
Generating Geometric Random Graphs with
Boolean Distance Functions

Bachelor’s Thesis of

Maxime Christophe Rambaud

At the Department of Informatics

Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius

Second reviewer: PD Dr. Torsten Ueckerdt

Advisors: Jean-Pierre von der Heydt

Marcus Wilhelm

01.06.2024 – 01.10.2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe







Abstract

Geometric Inhomogeneous Random Graphs (GIRGs) have proven particularly valuable for the

realistic analysis of graph algorithms as they exhibit many real-world properties. However,

connections between vertices are mostly limited to the case of vertices being close in every

dimension. BDF-GIRGs, a recent extension, use distance functions based on arbitrary combi-

nations of minima and maxima of the component-wise distances, potentially modeling even

more realistic graphs.

We consider the threshold model of BDF-GIRGs and present the first sampling algorithm with

linear runtime in the number of vertices. We characterize the runtime depending on the cho-

sen distance function by identifying two properties: the computational length, which affects

the runtime by a linear factor, and the computational depth, which has an exponential effect.

We then further optimize the algorithm by reducing the computational length and depth,

potentially leading to significant improvements of the runtime. The implementation we then

provide is based on an existing sampling algorithm for GIRGs. We also enable the generation

of graphs with a desired average degree by extending an existing algorithm. Additionally,

we further investigate the effect of the length and depth for arbitrary BDF-GIRG algorithms.

Based on the Orthogonal Vectors Hypothesis (OVH) we show a lower bound with matching

dependency on the length and depth, under the assumption of arbitrary distributed positions.

Finally, we empirically analyse our implementation and some sampled graphs. The results

reveal that especially in the case of a more homogeneous weight distribution, the properties

of BDF-GIRGs strongly depend on the distance function used.

Zusammenfassung

Geometric Inhomogeneous Random Graphs (GIRGs) haben sich bei der realistischen Analyse

von Graphenalgorithmen als nützlich herausgestellt, da sie viele Eigenschaften von Echtwelt-

graphen aufweisen. Die Verbindung zwischen Knoten ist jedoch darauf beschränkt das diese

in jeder Dimension nah beieinander liegen. BDF-GIRGs, eine kürzlich vorgestellte Erweite-

rung, verwenden beliebige Kombinationen von Minima und Maxima der komponentenweisen

Distanz zwischen Knoten als Distanzfunktion und ermöglichen damit möglicherweise die

Modellierung von noch realistischeren Graphen.

In dieser Arbeit betrachten wir die threshold Variante von BDF-GIRGs und präsentieren den

ersten Generierungsalgorithmus mit linearer Laufzeit in der Anzahl an Knoten. Darüber hin-

aus beschreiben wir die Laufzeit in Abhängigkeit von der gewählten Distanzfunktion, indem

wir zwei ihrer Eigenschaften charakterisieren: die Länge, welche einen linearen Einfluss auf die
Laufzeit hat und die Tiefe, welche einen exponentiellen Einfluss hat. Anschließend optimieren

wir den Algorithmus weiter, indem wir die Länge und Tiefe reduzieren, was teilweise zu

erheblichen Laufzeitverbesserungen führt. Die Implementierung, die wir dann bereitstellen ba-

siert, auf einem bestehenden Generierungsalgorithmus für GIRGs. Wir ermöglichen ebenfalls

die Generierung von Graphen mit einem gewünschten durchschnittlichen Knotengrad Grad,

indem wir einen bereits existierenden Algorithmus erweitern. Zusätzlich untersuchen wir die

Auswirkungen der Länge und Tiefe auf die Laufzeit von BDF-GIRG Algorithmen. Basierend

auf der Orthogonal Vectors Hypothesis (OVH) zeigen wir eine untere Schranke mit passenden

Abhängigkeiten zu Länge und Tiefe für beliebig verteilte Positionen. Abschließend analysieren
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wir die Laufzeit unserer Implementierung sowie einige Eigenschaft von generierten Graphen.

Die Ergebnisse zeigen, dass insbesondere im Fall einer homogeneren Verteilung der Gewichte,

die Eigenschaften von BDF-GIRG stark von der verwendeten Distanzfunktion abhängen.
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1 Introduction

Many real-world structures can be modeled as graphs, where the vertices represent entities

and the edges represent relationships between them. Applications range from social net-

works and internet infrastructure to road networks. Analyses performed on those graphs

ranges from routing algorithms to complex analyses of social relations. While some computer

scientists focus on developing algorithms for those analyses, others are interested in their

theoretical examination. An important aspect of it is understanding the structures of the

underlying graphs [CF06]. These structures can often explain why, e.g., worst-case analysis

tends to be overly pessimistic. A promising approach is the study of random graphs, which

are generated based on mathematical models that aim at emulating real-world scenarios

[BF24]. This enables the possibility of average-case analyses and simplifies the generation

of test instances. However, it is crucial that those random graphs have similar properties to

real-world graphs, otherwise making their analysis obsolete.

Although the number of properties one can analyse is vast, many real-world graphs have been

observed to exhibit four key characteristics: scale-freeness [FFF99], high clustering [SAK04],

the small-world phenomenon [TM69], and the presence of a giant component. A network is

said to be scale-free if the degree distribution follows a power-law. Intuitively, this property

describes how most vertices are connected to only a small number of other vertices, while

just a few have a large degree. Clustering describes the probability of two vertices being

connected if they share a common neighbor. The natural interpretation is that two random

persons having a friend in common are more likely to be friends, in contrast to two persons

not related through an intermediary. The cluster coefficient is therefore known to be high in

real-world graphs. A graph is said to exhibit the small-world phenomenon if its diameter (i.e.,
the maximal distance between any pair of vertices) is at most poly-logarithmic. A graph with

a giant component is one where almost every vertex is reachable by any other.

One of the first and most popular models for generating random graphs is the Erdős-Rényi
model [KR13]. Given 𝑛 vertices and a probability 𝑝 , each possible edge is generated with

probability 𝑝 . Erdős-Rényi graphs are particularly simple to generate and analyse, feature

a giant component and also exhibit the small-world phenomenon. Their main drawback

is that, due to the random distribution of edges, they lack any clustering. A model that

counteracts this issue is that of Random Geometric Graphs (RGGs) [DC02]. Roughly speaking,

the model works by assigning each vertex a position in an underlying space, and edges are

then sampled if and only if the distance between two vertices is below a connection threshold.

This procedure is motivated by the fact that most real-world structures are assumed to also

be induced by some kind of geometry. This geometry induces high clustering and, for a

sufficiently high connection threshold, also leads to a giant component. Although the classic

model of RGGs does not exhibit the small-world phenomenon, it can be achieved by adding a

few long-range edges [Erc11]. However, both of the models just presented lack the crucial

property of scale-freeness. In both Erdős-Rényi graphs and RGGs, the degree distribution

is homogeneous. A promising model to achieve scale-freeness is the Hyperbolic Random
Graph (HRG) [Kri+10]. In HRGs, the positions of vertices are considered in the hyperbolic
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1 Introduction

plane rather than in the Euclidean space. HRGs exhibit all four desirable properties but have

the disadvantage of being quite complex. A simpler and more general model is the one of

Geometric Inhomogeneous Random Graphs (GIRGs) [BKL19]. It can be seen as an extension

of RGGs, where vertices are equipped with weights following a power-law. The connection

threshold between a pair of vertices then depends from the product of their weights. As a

distance function for both RGGs and GIRGs, it is common to use the metric induced by the

𝐿∞-norm (max-norm). While the 𝐿∞-norm induces high clustering, it has been argued that

for some types of networks this does not reflect the underlying structure well. For instance if

we think of social networks, where each dimension represents some kind of attribute (age,
hobby, workplace), two people are likely to know each other if the share only some properties

and not necessarily all, like it would be implied by the 𝐿∞-norm.

With this motivation, Kaufmann et al. [KRS24] introduced a large class of GIRG extensions

called BDF-GIRGs, where the underlying distance is induced by a Boolean Distance Function
(BDF) (see Definition 2.1). This family of distance functions consist of arbitrary combinations

of minima and maxima of the component-wise distance between two vertices. Consider

this example with three dimensions, where each dimension encodes one of the properties

age, hobby and workplace. Let us assume that two persons know each other if they have

a similar hobby and age, or if they have a common workplace. We can then use the BDF

min{𝑑𝑖𝑠𝑡𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒 ,max{𝑑𝑖𝑠𝑡𝑎𝑔𝑒 , 𝑑𝑖𝑠𝑡ℎ𝑜𝑏𝑏𝑦}} to model this assumption and might expect graphs

whose properties fit social networks better. Kaufmann et al. [KRS24] showed that the four

desirable properties of being scale-free, high clustering, the existence of a giant component

and a logarithmic diameter (small-world phenomenon) are also exhibited by BDF-GIRGs, no

matter the concrete BDF, for power-law exponents 2 < 𝛽 < 3. However, unlike for HRGs

and GIRGs, there are no efficient algorithms available to generate this very new class of

graphs. For GIRGs, Bringmann et al. [BKL19] have shown that they can be generated in

expected linear time for a fixed dimension, but with an exponential runtime in the dimensions.

An efficient implementation of this algorithm has been provided by Bläsius et al. [Blä+22],

enabling the generation of large GIRG instances, if the dimension is small.

The contribution of this thesis is to develop a simple and efficient generation algorithm for

BDF-GIRGs. This does not only facilitate their generation but also enables their empirical

analysis, as the influence of different BDFs remains widely unexplored. The algorithm we

design works by transforming BDFs into a normal form, which we refer to as the min-max
form. Based on it, BDF-GIRGs can be generated as a union of several GIRGs. The runtime is

then linear in the number of vertices. The runtime in dependence of the BDF is influenced by

two of its properties. The first is the amount of GIRGs that need to be sampled to obtain the

BDF-GIRG and has a linear impact on the runtime. We call this property the computational
length. The second is the largest dimension in which a GIRG needs to be sampled and impacts

the runtime by an exponential factor. We refer to it as the computational depth. We then

further optimize our algorithm by reducing the computational length and depth, potentially

leading to significant improvements of the runtime. The result is then a simple extension

that, based on the efficient implementation of Bläsius et al. [Blä+22], is capable of quickly

sampling BDF-GIRGs. Additionally, we extend the provided algorithm, which estimates the

threshold based on a desired average degree, to handle this more general class of distance

functions. We also address the question of why the runtime for the generation of GIRGs

grows exponentially in the number of dimensions. For this, we consider a key-assumption

from fine-grained complexity theory, the Orthogonal Vectors Hypothesis (OVH). We deduce

that for a more general class of BDF-GIRGs, with no assumptions about the positions of the
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1.1 Outline

vertices, no algorithm can run polynomially in the number of dimensions unless its runtime

is quadratic in the number of edges (being the trivial O(𝑛2𝑑) algorithm), unless OVH fails.

Finally, we empirically analyse some of the graph properties mentioned earlier for a wide

range of different BDF-GIRGs. Besides validating the earlier theoretical results, we take a

broader look at the case of a power-law exponent 𝛽 > 3, which leads to a more homogeneous

degree distribution. We find out that in this case, BDF-GIRGs exhibit very different behaviors,

depending on the chosen BDF. Based on those empirical observations, we classify BDFs into

three categories and attempt to explain the differences.

1.1 Outline

We first introduce the formal definitions of BDFs, BDF-GIRGs and some their properties in

Chapter 2. We also briefly discuss the idea behind the linear time algorithm for GIRGs. In

Chapter 3 we show some lower bounds for the sampling of BDF-GIRGs. In Chapter 4 we then

present the basic idea of the sampling algorithm for BDF-GIRGs as well as the algorithm used

to estimate estimate the average degree. Afterwards, in Chapter 5 we discuss an important

optimisation that we make to our algorithm which can potentially drastically increase the

performance. In Chapter 6 we discuss implementation details as well as some properties of

the generated BDF-GIRGs.
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2 Preliminaries

In this chapter, we define Boolean Distance Functions as Kaufmann et al. [KRS24] did and

introduce some properties to characterize them. We then discuss how their volume, an

important property of BDFs, can be characterized. We then define BDF-GIRGs and show that

they are a special case of the random graph model defined by Bringmann et al. [BKL18], from

which a variety of properties follow directly. At the end, we discuss how GIRGs (we refer to

them as 𝐿∞-GIRGs) can be generated in linear time for a fixed dimension.

2.1 Underlying Space and Boolean Distance Functions

In this section, we first discuss the underlying space we use for BDF-GIRGs and then define

Boolean Distance Functions.

Underlying space. A variety of different underlying spaces are used for geometrical graphs.

In the case of GIRGs it is common to use the 𝑑-dimensional torus, which is written as 𝕋𝑑
. The

component-wise distance between two vertices is then defined as:

|𝑥𝑖 − 𝑦𝑖 |𝑇 := min{|𝑥𝑖 − 𝑦𝑖 |, 1 − |𝑥𝑖 − 𝑦𝑖 |} for 𝑥,𝑦 ∈ 𝕋𝑑 .

A torus can be identified with the interval [0, 1)𝑑 where the opposite boundaries are identified.

In one dimension, one can think of a torus as the interval [0, 1) where the ends wrap around.

Note that because of that, the component-wise distance can not exceed
1

2
. In the following we

write |𝑥 | denoting |𝑥 |𝑇 .

Distance function. The distance between two elements 𝑥,𝑦 ∈ 𝕋𝑑
can be defined as

combination of the component-wise distance of 𝑥 and 𝑦 in different dimensions. The most

common type of distance functions are those induced by a norm. Commonly, either the

𝐿∞-norm, defined as max𝑖∈[𝑑 ] |𝑥𝑖 | = |𝑥 |∞, or the euclidean 𝐿2-norm ((∑𝑑
𝑖=1 |𝑥𝑖 |2)1/2) are used.

As discussed earlier, we consider a wider range a distance functions, that also include non-

metrics. An example of such a non-metric is the minimum component distance (MCD) defined

as min𝑖∈[𝑑 ] ( |𝑥𝑖 − 𝑦𝑖 |). In contrast to the 𝐿∞-norm, which considers the dimension in which

two positions differ the most, the MCD instead considers the dimension in which they differ

the least. In the context of social-networks, where each dimension stands for a property,

using the MCD can be seen as assuming that two people are friends if they have at least

one property in common. In the same context, one could argue that a similarity in just one

dimension for two people to know each other is somewhat of an overstatement. Therefore,

we consider arbitrary combinations of min and max terms, called Boolean Distance Function

(BDF), which allow encoding solutions that lay in-between the 𝐿∞-norm and the MCD. A

good intuition is to think about BDFs as a nested statement of AND and OR operators, where

a maximum is an AND and a minimum is an OR. If we want to express that two people

know each other if they share a hobby OR a job AND live next to each other, we can write:

max{𝑑𝑖𝑠𝑡𝑙𝑖𝜈𝑒 ,min{𝑑𝑖𝑠𝑡 𝑗𝑜𝑏, 𝑑𝑖𝑠𝑡ℎ𝑜𝑏𝑏𝑦}}. The formal definition work by defining a BDF as a

binary tree.
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2 Preliminaries

(a) max(𝑥0, 𝑥1, 𝑥2) (b) min(𝑥0, 𝑥1, 𝑥2) (c) max(𝑥0,min(𝑥1, 𝑥2))

Figure 2.1: Comparison between three BDFs in [0, 1)3. The red area represents positions

which are closer than 0.05 to the center of the cube.

Definition 2.1 (Def. 4 in [KRS24]): Let 𝑑 ∈ ℕ be a positive integer, and let 𝜅 : 𝕋𝑑 → ℝ≥0 and
𝑥 = (𝑥1, 𝑥2, .., 𝑥𝑑 ) ∈ 𝕋𝑑 be an arbitrary point. Then 𝜅 is a Boolean Distance Function (BDF) if:

For 𝑑 = 1: 𝜅 (𝑥) = |𝑥 |.

For 𝑑 ≥ 2: there exists a non-empty proper subset 𝑆 ⊊ [𝑑] of coordinates such that:

𝜅 (𝑥) =𝑚𝑎𝑥 (𝜅1((𝑥𝑖)𝑖∈𝑆 ), 𝜅2((𝑥𝑖)𝑖∉𝑆 )) or 𝜅 (𝑥) =𝑚𝑖𝑛(𝜅1((𝑥𝑖)𝑖∈𝑆 ), 𝜅2((𝑥𝑖)𝑖∉𝑆 ))

With 𝜅1 : 𝕋 |𝑆 | → ℝ≥0 and 𝜅2 : 𝕋𝑑−|𝑆 | → ℝ≥0 being BDFs.

A BDF is called outer-max (or outer-min) if it is defined as maximum (or minimum) of two BDFs.
𝜅1 and 𝜅2 are called comprising functions of 𝜅.

To get a better sense of what a BDF might look like in practice, consider Figure 2.1, where

the red area shows the area “next to” the center with respect to different BDFs. Observe that

both the 𝐿∞-norm and MCD are BDFs. For better readability, we do not write the BDFs in the

formally defined manner but simplify the notation by omitting minima of minima or maxima

of maxima. For example, we write max(0,max(1, 2)) as max(0, 1, 2). Also note that BDFs are

generally non-metrics because they do not satisfy the triangle inequality.

