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Abstract

Cluster Editing is the problem of finding a minimal set of edge modifications to
transform a given graph into a cluster graph - a graph whose connected components
are cliques. A set of induced, vertex pair disjoint paths of length two in the given
graph is a lower bound for the number of required edge modifications.

To find such sets, we define and examine a type of intersection graph, the P3-
intersection graph, that models which induced paths of length two, called P3s, in a
given graph share a vertex pair. Now, any independent set on the P3-intersection
graph yields a lower bound for the Cluster Editing problem on the given graph.
Unfortunately, Maximum Independent Set generally is NP-hard. However, the
complexity on P3-intersection graphs is unknown.

In this work, we show that the neighbourhood of every vertex in a P3-intersection
graph can be partitioned into three cliques characterized by which vertex pair the
contained vertices share with the respective vertex. We also prove that edges between
these cliques strictly follow a specific structure. Additionally, we briefly discuss
possible approaches to show the NP-hardness of Maximum Independent Set on
P3-intersection graphs.
Finally, we transfer the concept of P3-intersection graphs to stars and paths of
arbitrary length. We find that it is infeasible to compute a maximum independent
set on these types of intersection graphs.

Deutsche Zusammenfassung

Cluster Editing ist das Problem, eine minimale Menge von Kantenmodifikationen
zu finden, um einen gegebenen Graphen in einen Cluster-Graphen umzuwandeln. Dies
ist ein Graph, bei dem alle Zusammenhangskomponenten Cliquen sind. Eine Menge an
induzierten, Knotenpaar-disjunkten Pfaden der Länge zwei eines gegebenen Graphen,
ist dabei eine untere Schranke für die Anzahl benötigter Kantenmodifikationen.

Um eine solche Menge zu finden, definieren und untersuchen wir eine Art Schnittgraph,
den P3-intersection Graph. Dieser modelliert welche induzierten Pfade der Länge zwei,
genannt P3s, eines gegebenen Graphen sich ein Knotenpaar teilen. Jede unabhängige
Menge im P3-intersection Graphen gibt uns nun eine untere Schranke für das Cluster
Editing Problem auf dem gegebenen Graphen. Leider ist Maximum Independent
Set im Allgemeinen NP-schwer. Für P3-intersection Graphen is die Komplextität
allerdings noch unbekannt.

In dieser Arbeit zeigen wir, dass sich die Nachbarschaft jedes Knoten eines P3-
intersection Graphen in drei Cliquen partitionieren lässt, die sich darüber definieren,
welches Knotenpaar die enthaltenen Knoten sich mit dem jeweiligen Knoten teilen.
Wir beweisen außerdem, dass Kanten zwischen diesen Cliquen streng einer bestimmten
Struktur folgen. Zusätzlich besprechen wir kurz unsere Versuche, die NP-Schwere
von Maximum Independent Set auf P3-intersection Graphen zu zeigen.
Schlussendlich übertragen wir das Konzept von P3-intersection Graphen auf Sterne
und Pfade beliebiger Länge. Wir finden dabei heraus, dass es nicht praktikabel ist,
eine größte unabhängige Menge auf diesen Arten von Schnittgraphen zu berechnen.
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1. Introduction

The Parameterized Algorithms and Computational Experiments (PACE) Challenge is an
annual competition in which people from all over the world develop algorithms to solve a
given problem [pac]. In 2021, the topic of the PACE Challenge was Cluster Editing
[KKNZ21]. The goal is to transform a given graph into a cluster graph, a graph consisting
solely of fully connected components, using a minimal set of edge insertions and deletions.

Bläsius et al., the winners of 2021’s challenge, used a branch and bound approach [BFG+22].
The general concept of this approach is to compute upper and lower bounds for a solution
of a given problem, branch on a decision and calculate new lower bounds for the resulting
instances. If this new lower bound is higher than a previous upper bound, the respective
branch can be discarded. Otherwise, the branching and computing of bounds is repeated
until a solution is found. In the context of Cluster Editing, the bounds refer to the
number of required edge modifications. By decision we mean a problem specific choice
needed to be made while solving the problem. In Cluster Editing, that choice could be
whether an edge is in- or excluded.
The efficiency of this technique is highly dependent on the quality of the calculated bounds
because the better the bounds, the sooner the branches can be discarded. In this work, we
concentrate on finding lower bounds for Cluster Editing.

We can obtain lower bounds of a Cluster Editing instance by adding up lower bounds
of non-overlapping familiar structures contained in the instance. A path of length two,
a P3, is a good candidate since it is a small structure consisting of only 3 vertices and
can always be resolved with exactly one edge modification. Therefore, the number of
non-overlapping P3s in the instance infers an equal lower bound. To obtain a set of such
non-overlapping P3s, we can construct a graph which represents the P3s of the instance
and their intersections, the P3-intersection graph. This way, we transform the problem of
finding a set of non-overlapping P3s into finding an independent set in the P3-intersection
graph.

In this work, after establishing some basic concepts of graph theory and formally intro-
ducing the Cluster Editing problem along with P3-packings in Chapter 2, we define
P3-intersection graphs in Chapter 3 and cover some basic examples to get a basic under-
standing for their structure. In Section 3.3, we look at properties of P3-intersection graphs,
where we focus on the neighbourhood of their vertices. We continue with some invariants of
P3-intersection graph construction in Section 3.4 until briefly looking at the computational
costs of the construction in Section 3.5 and finishing the chapter with an outline of our
approaches to show the hardness of Maximum Independent Set on P3-intersection
graphs in Section 3.6.
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1. Introduction

In Chapter 4 We proceed to look at intersection graphs of stars. After discussing different
definitions, we settle for the more promising one and compare these star-intersection graphs
to the previously proposed P3-intersection graphs.
Chapter 5 addresses another type of intersection graph based on paths of an arbitrary, but
fixed, length. They are a generalization of P3-intersection graphs, so we briefly examine
how some properties of P3-intersection graphs translate to these Pn-intersection graphs, as
we will call them.
We conclude this work in Chapter 6, with a discussion of our results and the proposal of
some problems, questions and approaches that could be pursued in future work.

Related Work

The study of interval graphs can be considered the origin of intersection graphs as a research
topic [Gol88]. They are a simple type of intersection graph, representing the intersections
of intervals on a line. For intersection graphs in general, consider a family of nonempty
subsets of some set S. Then, its intersection graph has a vertex for each subset, with two
vertices adjacent if and only if their corresponding subsets intersect. Additionally, there
may be certain constraints for the subsets and their intersections. Other than a line, the
set S could be a circle [Kle69], a plane [EET76] or a tree [GJ85]. There is, for example, the
class of EPT graphs, which are the edge intersection graphs of collections of paths in trees
[Gav78], [MW86] or the class of chordal graphs, which are the edge intersection graphs
of subtrees in trees [Gav74]. As far as we know, there is little to no research concerning
intersection graphs of paths with a fixed length in arbitrary graphs.

There is, however, very much research dedicated to Cluster Editing. In 1964, Zahn
[Zah64] already solved the problem for a certain type of input graphs. Since then there
have been many findings concerning parameterized complexity for several variants of the
problem including, for example, Bicluster Graph Editing [PDdSS09], Temporal
Cluster Editing [CMSS17] and Dynamic Cluster Editing [LMNN21]. Even tough
Cluster Editing was proven to be NP-complete on arbitrary graphs [SST02], good
heuristic [BFG+21] and exact solvers [Bö12] have been developed over the last years. The
currently fastest solver runs in O(1.62k) time, where k is the solution size, implying that
Cluster Editing is fixed parameter tractable.
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2. Preliminaries

In this chapter we introduce some general definitions and concepts of graph theory which
will be used throughout this work as well as establish definitions specific to our topic. See
[Die05] for a broader and more in-depth overview of graph theory basics.

