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Abstract

The Euclidean sphericity of a graph𝐺 denotes the smallest integer 𝑛 ∈ ℕ such that𝐺 can be represented

as an intersection graph of equal-sized balls of radius 𝑟 in 𝑛-dimensional Euclidean space. Modern

research strongly suggests that extending this type of intersection graphs to hyperbolic space is of great

relevance, with applications in network science and machine learning. However, little is known about

the corresponding graph classes so far.

To establish a foundation in this new research area, we introduce the concept of hyperbolic sphericity.
This graph invariant resembles its Euclidean counterpart, with an important addition: different choices

of the parameter 𝑟 generally result in different graph classes in the hyperbolic context. We prove that

hyperbolic sphericity is bounded from above by Euclidean sphericity, if 𝑟 is chosen small. Conversely,

large choices of 𝑟 might increase hyperbolic sphericity, but by at most one. In other cases (e.g. trees),

large choices of 𝑟 can lead to a particularly low hyperbolic sphericity in comparison to the Euclidean

one.

Zusammenfassung

Die euklidische Sphärizität eines Graphen𝐺 bezeichnet die kleinste natürliche Zahl 𝑛 ∈ ℕ, sodass𝐺 als

Schnittgraph von Bällen mit einheitlichem Radius 𝑟 im 𝑛-dimensionalen euklidischen Raum dargestellt

werden kann. Moderne Forschung deutet darauf hin, dass solche Schnittgraphen im hyperbolischen

Raum von großer Relevanz sind, mit Anwendungen in der Netzwerkwissenschaft und dem maschinellen

Lernen. Jedoch ist bisher kaum etwas über die entsprechenden Graphklassen bekannt.

Um eine Grundlage in diesem neuen Forschungsbereich zu schaffen, führen wir das Konzept der

hyperbolischen Sphärizität ein. Diese Graphinvariante ähnelt ihrem euklidischen Gegenstück, mit einem

wichtigen Zusatz: Verschiedene Werte des Parameters 𝑟 führen im Allgemeinen zu verschieden Graph-

klassen im hyperbolischen Kontext. Wir beweisen, dass die hyperbolische Sphärizität von oben durch

die euklidische Sphärizität beschränkt ist, wenn 𝑟 klein gewählt ist. Im Gegensatz dazu können große

Werte für 𝑟 dazu führen, dass die hyperbolische Sphärizität wächst, aber höchstens um eins. In anderen

Fällen (z.B. bei Bäumen) können große Werte für 𝑟 dazu führen, dass die hyperbolische Sphärizität

besonders klein ist im Vergleich zur Euklidischen.
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1 Introduction

Often, real-world networks have a geometric aspect: for example, in a wireless communication network,

two nodes are more likely to be able to directly communicate if they are positioned closely. Conversely,

we may even be certain that some nodes cannot communicate, for example when they are kilometers

apart and may only use a Bluetooth connection. Hierarchical real-world networks like the internet,

often called a network of networks, might also display geometric patterns: clusters of end-devices and

home-routers mostly fall into the above category of a wireless communication network. However, there

are also a few nodes ensuring the connectivity of the entire network, like internet service providers.

While they have many more communication partners than end-devices, spatial proximity still influences

their direct connections, although on a much larger scale: for example countrywide.

These observations lead to an interest in graph classes with an underlying geometry. In this context,

Euclidean unit disk graphs play an important role. This well-studied class consists of intersection graphs

of equal-sized disks of radius 𝑟 in the Euclidean plane. Any arrangement of such equal-sized disks is

called a representation of the corresponding unit disk graph. These graphs are naturally suited to model

communication networks in which every node has roughly the same transmission range [CCJ90]. Not

only does a unit disk graph representation of a network help to better understand its characteristics, it

may also yield faster algorithms for certain problems. For example, finding a maximum-sized clique

is NP-complete on general graphs, but can be accomplished in polynomial time on unit disk graphs

(assuming a corresponding representation is provided) [CCJ90]. Unfortunately, unit disk graphs quickly

reach their limits when it comes to modeling complex real-world networks. In particular, they fail to

represent the hierarchical structures that are often inherent in these networks.

The class of unit disk graphs can be generalized or adapted in two main ways: first of all, one may

consider 𝑛-dimensional Euclidean space for any 𝑛 ∈ ℕ instead of just the Euclidean plane, leading to

more flexibility. In this setting, the term unit ball graphs (UBGs) naturally arises to describe the resulting
graph class depending on 𝑛. While higher dimensions allow to capture more graphs, geometric aspects

are clearly more pertinent in lower dimensions. Similarly, it can easily be shown that any UBG in 𝑛

dimensions is also a UBG in higher dimensions. For these reasons, we want to determine the lowest
dimension 𝑛 ∈ ℕ that still permits a UBG representation of 𝐺 . This integer 𝑛 is called the Euclidean
sphericity of the graph𝐺 . But does such an integer even exist for every finite graph? Yes, due to a result

of Maehara, showing that each graph 𝐺 = (𝑉 , 𝐸) is always a UBG in |𝑉 |-dimensional Euclidean space

[Mae84b].

While these insights are surely interesting from a graph-theoretical point of view, they are still

unsatisfying: real-world networks like the internet appear to have geometric properties, but a high-

dimensional representation as a Euclidean UBG fails to properly reflect such properties. At this point, it

is worth asking whether Euclidean space itself might have some undesired characteristics that simply do

not go well with the hierarchical aspects of networks like the internet. Indeed, Euclidean space is known

to have polynomial growth: the volume of a ball of radius 𝑟 is polynomial in 𝑟 , no matter the number of

dimensions. However, hierarchical networks often display exponential growth. To see this, consider

regular trees as the arguably simplest form of a hierarchical network. We know that the number of tree

nodes increases exponentially in terms of the tree depth.
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1 Introduction

This leads to the second main approach: keeping the concept of unit disk graphs, but transferring it

to non-Euclidean spaces. In order not to run into the previous problem, we are looking for a space that

shows exponential growth instead of polynomial growth. Metric spaces corresponding to hyperbolic

geometry are known to have this property. As a bonus, these spaces fulfill almost all axioms of the

Euclidean plane. In the hyperbolic context, we speak of hyperbolic unit disk graphs. Research in

this area is fairly recent, mostly coming from the network community. Results show that randomly

generated hyperbolic unit disk graphs indeed capture the main characteristics of complex real-world

networks like the internet, most importantly a heterogeneous degree distribution and strong clustering

[Kri+10 | BFM15].

Our contribution is to unify the two approaches by considering unit ball graphs in 𝑛-dimensional

hyperbolic space, obtained by generalizing hyperbolic plane geometry. It combines the advantages of

hyperbolic geometry with the dimensional generality that is needed to grasp the broad spectrum of

real-world networks, often not perfectly represented in two dimensions. This is especially important

when trying to understand and analyze networks without a strong inherent spatial aspect, like social

networks.