We now introduce two properties of BDFs. They are used to describe the runtime of our

BDF-GIRG algorithm with respect to the BDF. We recall that the idea of the algorithm is to

sample BDF-GIRGs as a union of multiple GIRGs. While doing so two factors influence the

runtime. The first is the maximal dimension a single GIRG can have and therefore has an

exponential impact on the runtime. We describe this property as the computational depth
of a BDF. The second factor, which we call the computational length, impacts the runtime

by a linear factor and stands for the number of GIRGs that have to be generated to obtain a

BDF-GIRG.

Definition 2.2 (Computational length and depth): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF. Then the
computational length 𝐿𝑐 (𝜅) and computational depth 𝐷𝑐 (𝜅) of 𝜅 are recursively defined as:

For 𝑑 = 1, 𝐿𝑐 (𝜅) = 𝐷𝑐 (𝜅) = 1

6



2.1 Underlying Space and Boolean Distance Functions

For 𝑑 ≥ 2 let 𝜅1 and 𝜅2 be the comprising functions of 𝜅:
If 𝜅 is outer-max: 𝐿𝑐 (𝜅) := 𝐿𝑐 (𝜅1) · 𝐿𝑐 (𝜅2) 𝐷𝑐 (𝜅) := 𝐷𝑐 (𝜅1) + 𝐷𝑐 (𝜅2)
If 𝜅 is outer-min: 𝐿𝑐 (𝜅) := 𝐿𝑐 (𝜅1) + 𝐿𝑐 (𝜅2) 𝐷𝑐 (𝜅) := max(𝐷𝑐 (𝜅1), 𝐷𝑐 (𝜅2))

Observe, that for the special case of 𝜅 (𝑥) = max𝑖∈[𝑑 ] |𝑥𝑖 | (𝐿∞-norm) the depth is 𝐷𝑐 (𝜅) = 𝑑

and the length is 𝐿𝑐 (𝜅) = 1. This is intuitive as it is equivalent to just computing a single

GIRG. For the MCD 𝜅 (𝑥) = min𝑖∈[𝑑 ] |𝑥𝑖 | the depth is 𝐷𝑐 (𝜅) = 1 and the length is 𝐿𝑐 (𝜅) = 𝑑 .

We see in Chapter 4 that its computation just consists of considering each dimension separately.

Now, we define a class of BDFs which Kaufmann et al. [KRS24] called Single-Coordinate
Outer-Max (SCOM). Those are outer-max BDFs that can be written such that one of the

comprising functions acts on a single coordinate. Kaufmann et al. demonstrated that the

existence of sublinear cuts depend on whenever a SCOM-BDF is used or not. In Chapter 6 we

see that, except a special case, this categorization also makes sense beyond the context it was

introduced in.

Definition 2.3 (SCOM-BDF Definition 6. in [KRS24]): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF. We say
that 𝜅 is Single-Coordinate Outer-Max (SCOM) if it can be written as:

𝜅 (𝑥) =𝑚𝑎𝑥 ( |𝑥𝑘 |, 𝜅0((𝑥𝑖)𝑖≠𝑘 ))

for some coordinate 𝑘 ∈ [𝑑] and some BDF 𝜅0 : 𝕋𝑑−1 → ℝ≥0. In dimension 1, 𝜅 (𝑥) = |𝑥 | is also
a SCOM-BDF.

2.1.1 Volume of a BDF

In this section, we discuss how the volume of a BDF can be characterized both asymptotically

and exactly as a function of the radius 𝑟 . The volume is an important property, which later

plays an important role in estimating the average degree, and optimizing the performance of

the sampling algorithm.

By the volume of a BDF 𝜅 we mean the Lebesgue measure of 𝐵𝑟𝜅 (𝑥) = {𝑦 ∈ 𝕋𝑑 |𝜅 (𝑥 − 𝑦) < 𝑟 },
being a ball with radius 𝑟 > 0 centered around 𝑥 ∈ 𝕋𝑑

and using 𝜅 as distance function.

Because the Lebesgue measure is invariant under translation, the choice 𝑥 is irrelevant. We

write the volume as 𝑉𝜅 (𝑟 ). Consider Figure 2.1 which represents 𝐵0.05
𝜅 ((0.5, 0.5, 0.5)) for

different 𝜅 . To describe𝑉𝜅 (𝑟 ) as a function of 𝑟 Kaufmann et al. [KRS24] introduced the depth
of a BDF. In order to better differentiate it from the computational depth, we call it volumetric
depth.

Definition 2.4 (Volumetric depth (Def. 5 in [KRS24])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF. Then the
volumetric depth 𝐷𝜈 (𝜅) of 𝜅 is recursively defined as:

For 𝑑 = 1, 𝐷𝜈 (𝜅) = 1

For 𝑑 ≥ 2 let 𝜅1 and 𝜅2 be the comprising functions of 𝜅:
If 𝜅 is outer-max: 𝐷𝜈 (𝜅) := 𝐷𝜈 (𝜅1) + 𝐷𝜈 (𝜅2)
If 𝜅 is outer-min: 𝐷𝜈 (𝜅) := min(𝐷𝜈 (𝜅1), 𝐷𝜈 (𝜅2))

The only difference between the computational and volumetric depth is that, in the case

of an outer-min BDF, the minimum of the depths of the two comprising functions is used,

instead of the maximum. Consequently, the computational depth is greater or equal than the

volumetric depth i.e., 𝐷𝑐 (𝜅) ≥ 𝐷𝜈 (𝜅) for any BDF 𝜅 . We can now use the volumetric depth to

characterize the volume of BDF asymptotically for decreasing a radius.
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Lemma 2.5 (Volume of BDF (Proposition 11 in [KRS24])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF, with
volumetric depth 𝐷𝜈 (𝜅). Then 𝑉𝜅 (𝑟 ) = Θ(𝑟𝐷𝜈 (𝜅 ) ) for 𝑟 → 0.

Proof. The full proof is given by Kaufmann et al. [KRS24] and requires the use of the Lebesgue

integrals. However, we sketch the proof, to give a better intuition about the lemma. The proof

is an induction on the dimensions 𝑑 . Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF:
For 𝑑 = 1 and 𝑟 ∈ [0, 1

2
] the volume of is 2𝑟 = Θ(𝑟 ). Because 𝐷𝜈 (𝜅) = 1 and therefore

Θ(𝑟𝐷𝜈 (𝜅 ) ) = Θ(𝑟 ), the induction hypothesis if fulfilled.

For 𝑑 ≥ 2, with 𝜅1, 𝜅2 comprising functions of 𝜅 , we differentiate between the outer-max and

outer-min case. In the outer-max case, the volume is:

𝑉𝜅 (𝑟 ) = 𝑉𝜅1 (𝑟 ) ·𝑉𝜅2 (𝑟 ) = Θ(𝑟𝐷𝜈 (𝜅1 )+𝐷𝜈 (𝜅2 ) ) = Θ(𝑟𝐷𝜈 (𝜅 ) )

The intuition is that, for an 𝑦 ∈ 𝕋𝑑
to be in both the ball using 𝐵𝑟𝜅1 (𝑥) and 𝐵

𝑟
𝜅2
(𝑥), it is similar

to when handling joint probabilities, where we consider the product of both probabilities. In

the outer-min case, let WLOG 𝐷𝜈 (𝜅1) ≥ 𝐷𝜈 (𝜅2).

𝑉𝜅 (𝑟 ) = 𝑉𝜅1 (𝑟 ) +𝑉𝜅2 (𝑟 ) −𝑉𝜅1 (𝑟 ) ·𝑉𝜅2 (𝑟 ) = Θ(𝑟𝐷𝜈 (𝜅2 ) + 𝑟𝐷𝜈 (𝜅1 ) − 𝑟𝐷𝜈 (𝜅1 ) ·𝐷𝜈 (𝜅2 ) ) = Θ(𝑟𝐷𝜈 (𝜅2 ) )

The intuition this time is that we consider combined probabilities, where we sum the proba-

bility of two cases and subtract the intersection. Because 𝑟𝐷𝜈 (𝜅2) dominates the asymptotic

behavior for decreasing 𝑟 , we can omit the remaining part of the term.

It is important to understand that this describes the asymptotic behavior of the volume

for 𝑟 → 0 by ignoring the intersections and comprising BDF with smaller volume in the

outer-min case. This can help us to understand which parts of the BDF are responsible for

how many edges. In other cases however, like estimating the average degree, we need to

know the exact volume of a BDF. It that case, we can easily describe it as a polynomial of 𝑟 .

Lemma 2.6: Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF. The volume 𝑉𝜅 (𝑟 ) for 𝑟 ∈ [0, 1
2
] can be described as a

polynomial 𝑝𝜅 of degree 𝑑 .

Proof. The polynomial can be constructed recursively.

Let 𝑑 = 1. For 𝑟 ∈ [0, 1
2
], 𝑝𝜅 (𝑟 ) = 2𝑟 and has degree 1.

For 𝑑 ≥ 2, let 𝑝𝜅1 and 𝑝𝜅2 be the polynomials of the two comprising BDFs of 𝜅.

If 𝜅 is outer-max, 𝑝𝜅 (𝑟 ) = 𝑝𝜅1 (𝑟 ) · 𝑝𝜅2 (𝑟 ). This results in a polynomial of degree 𝑑𝑒𝑔(𝑝𝜅1) +
𝑑𝑒𝑔(𝑝𝜅2).
If 𝜅 is outer-min, 𝑝𝜅 (𝑟 ) = 𝑝𝜅1 (𝑟 ) + 𝑝𝜅2 (𝑟 ) − 𝑝𝜅1 (𝑟 ) · 𝑝𝜅2 (𝑟 ). Due to the intersection, the degree

of the polynomial is also 𝑑𝑒𝑔(𝑝𝜅1) + 𝑑𝑒𝑔(𝑝𝜅2).

Note that for arbitrary for 𝑟 > 1

2
the volume is always 1. We can therefore write 𝑉𝜅 (𝑟 ) =

𝑝𝜅 (min{ 1
2
, 𝑟 }).

2.2 BDF-GIRGs

In this section, we first discuss what it means for weights to follow a power-law distribution.

Following that, we use the previous definitions to formally define BDF-GIRGs. Afterwards,

we look at some properties of BDF-GIRGs.
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Power law weights. The formal definition of weights following a power-law distribution is

quite technical. Therefore, we only mention two properties of power-law distributed weights

that we need in this work.

(1) For an exponent 𝛽 > 2, the fraction of weights that are larger or equal to 𝑤 , is 𝑤1−𝛽
.

This specifically means that for lower power-law exponents, the weights tend to get larger.

Conversely, for higher power-law exponents, the weights are expected to be lower.

(2) The sum of weights following a power-law distribution is linear. Meaning that for 𝑛 ∈ ℕ

weights, their sum is in Θ(𝑛).
For a formal definition of power-law distributed weights and a proof of (2), we refer to the

work of Bringmann et al. [BKL18], specifically Section 2.2 and Lemma 4.1.

We are now able to define BDF-GIRGs as graphs where each vertex is assigned a positions

and an edge exists if two vertices are closer the a certain threshold. The threshold depends on

the weights of the vertices and the distance between vertices on the chosen BDFs.

Definition 2.7 (BDF-GIRG): Let 𝛽 > 2, 𝑑, 𝑛 ∈ ℕ and 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF. Let𝑤1, ...,𝑤𝑛 ∈
ℝ>0 be a sequence of weights that is power-law distributed with exponent 𝛽 and let 𝑥1, ..., 𝑥𝑛 ∈ 𝕋𝑑

be randomly and uniformly drawn positions. The resulting 𝜅-GIRG is then a graph𝐺 = ( [𝑛], 𝐸)
with:

(𝑢, 𝜈) ∈ 𝐸 ⇔ 𝜅 (𝑥𝑢 − 𝑥𝜈 ) ≤ 𝜏 ·
(𝑤𝑢 ·𝑤𝜈

𝑛

) 1

𝐷𝜈 (𝜅 )

For some 𝜏 > 0 which controls the average degree. We call 𝜏 the threshold constant. Its precise
choice is discussed in Section 4.3.

For better differentiation, we refer to GIRGs, like they are defined by Bringmann et al.[BKL19],

as 𝐿∞-GIRGs.

Note that in contrast to some literature, we only consider the threshold variant of BDF-
GIRGs and 𝐿∞-GIRGs. This means that the edges of our BDF-GIRG are uniquely determined by

the positions and weights. A more general model is the binomial variant, where a temperature

is used to soften the hard boundary between generating an edge and no edge. For each

possible edge, a probability is then assigned, which decreases with increasing distance. This

model is harder to study as an edge might be sampled between every pair of vertices. In this

work we therefore only consider the threshold model.

2.2.1 Properties of BDF-GIRGs

Here, we discuss some known properties of BDF-GIRGs. They arise partly from the fact that

BDF-GIRGs are a special case of a very general class of geometric random graphs defined

by Bringmann et al. [BKL18], and partly from properties demonstrated by Kaufmann et al.

[KRS24] who first introduced the concept of BDF-GIRGs.

First, we show that our model is a special case of the mentioned random graphs.

Lemma 2.8: BDF-GIRGs in Definition 2.7 are included in the random graph model defined by
Bringmann et al. [BKL18].

9
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Proof. We show the claim by using theorem 7.3 in [BKL18]. It states that random graphs

with weights following a power-law distribution and positions that are drawn uniformly and

at random, are a special case of the random graph model if the edge probability 𝑝𝑢𝜈 (𝑥𝑢, 𝑥𝜈 )
satisfies

𝑝𝑢𝜈 (𝑥𝑢, 𝑥𝜈 ) = Θ

(
min{1,𝑉𝜅 (𝜅 (𝑥𝑢 − 𝑥𝜈 ))−𝛼 ·

(𝑤𝑢𝑤𝜈

𝑊

)𝛼
}
)

where 𝑊 is the sum of the weights and 𝛼 > 1. Note that 𝛼 is the temperature used in

the binomial variant we mentioned earlier. For 𝛼 → ∞ we get the threshold case we are

considering here. To show the equivalence to our model, we first use𝑊 ∈ Θ(𝑛) and 𝑉𝜅 (𝑟 ) =
Θ(𝑟𝐷𝜈 (𝜅 ) ) from Lemma 2.5. If we substitute this to the first formula, we get:

𝑝𝑢𝜈 (𝑥𝑢, 𝑥𝜈 ) = Θ

(
min{1,

( 𝑤𝑢𝑤𝜈

𝑛 · 𝜅 ((𝑥𝑢 − 𝑥𝜈 )𝐷𝜈 (𝜅 ) )

)𝛼
}
)

Next we consider 𝛼 → ∞:

𝑝𝑢𝜈 (𝑥𝑢, 𝑥𝜈 ) =

0 Θ

( (𝑤𝑢𝑤𝜈

𝑛

) 1

𝐷𝜈 (𝜅 )
)
> 𝜅 (𝑥𝑢 − 𝑥𝜈 )

Θ(1) Θ
( (𝑤𝑢𝑤𝜈

𝑛

) 1

𝐷𝜈 (𝜅 )
)
≤ 𝜅 (𝑥𝑢 − 𝑥𝜈 )

Note, that the notation with Θ hides a constant for a fixed 𝛼 and 𝜅 . As 𝛼 changes we have to

write a Θ around the threshold. We can see that Definition 2.7 matches the threshold case

of the model if we replace the constant edge probability Θ(1) with 1. The Θ notation on the

right side is then just hiding the threshold constant that we denoted as 𝜏 .

From this lemma, we can now deduce that BDF-GIRGs possess some of the properties

described in the introduction. BDF-GIRGs are scale-free, no matter which power-law exponent

is used.

Theorem 2.9 (Theorem 2.1 in [BKL18])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF, and 𝐺 = (𝑛, 𝐸) a
𝜅-GIRG with weights following a power-law distribution with exponent 𝛽 . With high probability
(1 − 1

𝑛𝜔 (1) ) the degree-sequence follows a power-law distribution with exponent 𝛽 .

If we limit the power-law exponent to 𝛽 ∈ (2, 3), it was also shown that BDF-GIRGs have

poly-logarithmic diameter i.e., satisfy the small-world phenomenon. Besides that, the largest

component has linear size while all other are small, which satisfies the property of having a

giant component.

Theorem 2.10 (Theorem 2.2 in [BKL18])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF, and 𝐺 be a 𝜅-GIRG
with weights following a power-law distribution with exponent 2 < 𝛽 < 3. With high probability
(1 − 1

𝑛𝜔 (1) ) the largest component has linear size and all others have at most poly-logarithmic
size. Morever, the diameter is at most poly-logarithmic.