2.1 Fundamentals
A graph G = (V, E) is a tuple of vertices V and edges E = {{u, v} | u, v ∈ V }. An
edge {u, v} will be abbreviated by uv. Two vertices u, v are called adjacent if uv ∈ E.
Unless stated otherwise, the graphs in this work are simple graphs meaning they are
undirected, without parallel edges and loopless. An induced subgraph of a graph G is a
graph G[V ′] := (V ′, E′) with V ′ ⊆ V and E′ := {uv ∈ E | u, v ∈ V ′}. In this work, the
term subgraph always refers to an induced subgraph. The neighbourhood N(v) of a vertex
v is the set of vertices adjacent to v. Formally, N(v) := {u ∈ V | uv ∈ E}. A path Pn

with n ∈ N is a graph whose vertices can be seen as a sequence (v1, . . . , vn) in which every
two consecutive vertices are adjacent. Note, that v1vn is a non-edge if the path is induced.
See Figure 2.1 for an example. A circle Cn with n ∈ N is a graph whose vertices can be
seen as a sequence (v1, . . . , vn) where every two consecutive vertices as well as the first and
the final vertex are adjacent. The complete graph Kn with n ∈ N is a graph of n vertices
where every two vertices are adjacent. Figure 2.2 shows the complete graph K4 as an
example. The complete bipartite graph Kn,m with n, m ∈ N is a graph in which the vertices
can be divided into two disjoint and independent sets U, V with |U | = n, |V | = m where
every vertex of U is adjacent to every vertex of V . The k-star with k ∈ N is the complete
bipartite graph K1,k, as seen with k = 4 in Figure 2.3. We hereby call the single vertex the
center of the star and the k other vertices the leaves.

Figure 2.1: The P3. Figure 2.2: The K4. Figure 2.3: The 4-star.

A maximal subgraph where every two nodes are connected through a path is called a
connected component. A set of pairwise adjacent vertices is called a clique, while a set of
pairwise non-adjacent vertices is called an independent set. The set {1, . . . , n} including all
positive integers from 1 to n will be denoted by [n], and for a set M and a positive integer
n,
(M

n

)
:= {M ′ ⊆ M | |M ′| = n}.

3



2. Preliminaries

2.2 Cluster Editing
A graph whose connected components are cliques is called a cluster graph. If we add an
edge to a graph or delete an existing one, we call that an edge modification. The cluster
editing problem asks to find a set of edge modifications of minimum size so that a given
graph is transformed into a cluster graph.

Figure 2.4 shows a Cluster Editing instance and the graph where the edge modifications
of a possible solution are applied. The continuous red edge was added and the dashed red
edges were deleted. This results in a cluster graph with two components: a clique of size
four and a clique of size three.

Figure 2.4: A cluster editing instance and the resulting graph after applying a solution.

The problem of Cluster Editing is equivalent to the problem of eliminating all induced
P3s of a graph [BFG+22]. If there is an induced P3 in a Cluster Editing instance, we
can resolve it by exactly one edge-modification: We either add the non-edge or delete one
of the two edges. P3s can overlap, so one edge-modification might eliminate multiple P3s.
Therefore, the number of induced, vertex pair disjoint P3s, gives us a lower bound for the
number of edge-modifications of a given Cluster Editing instance. We will refer to a
set of induced, vertex pair disjoint P3s as a P3-packing or packing, for short. Maximum
Independent Set is the problem of finding an independent set of maximum size in a
given arbitrary graph.
In the following chapters, we will introduce and examine structures on which we can
solve known problems like Maximum Independent Set in order to get lower bounds for
Cluster Editing through packings.
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3. P3-intersection graphs

The first section of this chapter covers the definition of a graph that represents the
vertex pair sharing behaviour of all induced P3s of a Cluster Editing instance, the
P3-intersection graph (see Section 3.1). As explained in Section 2.2, the size of a packing is
a lower bound for the number of edge modifications needed to solve the Cluster Editing
instance. Since a P3 has two edges, there can be up to |E|/2 edge-disjoint induced P3s in a
graph G = (V, E). Therefore, we can get lower bounds up to |E|/2 through this method.
Before we examine the properties of P3-intersection graphs in Section 3.3, we first look
at some noteworthy examples in Section 3.2. As we gain a better understanding of P3-
intersection graphs, we see that there are certain properties they share with their origin
graph. We cover these invariants in Section 3.4. While the focus of this work is not on the
computation of P3-intersection graphs, Section 3.5 still briefly outlines a way to compute
them in polynomial time. At last, in Section 3.6, we look at the complexity of Maximum
Independent Set on P3-intersection graphs.

3.1 Defining P3-intersection graphs
For a graph G we call I(G) its P3-intersection graph. The vertices of I(G) correspond
to the induced P3s of G. We want two vertices to be adjacent if their corresponding P3s
share a vertex pair. By share a vertex pair, we mean that the P3s have two vertices in
common and therefore share an edge or non-edge. We call G an origin graph of I(G). See
Definition 3.1 for a formal definition and Figure 3.1 for an example.

Definition 3.1. For a graph G, we define the P3-intersection graph I(G) := (Ṽ , Ẽ)
with Ṽ := {{a, b, c} | a, b, c ∈ V ∧ ab, bc ∈ E ∧ ac ̸∈ E} and Ẽ := {αβ | α, β ∈ Ṽ ∧ α ̸=
β ∧ |α ∩ β| = 2}. We will denote a vertex {a, b, c} ∈ Ṽ with ac /∈ E as (a, b, c). Note that
Ṽ corresponds exactly to the set of induced P3s of G.

When talking about graphs and their P3-intersection graph we often need to refer to a P3
corresponding to a specific vertex η in the P3-intersection graph. To this end, we define
Ĩ(η).

Definition 3.2. The P3 corresponding to a vertex η of a P3-intersection graph is
denoted by Ĩ(η).

Given a vertex η of a P3-intersection graph with Ĩ(η) = (a, b, c), there can be multiple
P3s sharing a particular vertex pair with (a, b, c). Without loss of generality, let ab be the
shared vertex pair. Since the P3s sharing ab with (a, b, c) contain a and b as well, they also
share ab with each other. Therefore, they form a clique in the P3-intersection graph, as we
will show in Lemma 3.4. We will refer to such a clique as a sharing clique.

5



3. P3-intersection graphs

a

b

c

def
(d, e, f)

(c, e, f)

(b, c, e)

(b, c, d)(b, a, d)

(b, a, e)

(a, e, f)

Figure 3.1: An example graph and its P3-intersection graph.

Definition 3.3. Let G = (V, E) be a graph, uv ∈
(V

2
)

and η a vertex of I(G) = (Ṽ , Ẽ).
Then, Nuv(η) := {ρ ∈ Ṽ | ρ ∩ η = {u, v}} is called a sharing clique of η.

Lemma 3.4. Let η be a vertex of a P3-intersection graph I(G) with a graph G and a
vertex pair uv of Ĩ(η). Nuv(η) is a clique in I(G).

Proof. Let η be a vertex of a P3-intersection graph I(G) = (Ṽ , Ẽ) with a graph G and a
vertex pair uv of Ĩ(η). By definition, every ρ ∈ Nuv(η) contains the vertices u and v as
well. Therefore,

(Nuv(η)
2
)

⊆ Ẽ.