We are the first to define and explore the hyperbolic sphericity of graphs. This new graph invariant

resembles its Euclidean counterpart, with an important difference: in the Euclidean case, we do not have

to pay much attention to the choice of the radius 𝑟 of the equal-sized balls, since every representation

can be scaled such that it may use any other radius 𝑟 ′. This does not apply to hyperbolic space, due

to its exponential growth. So 𝑟 is an influential parameter in terms of hyperbolic sphericity. We call it

the threshold radius. Despite this new parameter, we are able to show that each finite graph has finite

hyperbolic sphericity, for every choice of the threshold radius 𝑟 . Following the intuition that polynomial

growth and exponential growth are hard to tell apart when zooming in closely, we also prove that a

UBG representation in 𝑛-dimensional Euclidean space can be reconstructed in 𝑛-dimensional hyperbolic

space, if 𝑟 is chosen small enough. This is promising because it means that hyperbolic sphericity is

bounded from above by Euclidean sphericity for small 𝑟 . How do things behave when we choose great

threshold radii 𝑟 , making full use of hyperbolic space’s exponential growth? Not surprisingly, not every

graph benefits from this exponential growth. We provide examples of non-hierarchical graphs whose

hyperbolic sphericity increases for great 𝑟 . More surprisingly, this potential increase is very small: we

show that a graph having hyperbolic sphericity of 𝑛 ∈ ℕ for some threshold radius 𝑟 > 0 is guaranteed

to have hyperbolic sphericity of at most (𝑛+1) for every 𝑟 ′ > 𝑟 . In particular, hyperbolic sphericity never

exceeds Euclidean sphericity by more than one. Conversely, for the right graphs, great threshold radii 𝑟

are where hyperbolic space displays its true potential: we prove that every tree 𝑇 is a hyperbolic unit

disk graph, i.e. has hyperbolic sphericity of one or two, if 𝑟 = 𝑟 (𝑇 ) is chosen great enough. Meanwhile,

Euclidean sphericity of trees becomes arbitrarily great by increasing tree depth and vertex degrees. To

paint the big picture, hyperbolic space can be seen as an enhancement of Euclidean space in terms of

sphericity. Due to the flexibility introduced by the choice of the threshold radius 𝑟 , it supports both

Euclidean and hierarchical structures.

Some other contributions are worth mentioning: we show that each triangle-free Euclidean or

hyperbolic unit disk graph is planar. Concerning complexity theory, we demonstrate that hyperbolic

sphericity is computable using a polynomial amount of space. We also investigate sphericity in spherical

space, since the latter is closely related to hyperbolic space. However, in contrast to hyperbolic space,

spherical space does not bring major advantages over Euclidean space in terms of sphericity.
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1 Introduction

1.1 Related Work

This thesis is situated within the research on intersection graphs and graph embeddings. Concerning

intersection graphs, specific geometric graph classes like unit disk graphs or intersection graphs of

axis-aligned rectangles have been studied extensively. For the most part, research on such graph classes

can be divided into two domains: the first focuses on structural properties of the graph class, evaluating

how the class is related to other common graph classes etc. In terms of unit disk graphs, results are

somewhat limited by the fact that their corresponding recognition problem is NP-hard [BK98]. Similar

structural research deals with the comparison of unit ball graphs and unit cube graphs in the Euclidean

context [Fis83]. The second research domain builds upon these structural properties by constructing

efficient algorithms for common graph problems, tailored towards the specific class. For example, the

problem of finding a maximum-sized clique is NP-complete for general graphs, but can be solved in

polynomial time for unit disk graphs as long as a geometric representation is provided [CCJ90].

Recently, similar research gains traction in the context of hyperbolic unit disk graphs. Concerning

structural properties, Bläsius et al. proved that their recognition is ∃ℝ-complete, implying NP-hardness

[BBDJ23]. They also examined bounds on balanced separators of hyperbolic unit disk graphs, leading

to an efficient algorithm on the Independent Set problem [Blä+24]. More algorithmic results on

hyperbolic unit disk graphs come from Kisfaludi-Bak. He presented polynomial time algorithms on the

problems Hamiltonian Cycle and 3-Coloring, both NP-complete in the general setting [Kis20]. So far,

Kisfaludi-Bak is also the only author to use the term unit ball graph in a hyperbolic context, defining

the class HUBG(n, s) as the intersection graphs of equal-sized balls with radius 𝑠 in 𝑛-dimensional

hyperbolic space [Kis20]. To avoid confusion, note that we usually use 𝑠 to refer to hyperbolic radii and

𝑟 to refer to Euclidean radii.

The goal of our work is to deepen the structural understanding of this family of graph classes, by

studying the hyperbolic sphericity of graphs 𝐺 , i.e. the lowest 𝑛 ∈ ℕ such that 𝐺 ∈ HUBG(n, s) for
some fixed threshold radius 𝑠 > 0. Doing so, we follow in the footsteps of Maehara, who contributed

immensely to the understanding of unit ball graphs in 𝑛-dimensional Euclidean space and Euclidean

sphericity [Mae84b |Mae84a].

All of this is closely related to graph embeddings: asking whether some graph 𝐺 = (𝑉 , 𝐸) is in the

class HUBG(n, s) is equivalent to searching an embedding (also called a representation) in the form of a

function

𝜏 : 𝑉 → 𝐻𝑛
such that 𝜈𝑤 ∈ 𝐸 ⇐⇒ d (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑠

where 𝐻𝑛
denotes (some model of) 𝑛-dimensional hyperbolic space with the metric 𝑑 . Interest in such

embeddings comes primarily from the machine learning community: neural networks on graph data

profit remarkably from embeddings by using them as a pre-processing step to metrically vectorize the

graph input. While Euclidean embeddings have already proven useful, hyperbolic embeddings are even

more promising when it comes to graphs with a hierarchical structure [Yan+22].

The mathematical fundament of this thesis is provided by research on hyperbolic space. Anderson’s

and Ratcliffe’s books are worth mentioning in this context [And05 | Rat06]. In the context of metric

spaces and isometries, some other research branches appeared promising at first glance, but turned out

to be unapplicable for this thesis. A mismatch often originates from the question whether a subset of a

metric space is simply equipped with the restricted metric or considered as a surface, thereby obtaining

a new metric by considering shortest paths on this surface. For this reasons, certain statements relating

Riemannian manifolds like hyperbolic space to Euclidean space, known as Nash embedding theorems,

do not contradict the results of this thesis [Nas54]. In general, meanings of the term embedding may
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vary from context to context. For example, the research on so-called low-distortion embeddings is

conceptually relevant for this thesis. However, the results are centered around 𝑙𝑝 (𝑝 ∈ {1, . . . ,∞})
metric spaces so far [IM04].

1.2 Outline

The main part of this thesis is structured into six chapters. In Chapter 2 we introduce core notions of

graph theory, study important properties of Euclidean space and define models of hyperbolic space.

