis
mit einem gréBerem Radius auf dem T? mit sich selbst schneidet und damit nicht mehr
genau eine Fliche von 7r? abdeckt. Fiir den Beweis ist allerdings nicht notwendig den
genauen verlauf von Fy;s ab diesem Bereich zu wissen sondern es reicht zu wissen, dass
der Abstand zwischen zwei Knoten nicht grofler werden kann als % auf dem Torus.

Aus der Wahrscheinlichkeitsfunktion lésst sich auch die Dichtefunktion fy;s herleiten. Fiir
Dichtefunktion fg;s; gilt im Intervall [0, %]

faist(z) = Fc;ist(x> = 27 (4.1)

4.1.2 Kantenwahrscheinlichkeit

Um die Kantenwahrscheinlichkeit p,, = Prluv € E] aus der Kantenwahrscheinlichkeit
in Abhéngigkeit der Distanz Pr [uv € F | dist(u,v) = x| zu berechnen, brauchen wir das
Gesetz der totalen Wahrscheinlichkeit Wir kénnen Es verwenden, da wir formal gesehen
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4. Geometrische Zufallsgraphen (RGG) mit Temperatur

Pr[uv € E] auch als Wahrscheinlichkeit betrachten kénnen, dass die Indikatorvariable ob
die Kante uv esxistiert gleich eins ist.

1

/2
Prjuv € E] = / Prluv € E|dist(u,v) = x| fgist(x)dx.
=0
In den Folgenden drei Lemmata wird diese Integral in unterschiedlichen Intervallen betra-
chtet.

Das erste Intervall ist [0,7]. Der daraus resultierende Anteil an der Wahrscheinlichkeit
entspricht der Wahrscheinlichkeit im einfachen Modell ohne Temperatur.

Lemma 4.1. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € ©(
Temperatur T € (0,1). Dann gilt fir zwei beliebige Knoten u,v € V' dass

I

=0

) und

S

Prfuv € E|dist(u,v) = ] fgist(x)dx € O (%)

Proof. Da die Wahrscheinlichkeit, dass die Kante uv existiert eins ist wenn die Knotendis-
tanz kleiner als r ist gilt

/ Pruv € E|dist(u,v) = ] faise(v)dz

=0
= / faist(z)dz
=0
=[Faist ()]
=7r?,
Dare© ( \/ﬁ) gilt, liegt dieser teil des Integrals in © (n) O

Das néchste Intervall [r, 3] ist der Bereich wo die Wahrscheinlichkeit mit der Distanz
geringer wird, aber die Distanz noch nicht so grofl wird, dass ein Kreis mit Radius aus
[r, 1] sich selbst schneidet.

Lemma 4.2. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) und

1

3
Temperatur T € (0,1). Dann gilt fir zwei beliebige Knoten u,v € E, dass [ Pr[uv € E|dist(u,v) = x] fg;st(x)
o(3)

Proof. Durch einsetzen der Dichtefunktion und der Kantenwahrscheinlichkeit in abhéngigkeit
der Distanz gilt

1
2

Pr[uv € E|dist(u,v) = x| faist(x)dx
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4.1. Erwartungswert der Anzahl Cliquen

DaT e (0,1) undr € © (T) liegt der Faktor vor dem Integral in O ( ) und der Term
vereinfacht sich zu

N|=

O(1> /xl_%dac.
n

T=r

Da T # 1 kann mit der normalen Potenzregel integriert werden. Damit gilt fiir das Integral

1
2
xlf%dm = [( ! 2)552%] = [:f’%}
2_ 2
T=r T T

Da T eine konstante ist, liegt dieser Term in O (%)

\N\»—t

Im letzten Intervall [% 7] konnen wir fir fy;s¢(«) nicht mehr den einfachen Term fy;s: ()
verwenden.