3.2 Noteworthy P3-intersection graphs
To get a better understanding of P3-intersection graphs, we will first look at the P3-
intersection graphs of some common graphs. See Figure 3.2 for a visual display.
A P3-intersection graph of a complete graph has no vertices, since it has no non-edges. A
path can be interpreted as a sequence of P3s, each overlapping an edge with its predecessor
and successor. Therefore, I(Pn+2) = Pn. A circle can be interpreted similarly: It can be
seen as a circular sequence of overlapping P3s. Therefore, at least for circles Cn with n > 4,
its P3-intersection graph is a circle of the same size. C4 and C3 are special cases: In C4,
each P3 also shares its non-edge with the P3 on the opposite side, implying I(C4) = K4.
C3 is equivalent to K3, so I(C3) = I(K3) = ∅.
Every two edges of a n-star form a P3. Thus, the 2-element subsets of the n-element set
of edges are the vertices of the P3-intersection graph and two of them are adjacent if the
intersection of both 2-element subsets has one element. This is exactly the definition of the
Johnson graph J(n, 2) [Ter86].
It is also possible to get an arbitrary Kn as a P3-intersection graph. In fact, there are
multiple constructions, implying that there are multiple graphs G to a P3-intersection
graph I(G).

Lemma 3.5. Two distinct graphs G and G′ can have the same P3-intersection graph.

Proof. Let G be a Kn where one arbitrary edge is removed and let G′ be a Kn−1 where an
additional vertex v is added along with an edge uv for an arbitrary vertex u of the Kn−1
with u ̸= v. See Figure 3.2 for an example of both constructions with n = 5.
Both graphs contain n − 2 P3s which all share one vertex pair. In G its the non-edge, in
G′ the edge uv. Therefore, Kn−2 = I(G) = I(G′) is the P3-intersection graph of G and
G′.
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3.2. Noteworthy P3-intersection graphs

P5

P3

C5 C5

4-star

J(4, 2)

K5 without one edge

K3

K4 with leaf K3

C5 C5

4-star

J(4, 2)

K5 without one edge

K3

K4 with leaf K3

Figure 3.2: Examples of graphs and their corresponding P3-intersection graph.
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3. P3-intersection graphs

3.3 Properties of P3-intersection graphs

The P3-intersection graph I(G) of a graph G essentially models how the P3s of G share
vertex pairs. To learn about structural properties of P3-intersection graphs, we first need
to understand in which ways two P3s can share vertex pairs and what that means for the
neighbourhood of vertices in the P3-intersection graph.

3.3.1 The neighbourhood of vertices in P3-intersection graphs

A P3 consists of three vertices. Thus, there are
(3

2
)

= 3 vertex pairs. Naturally, two P3s
do not share any vertex pairs if they are vertex-disjoint and are identical if they share all
three. If they only share two vertex pairs, they already have three vertices in common,
making them identical again. So assuming two P3s are distinct, they can share at most
one vertex pair.

Lemma 3.6. Two distinct induced P3s can share at most one vertex pair.

Proof. Let a and b with a ̸= b be two induced P3s of a graph. a and b share a vertex
pair, if two vertices of a and b are identical. In order two share another vertex pair, one
additional vertex needs to be identical. Then, all three vertices of the P3s would be equal
which contradicts a ̸= b.

Now we know that every two adjacent vertices in a P3-intersection graph I(G) correspond
to two P3s in G which share exactly one vertex pair.

Definition 3.7. Let G̃ = (Ṽ , Ẽ) be the P3-intersection graph of a graph G = (V, E) and
α, β ∈ Ṽ with αβ ∈ Ẽ. Then, the shared vertex pair s(α, β) := α ∩ β is the vertex pair
shared by the P3s corresponding to α and β.

For every vertex v we can therefore characterize an adjacent vertex by the vertex pair it
shares with v. This allows us to partition the neighbourhood of v into up to three sets,
since v has three vertex pairs to share.

Theorem 3.8. The neighbourhood of a vertex in a P3-intersection graph can be partitioned
into at most three non-empty pairwise independent sets.

Proof. Let G̃ be a P3-intersection graph, η an arbitrary vertex of G̃ and ρ an arbitrary
vertex in N(η). The corresponding P3 Ĩ(ρ) has to share a vertex pair with Ĩ(η). According
to Lemma 3.4, every P3 sharing that edge with Ĩ(η) is in the same set, in order to comply
with the pairwise independence.
Thus, there can only be one such independent set per vertex pair of Ĩ(η), which makes a
total maximum of three non-empty pairwise independent sets.

It becomes apparent that the neighbours of a vertex in a P3-intersection graph form cliques.
In fact, there are only three cliques needed to cover the whole neighbourhood of every
vertex in a P3-intersection graph, which we will shown in Theorem 3.9.

Theorem 3.9. The neighbourhood of a vertex in a P3-intersection graph can be covered by
at most three cliques.

8



3.3. Properties of P3-intersection graphs

Proof. Let G̃ be a P3-intersection graph and η an arbitrary vertex of G̃ with Ĩ(η) = (u, v, w).
Nuv(η) is the set of P3s sharing uv with Ĩ(η). According to Lemma 3.4, that is a clique.
The same applies for the sets Nvw(η) and Nuw(η).
Since N(η) = Nuv(η)∪Nvw(η)∪Nuw(η), these three cliques cover the whole neighbourhood.

The proof of Theorem 3.9 already shows a feasible choice for a clique cover of the neigh-
bourhood of any P3-intersection graph vertex consisting of three well-defined cliques. We
define this formally in the following:

Definition 3.10. Let η be a vertex of a P3-intersection graph with Ĩ(η) = (a, b, c). Then,
the neighbourhood clique partition NCP(η) := {Nab(η), Nbc(η), Nac(η)} is the partition
of N(η) in the three cliques specified by which vertex pair their P3s share with Ĩ(η).

We now consider the edges within the neighbourhood of a P3-intersection graph vertex
η. Let Ĩ(η) = (a, b, c). Each edge αβ with α, β ∈ N(η) is either inside one of the sharing
cliques of NCP(η) or between two of those cliques. We want to look at the edges between
two cliques so assume α and β are in different sharing cliques of η. Since α, β ∈ N(η), they
both have exactly two vertices in common with η, meaning that they also have exactly
one vertex apart from (a, b, c). Let this vertex be d(α) and d(β) respectively. Now since
α and β are in different cliques and thus share different vertex pairs with η, d(α) ̸= d(β)
implies that |α ∩ β| = 1, meaning α and β are not adjacent. Hence, d(α) = d(β). Therefore,
we can enumerate all possibilities for how a vertex d might be connected to a,b and c, to
exhaustively define all inter-clique edges.
These possibilities are shown in Figure 3.3. The symmetrical cases are left out for simplicity.
In the following, we will look at each of them in detail.

G1 G2 G3 G4 G5

Figure 3.3: A P3 with an additional vertex and all possibilities to connect that vertex to it.
The connections of the additional vertex are marked in red.

l

The addition of the edge in G1 lead to the creation of exactly one P3, as seen in Figure
3.4. Therefore, this P3 will not have an edge to another sharing clique of (a, b, c) in the
P3-intersection graph.

In G2, two P3s are created through the addition of one edge (see Figure 3.5). They both
share the edge bd, resulting in an edge between the sharing cliques Nab and Nbc in the
P3-intersection graph.
We see in Figure 3.6 that G3 is similar to G2 but the P3 (a, b, d) is omitted due to the edge
ad. Therefore, (d, b, c) will not have an edge to another sharing clique of (a, b, c).