This preparation allows us to define unit ball graph representations as well as Euclidean and hyperbolic

sphericity in Chapter 3. In Chapter 4 we compare Euclidean and hyperbolic sphericity, establishing

important inequalities and showing that hyperbolic sphericity is well-defined. On this basis, we end

Chapter 4 with a proof that hyperbolic sphericity is computable using a polynomial amount of space. In

Chapter 5, we focus on trees. We present two proofs that trees are hyperbolic unit disk graphs if the

threshold radius is chosen great enough. In contrast, we demonstrate that Euclidean sphericity of trees

cannot be bounded by a constant. In Chapter 6, we develop a graph family whose behavior contrasts

the one of trees: here, a small threshold radius leads to a minimal hyperbolic sphericity of two, and

great threshold radii produce hyperbolic sphericity of three. Similarly, we show that for all graphs,

increasing the threshold radius increases the hyperbolic sphericity by at most one. Finally, we take a

brief excursion towards unit ball graphs in spherical space in Chapter 7.

4



2 Preliminaries

In this chapter, we present core notions of graph theory, study important properties of Euclidean

space and define models of hyperbolic space. For the latter, we benefit from the theory on geodesics,

formalizing shortest paths in metric spaces. Throughout the thesis, we use the notation 𝑥 > 0 to denote

any positive real number and 0 := (0, . . . , 0) to denote the origin of ℝ𝑛
.

2.1 Graph Theory

Graph theory is a broad topic in computer science. The definition of a graph varies slightly depending

on the context. In this thesis, we are only interested in undirected graphs without loops.

Definition 2.1: A graph is a tuple 𝐺 = (𝑉 , 𝐸) where 𝑉 is a finite set, called vertex set, and 𝐸 is a finite

set, called edge set. The following properties must hold:

(1) Each element 𝑒 ∈ 𝐸 has the form 𝑒 = 𝑢𝜈 where 𝑢, 𝜈 ∈ 𝑉 .

(2) 𝑢𝜈 = 𝜈𝑢, i.e. the edges are undirected.

(3) Edges of the form 𝜈𝜈 (so-called loops) are not allowed.

In some cases, we drop the assumption that 𝑉 and 𝐸 are finite. We define infinite graphs as tuples
𝐺 = (𝑉 , 𝐸) where𝑉 is infinite while 𝐸 may or may not be finite, that satisfy all other properties stated in

Definition 2.1. Similarly, we sometimes refer to graphs as finite graphs. For any finite or infinite graph

𝐺 , we use the notation 𝑉 (𝐺) to denote the vertex set of 𝐺 .

When comparing two graphs 𝐺 and 𝐺 ′, it is easy to see if they are equal or not. A more interesting

question is whether they have the same structure: is it possible to obtain 𝐺 ′ only by renaming the

vertices of 𝐺 or vice versa? This leads to the following definition:

Definition 2.2: Two graphs𝐺 = (𝑉 , 𝐸) and𝐺 ′ = (𝑉 ′, 𝐸′) are isomorphic if and only if there is a bijection
𝑓 : 𝑉 → 𝑉 ′ such that

𝜈𝑤 ∈ 𝐸 ⇐⇒ 𝑓 (𝜈) 𝑓 (𝑤) ∈ 𝐸′ for each pair of distinct vertices 𝜈,𝑤 ∈ 𝑉 .

A bijection 𝑓 with this property is called a graph isomorphism between 𝐺 and 𝐺 ′.

When given a family of sets, a graph can be obtained by treating the sets as vertices and connecting

distinct vertices by an edge if and only if their intersection is nonempty:

Definition 2.3: Let 𝑋 be some set and 𝐴 ⊆ P (𝑋 ) where P (𝑋 ) denotes the power set of 𝑋 . Then, the
intersection graph of the set 𝐴 is

G (𝐴) := (𝐴, 𝐸) where 𝐸 := {𝑎𝑏 | 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏 and 𝑎 ∩ 𝑏 ≠ ∅}.

If the inducing set 𝐴 is finite, then G (𝐴) is a finite graph, otherwise it is an infinite graph.

5



2 Preliminaries

Definition 2.4: Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑉 ′ ⊆ 𝑉 . The vertex-induced subgraph of 𝐺 with respect

to 𝑉 ′ is
𝐺 |𝑉 ′ := (𝑉 ′, 𝐸′) where 𝐸′ := {𝜈𝑤 ∈ 𝐸 | 𝜈,𝑤 ∈ 𝑉 ′}.

That is, a vertex-induced subgraph must contain all the edges of 𝐺 whose endpoints belong to the

vertex subset 𝑉 ′. If we only take a subset of these edges, we simply speak of a subgraph of 𝐺 . Clearly,

vertex-induced subgraphs and subgraphs are graphs themselves.

2.2 Euclidean Space

The definitions in this section are based on Ratcliffe’s work [Rat06]. Let ⟨· , ·⟩ denote the standard inner

product on ℝ𝑛
given by

⟨𝑥 ,𝑦⟩ :=
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 for each 𝑥,𝑦 ∈ ℝ𝑛 .

Then, the Euclidean norm of a vector 𝑥 ∈ ℝ𝑛
is defined as the real number

∥𝑥 ∥ :=
√︁
⟨𝑥 , 𝑥⟩.

Definition 2.5: A metric space is a tuple (𝑋,𝑑) where 𝑋 is some set and 𝑑 : 𝑋 × 𝑋 → ℝ is a function

with the following properties: for all 𝑥,𝑦, 𝑧 ∈ 𝑋 ,

(1) 𝑑 (𝑥,𝑦) ≥ 0 (nonnegativity),

(2) 𝑑 (𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦 (nondegeneracy),

(3) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥) (symmetry),

(4) 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧) (triangle inequality).

A function 𝑑 with the above properties is also called a metric of 𝑋 .

Definition 2.6: The 𝑛-dimensional Euclidean space 𝐸𝑛 is given by the metric space (ℝ𝑛, dE) where

dE (𝑥,𝑦) := ∥𝑥 − 𝑦∥ for each 𝑥,𝑦 ∈ ℝ𝑛 .

For a proof that the tuple (ℝ𝑛, dE) is indeed a metric space, we refer to Ratcliffe [Rat06]. It is worth

introducing some notation concerning metric spaces: if a metric 𝑑 of a given space 𝑋 is known from

context, we do not clearly differentiate between 𝑋 and (𝑋,𝑑). For example, the notation 𝑥,𝑦 ∈ 𝐸𝑛
denotes elements of ℝ𝑛

while highlighting that these elements are subject to the metric dE . We proceed

by proving the following useful property of the Euclidean metric:

Lemma 2.7: Let 𝑥,𝑦 ∈ 𝐸𝑛 and 𝜆 > 0. Then dE (𝜆𝑥, 𝜆𝑦) = 𝜆 dE (𝑥,𝑦).

Proof. We calculate, using the fact that the standard inner product ⟨· , ·⟩ is linear in both components:

dE (𝜆𝑥, 𝜆𝑦) =
√︁
⟨𝜆𝑥 − 𝜆𝑦 , 𝜆𝑥 − 𝜆𝑦⟩

=
√︁
⟨𝜆(𝑥 − 𝑦) , 𝜆(𝑥 − 𝑦)⟩

=
√︁
𝜆2 ⟨𝑥 − 𝑦 , 𝑥 − 𝑦⟩

= 𝜆
√︁
⟨𝑥 − 𝑦 , 𝑥 − 𝑦⟩

= 𝜆 dE (𝑥,𝑦) .
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2 Preliminaries

Definition 2.8: A line of 𝐸𝑛 is a set of the form {𝑥 + 𝜆𝑦 | 𝜆 ∈ ℝ} for any 𝑥 ∈ ℝ𝑛
and 𝑦 ∈ ℝ𝑛 \ {0}.

