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Zusammenfassung

Modelle zu finden und zu untersuchen, welche Graphen erzeugen, die möglichst gut mit
echten Netzwerken übereinstimmen, ist Kern des Forschungsgebiet „Network Science".
Bestimmte Arten von Zufallsgraphen haben sich dafür als besonders geeignet gezeigt,
verschiedene Typen von Netzwerke zu modellieren. In dieser Arbeit beschäftigen
wir uns mit der Anzahl Cliquen in verschiedenen Modellen zur Generierung von
Zufallsgraphen.

Wir zeigen für das Modell der geometrischen Zufallsgraphen (RGG) mit erwartet
konstantem Knotengrad eine Konzentrationsschranke für die Anzahl Cliquen.

Außerdem zeigen wir, für eine einfache Form des GIRG-Model für einen bestimmten
Parameterbereich eine Konzentrationsschranke für die Anzahl inklusionsmaximaler
Cliquen.

In beiden Modellen betrachten wir zunächst Schranken für den Erwartungswert und
die Varianz einer Abschätzung der Anzahl inklusionsmaximaler Cliquen und zeigen
dann mit der Tschebyscheffschen Ungleichung die Konzentrationsschranke.

Außerdem zeigen wir in beiden Modellen die Linearität des Erwartungswertes der
Anzahl aller Cliquen.

Die Linearität des Erwartungswertes der Anzahl aller Cliquen zeigen wir auch in der
Erweiterung des RGG-Modells um das Konzept der Temperatur.
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1. Einleitung

Graphen sind das wichtigste Mittel zur Modellierung von Netzwerken. Es besteht also
ein großes Interesse daran passende Modelle zu finden, die Graphen erzeugen, die echte
Netzwerke gut abbilden, um dann z.B effiziente Algorithmen für diese Netzwerke zu finden.

Das einfachste Modell eines Zufallsgraphen ist das sogenannte Erdös-Renyi-Modell [ER59].
Bei diesem Modell werden n Knoten jeweils paarweise mit einer Wahrscheinlichkeit p ∈ (0, 1)
verbunden. Die daraus resultierenden Graphen haben jedoch wenig Gemeinsamkeiten mit
den meisten echten Netzwerken.

Deswegen werden meist andere Modelle, wie z.B. geometrische Zufallsgraphen (RGG) ver-
wendet. In diesem Modell werden Knoten in der Ebene verteilt und mit Kanten verbunden
wenn sie weniger als ein gewisse euklidische Distanz r voneinander entfernt sind. Die
Einführung von Geometrie in das Modell hat den Effekt, dass die Kantenwahrscheinlichkeit
zwischen zwei Knoten mit gemeinsamen Nachbarn höher ist als die Kantenwahrschein-
lichkeit von Knoten ohne gemeinsamen Nachbarn. Diese Eigenschaft kann durch den
sogenannten Clusterkoeffizient beschrieben werden. RGGs haben einen vergleichsweise
hohen Clusterkoeffizient [Dal02]. Da viele echte Netzwerke einen hohen Clusterkoeffizient
haben, ist dies eine wünschenswerte Eigenschaft. Dieses Modell eignet sich zum Beispiel zu
Modellierung von Ad-hoc-Netzen wie in [HS95] von Huson und Sen gemacht .

Bei RGGs haben die meisten Knoten ungefähr den selben Knotengrad. Diese Homogenität
ist jedoch bei vielen echten Netzwerken nicht gegeben. Viele echte Netzwerke sind sogenan-
nte Skalenfreie Netzwerke. Das heißt die Verteilung der Knotengrade folgt ungefähr einem
Power-Law. Skalenfreie Modelle mit einem hohen Clusterkoeffizient sind also besonders
interessant.

Das Wahrscheinlich meist untersuchte Modell dieser Art sind hyperbolische geometrische
Zufallsgraphen welche von Krioukov et al. in [KPK+10] eingeführt wurden. In diesem
Modell werden die Knoten in einer hyperbolischen Geometrie Platziert. Dieses Modell
eignet sich zum Beispiel zur Modellierung des Internet-Graph [BPK10].

In dieser Arbeit untersuchen wir allerdings stattdessen ein einfache Variante sogenannter
GIRGs welche von Bringmann Keusch und Lengler in [BKL15] einführt wurden. Sie zeigen
unter anderem, dass hyperbolische geometrische Zufallsgraphen als ein Spezialfall von
GIRGs betrachtet werden können. Das GIRG-Modell hat jedoch den Vorteil, dass es
Mathematisch meist leichter zu untersuchen ist.
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1. Einleitung

Die Anzahl inklusionsmaximaler Cliquen in einem Graphen ist eine interessante Kennzahl
des Graphens. Es gibt einige Arbeiten die versuchen effiziente Algorithmen für das Finden
aller Inklusionsmaximaler Cliquen (MCE-Problem) zu entwickeln. Für Unit Disk Graphen
sei z.B. [GWG05] genannt. Die aus solchen Algorithmen gewonnen Cliquen können dann
z.B zur zur optimale Ressourcen Allokation in Ad-hoc Netzwerken verwendet werden
[XLN03]. Aber auch in z.B sozialen Netzwerken, welche eher durch GIRGs modelliert
werden können, haben maximale Cliquen eine wichtige Bedeutung.

Es gibt aber bis jetzt kaum theoretisch fundierte Aussagen zu der Anzahl inklusions-
maximaler Cliquen in diesen Modellen. Mit dieser Arbeit versuchen wir dieses Problem
anzugehen.

1.1 Andere Arbeit zu diesem Thema
Ein Standardwerk zu geometrischen Zufallsgraphen ist das Buch von Mathew Penrose
[Pen03]. Dort werden viele Eigenschaften von RGGs wie z.B. zur Konnektivität gezeigt.

Für das Thema dieser Arbeit besonders relevant ist die Aussage, dass die Anzahl inklusion-
smaximaler Cliquen in UDGs im Worst Case mit n Knoten 2

n
2 groß sein kann. Ein Beweis

dafür findet sich in [GWG05].

Die meiste andere Arbeit zu Cliquen in RGGs konzentriert sich auf die sogenannte Cliquen-
zahl (Größe der größten Clique) wie z.B in [DMV13]. Dort finden sich auch Aussagen zu
der erwarteten Anzahl inklusionsmaximaler Cliquen bestimmter Größe.

Zu dem GIRG-Model selbst gibt es nur wenige Arbeiten. Allerdings sind alle Aussagen
zu hyperbolischen geometrischen Zufallsgraphen auch gültig für das GIRG-Model, da
hyperbolischen geometrischen Zufallsgraphen ja als ein Spezialfall von dem GIRG-Model
betrachtet werden können [BKL15]. Für hyperbolische geometrische Zufallsgraphen sei vor
allem das Papier [BFK18] genannt, welches sich mit Cliquen in hyperbolischen geometrischen
Zufallsgraphen auseinandersetzt.

1.2 Mein Beitrag und Gliederung
Nach der Einführung der notwendigen Grundlagen in Kapitel 2, zeigen wir in Kapitel 3,
dass für RGGs mit r ∈ Θ( 1√

n
) sowohl der Erwartungswert der Anzahl aller Cliquen in Θ(n)

liegt als auch der Erwartungswert der Anzahl der inklusionsmaximaler Cliquen in Θ(n)
liegt.

Außerdem zeigen wir, dass die Anzahl aller Cliquen und damit auch die Anzahl aller
inklusionsmaximaler Cliquen mit hoher Wahrscheinlichkeit (≥ 1 − O( 1

n)) in O(n) liegt.
Dies machen wir, indem wir für eine Abschätzung, der Anzahl Cliquen, zeigen, dass sowohl
der Erwartungswert als auch die Varianz in O(n) liegen. Im Anschluss beweisen wir dann
die Aussage mit der Tschebyscheffschen Ungleichung.

Desweiteren zeigen wir, dass die Ergebnisse für den Erwartungswert auch gelten, wenn wir
das RGG-Modell um das Konzept der Temperatur erweitern und die Temperatur T im
Interval (0, 1) liegt.

In letztem Kapitel zeigen wir für eine Vereinfachung des GIRG-Modell ohne Temperatur
und mit konkreter Gewichtsfunktion wv = (n

v )
1

β−1 , dass für Power-Law Exponent β ≥ 3
der Erwartungswert, der Anzahl Cliquen und damit auch der Anzahl Inklusionsmaximaler
Cliquen, in O(n) liegt. Im Anschluss zeigen wir dann, dass die Anzahl aller inklusionsmax-
imalen Cliquen mit hoher Wahrscheinlichkeit (≥ 1 − O( 1

n)) in O(n) liegt. Ebenso wie im
RGG zeigen wir dies, in dem wir für eine Abschätzung der Anzahl inklusionsmaximaler
Cliquen, zeigen, dass sowohl der Erwartungswert als auch die Varianz in O(n) liegen. Im
Anschluss kann die Aussage dann mit der Tschebyscheffschen Ungleichung bewiesen werden.
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2. Grundlagen

2.1 Graphentheoretische Grundbegriffe
Ein ungerichteter Graph G ist ein geordnetes Paar (V, E), wobei die Menge V eine Menge
von Knoten. Die Menge E ist die Kantenmenge bestehend aus zwei-elementigen Teilmengen
von V .

Die Nachbarschaft eines Knotens v bezeichnet die Menge aller Knoten, die durch eine Kante
mit v verbunden sind. In dieser Arbeit werden wir jedoch meistens die Nachbarschaft von
v.

Eine Clique ist eine Teilmenge der Knoten, für die gilt, dass jedes Knotenpaar {u,v} der
Teilmenge mit u ̸= v mit einer Kante verbunden ist.

Eine Clique ist inklusionsmaximal wenn es keinen Knoten v ∈ V gibt, der nicht Teil der
Clique ist, aber zu allen Knoten der Clique mit einer Kante verbunden ist.

2.2 Modelle geometrischer Zufallsgraphen

2.2.1 Geometrische Zufallsgraphen (RGG)

Es werden n Knoten unabhängig voneinander gleichverteilt auf dem zweidimensionalen
Einheitstorus T2 platziert. Alle Knoten deren euklidische Distanz geringer ist als ein
bestimmter Abstand r werden dann mit einer Kante verbunden. Der Torus T2 kann
quasi als Einheitsquadrat verstanden werden, bei dem sowohl die obere und untere Seite
miteinander als auch die rechte und linke Seite miteinander verbunden sind. Der Grund
für die Verwendung des Torus ist, dass man den Fall, dass Knoten am Rand liegen nicht
extra betrachten muss, da die Oberfläche eine kontinuierliche zusammenhängende Fläche
ohne Rand ist. Formal gilt für die Knoten, dass jeweils die x- und y-Koordinate einer
Gleichverteilung auf dem Intervall [0,1] folgen, wobei die x- und y-Koordinate für jeden
Knoten unabhängig voneinander und auch unabhängig von den x- und y-Koordinaten aller
anderen Knoten sind. Alle Knoten deren euklidische Distanz geringer ist als ein bestimmter
Abstand r werden dann mit einer Kante verbunden.