From Kaufmann et al. [KRS24] we also know that the clustering coefficient is non-vanishing

for BDF-GIRGs. Intuitively the clustering coefficient is the probability of two vertices being

connected if they are both adjacent to a same vertex. The formal definition considers the

number of triangles in which a vertex is involved, where a triangle corresponds to two adjacent

vertices being connected. This count is then divided by the total number of possible vertex

pairs that are adjacent to the vertex.
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Definition 2.11 (Clustering Coefficient): For a graph 𝐺 = ( [𝑛], 𝐸) the clustering coefficient of
a vertex 𝜈 is defined as:

𝑐𝑐 (𝜈) =


1

(𝑑𝑒𝑔 (𝜈 )
2

) · #{triangles in 𝐺 containing 𝜈} if 𝑑𝑒𝑔(𝜈) > 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The clustering coefficient of 𝐺 is then 𝑐𝑐 (𝐺) = 1

𝑛
· ∑𝜈∈𝑉 𝑐𝑐 (𝜈)

Theorem 2.12 (Theorem 3 in [KRS24])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF, and 𝐺 be a 𝜅-GIRG with
weights following a power-law distribution with exponent 2 < 𝛽 < 3. Then, with probability
1 − 𝑜 (1), its clustering coefficient is constant i.e., 𝑐𝑐 (𝐺) = Θ(1)

In Chapter 6 we see that this statement is also true for 𝛽 > 3, where the graph tends to

have a more homogeneous degree distribution, which favours clustering even more.

The key statement of Kaufmann et al. [KRS24] when introducing BDF-GIRGs was about the

existence of sublinear cuts. More precisely, they categorize BDFs in SCOM and non-SCOM

and show that only BDFs induced by a SCOM-BDF have high probability of having a sublinear

cut. A sublinear cut is defined as a set of edges whose removal from the graph results in the

graph being split into two parts, each of linear size.

Theorem 2.13 (Theorem 1&2 in [KRS24])): Let 𝜅 : 𝕋𝑑 → ℝ≥0 be a BDF, and𝐺 = ( [𝑛], 𝐸) be a
𝜅-GIRG with weights following a power-law distribution with exponent 2 < 𝛽 < 3.
If 𝜅 be a SCOM-BDF, 𝐺 has a sublinear cut with probability 1 − 𝑜 (1).
If 𝜅 is not a SCOM-BDF 𝐺 has no sublinear cut with probability 1 − 𝑜 (1).

2.3 Generation of 𝐿∞-GIRGs

A major advantage of 𝐿∞-GIRGs, compared to other random graph models, is that they can be

generated in linear time. More precisely, for a graph with 𝑛 vertices and𝑚 edges, the runtime

is𝑂 (𝑛+𝑚). Since for real-world graphs, one often assumes𝑚 ∈ 𝑂 (𝑛), this results in a runtime

of𝑂 (𝑛). This runtime is a significant benefit when generating graphs with millions of vertices,

where the naive 𝑂 (𝑛2) algorithm (checking every possible edge) would be impractical. In the

following, we outline the general approach of the algorithm first introduced by Bringmann et

al. [BKL19]. The intuition given here is similar to that given by Bläsius at al. [Blä+22] who

implemented the algorithm and provided a more intuitive explanation of it. However, we

place a greater focus on the influence of the dimension that is usually assumed to be constant.

The idea of the algorithm is that instead of considering every possible edge, only the pairs of

vertices that are close to each other are considered. This is done with the use of a geometrical

data structure that allow to query only vertices in the proximity of a certain position. To

better understand the idea of this data structure, we first assume all weights to be equal and

therefore also, the threshold between each pair of vertices.

Constant weights. Recall, that in 𝐿∞-GIRGs the distance function induced by the 𝐿∞-norm
is used. When we are interested in finding the neighbors of 𝜈 , we are interested in all vertices

located within the ball centered around 𝜈 with the radius equal to the threshold. This ball can

then be thought of as a cube with side length of two times the threshold. Let us now divide

the ground space into a grid of cells with a diameter as large as the threshold, and insert each

11
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vertex in the corresponding cell. We can observe that the union of the cell containing 𝜈 and

its neighboring cells always forms a superset of the previously mentioned ball around 𝜈 . The

edges are therefore sampled by considering only pairs of vertices that are in the same or in

neighboring cells. This results in a linear runtime with respect to the number of vertices. Two

factors are crucial for the runtime with respect to the dimension: the proportion of checked

vertex pairs that form an edge and the number of neighboring cells that must be examined. If

the cells have side lengths exactly equal to the threshold, the considered vertices are in a ball

with a radius
3

2
times larger than the threshold. The proportion we search for is then ( 3

2
)𝑑 .

In each dimension, we consider the cell in the center, as well as the neighbors on each side,

leading two 3 cells per dimension. In total, this leads to 3
𝑑
neighboring cells. We see that the

dimension affects the runtime by an exponential factor.

Power-law weights For arbitrary weights, the approach requires some modifications, as

the threshold between each pair of vertices might be different. This is done by discretizing the

number of weights and using grids of different size. The weights are discretized by assigning

each one to a weight bucket, where the minimal and maximal weight inside the bucket only

differ by a factor of two. Due to the power-law distribution, this leads to 𝑙𝑜𝑔(𝑛) many buckets.

The ground space is recursively divided into a grid of cells with side length 2
−𝑙

for each

recursion level 𝑙 . This is done till each cell contains a constant number of vertices. Then, each

pair of weight buckets is assigned the minimal level 𝑙 such that the cell diameter is still larger

than the largest possible threshold. The edges are then sampled by first iterating over each

cell and determining which pairs of weight buckets are compared at the cells level. For each

pair of weight buckets, the appropriate vertices are then queried.

By efficiently sorting the vertices in each weight bucket, access can be made in constant time

per vertex. Since only a few weight bucket pairs at the deepest levels need to be compared,

the overall runtime remains linear in the number of vertices. As with the case of constant

weights, the number of neighboring cells increases exponentially with the dimension.
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In Section 2.3, we saw that 𝐿∞-GIRGs can be generated in linear time with respect to the

number of vertices, although the runtime grows exponentially with the number of dimensions.

In this chapter, we investigate whether it is possible to generate 𝐿∞-GIRGs and BDF-GIRGs

in polynomial time with respect to the dimension. More precisely: We want to know if it

is possible to achieve a sub-quadratic runtime with respect to the number of vertices while

having a polynomial runtime in the number of dimensions. Formally, we ask if there exists an

𝜀 > 0, such that the runtime of our algorithm is in 𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)). Intuitively speaking,

we aim to determine if an algorithm exists that is more efficient than the trivial one, while

avoiding an exponential runtime in the dimensions.

To address this, we first introduce a key assumption from fine-grained complexity theory, the

Orthogonal Vectors Hypothesis (OVH). We then show a reduction from OVH to a more general

version that we call L-OVH. Later, we discuss how the BDF-GIRG sampling can be formulated

as a decision problem we call Boolean Distance Function - Neighbors (BDF-NB), upon

which we base the subsequent reductions. We then give a reduction for the special case of

𝐿∞-NB, which helps to understand the idea. Afterwards, we generalize it for all BDFs and

show how the depth and length can impact the generation of BDF-GIRGs.

3.1 Orthogonal Vectors Hypothesis

The decision problem Orthgonal Vectors (OV) consists of deciding whether, in two sets of

vectors, there exist two orthogonal vectors or not.

Definition 3.1 (Orthogonal Vector):We define the decision problem as:
Given: 𝐴, 𝐵 ⊆ {0, 1}𝑑 with |𝐴| = |𝐵 | = 𝑛.
Decide: Does there exist 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that a and b are orthogonal

i.e., 𝑎 · 𝑏 = 0.

Note that OV assumes the vectors to be from {0, 1}𝑑 i.e., the entries can only be 0 or 1

in each dimension. Two vectors are then orthogonal if and only if there is no dimension in

which both have the entry 1. Two basic approaches exist to solve OV. The naive approach

would be to check for every pair of vectors if, in any dimension, both have an entry 1. The

resulting runtime is then 𝑂 (𝑛2 · 𝑑). Another approach consists of enumerating every possible

vector in {0, 1}𝑑 which leads to a runtime of 𝑂 (𝑛𝑑 · 2𝑑 ). The runtimes of both approaches

are similar to those required for generating 𝐿∞-GIRGs. In both cases, solving the problem in

linear time with respect to the number of vertices (or vectors) requires exponential runtime

in the dimensions. The Orthogonal Vectors Hypothesis (OVH) states that no algorithm can

achieve a significantly better runtime.

Definition 3.2 (Orthogonal Vectors Hypothesis): Given an OV instance 𝐴, 𝐵 ⊆ {0, 1}𝑑 with
|𝐴| = |𝐵 | = 𝑛 and 𝑑 ∈ ℕ. For no 𝜀 > 0 there is a 𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)) OV-algorithm.
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Note that the statement only holds for arbitrary 𝑛 and 𝑑 . If 𝑑 is assumed to be constant,

for instance, the 𝑂 (𝑛𝑑 · 2𝑑 ) algorithm solves OV in linear time. This also generally holds

for 𝑑 < log(𝑛). A helpful approach is to think of 𝑑 as being in 𝑂 (log2(𝑛)). It is also worth

noticing that the OVH follows from the Strong Exponential Time Hypothesis (SETH). For
further algorithms and details on OVH and fine-grained complexity theory in general, we

refer to the lecture of Kühnemann [Kün24].

3.1.1 L-OVH

We now take a look at a slightly modified version of OV. It consists of 𝐿 instances of OV, each

having the same dimension and amount of vectors. We want to decide if at least one of these

instances is a yes-instance i.e., has a pair of orthogonal vectors.

Definition 3.3 (L-Orthogonal Vectors):We define the decision problem as:
Given: 𝐴𝑖 , 𝐵𝑖 ⊂ {0, 1}𝑑 and |𝐴𝑖 | = |𝐵𝑖 | = 𝑛 for 𝑖 ∈ {1, ..., 𝐿}.
Decide: Does there exist an 𝑖 ∈ {1, ..., 𝐿} with an 𝑎 ∈ 𝐴𝑖 , 𝑏 ∈ 𝐵𝑖 such that

𝑎 · 𝑏 = 0.

This modification is inspired by the way our BDF-GIRG algorithm, we discuss in Chapter 4,

works. In this algorithm an edge is part of the graph if it has been generated in at least one

of the 𝐿∞-GIRGs the BDF-GIRG consists of. This is similar to L-OV which is a yes-instance

when one of the OV instances is a yes-instance. We show this follow-up hypothesis of OVH

that we call L-OVH. For no 𝜀 > 0 an algorithm can decide L-OV in 𝑂 (𝑛2−𝜀 · 𝐿 · 𝑝𝑜𝑙𝑦 (𝑑)). This
bound is intuitive since solving 𝐿 OV instances should naturally increase the runtime by a

factor of 𝐿.

Lemma 3.4 (OVH implies L-OVH): Given an L-OV instance 𝐴𝑖 , 𝐵𝑖 ⊆ {0, 1}𝑑 with |𝐴𝑖 | = |𝐵𝑖 | =
𝑛, 𝐿 ≤ 𝑛𝑐 for a 𝑐 > 0 and𝑑 ∈ ℕ for every 𝑖 ∈ {1, ..., 𝐿}. For no 𝜀 > 0 there is a𝑂 (𝑛2−𝜀 ·𝐿 ·𝑝𝑜𝑙𝑦 (𝑑))
L-OV algorithm, unless OVH fails.

Proof. We give following reduction. Assume for now that 𝐿 is a square number. Let 𝐴, 𝐵 ⊆
{0, 1}𝑑 be an instance of OV with |𝐴| = |𝐵 | = 𝑛. Partition the sets 𝐴, 𝐵 into

√
𝐿 equally sized

sets of size ⌈ 𝑛√
𝐿
⌉. For all partitions to have equal size, we use a dummy vector having only

ones as entry. For each possible combination of those partitions from 𝐴 and 𝐵, create one OV

instance. This results in

√
𝐿 ·

√
𝐿 = 𝐿 instances that can be joined to one 𝐿-OV instance. If 𝐿 is

not a square number, we use the largest square number 𝐿′ < 𝐿. Since 𝐿′ ∈ Θ(𝐿), the partition
sizes remain in Θ( 𝑛√

𝐿
). We then create a 𝐿′-OV instance and convert it to a 𝐿-OV instance by

adding 𝐿 − 𝐿′ no-instances of OV.

We show that the reduction is valid. Assume the OV instance to be a yes-instance and

𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 to be the pair of orthogonal vectors. Both must be in one of the

√
𝐿 partitions of

A and B, respectively. As for each combination of partitions, a OV instance has been created,

at least one of the created OV instances is going to be a yes-instance and therefore also the

L-OV instance. Now assume that the constructed L-OV instance is a yes-instance i.e., one

of the constructed OV instances is a yes-instance. Let 𝑎, 𝑏 be the orthogonal vectors of this

instance. If one of the vectors is a dummy vector, the other must be a zero vector, which is

orthogonal to any other vector. This makes the OV instance a yes-instance. If 𝑎, 𝑏 are not

dummy vectors 𝑎 must be in 𝐴 and 𝑏 in 𝐵 of the given OV instance. The original instance is

therefore a yes-instance.
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We analyse the runtime of the reduction. Partitioning 𝐴 and 𝐵 into partitions of size Θ( 𝑛√
𝐿
)

and creating 𝐿 OV instances can be done in 𝑂 (𝑛 ·
√
𝐿 · 𝑑). The created L-OV instance has the

size 𝑑 · 𝑛√
𝐿
=: 𝑛′. Let us now assume that we can solve this instance in 𝑂 (𝑛′2−𝜀 · 𝐿 · 𝑝𝑜𝑙𝑦 (𝑑)).

The runtime with respect to the size 𝑛 of the OV instance is then:

𝑂 (( 𝑛
√
𝐿
)2−𝜀 · 𝐿 · 𝑝𝑜𝑙𝑦 (𝑑)) = 𝑂 (𝑛2−𝜀 · 𝐿 (2−𝜀 )/2𝐿 · 𝑝𝑜𝑙𝑦 (𝑑)) = 𝑂 (𝑛2−𝜀 · 𝐿𝜀/2 · 𝑝𝑜𝑙𝑦 (𝑑)) .

Now recall that 𝐿 ≤ 𝑛′𝑐 . The size of 𝐿 with respect to the size of the OV instance is then:

𝐿 ≤ 𝑛𝑐

𝐿𝑐/2
⇔ 𝐿 ≤ 𝑛

𝑐
1+𝑐/2 . We use this upper-estimate of 𝐿 and get 𝑂 (𝑛2−𝜀 · 𝑛 𝑐

2+𝑐 𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)).
Observe that 2 − 𝜀 + 𝑐

2+𝑐 𝜀 < 2. We therefore have solved the OV instance in sub-quadratic

time, a contradiction to OVH.

3.2 Boolean Distance Function - Neighbors

As discussed earlier, to show a lower bound for the time complexity of a BDF-GIRG algorithm,

we must formulate it as a decision problem. Our decision problem looks as follows: Given a

set of positions 𝐶 ⊆ ℝ𝑑
, do there exist two elements 𝑐, 𝑐′ ∈ 𝐶 which are closer than 1, with

respect to the given BDF. We see that this problem is very similar to sampling a BDF-GIRG.

A BDF-GIRG sampling algorithm can indeed solve this decision problem by scaling down

all elements in 𝐶 to fit in 𝕋𝑑
and adjusting the threshold accordingly. The instance is then a

yes-instance if and only if at least one edge has been sampled.

Definition 3.5 (BDF - Neighbors):We define the problem 𝜅-NB as follows:
Given: 𝐶 ⊆ ℝ𝑑 with |𝐶 | = 𝑛.
Determine: Does there exist 𝑐, 𝑐′ ∈ 𝐶 with 𝑐 ≠ 𝑐′ and 𝜅 (𝑐 − 𝑐′) ≤ 1.

Where 𝜅 : ℝ𝑑 → ℝ≥0 is a BDF defined equivalently to Definition 2.1, but using the absolute
value |𝑥 | on ℝ.

Note that the re-definition of 𝜅 is necessary for formal reasons, as it has been originally

defined on a torus.

3.2.1 𝐿∞-NB

We first consider the case of the BDF 𝜅 being the 𝐿∞-norm. It is crucial to understand the

concept as both reductions for arbitrary 𝜅 follow the same idea. We show that OVH implies

that no sub-quadratic algorithm exists for 𝐿∞-NB.

Lemma 3.6: Given an 𝐿∞-NB instance 𝐶 ⊆ ℝ𝑑 with |𝐶 | = 𝑛 and 𝑑 ∈ ℕ. For no 𝜀 > 0 there is a
𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)) 𝐿∞-NB algorithm, unless OVH fails.