We also refer to lines of 𝐸𝑛 as Euclidean lines. If we consider distinct points 𝑥,𝑦 ∈ 𝐸𝑛 , one can easily

prove that the unique line of 𝐸𝑛 is the set

{𝑥 + 𝜆(𝑦 − 𝑥) | 𝜆 ∈ ℝ}.

The line segment in 𝐸𝑛 joining 𝑥 to 𝑦 is defined as the set

{𝑥 + 𝜆(𝑦 − 𝑥) | 𝜆 ∈ [0, 1]}.

It is worth noting that every line segment in 𝐸𝑛 extends to a unique line of 𝐸𝑛 .

Definition 2.9: The Euclidean sphere of 𝐸𝑛 with center 𝑎 and radius 𝑟 > 0 is the set

𝑆𝐸 (𝑎, 𝑟 ) := {𝑥 ∈ ℝ𝑛 | dE (𝑎, 𝑥) = 𝑟 } ⊆ 𝐸𝑛 .

Furthermore, the Euclidean ball of 𝐸𝑛 with center 𝑎 and radius 𝑟 > 0 is the region bounded by the

corresponding Euclidean sphere, i.e.

𝐵𝐸 (𝑎, 𝑟 ) := {𝑥 ∈ ℝ𝑛 | dE (𝑎, 𝑥) < 𝑟 } ⊆ 𝐸𝑛 .

This definition clearly depends on the dimension of the surrounding space 𝐸𝑛 . This information will

always be evident from the context. Spheres of 𝐸2 are also called circles.

Lemma 2.10: Let 𝑆 be a Euclidean sphere of 𝐸𝑛 and 𝑙 a Euclidean line. Then, |𝑆 ∩ 𝑙 | ≤ 2. Furthermore, if

𝑙 contains a point of the Euclidean ball corresponding to 𝑆 , then |𝑆 ∩ 𝑙 | = 2.

Proof. Let 𝑆 = 𝑆𝐸 (𝑎, 𝑟 ) and 𝑙 = {𝑥 + 𝜆𝑦 | 𝜆 ∈ ℝ}. Let 𝑏 = 𝑥 + 𝜆𝑦 denote some point of 𝑙 . Then 𝑏 ∈ 𝑆 if

and only if

dE (𝑎, 𝑥 + 𝜆𝑦) = 𝑟
⇐⇒ dE (𝑎, 𝑥 + 𝜆𝑦)2 − 𝑟 2 = 0.

Treating 𝜆 as a variable, the left expression is a polynomial of degree 2which we denote with 𝑝 : ℝ→ ℝ.

As such, 𝑝 can have at most two roots, thus |𝑆 ∩ 𝑙 | ≤ 2.

In the following, suppose that there is a point 𝑧 = 𝑥 + 𝜆𝑧𝑦 ∈ 𝑙 such that dE (𝑎, 𝑧) < 𝑟 . By choice of 𝑧,

we have 𝑝 (𝜆𝑧) < 0. Due to the fact that

lim

𝜆→∞
𝑝 (𝜆) = lim

𝜆→−∞
𝑝 (𝜆) = ∞,

𝑝 must have at least two zeros due to the intermediate value theorem. Hence 𝑝 must have precisely two

zeros and since the zeros of 𝑝 correspond to points in 𝑆 ∩ 𝑙 , we have |𝑆 ∩ 𝑙 | = 2.

Definition 2.11: Let 𝑥,𝑦 ∈ 𝐸𝑛 . The Euclidean angle between 𝑥 and 𝑦 is the unique real number

𝜃 (𝑥,𝑦) ∈ [0, 𝜋] that satisfies
⟨𝑥 ,𝑦⟩ = ∥𝑥 ∥ ∥𝑦∥ cos𝜃 (𝑥,𝑦) .

The uniqueness and existence of such a number 𝜃 (𝑥,𝑦) in the interval [0, 𝜋] is due to Cauchy’s

inequality and the fact that cos : [0, 𝜋] → [−1, 1] is a bijection. We simply refer to 𝜃 (𝑥,𝑦) as the angle
between 𝑥 and 𝑦, if the context is clearly Euclidean.
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Remark 2.12: The angle between two vectors behaves as one would naturally expect: for example,

consider two vectors 𝑥 = exp(𝑖𝛼) and 𝑦 = exp(𝑖𝛽) with 0 ≤ 𝛼 < 𝛽 ≤ 𝜋 . Then the angle between them

is indeed 𝜃 (𝑥,𝑦) = 𝛽 − 𝛼 . To show this, recall that exp(𝑖𝛼) = cos𝛼 + 𝑖 sin𝛼 and that | exp(𝑖𝛼) | = 1 for

any 𝛼 ∈ ℝ. Identifying ℂ and ℝ2
, we calculate

cos𝜃 (𝑥,𝑦) = ∥𝑥 ∥ ∥𝑦∥ cos𝜃 (𝑥,𝑦) = ⟨𝑥 ,𝑦⟩ = cos𝛼 cos 𝛽 + sin𝛼 sin 𝛽 = cos(𝛽 − 𝛼)

having used a famous trigonometrical identity in the last step. Since cos is injective when restricting

the domain to [0, 𝜋], we conclude that 𝜃 (𝑥,𝑦) = 𝛽 − 𝛼 .
The following equalities concerning the angle between two vectors will become useful in multiple

chapters:

Lemma 2.13: Let 𝑥,𝑦 in 𝐸𝑛 . We can express the Euclidean distance dE using only the Euclidean norm

of 𝑥 , the Euclidean norm of 𝑦 and the angle between 𝑥 and 𝑦:

(1) dE (𝑥,𝑦) =
√︁
∥𝑥 ∥2 + ∥𝑦∥2 − 2∥𝑥 ∥∥𝑦∥ cos(𝜃 (𝑥,𝑦)).

(2) If ∥𝑥 ∥ = ∥𝑦∥ holds , then dE (𝑥,𝑦) = 2∥𝑥 ∥ sin
(
𝜃 (𝑥,𝑦)

2

)
.

Proof. Concerning the first statement, we calculate

dE (𝑥,𝑦) =
√︁
⟨𝑥 − 𝑦 , 𝑥 − 𝑦⟩ =

√︁
⟨𝑥 , 𝑥⟩ − 2 ⟨𝑥 ,𝑦⟩ + ⟨𝑦 ,𝑦⟩

=
√︁
∥𝑥 ∥2 + ∥𝑦∥2 − 2∥𝑥 ∥∥𝑦∥ cos𝜃 (𝑥,𝑦)

using Definition 2.11 in the last step. Concerning the second statement, suppose in the following that

∥𝑥 ∥ and ∥𝑦∥ both are equal to some constant 𝑟 ≥ 0. Using the above calculation and the trigonometric

identity

sin

(𝛼
2

)
=

√︂
1 − cos𝜃 (𝑥,𝑦)

2

that holds for any 𝛼 ∈ [0, 𝜋], we obtain

dE (𝑥,𝑦) =
√︁
2𝑟 2 − 2𝑟 2 cos𝜃 (𝑥,𝑦) =

√︄
4𝑟 2

(
1 − cos𝜃 (𝑥,𝑦)

2

)
=

√︄
4𝑟 2 sin2

(
𝜃 (𝑥,𝑦)

2

)
= 2𝑟 sin

(
𝜃 (𝑥,𝑦)

2

)
.