Die aus diesem Modell erzeugten Graphen sind sogenannte Unit-Disk Graphen. Unit-Disk
Graphen sind dadurch definiert, dass zwei Knoten genau dann mit einer Kante verbunden
sind, wenn sich die Kreise mit den Knoten als Mittelpunkt und Radius r

2 schneiden.

3



2. Grundlagen

In dieser Arbeit betrachten wir nur den Fall, dass r in Θ( 1√
n

) liegt.
Da die Fläche des T2 genau 1 groß ist, entspricht die Kantenwahrscheinlichkeit puv zwischen
beliebigen Knoten u und v, genau dem Flächeninhalt des Kreise mit Radius r um v. Da
der Flächeninhalt πr2 beträgt, und r in Θ

(
1√
n

)
liegt, liegt puv in Θ

(
1
n

)
. Dies hat den

Effekt, dass der erwartete Knotengrad eines jeden Knoten konstant ist, da der erwartete
Knotengrad npuv beträgt.

2.2.2 Geometrische Zufallsgraphen mit Temperatur

Das einfache Modell der RGGs kann um das Konzept der Temperatur erweitert werden.
Die Knotenpaare deren euklidischer Distanz geringer ist als r werden weiterhin sicher
mit einer Kante verbunden. Die Idee ist nun, dass auch Knoten mit einem größeren
Abstand miteinander eine gewisse Wahrscheinlichkeit haben mit einer Kante verbunden
zu sein und dass diese Wahrscheinlichkeit mit steigendem Abstand abnimmt. Wie stark
diese Wahrscheinlichkeit abnimmt wird durch den Parameter T parametrisiert. In dieser
Arbeit betrachten wir die folgende Funktion mit einem Temperaturparameter T für die
Kantenwahrscheinlichkeit:

Pr [uv ∈ E | dist(u, v) = x] =
{ (

r
x

) 2
T , x > r

1, x ≤ r
.

Die 2 im Exponent von
(

r
x

) 2
T ist ein Normalisierungsfaktor für die Dimensionalität. Wie in

der folgenden Skizze zu erkennen nimmt die Kantenwahrscheinlichkeit mit sinkendem T ab
und im Grenzfall T = 0 entspricht dieses Modell dem RGG ohne Temperatur.

Figure 2.1: Kantenwahrscheinlichkeit in Abhängigkeit der Distanz der Knoten von ver-
schiedenen Parametern T

2.2.3 GIRG

In dieser Arbeit werden wir nur die simpelste Form eines GIRG ohne Temperatur, mit
konkreter Gewichtsfunktion und im Eindimensionalen betrachten. Im Gegensatz zu RGGs
platzieren wir die Knoten nicht auf dem zweidimensionalen Torus Einheitstorus T2 sondern
auf dem eindimensionalen Einheitstorus T1, welcher dem Einheitskreis entspricht. Wir
erhalten ihn, wenn wir beide Enden des Intervalls [0,1] miteinander verbinden. Als
Distanzfunktion zwischen zwei Knoten nehmen wir die Länge des kürzeren Kreisabschnitts
zwischen den Knoten.

Der wirklich Entscheidende Unterschied ist zu RGGs ist jedoch, dass in diesem Modell
jeder Knoten u der Knotenmenge V = {1, ..., n} ein Gewicht wu zugeordnet bekommt und

4



2.3. Wahrscheinlichkeitstheoretische Grundlagen

der Abstand bis zu dem zwei Knoten miteinander verbunden sind von den Gewichten der
beiden Knoten abhängt. Die Summe aller Gewichte bezeichnen wir mit W . Zwei Knoten
werden genau dann mit einer Kante verbunden wenn die Distanz zwischen den beiden
Knoten kleiner gleich wuwv

W ist. Als Gewichtsfunktion wählen wir wu = (u
n)

1
β−1 mit β > 2.

Diese Funktion erfüllt das Power-Law, was heißt, dass die Anzahl an Knoten mit einem
Gewicht von mindestens w proportional zu w1−β ist.

Außerdem gilt, dass die Summe aller Gewichte W in O(n) liegt. Dies lässt sich mit Lemma
2.3 zeigen. In dieser Arbeit werden wir nur den Fall Power-Law Exponent β ≥ 3 betrachten.

2.3 Wahrscheinlichkeitstheoretische Grundlagen
In dieser Kapitel werden die wichtigsten wahrscheinlichkeitstheoretischen Grundlagen
erläutert. Die meisten Aussagen finden sich in Standardwerken wie in [MU17].

Erwartungswert
Der Erwartungswert einer Zufallsvariable gibt an welchen Wert eine Zufallsvraiable im
Mittel annimmt. Sei I eine Indexmenge. Sei X eine diskreten Zufallsvariable, die die Werte
xi mit i ∈ I, annehmen kann. Dann ist der Erwartungswert von X definiert als

E [X] =
∑
i∈I

xiPr [X = xi].

Linearität des Erwartungswertes
Seien X1, ..., Xn beliebige Zufallsvariablen. Seien a1, ..., an beliebige Konstanten. Sei
X =

n∑
i=1

aiXi Dann gilt

E [X] =
n∑

i=1
aiE [Xi].

Multiplikationsformel des Erwartungswertes
Seien X1, ..., Xn beliebige unabhängige Zufallsvariablen. Sei X =

n∏
i=1

Xi Dann gilt

E [X] =
n∏

i=1
E [Xi].

Varianz
Die Varianz ist ein Maß für die Streuung einer Zufallsvariable. Sie ist die mittlere quadratis-
che Abweichung einer Zufallsvariable von ihrem Mittelwert. Die Varianz einer beliebigen
Zufallsvariable ist definiert als

V [X] = E
[
(X − E [X])2

]
.

Kovarianz
Die Kovarianz ist ein Maß für den monotonen Zusammenhang zweier Zufallsvariablen. Die
Kovarianz zweier Zufallsvariablen X und Y mit einer gemeinsame Wahrscheinlichkeitsverteilung
lautet

Cov (X, Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ] − E [X]E [Y ] .

Mithilfe der Kovarianz lässt sich ein andere Ausdruck für die Varianz finden.
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2. Grundlagen

Lemma 2.1. Seien X1, ..., Xn beliebige Zufallsvariablen. Sei C =
n∑

k=1
Xk ihre Summe.

Dann gilt V [C] =
n∑

k=1

n∑
i=1

Cov(Xk, Xi).

Proof. Aus der Definition der Varianz und Kovarianz und einfachen Termumformungen
folgt die Gleichung.

V [C]

=E
[
C2
]

− E [C]2

=E

( n∑
k=1

Xk

)2
− E

[
n∑

k=1
Xk

]2

=E
[

n∑
k=1

n∑
i=1

XkXi

]
−
(

n∑
k=1

E [Xk]
)2

=
n∑

k=1

n∑
i=1

E [XkXi] −
n∑

k=1

n∑
i=1

E [Xk]E [Xi]

=
n∑

k=1

n∑
i=1

E [XkXi] − E [Xk]E [Xi]

=
n∑

k=1

n∑
i=1

Cov(Xk, Xi)

Tschebyscheffsche Ungleichung
Die Tschebyscheffsche UNgleichung gibt mit Hilfe der Varianz eine Schranke für die
Wahrscheinlichkeit, dass eine Zufallsvariable mehr als ein vorgegebenen Schwellenwert
von ihrem Mittelwert abweicht. Für eine beliebige Zufallsvariable X und einen beliebigen
Schwellenwert α gilt

Pr [|X − E [X] | < α] ≥ 1 − V [X]
α2 .

Chauchy-Schwarz Ungleichung für Erwartungswerte
Für zwei beliebige Zufallsvariablen X und Y mit einer gemeinsame Wahrscheinlichkeitsverteilung
gilt

E [XY ] ≤
√
E [X2]E [Y 2].

Gesetzes der totalen Wahrscheinlichkeit
Sei X eine diskrete Zufallsvariable mit Wahrscheinlichkeitsfunktion fX und Y eine stetige
Zufallsvariable mit Wahrscheinlichkeitsdichte fY . Dann gilt

fX(x) =
∫

fY (y)fX(x | Y = y)dy.

Die hier gezeigte Version ist nur eine bestimmte Variante diese Gesetztes.

Satz des totalen Erwartungswertes
Sei X eine Zufallsvariable und B eine beliebige Bedingung und ¬B das entsprechende
Komplementärereigniss . Dann gilt

E [X] = E [X | B] Pr [B] + E [X | ¬B] Pr [¬B]

6



2.4. Grenzwerte wichtiger Folgen, Reihen und Produkte

2.4 Grenzwerte wichtiger Folgen, Reihen und Produkte
Lemma 2.2. Jede Folge der Art (1 + O

(
1
n

)
)Θ(n) bzw (1 − O

(
1
n

)
)Θ(n) liegt in Θ(1).

Proof. Nach Definition der O-Notation existieren für ausreichend große n jeweils Konstanten
α und β das die Folgenden Ungleichungen gelten.

1 < (1 + O

( 1
n

)
)Θ(n) < (1 + α

n
)βn

1 > (1 − O

( 1
n

)
)Θ(n) > (1 − α

n
)βn

Die Folge (1 + α
n )βn ist monoton steigend und konvergiert gegen eαβ . Die Folge (1 − α

n )βn

ist monoton steigend und konvergiert gegen e−αβ . Somit liegen beide Folgen in Θ(1).

Lemma 2.3. [BFG+] Die Reihe
n∑

i=1
i
− 1

β−1 liegt in Θ(n
β−2
β−1 )

Proof. Da i
−1

β−1 monoton sinkend ist gilt

n∑
i=1

i
−1

β−1 ≤ 1 +
n∫

i=1

i
−1

β−1 di

= 1 + β − 1
β − 2(n

β−2
β−1 − 1) = O(n

β−2
β−1 )

und
n∑

i=1
i

−1
β−1 ≥ n

−1
β−1 +

n∫
i=1

i
−1

β−1 di

≥ β − 1
β − 2n

β−2
β−1 + n

− 1
β−1 = O(n

β−2
β−1 )

Lemma 2.4. Das Produkt
v−1∏
u=1

1 + Θ
(

n
3−β
β−1

(uv)
1

β−1

)
mit β ≥ 3 kann für alle v ≤ n durch einen

Term beschränkt werden der in O(1) liegt.