Lemma 4.3. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € ©(-=) und
Temperatur T € (0,1). Dann gilt fir zwei beliebige Knoten u,v € V' dass
1

B

X
| Pruwv € Eldist(u,v) = x| fgist(x)dx € O (%)

=

[N

Proof. Da die Kantenwahrscheinlichkeit monoton sinkend in der Knotendistanz ist, ist das
Maximum der bedingten Wahrscheinlichkeit Pr [uv € E|dist(u,v) = 2| auf dem Intervall
(3, 7] an der Stelle 1. Somit gilt fiir das Integral

S

1
L
1
/ Pruv € E|dist(u,v) = x| fgist(x)dx < Pr {uv € E|dist(u,v) = 2] faist(z)dx

N

r= x

1
2

=Pr {uv € E|dist(u,v) ] / faist(x

1V
<5> /fdm

DaT € (0,1) und r € © ) liegt der Faktor vor dem Integral in O ( ) und der obige

Term vereinfacht sich zu

O (i) / faist(x)dz = O (i) [Fdist(x)]f =0 (Tll) (1 B Z) =0 (rlz>

(=
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4. Geometrische Zufallsgraphen (RGG) mit Temperatur

Lemma 4.4. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r € @(ﬁ) und
Temperatur T € (0,1). Dann gilt fir zwei beliebige Knoten u,v € E dass Pr[uv € E] €

o)

Proof. Nach dem Gesetz der totalen Wahrscheinlichkeit kann wie in die folgende
Umformung gemacht werden.

V2
Prjuv € E] = / Pr[uv € E|dist(u,v) = x| fgist(x)dx

=0
r

= / Pr[uv € E|dist(u,v) = x| faist(z)dx

z=0

[N

+ / Pr[uv € E|dist(u,v) = x| faist(x)dx

r=r
1

72
+ / Pruv € E|dist(u,v) = x| fgist(x)dx

r=

N

Auf diese Integrale lassen sich Lemma 4.1 bis 4.3 anwenden. Somit gilt, dass Pr [uv € E]
in ©(1) liegt. O
4.1.3 Erwartungswert

Nun kann mit dem selben Beweis wie in Lemma gezeigt werden, dass der Erwartungswert
der Anzahl Cliquen und auch der Erwartungswert der Anzahl inklusionsmaximaler Cliquen

in © (%) liegen.
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5. GIRG

In diesem Kapitel zeigen wir fiir 8 > 3 , dass die Anzahl inklusionsmaximaler Cliquen mit
hoher Wahrscheinlichkeit in O(n) liegt.

Dies machen wir mit der selben Methodik wie in dem Beweis der Konzentrationsschranke
fiir RGGs. Auch Mathematisch ist dieser Beweis recht &hnlich. Wir zeigen also zunéchst,
dass sowohl Erwartungswert als auch die Varianz einer Abschéatzung in O(n) liegen und
kénnen dann mit Tschebyscheff eine Konzentrationsschranke zeigen. Wir zeigen auch in
diesem Kapitel, dass der Erwartungswert der Anzahl aller Cliquen und damit auch der
Erwartungswert der Anzahl inklusionsmaximaler Cliquen in O(n) liegen. Fiir den Beweis
der Varianz werden wir dann allerdings die inklusionsmaximalitét brauchen und somit die
Konzentrationsschranke nur fiir die Anzahl inklusionsmaximaler Cliquen zeigen.

5.0.1 Abschitzung der Anzahl Cliquen

Beim Beweis fiir RGGs haben wir die Cliquen Zellen zugeordnet. In diesem Beweis ordnen
wir jede Clique nun den Knoten zu die Teil der Clique sind. Wir kénnen dann die Anzahl
zugeordneter Cliquen eines Knotens dann durch zwei hoch die Anzahl Knoten in der
Nachbarschaft des Knotens abschéitzen. Diese Abschitzung reicht ist allerdings noch zu
ungenau um zu zeigen, dass der Erwartungswert der Anzahl Cliquen in O(n) liegt, da
z.b bei f = 3 allein Knoten v = 1 im Erwartungswert ©(y/n) viele Knoten in seiner
Nachbarschaft hat.