Proof. We give following reduction. Let 𝐴, 𝐵 ⊆ {0, 1}𝑑 with |𝐴| = |𝐵 | = 𝑛 be an instance

of OV. For each 𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ 𝐴 and 𝑏 = (𝑏1, ..., 𝑏𝑛) ∈ 𝐵 we define 𝑎′ = (𝑎′
1
, ..., 𝑎′𝑛) and

𝑏′ = (𝑏′
1
, ..., 𝑏′𝑛). The components 𝑎′𝑖 and 𝑏

′
𝑖 are defined as follows:

𝑎′𝑖 :=

{
1

2
if 𝑎𝑖 = 0

−1 if 𝑎𝑖 = 1

, 𝑏′𝑖 :=

{
− 1

2
if 𝑏𝑖 = 0

1 if 𝑏𝑖 = 1

The 𝐿∞-NB instance is then the set 𝐶 containing 𝑎′ and 𝑏′ for every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.
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Table 3.1:Mapping of: 𝑎𝑖 and 𝑏𝑖 to 𝑎
′
𝑖 and 𝑏

′
𝑖 . We can see all possible cases that can happen in

a dimension. Only in the last case the distance between the mapped values is larger then 1.

𝑎𝑖 𝑏𝑖 𝑎𝑖 · 𝑏𝑖 𝑎′𝑖 𝑏′𝑖 |𝑎′𝑖 -𝑏′𝑖 |𝑇
0 0 0 → 1

2
-
1

2
1

0 1 0 → 1

2
1

1

2

1 0 0 → -1 -
1

2

1

2

1 1 1 → -1 1 2

We show that the reduction is valid. First, observe that the distance between two positions

𝑐, 𝑐′ ∈ 𝐶 , if constructed from vectors in the same set, is always
3

2
unless 𝑐 = 𝑐′. Let the

OV instance be a yes-instance and 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 the orthogonal vectors. Consider the

corresponding vectors 𝑎′, 𝑏′ ∈ 𝐶 . In each dimension their distance is equal to either 1 or
1

2
.

The constructed 𝐿∞-NB instance is therefore also a yes-instance. Now, let the constructed

𝐿∞-NB instance be a yes-instance and 𝑐, 𝑐′ ∈ 𝐶 positions close to each other. We know that

the vectors they have been constructed from must be in different sets, namely 𝐴 and 𝐵. From

the construction, we know that in no dimension both have an entry 1. That makes the original

instance a yes-instance. Consider also Table 3.1 for better comprehension.

We analyse the runtime of the reduction. Every vector can be transformed in 𝑂 (𝑑). 𝐶
can therefore be constructed in 𝑂 (𝑛 · 𝑑). If we now assume that there is a sub-quadratic

time algorithm for 𝐿∞-NB, then for some 𝜀 > 0 the constructed instance can be solved

in 𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)). The total runtime for transforming and solving the instance is then

𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝑑)). This contradicts the OVH because we would have therefore solved the

original instance in this runtime.

3.2.2 𝜅-NB

We now aim to extend the result from the previous lemma to arbitrary BDFs. We show the

same lower

bound for BDFs, except that instead of the dimension, we consider the computational depth

of the BDF. This is somehow intuitive, as the depth denotes the highest dimension of all

𝐿∞-GIRGs we need to sample to obtain a BDF-GIRG. At first glance, it is not clear how this

𝐿∞-GIRG is related to a BDF. Therefore, we introduce a lemma, whose proof follows directly

from the construction of the BDF-GIRG algorithm in Chapter 4. It states that for each BDF,

we can find a set 𝑆 of dimensions, which are those of the largest 𝐿∞-GIRG we would need to

generated to obtain a BDF-GIRG.

Lemma 4.3: Let 𝜅 : ℝ𝑑 → ℝ≥0 be a BDF acting on ℝ𝑑 . There exist a subset 𝑆 ⊆ [𝑑] with |𝑆 | =
𝐷𝑐 (𝜅), such that 𝜅 (𝑥) ≤ max𝑖∈[𝑆 ] |𝑥𝑖 | for every 𝑥 ∈ ℝ𝑑 . Moreover, if min𝑖∈[𝑑 ]\𝑆 |𝑥𝑖 | ≥ 𝜅 (𝑥),
then 𝜅 (𝑥) = max𝑖∈[𝑆 ] |𝑥𝑖 |. 𝑆 can be computed in 𝑂 (𝑑2).

Note that for the reduction, we must assume the dimension to be polynomial in the depth,

otherwise we are not able to construct an 𝜅-NB instance in𝑂 (𝑛2−𝜀 ·𝑝𝑜𝑙𝑦 (𝑑)) and the reduction
fails.

Lemma 3.7: Given an 𝜅-NB instance 𝐶 ⊆ ℝ𝑑 with |𝐶 | = 𝑛 and 𝑑 ∈ ℕ with 𝐷𝑐 (𝜅) ∈ 𝑝𝑜𝑙𝑦 (𝑑).
For no 𝜀 > 0 there is a 𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))) 𝜅-NB algorithm, unless OVH fails.
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Proof. We give following reduction. Let 𝐶 ⊆ ℝ𝐷𝑐 (𝜅 ) , |𝐶 | = 𝑛 be an instance of 𝐿∞-NB. There
exists a permutation of the 𝑑 dimensions 𝜅 is acting one, such that the 𝑆 from Lemma 4.3

has the form 𝑆 = [1, ..., 𝐷𝑐 (𝜅)]. We call those permuted positions 𝐶𝑝 . We assign a fixed

order {𝑐1, ..., 𝑐𝑛} for the elements in 𝐶𝑝 . For every 𝐷𝑐 (𝜅)-dimensional position 𝑐 𝑗 ∈ 𝐶𝑝 with

𝑗 ∈ {1, ..., 𝑛} we construct a 𝑑-dimensional position 𝑐′𝑗 where the first 𝐷𝑐 (𝜅) dimensions are

equal to those of 𝑐 𝑗 and all remaining dimensions have the entry 2 𝑗 . The constructed 𝜅-NP

instance then consists of 𝐶′ = {𝑐′1, ..., 𝑐′𝑛} containing each constructed position.

We show that the reduction is valid. Assume that the original 𝐿∞-NB instance is a yes-

instance and 𝑥,𝑦 ∈ 𝐶 with |𝑥 − 𝑦 |∞ ≤ 1 are positions close to each other. Let 𝑥 ′, 𝑦′ be the
constructed positions in 𝐶′

. From the inequality in Lemma 4.3 it follows that 𝜅 (𝑥 − 𝑦) ≤
|𝑥 −𝑦 |∞ ≤ 1. 𝐶′

is therefore a yes instance. Now assume𝐶′
to be a yes-instance and 𝑥 ′, 𝑦′ ∈ 𝐶′

with 𝜅 (𝑥 − 𝑦) ≤ 1 to be positions close to each other. For each dimension, not in 𝑆 i.e., the

dimensions 𝑖 ∈ [𝐷𝑐 (𝜅)+1, 𝑑], the distance between two positions is at least 2. From Lemma 4.3,

it follows that 𝜅 (𝑥) = max𝑖∈𝑆 |𝑥𝑖 | ≤ 1. The original instance is therefore a yes-instance.

We analyse the runtime of the reduction. First, note that 𝑑 ∈ 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅)) . 𝑆 can be

computed in 𝑑2 ∈ 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅)) and 𝐶 can be permuted to 𝐶𝑝 in 𝑂 (𝑛 · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅)). Assigning
each element of fixed order takes𝑂 (𝑛) and constructing𝐶′

takes𝑂 (𝑛 ·𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))). We now

assume that for some 𝜀 > 0 the constructed instance can be solved in

𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))). As the size of the original and the constructed instance differ by

only 𝑂 (𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))), we can solve the given 𝐿∞-NB instance in 𝑂 (𝑛2−𝜀 · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))). This
contradicts the Lemma 3.6.

3.2.3 Taking Length into account

Finally, we want to use the L-OVH, which we showed to follow from the OVH, to demonstrate

that there is a class of BDFs where not only the computational depth but also the length

contributes to the lower bound. Specifically, we show that for any length 𝐿 ∈ ℕ and depth𝐷 ∈
ℕ, there exists a BDF 𝜅 such that no algorithm can solve 𝜅-NB in𝑂 (𝑛2−𝜀 ·𝐿𝑐 (𝜅) ·𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅)))
for a 𝜀 > 0. Note, that this bound is not valid for every BDF. In Chapter 4 we see that we can

construct BDFs such that just one 𝐿∞-GIRG is high dimensional and therefore dominates the

runtime, while the remaining 𝐿∞-GIRGs are low-dimensional.

Lemma 3.8: For any 𝐿, 𝐷 ∈ ℕ, there exists a BDF 𝜅 with 𝐿𝑐 (𝜅) = 𝐿 and 𝐷𝑐 (𝜅) = 𝐷 such that
for no 𝜀 > 0 a 𝑂 (𝑛2−𝜀 · 𝐿𝑐 (𝜅) · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))) 𝜅-NB algorithm exists, unless OVH fails.

Proof. We construct a BDF that meets the requirements outlined above and acts on 𝐿 · 𝐷
dimensions. For every 𝑖 ∈ {1, ..., 𝐿} we define a 𝜅𝑖 that is the 𝐿∞-norm on 𝐷 dimensions and

ignores the remaining dimensions.

𝜅𝑖 (𝑥) = max

𝑖∈[ (𝑖−1) ·𝐷+1,𝑖 ·𝐷 ]
|𝑥𝑖 | for 𝑥 ∈ ℝ𝐷 ·𝐿

and 𝑖 ∈ {1, ..., 𝐿}

We then combine those max-terms into a BDF

𝜅 (𝑥) = min{𝜅0(𝑥), ..., 𝜅𝐿 (𝑥)} for 𝑥 ∈ ℝ𝐷 ·𝐿

Observe that 𝜅 is a BDF, and both the computational depth and length satisfy our requirements.
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Next, we give following reduction from L-OVH. Let 𝐴𝑖 , 𝐵𝑖 ⊆ {0, 1}𝐷𝑐 (𝜅 )
with |𝐴| = |𝐵 | = 𝑛

for 𝑖 ∈ {1, ..., 𝐿𝑐 (𝜅)} be a L-OV instance. For each 𝑖 ∈ {1, ..., 𝐿𝑐 (𝜅)} we construct a 𝐿∞-NB
instance 𝐶𝑖 , in the same way as in Lemma 3.6. We then define an order for the positions in 𝐶𝑖

to be {𝑐1𝑖 , ..., 𝑐𝑛𝑖 }. We can now construct a 𝜅-NB instance by combining 𝐿 vectors, one from

each 𝐶𝑖 , to a single vector 𝑐′:

𝑐′𝑗 =
©­­­«
𝑐
𝑗

1

...

𝑐
𝑗

𝐿

ª®®®¬ ∈ ℝ𝐷𝑐 (𝜅 ) ·𝐿𝑐 (𝜅 )
for every 𝑗 ∈ {1, ..., 𝑛}.

The resulting 𝜅-NB instance is then 𝐶′ = {𝑐′1, ..., 𝑐′𝑛}.
We show that the reduction is valid. Assume that the original L-OV instance is a yes-

instance. Then there exists an 𝑖 ∈ {1, ..., 𝐿} and 𝑎 ∈ 𝐴𝑖 , 𝑏 ∈ 𝐵𝑖 such that 𝑎 · 𝑏 = 0. From

the proof of Lemma 3.6 we know that the constructed 𝐿∞-NB instance 𝐶𝑖 is a yes-instance.

Therefore, there exist 𝑥,𝑦 ∈ 𝐶𝑖 withmax𝑗∈[𝐷𝑐 (𝜅 ) ] |𝑥 𝑗 −𝑦 𝑗 | ≤ 1. Let 𝑥 ′, 𝑦′ ∈ 𝐶′
be the positions

constructed from 𝑥,𝑦. Then 𝜅 (𝑥 ′ − 𝑦′) ≤ 1, because the max-term 𝜅𝑖 (𝑥 ′ − 𝑦′) ≤ 1. The

constructed 𝜅-NB instance is therefore a yes-instance. Now assume that the constructed

instance is a yes-instance with 𝑥 ′, 𝑦′ ∈ 𝐶′
: 𝜅 (𝑥 ′ − 𝑦′) ≤ 1. By the form of the BDF, there

exists an 𝑖 such that 𝜅𝑖 (𝑥 ′ − 𝑦′) ≤ 1. Then in the 𝐿∞-NB instance 𝐶𝑖 there must be 𝑥,𝑦 ∈ 𝐶𝑖

with max𝑖∈[𝐷𝑐 (𝜅 ) ] |𝑥𝑖 − 𝑦𝑖 | ≤ 1. This instance is therefore a yes-instance. It follows that the

L-OV instance must also be a yes-instance.

We analyse the runtime of the reduction. Constructing a 𝐿∞-NB instance can be done in

𝑂 (𝑛 ·𝑑). In total𝑂 (𝐿𝑐 (𝜅) ·𝑛 ·𝑑) is needed to construct all 𝐿𝑐 (𝜅) 𝐿∞-NB instances. Enumerating

each positions and merging the positions can be done in 𝑂 (𝐿𝑐 (𝜅) · 𝑛 · 𝑑). The resulting

instance then has the size 𝑛 and 𝐷𝑐 (𝜅) · 𝐿𝑐 (𝜅) dimensions. We now assume that some 𝜀 > 0

the constructed instance can be solved in𝑂 (𝑛2−𝜀 · 𝐿𝑐 (𝜅) · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))). The total runtime for

transforming and solving the instance would be𝑂 (𝑛2−𝜀 · 𝐿𝑐 (𝜅) · 𝑝𝑜𝑙𝑦 (𝐷𝑐 (𝜅))). This would be

a contradiction to L-OVH.

Note that this result is interesting for 𝐿𝑐 (𝜅) ∈ 𝜔 (𝑝𝑜𝑙𝑦 (𝑑)), as otherwise the result already
follows directly from the previous lemma. In conclusion, we have shown through these

reductions that it is unlikely that an algorithm exists which has both linear runtime in the

number of vertices and polynomial runtime in the dimensions. However, it is important

to highlight that the reductions presented ignore an important assumption about the input

values for the BDF-GIRG sampling algorithm: the uniform distribution of positions. Thus, it

is still not ruled out that such an algorithm may exist.
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4 Generating BDF-GIRGs

In this chapter, we first focus on the generation of BDF-GIRGs. We begin by examining how a

BDF can be transformed into a normal form, which we refer to as the min-max form. After

that, we discuss how the actual generation algorithm works and analyse its runtime. Next,

we aim to provide some intuition for the volume 𝑉𝜅 (𝑟 ) and how it can help us estimate the

number of edges generated. We also discuss why the threshold considers the weights with

an exponent of
1

𝐷𝜈 (𝜅 ) . Finally, we discuss how to choose the threshold constant based on the

desired average degree and the challenges that arise in doing so.

4.1 Generation

In this section we discuss the main idea of the generation algorithm for BDF-GIRGs. We start

by giving some intuition about BDFs.

Consider the BDF 𝜅 (𝑥) = min𝑖∈[𝑑 ]{|𝑥𝑖 |} with 𝑥 ∈ 𝕋𝑑 , 𝑑 ∈ ℕ, which is the minimal component

distance. A pair of vertices is connected if their distance is lower than the threshold in at

least one dimension. We can therefore consider each dimension separately i.e., compute a

one-dimensional 𝐿∞-GIRG for each dimension. An edge is then included between two vertices

if in at least one of the computed 𝐿∞-GIRGs the vertices are connected. This results in a

𝑂 (𝑛 · 𝑑) algorithm for MCD-GIRGs, first described by Lengler and Todorovic [LT17]. This

approach, however, can be extended beyond MCD-GIRGs. In fact, for any BDF that can

be expressed as the minimum of other BDFs, we can compute the edge set each of those

BDF-GIRGs separately. The desired edge set is then the union of all generated edges.

Lemma 4.1: Let 𝜅𝑖 : 𝕋 |𝑆𝑖 | → ℝ≥0 be BDFs acting on the dimensions 𝑆𝑖 ⊆ [𝑑] for 𝑖 ∈
{1, ..., 𝐿}, 𝑑, 𝐿 ∈ ℕ. Furthermore, let 𝑥1, ..., 𝑥𝑛 ∈ 𝕋𝑑 be positions and 𝑤1, ...,𝑤𝑛 ∈ ℝ≥0 weights
following a power-law distribution for 𝑛 ∈ ℕ. Let 𝐺𝑖 = ( [𝑛], 𝐸𝑖) be the resulting 𝜅𝑖-GIRGs. For

𝜅 (𝑥) = min

𝑖∈{1,..,𝐿}
{𝜅𝑖 ((𝑥 𝑗 ) 𝑗∈𝑆𝑖 )} with 𝑥 ∈ 𝕋𝑑 and 𝐸 :=

⋃
𝑖∈{1,..,𝐿}

𝐸𝑖

If 𝜅 is a BDF, 𝐺 = ( [𝑛], 𝐸) is the resulting 𝜅-GIRG.

Proof. First, observe that the threshold between two vertices 𝑢, 𝜈 is the same in each graph

as it does not depend on the positions. We write 𝑘 (𝑢,𝜈 ) := 𝜏 ·
(𝑤𝑢𝑤𝜈

𝑛

)𝐷𝜈 (𝜅 )
for the threshold

between two vertices 𝑢, 𝜈 .