Proof. Durch anwenden des Logarithmus folgt

log(
v−1∏
u=1

1 + Θ

 n
3−β
β−1

(uv)
1

β−1

) =
v−1∑
u=1

log(1 + Θ

 n
3−β
β−1

(uv)
1

β−1

).

Mit der bekannten Ungleichung log(1 + x) ≤ x für x > 0 kann die Summe nach oben
abgeschätzt werden durch

v−1∑
u=1

Θ

 n
3−β
β−1

(uv)
1

β−1

 = Θ
(

n
3−β
β−1

)
v

− 1
β−1

v−1∑
u=1

u
−1

β−1

Nach Lemma 2.3 liegt die Summe
v−1∑
u=1

u
− 1

β−1 in Θ(n
β−2
β−1 ) und der Term vereinfacht sich zu

Θ
(

n
3−β
β−1 v

− 1
β−1

)
Θ(v

β−2
β−1 ) = Θ((n

v
)

3−β
β−1 ).

7



2. Grundlagen

Da β ≥ 3 gilt ist der Exponent kleiner als als Null. Da v kleiner als n ist ist die Basis
größer als eins und damit der gesamte Term in O(1). Wir haben somit auch gezeigt, dass
das Produkt in O(1) liegt, da eO(1) auch in O(1) liegt.
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3. Geometrische Zufallsgraphen (RGG)

3.1 Erwartungswert der Anzahl Cliquen

In diesem Abschnitt wird der Erwartungswert der Anzahl inklusionsmaximaler Cliquen des
Graphens G = (V, E) betrachtet. Es wird zunächst gezeigt, dass der Erwartungswert der
Anzahl aller Cliquen in O(n) liegt. Im Anschluss wird gezeigt, dass der Erwartungswert
der Anzahl aller Inklusionsmaximaler Cliquen in Ω(n) liegt. Daraus folgt, dass sowohl
der Erwartungswert aller Cliquen als auch der Erwartungswert aller inklusionsmaximaler
Cliquen in Θ(n) liegt.

Lemma 3.1. Sei G = (V, E) ein geometrischer Zufallsgraph. Sei puv die Kantenwahrschein-
lichkeit. Sei F eine beliebige nicht leere Teilmenge von V, der Größe k. Dann ist die
Wahrscheinlichkeit, dass F eine Clique ist, kleiner gleich (puv)k−1.

Proof. Sei x ∈ F ein beliebiger aber fester Knoten aus F . Die Wahrscheinlichkeit, dass F
eine Clique ist, ist kleiner als die Wahrscheinlichkeit, dass alle Knoten aus F − {x} mit x
verbunden sind. Dies liegt daran, dass wenn F eine Clique ist, alle Knoten aus F − {x}
mit x verbunden sein müssen. Die Wahrscheinlichkeit, dass ein Knoten mit x verbunden
ist, beträgt puv. Die Wahrscheinlichkeiten, dass die Knoten aus F − {x} mit x verbunden
sind, sind unabhängig voneinander. Da F − {x} insgesamt k − 1 Knoten enthält, ist die
Wahrscheinlichkeit, dass alle Knoten aus F − {x} mit x verbunden sind, (puv)k−1.

Theorem 3.2. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und einem
Radius r ∈ Θ( 1√

n
). Sei X die Anzahl Cliquen des Graphens G. Dann gilt dass der

Erwartungswert von X in O(n) liegt.

Proof. Aufgrund der Linearität des Erwartungswertes kann der Erwartungswert der Anzahl
der Cliquen als Summe der Wahrscheinlichkeiten für jede Teilmenge, dass diese Teilmenge
eine inklusionsmaximale Clique ist, formuliert werden. Da es

(n
k

)
k-elementige Teilmengen

F von V gibt, gilt für den Erwartungswert von X

9



3. Geometrische Zufallsgraphen (RGG)

E [X] =
n∑

k=1

(
n

k

)
Pr [F mit |F | = k ist eine Clique] .

Darauf kann nun mit Hilfe von Lemma 3.1 der Term nach oben abgeschätzt werden
durch

n∑
k=1

(
n

k

)
(puv)k−1 · 1

= 1
puv

n∑
k=1

(
n

k

)
(puv)k · 1n−k

≤ 1
puv

n∑
k=0

(
n

k

)
(puv)k · 1n−k.

Auf diesen Term kann der allgemeine Binomische Lehrsatz angewendet werden und der
Term vereinfacht sich zu

(1 + puv)n

puv

Da die Kantenwahrscheinlichkeit puv in Θ( 1
n) liegt, gilt, dass der Nenner des Bruchs in

Θ( 1
n) liegt und der Term vereinfacht sich zu

Θ(n)(1 + puv)n.

Da die Kantenwahrscheinlichkeit puv in Θ( 1
n) liegt, ist (1 + puv)n eine Folge der Art

(1 + O
(

1
n

)
)n und liegt somit in O(1). Insgesamt kann also der Erwartungswert, der Anzahl

aller inklusionsmaximalen Cliquen in einem geometrischen Zufallsgraphen, nach oben durch
Θ(n) abgeschätzt werden. Damit liegt der Erwartungswert in O(n).

Lemma 3.3. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und Kanten-
wahrscheinlichkeit puv. Sei x ein beliebiger Knoten aus V . Dann ist die Wahrscheinlichkeit,
dass x isoliert ist, (1 − puv)n−1.

Proof. Wenn x isoliert ist, darf kein anderer Punkt mit x verbunden sein. Die Wahrschein-
lichkeit, dass zwei Knoten nicht miteinander verbunden sind beträgt 1 − puv. Da die
Wahrscheinlichkeiten, ob die Knoten nicht miteinander verbunden sind , unabhängig
voneinander sind, beträgt die Wahrscheinlichkeit, dass x isoliert ist (1 − puv)n−1.

Theorem 3.4. Sei G = (V, E) ein geometrischer Zufallsgraph mit n Knoten und einem
Radius r ∈ Θ( 1√

n
). Sei X die Anzahl inklusionsmaximaler Cliquen des Graphens G. Dann

gilt dass der Erwartungswert von X in Ω(n) liegt.

Proof. Der Erwartungswert, der Anzahl aller inklusionsmaximalen Cliquen in dem ge-
ometrischen Zufallsgraphen, ist größer als der Erwartungswert der Anzahl inklusionsmaxi-
male Cliquen, der Größe eins. Die Anzahl der inklusionsmaximalen Cliquen der Größe eins
entspricht der Anzahl isolierter Knoten. Aufgrund der Linearität des Erwartungswertes
und da es n mögliche Knoten gibt, gilt

E [Anzahl isolierter Knoten] = nPr [x ∈ V ist isoliert] .

10



3.2. Konzentrationsschranke

Mit Lemma 3.3 ist dieser Term gleich

n(1 − puv)n−1.

Da der Radius puv in Θ( 1
n) liegt, ist (1 − puv)n−1 eine Folge der Art (1 − O

(
1
n

)
)Θ(n) und

liegt somit in Θ(1). Somit kann der Erwartungswert, der Anzahl aller inklusionsmaximalen
Cliquen in einem geometrischen Zufallsgraphen, nach unten durch Θ(n) abgeschätzt werden.
Damit liegt der Erwartungswert in Ω(n).

Theorem 3.5. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

).
Dann liegt der Erwartungswert der Anzahl inklusionsmaximaler Cliquen des Graphens und
der Erwartungswert aller Cliquen in Θ(n).

Proof. Theorem 3.4 besagt, dass der Erwartungswert aller Cliquen Cliquen in O(n) liegt.
Theorem 3.2 besagt, dass der Erwartungswert aller inklusionsmaximaler Cliquen in Ω(n)
liegt. Da die Anzahl inklsusionsmaximaler Cliquen von der Anzahl aller Cliquen dominiert
wird, liegt sowohl der Erwartungswert der Anzahl aller Cliquen als auch der Erwartungswert
der Anzahl inklusionsmaximaler Cliquen in Θ(n).

3.2 Konzentrationsschranke
In diesem Abschnitt zeigen wir, dass die Anzahl Cliquen mit hoher Wahrscheinlichkeit
kleiner ist als αn für ausreichend große Konstanten α.
Zu Beginn betrachten wir eine Motivation des Beweis. Die Idee ist ein Gitter auf den Torus
zu legen und dann für jede Zelle des Gitters die Anzahl an Cliquen mit Knoten in dieser
Zelle zu betrachten. Es zeigt sich, dass die Anzahl Cliquen pro Zelle für die meisten Zellen
quasi unabhängig voneinander ist. Die Summe über alle Zellen ist also quasi eine Summe
unabhängiger gleicher Zufallsvariablen. Nach dem Gesetz der großen Zahlen folgt, dass die
Summe mit hoher Wahrscheinlichkeit relativ nah an ihrem Erwartungswert liegt. Entlang
dieser Idee orientiert sich der Beweis.
Technisch umgesetzt wird der Beweis mithilfe der tschebyscheffschen Ungleichung, welche
mithilfe der Varianz eine Abschätzung für die Abweichung einer Zufallsvariable von ihren
Erwartungswert gibt.

Pr [|X − E [X] | < α] ≥ 1 − V [X]
α2

Da sich die Varianz der Anzahl Cliquen nur schwer berechnen lässt, verwenden wir
stattdessen eine nur leicht abweichende Zufallsvariable, welche die Anzahl Cliquen do-
miniert.

3.2.1 Gittergröße

Dazu betrachten wir ein Gitter über die Oberfläche des Torus. Wir bezeichnen die Menge
aller Zellen mit Z. Die Idee ist, die Größe des Gitters so zu wählen, dass wie n gleiche
quadratische Zellen haben. Da die Einteilung in n quadratische Zellen nur möglich ist
wenn n eine Quadratzahl ist, wird n auf die nächste mindestens so große Quadratzahl d
aufgerundet und statt einem

√
n×

√
n - Gitter ein

√
d×

√
d - Gitter über die Oberfläche des

Torus gelegt. Da die nächst größere Quadratzahl einer Zahl um maximal einen konstanten
Faktor größer ist, liegt d in Θ(n). Somit ist das

√
d ×

√
d - Gitter auch ein Θ(

√
n) × Θ(

√
n)

- Gitter. Die Fläche einer Zelle z ist somit auch Θ
(

1
n

)
groß.

