
Partition of Time-Dependent Routes into
Fixed-Size Vehicles

Bachelor’s Thesis of

Marco Rieger

At the Department of Informatics
Institute of Theoretical Informatics

Reviewer: T.T.-Prof. Dr. Thomas Bläsius
Second reviewer: Dr. rer. nat. Torsten Ueckerdt
Advisors: Adrian Feilhauer

Michael Zündorf

20.06.2025 – 20.10.2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Abstract

As demand for private traffic increases, roads are increasingly congested by vehicles serving
only a single person. However, multiple people traveling along similar routes, could instead
use a shared vehicle for their trip, which motivates the Vehicle Sharing Fixed Routes
Problem in a road network, for which we introduce a problem formulation. In this problem all
vehicles have the same capacity and no transfers between vehicles are allowed. All passengers
want to travel along a fixed route, and every vehicle used is owned by a passenger who uses
it from their origin to their destination. Along their route, they can fill the vehicle’s capacity
with other passengers. We show that finding an assignment that minimizes the total vehicle
operation time is NP hard, even if we restrict the road network to a simple directed path with
unit distance edges. Afterwards, we consider the scenario in which there is only one driver
who can transport other passengers. We present an algorithm that solves this scenario in
𝑂 (𝑛𝐶 log𝑛) for an arbitrary vehicle size 𝐶 ≥ 2 by reducing it to Maximal Weight Fixed
Interval Scheduling.

Zusammenfassung

Mit steigender Nachfrage nach Individualverkehr, werden Straßen zunehmend durch Fahr-
zeuge verstopft, die lediglich einer Person dienen. Allerdings könnten mehrere Personen,
deren Routen sich ähneln, ein gemeinsames Fahrzeug für ihre Fahrt nutzen. Dies motiviert das
Vehicle Sharing Fixed Routes Problem, wobei alle geteilten Fahrzeuge dieselbe Kapazität
haben und keine Umstiege zwischen geteilten Fahrzeugen erlaubt sind. In dem Problem ist
für jede Person eine feste Route vorgegeben, von der nicht abgewichen werden darf, und
jedes geteilte Fahrzeug gehört einer Person, welche das Fahrzeug vom Anfang bis zum Ende
ihrer Route verwendet. Während der Fahrt kann die nicht verwendete Fahrzeugkapazität mit
anderen Personen besetzt werden, die im geteilten Fahrzeug mitfahren. Wir zeigen, dass es
NP-schwer ist, eine Zuweisung von Personen in Fahrzeuge zu finden, welche die Gesamtfahr-
zeit minimiert, selbst wenn wir das Straßennetz auf einen einfachen gerichteten Pfad, in dem
jede Kante dieselben Kosten hat, beschränken. Danach betrachten wir ein Szenario, in dem es
nur einen Fahrer gibt, der andere Personen transportieren kann. Für das Szenario finden wir
einen Algorithmus, der das Problem in𝑂 (𝑛𝐶 log𝑛) für beliebige Fahrzeuggrößen𝐶 ≥ 2 löst.

i

Contents

1 Introduction 1

2 Preliminaries 3

3 NP Hardness for Paths 5

4 Algorithm for One Driver Scenario 15

5 Conclusion 19

Bibliography 21

iii

1 Introduction

In many urban areas, congested roads are a common problem [SEL19]. Many vehicles serve
only a single person [DB22], which is neither very space efficient nor environmentally friendly.
A possible approach to tackling this issue would be to group multiple people who would
otherwise use their own vehicles into the same shared vehicle. However, one cannot arbitrarily
group people with completely different origins and destinations into the same vehicle, or
the length of their trips would significantly increase. Therefore, for vehicle sharing to make
sense, the involved passengers should share at least some sections of their routes. There
already exists an algorithm that attempts to redirect traffic demand onto shared routes to
enable vehicle sharing [Blä+25]. However, it raises the question of how to distribute the
passengers into shared vehicles. As these routes are intended to be set up in a way that
enables vehicle sharing, we assume that we cannot alter the passengers’ routes. We aim
to find an assignment of the routes into shared vehicles that minimizes vehicle operation
time. Because vehicles have a limited capacity, we want to model this and assume that all
vehicles we use have a fixed capacity 𝐶 . We do not allow transferring between vehicles,
as this realistically causes additional delays. If we allow it with no imposed penalties, we
could simply use separate vehicles for each edge to obtain an optimal solution. We assume
that each vehicle used is owned by one of the passengers who uses the vehicle from the
origin of their route to their destination. The problem can also be viewed as searching for an
optimal configuration of carpools. A precise definition of the Vehicle Sharing Fixed Routes
Problem is in Chapter 2. Originally the intention was to possibly make solving the problem
more difficult by introducing temporal constraints, which would be present in a realistic
environment, on each route. However, in Chapter 3, we show that even if we assume the
road network is a simple directed path with unit distance edges and do not use any temporal
constraints, finding an optimal solution is NP hard, even though we know which passengers
serve as drivers for other passengers. The difficulty appears to lie in the competition among
drivers regarding which passengers they get to transport. In Chapter 4, we assume that there
is only one driver who can serve the other passengers. That scenario is closely related to
the Maximal Weight Fixed Interval Scheduling problem, which has been studied more
extensively [AS87 | CL95 | BE96 | KNC07]. We obtain an algorithm that runs in 𝑂 (𝑛 log𝑛) for
vehicle size 𝐶 = 2 and in 𝑂 (𝑛𝐶 log𝑛) for an arbitrary vehicle size 𝐶 .

1

2 Preliminaries

In a directed graph𝐺 = (𝑉 , 𝐸), a walk is a sequence of edges in𝐺 , such that the endpoint of the
previous edge is the starting point of the next edge. A path is a walk, in which all vertices are
distinct. We say𝐺 is a directed path if there exists a path that traverses all vertices in𝑉 and all
edges in 𝐸. If a walk/path𝐴 contains another walk/path 𝐵, we say 𝐵 is a subwalk/subpath of𝐴.

The goal is to group passengers with shared routes into shared vehicles that have a fixed
capacity in a way that minimizes the total vehicle operation time. The route a passenger
wants to travel along cannot be modified. Every vehicle used is owned by a passenger who
uses it from their origin to their destination. Passengers can use other vehicles as long as the
vehicle capacity is not exceeded. However, they are not allowed to transfer between vehicles.
We call this the Vehicle Sharing Fixed Routes Problem.
We are working on a directed graph 𝐺 = (𝑉 , 𝐸) with a cost function 𝑐 : 𝐸 → ℝ. Let
𝑃 = {𝑝1, ..., 𝑝𝑘 } be the set containing the walks of the routes. Let 𝐶 be the fixed capacity of
each shared vehicle. We are looking to partition 𝑃 into disjoint sets 𝑆1, ...𝑆ℓ that each represent
a shared vehicle. All walks in the set 𝑆𝑖 must be a subwalk of the set’s representative 𝑟𝑖 ∈ 𝑆𝑖
that owns the vehicle. We say that the set’s representative transports all other routes in the set.
Let 𝐿𝑖 refer to the number of edges traversed by 𝑟𝑖 . For every vehicle, we want an assignment
𝑢𝑖 : 𝑆𝑖 → [1, 𝐿𝑖]2, where 𝑢𝑖 (𝑝) = [𝑎, 𝑏] with 𝑎 < 𝑏 means that the vehicle transports 𝑝 along
the edges of 𝑟𝑖 from the 𝑎-th edge until the 𝑏-th edge. 𝑢𝑖 (𝑝) = [𝑎, 𝑏] can be seen as an interval
containing the edge indices from 𝑎 to 𝑏, where an edge has an edge index of 𝑐 if it is the 𝑐-th
edge of 𝑟𝑖 . The subwalk of 𝑟𝑖 from the 𝑎-th to the 𝑏-th edge must exactly match the edges
of 𝑝 . The vehicle capacity 𝐶 may not be exceeded along any edge, which means that every
edge index may be inside at most 𝐶 intervals. Note that 𝑢𝑖 (𝑟𝑖) = [1, 𝐿𝑖], so one slot is always
occupied by the passenger who owns the vehicle. The goal is to minimize the total vehicle
operation time.