Let (𝑢, 𝜈) ∈ 𝐸 now be an arbitrary edge of the 𝜅-GIRG. Because 𝜅 is a defined as the minimum

of BDFs, there must be an 𝑖 ∈ {1, ..., 𝐿} such that 𝑘 (𝜈,𝑢 ) ≥ 𝜅 (𝑥𝑢 − 𝑥𝜈 ) = 𝜅𝑖 (𝑥𝑢 − 𝑥𝜈 ). Therefore
the edge (𝑢, 𝜈) is in 𝐸𝑖 .

Let (𝑢, 𝜈) ∈ 𝐸𝑖 be an arbitrary edge of a 𝜅𝑖-GIRG. Because 𝜅 is defined as the minimum 𝜅𝑖 and

the other BDFs, 𝑘 (𝜈,𝑢 ) ≥ 𝜅𝑖 (𝑥𝑢 − 𝑥𝜈 ) ≥ 𝜅𝑖 (𝑥𝑢 − 𝑥𝜈 ). The edge must therefore also be in the

according 𝜅-GIRG.
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4 Generating BDF-GIRGs

We can now use of this property, along with the fact that algorithms for computing 𝐿∞-GIRGs
exist. Recall that a BDF can be seen as a nesting of AND and OR operators. We can therefore

also think about a BDF as a logical formula. We are then looking for a form that consists of

ORs of ANDs. This form is called disjunctive normal form in the context of logical formulas.

For BDFs this form then looks like:

min(max((𝑥𝑖)𝑖∈𝑆1), ...,max((𝑥𝑖)𝑖∈𝑆𝑘 ) for 𝑆𝑖 ⊆ [𝑑] with 𝑖 ∈ {1, ..., 𝑘} 𝑘 ∈ ℕ.

We can compute this form using the distributive property of minima and maxima, similar

to how it is done with logical formulas. The number of max-terms is then going to be the

length of the BDF and the depth is going to be the size of the largest max-term. Similar to the

definition of BDFs, the construction is recursive. We describe the construction and prove its

correctness.

Lemma 4.2: For every BDF 𝜅 : 𝕋𝑑 → ℝ≥0 there exist and a set S = {𝑆𝑖 ⊆ [𝑑] |1 ≤ 𝑖 ≤ 𝐿𝑐 (𝜅)}
such that: 𝜅 (𝑥) = min{𝑚𝑎𝑥 (( |𝑥 𝑗 |) 𝑗∈𝑆𝑖 ) |𝑆𝑖 ∈ S} for every 𝑥 ∈ 𝕋𝑑 . Moreover the largest set in S
has size 𝐷𝑐 (𝜅).
Proof. We define S recursively and show by induction that the constructed set is valid. For

better readability, we writemax(𝑆𝑖) instead ofmax

(
(𝑥 𝑗 ) 𝑗∈𝑆𝑖

)
and 𝜅 instead of 𝜅 (𝑥) for 𝑥 ∈ 𝕋𝑑

.

Let 𝑑 = 1, i.e. 𝜅 is acting on a single dimension 𝑖 ∈ [𝑑]. We chose S = {{𝑖}} with just one set,

containing the one dimension it is acting on. S is then a valid set as:

min(max( |𝑥𝑖 |)) = |𝑥𝑖 | = 𝜅 (𝑥) for any 𝑥 ∈ 𝕋.

The size of S is then |S | = 1 = 𝐿𝑐 (𝜅) and the size of the largest set is 1 = 𝐷𝑐 (𝜅). The induction
hypothesis is therefore fulfilled.

For 𝑑 ≥ 2, let S1
and S2

be the sets of the comprising functions 𝜅1 and 𝜅2:

If the BDF is an outer-min, we chose S := S1 ∪ S2
. We see that it is a valid set:

𝜅 = min(𝜅1, 𝜅2) = min

[
min

𝑆𝑖 ∈S1

(
max(𝑆𝑖)

)
, min

𝑆𝑖 ∈S2

(
max(𝑆𝑖)

) ]
= min

(
max

𝑆𝑖 ∈S1∪S2

(𝑆𝑖)
)

By induction hypothesis |S1 | = 𝐿𝑐 (𝜅1) and |S2 | = 𝐿𝑐 (𝜅2). Because 𝜅1 and 𝜅2 act on different

dimensions, S1
and S2

are disjoint. We get |S1 ∪ S2 | = |S1 | + |S2 | = 𝐿𝑐 (𝜅1) + 𝐿𝑐 (𝜅2) = 𝐿𝑐 (𝜅).
The largest set in S1 ∪ S2

is the maximum of the largest set in S1
and S2

. We therefore get

max𝑆∈S1∪S2 ( |𝑆 |) = max(𝐷𝑐 (𝜅1), 𝐷𝑐 (𝜅2)) = 𝐷𝑐 (𝜅).
If the BDF is on outer-max, we choose S := S1 × S2

a min-max set. We see that:

𝜅 = min(𝜅1, 𝜅2) = max

[
min

(
max

𝑆𝑖 ∈S1

(𝑆𝑖)
)
,min

(
max

𝑆𝑖 ∈S2

(𝑆𝑖)
) ]

= min

(
max

𝑆𝑖 ∈S1×S2

(𝑆𝑖)
)

By induction hypothesis |S1 | = 𝐿𝑐 (𝜅1) and |S2 | = 𝐿𝑐 (𝜅2). We get |S1×S2 | = |S1 | · |S2 | = 𝐿𝑐 (𝜅)
for the length. The largest set in S1 × S2

is the union of the two largest sets in S1
and S2

. We

get max𝑆∈S1×S2 ( |𝑆 |) = max𝑆∈S1 ( |𝑆 |) +max𝑆∈S2 ( |𝑆 |) = 𝐷𝑐 (𝜅1) + 𝐷𝑐 (𝜅2) = 𝐷𝑐 (𝜅).

We call S the min-max set of 𝜅 and refer to a set 𝑆 ∈ S as a max set.

With this knowledge we now describe the process of sampling BDF-GIRGs as following three

steps: Compute the min-max form S of the BDF. For each 𝑆 ∈ S compute a 𝐿∞-GIRG with

the positions adapted to the dimension in 𝑆 . The edges of the BDF-GIRG are then the union

of all generated edges. If we assume the runtime of the 𝐿∞-GIRG sampling algorithm to be

𝑂 ((𝑛 +𝑚) · 𝜌𝑑 ) for some constant 𝜌 > 1, the runtime of the sampling algorithm described is

𝑂 (𝐿𝑐 (𝜅) · (𝑛 +𝑚) · 𝜌𝐷𝑐 (𝜅 ) ).
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4.2 Volume & Edge Probability

We can also easily prove Lemma 4.3 that we introduced in the previous chapter. We searched

for the dimensions that correspond to the largest 𝐿∞-GIRG that needs to be sampled. As each

max-set in the min-max set represents the dimensions of a 𝐿∞-GIRG, those dimensions are

simply the one in the largest max-set of the min-max set. We must, however, prove how it

can be determined in 𝑂 (𝑑2).
Lemma 4.3: Let 𝜅 : ℝ𝑑 → ℝ≥0 be a BDF acting on ℝ𝑑 . There exist a subset 𝑆 ⊆ [𝑑] with |𝑆 | =
𝐷𝑐 (𝜅), such that 𝜅 (𝑥) ≤ max𝑖∈[𝑆 ] |𝑥𝑖 | for every 𝑥 ∈ ℝ𝑑 . Moreover, if min𝑖∈[𝑑 ]\𝑆 |𝑥𝑖 | ≥ 𝜅 (𝑥),
then 𝜅 (𝑥) = max𝑖∈[𝑆 ] |𝑥𝑖 |. 𝑆 can be computed in 𝑂 (𝑑2).
Proof. Let S be the min-max set of 𝜅 and 𝑆𝑚𝑎𝑥 the largest max set. We show that 𝑆 has the

described properties. First, |𝑆𝑚𝑎𝑥 | = 𝐷𝑐 (𝜅) by definition. As 𝜅 is the minimum of multiple

max terms 𝜅 (𝑥) = min𝑆∈S (max((𝑥𝑖)𝑖∈𝑆 )) ≤ max((𝑥𝑖)𝑖∈𝑆𝑚𝑎𝑥
) for any 𝑥 ∈ ℝ𝑑

. Moreover, if

for some 𝑥 ∈ ℝ𝑑
, in any dimension not in 𝑆𝑚𝑎𝑥 the component-wise distance is larger or

equal to 𝜅 (𝑥), max((𝑥𝑖)𝑖∈𝑆𝑚𝑎𝑥
) = 𝜅 (𝑥). To compute 𝑆 𝑗 in 𝑂 (𝑑2) we modify the construction

of Lemma 4.2. In each recursion step, instead of considering all sets we only return 𝑆𝑚𝑎𝑥 . If it

is not unique, we select an arbitrary one. In each step we therefore only consider two sets

of a size at most 𝑑 . As each BDF consists of at most 2𝑑 − 1 BDFs, the resulting runtime is

𝑂 (𝑑2).

4.2 Volume & Edge Probability

In this section, we give some intuition about the volume and how it can help us to estimate

the average degree.

First, recall that we are considering a torus as ground space, which has a volume of 1.

Therefore for any BDF 𝜅 and 𝑟 > 1

2
,𝑉𝜅 (𝑟 ) = 1. Also the ratio of some volume𝑉𝜅 (𝑟 ) to the total

volume is always 𝑉𝜅 (𝑟 ) . This property is particularly useful if we recall a second property,

which is that the positions of the vertices of a BDF-GIRG are distributed uniformly. This means

that given a subspace of 𝕋𝑑
, the probability of a randomly drawn position to be inside this

subspace is equal to its volume. With that we can describe the expected number of randomly

drawn positions to be in a subspace. Let P ⊆ 𝕋𝑑
be a set of randomly and uniformly drawn

positions with |P | = 𝑛. For a (subspace) 𝐴 ⊆ 𝕋𝑑
the expected number of 𝑝 ∈ P to be in 𝐴 are:

𝔼[|𝐴 ∩ P |] = 𝑛 · 𝜆(𝐴) where 𝜆(𝐴) is the Lebesgue volume of 𝐴.

We use this property to describe the expected degree of a vertex in a 𝜅-GIRG, for a BDF 𝜅.

Let 𝜈,𝑢 be arbitrary vertices. The probability of them being adjacent i.e., for an edge (𝑢, 𝜈) to
exist, is 𝑉𝜅 (𝑘 (𝑢,𝜈 ) ), where 𝑘 (𝑢,𝜈 ) is the threshold between 𝑢 and 𝜈 . The expected degree of a

vertex 𝜈 is then the summed probability of each possible edge adjacent to 𝜈 :

𝔼[𝑑𝑒𝑔(𝜈)] =
∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑉𝜅 (𝑘 (𝑢,𝜈 ) )

We can now use this knowledge to understand why the weights are considered with

exponent
1

𝐷𝜈 (𝜅 ) . As we want the choice of the weight distribution to reflect on the degree

distribution, we want each vertex to have an expected degree that depends linearly on its

weight. From Lemma 2.5 we know that 𝑉𝜅 (𝑟 ) = Θ(𝑟𝐷𝜈 (𝜅 ) ) for decreasing 𝑟 . If we now insert

this formula and the threshold formula for 𝑘 (𝑢,𝜈 ) , we get:

𝔼[𝑑𝑒𝑔(𝜈)] =
∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑉𝜅

(
𝜏 · (𝑤𝜈 ·𝑤𝑢

𝑛
)

1

𝐷𝜈 (𝜅 )
)
=

∑︁
𝑢∈𝑉
𝜈≠𝑢

Θ
(
𝜏𝐷𝜈 (𝜅 ) · 𝑤𝜈 ·𝑤𝑢

𝑛

)
.
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4 Generating BDF-GIRGs

We use the threshold formula from Definition 2.7 in the first step and the volume formula in

the second step. We can now use that 𝜏𝐷𝜈 (𝜅 )
is constant and that the sum of the weights is

Θ(𝑛). ∑︁
𝑢∈𝑉
𝜈≠𝑢

Θ
(
𝜏𝐷𝜈 (𝜅 ) · 𝑤𝜈 ·𝑤𝑢

𝑛

)
= 𝑤𝜈 ·

∑︁
𝑢∈𝑉
𝜈≠𝑢

Θ
(𝑤𝑢

𝑛

)
= 𝑤𝜈 · Θ(1) = Θ(𝑤𝜈 ) .

Note that for another exponent than
1

𝐷𝜈 (𝜅 ) the expected degree would not depend linearly

from the weights of the vertex.

4.3 Choice of the threshold constant

In this section we discuss how the threshold constant, we denote as 𝜏 in Definition 2.7, can

be chosen such that the sampled graph has a desired average degree. We can of course not

predict the average degree exactly, as it depends on the positions used, but we can compute

the expected average degree. We start by showing that there can be no closed formula for the

threshold constant, even for equal weights. We then consider arbitrary weights, and how we

can compute the expected average degree, given the threshold constant, in linear time. The

resulting algorithm is then a modified version of the one designed by Bläsius et al. [Blä+22]

performing a binary search over the threshold constant.

Constant weights. To better understand how we are estimating the average degree, let

us first consider a 𝐿∞-GIRG in 𝑑 ∈ ℕ dimensions and weights all equal to 1. The threshold

is then 𝑘 (𝑢,𝜈 ) = 𝜏
𝑛
between every pair of vertices 𝑢 and 𝜈 . From the previous chapter we

know that expected degree of a vertex 𝜈 can be written as the sum the volumes 𝑉𝜅 (𝑘 (𝜈,𝑢 ) ) for
every possible edge adjacent to 𝜈 . For 𝐿∞-GIRGs using Lemma 2.6 we know that 𝑉𝐿∞ (𝑟 ) =
min(1, (2𝑟 )𝑑 ). The minimum is necessary as the volume cannot grow larger than 1. However,

we can for now assume that 𝑘 (𝑢,𝜈 ) < 1/2, as otherwise this would lead to a complete graph.

With this assumption we do not need the minimum and get:

𝔼[𝑑𝑒𝑔(𝜈)] =
∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑉𝐿∞ (𝑘 (𝑢,𝜈 ) ) = (𝑛 − 1) ·𝑉𝐿∞ (
𝜏

𝑛
) = (𝑛 − 1) ·

(
2𝜏

𝑛

)𝑑
.

We used the formula from the last chapter in the first step, the fact that 𝑘 (𝜈,𝑢 ) is constant
in the second and inserted the formula for the volume in the last step. This formula can be

solved for 𝜏 and we obtain 𝜏 = (𝔼[𝑑𝑒𝑔 (𝜈 ) ]
𝑛−1 )1/𝑑 · (𝑛/2) .

Let us now consider a 𝜅-GIRG for an arbitrary BDF 𝜅 but still with weights all equal to 1. We

repeat the same procedure as for 𝐿∞-GIRGs, where we denote 𝑝𝜅 as the polynomial describing

the volume for a radius in [0, 1
2
] and again assume that 𝑘 (𝑢,𝜈 ) < 1/2 .

𝔼[𝑑𝑒𝑔(𝜈)] =
∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑉𝜅 (𝑘 (𝑢,𝜈 ) ) = (𝑛 − 1) ·𝑉𝜅 (
𝜏

𝑛
) = (𝑛 − 1) · 𝑝𝜅 (

𝜏

𝑛
).

Solving this formula for 𝜏 is equivalent to finding the roots of 𝑝𝜅 ( 𝜏𝑛 ) −
𝔼[𝑑𝑒𝑔 (𝜈 ) ]

(𝑛−1) . From

Lemma 2.6 we know that 𝑝𝜅 is of degree 𝑑 . For BDFs acting on at least five dimensions,

we therefore cannot give a closed formula for 𝜏 , as this would contradict the theorem of

Abel-Ruffini [Ayo80]. Still we can use numerical methods to get an approximation of 𝜏 , which

in practice is completely sufficient.
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4.3 Choice of the threshold constant

Arbitraryweights: Let us now assumeweights following a power-law distribution. Because

each vertex has a different weight, we cannot consider a single vertex anymore. Instead, we

need to consider average of all expected degrees. We write 𝔼[𝑑𝑒𝑔(𝐺)] to denote the expected

average degree of a graph 𝐺 and get:

𝔼[𝑑𝑒𝑔(𝐺)] = 1

𝑛
·
∑︁
𝜈∈𝑉

𝔼[𝑑𝑒𝑔(𝜈)] = 1

𝑛
·
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑉𝜅 (𝑘 (𝑢,𝜈 ) ) .

The difference to the previous case where we assume constant weights is that now for some

vertex pairs 𝑘 (𝑢,𝜈 ) > 1/2. This means the volume is 𝑉𝜅 (𝑘 (𝑢,𝜈 ) ) = 𝑝𝜅 (min(1/2, 𝑘 (𝑢,𝜈 ) )). The
minimum prevents us from simplifying the double sum, meaning that we cannot simply

approximate the roots like we can in the constant case. The same problem has already been

observed by Bläsius et al. [Blä+22] for 𝐿∞-GIRGs. The solution they came up with consisted in

computing the average degree for some threshold constant 𝜏 , by first ignoring the minima and

then subtracting the error by considering each pair of vertices (𝑢, 𝜈) with 𝑘 (𝑢,𝜈 ) ≥ 1

2
. Because

𝔼[𝑑𝑒𝑔(𝐺)] is monotone in 𝜏 , a binary search can then be performed on 𝜏 to approximate it.