11



3. Geometrische Zufallsgraphen (RGG)

3.2.2 Nachbarschaft einer Zelle

Sei z ∈ Z eine beliebige Zelle. Knoten aus weit entfernten Zellen können nicht mit Knoten
aus z verbunden sein. Wir bezeichnen die Zellen, die nah genug an z liegen, sodass sie
Knoten enthalten können, die mit Knoten aus Zelle z verbunden sind als Nachbarschaft
der Zelle z

Figure 3.1: Die dünne orange Linie um das rote Zelle umrandet das Gebiet welches Knoten
enthält, die mit Knoten aus der roten Zelle verbunden sein können. Die
gelbe Linie umrandet alle Zellen, die in der Nachbarschaft von der roten Zelle
enthalten sind. Die blaue Linie umrandet (1 + 2⌈ r

s⌉)2 viele Zellen. Also die
Abschätzung nach Maximumsnorm für die Anzahl Zellen in der Nachbarschaft
einer Zelle.

Lemma 3.6. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge aller Zellen eines Θ(

√
n) × Θ(

√
n) - Gitters. Dann besteht die Nachbarschaft

einer Zelle z ∈ Z aus konstant vielen Zellen.

Proof. Sei s die Seitenlänge einer Zelle. Dann enthält die Nachbarschaft von z sicher
weniger als (1 + 2⌈ r

s⌉)2 Zellen, da dies die Zellen sind, welche nach Maximumnorm Knoten
enthalten können, die weniger als r von Knoten aus z entfernt sein können (siehe Abbildung
1). Die Anzahl (1 + 2⌈ r

s⌉)2 liegt in O(1), da sowohl der Radius r als auch die Seitenlänge s
in Θ( 1√

n
) liegt.

3.2.3 Abschätzung der Anzahl Cliquen

Um die Anzahl Cliquen abzuschätzen ordnen wir jeder Zelle alle Cliquen zu, die Knoten
in dieser Zelle haben. Beachte, dass jede Clique Da jede Clique immer in mindestens
einer Zelle liegt, ist die Summe über alle Zellen größer als die Anzahl Cliquen. einer oder
mehreren Zellen zugewiesen wird. Die Anzahl zugewiesener Zellen summiert über alle
Zellen ist also größer als die Anzahl aller Cliquen. Die Anzahl Cliquen mit Knoten in
Zelle z kann also durch 2|Nz | abgeschätzt werden, wobei Nz die Menge Knoten in der
Nachbarschaft von Zelle z bezeichnet. Insgesamt können wir die Anzahl Cliquen nach oben
abschätzen durch C =

∑
z∈Z

2|Nz |. Diese Zufallsvariable C domiert also die Anzahl aller

Cliquen X

3.2.4 Erwartungswert einer Zelle

Um später die Tschebyscheffsche Ungleichung auf C anzuwenden benötigen wir den Er-
wartungswert von C. Dazu betrachten wir zunächst den Erwartungswert E

[
2|Nz |

]
einer

12



3.2. Konzentrationsschranke

einzelnen Zelle z . Dafür brauchen wir noch eine weitere Zufallsvariable als Hilfe.
Sei Nv

z die Indikatorvariable dafür ob Knoten v in Nachbarschaft von Zelle z liegt. Sie ist
also 1, wenn v in der Nachbarschaft von z liegt und 0 wenn v außerhalb der Nachbarschaft
von z liegt und Pr [v ∈ Nz] = Pr [Nv

z = 1]. Damit gilt für die Anzahl der Knoten in der
Nachbarschaft einer Zelle |Nz| =

∑
z∈Z

Nv
z .

Es sei angemerkt, dass das folgende Lemma etwas allgemeiner formuliert ist, da wir
es für den Beweis der Varianz brauchen.

Lemma 3.7. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge der Zellen des Θ(

√
n) × Θ(

√
n)-Gitters. Sei Nz die Menge aller Knoten in

der Nachbarschaft einer Zelle z . Dann gilt für eine beliebige Konstante a ∈ N und eine
beliebige Zelle z ∈ Z, dass E

[
a|Nz |

]
= (1 + (a − 1)Pr [v ∈ Nz])n ∈ O(1) (für v ∈ V ).

Proof. Aus der Definition für die Indikatorvariable Nv
z wissen wir, dass die Anzahl der

Knoten in der Nachbarschaft von z als Summe über die einzelnen Indikatorvariablen der
Knoten formuliert werden kann. Wir erhalten

E
[
a|Nz |

]
= E

[
a

∑
z∈Z

Nv
z

]
= E

[∏
z∈Z

aNv
z

]
.

Da die Wahrscheinlichkeit ob ein Knoten innerhalb der Nachbarschaft eines Zelle liegt,
für alle Knoten unabhängig voneinander ist, kann der Erwartungswert in das Produkt
hereingezogen werden. Damit gilt

E
[∏

z∈Z

aNv
z

]
=
∏
z∈Z

E
[
aNv

z

]
=
∏
z∈Z

a1Pr [Nv
z = 1] + a0Pr [Nv

z = 0]

Da Nv
z nur entweder 1 oder 0 sein kann, ist Nv

z = 0 das Gegenereignis zu Nv
z = 1 und

Pr [Nv
z = 0] = 1 − Pr [Nv

z = 1]. Damit vereinfacht sich der obige Term zu∏
z∈Z

(aPr [Nv
z = 1] + (1 − Pr [Nv

z = 1]))

=
∏
z∈Z

(1 + (a − 1)Pr [Nv
z = 1]).

Da die Wahrscheinlichkeit, dass ein Knoten innerhalb der Nachbarschaft einer Zelle liegt,
für alle Knoten und Zellen gleich ist, kann das Produkt als Potenz mit der Basis eines
beliebigen Knotens v und einer beliebigen Zelle z

(1 + (a − 1)Pr [Nv
z = 1])n

= (1 + (a − 1)Pr [v ∈ Nz])n

formuliert werden. Nach Lemma 3.6 besteht die Nachbarschaft einer Zelle aus konstant
vielen Zellen. Da die Fläche einer Zelle O

(
1
n

)
groß ist, ist auch die Nachbarschaft einer Zelle

O
(

1
n

)
groß. Damit liegt auch die Wahrscheinlichkeit, dass ein Knoten in der Nachbarschaft

liegt, in O
(

1
n

)
. Der obige Term kann also umgeformt werden zu(

1 + O

( 1
n

))n

Aus den Grundlagen wissen wir, dass diese Folge in O(1) liegt.
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3. Geometrische Zufallsgraphen (RGG)

3.2.5 Erwartungswert aller Zellen

Nun kann der der Erwartungswert von C, also der Summe über alle Zellen, berechnet
werden. Wir zeigen, dass der Erwartungswert von C, ebenso wie der Erwartungswert der
Anzahl Cliquen in O(n) liegt.

Lemma 3.8. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge der Zellen eines Θ(

√
n) × Θ(

√
n)-Gitters. Sei Nz die Menge aller Knoten in

der Nachbarschaft einer Zelle z ∈ Z. Sei C =
∑

z∈Z
2|Nz |. Dann ist E [C] ∈ O(n).

Proof. Durch Einsetzen der Definition von C folgt

E [C] = E

∑
k∈Z

2|Nk|

 .

Aufgrund der Linearität des Erwartungswert kann der Erwartungswert in die Summe
hereingezogen werden. Damit gilt

E [C] =
∑
k∈Z

E
[
2|Nk|

]

Da die Anzahl Zellen |Z| in Θ(n) liegt ( siehe 3.2.1) und der Erwartungswert von 2|Nz |

nach Lemma 3.7 in O(1) liegt, liegt der Erwartungswert von C somit in O(n).

Da C ein Abschätzung nach oben für die Anzahl an Cliquen ist, folgt aus diesem Lemma
automatisch, dass die Anzahl Cliquen auch in O(n) liegt. Es ist also ein alternativer aber
etwas komplizierterer Beweis als der Beweis aus dem ersten Kapitel. Der Vorteil von C ist
jedoch, dass wir nun leichter die Varianz berechnen können.

3.3 Varianz der Abschätzung
Um die Varianz von C =

∑
z∈Z

2|Nz | abschätzen zu können, reicht es die Kovarianzen, der

Zufallsvariablen 2|Nz | zu betrachten (siehe 2.1). Zuerst machen wir eine Abschätzung für
die Kovarianz von 2|Nz1 | und 2|Nz2 | für beliebige Zellen z1 und z2. Es kann also insbesondere
auch sein, dass die Nachbarschaften von z2 und z1 sich überschneiden oder sogar z2 = z1
gilt und damit 2|Nz1 | und 2|Nz2 | eine relativ hohe Kovarianz haben. Danach machen wir
eine Abschätzung für die Kovarianz von 2|Nz1 | und 2|Nz2 | für Zellen z2 und z1, deren
Nachbarschaften sich nicht überschneiden. Für diese Zellen zeigen wir, dass 2|Nz1 | und
2|Nz2 | sogar eine negative Kovarianz haben.

3.3.1 Kovarianz benachbarter Zellen

Lemma 3.9. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge der Zellen eines Θ(

√
n) × Θ(

√
n)-Gitters. Sei Nz die Menge aller Knoten

in der Nachbarschaft einer Zelle z ∈ Z. Dann gilt für zwei beliebige Zellen i, k ∈ Z, dass
Cov(2|Nk|, 2|Ni|) ∈ O(1).

Proof. Nach der Definition der Kovarianz gilt die folgende Gleichung.

Cov (2|Nk|, 2|Ni|) = E
[
2|Nk|2|Ni|

]
− E

[
2|Nk|

]
E
[
2|Ni|

]
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3.3. Varianz der Abschätzung

Da der Erwartungswert von von 2|Nk| und 2|Ni| größer als Null ist kann der Term nach
oben abgeschätzt werden durch

E
[
2|Nk|2|Ni|

]
Aufgrund der Cauchy-Schwarz Ungleichung (siehe 2.3) kann dieser Term noch weiter nach
oben abgeschätzt weren durch √

E
[
2|Nk|2|Nk|]E [2|Ni|2|Ni|

]
Da sich die Zellen k und k nicht unterscheiden ist auch der Erwartungswert von 2|Ni|2|Ni|

und 2|Nk|2|Nk| für alle Zellen gleich. Somit gilt√
E
[
2|Nk|2|Nk|]E [2|Ni|2|Ni|

]
=
√
E
[
2|Nk|2|Nk|]E [2|Nk|2|Nk|]

=E
[
2|Nk|2|Nk|

]
=E

[
4|Nk|

]

Mit Lemma 3.7 folgt, dass dieser Erwartungswert in O(1) liegt. Damit liegt auch die
Kovarianz von 2|Nk| und 2|Ni| in O(1).