In the next chapter, we show how to reduce SAT to Vehicle Sharing Fixed Routes Problem.
An instance of SAT contains a variable set 𝑈 = {𝑢1, ..., 𝑢𝑚} and a clause set 𝐾 = {𝑘1, ..., 𝑘𝑛}.
For every variable 𝑥 ∈ 𝑈 , there is a positive literal 𝑥 and a negative literal 𝑥 . Every clause is
a logical disjunction of literals. For example, the clause 𝑘1 = 𝑢1 ∨ 𝑢3 ∨ 𝑢7 is satisfied when
𝑢1 or 𝑢7 are true, or when 𝑢3 is false. SAT asks whether there exists an interpretation of the
variables that satisfies all clauses.
For ease of notation, we say [𝑛] for the set containing all natural numbers from 1 to 𝑛.

3

3 NP Hardness for Paths

We now show how to reduce SAT to Vehicle Sharing Fixed Routes Problem for vehicle
size 𝐶 = 2, even if we constrain the underlying graph to be a directed path with all edge costs
equal to 1.
Given an instance of SAT, we construct a graph with these properties and define routes on
that graph such that SAT has a solution if and only if there is a solution to the Vehicle
Sharing Fixed Routes Problem in which the total vehicle operation time is below a certain
threshold.
For ease of notation, we use integer edge costs in the range from 1 to 4. However, this graph
can be transformed into a unit graph by replacing each edge with as many edges as it costs.

Let (𝑈 ,𝐾) be an instance of SAT, where𝑈 = {𝑢1, ..., 𝑢𝑚} is the variable set and𝐾 = {𝑘1, ..., 𝑘𝑛}
is the clause set.
We now define a graph based on the SAT instance and three kinds of routes on that graph.
Literal routes, variable routes, and clause routes. The idea is that, in an optimal solution,
variable routes pick their respective negative or positive literal and therefore exhaust that
literal. This leaves only the opposite literal, the value that would be true in a possible SAT
solution, for the clause routes. Literal routes form the foundation and are set up in a way that
variable routes must transport all literal routes corresponding to either their positive or their
negative literal.
In that graph, literal routes go from each of the vertices that represent this literal to the
subsequent vertex representing this literal. This graph can be divided into the following
subgraphs:
The first subgraph𝐺Init and the last subgraph𝐺End are both directed paths of length 2𝑚, where
each vertex represents one of the literals. The order used for this is 𝑢1, 𝑢1, 𝑢2, 𝑢2, ..., 𝑢𝑚, 𝑢𝑚 . To
distinguish these vertices, we reference the structure to which they belong in the superscript.
In 𝐺Init, we call the vertices 𝑢1Init to 𝑢𝑚 Init, and in 𝐺End, we call the vertices 𝑢1End to 𝑢𝑚End.
The cost of the edges in 𝐺Init and 𝐺End is defined as follows: For edges going from the respec-
tive positive literal to its negative literal, the cost of the edges is 1. For edges going from a
negative literal to the next positive literal, the cost of the edges is 3.
Figure 3.1 shows how 𝐺Init and 𝐺End are structured.
Now, to define the clause routes, there is one subgraph 𝐺𝑘𝑖 for each clause 𝑘𝑖 ∈ 𝐾 : Every 𝐺𝑘𝑖

is a directed path that consists of a start vertex 𝑠𝑖 , which is the beginning of the associated
clause route. That vertex is followed by 2𝑚 vertices that we call in-vertices, where each vertex
represents a unique literal. These vertices are followed by 2𝑚 vertices that we call out-vertices,
where again, each vertex represents a unique literal. Finally, the path ends at an end vertex 𝑡𝑖 ,
where the associated clause route ends. For each clause subgraph, there is exactly one clause
route. For the vertices representing literals, we use the order 𝑢1, 𝑢1, 𝑢2, 𝑢2, ..., 𝑢𝑚, 𝑢𝑚 again. For
distinctiveness, we call the in-vertices 𝑢1𝑘𝑖 ,in to 𝑢𝑚𝑘𝑖 ,in and the out-vertices 𝑢1𝑘𝑖 ,out to 𝑢𝑚𝑘𝑖 ,out.
For the edge costs in 𝐺𝑘𝑖 , the idea is that the literal routes inside the clause all have the same
length 2𝑚 · 3 = 6𝑚, unless the associated literal is used in the clause. In that case, the path
should be slightly longer (6𝑚+1). Therefore, it is a better solution if the clause route transports

5

3 NP Hardness for Paths

1 3 1 1 13 3 3
...

Positive Literal 1 Negative Literal 1

Positive Literal 2 Negative Literal 2

Positive Literal 3

Positive Literal 4

Negative Literal 3

Negative Literal 4

cost

u1 u1 u2 u2 u3 u3 u4 u4

3 1

umum

Positive Literal m Negative Literal m

Figure 3.1: Structure of𝐺Init and𝐺End. The edges have different costs, so that the 1 cost edges
right at the start or at the end of a variable route are the only ones that can be skipped when
transporting literal routes, while achieving the maximum sharing value.

3 3 2 4 23 3 4 3

3 3 3 3 3 3 3 3 3 3

Used in clause ki = u2 ∨ u3 ∨ u4 :

cost ...

...

u1
ki,in u1

ki,inu2
ki,in u2

ki,in u3
ki,in u4

ki,inu3
ki,in u4

ki,insi

u1
ki,out u1

ki,out u2
ki,out u2

ki,out u3
ki,out u4

ki,outu3
ki,out u4

ki,out ti

Figure 3.2: Structure of a 𝐺𝑘𝑖 . In this example clause it can be observed how the edge cost is
modified based on whether a literal is used in a clause. Literal routes for literals used in the
clause are slightly longer than the other literal routes. Therefore, the clause route that starts
at 𝑠𝑖 and ends at 𝑡𝑖 achieves a higher sharing value, when transporting one of these slightly
longer literal routes.