Binary search on 𝔼[𝑑𝑒𝑔(𝐺)]. We first look at how, given a threshold constant 𝜏 , we can

compute the expected average degree 𝔼[𝑑𝑒𝑔(𝐺)] in linear time. Let 𝑝𝜅 : ℝ → ℝ be the

polynomial describing the volume𝑉𝜅 for a radius in [0, 1
2
]. Using 𝑝𝜅 we compute the expected

average degree by using 𝑝𝜅 (𝑘 (𝜈,𝑢 ) ) also for 𝑘 (𝜈,𝑢 ) >
1

2
and then subtract the error:

𝔼[𝑑𝑒𝑔(𝐺)] = 1

𝑛
·
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑝𝜅 (𝑘 (𝜈,𝑢 ) )

︸                      ︷︷                      ︸
=:𝑄𝑜𝜈𝑒𝑟

−
∑︁

(𝑢,𝜈 ) ∈𝐸𝑒𝑟𝑟

𝑝𝜅 (𝑘 (𝜈,𝑢 ) ) − 1︸                        ︷︷                        ︸
=:𝑄𝑒𝑟𝑟

with 𝐸𝑒𝑟𝑟 = {(𝑢, 𝜈) ∈ 𝑉 2 |𝑢 ≠ 𝜈 and 𝑘 (𝜈,𝑢 ) >
1

2
} being the pairs of vertices having a threshold

larger then
1

2
. Note that the subtracting 1 in 𝑄𝑒𝑟𝑟𝑜𝑟 is necessary as the probability of those

edges to be sampled is 1.

With the minimum eliminated, the double sum𝑄𝑜𝜈𝑒𝑟 can now be simplified. First, we consider

the double sum over the threshold 𝑘 (𝑢,𝜈 ) to the power of an exponent 𝑖 ∈ ℕ:

∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑘𝑖(𝜈,𝑢 ) =
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝜏𝑖
(𝑤𝑢𝑤𝜈

𝑛

) 𝑖
𝐷𝜈 (𝜅 )

=
∑︁
𝜈∈𝑉

𝜏𝑖
(𝑤𝜈

𝑛

) 𝑖
𝐷𝜈 (𝜅 ) ·(𝑊 (𝑖/𝐷𝜈 (𝜅 ) ) −𝑤𝜈 )

= 𝜏𝑖
1

𝑛𝑖/𝐷𝜈 (𝜅 )
·
∑︁
𝜈∈𝑉

𝑤
𝑖

𝐷𝜈 (𝜅 )
𝜈 · (𝑊 (𝑖/𝐷𝜈 (𝜅 ) ) −𝑤𝜈 )

= 𝜏𝑖
1

𝑛𝑖/𝐷𝜈 (𝜅 )
· (𝑊 (𝑖/𝐷𝜈 (𝜅 ) )2 −𝑊 (2𝑖/𝐷𝜈 (𝜅 ) ) )
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4 Generating BDF-GIRGs

where we write𝑊 (𝑎)
to denote

∑
𝑢∈𝑉 𝑤𝑎

𝑢 for better readability. Given the coefficient represen-

tation of 𝑝𝜅 as 𝑝𝜅 (𝜏) =
∑𝑑

𝑖=0 𝑎𝑖 · 𝜏𝑖 we get:

𝑄𝑜𝜈𝑒𝑟 =
1

𝑛
·
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑝𝜅 (𝑘 (𝜈,𝑢 ) ) =
1

𝑛
·
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑑∑︁
𝑖=0

𝑎𝑖 · 𝑘𝑖(𝜈,𝑢 )

=
1

𝑛
·

𝑑∑︁
𝑖=0

𝑎𝑖

∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝑘𝑖(𝜈,𝑢 )

=
1

𝑛
·

𝑑∑︁
𝑖=0

𝜏𝑖 · 𝑎𝑖 ·
1

𝑛𝑖/𝐷𝜈 (𝜅 )
· (𝑊 (𝑖/𝐷𝜈 (𝜅 ) )2 −𝑊 (2𝑖/𝐷𝜈 (𝜅 ) ) .)︸                                                  ︷︷                                                  ︸
independent from 𝜏

In the second step, we substituted the coefficient notation of 𝑝𝑘 , in the third step, we brought

the double sum into the equation, and in the final step, we applied the previously stated

equation. We see that 𝑄𝑜𝜈𝑒𝑟 is a polynomial of 𝜏 . The coefficients can therefore be computed

in 𝑂 ( |𝑉 | · 𝑑) once, and we can then evaluate 𝑄𝑜𝜈𝑒𝑟 for any threshold constant in 𝑂 (𝑑).
Next, we need to compute 𝑄𝑒𝑟𝑟 . This can be done by first sorting the weights and using the

two pointer technique to find all vertex pairs with a threshold larger than
1

2
. As the weights

follow a power-law distribution we can sort the weights in expected 𝑂 ( |𝑉 |) using a modified

version of bucket sort. After pre-computation we can then get query 𝐸𝑒𝑟𝑟 and compute 𝑄𝑒𝑟𝑟

in 𝑂 (1 + |𝐸𝑒𝑟𝑟 |).

The total runtime of the binary search is then𝑂 ( |𝑉 |) for the pre-computation and𝑂 (𝑑+ |𝐸𝑒𝑟𝑟 |)
per step. The runtime of the binary at each step therefore heavily depends on the size of

𝐸𝑒𝑟𝑟 , which grows for a larger threshold constant. Consequently, we are interested in a lower

bound estimate for 𝜏 to be used as a starting value of the binary search. We obtain this by

considering an upper estimate of the expected average degree that can be solved for 𝜏 .

Lower bound of the threshold constant. We get an upper estimate of the expected

average degree of a 𝜅-GIRG by considering the min-max set S of the BDF 𝜅. More precisely,

we consider the volume of each max set separately. We then get an upper estimate of the

expected average degree by using the fact that the volume of a d-dimensional 𝐿∞-BDF is

𝑉∞(𝑟 ) = min(1, (2𝑟 )𝑑 ):

𝑉𝜅 (𝑟 ) ≤
∑︁
𝑆∈S

min(1, (2𝑟 ) |𝑆 |) ≤
∑︁
𝑆∈S

(2𝑟 )𝐷𝜈 (𝜅 ) = 𝐿𝑐 (𝜅) · (2𝑟 )𝐷𝜈 (𝜅 ) 𝑟 ∈ ℝ≥0.

Where we use the equation for the volume in the first step, in the second step we can upper

estimate the volume using the fact that that all max sets have a size of at least 𝐷𝜈 (𝜅) a remove

the minimum as (2𝑟 )𝐷𝜈 (𝜅 )
is larger 1 for any 𝑟 > 1/2. In the last step we then use the fact

that |S | = 𝐿𝑐 (𝜅). Using this upper estimate, and the known equation for 𝑘 (𝑢,𝜈 ) in the double

sum, we get:

𝔼[𝑑𝑒𝑔(𝐺)] ≤ 1

𝑛
·
∑︁
𝜈∈𝑉

∑︁
𝑢∈𝑉
𝜈≠𝑢

𝐿𝑐 (𝜅) · (2 · 𝑘 (𝑢,𝜈 ) )𝐷𝜈 (𝜅 ) ≤ 1

𝑛2
𝐿𝑐 (𝜅) · (2𝜏)𝐷𝜈 (𝜅 ) · (𝑊 2 −𝑊 (2) ) .

By solving this for 𝜏 we get 𝜏 ≥ 1

2

(
𝔼[𝑑𝑒𝑔 (𝐺 ) ] ·𝑛2

𝐿𝑐 (𝜅 ) · (𝑊 2−𝑊 (2) )

)
1/𝐷𝜈 (𝜅 )

.
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5 Optimizing the Computation

In the previous chapter, we saw how BDF-GIRGs can be sampled as a combination of multiple

𝐿∞-GIRGs where the runtime is affected by the computational depth with an exponential

factor. In Chapter 3, we also observed that this exponential factor is likely unavoidable for

arbitrary distributions of positions. However, in this chapter, we introduce an approach that,

based on the assumption of a uniform distribution of the positions, can significantly reduce

the computational effort. This is achieved by simplifying the BDF such that the graph we try

to sample is a sub-graph of the graph sampled using the simplified BDF.

We first show an example to clarify the idea of the approach. Then, we discuss some

properties the simplified BDF must have. Based on that, we give a dynamic programming to

construct such a simplified BDF and discuss the difficulties that come with that.

5.1 Example

Consider the following BDF 𝜅 : 𝕋𝑑 → ℝ≥0 for 𝑑 ∈ ℕ:

𝜅 (𝑥) = min(𝑥1,max((𝑥𝑖)𝑖∈[2,𝑑 ]))

Using the known algorithm, computing a 𝜅-GIRG would take 𝑂 (𝑛 · 𝜌𝑑 ), assuming a linear

amount of edges and 𝜌 is the base of the exponential time caused by the dimension. This is due

to the computation of max((𝑥𝑖)𝑖∈[2,𝑑 ]) which dominates the runtime. However, after a closer

look at the sampled 𝐿∞-GIRGs, we call them 𝐺1 and 𝐺2, for the first and second max-term,

respectively, we notice that:

(1) Most edges are sampled in𝐺1. The intuitive reason is that two vertices have to be close only

in one dimension to be adjacent in𝐺1 while in 𝐺2, this must be the case in 𝑑 − 1 dimensions.

(2) The computational effort is dominated by the sampling of 𝐺2, as 𝐺1 can be sampled in

linear time.

Now consider following BDF 𝜅′ : 𝕋2 → ℝ≥0:

𝜅′(𝑥) = min(𝑥1, 𝑥2)

The sampling of a 𝜅′-GIRG is both linear in the number of vertices and dimensions as 𝜅′ is
the 2-dimensional minimum component distance. This is, unsurprisingly, significantly faster

than for sampling a 𝜅-GIRG. If we now compare 𝜅 with 𝜅′ we notice that 𝜅′((𝑥1, 𝑥2)) ≤ 𝜅 (𝑥)
for any 𝑥 ∈ 𝕋𝑑

. This means that if for the same weights and positions we sample a 𝜅-GIRG

and a 𝜅′-GIRG, where we use only the two first dimensions of the positions for the 𝜅′-GIRG,
the edge set of the 𝜅′-GIRG is going to be a superset of the edge set of the 𝜅-GIRG. Ultimately,

we ask ourselves how much more edges have been sampled in the 𝜅′-GIRG. This can be

approximated as twice the number of edges sampled in the 𝜅-GIRG as both generated the

same number of edges in the 𝐿∞-GIRG acting on 𝑥1. We can therefore sample a 𝑘𝑎𝑝𝑝𝑎′-GIRG
instead of a 𝑘𝑎𝑝𝑝𝑎-GIRG, potentially need to check twice the number of edges, but saving the

crucial factor 𝜌𝑑 and therefore improving the runtime significantly.
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5 Optimizing the Computation

5.2 Conditions for a simplified BDF

We now formalize the described idea and look at the conditions a simplified 𝜅′ : 𝕋𝑑 ′ → ℝ≥0
of a BDF 𝜅 : 𝕋𝑑 → ℝ≥0 for 𝑑, 𝑑 ′ ∈ ℕ, 𝑑 ′ ≤ 𝑑 must satisfy to be used like in the example.

1 For every 𝑥 ∈ 𝕋𝑑
, 𝜅′((𝑥1, ..., 𝑥𝑑 ′)) ≤ 𝜅 (𝑥). This condition makes sure that the sampled

edge set for a 𝜅′-GIRG is a superset of the edges sampled for an according 𝜅-GIRG.

2 While it should sample a super-set of edges, there shouldn’t be “too much” more edges.

I.e., there must exist a constant 𝑐 (𝜅) > 0 such that for the edges sets 𝐸 of the 𝜅-GIRG

and 𝐸′
of the 𝜅′-GIRG: 𝔼[|𝐸′ |] ≤ 𝑐 (𝜅) · 𝔼[|𝐸 |].

3 While we do not require from 𝜅′ to be a BDF, we want it to have a min-max set

representation, so that we can use it for the sampling of edges in the same way we do

with BDFs.

4 Finally, we require 𝜅′ to be optimal i.e., for any possible simplifications of 𝜅 aim to find

the one with both the shortest min-max set and max-sets of minimal size. We latter

show that for a constant average degree those conditions do not contradict i.e., we do

not need to chose between a lower length or a lower depth.

At first glance, it may not be clear how those conditions can be combined to obtain a formal

construction rule for 𝜅′. We start by considering the first and second condition. Like before

we consider the volume of the 𝜅′, which must always be larger than the one of 𝜅, but only

by a constant factor. Because we do not require 𝜅′ to be a BDF, but simply require it to have

a min-max set representation, we first examine the asymptotic behavior of the volume of a

min-max set. This can be done quite intuitively and makes clear how the construction of 𝜅′ is
going to be done.

5.3 Volume of a min-max set

From Lemma 2.5 we know that the volume of a BDF mainly depends on its volumetric depth.

If we think of a BDF in the representation given by the min-max i.e., max-terms enclosed

by a min-term, the volumetric depth corresponds to the size of the shortest max-term. That

the volume mainly depends on this max-term also seems to be quite logical as it needs the

fewest conditions to be satisfied to have an edge sampled. We show that this is also valid for

any min-max set even if it is not induced by a BDF. Let 𝜅′ : 𝕋𝑑 → ℝ≥0 have min-max set

S = {𝑆𝑖 ⊆ [𝑑] |𝑖 ∈ {1, ..., 𝐿𝑐 (𝜅′)}} for dimension 𝑑 ∈ ℕ. Although 𝜅′ is not BDF we use 𝐿𝑐 (𝜅′)
for the size of the min-max set |S | and 𝐷𝜈 (𝜅) to describe the size of the smallest max-set. This

facilitates the intuition as the length and depth have a very similar influence on the volume.

The volume of 𝜅′ can be described as the sum of the volumes of every max-term induced by

𝑆 ∈ S minus the intersections that some max-terms might have. We show that the volume of

those intersections is negligible for decreasing radius, by considering the intersection between

every pair of max-term:

𝐿𝑐 (𝜅′ )∑︁
𝑖=1

𝐿𝑐 (𝜅′ )∑︁
𝑗=𝑖+1

(2𝑟 ) |𝑆𝑖 |+1 ≤
𝐿𝑐 (𝜅′ )∑︁
𝑖=1

𝐿𝑐 (𝜅′ )∑︁
𝑗=𝑖+1

(2𝑟 )𝐷𝜈 (𝜅′ )+1 ≤ (2𝑟 )𝐷𝜈 (𝜅′ )+1 · 𝐿𝑐 (𝜅′)2 for 𝑟 >
1

2

, 𝑆𝑖 ∈ S
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5.4 Simplifying a min-max set

We used the fact that the intersection of two max-sets 𝑆𝑖 and 𝑆 𝑗 is the max-set 𝑆𝑖 ∪ 𝑆 𝑗 . Be-

cause two max-sets always differ in at least on dimension we can estimate its size with

|𝑆𝑖 ∪ 𝑆 𝑗 | ≤ |𝑆𝑖 | + 1. Due to the exponent 𝐷𝜈 (𝜅) + 1, the volume of 𝜅′ is asymptotically domi-

nated by the smallest max-term. This shows, that the simplified version 𝜅′ of a BDF 𝜅 must

have the same volumetric depth, otherwise the ratio between their volumes can grow arbitrary

for decreasing radius.

We finish by giving an estimate bywhich factor the volume of𝜅′ and𝜅 with equal volumetric

depth differs:

𝑉𝜅′ (𝑟 )
𝑉𝜅 (𝑟 )

≤
∑𝐿𝑐 (𝜅′ )

𝑖=1
(2𝑟 ) |𝑆𝑖 |

(2𝑟 )𝐷𝜈 (𝜅 )
≤ 𝐿𝑐 (𝜅) (2𝑟 )𝐷𝜈 (𝜅 )

(2𝑟 )𝐷𝜈 (𝜅 )
= 𝐿𝑐 (𝜅′) .

We have estimated 𝑉𝜅′ (𝑟 ) from above by ignoring the intersections and then using |𝑆𝑖 | ≥
𝐷𝜈 (𝜅′). 𝑉𝜅 (𝑟 ) is estimated as the volume of the smallest max-term, ignoring all others.

5.4 Simplifying a min-max set

From the previous section we know that the min-max set of a simplified 𝜅′ must have the

same volumetric depth as the original min-max set of 𝜅, to not sample too much more edges.

However, as the computational depth and length are the factors which are affecting the

runtime, we can minimize those as long as we let the volumetric depth unchanged. This

means that we can remove dimensions from all max-sets larger than the smallest, till all

max sets have the same size. We can do this in different ways. The naive one is to just

remove arbitrary dimensions from each max-set till all have size 𝐷𝜈 (𝜅) . This approach can

already reduce the runtime needed for sampling significantly, as 𝐷𝑐 (𝜅) might be much larger

then 𝐷𝜈 (𝜅). The downside is that the length, which also might grow exponentially, is not

necessarily reduced as much as it could be.