Eine Moglichkeit die Abschitzung genauer zu machen ist die Cliquen nicht mehr jedem
ihrer Knoten zuzuordnen, sondern nur noch dem Knoten mit geringstem Gewicht. Das
erlaubt uns die Anzahl zugeordneter Cliquen pro Knoten nun iiber 21V abzuschétzen,
wobei |N,| in diesem Beweis die innere Nachbarschaft von v ist. Die innere Nachbarschaft
von v definieren wir als die Teilmenge Nachbarschaft, deren Knoten ein héheres Gewicht
als v haben, inklusive dem Knoten v selbst. Die Idee hinter dieser Zuordnung ist, dass
jede Clique nur noch genau einem Knoten zugeordnet wird und dass Knoten mit hohen
Gewicht zwar relativ viele Nachbarn haben, aber es aber nur wenige Knoten mit noch
héheren Gewicht gibt.

Insgesamt ldsst sich die also die Anzahl aller Cliquen durch C = > 2
veV
abschétzen. Wobei N, die Teilmenge der Nachbarschaft von v oder v selbst sind und deren

Gewicht mindestens so grof ist, wie dass Gewicht von v.

INol nach oben
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5. GIRG

5.0.2 Erwartungswert

Zunichst zeigen wollen wir zeigen, dass der Erwartungswert von C' in O(n) liegt. Dazu
zeigen wir zundchst, dass der Erwartungswert E {Q‘qu fir alle Knoten v in O(1) liegt. Das
Folgende Lemma ist wieder etwas allgemeiner formuliert, da es spéter noch fiir den Beweis

[N

der Varianz benétigt wird. Fir E [2 } gilt der Beweis mit den Parameter ¢ = 2 und

b =1, da dann N, der inneren Nachbarschaft entspricht.

Lemma 5.1. Sei G = (V, E) ein GIRG mit Gewichtsfunktions w, = (%)ﬁ Sei N} die

v
Indikatorvariable dafiir ob Knoten u in der Nachbarschaft von v liegt. Sei |[N,| = > NY.
u=b

v—1

Dann gilt fir eine beliebige Konstante a € N | E [a‘N”q =21 1+ (a—1)Pr[uv € E]) €
u=1

O(1)

Proof. Per Definition gilt

B[] —E 2N g [ﬁ am‘] '
u=b

Da alle Knoten unabhéngig voneinander platziert werden kann der Erwartungswert in das
Produkt hereingezogen werden. Damit gilt

v

E lH aN:f] =]]E {aNﬂ =] (alPr [NV = 1] 4+ a°Pr [N = O])
u=>b u=>b u=>b

NP = 0 ist das Gegenereiniss zu N = 1. Somit ist Pr[NY =0] = 1 — Pr[N!? = 1]. Der

Term vereinfacht sich also zu

Wenn u = v gilt ist NV per Definition immer eins und ist der obige Term gleich

v—1
a]] @+ (a—1Pr[N =1])

u=>b

Fiir u # v ist die Wahrscheinlichkeit Pr [N = 1] die Wahrscheinlichkeit, dass uv eine Kante
ist also Pr[uv € E]. Da die Knoten gleichverteilt auf dem Intervall [0, 1] sind und Knoten
maximal % voneinander entfernt sein kénnen Kantenwahrscheinlichkeit kann durch die
Funktion % nach oben abgeschatzt werden. Der Term kann also nach oben abgeschatzt
werden durch

Nach Lemma liegt das Produkt in O(1) womit auch der gesamte Term auch in O(1)
liegt. O

Lemma 5.2. Sei G = (V, E) ein GIRG mit Gewichtsfunktions w, = (%)ﬁ.Sez’ B> 3. Sei

N, die innere Nachbarschaft von v ,inklusive v. Sei C' = Y 2Nl Dann gilt E[C] € O(n).
veV
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5.1. Konzentrationsschranke

Proof. Mit der Lineraritdt des Erwartungswertes und Lemma folgt

E[C] =E lzn: 2|Nv|] = zn:uz [2““‘] € O(n).

v=1 v=1

O

Da die Anzahl inklusionsmaximaler Cliquen kleiner ist als die Anzahl aller Cliquen, gilt
dieser Beweis also auch fiir Erwartungswert der Anzahl inkusionsmaximaler Cliquen.