a route corresponding to a literal that is used in this clause.
The cost of an edge going from 𝑎 to 𝑏 inside 𝐺𝑘𝑖 is defined as follows: If neither 𝑎 nor 𝑏 are
in-vertices for literals used in 𝑘𝑖 , then the cost of the edge is 3. If only 𝑎 is an in-vertex for a
literal used in 𝑘𝑖 , then the cost of the edge is 4. If only 𝑏 is an in-vertex for a literal used in 𝑘𝑖 ,
then the cost of the edge is 2. If both 𝑎 and 𝑏 are in-vertices for literals used in 𝑘𝑖 , then the
cost of the edge, once again, is 3, as their effects cancel out.
Effectively, we maintain an average edge cost of 3 but shorten the edges that go to in-vertices
for literals used in the clause by 1 and lengthen the subsequent edge by 1. Figure 3.2 visualizes
this with weights based on an example clause 𝑘𝑖 = 𝑢2 ∨ 𝑢3 ∨ 𝑢4.
We can combine these paths into the directed path𝐺 = (𝑉 , 𝐸) by linking these subgraphs in
the order 𝐺Init,𝐺𝑘1, ...,𝐺𝑘𝑛 ,𝐺End. For the edges that link these subpaths, the cost is defined as
3. You can see the complete structure of 𝐺 in Figure 3.3.
For every variable 𝑢𝑖 , we define a variable route that starts at the first instance of its positive
literal 𝑢𝑖 Init and ends at the last instance of its negative literal 𝑢𝑖End. Figure 3.4 illustrates
which routes can be transported by a variable route, so that they transport a route along all
but one edge.

6

...u1
Init u1

Init um
Init um

Init

...
u1

End u1
End um

End um
End

Gk1

Gkn

Gk2, ...Gkn−1

cost

3

3

3

3

GInit

GEnd

Figure 3.3: Structure of𝐺 . The edges connecting all the subgraphs cost 3 each. See Figure 3.1
for the edge costs in 𝐺Init and in 𝐺End. See Figure 3.2 for how the clause subgraphs are
structured.

7

3 NP Hardness for Paths

...u1
Init u1

Init um
Init um

Init

...
u1

End um
End um

End

Gk1

Gkn

Gk2, ...Gkn−1

GInit

GEnd
u1

End

cost 1 133

edge costs ≥ 2

edge costs ≥ 2

edge costs ≥ 2

1 133

Variable route

Literal routes

Figure 3.4: Visualization of variable routes. Refer to Figure 3.3 for the more precise graph
structure. This figure illustrates the opportunities variable routes have to transport other
routes, while there is at most one edge where they do not transport any route. For there to
be only one edge, along which they transport no route, they have to first transport positive
literal routes and then eventually swap over to negative literal routes.

8

Now that an instance of the Vehicle Sharing Fixed Routes Problem has been constructed,
we want to show how we can decide whether the SAT instance (𝑈 ,𝐾) has a solution if we
can solve the Vehicle Sharing Fixed Routes Problem. The proof is divided into multiple
lemmas, making it easier to follow. Instead of directly calculating vehicle operation time, we
aim to determine how much vehicle operation time is saved when a route transports other
routes compared to all of them using separate vehicles. We define the sharing value of a route
as the cost of all routes that are transported by it, so the vehicle operation time that is saved
by this assignment. Because for every literal route there is no other route that is a subwalk,
only clause routes and variable routes can transport other routes. We begin by calculating
which sharing value variable routes can achieve. For that, we calculate the cost of a variable
route and then count how expensive the edges are along which no route can be transported
in a solution.

Lemma 3.1: All variable routes have the cost 𝑛(12𝑚 + 6) + 4𝑚 + 1.

Proof. All variable routes use the 𝑛(4𝑚 + 2) − 1 edges inside and connecting the clause
subpaths. The cost of the edges inside a clause subpath is either 2, 3, or 4. By construction,
there is an edge costing 4 for every edge costing 2 and vice versa. This results in a cost of
3(𝑛(4𝑚 + 2) − 1) = 𝑛(12𝑚 + 6) − 3. They also use the edge connecting the last clause subpath
𝐺𝑘𝑛 to 𝐺End, as well as the edge connecting 𝐺Init and the first clause subpath 𝐺𝑘1 , which both
cost 3. The 𝑖-th variable route uses𝑚 − 𝑖 edges with cost 3, as well as𝑚 − 𝑖 + 1 edges with
cost 1 in 𝐺Init, and 𝑖 − 1 edges with cost 3, as well as 𝑖 edges with cost 1 in 𝐺End. So, in total,
we get a cost of

(𝑛(12𝑚 + 6) − 3) + 2 · 3 + 3(𝑚 − 𝑖) + (𝑚 − 𝑖 + 1) + 3(𝑖 − 1) + 𝑖
= 𝑛(12𝑚 + 6) + 3(𝑚 − 𝑖 + 𝑖 − 1 + 2 − 1) + (𝑚 − 𝑖 + 1 + 𝑖)
= 𝑛(12𝑚 + 6) + 3𝑚 +𝑚 + 1
= 𝑛(12𝑚 + 6) + 4𝑚 + 1.

Now, we show that for every variable route, there must be at least one edge along which they
transport no route. We show that the only edge along which no route is transported can cost
1, which is only achieved if the variable route transports either all its respective negative
literal routes or all its respective positive literal routes. As the respective negative and positive
literal routes are different for all variable routes, there is no competition between them. This
means that, in an optimal solution, variable routes correctly block either all their positive or
all their negative literal routes from being transported by a clause route.

Lemma 3.2: The highest achievable sharing value for a variable route is 𝑛(12𝑚 + 6) + 4𝑚. They

achieve that sharing value if and only if they either transport all respective negative literal routes

or all respective positive literal routes.

Proof. By Lemma 3.1, all variable routes have the cost 𝑛(12𝑚 + 6) + 4𝑚 + 1. The lowest cost of
any edge in the graph is 1. Therefore, to achieve a sharing value higher than 𝑛(12𝑚 + 6) + 4𝑚,
the route would have to transport another route along every edge. The only route starting
at the beginning of a variable route is the first route corresponding to its positive literal.
Whenever any literal route ends, the only other route that begins at that vertex is the next
literal route corresponding to the same literal. At the same time, the only route ending at the
end of a variable route is the last route corresponding to its negative literal. Therefore, there

9

3 NP Hardness for Paths

must be at least one edge where no route is transported by a variable route. See Figure 3.4
for an illustration. To achieve a sharing value of 𝑛(12𝑚 + 6) + 4𝑚, we need exactly one edge,
which must cost 1 and along which no route is transported. Therefore, the first route that is
transported by the variable route must be the first positive literal route or the first negative
literal route, and the last route that is transported must be the last positive literal route or the
last negative literal route. Otherwise, there would be more edges, besides the first or last edge
of the variable route, along which no route is transported. Because the only edges that cost 1
are in𝐺Init and𝐺End, the edge along which no route is transported must be in𝐺Init or𝐺End. If
we decide that the first route we transport is the first negative literal route corresponding to
the variable, then we have already used up that edge in 𝐺Init, and we cannot skip any further
edges. Therefore, we must transport all respective negative literal routes to achieve a sharing
value of 𝑛(12𝑚 + 6) + 4𝑚 for the variable route. If we instead decide that the first route we
transport is the positive literal route corresponding to the variable, then we still have one edge
available along which no route is transported. However, because the first positive literal route
ends outside of𝐺Init, the edge we skip must be in𝐺End, and we must continue transporting all
the subsequent positive literal routes until the last positive literal route ends in 𝐺End. At that
point, there is only the last edge of the route left, which costs 1 and along which we cannot
transport another route. Thus, to achieve a sharing value of 𝑛(12𝑚 + 6) + 4𝑚, a variable route
must either transport all respective negative literal routes or all respective positive literal
routes.