Example: To better understand consider this BDF, with dimension 𝑑 ≥ 4:

𝜅 (𝑥) = min(𝑥0,max(𝑥1,min((𝑥𝑖)𝑖∈[2,𝑑 ) ))

Having the min-max set:

{{0}, {1} × [2, 𝑑)} with length 𝐿𝑐 (𝜅) = 𝑑 − 1

We can simplify this BDF in two ways, among others. The first is to remove every dimension

but the first two. In the second we leave one of the dimension 0 to 𝑑 − 2, in each set:

1. {{0}, {1}} or 2. {[0, 𝑑 − 1)}

We see that depending on the approach chosen, the runtime varies by a factor of 𝑑 . It is

therefore a desirable property to shorten the max-sets such that their length is reduced as

much as possible, in contrast to removing arbitrary dimensions. Unfortunately, the problem

of removing dimensions from the max-sets such that the resulting min-max set has minimal

length, is NP-Complete. We show a reduction from Hitting Set which is known to be

NP-Complete [Kar10].
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Definition 5.1 (Hitting Set): The decision problem is defined as:
Given: 𝑆1, ..., 𝑆𝑛 ⊆ 𝑇 , and 𝑘 ∈ ℕ for any set 𝑇 with 𝑛 ∈ ℕ.
Determine: Does there exists a 𝐻 ⊆ 𝑇 with |𝐻 | ≤ 𝑘 , such that 𝐻 ∩ 𝑆𝑖 ≠ ∅ for

every 𝑖 ∈ {1, ..., 𝑛}.
𝐻 is then called the hitting set.

Lemma 5.2: Let S := {𝑆1, ..., 𝑆𝑛} be a min-max set, and 𝑘 ∈ ℕ arbitrary. Deciding whether
there is a way to shorten S to have size less or equal to 𝑘 ′, is NP-Complete.

Proof. For a reduced set S′
we can verify if for each 𝑆 ′ ∈ S′

there exist a 𝑆 ∈ S such that

𝑆 ′ ⊆ 𝑆 . This can be done in polynomial time.

We show a reduction from Hitting set. Let 𝑆1, ..., 𝑆𝑛 ⊆ 𝑇 and 𝑘 ∈ ℕ be an instance of Hitting

set. WLOG let 𝑇 ⊆ ℕ. We define S := {{0}, 𝑆1, ..., 𝑆𝑛} and 𝑘 ′ = 𝑘 + 1.

Let the hitting set instance be a yes-instance, and 𝐻 the hitting set of size 𝑘 or less.

S′
:= {{ℎ}|ℎ ∈ 𝐻 } ∪ {{0}} is a valid min-max set with |S | = |𝐻 | + 1 ≤ 𝑘 .

Let S′
be shortened set, with |S | ≤ 𝑘 + 1. Because of {0} ∈ S , every set in S′

contains one

element 𝐻 := {𝑠 |{𝑠} ∈ S}\{0} is a hitting set.

In practise, we can afford the resulting exponential runtime if the BDF is small. For larger

BDFs, however, we use an a dynamic program to approximate a shortening.

5.4.1 Approximating the optimal shortening

Recall that a BDF is recursively defined as a binary tree where each leaf is a dimension and

every inner node is either a max or min node. The idea of this dynamic program is to remove

parts of this tree, such that the volumetric and computational depth are identical and the

length is minimized as much as possible. While doing so, we must make sure that the BDF we

obtain is smaller i.e., 𝜅′(𝑥) ≤ 𝜅 (𝑥) for any 𝑥 ∈ 𝕋𝑑
. We refer to that as the first condition (

discussed in Section 5.2).

First, we need to understand what it means to remove a part of the binary tree and in which

cases we can do so without violating the first condition. For a BDF 𝜅, with comprising BDFs

𝜅1 and 𝜅2, we say that we remove the sub-tree of 𝜅1, if we replace 𝜅 by 𝜅2. All dimensions

𝜅1 is acting one, are then removed. We can only remove a sub-tree from a maximum node,

otherwise violating the first condition. For instance, removing 𝜅1 from 𝜅 (𝑥) = max(𝜅1, 𝜅2)
can be done as 𝜅 (𝑥) ≥ 𝜅2(𝑥) because of the maximum. For 𝜅 (𝑥) = min(𝜅1, 𝜅2) removing 𝜅1,

however, would violate the first condition. This is due to 𝜅 (𝑥) ≤ 𝜅2(𝑥) for any 𝑥 ∈ 𝕋𝑑
. We can

now describe our problem as DP. For each recursively defined BDF we consider the minimal

length that can be achieved when reducing the volumetric depth by 𝑛 ∈ {0, ..., 𝐷𝜈 (𝜅)} and the
computational depth by 𝑛 + 𝐷𝑐 (𝜅) − 𝐷𝜈 (𝜅). We obtain the shortening of a BDF by choosing

𝑛 = 0, resulting in the same volumetric, but reduced computational depth. We denote the

length of 𝜅 shortened by n as 𝐶𝜅 [𝑛].
For a one-dimensional BDF 𝜅 removing it leads to a length of 0 and keeping it to 1.

𝐶𝜅 [0] = 1 𝐶𝜅 [1] = 0

For an outer-min BDF 𝜅 with comprising BDFs 𝜅1 and 𝜅2, let WLOG 𝐷𝜈 (𝜅1) ≥ 𝐷𝜈 (𝜅2). As we
want the result to have equal volumetric and computational depth, we consider the optimal

solution for a depth of 𝐷𝜈 (𝜅2) − 𝑛:

𝐶𝜅 [𝑛] = 𝐶𝜅1 [𝑛 + 𝐷𝜈 (𝜅1) − 𝐷𝜈 (𝜅2)] +𝐶𝜅2 [𝑛]
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Figure 5.1: A representation of min(max(1, 2, 3), 0) as binary tree where we remove the

dimensions 1 and 2. We obtain min(2, 3).

For an outer-max BDF 𝜅 we need to reduce the volumetric depth of the comprising BDFs 𝜅1
and 𝜅2 by a total of n. The optimal solution consists of trying out every combination.

𝐶𝜅 [𝐷𝑐 (𝜅)] = 0 𝐶𝜅 [𝑛] = min{
⋃

𝑖∈{𝑛−𝐷𝜈 (𝜅2 ),...,𝐷𝜈 (𝜅1 ) }
max(𝐶𝜅1 [𝑖], 1) ·max(𝐶𝜅2 [𝑛 − 𝑖], 1)}

The optimal length of a shortened BDF 𝜅 is then 𝐶𝜅 [0]. We can reconstruct the solution by

saving the optimal indices used at every outer-max BDF. Due to a BDF having𝑂 (𝑑) inner BDFs
each having volumetric depth up to 𝑂 (𝐷𝑐 (𝜅)), with up to 𝑂 (𝐷𝑐 (𝜅)) possible combinations at

every outer-max BDF, the total runtime of the DP is 𝑂 (𝑑 · 𝐷𝑐 (𝜅)2).

Note that this approximation does not provide an optimal shortening for every BDF, even if

we assume the shortened min-max set to be induced by a BDF. This is because it is not always

optimal to remove a dimension completely. Consider the following BDF and its min-max set

as an example:

max(min(max(𝑥0, 𝑥1), 𝑥2),min(𝑥3, 𝑥4)) and {{0, 1, 3}, {0, 1, 4}, {2, 3}, {2, 4}}.

The presented DP would remove the dimensions 0 or 1, resulting in the min-max set {{1, 3},
{1, 4}, {2, 3}, {2, 4}}. We can see that it is however better to remove the dimension 3 and 4

in the first two max sets and get {{0, 1}, {2, 3}, {2, 4}}. Even thought we did not remove

any dimension entirely, the resulting min-max set is smaller and also induced by BDF

min(max(𝑥0, 𝑥1),max(𝑥2,min(𝑥3, 𝑥4))).

5.5 The Final Sampling Algorithm

The final algorithm to sample BDF-GIRGs now consists of first computing a simplified 𝜅′ of
the given BDF 𝜅. Depending on the size, this can be done either using the dynamic program

or, if the BDF is small enough, the exponential time algorithm. We then use the min-max set

of 𝜅′ to compute 𝐿𝑐 (𝜅′) 𝐿∞-GIRGs, each having the dimension 𝐷𝜈 (𝜅) = 𝐷𝑐 (𝜅′) = 𝐷𝜈 (𝜅′). We

then filter the set of sampled edges to obtain only those that would have been sampled in the

𝜅-GIRG This leads to an optimized time complexity of the algorithm of 𝑂 (𝐿𝑐 (𝜅′) · 𝑛 · 𝜌𝐷𝜈 (𝜅′ ) )
for 𝜌 > 1 being the exponential factor that affects the runtime of 𝐿∞-GIRGs.
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6 Evaluation

In this chapter, we first discuss some implementation details of the BDF-GIRG algorithm

described earlier. We then investigate the quality of the threshold estimator described in

Chapter 4 and verify that the degree distribution does indeed follow a power law. Later, we

empirically analyse three properties of the generated graphs: the size of the largest component,

the clustering coefficient and the diameter. For a better overview, in Section 6.2 we divide

BDFs into three categories that have been observed to have similar properties and also discuss

the experimental setup used. Finally, we briefly examine the runtime of the generator.

6.1 Implementation Details

We implemented the algorithm as described in Chapter 5. The implementation is an open-

source module and comes with a basic command line interface.
1
The 𝐿∞-GIRG sampling

algorithm our algorithm is based on was implemented by Bläsius et al.[Blä+22] and provided

as an open source C++ library.
2
The C++ implementation is extended to work with min-max

sets. The sampling algorithm gets a shortened min-max set which is used to sample 𝐿∞-GIRGs
and the original min-max set which is used to check every edge. The threshold estimator is

extended such that it gets an arbitrary polynomial describing the volume. Everything else,

e.g., BDFs, their shortening and the CLI are implemented in Python to enable easy usage.

The python wrapper used for the C++ code is also based on an existing python wrapper

for 𝐿∞-GIRGs.3 Beside details of the algorithm discussed earlier, the implementation is also

adjusted in three ways we have not discussed yet:

Approximation of the volume. We saw in Lemma 2.6 that the volume of a BDF can be

described by a polynomial with a degree equal to the dimension. For higher dimensions, this

leads to both 𝑄𝑜𝜈𝑒𝑟 and 𝑄𝑒𝑟𝑟𝑜𝑟 (see Section 4.3) to have very high values, which can result in

numerical cancellation when subtracted. Therefore, it is sensible to simplify the polynomial to

have a lower degree. The simplest approach is to ignore the intersections between max-sets,

but it leads to a relatively high error (10-15%) between the desired and gotten average degree,

even in larger graphs. A practically reasonable alternative is to consider only the intersection

of the highest min-nodes in the binary tree of the BDF. For the BDFs we examined, the

resulting error was lower then the one resulting from the binary search. (Which aborts if the

estimated threshold differs from the desired by less then 0.1).

Find an optimal BDF shortening. As discussed in Chapter 5, given a min-max set, finding

an optimal shortening is NP-Complete. For smaller BDFs, where the number of possible

combinations to check do not exceed 2
17
, we compute the optimal shortening. For any larger

BDF we use the dynamic program approach presented in Section 5.4.1.

1
https://github.com/Maxime-RA/bdf-girg

2
https://github.com/chistopher/girgs

3
https://github.com/gavento/girg-sampling
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Increasing runtime for lower thresholds. An unforeseen behavior of the used 𝐿∞-GIRG
algorithm is that the runtime can significantly increase if it is generated with a very low

average degree. The origin of this behavior lies in the recursive partitioning of the ground

space, where the recursion depth depends on the smallest possible threshold. For lower

average degrees, this threshold is smaller, resulting in a higher recursion depth. In these cases,

it can be more efficient to terminate the partitioning at a lower depth and compare “a few

more” pairs of vertices. In practice, we found out that the runtime increases if the average

degree in every 𝐿∞-GIRG is lower than five times the dimension. This is a limit that is quickly

reached if the BDF-GIRG consists of multiple 𝐿∞-GIRGs. To counteract this 𝐿∞-GIRGs are not
generated with an average degree lower than that. Instead, we compute two thresholds. One

larger for the 𝐿∞-GIRG generation and the “correct one” that we use when we filter the edges.

6.2 BDFs & Configuration

6.2.1 Used BDFs

For each property investigated, we tried various BDFs, of different length, depth and dimen-

sions. Because sampling 𝐿∞-GIRGs with dimensions higher than five involves considerable

computational effort, we only consider the case where the depth is less or equal to five. Note

that for easier notation, we write the dimensions as a number e.g., for 𝜅 (𝑥) =𝑚𝑎𝑥 ( |𝑥0 |, |𝑥1 |)
with 𝑥 ∈ 𝕋2

we write max(0, 1). Overall, we divide BDFs into three categories that have

shown to behave in similar ways. We, therefore, first look at some representatives of each of

the three categories and, if necessary, examine each category in more detail.

1d-outer-min. The first category are outer-min BDFs where a single dimension is sur-

rounded by the minimum, while all other dimensions are part of at least one outer-max BDF.

Formally, we say that a BDF is 1d-outer-min if its min-max set contains exactly one max-set

with size one. We can intuitively think of such BDFs as one-dimensional 𝐿∞-GIRGs where
some max-terms add extra edges. Examples of such BDFs are𝑚𝑖𝑛(0,𝑚𝑎𝑥 (1, 2),𝑚𝑎𝑥 (3, 4))
or the two representatives we are using: 0, which is just the one-dimensional 𝐿∞-GIRG and

min(0,max(1, 2)). We can think of such graphs as one-dimensional GIRGs, where due to

some max-term, a few extra edges are sampled. Note that the number of edges sampled due to

the max-terms is low. Depending on the power-law exponent, the proportion ranges between

3% and less than 1% for two-dimensional max-terms. For higher dimensional max-term this

value is even lower and for large enough graphs eventually reaches zero.

If we want to further investigate a behavior with more BDFs in this category, we use 𝑙

max-terms each having size two or three. The BDF then has the form:

min(0,max( 1, 2, ...︸︷︷︸
d dimensions

), ...

︸                     ︷︷                     ︸
l max-terms (including 0)

) We write: 1D-OM[𝐷 = 𝑑, 𝐿 = 𝑙]

For instance, min(0,max(1, 2)) is then written as 1D-OM[𝐷 = 2, 𝐿 = 2]. The resulting BDFs
all have volumetric depth one, computational depth 𝑑 and length 𝑙 .

H-SCOM. The second category is a class that is very similar to one we already know from

Definition 2.3, so called SCOM-BDFs. Those are BDFs that can be written as outer-max BDFs

where one of the comprising BDFs is a single dimension. By definition, SCOMs also contain
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the one-dimensional BDF |𝑥 |. As we already assigned the one-dimensional BDF to the first

category, this category contains SCOM-BDFs of dimension greater then one. We usemax(0, 1)
and max(0,min(1, 2)) as representatives of this category.
To further observe their behaviour we also define a class of BDFs having the form:

max(0, 1, 2, ...︸   ︷︷   ︸
𝑑𝑚𝑎𝑥 dims

,min(3, 4, ...︸︷︷︸
l dims

)

︸        ︷︷        ︸
𝑑𝑚𝑖𝑛 terms

) We write: H-SCOM[𝐷𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 = 𝑑𝑚𝑖𝑛, 𝐿 = 𝑙]

max(0,min(1, 2)) is then H-SCOM[𝐷𝑚𝑎𝑥 = 1, 𝐷𝑚𝑖𝑛 = 1, 𝐿 = 2]. The depths (volumetric &

computational) are then both equal to 𝑑𝑚𝑎𝑥 + 𝑑𝑚𝑖𝑛 and the computational length is 𝑙 .

Remaining BDFs. The last category contains all remaining types of BDFs. This may

sound surprising, but we observed hardly any differences in the behavior of BDFs within

this category. Therefore, in the following discussions, we primarily focus on the first two

categories. We use a min(0, 1) as representative.

6.2.2 Configuration

As the default configuration, we generate graphs of size 𝑛 = 2
15
, an average degree of 10 and

a weight distribution with a power-law exponent (PLE) of 2.5. For each configuration showed,

we generate five random graphs and use the average value. The variance of the values is

is showed in the plots. For plots that differentiate by PLE, the average of all five BDFs (0

(one-dimensional GIRG) , max(0, 1), min(0, 1), min(0,max(1, 2)), max(0,min(1, 2))) is used.

6.3 Prediction of the Average Degree

In this section, we briefly discuss the quality of the threshold estimator. For each measurement

we compute the error in percent between the desired and obtained average degree (see

Figure 6.1). In Figure 6.1a and Figure 6.1b, we observe that minor inaccuracies occur for

smaller graphs, while for larger graphs, the error is below one percent. This can be explained

by the fact that the binary search (see Section 4.3) terminates if the predicted average degree

differs by less than 0.1 from the desired one. For an average degree of 10, this corresponds to

the observed 1 percent. This also explains why the error decreases with an increasing average

degree as it can be seen in Figure 6.1c and Figure 6.1d. In conclusion, we can state that the

prediction works well, and the deviations are likely negligible for practical applications but

could also be reduced by adapting the binary search.