5.1 Konzentrationsschranke

5.1.1 Abschitzung der Anzahl inklusionsmaximaler Cliquen

Die Konzentrationsschranke zeigen wir nur fiir die Anzahl inklusionsmaximaler Cliquen, da
uns dies erlaubt eine genauere Abschétzung zu verwenden, von der wir leichter eine Schranke
fiir die Varianz zeigen kénnen. Die Idee ist, dass alle Knoten aus der Nachbarschaft eines
Knoten ab einem gewissen Gewicht sicher eine Clique bilden und wir diese Knoten dann in
unserer Abschétzung Ignorieren kénnen. Die folgenden zwei Lemmata zeigen dies.

Lemma 5.3. Sei G = (V, E) ein GIRG mit Gewichtsfunktions w, = (%)ﬁ Sei Knoten
v € V beliebig. Sei A, die Teilmenge der Nachbarschaft von v fir die gilt, dass fiir alle
ue A gilt u< 2'Pu. Dann ist A, eine Clique.

Proof. Um zu zeigen, dass A, eine Clique ist, zeigen wir dass zwei beliebigen Knoten aus
A, eine Kante existiert.

Seien uq und uo beliebige Knoten aus A,. Dann sind u; und us am weitesten voneinander
entfernt wenn sie auf gegeniiberliegenden Seiten von v liegen und genau so weit, dass
. . . . . . . . w. w. w. w.
sie jeweils gerade noch mit v verbunden sind. Sie kénnen also maximal —— 4+ —2-—=

. . . . . wqpl/wv wuVQva
voneinander entfernt sein. Genau genommen gilt dies allerdings nur wenn —— + —%
kleiner ist als %, da Knoten auf dem Einheitskreis maximal % voneinander entfernt sein

. . . . . . . w w w w
konnen. Diesen Fall decken wir jedoch auch wenn wir die Entfernung mit —3— + —3—
nach oben abschéitzen. Damit u; und us miteinander verbunden sind miissen 41 und us

. . w w . . . .
auf jeden Fall weniger als —;2 voneinander entfernt sein. Fiir die Knoten u; und uz

muss also die die Bedingung

Woyy Wy Woye Wy Wayy Weyg

w w w

gelten. Durch einsetzen der Gewichtsfunktion folgt mit einfachen Gleichungsumformungen,
dass dies dquivalent ist zu

1 1 1
uffl + uffl < wb-l

Wenn nun i < 217y und u < 2 7Pv gilt ist diese Ungleichung erfiillt. O

Den Faktor 2'=# bezeichnen wir ab sofort mit «. Diese Eigenschaft hilft uns, da wir nun
die Anzahl inklusionsmaximaler Cliquen, deren Knoten mit dem geringsten Gewicht v ist

durch 21V| abschétzen konnen, wobei N; die Teilmenge der Nachbarschaft von v, inklusive
v, aber ohne die Clique A,, ist. Das folgende Lemma zeigt Dies.
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5. GIRG

Lemma 5.4. Sei G = (V, E) ein GIRG mit Gewichtsfunktions w, = (%)ﬁ Sei Knoten
v € V beliebig . Sei A, die Teilmenge der Nachbarschaft von v, fir die gilt dass fir alle
u € A, giltu < 27 Pu. Sei N{] die Teilmenge der Nachbarschaft von v inklusive v aber ohne
A,. Dann kann die Anzahl inklusionsmaximaler Cliquen, deren Knoten mit dem geringsten

Gewicht v ist durch 2Nl abgeschitzt werden.

Proof. Wir beweisen dies in dem wir zeigen, dass jede inklusionsmaximale Clique deren
Knoten mit geringstem Gewicht v ist eindeutig durch ihre Teilmenge der Knoten in N;J

identifiziert werden kann. Da es nur 2/Vo| verschiedene Teilmengen von N;} gibt folgt damit,

dass es maximal 9N viele inklusionsmaximale Cliquen geben kann.