3.3.2 Kovarianz nicht benachbarter Zellen
Lemma 3.10. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√

n
). Sei

Z die Menge der Zellen eines Θ(
√

n) × Θ(
√

n)-Gitters. Sei Nz die Menge aller Knoten
in der Nachbarschaft einer Zelle z ∈ Z. Dann gilt für zwei beliebige Zellen i, k ∈ Z deren
Nachbarschaften sich nicht überschneiden, dass Cov(2|Nk|, 2|Ni|) < 0.

Proof. Nach der Definition der Kovarianz gilt

Cov(2|Nk|, 2|Ni|) = E
[
2|Nk|2|Ni|

]
− E

[
2|Nk|

]
E
[
2|Ni|

]
Da die Zellen i und k gleich sind ist auch der Erwartungswert der Zufallsvariablen 2Nk und
2Ni gleich. Somit vereinfacht sich der obige Term zu

E
[
2|Nk|2|Ni|

]
− E

[
2|Nk|

]2
.

Wie im Beweis des Lemma 3.7 kann |Nk| auch als Summe über die Indikatorvariablen Nk
j

geschrieben werden. Damit kann der obige Term umgeformt werden zu

E

2

n∑
j=1

Nj
k

2

n∑
j=1

Nj
i

− E
[
2|Nk|

]2

=E

2

n∑
j=1

Nj
k

+Nj
i

− E
[
2|Nk|

]2
.

Nach Lemma 3.7 ist E
[
2|Nk|

]
= (1 + Pr [v ∈ Nz])n für ein beliebigen Knoten v und eine

beliebige Zelle z. Damit kann der obige Term umgeformt werden zu

E

2

n∑
j=1

Nj
k

+Nj
i

− (1 + Pr [v ∈ Nz])2n

=E

 n∏
j=1

2Nj
k

+Nj
i

− (1 + Pr [v ∈ Nz])2n
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3. Geometrische Zufallsgraphen (RGG)

Da die Positionen der Knoten unabhängig voneinander gewählt werden, sind auch die
Zufallsvariablen 2Nj

k
+Nj

i für alle Knoten j unabhängig voneinander. Der Erwartungswert
kann somit in das Produkt rein gezogen werden. Damit kann der obige Term umgeformt
werden zu  n∏

j=1
E
[
2Nj

k
+Nj

i

]− (1 + Pr [v ∈ Nz])2n

Der Erwartungswert von 2Nj
k

+Nj
i ist für alle Knoten gleich. Das Produkt kann also als

Potenz mit der Basis eines beliebigen Knotens j geschrieben werden. Damit kann der obige
Term umgeformt werden zu

=
(
E
[
2Nj

k
+Nj

i

])n
− (1 + Pr [v ∈ Nz])2n

Die Nachbarschaften von i und k überschneiden sich nicht. Damit kann ein Knoten j nicht
in beiden Nachbarschaften gleichzeitig sein. Die Zufallsvariable N j

k + N j
i kann also nur

entweder 1 oder 0 sein. Damit kann der obige Term umgeformt werden zu(
21Pr

[
N j

k + N j
i = 1

]
+ 20Pr

[
N j

k + N j
i = 0

])n
− (1 + Pr [v ∈ Nz])2n

Da die Zufallsvariable N j
k+N j

i entweder 1 oder 0 sein kann ist N j
k+N j

i = 0 das Gegenereignis
zu N j

k + N j
i = 1 und damit ist Pr

[
N j

k + N j
i = 0

]
= 1 − Pr

[
N j

k + N j
i = 1

]
. Der obige Term

kann damit umgeformt werden zu

=
(
2Pr

[
N j

k + N j
i = 1

]
+
(
1 − Pr

[
N j

k + N j
i = 1

]))n
− (1 + Pr [v ∈ Nz])2n

Da die Nachbarschaften von Zelle k und Zelle i sich nicht überschneiden, ist die Wahrschein-
lichkeit, dass ein Knoten innerhalb einer der beiden Nachbarschaften liegt, die Summe der
Flächen der beiden Nachbarschaften und damit doppelt so groß wie die Wahrscheinlichkeit,
dass ein Knoten z innerhalb der Nachbarschaft einer Zelle k liegt. Der obige Term kann
damit umgeformt werden zu

= (4Pr [v ∈ Nz] + (1 − 2Pr [v ∈ Nz]))n − (1 + Pr [v ∈ Nz])2n

= (1 + 2Pr [v ∈ Nz])n − (1 + 2Pr [v ∈ Nz] + Pr [v ∈ Nz]2)n

<0

3.3.3 Abschätzung der Varianz

Um nun den Beweis für die Varianz von C zusammenzusetzen, ist es noch notwendig zu
wissen, für wie viele Zellen wir die zweite bessere Abschätzung der Kovarianz verwenden
können. Wir hatten bereits gezeigt, dass die Nachbarschaft einer Zelle nur aus konstant
vielen Zellen besteht. Nun wollen wir zeigen, dass es für jede Zelle z nur konstant viele
Zellen gibt deren Nachbarschaft sich mit der Nachbarschaft von z überschneidet.

Lemma 3.11. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge aller Zellen eines Θ(

√
n) × Θ(

√
n) - Gitters. Sei z ∈ Z eine beliebige Zelle.

Dann gibt es nur konstant viele Zellen deren Nachbarschaften sich mit der Nachbarschaft
von z überschneiden.
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3.3. Varianz der Abschätzung

Proof. Sei i eine weitere beliebige Zelle deren Nachbarschaft sich mit der Nachbarschaft
von z überschneidet. Dann gibt es eine Zelle k die sowohl in der Nachbarschaft von z als
auch in der Nachbarschaft i liegt. Da i in der Nachbarschaft von k liegt, liegt auch k in
der Nachbarschaft von i. Zelle i muss somit in der Nachbarschaft einer Zelle liegen, die in
der Nachbarschaft von z liegt. Da die Nachbarschaft einer Zelle aus O(1) Zellen besteht
kann es nur O(1) · O(1) = O(1) Zellen k geben die in Nachbarschaft einer Zelle liegen, die
in der Nachbarschaft von z liegt.

Mit diesen Lemmata können wir nun endlich zeigen, dass die Varianz in O(n) liegt.

Lemma 3.12. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
Z die Menge der Zellen des Θ(

√
n) × Θ(

√
n)-Gitters. Sei Nz die Menge aller Knoten in

der Nachbarschaft einer Zelle z ∈ Z. Sei C =
∑

z∈Z
2|Nz |. Dann ist V [C] ∈ O(n).

Proof. Da C eine Summe von Zufallsvariablen ist, kann die Varianz von C als Summe über
alle paarweisen Kovarianzen der Summanden geschrieben werden (siehe 2.1). Damit gilt

V [C] =
∑
k∈Z

∑
i∈Z

Cov(2|Nk|, 2|Ni|)

Da alle Zellen gleich sind, ist auch die Summe über die Kovarianzen mit allen Zellen für alle
Zellen gleich. Somit entspricht der Term genau |Z|-mal der Summe über die Kovarianzen
mit allen Zellen für eine beliebige Zelle z. Somit gilt

V [C] = |Z|
∑
i∈Z

Cov(2|Nz |, 2|Ni|)

Wir wissen aus Lemma 3.11, dass es nur konstant viele Zellen i gibt deren Nachbarschaft
sich mit der Nachbarschaft von z schneidet. Auf diese Kovarianzen müssen wir die O(1)-
Abschätzung von Lemma 3.9 verwenden. Für die restlichen Zellen können wir allerdings
die kleiner 0 Abschätzung aus Lemma 3.10 verwenden. Der obige Term kann somit nach
oben abgeschätzt werden durch

|Z|(O(1) ∗ O(1) + O(n) ∗ 0)

Da die Anzahl an Zellen |Z| in O(n) liegt (siehe 3.2.1), gilt, dass die Varianz von C in
O(n) liegt.

3.3.4 Konzentrationsschranke

Mithilfe der Erkenntnis, dass sowohl der Erwartungswert als auch die Varianz der Zufallsvari-
able C in O(n) liegt, kann nun mit der tschebyscheffschen Ungleichung, die eigentliche
Konzentrationsschranke für die Anzahl Cliquen gezeigt werden. Der nun folgende Beweis
ist im Prinzip eine Formalisierung des in Abbildung 3.3.4 dargestellten Beweis.
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3. Geometrische Zufallsgraphen (RGG)

Figure 3.2: Mithilfe der tschebyscheffschen Ungleichung ergibt sich die linke Seite der Skizze.
Durch die im voherigen Abschnitt gezeigten Eigenschaften ergibt sich die rechte
Seite.

Theorem 3.13. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

). Sei
X die Anzahl an Cliquen in G. Dann existiert ein Konstante α, sodass gilt Pr [X < αn] ≥
1 − O

(
1
n

)
.

Proof. Sei α eine Konstante für die gilt, dass αn −E [C] ∈ Θ(n). Da E [C] ∈ O(n) (Lemma
3), existiert diese Konstante auch wirklich.

Die Zufallsvariable C dominiert die Anzahl Cliquen X (siehe 3.2.3). Somit gilt

Pr [X < αn] ≥Pr [C < αn]
=Pr [C − E [C] < αn − E [C]]

An dieser Stelle kann die Voraussetzung für α eingesetzt werden und es gilt

Pr [C − E [C] < αn − E [C]] = Pr [|C − E [C] | < Θ(n)]

Mithilfe der tschebyscheffschen Ungleichung kann die Wahrscheinlichkeit nach unten
abgeschätzt werden durch

1 − V [C]
Θ(n2)

Da die Varianz nach Lemma 13 in O(n) liegt kann dieser Term nach unten abgeschätzt
werden durch

1 − O

( 1
n

)

Die eben gezeigte Konzentrationsschranke gilt ebenfalls für die Anzahl an inklusionsmaxi-
maler Cliquen, da die Anzahl inklusionsmaximaler Cliquen auf jeden Fall kleiner ist als die
Anzahl Cliquen.
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4. Geometrische Zufallsgraphen (RGG)
mit Temperatur

4.1 Erwartungswert der Anzahl Cliquen

In diesem Abschnitt wird für T ∈ (0, 1) gezeigt, dass die Kantenwahrscheinlichkeit puv in
Θ( 1

n) liegt. Damit folgt mit Lemma 3.4, dass dann auch der Erwartungswert der Anzahl
Cliquen in Θ(n) liegt.