6.4 Degree Distribution

In this section, we briefly examine the degree distribution of the generated graphs. From

Theorem 2.9 we know the generated graphs should be scale-free i.e., their degree distribution

should follow a power-law. Moreover, the power law distribution should follow the same

exponent as the weight distribution even if the exponent is greater than three, which is

otherwise a restriction for some properties. As shown in Figure 6.2a, this is indeed the case,

and the choice of the PLE affects the degree distribution as expected. In Figure 6.2b, we can

also observe that the choice of BDF has no influence on the degree distribution.
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Figure 6.1: Error in % between the desired average degree and the observed average degree.
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Figure 6.2: Degree distribution of BDF-GIRGs. The distribution is plotted as a cumulative

distribution function with the degree d on the x-axis and the percent of vertices having a

degree larger d on the y-axis.
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6.5 Size of the largest Component

In this section, we analyse the size of the largest component for different configurations. We

first take a look at the case of the PLE being between 2 and 3 and later observe the behavior

for a PLE greater than 3. We test the five representatives and later look at some more results

using BDF from the first category. From Theorem 2.10 we know that the largest component is

of linear size if the PLE is between two and three. In Figure 6.3a and Figure 6.3b we empirically

verify this theoretical result. Note that for a lower PLE the size of the largest component can

still be assumed to be linear, but is significantly lower than for higher PLEs. This is due to a

high number of vertices with a large weight. This, in turn, leads to fewer local connections as

the high-weight vertices dominate and connect over larger distances, reducing the number of

local connections. Vertices with a low weight are then more likely to have no connection at

all.

Next, we analyse the behavior for an increasing PLE i.e., less vertices have a large weight and

the degree distribution is therefore more homogeneous (Figure 6.3c ). We can observe that

BDFs in the second and third categories experience little to no influence under this kind of

change. For both categories the resulting graph still features a giant component. For BDFs

in the first category, however, this is not the case. We can observe a phase transition for the

one-dimensional BDF as soon as the PLE gets larger then three. For other BDFs of the first

category we observe a behavior that is somehow in-between (Figure 6.3d). BDFs made of

max-terms with a size greater than two (recall the construction in Section 6.2) have an almost

identical behavior to the one-dimensional GIRG. This is due to almost no edges being sampled

due to those max-terms. Those featuring multiple max-terms with two dimensions however,

interpolate well between the one-dimensional GIRG and the BDFs of the other categories.

For an increasing graph size, all BDFs in the first category seem to converge against the

one-dimensional case.

We try to explain this behavior by first noticing that for a PLE that goes towards infinity, the

weights of all vertices would be equal, resulting in a random geometric graph (RGG). We think

that the observed behaviour can be well explained if we think of one-dimensional GIRGs with

a high PLE as one-dimensional RGGs. For those, Dall and Christensen [DC02] showed that a

giant component emerges as soon as the connection threshold is greater than a certain value,

which increases with decreasing dimension. If, however, the connection threshold is lower,

the giant component almost immediately falls apart into multiple small components. We

therefore suspect that this threshold is not yet reached at an average degree of 10. Figure 6.3f

also strengthens our suspicion, as a giant component seems to emerge for an average degree

exceeding 25.

The behaving of the other BDFs can be explained by separately considering the edges sampled

due to the additional max-terms. For max-terms greater than two, this number is negligible

and thus has little impact. In the case of max-terms with two dimensions, a small proportion

(<1% per max-term for PLE=5.0 and 𝑛 = 2
15
) of edges is generated by these max-terms. This

is sufficient to connect enough of the components that felt apart to a giant component. The

more max-terms are used, the more such edges are generated and the more of the small

components are connected. This proportion of edges generated due the those additional max-

terms, however, is decreasing for larger graphs as their volume of the max-terms decreases

faster (recall Lemma 2.5 where we saw that the volume is in Θ(𝑟𝐷𝜈 (𝜅 ) )). This explains the
behavior in Figure 6.3e.
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Figure 6.3: Proportion of vertices in the largest component in %.
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6.6 Clustering coefficient

Next, we analyse the (global) clustering coefficient of BDF-GIRGs as defined in Definition 2.11.

Recall that it describes the probability that two vertices with a common neighbor are also

connected. In contrast to the other properties examined, this property is significantly more

stable with respect to the addition or removal of a small number of edges. Thus, a few edges

can substantially reduce the diameter or greatly increase the size of the giant component,

while the clustering coefficient remains relatively unaffected under such changes. In Figures

Figure 6.4a and Figure 6.4c, we observe that the clustering coefficient appears to depend

little on the BDF, but is much more influenced by the chosen PLE, with an increase in PLE

(Figure 6.4b and Figure 6.4d) also leading to an increase in the clustering coefficient. This

behavior can be explained by the fact that a higher PLE leads to fewer large weights, which

leads to more local connections.

This behavior can be further observed in Figure 6.4e where the clustering coefficient rises for

an increasing PLE. However, in this case, a distinction between the different BDFs is evident.

Unlike for the largest component and the diameter, however, the categories we previously

established cannot be applied in this context. Instead, we figured out that it is more useful to

think of the BDFs in the form induced by their min-max set. More precisely, we just consider

the smallest max-terms, as those are the ones that lead to the most edges to be sampled. We

can ignore all others as the amount of edges sampled by them is too low to influence the

global clustering coefficient. We then think of each 𝐿∞-GIRG sampled separately. The vertices

that are then close to each other (using the 𝐿∞-norm) with respect to the dimensions of one

max-term have just a little probability of being close with respect to dimensions in other

max-terms. If we think of vertices close to each other as “neighborhoods”, in each max-term a

vertex has another neighborhood. Since the average degree remains constant, the connections

of a vertex are then evenly distributed over those “neighborhoods”, effectively dividing its

clustering coefficient by length of the BDF. We can observe this in Figure 6.4e by considering

min(0, 1), which has a clustering coefficient half as large as the one-dimensional GIRG.

Beside this influence we can also observe the clustering coefficient to decrease for increasing

dimensions. Consider the one- and two-dimensional GIRG as an example. This is consistent

with the theoretical findings of Friedrich et al. [FGKS24]. They show that the clustering

coefficient of GIRGs is in Θ(( 3
4
)𝑑 ) for PLEs greater than three. We can nicely observe this

phenomenon for both the length and depth of the BDFs in Figure 6.4, where we used a BDF

that has the form:

min(max( 1, 2, ...︸︷︷︸
x dimensions

), ...

︸                  ︷︷                  ︸
y max-terms

)

leading to a volumetric depth of x and length of y.

6.7 Diameter

Lastly, we analyse the diameter of BDF-GIRGs. The diameter is the maximal length of all

shortest paths. In a real-world setting, we can think of the diameter as the maximal number of

intermediates that two arbitrary people need to be connected. If the graph features more than

one connected component, we consider the largest diameter of all connected components.

We know from Theorem 2.10 that if the PLE is between two and three, the diameter is at most
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Figure 6.4: Comparison of the (global) clustering coefficient.
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poly-logarithmic. It is difficult to verify this property empirically since the computation of

the diameter, especially if the underlying space is a torus, takes much effort ([BF24], section

4.2 ) and the obtained values are quite low. However, it seems to hold for smaller graphs, as

can be seen in Figure 6.5a and Figure 6.5b. In a similar way as with the previously examined

properties, we can also observe that for a PLE between two and three, the choice of the BDF

affects the diameter significantly less than the choice of the PLE. So we again look at the case

of a PLE that is greater than three (Figure 6.5e and Figure 6.5f). Three distinct behaviors can

clearly be observed. The first category exhibits a significantly increasing diameter, the second

category appears to have a moderately growing diameter, and lastly, the third category shows

little to no increase of the diameter, regardless of the PLE or graph size. It is challenging to

explain those behaviors based on existing studies, as the BDFs appear to have a significant

impact, but prior research has been limited to the case of distance functions induced by the

Euclidean or 𝐿∞-norm, leaving the influence of BDFs relatively unexplored. We still attempt

to explain the behavior of BDFs from the first and second categories using existing knowledge

about RGGs. However, it remains unclear why BDFs from the third category exhibit the

observed behavior.

For BDFs in the first category, the behavior varies depending on the graph size. Initially, the

one-dimensional GIRG exhibits a more rapidly increasing diameter, but for larger graphs, BDFs

with several max-terms show a higher diameter (Figure 6.6b). We believe this behavior can be

explained by the absence of a giant component in the one-dimensional GIRG. While the one-

dimensional GIRG breaks into small components with a low diameter, the few edges generated

by the max-terms in the other BDFs connect these components, significantly increasing the

overall diameter. If the number of max-term further increases, however, the diameter starts

decreasing again as those “extra edges” can be thought as random long-range edges in the

one-dimensional GIRG which lead to a decreasing diameter (Figure 6.6a and Figure 6.6e).

For BDFs in the second category, which we know have a giant component for higher PLEs,

the behavior seems to be more monotone. In Figure 6.6f we can nicely see how increasing

the (both volumetric and computational) depth reduces the diameter while increasing the

length also increases the diameter. The decreasing diameter with increasing depth correlates

with theoretical findings made about RGGs. Friedrich et al. [FSS13] showed that for RGGs

having a giant component, the diameter is in Θ(𝑛1/𝑑 ). This suggests that the diameter is likely

not poly-logarithmic for all BDF-GIRGs for if the PLE exceeds three. However, it remains

unclear why the length leads to an increasing diameter. If we think of BDF-GIRGs as a union

of multiple max-GIRGs, we would expect the opposite behavior as additional edges, as seen

for the first category, reduce the diameter if the graph already has a giant component. Instead,

the increase in diameter is puzzling, since extra edges usually lead to a reduction in diameter.

6.8 Performance

In this section, we briefly discuss the performance of our implementation. We test the runtime

exclusively in single-core mode, meaning we do not use parallelization. This allows us to

get more consistent measurements that depend less on background tasks. We use a system

with an Intel i5-1035G4 (1.1 GHz), 8GB RAM and represent the sampled graph as an edge

list. The runtime is plotted as the average sampling time per edge. We first examine the

runtime behavior for an increasing number of vertices and later for an increasing average

degree. Specifically, for the BDF𝑚𝑖𝑛(0,𝑚𝑎𝑥 (1, 2)), we analyse the runtime of each generation
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Figure 6.5: Comparison of the diameter for different configurations.
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steps (generating positions & weights, estimating the threshold constant and sampling the edges)
and the total runtime of all four steps for the five BDFs used before. Additionally, we use

𝑚𝑖𝑛(0,𝑚𝑎𝑥 (1, 2, 3, 4)) to evaluate the optimisations done in Chapter 5.

In Figure 6.7b we can see that the runtime is linear as the sampling time per edge is constant.

Two interesting observations can also be made: generating positions is computationally

more intensive than generating weights, despite the latter requiring the use of expensive

exponential functions, which contrasts with the observations made by Bläsius et al. [Blä+22].

This suggests that the main computational overhead in generating weights and positions

comes from the communication between the Python and C++ implementations. Additionally,

an increase of the total runtime is noticeable for graphs with more than 2
18
vertices in both

Figure 6.7a and Figure 6.7b. Since this increase is also observed in the generation of weights

and edges, it can be assumed that the system’s limits are being reached at this point. In

Figure 6.7b one can observe the effect of the length and depth discussed earlier. While the

one-dimensional 𝐿∞-GIRG has the lowest runtime, sampling𝑚𝑖𝑛(0, 1) takes approximately

twice as long. The BDFs𝑚𝑖𝑛(0,𝑚𝑎𝑥 (1, 2)) and𝑚𝑖𝑛(0,𝑚𝑎𝑥 (1, 2, 3, 4)) both have similar run-

time to𝑚𝑖𝑛(0, 1), although it is slightly higher due to more potential edges being checked.

The highest runtime is needed for𝑚𝑎𝑥 (0,𝑚𝑖𝑛(1, 2)) as it cannot be simplified and therefore

two two-dimensional GIRGs must be sampled.

For an increasing average degree, we see in Figure 6.7d that the sampling time per edge first

decreases and remains approximately constant for an average degree larger than 2
6
. This

is due to the fact that for a low average degree, the runtime is dominated by the number of

vertices, therefore increasing the sampling time per edge. As generating positions and weights

does not depend on the average degree, their sampling time decreases. The runtime of the

threshold estimation increases due to a growing size of 𝐸𝑒𝑟𝑟 (see Section 4.3). In Figure 6.7c this

behavior can also be observed, although the variance of the runtime makes it more difficult.

However, another interesting behavior can be observed when comparing the one-dimensional

GIRG and𝑚𝑖𝑛(0, 1). For an increasing average degree, where the runtime is dominated by the

number of edges sampled, their runtime gets more similar, indicating that for higher degrees

the length affects the runtime less.
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7 Conclusion

In Chapter 2 we consider a recently introduced extension of GIRGs, called BDF-GIRGs. Unlike

GIRGs, BDF-GIRGs use of a wide range of distance functions consisting of an arbitrary nesting

of minima and maxima of the component wise distance, referred to as BDFs. They potentially

enable the modeling of more realistic graphs by better reflecting the structure of real-world

graphs. Motivated by their potential use case and the lack of any (efficient) sampling algorithm

for this type of graph, in Chapter 4 we develop an expected linear time algorithm to sample

them. The algorithm works by bringing the BDF into a normal form, we call min-max form.

This form represents a BDF-GIRG as a union of multiple classical GIRGs, we call 𝐿∞-GIRGs.
The main advantage of this algorithm is therefore that there is no need for a new complex

data structure for its generation, as an efficient algorithm for the sampling of 𝐿∞-GIRGs
already exists. In Section 4.3 we discus why their can be no closed formula to determine

the threshold constant based on a desired average degree, even for constant weights. We

then modify an existing approach for 𝐿∞-GIRGs, which consists of estimating the average

degree based on a given threshold constant and then performing a binary search on it. In

Chapter 5 we optimize the algorithm described by instead of sampling a very small number

of edges in high-dimensional 𝐿∞-GIRGs, sampling a superset of edges in low-dimensional

𝐿∞-GIRGs and then filtering out any edges that were wrongly generated. This drastically

reduces the runtime since the dimension affects the runtime of 𝐿∞-GIRGs by an exponential

factor. In Chapter 3 we also address the question why the runtime has this unpleasant effect.

We show that if we do not require the positions of a BDF-GIRGs to be distributed evenly,

under a key-assumption of the fine-grained complexity theory, known as Orthogonal Vectors
Hypothesis (OVH), there can be no algorithm which avoids this exponential factor, unless it

has a quadratic runtime in the number of vertices (being the trivial 𝑂 (𝑛2) algorithm). Lastly,

we evaluate the graphs generated by our algorithm in Chapter 6. We show that the prediction

of the average degree works well, and the deviations are negligible. We also look at the

degree distribution that, unsurprisingly, follows a power-law. We then further examine three

key-properties of the generated graphs: the size of the largest component, the clustering

coefficient and the diameter. We focus on higher power-law exponents, which yield a more

homogeneous degree distribution and observe that the choice of the BDF has a significant

influence on the behavior of the resulting BDF-GIRG. Based on those observation we are able

to categorize BDFs into three categories that behave similarly.

7.1 Future Work

Based on the developments and findings made in this work, we roughly classify three di-

rections that could be interesting for further research. The first concerns the theoretical

foundation of our algorithm, the second focuses on its practical implementation, and the third

relates to the empirically obtained results discussed in Chapter 6.
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The algorithm we presented only features the threshold case of BDF-GIRGs. It is, however,

realistic to assume that in real-world networks, the connection between two entities is not

purely deterministic. Extending the algorithm to handle the binomial version of BDF-GIRGs

is a bit more challenging, as potentially every pair of vertices might be adjacent. However, as

the 𝐿∞-GIRG algorithm of Bringmann et al. [BKL19] does support the binomial version, we

assume that it can also be achieved for BDF-GIRGs. It also remains an open question whether

a more efficient data structure could handle nested BDFs more effectively, as in our algorithm

this might potentially lead to an exponentially increasing length.

A second, more practical question concerns the optimization of our implementation. The focus

of this work was not to provide a highly efficient implementation of the developed algorithm.

However, if BDF-GIRGs prove to have practical significance, an optimized implementation

would be desirable.

Finally, from a theoretical perspective, the most intriguing question concerns the further

exploration of geometric random graphs with a more homogeneous degree distribution that

use BDFs as a distance function. For instance GIRGs with a high PLE or RGGs. We have

observed that the behavior of the generated graphs can strongly depend on the chosen distance

function. Explaining these differences theoretically would be desirable. It would also be

interesting to investigate whether some desirable properties, such as having a giant component

and the small-world phenomenon, are exhibited also for higher power-law exponents, when

using certain BDFs.
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