Now we know which sharing value the variable routes can achieve. As noted earlier, literal
routes cannot transport other routes. Thus, we only need to determine which sharing value
clause routes can achieve to know what the highest possible cumulative sharing value across
all routes is. We show that clause routes can transport only one route, which must be a literal
route. We show that the literal routes inside a clause cost 6𝑚 + 1 if the literal is part of the
corresponding clause and only 6𝑚 if the literal is not part of the corresponding clause. This
effect can also be observed in Figure 3.2, where edge costs are based on an example clause
𝑘𝑖 = 𝑢2 ∨ 𝑢3 ∨ 𝑢4. The literal routes corresponding to literals that are part of the clause are
marked with dashed gray arrows, while the literal routes corresponding to literals that are
not part of the clause are marked with dotted arrows in a lighter shade of gray.

Lemma 3.3: Clause routes can transport at most one route, which must be a literal route. The

highest achievable sharing value for a clause route is 6𝑚 + 1. They achieve that sharing value if

and only if the literal corresponding to the literal route is part of the clause.

Proof. Consider the clause route corresponding to 𝑘𝑖 . The only routes that start and end
between 𝑠𝑖 and 𝑡𝑖 are literal routes going from 𝑎𝑘𝑖 ,in to 𝑎𝑘𝑖 ,out, for some literal 𝑎. Because all
these literal routes end after all these other literal routes have started, at most one literal route
can be transported. All these literal routes use exactly 2𝑚 edges. We now calculate the cost
of these literal routes based on whether they are part of the clause. For that, we pair edges
costing 2 with edges costing 4 to show that the average cost of an edge inside these literal
routes is 3, unless the literal is part of the clause. In the following, we say that a vertex has the
property Used if and only if the vertex is an in-vertex for a literal used in this clause. The cost
of the edges is either 2, 3, or 4. If an edge goes from a vertex without Used to a vertex with
Used, then its cost is 2. If the next edge also enters a vertex with Used, its cost is 3; if instead
it goes to a vertex without Used, its cost is 4. Because, by construction, only in-vertices can
have Used, we can find an edge that costs 4 for every edge that costs 2 for each literal route, as
all literal routes end with an out-vertex. Similarly, we can find an edge that costs 2 for every

10

edge that costs 4 for each literal route, unless the literal route starts with a vertex with Used.
In that case, the edge that costs 2 and would pair with the first edge that costs 4 would be in
the path before the literal route starts. Otherwise, the cost of all edges balances out to 3 per
edge. Therefore, literal routes starting with an in-vertex that has Used, which is the case for
literals that are part of 𝑘𝑖 , cost 2𝑚 · 3 + 1 = 6𝑚 + 1. Meanwhile, literal routes starting with an
in-vertex that does not have Used, which is the case for literals that are not part of 𝑘𝑖 , cost
2𝑚 · 3 = 6𝑚.

We call the total sharing value𝑊 the sum of the sharing values of all routes in an optimal
solution.
The maximum sharing value𝑀 =𝑚(𝑛(12𝑚 + 6) + 4𝑚) + 𝑛(6𝑚 + 1) is the sum of the highest
achievable sharing values, which we have just calculated, of all routes. In the following lemma,
we prove that𝑀 behaves as intended.

Lemma 3.4:𝑊 ≤ 𝑀 , and in case𝑊 = 𝑀 , every variable route has a sharing value of 𝑛(12𝑚 +
6) + 4𝑚, and every clause route has a sharing value of 6𝑚 + 1.

Proof. For all literal routes, there is no route that is a subpath of the literal route. Thus, they
can never transport another route. Assuming all variable routes and clause routes achieve
their maximum sharing value, the maximum sharing value for each of the𝑚 variable routes
is 𝑛(12𝑚 + 6) + 4𝑚 by Lemma 3.2 and 6𝑚 + 1 for each of the 𝑛 clause routes by Lemma 3.3. In
total, this results in a maximum sharing value of𝑚(𝑛(12𝑚 + 6) + 4𝑚) + 𝑛(6𝑚 + 1).

Now we use the previous lemmas to prove that the Vehicle Sharing Fixed Routes Problem
is NP hard. To do so, we show that the SAT instance (𝑈 ,𝐾) has a solution if and only if the
total sharing value𝑊 is equal to𝑀 . Therefore, we can decide whether the SAT instance has a
solution if we have a solution to the instance of the Vehicle Sharing Fixed Routes Problem
that we have just constructed.

Theorem 3.5: The Vehicle Sharing Fixed Routes Problem is NP hard, even if we restrict the

graph to a directed path with unit distance edges for 𝐶 = 2.

Proof. We now prove the equivalence: SAT instance (𝑈 ,𝐾) has a solution ⇐⇒ 𝑊 =𝑀 .
“ =⇒ ”
Assume the SAT instance has a solution. Then, there is an interpretation that satisfies the SAT
instance. Because no literal route can transport another route, routes can only be transported
by clause routes and variable routes. For every variable 𝑢𝑖 ∈ 𝑈 : If 𝑢𝑖 is false, let the variable
route for 𝑢𝑖 transport all the literal routes representing the positive value 𝑢𝑖 . If 𝑢𝑖 is true
instead, let the variable route for 𝑢𝑖 transport all the literal routes representing the negative
value𝑢𝑖 . By Lemma 3.2, each of the variable routes achieves a sharing value of 𝑛(12𝑚+6) +4𝑚
by transporting all respective negative or all respective positive literal routes, so combined,
they achieve a sharing value of𝑚(𝑛(12𝑚 + 6) + 4𝑚). Since this interpretation is a solution, for
each of the clauses 𝑘𝑖 there is at least one literal 𝑎𝑖 that is fulfilled. Thus, the literal routes for
this literal 𝑎𝑖 are not being transported by any of the variable routes yet, and the literal route
from 𝑎

𝑘𝑖 ,in
𝑖

to 𝑎𝑘𝑖 ,out
𝑖

can be transported by the clause route for 𝑘𝑖 . By Lemma 3.3, each of the
clause routes achieves a sharing value of 6𝑚 + 1 by transporting a literal route corresponding
to a literal used in the clause, so combined, they achieve a sharing value of 𝑛(6𝑚 + 1). As
we avoided transporting the same literal route multiple times, this is a valid assignment. If
we combine the sharing values of the variable routes and the clause routes, we get a value
of𝑚(𝑛(12𝑚 + 6) + 4𝑚) + 𝑛(6𝑚 + 1) = 𝑀 . By Lemma 3.4,𝑊 cannot be higher than𝑀 . Thus,

11

3 NP Hardness for Paths

there is no better solution and𝑊 = 𝑀 .
“⇐= ”
Assume𝑊 = 𝑀 . By Lemma 3.4, every variable route has a sharing value of 𝑛(12𝑚 + 6) + 4𝑚,
and every clause route has a sharing value of 6𝑚 + 1. By Lemma 3.2, every variable route
transports either all its respective negative literal routes or all its respective positive literal
routes. Because, for every variable, either all positive or all negative literal routes are already
occupied by the respective variable route, these routes can no longer be transported by any
clause route, and clause routes can only transport literal routes representing literals with the
opposite value. Because by Lemma 3.3 every clause route transports a literal route that is
part of the clause, the interpretation that assigns every variable the value that is not being
transported by its variable route is a solution to the SAT instance.