2.2.1 Circles in the Euclidean Plane

It will be helpful to recall some properties of circles in 2-dimensional Euclidean Space 𝐸2, i.e. in the

Euclidean plane. Three distinct points 𝑥,𝑦, 𝑧 ∈ 𝐸2 are called collinear if and only if they lie on a common

Euclidean line. Otherwise, they are called noncollinear. In this case, they form a triangle, denoted

𝑇 (𝑥,𝑦, 𝑧).
Lemma 2.14: Consider three distinct noncollinear points 𝑥,𝑦, 𝑧 ∈ 𝐸2. Then there is a unique circle 𝐶

that passes through 𝑥,𝑦 and 𝑧. We call 𝐶 the circumcircle of the triangle 𝑇 (𝑥,𝑦, 𝑧).
For a proof of this lemma, we refer to Koecher’s book on plane geometry [KK07]. As a consequence,

two distinct circles intersect at most in two points, otherwise they must be identical. We are particularly

interested in the case where two circles are perpendicular to each other, meaning that they intersect in

two points and at each point of intersection, the two tangents are perpendicular. Identifying ℝ2
with ℂ,

the following statement and its proof can be found in Anderson’s book on hyperbolic geometry [And05,

p. 2].
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Lemma 2.15: Let 𝑆1 = {𝑧 ∈ ℂ | |𝑧 | = 1} be the unit circle in ℂ. Let 𝐴 be the Euclidean circle in ℂ with

Euclidean center 𝜆 exp(𝑖𝜃 ), 𝜆 > 1, and Euclidean radius 𝑟 > 1. Then 𝐴 is perpendicular to 𝑆1 if and only

if 𝑟 =
√
𝜆2 − 1.

2.3 Geodesics

In this section, we generalize the concept of a line and a line segment known from 𝐸𝑛 to other metric

spaces. Doing so will facilitate the understanding of hyperbolic space.

2.3.1 Distance-Preserving Functions and Isometries

The following two definitions are of great relevance throughout the thesis:

Definition 2.16: Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) denote metric spaces. A function 𝜑 : 𝑋 → 𝑌 is distance-
preserving if and only if

𝑑𝑌 (𝜑 (𝑥), 𝜑 (𝑦)) = 𝑑𝑋 (𝑥,𝑦) for all 𝑥,𝑦 ∈ 𝑋 .

As Ratcliffe remarks, a distance-preserving function is a continuous injection [Rat06, p. 15]. Further-

more, the composition of distance-preserving functions is itself distance-preserving.

Definition 2.17: An isometry from ametric space𝑋 to a metric space𝑌 is a distance-preserving bijection

𝜙 : 𝑋 → 𝑌 .

The inverse of an isometry is clearly an isometry, and the composition of two isometries is an isometry.

Two metric spaces 𝑋 and 𝑌 are said to be isometric if and only if there is an isometry 𝜙 : 𝑋 → 𝑌 . We

observe that being isometric is an equivalence relation among the class of all metric spaces.

Example 2.18: Let𝑚,𝑛 ∈ ℕ and𝑚 < 𝑛. An example of a distance-preserving function that is not an

isometry is the so-called inclusion

𝜄 : 𝐸𝑚 → 𝐸𝑛, (𝑥1, . . . , 𝑥𝑚) ↦→ (𝑥1, . . . , 𝑥𝑚, 0, . . . , 0).

We also consider the identity id : 𝐸𝑚 → 𝐸𝑚 as a trivial inclusion. The concept of inclusions can also be

applied to other metric spaces parametrized by dimension.

Example 2.19: We can equip the complex plane ℂ with a metric dℂ, called the complex metric, by firstly

defining the complex norm | · | as

|𝑧 | :=
√︁
Re(𝑧)2 + Im(𝑧)2 for each 𝑧 ∈ ℂ

and then defining the complex metric by

dℂ(𝑧1, 𝑧2) := |𝑧1 − 𝑧2 | for all 𝑧1, 𝑧2 ∈ ℂ.

This strongly resembles the Euclidean metric dE of 𝐸2. Indeed, 𝐸2 and (ℂ, dℂ) are isometric by the

isometry

𝜙 : 𝐸2 → ℂ, (𝑥,𝑦) ↦→ 𝑥 + 𝑖𝑦.

Example 2.20: Let 𝜈 ∈ ℝ𝑛
be any vector and let

𝜙𝜈 : 𝐸𝑛 → 𝐸𝑛, 𝑥 ↦→ 𝜈 + 𝑥

denote the translation by the vector 𝜈 . Then, direct calculation shows that 𝜙𝜈 is an isometry.
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2.3.2 Geodesic Segments and Geodesics

The definitions in this section are due to Ratcliffe [Rat06]. We prove some additional statements that

will be useful later on. Throughout this section, we use (𝑋,𝑑) to denote a metric space.

Definition 2.21: A curve in a space 𝑋 is a continuous function 𝛾 : [𝑎, 𝑏] → 𝑋 where [𝑎, 𝑏] is a closed
interval in ℝ with 𝑎 < 𝑏.

Let 𝛾 : [𝑎, 𝑏] → 𝑋 be a curve. Then 𝛾 (𝑎) is called the initial point of 𝛾 and 𝛾 (𝑏) is called the terminal
point. We say that 𝛾 is a curve in 𝑋 from 𝛾 (𝑎) to 𝛾 (𝑏).

Definition 2.22: A geodesic arc in a metric space 𝑋 is a distance-preserving function 𝛼 : [𝑎, 𝑏] → 𝑋 ,

with 𝑎 < 𝑏 in ℝ.

A geodesic arc 𝛼 is a continuous injection and so is a curve.

Definition 2.23: A geodesic segment joining a point 𝑥 to a point 𝑦 in a metric space 𝑋 is the image of a

geodesic arc 𝛼 : [𝑎, 𝑏] → 𝑋 whose initial point is 𝑥 and terminal point is 𝑦.

For example, it can be shown that the geodesic segments of 𝐸𝑛 are its line segments. This intuition

can be applied to other metric spaces as well: we can generally think of a geodesic segment as a shortest
path between two specific points. Similarly, we can think of the corresponding geodesic arcs as walks

on this shortest paths with constant, normalized speed.