Angenommen es gibe zwei inklusionsmaximale Cliquen C7 = BU Dy und Cy = B U D5 mit
Dy # Dy deren Knoten mit geringsten Gewicht v ist, wobei B jeweils Teilmenge der Knoten
aus N; und D; bzw. D5 jeweils die Teilmenge der Knoten aus A, sind. Dann ist auch
C3 = BU Dy U D5 eine Clique, da nach Lemma 1 alle Knoten aus D7 und Dy paarweise
miteinander verbunden sind und nach der Definition von Cy und C5 dasselbe fiir By und D1
bzw. B und D; gilt. Die Clique C'5 wiederspricht allerdings der inklusionsmaximalitdt von
C1 und C5. Es kann also keine zwei inklusionsmaximalen Cliquen mit derselben Teilmenge
der Knoten aus N, geben.

O]

Wir kénnen also nun fiir jeden Knoten v die Anzahl inklusionsmaximaler Cliquen, deren
Knoten mit geringstem Gewicht v ist durch 2/Vol abschéitzen und damit die Anzahl inklu-

sionsmaximaler Cliquen im gesamten Graphen durch C = S 2INul nach oben abschétzen.
veV

Der Erwartungswert von C liegt auch in O(n). Dies kann man auch mit Lemma 3.19
durch Ersetzen von N, mit N;) und Wahl der entsprechenden Parameter zeigen.

5.1.2 Varianz der Abschatzung

Lemma 5.5. Sei G = (V, E) ein GIRG mit Gewichtsfunktions w, = (%)ﬁ Sei Knoten
v € V beliebig . Sei N;) die Teilmenge der Nachbarschaft von v, inklusive v, fir die gilt

dass fir alle u € N, gilt 2 Pv <u <wv. Sei ¢ = ¥ 92INul . Dann gilt V [Cl} € O(n)
veV

Proof. Da C' eine Summe von Zufallsvariablen ist, kann die Varianz von €’ iiber die
paarweisen Koovarianzen auszurechnen

Fiir jeden Knoten v gilt, dass es nur Knoten u aus dem Intervall ([awv], min(n, [2])) , dass
es Knoten geben kann die sowohl in N, als auch N, enthalten sind. Fiir alle anderen
Knoten sind die Zufallsvariablen 2|N13| und 2|N;| somit unabhéngig voneinander und deren

Kovarianz damit null. Insgesamt gilt also fiir die Varianz

min(n, I_%J )

viel=y % Cov@M 2Ny =3 3 E[Qw;gw;]_E[QWL}E[QN;',
v=1 J

v=1 u=[av] u=[av]

Zunéchst betrachten wir separat den Sonderfall u = v. Hier entspricht die Kovarianz der
Varianz der Zufallsvariable und kann durch den Erwartungswert E [2|N wl2IN. vq =E [4|Nv|

26



5.1. Konzentrationsschranke

abgeschétzt werden. Mit Lemma folgt, dass auch dieser Erwartungswert in O(1) liegt.
Damit gilt

B minn,| 2 ]) o , ,
\V4 [C] — ; (0O1) + u:%:v#v (E [QNu2|Nu:| _E [QINU} E [QNul}))'

Bei Beweis zu RGGs haben wir zwischen Zellen, deren Nachbarschaften sich iiberschneiden,
und Zellen, deren Nachbarschaft sich nicht tiberschneiden, unterschieden. Analog dazu
unterscheiden wir hier zwischen Knotenpaaren u und v die nah genug zusammen liegen,
sodass es moglich ist, dass ein Knoten sowohl in N, als auch in N, liegt . Um dies machen
zu kénnen verwenden verwenden wir die Formel des totalen Erwartungswertes

B [2NU|2NU|} _E [QNUIQNMI | B} Pr[B] +E [2Nv|2Nu yﬁB} Pr [-B]

und wahlen als Bedingung B, dass v und v nah genug zusammen liegen, sodass es moglich
ist, dass es ein Knoten k gibt der sowohl in N, als auch in N, liegt.