Thus, we can determine whether the SAT instance (𝑈 ,𝐾) has a solution based on the total
sharing value𝑊 obtained from an optimal solution to the associated Vehicle Sharing Fixed
Routes Problem instance.

Now we show how to extend the previous construction to an arbitrary vehicle size𝐶 > 2. First
of all, we add ℓ = 𝐶 − 2 additional variables to the variable set, so 𝑈 ′ = 𝑈

⋃{𝑢𝑚+1, ..., 𝑢𝑚+ℓ } =
{𝑢1, ..., 𝑢𝑚′}. The idea is that we add the positive literal for ℓ new variables to each clause
so that the additional capacity in the clause route’s vehicle can be occupied by the positive
literals of the newly added variables while achieving a higher sharing value than if they
transported literals not part of the clause. That way, we avoid the problem that satisfying
one clause three times and another clause zero times is better than satisfying both clauses
only once. Therefore, each clause 𝑘𝑖 ∈ 𝐾 is transformed into 𝑘 ′𝑖 = 𝑘𝑖 ∨ 𝑢𝑚+1 ∨ ... ∨ 𝑢𝑚+ℓ , so
𝐾 ′ = {𝑘 ′1, ..., 𝑘 ′𝑛}.
We also add ℓ additional artificial literals for every variable. These artificial literals are not liter-
als in the traditional sense of SAT but behave like them in the graph construction. The idea is
that every variable route can fill the additional capacity in their vehicle using the new artificial
literal routes corresponding to their variable, so that it is not beneficial for them to suddenly
start transporting literal routes corresponding to different variables or even to start transport-
ing clause routes. These artificial literals are not part of any clause, so clauses benefit less from
transporting an artificial literal than from transporting a literal used in the clause. For each vari-
able, the artificial literals are placed between their positive and their negative value: Thus, the
order of the vertices in 𝐺 ′ is now 𝑢1, 𝑢1:1, .., 𝑢1:ℓ , 𝑢1, 𝑢2, 𝑢2:1, .., 𝑢2:ℓ , 𝑢2, ..., 𝑢𝑚′, 𝑢𝑚′:1, .., 𝑢𝑚′:ℓ , 𝑢𝑚′ ,
where 𝑢𝑖:𝑗 refers to the 𝑗-th artificial literal for the variable 𝑢𝑖 .
We extend𝐺Init,𝐺𝑘 ′1

, ...,𝐺𝑘 ′𝑛 ,𝐺End accordingly to𝐺 ′Init,𝐺
′
𝑘 ′1
, ...,𝐺 ′

𝑘 ′𝑛
,𝐺 ′End with the new variables

and artificial literals. New literal routes are introduced for the artificial literals in the same
way that the other literal routes operate.
We also must modify the edge costs, so a sequence of 𝐶 − 1 edges with a cost of 1 in 𝐺 ′Init and
𝐺 ′End is cheaper than any other edge in that graph. The newly added edges in 𝐺 ′Init and 𝐺

′
End

between literals corresponding to the same variable all cost 1. For the other edges, we use the
same formula that we used previously. However, edges that cost 2 now cost𝐶 , edges that cost
3 now cost 𝐶 + 1, and edges that cost 4 now cost 𝐶 + 2.
Figure 3.5 contains an example of how additional artificial literals are placed between the
positive and negative literals in𝐺Init. In that example,𝐶 = 4, so two artificial literals are added
per variable.
Figure 3.6 contains an example of how a clause is extended by newly introduced variables.
Here 𝑘𝑖 = 𝑢2 is transformed into 𝑘 ′𝑖 = 𝑢2∨𝑢𝑚+1. Because𝐶 = 3, the positive literal for𝐶−2 = 1

12

1 C + 1 = 3 1
cost

u1 u1 u2 u2

GInit

G′
Init

C = 4

C + 1 = 3

u3

u1 u1 u2 u2 u3u1:1u1:2 u2:1u2:2

1
cost

1 1 C + 1 = 5 1 1 1 C + 1 = 5

Figure 3.5: Example how to adjust 𝐺Init to 𝐺 ′Init for 𝐶 = 4

3 3 2 4 3

3 3 3 3 3 3

Cause ki = u2

cost ...

...

u1
ki,in u1

ki,inu2
ki,in u2

ki,insi

u1
ki,out u1

ki,out u2
ki,out u2

ki,out ti

Gki

G′
k′i

...

...

C + 1

C + 1

C + 1

C

C + 2

C + 1

C + 1

C

C + 2

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C + 1

C = 3

Cause k′i = u2 ∨ um+1 = u2 ∨ um′

si u1 u1:1 u1 u2 u2:1 u2 um′ um′:1 um′

u1 u1:1 u1 u2 u2:1 u2 um′ um′:1 um′ ti

cost

Figure 3.6: Example how to adjust 𝐺𝑘𝑖 to 𝐺 ′𝑘 ′
𝑖

for 𝐶 = 3 and 𝑘𝑖 = 𝑢2

new variables has been added to each clause.

Next, a sketch is provided on how the proof for Theorem 3.5 must be modified to fit the
revised instance of the Vehicle Sharing Fixed Routes Problem.

Theorem 3.6: The Vehicle Sharing Fixed Routes Problem is NP hard, even if we restrict the

graph to a directed path with unit distance edges for 𝐶 ≥ 2.

Proof Sketch. In Lemma 3.1, variable routes now use 𝑛(2𝐶𝑚′ + 2) − 1 edges inside and con-
necting the clause subpaths. The average cost of these edges is𝐶 + 1, which results in a cost of
𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) − (𝐶 + 1). The edges connecting 𝐺 ′Init to 𝐺 ′𝑘 ′1 and 𝐺

′
𝑘 ′𝑛

to 𝐺 ′End cost 𝐶 + 1

13

3 NP Hardness for Paths

each. The 𝑖-th variable route uses𝑚′ − 𝑖 edges with cost 𝐶 + 1, as well as (𝐶 − 1) (𝑚′ − 𝑖 + 1)
edges with cost 1 in𝐺 ′Init, and 𝑖 − 1 edges with cost𝐶 + 1, as well as (𝐶 − 1)𝑖 edges with cost 1
in 𝐺 ′End. In total, the cost per variable route is:

𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) − (𝐶 + 1) + 2 · (𝐶 + 1)
+ (𝐶 + 1) (𝑚′ − 𝑖) + (𝐶 − 1) (𝑚′ − 𝑖 + 1) + (𝐶 + 1) (𝑖 − 1) + (𝐶 − 1)𝑖
= 𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) + (𝐶 + 1) (𝑚′ − 𝑖 + 𝑖 − 1 + 2 − 1) + (𝐶 − 1) (𝑚′ − 𝑖 + 1 + 𝑖)
= 𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) + (𝐶 + 1)𝑚′ + (𝐶 − 1)𝑚′ +𝐶 − 1
= 𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) + 2𝐶𝑚′ +𝐶 − 1.