Remark 2.24: Consider two geodesic arcs 𝛼 : [𝑎, 𝑏] → 𝑋 and 𝛽 : [𝑐, 𝑑] → 𝑋 that have the same

image, namely the geodesic segment [𝑥,𝑦]. Define the Euclidean isometry 𝜙 : [𝑎, 𝑏] → [𝑐, 𝑑] by
𝜙 (𝑘) := (𝑘 − 𝑎 + 𝑐) for each 𝑘 ∈ [𝑎, 𝑏]. We claim that 𝛼 and 𝛽 only differ by precomposition with the

function 𝜙 , i.e. 𝛼 = 𝛽 ◦ 𝜙 . Clearly, 𝛽 ◦ 𝜙 is also a geodesic arc that has [𝑥,𝑦] as its image. Fix any

𝑘 ∈ [𝑎, 𝑏]. Since 𝛽 ◦ 𝜙 is injective and has the same image as 𝛼 , there is a unique 𝑘 ′ ∈ [𝑎, 𝑏] such that

𝛼 (𝑘) = 𝛽 ◦ 𝜙 (𝑘 ′). We calculate

𝑘 − 𝑎 = dE (𝑘, 𝑎) = d (𝛼 (𝑘), 𝛼 (𝑎)) = d (𝛽 ◦ 𝜙 (𝑘 ′), 𝛽 ◦ 𝜙 (𝑎)) = dE (𝑘 ′, 𝑎) = 𝑘 ′ − 𝑎.

Thus 𝑘 = 𝑘 ′. Since 𝑘 was arbitrary, we conclude 𝛼 = 𝛽 ◦ 𝜙 .

Definition 2.25: A metric space 𝑋 is geodesically convex if and only if for each pair of distinct points

𝑥,𝑦 of 𝑋 , there is a unique geodesic segment in 𝑋 joining 𝑥 to 𝑦.

Theorem 2.26: Let [𝑥,𝑦] and [𝑦, 𝑧] be geodesic segments joining 𝑥 to 𝑦 and 𝑦 to 𝑧, respectively, in a

metric space 𝑋 . Then the set [𝑥,𝑦] ∪ [𝑦, 𝑧] is a geodesic segment joining 𝑥 to 𝑧 in 𝑋 if and only if the

triangle inequality is tight for 𝑥,𝑦, 𝑧, i.e. 𝑑 (𝑥, 𝑧) = 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧).

For a proof, we refer to Ratcliffe [Rat06, p. 24]. We can also go the other way and pick some point on

an existing geodesic segment. Then, the triangle inequality is tight as well:

Corollary 2.27: Let [𝑥, 𝑧] be a geodesic segment joining 𝑥 to 𝑧. For each 𝑦 ∈ [𝑥, 𝑧], we have 𝑑 (𝑥,𝑦) +
𝑑 (𝑦, 𝑧) = 𝑑 (𝑥, 𝑧).

Proof. Let 𝛼 : [𝑎, 𝑐] → 𝑋 denote a geodesic arc whose image is [𝑥, 𝑧]. Let 𝑏 ∈ [𝑎, 𝑐] such that 𝛼 (𝑏) = 𝑦.
The restriction 𝛼 | [𝑎,𝑏 ] is also distance-preserving, i.e. a geodesic arc as well. The same holds for the

restriction 𝛼 | [𝑏,𝑐 ] . By construction, we have

[𝑥,𝑦] ∪ [𝑦, 𝑧] = 𝛼 | [𝑎,𝑏 ] ( [𝑎, 𝑏]) ∪ 𝛼 | [𝑏,𝑐 ] ( [𝑏, 𝑐]) = 𝛼 ( [𝑎, 𝑐]) = [𝑥, 𝑧] .

Now the statement follows directly from Theorem 2.26.
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The ball of 𝑋 with center 𝑥 ∈ 𝑋 and radius 𝑟 > 0 is defined as the set

𝐵(𝑥, 𝑟 ) := {𝑧 ∈ 𝑋 | 𝑑 (𝑥, 𝑧) < 𝑟 } ⊆ 𝑋 .

Testing whether two balls intersect can be done by comparing the distance of their centers with their

radii, as we are used to from Euclidean space:

Lemma 2.28: Let (𝑋,𝑑) be a geodesically convex metric space. Let 𝑥,𝑦 ∈ 𝑋 denote distinct points in 𝑋

and let 𝑟, 𝑠 > 0. Then

𝐵(𝑥, 𝑟 ) ∩ 𝐵(𝑦, 𝑠) ≠ ∅ ⇐⇒ 𝑑 (𝑥,𝑦) < 𝑟 + 𝑠 .

Proof. The first implication holds due to the triangle inequality: suppose there is 𝑧 ∈ 𝐵(𝑥, 𝑟 ) ∩ 𝐵(𝑦, 𝑠),
then 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑦, 𝑧) < 𝑟 + 𝑠 . Conversely, suppose that 𝑑 (𝑥,𝑦) < 𝑟 + 𝑠 . Since 𝑋 is geodesically

convex, there is a geodesic segment joining 𝑥 to 𝑦 and thus also a corresponding geodesic arc 𝛼 . We

may assume that 𝛼 has the form 𝛼 : [0, 𝑎] → 𝑋 where 𝑎 := 𝑑 (𝑥,𝑦). From 𝑎 < 𝑟 + 𝑠 it follows that
𝑟

𝑟 + 𝑠 𝑎 < 𝑟 and

𝑠

𝑟 + 𝑠 𝑎 < 𝑠 .

Let 𝑏 := 𝑟
𝑟+𝑠𝑎 < 𝑎 and 𝑧 := 𝛼 (𝑏) ∈ 𝑋 . The fact that 𝛼 is distance-preserving implies

𝑑 (𝑥, 𝑧) = 𝑑 (𝛼 (0), 𝛼 (𝑏)) = 𝑏−0 = 𝑏 < 𝑟 and 𝑑 (𝑧,𝑦) = 𝑑 (𝛼 (𝑏), 𝛼 (𝑎)) = 𝑎−𝑏 = 𝑎(1− 𝑟

𝑟 + 𝑠 ) = 𝑎
𝑠

𝑟 + 𝑠 < 𝑠 .

We conclude that 𝑧 ∈ 𝐵(𝑥, 𝑟 ) and 𝑧 ∈ 𝐵(𝑦, 𝑠), so the intersection of the two balls is nonempty.

Similarly, we define the closed ball of 𝑋 with center 𝑥 and radius 𝑟 > 0 as the set

𝐵(𝑥, 𝑟 ) := {𝑧 ∈ 𝑋 | 𝑑 (𝑥, 𝑧) ≤ 𝑟 } ⊆ 𝑋 .

By slightly adapting the proof of Lemma 2.28, the following equivalence can be shown, again supposing

that 𝑋 is geodesically convex:

𝐵(𝑥, 𝑟 ) ∩ 𝐵(𝑦, 𝑠) ≠ ∅ ⇐⇒ 𝑑 (𝑥,𝑦) ≤ 𝑟 + 𝑠 for each distinct pair of points 𝑥,𝑦 ∈ 𝑋 and 𝑟, 𝑠 > 0.

Next, we consider geodesic lines, which one obtains when a geodesic segment is continued indefinitely.