Damit dies der Fall ist diirfen die Knoten maximal so weit voneinander entfernt sein, dass
es einen dritten Knoten k gibt, der sowohl mit u als auch mit v verbunden ist.Die Knoten
u und v sind somit auf jeden Fall weniger als “37* + “#7* voneinander entfernt. Da u
in O(v) liegt, muss auch & in O(v) liegen, damit es moglich ist, dass k sowohl in N;} als
auch in N, liegt. Mit v < n und 8 > 3 folgt, dass Wulle 4 Wiy in O(1) liegt und somit die
Wahrscheinlichkeit Pr [B] in O(2) liegt. Die Wahrscheinlichkeit Pr[~B] kénnen wir durch

eins nach oben abschétzen.

Den Erwartungswert E [2|N ;|2|N u | B} kénnen wir mithilfe der Cauchy-Schwarz-Ungleichung

nach oben abschétzen durch \/IE [4|N;| | B} E [4\N5| | B}. Der Erwartungswert E [4“\7’;' | B}

ist kleiner als 4E {4“\7;'}, da die Bedingung B nur Punkt u beinflusst und die |N:}| am
grofften wird wenn v in der Nachbarschaft von v enthalten ist und somit den Wert der
Zufallsvariable um maximal einen Faktor von vier erhcht. Der Erwartungswert E {4|Nv|}

liegt nach Lemma in O(1). Analog folgt, dass auch E [4‘Nu‘ \ B} in O(1) liegt. Somit
liegt auch E {2|NL|2|Nu| | B} in O(1) und der Term fiir die Varianz vereinfacht sich zu

Ui (0(1) + m:(;:; (0(;) +E |2%I2%! | =B ~E |2 B [2%])),

Es bleibt zu zeigen, dass die Differenz E [2|N;‘2|N;‘ \ —|B} -E [2|N;q E {2|NIL|} kleiner als O
ist. Diese Differenz entspricht quasi den Kovarianzen von Zellen deren Nachbarschaften
sich nicht iiberschneiden im Beweis der Varianz bei RGGs.

Auch in diesem Beweis kénnen wir |N,| und |N, | als Summe von Indikatorvariablen

formulieren. Es gilt also |N,| = ZU: N¥ bzw. |N,| = Zv: Nk Wobei N.F die
k=[av] k=[awv]

Indikatorvariable dafiir ist ob Knoten £ in N;} liegt. Wir nehmen im folgenden o0.B.d.A

u < v an. Da die Knoten unabhéngig voneinander auf dem Kreis platziert werden und da

Knoten v sicher in N; enthalten ist und u sicher in N;L aber nach Bedingung —B Knoten u

nicht in N;} und v nicht in N; enthalten ist ergibt sich

a1 -t — 1
B ] = [ B2 |-5] TT B[ 5] T &
k=[au] k=[av] k=u+1

2va | —|B] .
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5. GIRG

Der Erwartungswert von E [2N5+N§ ] —|B} ist 1 + Pr[uk € E] + Pr[vk € E]. Dies liegt
daran, dass N¥ + NF nur eins oder Null sein kann nach Bedingung —B und somit
Pr [Nk + N =0] =1 - Pr[NF+ NF =1] gilt. Die Wahrscheinlichkeit, dass N + N}
eins ist die Summe der Wahrslcheinlichlkeiten von N¥ =1 und N¥ = 1, da nach Bedingung
—B, der Knoten k nicht in N, und N, gleichzeitig sein kann.