In Lemma 3.2, the highest achievable sharing value is
(𝐶−1) (𝑛(𝐶+1) (2𝐶𝑚′+2) +2𝐶𝑚′+𝐶−1)− (𝐶−1) (𝐶−1) = (𝐶−1) (𝑛(𝐶+1) (2𝐶𝑚′+2) +2𝐶𝑚′)
instead. It is achieved by transporting all literal routes corresponding to𝐶−1 respective literals,
which again leaves only one literal per variable for the clause routes. Per transported literal,
there are 𝐶 − 1 edges costing 1 in 𝐺 ′Init and 𝐺

′
End along which the literal routes corresponding

to that literal do not use the slot. Note that it is important here that we previously modified
the edge costs, so every edge outside of 𝐺 ′Init and 𝐺

′
End has a cost of at least 𝐶 .

In Lemma 3.3, clause routes can instead transport at most𝐶 − 1 literal routes. Per transported
literal route, they achieve a sharing value of (𝐶 + 1)𝐶𝑚′ + 1 if and only if the literal is part
of the clause and only (𝐶 + 1)𝐶𝑚′ otherwise. Thus, the highest achievable sharing value is
(𝐶 − 1) ((𝐶 + 1)𝐶𝑚′ + 1), which is achieved if and only if the clause route transports 𝐶 − 1
literal routes for literals that are part of the clause.
The maximum sharing value𝑀 ′ is instead
𝑚′((𝐶 − 1) (𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) + 2𝐶𝑚′)) +𝑛((𝐶 − 1) ((𝐶 + 1)𝐶𝑚′ + 1)), where𝑀 ′ is the upper
bound for𝑊 . In the case of𝑊 = 𝑀 ′, every variable route has a sharing value of
(𝐶 − 1) (𝑛(𝐶 + 1) (2𝐶𝑚′ + 2) + 2𝐶𝑚′), while every clause route has a sharing value of
(𝐶 − 1) ((𝐶 + 1)𝐶𝑚′ + 1).
In Theorem 3.5, given that there is an interpretation that satisfies the SAT instance (𝑈 ,𝐾), for
every variable 𝑢𝑖 ∈ 𝑈 : If 𝑢𝑖 is false, let the variable route for 𝑢𝑖 transport all the literal routes
representing the positive value 𝑢𝑖 , as well as the artificial literal routes representing 𝑢𝑖:1, ..., 𝑢𝑖:ℓ .
If 𝑢𝑖 is true instead, let the variable route for 𝑢𝑖 transport all the literal routes representing
the negative value 𝑢𝑖 , as well as the artificial literal routes representing 𝑢𝑖:1, ..., 𝑢𝑖:ℓ . For the
additional variables we added to𝑈 to obtain𝑈 ′, we treat them as if they were true, so that the
clause routes can transport the positive literal route inside their clauses, as the positive literals
corresponding to these variables are part of each modified clause. Therefore, the clause routes
can transport a literal route corresponding to each of the positive literals for the newly added
variables, as well as one literal route corresponding to a literal that fulfills the clause in this
interpretation. It exists because this interpretation is a solution.
If we assume that𝑊 = 𝑀 ′, then we find an interpretation that fulfills the SAT instance by
assigning every variable the value that is not being transported by its variable route. If a
variable route decides to transport both the positive and negative literals, then there is one
artificial literal it does not transport, and we can choose an arbitrary value for this variable,
as both literals are blocked from all clause routes anyway.

14

4 Algorithm for One Driver Scenario

We have just observed that the problem is NP hard, even if we constrain the underlying graph
to be a directed path with unit distance edges. Therefore, instead of only placing constraints
on the graph, it might be interesting to impose constraints on which routes are allowed to
transport other routes as well.
We consider the scenario in which there is only one route, which we call the driver, that can
transport other passengers. This route may not include repetitions of the same vertex, and we
do not allow edges with a cost less or equal to 0. Therefore, the route must be a path. If the
driver’s vehicle has the capacity 𝐶 , then the driver can transport up to 𝑘 = 𝐶 − 1 passengers
at a time. We assume that all 𝑛 potential passengers 𝑝𝑖 want to be transported along a specific
subsection of the driver’s route, starting at 𝑠𝑖 and ending at 𝑡𝑖 . For vertices along the driver’s
route, we measure the distance from the starting point of the driver’s route, so the cost of the
𝑖-th passenger’s route is 𝑐 (𝑝𝑖) = 𝑡𝑖 − 𝑠𝑖 . We call this scenario the One Driver Path Sharing
Problem.

We first consider the case where 𝐶 = 2, so the driver can only transport one passenger
at a time. This problem can be solved in 𝑂 (𝑛 log𝑛) using Algorithm 4.1.
Algorithm 4.1: Algorithm that solves the One Driver Path Sharing Problem for
𝐶 = 2
Input: 𝑛 routes with a starting point 𝑠𝑖 , endpoint 𝑡𝑖 and cost 𝑐 (𝑖) = 𝑡𝑖 − 𝑠𝑖 , 𝑖 ∈ [𝑛]
Output: Set of routes with maximal cost that can be transported by the driver

1 Sort all starting points and endpoints by increasing distance from the beginning of the
driver’s route. If an endpoint and a starting point have the same distance, place the
endpoint before the starting point

2 𝑙𝑎𝑠𝑡 ←− ⊥
3 𝑤 ←− 0
4 𝑝 ←− Array of length 𝑛, stores the index of the predecessor
5 𝜈 ←− Array of length 𝑛, stores the combined value of this route and its predecessors
6 for each point ∈ input do
7 if point = 𝑠𝑖 then
8 𝑝 [𝑖] ←− 𝑙𝑎𝑠𝑡
9 𝜈 [𝑖] ←− 𝑤 + 𝑐 (𝑖)
10 else if point = 𝑡𝑖 then
11 if 𝜈 [𝑖] > 𝑤 then
12 𝑙𝑎𝑠𝑡 ←− 𝑖
13 𝑤 ←− 𝜈 [𝑖]
14 𝑟 ←− {}
15 while 𝑙𝑎𝑠𝑡 ≠ ⊥ do
16 𝑟 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑙𝑎𝑠𝑡)
17 𝑙𝑎𝑠𝑡 ←− 𝑝 [𝑙𝑎𝑠𝑡]
18 return 𝑟

15

4 Algorithm for One Driver Scenario

The idea is that because routes can be transported by only one driver, the only way to
decrease vehicle operation time is for other routes to be transported by that driver. The
vehicle operation time is minimized if the combined cost of the routes transported by the
driver is as large as possible. Due to the limited vehicle size of 𝐶 = 2, we can only transport
routes that do not overlap. The algorithm effectively travels along the path of the driver’s
route. It stores the index of the last route transported in the currently best-known solution
in 𝑙𝑎𝑠𝑡 and the associated value of that solution in 𝑤 . Whenever the algorithm traverses a
starting point 𝑠𝑖 , it stores 𝑙𝑎𝑠𝑡 as the predecessor of the 𝑖-th route in 𝑝 [𝑖] and the combined
value of transporting the 𝑖-th route as well as its predecessors𝑤 + 𝑐 (𝑖) in 𝜈 [𝑖]. Whenever the
algorithm traverses an endpoint 𝑡𝑖 , it checks whether transporting the 𝑖-th route is better than
the currently best-known solution. In case transporting the 𝑖-th route is better, then 𝑙𝑎𝑠𝑡 and
𝑤 are updated accordingly. The correctness relies on a starting point 𝑠𝑖 only being traversed
after all endpoints with equal or less distance have been traversed, so the best-known solution
is optimal for the section [0, 𝑠𝑖] whenever 𝑠𝑖 is traversed.