A function 𝜑 : 𝑋 → 𝑌 between metric spaces is locally distance-preserving if and only if for each point

𝑥 ∈ 𝑋 there is an 𝑟 > 0 such that 𝜑 preserves the distances between any two points in 𝐵(𝑥, 𝑟 ). In that

case 𝜑 is continuous, because it is continuous at each point of 𝑋 .

Definition 2.29: A geodesic line in a metric space 𝑋 is a locally distance-preserving function 𝜆 : ℝ→ 𝑋 .

Furthermore, a geodesic in a metric space 𝑋 is the image of such a geodesic line 𝜆.

Definition 2.30: Ametric space𝑋 is geodesically complete if and only if each geodesic arc 𝛼 : [𝑎, 𝑏] → 𝑋

extends to a unique geodesic line 𝜆 : ℝ→ 𝑋 .

Example 2.31: The geodesics of 𝐸𝑛 are its Euclidean lines. Furthermore, 𝐸𝑛 is geodesically convex and

geodesically complete [Rat06, p. 24, 25].

In particular, all results presented in this section apply to Euclidean space. Let us explore how the

introduced concepts relate to isometries.

Theorem 2.32: Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be metric spaces that are isometric by an isometry 𝜙 : 𝑋 → 𝑌 .

Then, the following statements hold:
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(1) If 𝛼 : [𝑎, 𝑏] → 𝑋 is a geodesic arc in 𝑋 , then 𝜙 ◦𝛼 : [𝑎, 𝑏] → 𝑌 is a geodesic arc in 𝑌 . Furthermore,

if 𝑠 is a geodesic segment in 𝑋 joining 𝑥1 to 𝑥2, then 𝜙 (𝑠) is a geodesic segment in 𝑌 joining 𝜙 (𝑥1)
to 𝜙 (𝑥2).

(2) 𝑋 is geodesically convex if and only if 𝑌 is geodesically convex.

(3) If 𝜆 : ℝ→ 𝑋 is a geodesic line in 𝑋 , then 𝜙 ◦ 𝜆 : ℝ→ 𝑌 is a geodesic line in 𝑌 . In particular, the

image of a geodesic in 𝑋 under 𝜙 is a geodesic in 𝑌 .

(4) 𝑋 is geodesically complete if and only if 𝑌 is geodesically complete.

Proof. We prove the statements one by one.

(1) Let 𝛼 : [𝑎, 𝑏] denote a geodesic arc in𝑋 . As an isometry, 𝜙 is distance-preserving. The composition

of two distance-preserving functions is itself distance-preserving. Hence 𝜙 ◦ 𝛼 is a geodesic arc

in 𝑌 by definition. Let 𝑠 be a geodesic segment in 𝑋 joining 𝑥1 to 𝑥2. In the following, we may

assume that 𝑠 is the image of 𝛼 . In particular, we have

𝜙 (𝑠) = 𝜙 (𝛼 ( [𝑎, 𝑏])) = (𝜙 ◦ 𝛼) ( [𝑎, 𝑏])

thus 𝜙 (𝑠) is a geodesic segment in 𝑌 . Because 𝜙 (𝑥1) is the initial point of the geodesic arc 𝜙 ◦ 𝛼
and because 𝜙 (𝑥2) is its terminal point, 𝑠 joins these two points.

(2) It suffices to show that, if 𝑋 is geodesically convex, then 𝑌 is geodesically convex. The reverse

implication can be shown analogously using the isometry 𝜙−1 : 𝑌 → 𝑋 . Hence, suppose that 𝑋 is

geodesically convex. Let 𝑦1, 𝑦2 denote two distinct points in 𝑌 . Let 𝑥1, 𝑥2 ∈ 𝑋 such that 𝜙 (𝑥1) = 𝑦1
and 𝜙 (𝑥2) = 𝑦2. Let [𝑥1, 𝑥2] ⊆ 𝑋 denote the unique geodesic segment joining 𝑥1 to 𝑥2 in 𝑋 . Due

to Theorem 2.32 (1), 𝑠 := 𝜙 ( [𝑥1, 𝑥2]) is a geodesic segment in 𝑌 that joins 𝑦1 to 𝑦2. It remains to

show that it is the unique geodesic segment in 𝑌 with this property. Assume another geodesic

segment 𝑠′ in 𝑌 also joins 𝑦1 to 𝑦2. By applying Theorem 2.32 (1) in the context of the isometry

𝜙−1 : 𝑌 → 𝑋 , we conclude that 𝜙−1(𝑠) and 𝜙−1(𝑠′) are both geodesic segments in 𝑋 joining 𝑥1 to

𝑥2. Since 𝑋 is geodesically convex, they must be equal. Consequently, 𝑠 and 𝑠′ must be equal.

(3) Let 𝜆 : ℝ → 𝑋 denote a geodesic line in 𝑋 . Thus 𝜆 is locally distance-preserving. Clearly, the

composition 𝜙 ◦ 𝜆 is also locally distance-preserving, because 𝜙 is distance-preserving. Hence

𝜙 ◦ 𝜆 is a geodesic line in 𝑌 by definition. Let 𝑔 be a geodesic in 𝑋 . In the following, we may

assume that 𝑔 is the image of 𝜆. We have 𝜙 (𝑔) = (𝜙 ◦ 𝜆) (ℝ), so 𝜙 (𝑔) is the image of the geodesic

line 𝜙 ◦ 𝜆 in 𝑌 and thus a geodesic in 𝑌 .

(4) Similar to how we proved Theorem 2.32 (2), it suffices to suppose that 𝑋 is geodesically complete

and show that 𝑌 then must also be geodesically complete. Let 𝛼 : [𝑎, 𝑏] → 𝑌 denote a geodesic arc

in 𝑌 . Applying Theorem 2.32 (1) in the context of the isometry 𝜙−1 : 𝑌 → 𝑋 , we get that 𝜙−1 ◦ 𝛼
is a geodesic arc in 𝑋 . Since 𝑋 is geodesically complete, 𝜙−1 ◦ 𝛼 extends to a unique geodesic line

in 𝑋 which we denote with 𝜆 : ℝ→ 𝑋 . Because of Theorem 2.32 (3), 𝜙 ◦ 𝜆 is a geodesic line in 𝑌

and we observe that 𝛼 extends to this geodesic line since

𝜆 | [𝑎,𝑏 ] = 𝜙−1 ◦ 𝛼 =⇒ (𝜙 ◦ 𝜆) | [𝑎,𝑏 ] = 𝛼.

It remains to show that 𝑙 := 𝜙 ◦ 𝜆 is the unique geodesic line in 𝑌 to which 𝛼 extends. Assume

another geodesic line 𝑙 ′ in 𝑌 also has this property. By applying Theorem 2.32 (3) in the context

of the isometry 𝜙−1 : 𝑌 → 𝑋 , we conclude that 𝜙−1 ◦ 𝑙 and 𝜙−1 ◦ 𝑙 ′ are both geodesic lines in 𝑋 .