G4 has three new P3s, which are added through the addition of the edges ad and cd. This
can be seen in Figure 3.7. There is a P3 for every vertex pair of (a, b, c) and any two of
these P3s share a vertex pair leading to a triangle between the three sharing cliques of
(a, b, c).
G5 (Figure 3.8), is G4 with an added edge, preventing the creation of (d, a, b) and (b, c, d).

9



3. P3-intersection graphs

G1

b

a c

d

Figure 3.4: A P3 (a, b, c) with an additional vertex d connected with a, which creates one
additional P3 highlighted in blue.

G2

b

a c

d

Figure 3.5: A P3 (a, b, c) with an ad-
ditional vertex d connected
with b, which creates two ad-
ditional P3s highlighted in
blue and yellow.

G3

b

a c

d

Figure 3.6: A P3 (a, b, c) with an ad-
ditional vertex d connected
with a and b, which creates
one additional P3 highlighted
in yellow.

G4

b

a c

d

Figure 3.7: A P3 (a, b, c) with an ad-
ditional vertex d connected
with a and c, which creates
three additional P3s high-
lighted in blue, yellow and
green.

G5

b

a c

d

Figure 3.8: A P3 (a, b, c) with an ad-
ditional vertex d connected
with a, b and c, which creates
one additional P3 highlighted
in green.

So this time, only (a, d, c) exists. Therefore, the sharing clique Nac has no edges to the
sharing clique Nab and Nbc similar to what we saw in G1 and G3.

We notice that there is a small number of possible constellations for the sharing cliques of
a vertex in a P3-intersection graph and the connections between them. Hence, we gain a
reasonable understanding of the structure of its neighbourhood which we will formalize in

10



3.3. Properties of P3-intersection graphs

Theorem 3.11. A structural visualization of the neighbourhood of a P3-intersection graph
vertex can be seen Figure 3.9.

Nbc(η)Nab(η)

Nac(η)

η

Figure 3.9: Depiction of the neighbourhood of a vertex η in a P3-intersection graph with
Ĩ(η) = (a, b, c). All possible edges between neighbourhood cliques are either
between Nab(η) and Nbc or part of a triangle between all three of them. Both
cases are highlighted in red.

Theorem 3.11. Let η be a vertex of a P3-intersection graph with Ĩ(η) = (a, b, c). Then,
given the partition NCP(η), every edge between two of the cliques is either between Nab(η)
and Nbc(η) or part of a triangle between all three cliques.
In both cases, the involved vertices do not have any other edges to one of the other cliques.

Proof. Let η be a vertex of a P3-intersection graph I(G) of a graph G with Ĩ(η) = (a, b, c).
Let α ∈ Nab(η), β ∈ Nbc(η) and γ ∈ Nac(η).
Note that α can either be (·, a, b) or (a, b, ·), β can either be (·, b, c) or (b, c, ·) and γ can
only be (a, ·, c). With · being a place holder for another vertex. Since adjacent vertices
in a P3-intersection graph require two shared vertices in their corresponding P3s, edges
between any two of α, β and γ can only exist, if both have the same vertex inserted for ·.
Assume αβ exists. Then there is a vertex d ∈ α ∩ β. If α = (d, a, b), the edge db does not
exist. Therefore, (d, b, c) is not a P3 and β = (b, c, d). Now, ad and dc are edges and ac is
a non-edge. Hence, the P3 (a, d, c) ∈ Nac exists. Implying that γ = (a, d, c), αγ and βγ
have to be edges in I(G).
If α = (a, b, d), the edge bd exists. Therefore, (b, c, d) ̸= β = (d, b, c). In this case, the P3
(a, d, c) does not exist, since ad and dc are non-edges. So there are no edges from α or β to
a vertex of Nac(η).
Assume αγ exists. Then there is a vertex d ∈ α ∩ γ. Since γ = (a, d, c), ad has to be
an edge. Therefore (a, b, d) ̸= α = (d, a, b). This time, bc and ab are edges and bd is a
non-edge. Hence, β = (b, c, d) leading to the existence of αβ and βγ in I(G).
Assume βγ exists. Analog to the case above, there is a vertex d ∈ β ∩ γ. Once again,
γ = (a, d, c) and thus (a, b, d) ̸= α = (d, a, b). Here, da and ab are edges and bd is a
non-edge. Therefore, α = (d, a, b) and αβ as well as αγ are edges in I(G).

3.3.2 4-star-free graphs
Theorem 3.8 leads to an important characteristic of P3-intersection graphs: Their vertices
cannot have four or more neighbours which are pairwise non-adjacent. In other words,
P3-intersection graphs do not induce 4-stars.
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Theorem 3.12. P3-intersection graphs are 4-star-free.

Proof. Let G̃ be a P3-intersection graph and S an induced 4-star in G̃ with root s0
and leaves s1, s2, s3 and s4. By definition, the leaves are pairwise independent. Then
{{s1}, {s2}, {s3}, {s4}, {N(s0) \ S}} is a partition of the neighbourhood of s0 containing
more than three non-empty pairwise independent sets. That contradicts Theorem 3.8.

Finding a maximum weight independent set on arbitrary 4-star-free graphs is NP-complete
[Min80]. However, P3-intersection graphs cannot be arbitrary 4-star-free graphs. The
graph shown in Figure 3.10 is an example of a graph that is 4-star-free but cannot be
a P3-intersection graph due to Theorem 3.11, because there is a vertex in C2, which is
adjacent to two vertices of the other cliques, which in turn are not adjacent.

η

C1

C2

C3

Figure 3.10: A graph with a vertex η, three cliques C1, C2, C3 covering its neighbourhood
and two inter-clique edges.

Theorem 3.13. Not all 4-star-free graphs are P3-intersection graphs.

Proof. Let G̃ be the graph shown in Figure 3.10. G̃ is in the graph class of 4-star-free
graphs. Assuming G̃ is a P3-intersection graph, there is a clique cover of N(η) with a
maximum of three cliques according to Theorem 3.9. The only choice for such a clique
cover is {C1, C2, C3}, as shown in Figure 3.10. With Ĩ(η) = (a, b, c), one of the three cliques
has to be equal to Nac. Then, there is a edge between Nac and one of the other cliques
which is not part of a triangle between all three cliques. That contradicts Theorem 3.11. It
follows that G̃ cannot be a P3-intersection graph.

Corollary 3.14. P3-intersection graphs are a proper subset of 4-star-free graphs.

If the class of P3-intersection graphs did not contain 3-stars as well, there would be a
polynomial-time algorithm for Maximum Independent Set on these graphs [Min80].
Even though the 3-star itself is not a P3-intersection graph, it can be contained as an
induced subgraph. See for example Figure 3.1.

3.3.3 3-mino graphs

In a 3-mino graph, every vertex is contained in at most three maximal cliques [MT03].
At first glance, this definition seems similar to the properties of P3-intersection graphs
given by theorems 3.8 and 3.9. However, the graph class of 3-mino graphs does not contain
P3-intersection graphs as made evident by the example in Figure 3.11: The vertex in the
center of the P3-intersection graph I(G) of G is contained in four maximal cliques of I(G).

12
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G I(G) I(G) I(G) I(G)

Figure 3.11: A graph G with its P3-intersection graph I(G) and four highlighted maximal
cliques of I(G)

3.4 Invariants of P3-intersection graph construction

When looking at graphs and their P3-intersection graph it can be observed that a given
induced subgraph always behaves the same way. For example in Figure 3.12, we can see
that the induced C5 is preserved and the induced P5 turns into a P3, so I(C5) and I(P5)
are both induced subgraphs in the P3-intersection graph of G. This applies for any induced
subgraph in arbitrary graphs, as we show in Theorem 3.15.