Der Erwartungswert E [QN;k | ﬂB] entspricht E [2N;k} , wenn k # wu gilt. Der Er-

wartungswert [E [2va | —|B] entspricht E [2va} , wenn k # v gilt. Damit gilt

[av]—1 v—1
[2\Nu\2le\\ﬁB}—4 I1 E[QN} H 1+Prluk € E]+Prjvke E] [[ E 2N]
k=[ou] k=[av] k=u+1

Nun schauen wir uns den zweiten Teil der Differenz E [2|N;|2|N;| | ﬂB} —-E [2|N;q E {2|N;|}
an. Fir das Produkt der Erwartungswerte gilt nach Lemma

E {QWL} E [qu;}

[av]—1 u—1

=4 [[ E 2|N’“|} [T (1 +Prluk e E)(1+Prvk € E)) H E |N’“}
k=[au] k=[av] k=u+1
[av]—1 u—1 v—1 ,
=4 [] E ol N, l} [I 1+Prluke E]+Prlvk € E]+Pr[uk € E|Prjvk € E] [] E[2Nv’“|].
k=[au] k=[av] k=u+1

Die Differenz E [2|N;‘2|N;| | —B} - E [2|N;q E {2|NL|} ist also aufgrund des zusétzlichen
Summanden Pr[vk € E]Pr[uk € E] im mitteleren Produkt also kleiner als Null. Die
Varianz kann somit nach oben abgeschétzt werden durch

n min(n, LEJ)
> (o0m+ > o 5))
v=1 u=[av]#v
Dieser Term liegt in O(n) O

5.1.3 Konzentrationsschranke

Wir haben also nun fiir unsere Abschiitzung C der Inklusionsmaximaler Cliquen gezeigt,
dass sowohl der Erwartungswert als auch die Varianz von ¢’ in O(n) liegen. Es lasst
sich nun also mit einem Beweis wie in eine Konzentrationsschranke die Anzahl
inklusionsmaximaler Cliquen zeigen.
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6. Zusammenfassung und Ausblick

Wir haben in dieser Arbeit gezeigt, dass fir RGGs mit r € @(ﬁ) sowohl der Er-

wartungswert der Anzahl aller Cliquen in ©(n) liegt als auch der Erwartungswert der
Anzahl der inklusionsmaximaler Cliquen In ©(n) liegt.

Desweiteren haben wir gezeigt, dass die Ergebnisse fiir den Erwartungswert auch gelten,
wenn wir das RGG-Modell um das Konzept der Temperatur erweitern und die Temperatur
T im Interval (0,1) liegt.

Auflerdem haben wir gezeigt, dass die Anzahl aller Cliquen und damit auch die Anzahl
aller inklusionsmaximaler Cliquen mit hoher Wahrscheinlichkeit in O(n) liegt.

In letztem Kapitel haben wir fiir eine einfache Version des GIRG-Modell ohne Temperatur

1
und mit konkreter Gewichtsfunktion w, = (%)?-1 gezeigt, dass fiir Power-Law Exponent
B > 3 der Erwartungswert, der Anzahl Cliquen und damit auch der Anzahl Inklusionsmax-
imaler Cliquen, in O(n) liegt.

Ganz am Ende haben wir gezeigt, dass die Anzahl aller inklusionsmaximalen Cliquen mit
hoher Wahrscheinlichkeit in O(n) liegt. Hier besteht natiirlich auch die Frage ob diese
Konzentrationsschranke auch fiir die Anzahl aller Cliquen gilt.

Es bleiben allerdings noch viele weitere Fragen fiir zukiinftige Arbeit offen. Interessant wére
z.B. ob es moglich ist genauere Konzentrationsschranken mit anderen Methoden wie z.B. mit
der ,bounded differences inequality" zu zeigen. Auflerdem wire noch interessant was in den
Parameterbereichen passiert, die wir nicht in dieser Arbeit untersucht haben. Insbesondere
fir GIRGs mit Power-Law Exponent 5 € (2,3), wiaren Aussagen besonders interessant, da
dies der Parameterbereich ist, welcher viele echte Netzwerke besser modelliert. Aber auch
fiir RGGs mit anderem r bleibt die Anzahl Inklusionsmaximaler Cliquen eine spannende
Frage. Da in dieser Arbeit eigentlich alle Aussagen mit der O-Notaion gemacht wurden, ist
die Frage nach den genauen Konstanten eine weitere mogliche Fragestellung fiir zukiinftige
Arbeit.
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