Theorem 4.1: Algorithm 4.1 correctly solves the One Driver Path Sharing Problem for 𝐶 = 2.
It runs in 𝑂 (𝑛 log𝑛).

Proof. The reconstructed solution consists of the route that is the last route in the best-known
solution, as well as the predecessors that are found by iteratively following 𝑝 [last]. Therefore,
we must show that the algorithm processes the points in the correct order, so that whenever
a starting point 𝑠𝑖 is processed, the best-known solution is optimal for the section [0, 𝑠𝑖].
We must also show that 𝑙𝑎𝑠𝑡 correctly contains the index of the last route in the currently
best-known solution, and that𝑤 stores the cost of the currently best-known solution.
Due to the sorting of the points, whenever a starting point 𝑠𝑖 is processed, all endpoints with
the same or less distance have already been processed, and all endpoints with higher distance
have not been processed yet.

We now show by induction that the invariant, that 𝑙𝑎𝑠𝑡 at any point contains the index
of the last route in the currently best-known solution, and that𝑤 stores the associated cost of
that solution, is maintained whenever a point is processed. We also show that once a starting
point 𝑠𝑖 has been processed, 𝑝 [𝑖] is correctly initialized to the predecessor index in an optimal
solution containing the 𝑖-th route and 𝜈 [𝑖] to the associated combined cost.
Base case. Initially we have not found the endpoint of any route yet, so there is no route we
can transport on the traversed section, which means that 𝑙𝑎𝑠𝑡 correctly points to no route
with an associated cost 𝑤 = 0. We have not traversed any starting points yet, so no array
entries must be initialized.
Inductive step. Whenever we find an endpoint 𝑡𝑖 , we check whether transporting the 𝑖-th
route and its predecessors yields a better solution than the cost of the best-known solution
stored in𝑤 . Only if that solution yields a better solution for the section [0, 𝑡𝑖], we update 𝑙𝑎𝑠𝑡
and𝑤 accordingly. By induction we correctly initialized the entries 𝑝 [𝑖] in the predecessor
array and 𝜈 [𝑖] in the combined value array, when we previously traversed 𝑠𝑖 , so we correctly
update the best-known solution for the section [0, 𝑡𝑖] when traversing 𝑡𝑖 . Note that we can
find a better solution for the section [0, 𝑡𝑖] = [0, 𝑡 𝑗] right afterwards if the 𝑖-th route and the
𝑗-th route end at the same vertex.
Whenever we find a starting point 𝑠𝑖 , by induction, 𝑙𝑎𝑠𝑡 contains the index of the last route in
the best solution for the section [0, 𝑠𝑖], and𝑤 contains the associated cost. Therefore, the best
solution that includes the 𝑖-th route uses 𝑙𝑎𝑠𝑡 as its predecessor and the combined cost of that
route is𝑤 + 𝑐 (𝑖), which we correctly store in 𝑝 [𝑖] and 𝜈 [𝑖].

16

Thus, we have shown that whenever a starting point 𝑠𝑖 is processed, we currently store
an optimal solution for the section [0, 𝑠𝑖], which means that the solution we store in 𝑝 [𝑖] and
𝜈 [𝑖] is optimal for the section [0, 𝑡𝑖] if we are forced to include the 𝑖-th route.
When reconstructing the solution, we first find the last route 𝑝 𝑗 transported in an optimal
solution. Because we cannot transport multiple routes at the same time, the combination
of the optimal solution for the section [0, 𝑠 𝑗] and the 𝑗-th route, is an optimal solution for
the section [0, 𝑡 𝑗]. Therefore, we correctly reconstruct the solution by iteratively following
𝑝 [last] and the algorithm is correct.
Sorting the starting points and endpoints is possible in𝑂 ((2𝑛) log(2𝑛)) = 𝑂 (𝑛 log𝑛). We then
traverse 2𝑛 points, performing a constant number of 𝑂 (1) operations for each, so traversing
all points takes 𝑂 (𝑛) time. The starting point of a predecessor of a route always appears
before the starting point of that route, so we find at most 2𝑛 predecessors that we insert into
the result, which means that this step once again requires 𝑂 (𝑛) time. Thus, the runtime is
dominated by the sorting step, resulting in an overall complexity of 𝑂 (𝑛 log𝑛).

Now that we know how to solve the One Driver Path Sharing Problem for 𝐶 = 2, it might
be interesting to know how to solve it for an arbitrary vehicle size 𝐶 ≥ 2. Solving it for an
arbitrary vehicle size𝐶 ≥ 2 is closely related to solving the Maximal Weight Fixed Interval
Scheduling problem. Maximal Weight Fixed Interval Scheduling tries to schedule 𝑛
independent and non-preemptive jobs for processing in a parallel machine environment with
𝑘 identical machines. Each job has a fixed start time, a fixed end time, and a weight. Each
machine can process at most one job at a time, and a job can be executed by at most one
machine at a time. The goal is to find a subset of jobs with maximal total weight that can
feasibly be scheduled [AS87 | CL95 | BE96 | KNC07].
The One Driver Path Sharing Problem is identical to Maximal Weight Fixed Interval
Scheduling if we turn every passenger 𝑝𝑖 into a job starting at 𝑠𝑖 , ending at 𝑡𝑖 , with a weight
of 𝑐 (𝑝𝑖) = 𝑡𝑖 − 𝑠𝑖 and use 𝑘 = 𝐶 − 1 processors. Fortunately, there exist algorithms that solve
Maximal Weight Fixed Interval Scheduling in 𝑂 (𝑘𝑛 log𝑛) [CL95 | BE96]. The algorithms
are based on finding the Minimum Cost Flow of Size 𝑘 . In the Minimum Cost Flow of Size
𝑘 problem, we are given a directed graph 𝐺 = (𝑉 , 𝐸), where each edge has an associated cost,
as well as a nonnegative capacity. We are also given a source vertex 𝑠 ∈ 𝑉 and a sink vertex
𝑡 ∈ 𝑉 , as well as an integer 𝑘 . A flow from 𝑠 to 𝑡 is a function 𝑓 : 𝐸 → ℝ ≥ 𝟘 satisfying the
capacity and flow conservation constraints:
(1) Capacity constraint: For every edge 𝑒 ∈ 𝐸: 𝑓 (𝑒) ≤ cap(𝑒).
(2) Flow conservation: For every vertex besides 𝑠 and 𝑡 the outgoing flow is equal to the
incoming flow.
The value of the flow is equal to the flow outgoing from 𝑠 and incoming in 𝑡 . This problem
asks to find a flow of size 𝑘 such that the cost of the flow

∑
𝑒∈𝐸 cost(𝑒) 𝑓 (𝑒) is minimized

[Bin+18 | Tar83].