C5

C5

P3

P5

Figure 3.12: A graph G with its P3-intersection graph I(G) below it. The red highlighted
C5 also exists in I(G) and the blue highlighted P5 turns into a P3.

Theorem 3.15. If a graph G contains a graph H as an induced subgraph, the P3-intersection
graph of G contains the P3-intersection graph of H as an induced subgraph.

Proof. We will show that if we construct a graph H ′ by adding vertices and edges to a
graph H in such a way that H ′ contains H as an induced subgraph, the following properties
hold:

1. Every P3 of H is preserved in H ′.

2. Two P3s sharing a vertex pair in H, share a vertex pair in H ′ as well.

3. Two P3s not sharing a vertex pair in H, do not share a vertex pair in H ′.

The only way to remove a P3 by adding edges and vertices is by adding the non-edge. Since
H ′ contains H as an induced subgraph, there are no edges added between already existing
vertices. Therefore, the first and third property apply. The second property follows directly
from the first one.

13



3. P3-intersection graphs

H ′ is an arbitrary graph which contains H as an induced subgraph. Since the vertices of
I(H ′) are exactly the P3s of H ′ and the edges model the sharing of vertex pairs, it follows
from the properties above that I(H ′) contains I(H) as an induced subgraph.

By Theorem 3.15 we are now able to predict what happens to subgraphs of a graph in its
P3-intersection graph, if we know the P3-intersection graph of the subgraph beforehand.
Next, we will consider single vertices of a graph and how they are represented in the
P3-intersection graph. More precisely, if they have a representation in the P3-intersection
graph. By definition they do, if they are part of an induced P3. Since a clique has no
non-edges between its vertices and no outgoing edges if it is isolated, the vertices of an
isolated clique cannot have a representation in a P3-intersection graph. In fact, this is the
only case in which a vertex is not represented in the P3-intersection graph, as shown in
Lemma 3.16.

Lemma 3.16. Every vertex of a graph G is either contained in an isolated clique or in an
induced P3.

Proof. Let v be an arbitrary vertex v of a graph G.

Assume v is not in an isolated clique. Then, if v forms a clique with N(v), there has to be
another vertex u which is adjacent to a vertex w of the clique. Without loss of generality
let v ̸= w. Therefore, (u, w, v) is a P3. If v does not form a clique with N(v), there are
u, w ∈ N(v) with the non-edge uw. So v is again contained in a P3 (u, v, w).

Now assume that v is not contained in an induced P3. Then, there cannot be two vertices
u, w ∈ N(v) with the non-edge uw or else v would be contained in the P3 (u, v, w). So
N(v) ∪ {v} is a clique. There cannot be a vertex u adjacent to a vertex w ̸= v of the
clique but not part of it, because then there would be the P3 (u, w, v). Thus, the clique is
isolated.

Since vertices of isolated cliques have no representation in the P3-intersection graph, they
do not influence it either. So we can just ignore them when looking at properties of
P3-intersection graph construction. This especially implies that an origin graph of a
P3-intersection graph can be created by just using vertices that are represented in its
P3-vertices.

Corollary 3.17. For each P3-intersection graph G̃ = (Ṽ , Ẽ), there is an origin graph of
size at most 3 ∗ |Ṽ |.

Since a cluster editing instance can have multiple connected components, we also explore
what happens with the P3-intersection graph of such a graph.

Theorem 3.18. Let G be a graph without isolated cliques. The P3-intersection graph of G
is connected if and only if G is connected.

Proof. Let I(G) be the P3-intersection graph of a graph G without isolated cliques.

We first show "=⇒":
Assume I(G) is connected. Hence, the vertices of two P3s which each share a vertex
pair with another P3 are pairwise connected. Therefore, all vertices in G corresponding
to a path of length two in I(G) are pairwise connected. By transitivity, all vertices in
G corresponding to a path of any length in I(G) are pairwise connected. Since I(G) is
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connected, all vertices of G, which are contained in a P3, are pairwise connected.
Because of Lemma 3.16 this holds for all vertices of G since G has no isolated cliques.

Now we show "⇐=":
Assume G is connected. So there is a shortest path between each two vertices of G
connecting them. This shortest path is always an induced subgraph because otherwise,
there would exist a shorter path. A chain of P3s is a sequence of P3s, where each two
consecutive P3s share a vertex pair. Note, that this translates to a sequence of edges in
the P3-intersection graph. In particular, the first and last vertex of an induced path are
connected by a chain of P3s. So every vertex of a P3 is connected to every vertex of any
other P3 through a chain of P3s. Hence, each vertex in I(G) is connected to any other
vertex through a sequence of edges.

Since Theorem 3.18 applies for arbitrary graphs it also applies for every subset of connected
components of a graph. Therefore, the number of connected components of a graph and
its P3-intersection graph is the same.

Corollary 3.19. Let G be a graph without isolated cliques. G and its P3-intersection graph
have the same number of connected components.

3.5 Computation of P3-intersection graphs

In order to benefit from the unique properties of P3-intersection graphs, they first need to
be computed. Since its vertices are the induced P3s of the origin graph G = (V, E), a list
of all induced P3s of G is required. A simple approach is to check for every three-sized
subset of vertices of G, if it is an induced P3. This can be done by checking the existence
of exactly two edges and one non-edge between these three vertices, which is possible in
constant time. Altogether, it takes O(

(|V |
3
)
) time to compute the full list of induced P3s of

G.
In order to compute the edges, we can check for each pair of P3s α, β if their corresponding
vertices in the P3-intersection graph are adjacent. A simple method is to compute α ∩ β
and check if it has size two. The intersection of two sets of fixed size can be computed in
constant time. Thus, the edges can be computed in O(

(p
2
)
) = O(1

2(p − 1)p) time, with p
being the number of P3s in G.
In the worst case, every three-sized subset of V is indeed a P3, so

(|V |
3
)

is a upper bound
for the number of P3s. Therefore, the computation takes

Θ
(((|V |

3
)

2

))
= Θ(|V |6)

time. Hence, it is possible to compute the P3-intersection graph of an arbitrary graph in
polynomial time.

3.6 Maximum Independent Set on P3-intersection graphs

As mentioned in Section 2.2, we want to solve Maximum Independent Set on the
P3-intersection graph to get a packing. Maximum Independent Set is NP-hard on
arbitrary graphs [Har82]. We tried to find whether this still holds with all the constraints
and properties that come with P3-intersection graphs. However, all attempted approaches
failed. Nonetheless, we outline some promising attempts and why they failed in this section.
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Reduction from Exact-3SAT