4.1.1 Wahrscheinlichkeitsverteilung des Abstands

Die Wahrscheinlichkeit puv, dass zwei beliebige Knoten u und v miteinander verbunden
sind, ist abhängig von dem Abstand der Knoten dist(u, v). Da der Abstand der Knoten
dist(u, v) eine Zufallsvariable ist, müssen zunächst dessen Wahrscheinlichkeitsverteilung
Fdist betrachten um puv berechnen zu können.

Für einen beliebigen Knoten u gilt, dass alle Knoten innerhalb eines Kreises mit Radius
r um u ein Abstand weniger als r von u haben. Die Wahrscheinlichkeit, dass beliebiger
Knoten v ̸= u einen Abstand kleiner gleich r zu u hat, entspricht also genau der Fläche
des Kreises πr2. Dies gilt allerdings nur für einen Abstand kleiner als 1

2 , da sich ein Kreis
mit einem größerem Radius auf dem T2 mit sich selbst schneidet und damit nicht mehr
genau eine Fläche von πr2 abdeckt. Für den Beweis ist allerdings nicht notwendig den
genauen verlauf von Fdist ab diesem Bereich zu wissen sondern es reicht zu wissen, dass
der Abstand zwischen zwei Knoten nicht größer werden kann als 1√

2 auf dem Torus.

Aus der Wahrscheinlichkeitsfunktion lässt sich auch die Dichtefunktion fdist herleiten. Für
Dichtefunktion fdist gilt im Intervall [0, 1

2 ]

fdist(x) = F
′
dist(x) = 2πr. (4.1)

4.1.2 Kantenwahrscheinlichkeit

Um die Kantenwahrscheinlichkeit puv = Pr [uv ∈ E] aus der Kantenwahrscheinlichkeit
in Abhängigkeit der Distanz Pr [uv ∈ E | dist(u, v) = x] zu berechnen, brauchen wir das
Gesetz der totalen Wahrscheinlichkeit 2.3. Wir können Es verwenden, da wir formal gesehen
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4. Geometrische Zufallsgraphen (RGG) mit Temperatur

Pr [uv ∈ E] auch als Wahrscheinlichkeit betrachten können, dass die Indikatorvariable ob
die Kante uv esxistiert gleich eins ist.

Pr [uv ∈ E] =

1√
2∫

x=0

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx.

In den Folgenden drei Lemmata wird diese Integral in unterschiedlichen Intervallen betra-
chtet.

Das erste Intervall ist [0, r]. Der daraus resultierende Anteil an der Wahrscheinlichkeit
entspricht der Wahrscheinlichkeit im einfachen Modell ohne Temperatur.

Lemma 4.1. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

) und
Temperatur T ∈ (0, 1). Dann gilt für zwei beliebige Knoten u, v ∈ V dass

r∫
x=0

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx ∈ Θ
(

1
n

)
.

Proof. Da die Wahrscheinlichkeit, dass die Kante uv existiert eins ist wenn die Knotendis-
tanz kleiner als r ist gilt

r∫
x=0

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

=
r∫

x=0

fdist(x)dx

=[Fdist(x)]r0
=πr2.

Da r ∈ Θ
(

1√
n

)
gilt, liegt dieser teil des Integrals in Θ

(
1
n

)
Das nächste Intervall [r, 1

2 ] ist der Bereich wo die Wahrscheinlichkeit mit der Distanz
geringer wird, aber die Distanz noch nicht so groß wird, dass ein Kreis mit Radius aus
[r, 1

2 ] sich selbst schneidet.

Lemma 4.2. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

) und

Temperatur T ∈ (0, 1). Dann gilt für zwei beliebige Knoten u, v ∈ E, dass
1
2∫

x=r
Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx ∈

O
(

1
n

)
Proof. Durch einsetzen der Dichtefunktion und der Kantenwahrscheinlichkeit in abhängigkeit
der Distanz gilt

1
2∫

x=r

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

=

1
2∫

x=r

(
r

x

) 2
T

2πxdx

=2π(r2)
1
T

1
2∫

x=r

x1− 2
T dx.
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4.1. Erwartungswert der Anzahl Cliquen

Da T ∈ (0, 1) und r ∈ Θ
(

1√
n

)
liegt der Faktor vor dem Integral in O

(
1
n

)
und der Term

vereinfacht sich zu

O

( 1
n

) 1
2∫

x=r

x1− 2
T dx.

Da T ̸= 1 kann mit der normalen Potenzregel integriert werden. Damit gilt für das Integral

1
2∫

x=r

x1− 2
T dx =

[(
1

2 − 2
T

)
x2− 2

T

] 1
2

r

=
[
x2− 2

T

] 1
2

r
=
((1

2

)2− 2
T

− r2− 2
T

)
≤
(1

2

)2− 2
T

Da T eine konstante ist, liegt dieser Term in O
(

1
n

)

Im letzten Intervall [1
2 , 1√

2 ] können wir für fdist(x) nicht mehr den einfachen Term fdist(x)
verwenden.

Lemma 4.3. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

) und
Temperatur T ∈ (0, 1). Dann gilt für zwei beliebige Knoten u, v ∈ V dass

1√
2∫

x= 1
2

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx ∈ Θ
(

1
n

)

Proof. Da die Kantenwahrscheinlichkeit monoton sinkend in der Knotendistanz ist, ist das
Maximum der bedingten Wahrscheinlichkeit Pr [uv ∈ E|dist(u, v) = x] auf dem Intervall
[1
2 , 1√

2 ] an der Stelle 1
2 . Somit gilt für das Integral

1√
2∫

x= 1
2

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx ≤

1√
2∫

x= 1
2

Pr
[
uv ∈ E|dist(u, v) = 1

2

]
fdist(x)dx

= Pr
[
uv ∈ E|dist(u, v) = 1

2

] 1√
2∫

x= 1
2

fdist(x)dx

=
(

r2

1
2

) 1
T

1√
2∫

x= 1
2

fdist(x)dx

Da T ∈ (0, 1) und r ∈ Θ
(

1√
n

)
liegt der Faktor vor dem Integral in O

(
1
n

)
und der obige

Term vereinfacht sich zu

O

( 1
n

) 1√
2∫

x= 1
2

fdist(x)dx = O

( 1
n

)
[Fdist(x)]

1√
2

1
2

= O

( 1
n

)(
1 − π

4

)
= O

( 1
n

)

21



4. Geometrische Zufallsgraphen (RGG) mit Temperatur

Lemma 4.4. Sei G = (V, E) ein geometrischer Zufallsgraph mit Radius r ∈ Θ( 1√
n

) und
Temperatur T ∈ (0, 1). Dann gilt für zwei beliebige Knoten u, v ∈ E dass Pr [uv ∈ E] ∈
O
(

1
n

)
Proof. Nach dem Gesetz der totalen Wahrscheinlichkeit kann wie in 4.1 die folgende
Umformung gemacht werden.

Pr [uv ∈ E] =

√
2∫

x=0

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

=
r∫

x=0

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

+

1
2∫

x=r

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

+

1√
2∫

x= 1
2

Pr [uv ∈ E|dist(u, v) = x] fdist(x)dx

Auf diese Integrale lassen sich Lemma 4.1 bis 4.3 anwenden. Somit gilt, dass Pr [uv ∈ E]
in Θ( 1

n) liegt.

4.1.3 Erwartungswert

Nun kann mit dem selben Beweis wie in Lemma 3.5 gezeigt werden, dass der Erwartungswert
der Anzahl Cliquen und auch der Erwartungswert der Anzahl inklusionsmaximaler Cliquen
in Θ

(
1
n

)
liegen.

22



5. GIRG

In diesem Kapitel zeigen wir für β ≥ 3 , dass die Anzahl inklusionsmaximaler Cliquen mit
hoher Wahrscheinlichkeit in O(n) liegt.

Dies machen wir mit der selben Methodik wie in dem Beweis der Konzentrationsschranke
für RGGs. Auch Mathematisch ist dieser Beweis recht ähnlich. Wir zeigen also zunächst,
dass sowohl Erwartungswert als auch die Varianz einer Abschätzung in O(n) liegen und
können dann mit Tschebyscheff eine Konzentrationsschranke zeigen. Wir zeigen auch in
diesem Kapitel, dass der Erwartungswert der Anzahl aller Cliquen und damit auch der
Erwartungswert der Anzahl inklusionsmaximaler Cliquen in O(n) liegen. Für den Beweis
der Varianz werden wir dann allerdings die inklusionsmaximalität brauchen und somit die
Konzentrationsschranke nur für die Anzahl inklusionsmaximaler Cliquen zeigen.

5.0.1 Abschätzung der Anzahl Cliquen

Beim Beweis für RGGs haben wir die Cliquen Zellen zugeordnet. In diesem Beweis ordnen
wir jede Clique nun den Knoten zu die Teil der Clique sind. Wir können dann die Anzahl
zugeordneter Cliquen eines Knotens dann durch zwei hoch die Anzahl Knoten in der
Nachbarschaft des Knotens abschätzen. Diese Abschätzung reicht ist allerdings noch zu
ungenau um zu zeigen, dass der Erwartungswert der Anzahl Cliquen in O(n) liegt, da
z.b bei β = 3 allein Knoten v = 1 im Erwartungswert Θ(

√
n) viele Knoten in seiner

Nachbarschaft hat.
Eine Möglichkeit die Abschätzung genauer zu machen ist die Cliquen nicht mehr jedem
ihrer Knoten zuzuordnen, sondern nur noch dem Knoten mit geringstem Gewicht. Das
erlaubt uns die Anzahl zugeordneter Cliquen pro Knoten nun über 2|Nv | abzuschätzen,
wobei |Nv| in diesem Beweis die innere Nachbarschaft von v ist. Die innere Nachbarschaft
von v definieren wir als die Teilmenge Nachbarschaft, deren Knoten ein höheres Gewicht
als v haben, inklusive dem Knoten v selbst. Die Idee hinter dieser Zuordnung ist, dass
jede Clique nur noch genau einem Knoten zugeordnet wird und dass Knoten mit hohen
Gewicht zwar relativ viele Nachbarn haben, aber es aber nur wenige Knoten mit noch
höheren Gewicht gibt.
Insgesamt lässt sich die also die Anzahl aller Cliquen durch C =

∑
v∈V

2|Nv | nach oben

abschätzen. Wobei Nv die Teilmenge der Nachbarschaft von v oder v selbst sind und deren
Gewicht mindestens so groß ist, wie dass Gewicht von v.
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5. GIRG

5.0.2 Erwartungswert

Zunächst zeigen wollen wir zeigen, dass der Erwartungswert von C in O(n) liegt. Dazu
zeigen wir zunächst, dass der Erwartungswert E

[
2|Nv |

]
für alle Knoten v in O(1) liegt. Das

Folgende Lemma ist wieder etwas allgemeiner formuliert, da es später noch für den Beweis
der Varianz benötigt wird. Für E

[
2|Nv |

]
gilt der Beweis mit den Parameter a = 2 und

b = 1, da dann Nv der inneren Nachbarschaft entspricht.