17

4 Algorithm for One Driver Scenario

Algorithm 4.2: Algorithm for Maximal Weight Fixed Interval Scheduling (Bouz-
ina and Emmons) [BE96]; renamed jobs to routes to fit the One Driver Path Sharing
Problem
Input: An integer 𝑘
Input: 𝑛 routes with a starting point 𝑠𝑖 , endpoint 𝑡𝑖 and cost 𝑐 (𝑖), 𝑖 ∈ [𝑛]
Output: Set of routes with maximal cost that can be transported by the driver using a

vehicle with capacity 𝐶 = 𝑘 + 1
1 Index routes in chronological order of starting points
2 Construct a directed graph 𝐺 = (𝑉 , 𝐸1

⋃
𝐸2), where edges have a cost and a capacity,

with 𝑉 = {𝜈1, ..., 𝜈𝑛+1}
3 Add edges (𝜈 𝑗 , 𝜈 𝑗+1) with cost 0 and capacity 𝑘 for 𝑗 ∈ [𝑛] to 𝐸1
4 Add edge (𝜈 𝑗 , 𝜈𝑘) where 𝑘 is the first route not overlapping with route 𝑗 for 𝑗 ∈ [𝑛]. If

no such route 𝑘 exists, instead add the edge (𝜈 𝑗 , 𝜈𝑛+1). These edges have cost −𝑐 (𝑗)
and capacity 1 and are added to 𝐸2

5 Find the Minimum Cost Flow of Size 𝑘 on 𝐺 with 𝑠 = 𝜈1 and 𝑡 = 𝜈𝑛+1
6 𝑟 ←− {}
7 for each (𝜈 𝑗 , 𝑥) ∈ 𝐸2 do
8 if flow((𝜈 𝑗 , 𝑥)) = 1 then
9 𝑟 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑗)
10 return 𝑟

Algorithm 4.2 [BE96] constructs a Directed Acyclic Graph (DAG) with two groups of edges.
The edges in 𝐸1 are skip edges that can be used to not fill up a vehicle slot for some time.
The edges (𝜈 𝑗 , 𝜈𝑘) in 𝐸2 represent the 𝑗-th route being transported, which yields the reward
𝑐 (𝑗). Finally, using a solution for the Minimum Cost Flow of Size 𝑘 on that graph, all routes
whose representing edges have a flow of 1 are added to the result set.

Theorem 4.2: Algorithm 4.2 correctly solves the One Driver Path Sharing Problem for 𝐶 ≥ 2.
It runs in 𝑂 (𝐶𝑛 log𝑛).

Proof. For correctness refer to Bouzina and Emmons [BE96]. Finding the Minimum Cost Flow
of Size 𝑘 dominates the runtime, which can be solved in 𝑂 (𝑘𝑚 log𝑛) on DAGs with integer
capacities [Tar83]. Here,𝑚 is in 𝑂 (𝑛), which means that the total runtime is in 𝑂 (𝑘𝑛 log𝑛).
With 𝑘 = 𝐶 − 1, we obtain a runtime of 𝑂 (𝐶𝑛 log𝑛).

If we want to place some additional time constraints on the routes in the One Driver Path
Sharing Problem, such that each route 𝑝𝑖 requires the driver to start driving within a certain
time window [𝑎𝑖 , 𝑏𝑖], then we can solve the problem by running the respective algorithm with
the eligible routes once for each time window. There can be up to 2𝑛 time windows, which
means we must run the algorithm 𝑂 (𝑛) times. Afterwards, we pick the time window where
the algorithm’s result provides the best solution. For 𝐶 = 2, we can improve the performance
of running Algorithm 4.1 𝑂 (𝑛) times to 𝑂 (𝑛2) by sorting all points only once. For arbitrary
𝐶 > 2, running Algorithm 4.2 𝑂 (𝑛) times yields a performance of 𝑂 (𝐶𝑛2 log𝑛).

18

5 Conclusion

We have shown that solving the Vehicle Sharing Fixed Routes Problem is NP hard, even if
the underlying road network has a very simple structure and consists only of a directed path
with unit distance edges. Then, we have considered the scenario in which there is only one
driver who can serve other passengers and obtained an algorithm that solves this scenario in
𝑂 (𝑛𝐶 log𝑛) by reducing it to the Maximal Weight Fixed Interval Scheduling problem.
As this version of the problem is very hard to solve optimally, even though we did not account
for any temporal constraints passengers might have for their journey, it might be interesting
to consider whether such temporal constraints make the otherwise trivial version of the
problem, where transferring between vehicles is allowed for free, difficult. Another slightly
different version of this problem that might be interesting to consider is one in which no
passenger who effectively owns the vehicle must remain in the vehicle during the entire
journey of the vehicle.

19

Bibliography

[AS87] Esther M. Arkin and Ellen B. Silverberg. “Scheduling jobs with fixed start and end
times”. en. In: Discrete Applied Mathematics Volume 18 (Sept. 1987), pp. 1–8. ISSN:
0166218X. DOI: 10.1016/0166-218X(87)90037-0.

[BE96] Khalid I. Bouzina and Hamilton Emmons. “Interval Scheduling on identical ma-
chines”. en. In: Journal of Global Optimization Volume 9 (Dec. 1996), pp. 379–393.
ISSN: 0925-5001, 1573-2916. DOI: 10.1007 /BF00121680.

[Bin+18] Timo Bingmann, Johannes Fischer, Robert Geisberger, Moritz Kobitzsch, Peter
Sanders, Dennis Schieferdecker, Christian Schulz, and Johannes Singler. “Algorith-
men II (WS 18/19)”. en. In: (Oct. 2018).

[Blä+25] Thomas Bläsius, Adrian Feilhauer, Markus Jung, Moritz Laupichler, Peter Sanders,
and Michael Zündorf. Synergistic Traffic Assignment. en. Feb. 2025. DOI: 10.48550/
arXiv.2502.04343.

[CL95] Martin C. Carlisle and Errol L. Lloyd. “On the k-coloring of intervals”. In: Discrete
Applied Mathematics Volume 59 (May 1995), pp. 225–235. ISSN: 0166-218X. DOI:
10.1016/0166-218X(95)80003-M .

[DB22] Stacy C Davis and Robert G Boundy. Transportation Energy Data Book: Edition 40.
en. Oak Ridge, TN: Oak Ridge National Laboratory, 2022.

[KNC07] Mikhail Y. Kovalyov, C. T. Ng, and T. C. Edwin Cheng. “Fixed interval scheduling:
Models, applications, computational complexity and algorithms”. In: European
Journal of Operational Research Volume 178 (Apr. 2007), pp. 331–342. ISSN: 0377-
2217. DOI: 10.1016/j.ejor.2006.01.049.

[SEL19] David Schrank, Bill Eisele, and Tim Lomax. Urban Mobility Report 2019. College
Station, TX: Texas Transportation Institute, Aug. 2019.

[Tar83] Robert Endre Tarjan. Data structures and network algorithms. en. 10. print. Philadel-
phia, Pa: Soc. for Industrial and Applied Mathematics, 1983. ISBN: 978-0-89871-
187-5.

21

https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1007/BF00121680
https://doi.org/10.48550/arXiv.2502.04343
https://doi.org/10.48550/arXiv.2502.04343
https://doi.org/10.1016/0166-218X(95)80003-M
https://doi.org/10.1016/j.ejor.2006.01.049

	Introduction
	Preliminaries
	NP Hardness for Paths
	Algorithm for One Driver Scenario
	Conclusion
	Bibliography