In order to show the NP-hardness of Maximum Independent Set on P3-intersection
graphs, we can reduce from a known NP-hard problem. One of the most commonly
encountered NP-hard problems is certainly 3SAT, where we try to decide whether a set
of clauses, with a maximum of three literals each, is satisfiable. It is one of Karp’s 21
NP-complete problems [Kar72]. A slight variation of 3SAT called Exact-3SAT, where
every clause has exactly three literals, fits better to our case. In this variant we only
need to worry about clauses of length three. So we need to construct a graph G from
an Exact-3SAT instance C in such a way that Maximum Independent Set on its
P3-intersection graph I(G) gives us a solution for C.
Our approach was to encode each literal incidence in C as a P3. So for each literal l in clause
c ∈ C we create the P3 (p, x, c) with x being the variable and p the polarity of l. This way,
there cannot be two literal incidences in an independent set which have the same variable
but different polarities. However, this encoding comes with two problems: First, if a literal
incidence (p, x, c) is in an independent set, no other literal incidence in c with the same
polarity can be in the same independent set, so this encoding cannot work. Second, apart
from the P3s representing literal incidences, unintended P3s are created. If there are, for
example, the literal incidences (p, x1, c) and (p, x2, c), we also create the P3s (x1, p, x2) and
(x1, c, x2). Especially the second problem occurs frequently in P3 constructions. A possible
solution for this is to add weights. We want every intentional P3 to get weight 1 and every
unintentional one to get weight 0. Since the instances of the related problem Weighted
Cluster Editing regularly have weighted vertex pairs, we need to choose vertex pair
weights in a way, that results in the P3s having the required weights. Supposing that works,
we use maximum weight independent set on the now vertex-weighted P3-intersection graph
to get a packing. As a consequence we can at most prove the NP-hardness of Maximum
Weight Independent Set on P3-intersection graphs, using this strategy.

Reduction from the three-dimensional assignment problem

George J. Minty uses a reduction from the three-dimensional assignment problem to prove
the NP-completeness of Maximum Independent Set on 4-star-free graphs [Min80]. Since
P3-intersection graphs are 4-star-free (see theorem 3.12), our next approach was to adapt
the idea for a reduction from the three-dimensional assignment problem. This problem
can be pictured as follows: There are three n-sized sets R, G and B and a weight function
w : R × G × B → R+. The goal is to find n triples ti = (ri, gi, bi) with ri ∈ R, gi ∈ G and
bi ∈ B, such that

∑n
i=1 w(ti) is maximal and every x ∈ R ∪ G ∪ B is contained in exactly

one triple [SW96].
With arbitrary 4-star-free graphs it is possible to create a vertex for each of the n3 possible
triples, with two vertices being adjacent if their corresponding triples have at least one
common element x ∈ R ∪ G ∪ B. The weight of a vertex is exactly the weight of the
corresponding triple. We interpret the sets R, G and B as the coordinates from 1 two n in
three dimensions. The constructed graph can then be viewed as a n-sized three-dimensional
grid, where every vertex is contained in a clique with all the vertices on the same plane in
each dimension respectively. Hence, a maximum weight independent set of such a graph
contains no two vertices with a common coordinate, as required.
At first glance, it might look promising to construct a graph that has a similar structure
in its P3-intersection graph: For each possible triple (r, g, b) we construct the equivalent
P3 with equal weight. We use weight 0 to deal with unwanted P3s as mentioned earlier.
Due to the properties of P3-intersection graphs, its vertices are indeed contained in three
maximal cliques respectively. But unfortunately they only form cliques with the vertices
on the same axes, instead of the same planes, since they need two common vertices to be
adjacent instead of one. So this construction does not translate to P3-intersection graphs.
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Reducing Clique to 3-dimensional matching on 3-uniform hypergraphs

Consider a hypergraph with all vertex pairs of a graph G as its vertices. In a hypergraph,
an edge can join more than two vertices. In this case we define three vertices to be adjacent,
if their corresponding vertex pairs induce a P3. So every edge has exactly three vertices,
hence the resulting hypergraph is called 3-uniform.
A maximum 3-dimensional matching on a 3-uniform hypergraph is a maximum subset of
its hyperedges, where every two hyperedges are pairwise vertex disjoint. Since the edges in
our case represent the P3s of G, a maximum 3-dimensional matching is a maximum subset
of P3s of G, where every two P3s are pairwise vertex pair disjoint, which is a maximum
packing of G and therefore an equivalent problem to Maximum Independent Set on the
P3-intersection graph of G.
As shown by Kleinberg and Tardos, 3-dimensional matching is NP-hard on arbitrary
3-uniform hypergraphs [KT06]. They use a reduction from 3SAT for the NP-hardness
proof using gadgets like the one in figure 3.13 to encode the clauses. We will not go into
the details of the proof and the structure of the gadgets but explain why we cannot create
such gadgets by hypergraphs constructed in the way described above.

Variable 1 Variable 2 Variable 3

c c′

b1 b2 b3

Figure 3.13: Gadget encoding a 3-SAT clause as a 3-uniform hypergraph.

Every variable incidence of a clause is represented by a hyperedge containing the clause
core. In the example clause in figure 3.13, these are the vertices c and c′. To construct this,
c and c′ need to be two vertex pairs of G with a common vertex. Therefore, the third vertex
pair of the hyperedge representing a P3 is already dictated by c and c′. Hence, we cannot
have three different hyperedges containing the clause core and b1, b2 or b3 respectively to
encode the up to three variable incidences of a clause.
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4. Star-intersection graphs

As mentioned in section 2.2, the lower bounds obtained through P3-intersection graphs
cannot exceed |E|/2. Bläsius et al. [BFG+22] propose to find structures where the bound
to edge ratio is better than for P3s. They consider stars, which can be viewed as a
generalization of P3s, since a P3 is just a 2-star. Solving Cluster Editing on a k-star
needs k − 1 edits. So we can obtain lower bounds up to |E| − 1 by finding vertex pair
disjoint stars. To this end, we want to generalize P3-intersection graphs to star-intersection
graphs.
We first define star-intersection graphs in section 4.1 by considering two possible definitions
and discussing which one fits better to our use-case. Then, in 4.2, we compare star-
intersection graphs to P3-intersection graphs in terms of the lower bounds they can achieve
for Cluster Editing instances as well as the time needed to compute the respective
intersection graph.

4.1 Defining star-intersection graphs
Similar to P3-intersection graphs, we want star-intersection graphs to model how induced
stars in a graph share vertex pairs. Therefore, two vertices in a star-intersection graph are
adjacent, if and only if their corresponding stars share a vertex pair. However, we have to
consider how exactly we define the vertices of a star-intersection graph. The problem here
is that for k > 2 a k-star always contains k induced (k − 1)-stars. So we can either define
the vertices of a star-intersection graph IS(G) to just be the stars that are not contained
in a bigger star, called the maximal stars, or to be all induced stars of G. We will later
refer to these as Definition I and II, respectively.

In both cases we want to be able to identify how big a star represented by a vertex in
a star-intersection graph is. This can be achieved by introducing a weight function that
maps the stars to the number of edits needed to resolve that star, in the sense of Cluster
Editing. So every k-star has the weight k − 1 in the star-intersection graph. Thus, we
obtain a lower bound for a Cluster Editing instance by adding the weights of the vertices
in a maximum weight independent set of the corresponding star-intersection graph. Since
1-stars have weight zero, we will ignore them from now on.

Now we can compare both definitions by the lower bounds they yield. In Figure 4.1, a
maximum independent set of G′, which is the star-intersection graph of G using Definition
I, has a total weight of 2, whereas the P3-intersection graph of G gives a lower bound of 3.
G′′ does also yield a lower bound of 3, suggesting that Definition II is superior to I.

Lemma 4.1. The star-intersection graph of a graph G using all induced stars contains the
star-intersection graph of G using only the maximal stars as an induced subgraph.
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Proof. Let GI be the star-intersection graph of G using Definition I and GII the star-
intersection graph of G using Definition II. Since GII includes all stars of G it in particular
includes the ones included in GI . Additionally, all edges and non-edges of GI are also
contained in GII , because their definitions do not differ.