Lemma 5.1. Sei G = (V, E) ein GIRG mit Gewichtsfunktions wv = ( v
n)

1
β−1 . Sei Nu

v die

Indikatorvariable dafür ob Knoten u in der Nachbarschaft von v liegt. Sei |Nv| =
v∑

u=b
Nu

v .

Dann gilt für eine beliebige Konstante a ∈ N , E
[
a|Nv |

]
= 2

v−1∏
u=1

(1 + (a − 1)Pr [uv ∈ E]) ∈

O(1)

Proof. Per Definition gilt

E
[
a|Nv |

]
= E

a

v∑
u=b

Nu
v

 = E
[

v∏
u=b

aNu
v

]
.

Da alle Knoten unabhängig voneinander platziert werden kann der Erwartungswert in das
Produkt hereingezogen werden. Damit gilt

E
[

v∏
u=b

aNu
v

]
=

v∏
u=b

E
[
aNu

v

]
=

v∏
u=b

(
a1Pr [Nv

u = 1] + a0Pr [Nv
u = 0]

)
.

Nv
u = 0 ist das Gegenereiniss zu Nv

u = 1. Somit ist Pr [Nv
u = 0] = 1 − Pr [Nv

u = 1]. Der
Term vereinfacht sich also zu

v∏
u=b

(1 + (a − 1)Pr [Nv
u = 1])

Wenn u = v gilt ist Nv
u per Definition immer eins und ist der obige Term gleich

a
v−1∏
u=b

(1 + (a − 1)Pr [Nv
u = 1])

Für u ̸= v ist die Wahrscheinlichkeit Pr [Nv
u = 1] die Wahrscheinlichkeit, dass uv eine Kante

ist also Pr [uv ∈ E]. Da die Knoten gleichverteilt auf dem Intervall [0, 1] sind und Knoten
maximal 1

2 voneinander entfernt sein können Kantenwahrscheinlichkeit kann durch die
Funktion 2wuwv

W nach oben abgeschätzt werden. Der Term kann also nach oben abgeschätzt
werden durch

a
v−1∏
u=1

(
1 + 2(a − 1)wiwv

W

)

Nach Lemma 2.4 liegt das Produkt in O(1) womit auch der gesamte Term auch in O(1)
liegt.

Lemma 5.2. Sei G = (V, E) ein GIRG mit Gewichtsfunktions wv = ( v
n)

1
β−1 .Sei β > 3. Sei

Nv die innere Nachbarschaft von v ,inklusive v. Sei C =
∑

v∈V
2|Nv |. Dann gilt E [C] ∈ O(n).
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5.1. Konzentrationsschranke

Proof. Mit der Linerarität des Erwartungswertes und Lemma 5.1 folgt

E [C] = E
[

n∑
v=1

2|Nv |
]

=
n∑

v=1
E
[
2|Nv |

]
∈ O(n).

Da die Anzahl inklusionsmaximaler Cliquen kleiner ist als die Anzahl aller Cliquen, gilt
dieser Beweis also auch für Erwartungswert der Anzahl inkusionsmaximaler Cliquen.

5.1 Konzentrationsschranke

5.1.1 Abschätzung der Anzahl inklusionsmaximaler Cliquen

Die Konzentrationsschranke zeigen wir nur für die Anzahl inklusionsmaximaler Cliquen, da
uns dies erlaubt eine genauere Abschätzung zu verwenden, von der wir leichter eine Schranke
für die Varianz zeigen können. Die Idee ist, dass alle Knoten aus der Nachbarschaft eines
Knoten ab einem gewissen Gewicht sicher eine Clique bilden und wir diese Knoten dann in
unserer Abschätzung Ignorieren können. Die folgenden zwei Lemmata zeigen dies.

Lemma 5.3. Sei G = (V, E) ein GIRG mit Gewichtsfunktions wv = ( v
n)

1
β−1 . Sei Knoten

v ∈ V beliebig. Sei Av die Teilmenge der Nachbarschaft von v für die gilt, dass für alle
u ∈ A gilt u < 21−βv. Dann ist Av eine Clique.

Proof. Um zu zeigen, dass Av eine Clique ist, zeigen wir dass zwei beliebigen Knoten aus
Av eine Kante existiert.
Seien u1 und u2 beliebige Knoten aus Av. Dann sind u1 und u2 am weitesten voneinander
entfernt wenn sie auf gegenüberliegenden Seiten von v liegen und genau so weit, dass
sie jeweils gerade noch mit v verbunden sind. Sie können also maximal wu1 wv

W + wu2 wv

W
voneinander entfernt sein. Genau genommen gilt dies allerdings nur wenn wu1 wv

W + wu2 wv

W
kleiner ist als 1

2 , da Knoten auf dem Einheitskreis maximal 1
2 voneinander entfernt sein

können. Diesen Fall decken wir jedoch auch wenn wir die Entfernung mit wu1 wv

W + wu2 wv

W
nach oben abschätzen. Damit u1 und u2 miteinander verbunden sind müssen u1 und u2
auf jeden Fall weniger als wu1 wu2

W voneinander entfernt sein. Für die Knoten u1 und u2
muss also die die Bedingung

wu1wv

W
+ wu2wv

W
<

wu1wu2

W

gelten. Durch einsetzen der Gewichtsfunktion folgt mit einfachen Gleichungsumformungen,
dass dies äquivalent ist zu

u
1

β−1
1 + u

1
β−1
2 < v

1
β−1

Wenn nun i < 21−βv und u < 21−βv gilt ist diese Ungleichung erfüllt.

Den Faktor 21−β bezeichnen wir ab sofort mit α. Diese Eigenschaft hilft uns, da wir nun
die Anzahl inklusionsmaximaler Cliquen, deren Knoten mit dem geringsten Gewicht v ist
durch 2|N ′

v | abschätzen können, wobei N
′
v die Teilmenge der Nachbarschaft von v, inklusive

v, aber ohne die Clique Av, ist. Das folgende Lemma zeigt Dies.
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5. GIRG

Lemma 5.4. Sei G = (V, E) ein GIRG mit Gewichtsfunktions wv = ( v
n)

1
β−1 . Sei Knoten

v ∈ V beliebig . Sei Av die Teilmenge der Nachbarschaft von v, für die gilt dass für alle
u ∈ Av gilt u < 21−βv. Sei N

′
v die Teilmenge der Nachbarschaft von v inklusive v aber ohne

Av. Dann kann die Anzahl inklusionsmaximaler Cliquen, deren Knoten mit dem geringsten
Gewicht v ist durch 2|N ′

v | abgeschätzt werden.

Proof. Wir beweisen dies in dem wir zeigen, dass jede inklusionsmaximale Clique deren
Knoten mit geringstem Gewicht v ist eindeutig durch ihre Teilmenge der Knoten in N

′
v

identifiziert werden kann. Da es nur 2|N ′
v | verschiedene Teilmengen von N

′
v gibt folgt damit,

dass es maximal 2|N ′
v | viele inklusionsmaximale Cliquen geben kann.

Angenommen es gäbe zwei inklusionsmaximale Cliquen C1 = B ∪ D1 und C2 = B ∪ D2 mit
D1 ̸= D2 deren Knoten mit geringsten Gewicht v ist, wobei B jeweils Teilmenge der Knoten
aus N

′
v und D1 bzw. D2 jeweils die Teilmenge der Knoten aus Av sind. Dann ist auch

C3 = B ∪ D1 ∪ D2 eine Clique, da nach Lemma 1 alle Knoten aus D1 und D2 paarweise
miteinander verbunden sind und nach der Definition von C1 und C2 dasselbe für B1 und D1
bzw. B1 und D1 gilt. Die Clique C3 wiederspricht allerdings der inklusionsmaximalität von
C1 und C2. Es kann also keine zwei inklusionsmaximalen Cliquen mit derselben Teilmenge
der Knoten aus N

′
v geben.

Wir können also nun für jeden Knoten v die Anzahl inklusionsmaximaler Cliquen, deren
Knoten mit geringstem Gewicht v ist durch 2|N ′

v | abschätzen und damit die Anzahl inklu-
sionsmaximaler Cliquen im gesamten Graphen durch C

′ =
∑

v∈V
2|N ′

v | nach oben abschätzen.

Der Erwartungswert von C
′ liegt auch in O(n). Dies kann man auch mit Lemma 3.19

durch Ersetzen von Nv mit N
′
v und Wahl der entsprechenden Parameter zeigen.

5.1.2 Varianz der Abschätzung

Lemma 5.5. Sei G = (V, E) ein GIRG mit Gewichtsfunktions wv = ( v
n)

1
β−1 . Sei Knoten

v ∈ V beliebig . Sei N
′
v die Teilmenge der Nachbarschaft von v, inklusive v, für die gilt

dass für alle u ∈ N
′
v gilt 21−βv < u ≤ v. Sei C

′ =
∑

v∈V
2|N ′

v |. Dann gilt V
[
C

′
]

∈ O(n)

Proof. Da C
′ eine Summe von Zufallsvariablen ist, kann die Varianz von C

′ über die
paarweisen Koovarianzen auszurechnen 2.1.
Für jeden Knoten v gilt, dass es nur Knoten u aus dem Intervall (⌈αv⌉, min(n,

⌊
v
α

⌋
)) , dass

es Knoten geben kann die sowohl in N
′
v als auch N

′
u enthalten sind. Für alle anderen

Knoten sind die Zufallsvariablen 2|N ′
v | und 2|N ′

u| somit unabhängig voneinander und deren
Kovarianz damit null. Insgesamt gilt also für die Varianz

V
[
C

′] =
n∑

v=1

min(n,⌊ v
α ⌋)∑

u=⌈αv⌉
Cov(2|N ′

v |, 2|N ′
u|) =

n∑
v=1

min(n,⌊ v
α ⌋)∑

u=⌈αv⌉
E
[
2|N ′

v |2|N ′
u|
]

− E
[
2|N ′

v |
]
E
[
2|N ′

u|
]
.

Zunächst betrachten wir separat den Sonderfall u = v. Hier entspricht die Kovarianz der
Varianz der Zufallsvariable und kann durch den Erwartungswert E

[
2|N ′

v |2|N ′
v |
]

= E
[
4|N ′

v |
]
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5.1. Konzentrationsschranke

abgeschätzt werden. Mit Lemma 5.1 folgt, dass auch dieser Erwartungswert in O(1) liegt.
Damit gilt

V
[
C

′] =
n∑

v=1
(O(1) +

min(n,⌊ v
α ⌋)∑

u=⌈αv⌉̸=v

(E
[
2|N ′

u|2|N ′
u|
]

− E
[
2|N ′

v |
]
E
[
2|N ′

u|
]
)).