G

G

G′

G′′

(I)

(II)

G

P3-intersection graph

I(G)

1 2 1

11 2

1 1 1 1

2

1111

2

1

1

Figure 4.1: A graph G and its P3-intersection graph I(G) as well as its star-intersection
graph in two variations G′ and G′′. Maximum (weight) independent sets of
I(G), G′ and G′′ are highlighted in red.

With Lemma 4.1 and the example in Figure 4.1, where G′′ yields a better lower bound
than G′, we get Theorem 4.2.

Theorem 4.2. The star-intersection graph of a graph G using all induced stars yields
better lower bounds than the star-intersection graph of G using only the maximal stars.

Proof. Let GI be the star-intersection graph of an arbitrary graph G using Definition I
and GII the star-intersection graph of G using Definition II. Because of Lemma 4.1 GII

contains GI as an induced subgraph. Hence, every maximum weight independent set of GI

is also an independent set in GII . Therefore, the lower bound given by GII is at least as
good as the one given by GI . With the example in Figure 4.4 we see that there are graphs
for G, where GII delivers better lower bounds than GI .

Naturally, star-intersection graphs using Definition I have far less vertices than the ones
using Definition II, so they still could be useful in combination with other methods if their
computation is reasonably fast. However, finding all maximal stars is actually NP-hard.
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We show this by rephrasing this problem to a decision problem and proving that it is
NP-complete (see Theorem 4.3): For a graph G and k ∈ N, is there an induced k-star in
G? We call this problem k-Star.

Theorem 4.3. k-Star is NP-complete.

Proof. For a given k-Star instance we can decide non-deterministically in polynomial
time, whether a (k + 1)-sized subset of vertices induces a k-star by assuming one of the
vertices to be the center c and checking if every vertex, besides c, is adjacent to c but not
adjacent to any other vertex. It follows that k-Star ∈ N P.

To show that k-Star is NP-hard, we reduce from Clique, which is one of Karp’s 21
NP-complete problems [Kar72]: For a graph G and a positive integer k, is there a k-clique
in G?
Define the polynomial transformation f from a Clique instance to a k-Star instance
as f((V, E), k) = ((V ′, E′), k) with V ′ = V ∪ {v̂} and E′ = {

(V
2
)

\ E} ∪ {{v̂, v} | v ∈ V }.
(V ′, E′) is essentially the complement graph of (V, E) with an additional vertex v̂, which is
adjacent to every vertex of V .
Let (G, k) be a Clique instance with an arbitrary graph G = (V, E) and a positive integer
k. f(G, k) = (G′, k) gives us the transformed graph G′ = (V ′, E′).
If G has a k-clique, there is a subset C ⊆ V of k pairwise adjacent vertices in G. That
translates to a set of pairwise non-adjacent vertices in G′. So, C is an independent set of
size k in G′. Since v̂ is adjacent to every vertex of C, S = C ∪ {v̂} is a k-star in G′.
If G′ has a k-star, there is a subset I ⊆ V ′ of k independent vertices. Since v̂ is adjacent to
every vertex of V , v̂ /∈ I. Therefore, I ⊆ V . It follows that I is a set of pairwise adjacent
vertices in G. Hence, G has a k-clique.

Now that we know which definition to use for the vertices of a star-intersection graph we
can define them formally.

Definition 4.4. For a graph G = (V, E) we define the star-intersection graph IS(G) :=
(VS , ES) with VS := {S ⊆ V | S is a k-star in G with k ≥ 2} and ES := {αβ | α, β ∈
VS ∧ α ̸= β ∧ |α ∩ β| ≥ 2}.

4.2 Star-intersection graphs in comparison to P3-intersection
graphs

Since star-intersection graphs are a generalization of P3-intersection graph we want them
to yield lower bounds, which are at least as good as the lower bounds of P3-intersection
graphs. We show that this holds, by proving that the star-intersection graph of a graph
contains the P3-intersection graph of the same graph as an induced subgraph in Lemma
4.5. In Theorem 4.6 we see, that there are examples for which star-intersection graphs give
better lower bounds than P3-intersection graphs, proposing that star-intersection graphs
are in fact superior to P3-intersection graphs in the lower bounds they provide.

Lemma 4.5. The star-intersection graph of a graph G contains I(G) as an induced
subgraph.

Proof. Let GS be the star-intersection graph of an arbitrary graph G and G̃ the P3-
intersection graph of G. Since GS includes all stars of G it particularly includes the 2-stars,
also known as P3s. Additionally, note that the definition of the edge set is effectively the
same, since two different P3s cannot share more than two vertices. Hence, all edges and
non-edges of G̃ are also contained in GS .
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Theorem 4.6. The star-intersection graph of a graph G yields better lower bounds than
the P3-intersection graph of G.

Proof. Let GS be the star-intersection graph of an arbitrary graph G and G̃ the P3-
intersection graph of G. Because of Lemma 4.5, GS contains G̃ as an induced subgraph.
Hence, every maximum weight independent set of G̃ is also an independent set in GS .
Therefore, the lower bound given by GS is at least as good as the one delivered by G̃.
Assuming G is a k-star with k > 3, G̃ delivers ⌊k/2⌋ while GS gives an even better lower
bound with k − 1.

In Figure 4.1, the star-intersection graph labeled with G′′ is rather complex in comparison
with the other graphs in the figure. The reason for that is the sheer amount of stars in G.
Recall that every k-star with k > 2 contains k induced (k − 1)-stars. So in total that makes

k∑
i=2

(
k

i

)
= 2k − k − 1

induced stars contained in a single k-star. Note that we ignore 1-stars, since they do not
matter in our application. That means for an arbitrary graph G, with the size of the
biggest induced star being k̂, that the star-intersection graph has Ω(2k̂) vertices. Therefore,
the time needed to compute them or loop through its vertices can be exponential in k̂ as
well. Thus, it is infeasible to compute a maximum independent set on star-intersection
graphs to obtain lower bounds for Cluster Editing.
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5. Pn-intersection graphs

Instead of only looking at paths of size three, we can also consider longer paths. In this
section, we generalize some of the concepts and properties we examined for P3s to paths
containing n vertices, with n being an arbitrary but fixed positive integer greater than one.

Similar to the P3-intersection graph, the vertices of a Pn-intersection graph should be the
induced Pns of the origin graph. We want two vertices to be adjacent, if their corresponding
Pns share n − 1 vertices. So they share exactly

(n−1
2
)

vertex pairs (see Lemma 5.5).
That way, many properties and definitions concerning P3-intersection graph can easily
be generalized for Pn-intersection graph, as shown throughout this section. Formally, we
define Pn-intersection graph in definition 5.1. Note that for n = 2 the Pn-intersection graph
of a graph G is exactly the line graph of G (see [Moo63] for a definition) and for n = 3 it
is exactly the P3-intersection graph.

Definition 5.1. For a graph G = (V, E) and n ∈ N we define the Pn-intersection graph
In(G) := (Ṽ , Ẽ) with Ṽ := {{v1, . . . , vn} | vi ∈ V ∧ vivj ∈ E ⇐⇒ |i− j| = 1 ∧ i, j ∈ [n]}
and Ẽ := {αβ | α, β ∈ Ṽ ∧ α ̸= β ∧ |α ∩ β| = n − 1}. We will denote a vertex
{v1, . . . , vn} ∈ Ṽ with vivj /∈ E for |i − j| > 1 and i, j ∈ [n] as (v1, . . . , vn). Note that Ṽ
corresponds exactly to the set of induced Pns of G.

We also extend the definition of Ĩ(η) to vertices η of Pn-intersection graphs.

Definition 5.2. The Pn corresponding to a vertex η of a Pn-intersection graph is
denoted by Ĩ(η).

The concept of sharing cliques exists in Pn-intersection graphs as well (see Definition 5.3
and Lemma 5.4). In contrast to P3-intersection graphs, the vertices of Pn-intersection
graphs can share more than two vertices. As mentioned previously, they do in fact share
exactly n − 1 vertices. Therefore, a sharing clique defines itself through the set of n − 1
shared vertices.

Definition 5.3. Let G = (V, E) be a graph, S ⊂ V and η a vertex of In(G) = (Ṽ , Ẽ).
Then, NS(η) := {ρ ∈ Ṽ | ρ ∩ η = S} is called a sharing clique of η.

Lemma 5.4. Let η be a Pn and S a set of vertex pairs of a graph G. NS(η) is a clique in
In(G).
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5. Pn-intersection graphs

Proof. Let η be a Pn of a graph G = (V, E) and S ⊂ V . Since every Pn corresponding to a
vertex of NS(η) needs to contain all vertices of S, they also share S with each other. That
makes them pairwise adjacent in In(G).

Lemma 5.5. The Pns corresponding to two adjacent vertices of a Pn-intersection graph
share exactly 1

2(n − 1)(n − 2) vertex pairs.

Proof. Let G̃ = (Ṽ , Ẽ) be a Pn-intersection graph and αβ ∈ Ẽ. By Definition 5.1, Ĩ(α)
and Ĩ(β) have n − 1 common vertices. Therefore, they also share all vertex pairs between
these n − 1 vertices, which are exactly

(n−1
2
)

= 1
2(n − 1)(n − 2).

Since adjacent Pns share n − 1 vertices, the neighbourhood of a Pn-intersection graph
vertex consists of

( n
n−1

)
= n sharing cliques. So again, similar to P3-intersection graphs,

the neighbourhood of such a vertex can be partitioned into at most n independent sets (see
Theorem 5.6) and covered by at most n cliques (see Theorem 5.7). Definition 5.8 formalizes
a partition of the neighbourhood into n sharing cliques.

Theorem 5.6. The neighbourhood of a vertex in a Pn-intersection graph can be partitioned
into at most n non-empty pairwise independent sets.

Proof. Let G̃ be a Pn-intersection graph, η an arbitrary vertex of G̃ and ρ an arbitrary
vertex in N(η). The corresponding Pn Ĩ(ρ) shares a set S of n − 1 vertices with Ĩ(η).
According to Lemma 5.4, every Pn sharing that S with Ĩ(η) is in the same set, in order to
comply with the pairwise independence. Thus, there can only be one such independent set
for each choice of the n − 1 vertices. Since there are

( |η|
n−1

)
=
( n

n−1
)

= n possible choices,
the theorem follows.

Theorem 5.7. The neighbourhood of a vertex in a Pn-intersection graph can be covered by
at most n cliques.

Proof. Let G = (V, E) be a graph and η an arbitrary vertex of its Pn-intersection graph.
According to Lemma 5.4, NS(η) is a clique for each S ⊂ V . Then,

N(η) =
⋃

S′∈( η
n−1)

NS′(η)

is the union of n cliques that cover the whole neighbourhood.

Definition 5.8. Let G = (V, E) be graph and η an arbitrary vertex of its Pn-intersection
graph. Then, the neighbourhood clique partition NCP(η) = {NS′(η) | S′ ∈

( η
n−1

)
} is

the partition of N(η) into n cliques, specified by which set of vertices their Pns share with
Ĩ(η).

We find that the absence of 4-stars in P3-intersection graphs translates to Pn-intersection
graphs as well. With a similar argument as in Theorem 3.12, Pn-intersection graphs are in
fact (n + 1)-star-free.

Theorem 5.9. Pn-intersection graphs are (n + 1)-star-free.

Proof. Let G̃ be a Pn-intersection graph and S an induced (n + 1)-star in G̃ with root
s0 and pairwise independent leaves s1, . . . , sn+1. Then, {{s1}, . . . , {sn+1}, {N(s0) \ S}}
is a partition of the neighbourhood of s0 containing more than n non-empty pairwise
independent sets. This contradicts Theorem 5.6, implying that G̃ is in fact (n + 1)-star-
free.
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Lower Bounds with Pn-intersection graphs

In the sense of Cluster Editing, a Pn can be resolved with ⌊n−1
2 ⌋ edge modifications by

deleting every second edge. However, when considering a Pn as n − 2 overlapping P3s, we
can choose exactly ⌈n−2

2 ⌉ = ⌊n−1
2 ⌋ vertex pair disjoint P3s. So, P3-intersection graph are

capable of delivering equal lower bounds to Pn-intersection graphs. The key difference is
that an induced Pn requires

(n
2
)

− (n − 1) = n(n−1)
2 − (n − 1) non-edges, while n − 2 P3s,

covering a Pn, require only n − 2 non-edges. Therefore, from the perspective of Cluster
Editing, the trade-off between the complexity, expressed through the edge requirements,
and the delivered lower bounds of Pn-intersection graphs is worse than with P3-intersection
graphs.
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6. Conclusion

This work introduced and examined three types of intersection graphs in order to find
lower bounds for Cluster Editing through packings.
First, we examined P3-intersection graphsand concluded that they form a proper subset
of 4-star-free graphs. Additionally, the neighbourhood of every vertex η in such a graph
can be partitioned into three cliques specified by which vertex pair the corresponding P3
shares with the P3 corresponding to η. Moreover, we showed that edges between these
cliques only exist as part of a triangle spanning over all three cliques or between the two
cliques specified by the vertex pairs that are the edges of the P3 corresponding to η. We
also found that the P3-intersection graph of a graph contains the P3-intersection graph of
every induced subgraph as an induced subgraph. That means we may not always need to
compute the whole P3-intersection graph to gain knowledge of the local structure, even
though we showed that this is possible in polynomial time.
Furthermore, we outlined some of our approaches to show the NP-hardness of Maximum
Independent Set on P3-intersection graphs, which would yield a P3-packing. However,
the strict structure of P3s proved problematic to construct a polynomial transformation for
all approached reductions. An approximation algorithm, on the other hand, could benefit
from this strict structure, leading us to suspect that it is indeed possible to construct
a good polynomial approximation algorithm or even a polynomial exact algorithm for
Maximum Independent Set on P3-intersection graphs.
We have already seen that multiple distinct graphs can have the same P3-intersection
graph. However, it could be possible to prove that the number of origin graphs to a given
P3-intersection graph, excepting such with isolated cliques, is bounded depending on, for
example, the size of the given graph. Future work could also pursue the development of an
algorithm which can check if a given graph is a P3-intersection graph or which aims to find
a valid origin graph to a given P3-intersection graph.
We continued with the examination of other intersection graphs by taking the concept of
P3-intersection graphs and applying it to stars and paths of arbitrary size. We found that
there actually is a definition for star-intersection graphs which is able to yield better lower
bounds for Cluster Editing than P3-intersection graphs. The downside however, is the,
on the size of the biggest star dependent, exponential time and space needed to compute and
store it. Pn-intersection graphs, on the other hand, yield equal lower bounds for Cluster
Editing, but, since they come with more restrictions than P3-intersection graphs, they
are less suited to finding lower bounds for Cluster Editing than P3-intersection graphs.
Finding further structures and defining corresponding intersection graphs, where the trade-
off between structure complexity and granted lower bound is optimized, could also be
pursued in future work.
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