Bei Beweis zu RGGs haben wir zwischen Zellen, deren Nachbarschaften sich überschneiden,
und Zellen, deren Nachbarschaft sich nicht überschneiden, unterschieden. Analog dazu
unterscheiden wir hier zwischen Knotenpaaren u und v die nah genug zusammen liegen,
sodass es möglich ist, dass ein Knoten sowohl in N

′
v als auch in N

′
u liegt . Um dies machen

zu können verwenden verwenden wir die Formel des totalen Erwartungswertes

E
[
2|N ′

v |2|N ′
u|
]

= E
[
2|N ′

v |2|N ′
u| | B

]
Pr [B] + E

[
2|N ′

v |2|N ′
u| | ¬B

]
Pr [¬B]

und wählen als Bedingung B, dass u und v nah genug zusammen liegen, sodass es möglich
ist, dass es ein Knoten k gibt der sowohl in N

′
v als auch in N

′
u liegt.

Damit dies der Fall ist dürfen die Knoten maximal so weit voneinander entfernt sein, dass
es einen dritten Knoten k gibt, der sowohl mit u als auch mit v verbunden ist.Die Knoten
u und v sind somit auf jeden Fall weniger als wuwk

W + wkwv

W voneinander entfernt. Da u

in O(v) liegt, muss auch k in O(v) liegen, damit es möglich ist, dass k sowohl in N
′
v als

auch in N
′
u liegt. Mit v ≤ n und β ≥ 3 folgt, dass wuwk

W + wkwv

W in O( 1
v ) liegt und somit die

Wahrscheinlichkeit Pr [B] in O( 1
v ) liegt. Die Wahrscheinlichkeit Pr [¬B] können wir durch

eins nach oben abschätzen.

Den Erwartungswert E
[
2|N ′

v |2|N ′
u| | B

]
können wir mithilfe der Cauchy-Schwarz-Ungleichung

nach oben abschätzen durch
√
E
[
4|N ′

u| | B
]
E
[
4|N ′

v | | B
]
. Der Erwartungswert E

[
4|N ′

v | | B
]

ist kleiner als 4E
[
4|N ′

v |
]
, da die Bedingung B nur Punkt u beinflusst und die |N ′

v| am
größten wird wenn u in der Nachbarschaft von v enthalten ist und somit den Wert der
Zufallsvariable um maximal einen Faktor von vier erhöht. Der Erwartungswert E

[
4|Nv |

]
liegt nach Lemma 5.1 in O(1). Analog folgt, dass auch E

[
4|Nu| | B

]
in O(1) liegt. Somit

liegt auch E
[
2|N ′

v |2|N ′
u| | B

]
in O(1) und der Term für die Varianz vereinfacht sich zu

n∑
v=1

(O(1) +
min(n,⌊ v

α ⌋)∑
u=⌈αv⌉̸=v

(O(1
v

) + E
[
2|N ′

v |2|N ′
u| | ¬B

]
− E

[
2|N ′

v |
]
E
[
2|N ′

u|
]
)).

Es bleibt zu zeigen, dass die Differenz E
[
2|N ′

v |2|N ′
u| | ¬B

]
− E

[
2|N ′

v |
]
E
[
2|N ′

u|
]

kleiner als 0
ist. Diese Differenz entspricht quasi den Kovarianzen von Zellen deren Nachbarschaften
sich nicht überschneiden im Beweis der Varianz bei RGGs.

Auch in diesem Beweis können wir |N ′
v| und |N ′

u| als Summe von Indikatorvariablen
formulieren. Es gilt also |N ′

v| =
v∑

k=⌈αv⌉
N

′k
v bzw. |N ′

u| =
v∑

k=⌈αv⌉
N

′k
u , Wobei N

′k
v die

Indikatorvariable dafür ist ob Knoten k in N
′
v liegt. Wir nehmen im folgenden o.B.d.A

u < v an. Da die Knoten unabhängig voneinander auf dem Kreis platziert werden und da
Knoten v sicher in N

′
v enthalten ist und u sicher in N

′
u aber nach Bedingung ¬B Knoten u

nicht in N
′
v und v nicht in N

′
u enthalten ist ergibt sich

E
[
2|Nu|2|Nv | | ¬B

]
= 4

⌈αv⌉−1∏
k=⌈αu⌉

E
[
2N

′k
u | ¬B

] u−1∏
k=⌈αv⌉

E
[
2N

′k
u +N

′k
v | ¬B

] v−1∏
k=u+1

E
[
2N

′k
v | ¬B

]
.
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Der Erwartungswert von E
[
2Nk

u +Nk
v | ¬B

]
ist 1 + Pr [uk ∈ E] + Pr [vk ∈ E]. Dies liegt

daran, dass Nk
u + Nk

v nur eins oder Null sein kann nach Bedingung ¬B und somit
Pr
[
Nk

u + Nk
v = 0

]
= 1 − Pr

[
Nk

u + Nk
v = 1

]
gilt. Die Wahrscheinlichkeit, dass Nk

u + Nk
v

eins ist die Summe der Wahrscheinlichkeiten von Nk
u = 1 und Nk

v = 1, da nach Bedingung
¬B, der Knoten k nicht in N

′
u und N

′
v gleichzeitig sein kann.

Der Erwartungswert E
[
2N

′k
u | ¬B

]
entspricht E

[
2N

′k
u

]
, wenn k ̸= u gilt. Der Er-

wartungswert E
[
2N

′k
v | ¬B

]
entspricht E

[
2N

′k
v

]
, wenn k ̸= v gilt. Damit gilt

E
[
2|Nu|2|Nv | | ¬B

]
= 4

⌈αv⌉−1∏
k=⌈αu⌉

E
[
2N

′k
u

] u−1∏
k=⌈αv⌉

1 + Pr [uk ∈ E] + Pr [vk ∈ E]
v−1∏

k=u+1
E
[
2N

′k
v

]
.

Nun schauen wir uns den zweiten Teil der Differenz E
[
2|N ′

v |2|N ′
u| | ¬B

]
−E

[
2|N ′

v |
]
E
[
2|N ′

u|
]

an. Für das Produkt der Erwartungswerte gilt nach Lemma 5.1

E
[
2|N ′

v |
]
E
[
2|N ′

u|
]

=4
⌈αv⌉−1∏
k=⌈αu⌉

E
[
2|N ′k

v |
] u−1∏

k=⌈αv⌉
(1 + Pr [uk ∈ E])(1 + Pr [vk ∈ E])

v−1∏
k=u+1

E
[
2|N ′k

v |
]

=4
⌈αv⌉−1∏
k=⌈αu⌉

E
[
2|N ′k

v |
] u−1∏

k=⌈αv⌉
1 + Pr [uk ∈ E] + Pr [vk ∈ E] + Pr [uk ∈ E] Pr [vk ∈ E]

v−1∏
k=u+1

E
[
2|N ′k

v |
]
.

Die Differenz E
[
2|N ′

v |2|N ′
u| | ¬B

]
− E

[
2|N ′

v |
]
E
[
2|N ′

u|
]

ist also aufgrund des zusätzlichen
Summanden Pr [vk ∈ E] Pr [uk ∈ E] im mitteleren Produkt also kleiner als Null. Die
Varianz kann somit nach oben abgeschätzt werden durch

n∑
v=1

(O(1) +
min(n,⌊ v

α ⌋)∑
u=⌈αv⌉̸=v

O(1
v

)).

Dieser Term liegt in O(n)

5.1.3 Konzentrationsschranke

Wir haben also nun für unsere Abschätzung C
′ der Inklusionsmaximaler Cliquen gezeigt,

dass sowohl der Erwartungswert als auch die Varianz von C
′ in O(n) liegen. Es lässt

sich nun also mit einem Beweis wie in 3.13 eine Konzentrationsschranke die Anzahl
inklusionsmaximaler Cliquen zeigen.
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6. Zusammenfassung und Ausblick

Wir haben in dieser Arbeit gezeigt, dass für RGGs mit r ∈ Θ( 1√
n

) sowohl der Er-
wartungswert der Anzahl aller Cliquen in Θ(n) liegt als auch der Erwartungswert der
Anzahl der inklusionsmaximaler Cliquen In Θ(n) liegt.

Desweiteren haben wir gezeigt, dass die Ergebnisse für den Erwartungswert auch gelten,
wenn wir das RGG-Modell um das Konzept der Temperatur erweitern und die Temperatur
T im Interval (0, 1) liegt.

Außerdem haben wir gezeigt, dass die Anzahl aller Cliquen und damit auch die Anzahl
aller inklusionsmaximaler Cliquen mit hoher Wahrscheinlichkeit in O(n) liegt.

In letztem Kapitel haben wir für eine einfache Version des GIRG-Modell ohne Temperatur
und mit konkreter Gewichtsfunktion wv = (n

v )
1

β−1 gezeigt, dass für Power-Law Exponent
β ≥ 3 der Erwartungswert, der Anzahl Cliquen und damit auch der Anzahl Inklusionsmax-
imaler Cliquen, in O(n) liegt.

Ganz am Ende haben wir gezeigt, dass die Anzahl aller inklusionsmaximalen Cliquen mit
hoher Wahrscheinlichkeit in O(n) liegt. Hier besteht natürlich auch die Frage ob diese
Konzentrationsschranke auch für die Anzahl aller Cliquen gilt.

Es bleiben allerdings noch viele weitere Fragen für zukünftige Arbeit offen. Interessant wäre
z.B. ob es möglich ist genauere Konzentrationsschranken mit anderen Methoden wie z.B. mit
der „bounded differences inequality" zu zeigen. Außerdem wäre noch interessant was in den
Parameterbereichen passiert, die wir nicht in dieser Arbeit untersucht haben. Insbesondere
für GIRGs mit Power-Law Exponent β ∈ (2, 3), wären Aussagen besonders interessant, da
dies der Parameterbereich ist, welcher viele echte Netzwerke besser modelliert. Aber auch
für RGGs mit anderem r bleibt die Anzahl Inklusionsmaximaler Cliquen eine spannende
Frage. Da in dieser Arbeit eigentlich alle Aussagen mit der O-Notaion gemacht wurden, ist
die Frage nach den genauen Konstanten eine weitere mögliche Fragestellung für zukünftige
Arbeit.
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