Furthermore, they are both an extension of the geodesic arc 𝜙−1 ◦ 𝛼 in 𝑋 since

𝑙 | [𝑎,𝑏 ] = 𝛼 =⇒ (𝜙−1 ◦ 𝑙)
��
[𝑎,𝑏 ] = 𝜙

−1 ◦ 𝛼

12
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and the same is valid for 𝑙 ′. Because 𝑋 is geodesically complete, we conclude that 𝜙−1 ◦ 𝑙 = 𝜆 =

𝜙−1 ◦ 𝑙 ′ and thus 𝑙 = 𝑙 ′.

We finish this section by deriving a rather technical lemma that will be needed later on.

Lemma 2.33: Let (𝑋,𝑑) be a geodesically convex and geodesically complete metric space. Consider

two geodesic segments with a common endpoint [𝑥,𝑦] and [𝑥, 𝑧] that intersect in a second point 𝑝 ≠ 𝑥 .

Then, one geodesic segment is a subset of the other.

Proof. We may assume that [𝑥,𝑦] is the image of some geodesic arc 𝛼 : [0, 𝑎] → 𝑋 and that [𝑥, 𝑧]
is the image of another geodesic arc 𝛽 : [0, 𝑏] → 𝑋 . Considering the point of intersection 𝑝 , there

are values 𝑐 ∈ [0, 𝑎] and 𝑐′ ∈ [0, 𝑏] such that 𝛼 (𝑐) = 𝑝 = 𝛽 (𝑐′). Because 𝛼 and 𝛽 are distance-

preserving, we obtain 𝑐 = d (𝑥, 𝑝) = 𝑐′. Note that 𝛼 | [0,𝑐 ] and 𝛽 | [0,𝑐 ] are both geodesic arcs with

initial point 𝑥 and terminal point 𝑝 . Since 𝑋 is geodesically convex, we obtain the equality of images

𝛼 | [0,𝑐 ] ( [0, 𝑐]) = 𝛽 | [0,𝑐 ] ( [0, 𝑐]). Not only are these two images equal, but even 𝛼 | [0,𝑐 ] = 𝛽 | [0,𝑐 ] holds as a
consequence of Remark 2.24. Since 𝑋 is also geodesically complete, the restriction of 𝛼 and 𝛼 itself must

extend to the same geodesic line. The same holds for 𝛽 and its restriction. Now, the fact that the two

restrictions are equal implies that 𝛼 and 𝛽 must extend to the same, unique geodesic line 𝜆 : ℝ→ 𝑋 .

That is, we have 𝜆 | [0,𝑎] = 𝛼 and 𝜆 | [0,𝑏 ] = 𝛽 . Without loss of generality, we may assume that 𝑎 ≤ 𝑏.
Consequently, [𝑥,𝑦] = 𝜆( [0, 𝑎]) ⊆ 𝜆( [0, 𝑏]) = [𝑥, 𝑧].

2.4 Hyperbolic Space

The following definition of 𝑛-dimensional hyperbolic space is often quoted: the 𝑛-dimensional hyperbolic
space is a (unique) simply connected complete n-dimensional Riemannian manifold with a constant negative
sectional curvature −1 [GN98]. Fully understanding this definition is outside the scope of this thesis and

would require at least an entry course on topology and differential geometry. However, it is remarkable

that hyperbolic space can be defined axiomatically, i.e. via certain properties and not simply as a

particular metric space. In fact, there are multiple metric spaces satisfying the above definition. We

call them models of 𝑛-dimensional hyperbolic space and use the variable 𝐻𝑛
to denote any such model.

Note that we will not use the axiomatic definition of hyperbolic space in this thesis, but it is worth

knowing that such a definition exists, to better understand the concept of having multiple models of

𝑛-dimensional hyperbolic space.

Similarly, it is also possible to define 𝑛-dimensional Euclidean space axiomatically, i.e. by demanding

certain properties, and then providing one or multiple models, i.e. metric spaces that fulfill the properties.

We did not take this approach because it fully suffices for our purposes to treat 𝐸𝑛 = (ℝ𝑛, dE) as (the
canonical model of) 𝑛-dimensional Euclidean space. However, other models are possible: when focusing

on Euclidean plane geometry, one can also base a model on the complex plane ℂ with the complex

metric, as defined in Example 2.19.

Coming back to the axiomatic definition of hyperbolic space, one property is worth highlighting: the

constant curvature of −1. To put this in perspective, it is known that the unit sphere 𝑆𝑛 ⊆ ℝ𝑛+1
has

constant curvature of 1 and that 𝑛-dimensional Euclidean space has constant curvature of 0. Informally,

we can thus imagine hyperbolic space as the counterpart of spherical space with Euclidean space lying

somewhere in between the two. Historically, another approach towards hyperbolic space, in particular

2-dimensional, is common: geometric axiomizations of Euclidean plane geometry include the parallel
postulate, stating that, given a Euclidean line 𝑙 and a point 𝑝 not on 𝑙 , there is only one Euclidean line

through 𝑝 and parallel to 𝑙 . Parallel simply means that the two lines are disjoint. For a long time, it

was uncertain whether the parallel postulate could be derived from the other axioms. The development

13
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of hyperbolic plane geometry settled the debate. Hyperbolic plane geometry satisfies every axiom of

Euclidean plane geometry, apart from the parallel postulate: in the hyperbolic case, there are infinitely
many hyperbolic lines through a point 𝑝 that are parallel to a given hyperbolic line 𝑙 , assuming 𝑝 ∉ 𝑙 .

For details on this axiomatic approach, we refer to Hartshorne’s book [Har00].

Defining an initial model of hyperbolic space in a comprehensive way is a challenging task on

its own. In this context, we strongly recommend Ratcliffe’s book on hyperbolic manifolds [Rat06].

Ratcliffe primarily uses the hyperboloid model to accomplish this task. This model is well suited to define

hyperbolic space in a way that does not appear arbitrary, because it highlights relationships between

spherical, Euclidean and hyperbolic geometry. After fully defining the hyperboloid model, including

measurements like hyperbolic angles and hyperbolic volume with respect to this model, Ratcliffe derives

other models by constructing them in a way that they are isometric to the hyperboloid model. Since

being isometric is an equivalence relation, this has the following important consequence:

Remark 2.34: Let 𝑛 ∈ ℕ. Then, any two models of 𝑛-dimensional hyperbolic space are isometric.

In other words, models of 𝑛-dimensional hyperbolic space are unique up to isometry. This result can
also be derived from the axiomatic definition given at the start, justifying the term unique used therein.

The question remains why it is useful to consider multiple models of hyperbolic geometry. This is

because each model has its advantages and disadvantages in terms of geometric intuition and in terms

of simplicity of formulas. However, one would expect that certain properties are valid for any model of

hyperbolic space, like laws of trigonometry. This is indeed the case. To provide an example, consider

hyperbolic angles: no matter in which model 𝑋 of hyperbolic space they are firstly defined, one needs to

ensure that they are preserved by isometries between the models. To be precise, suppose that two metric

spaces 𝑋 and 𝑌 are given which both model 𝑛-dimensional hyperbolic space. As mentioned above, there

exists an isometry 𝜙 : 𝑋 → 𝑌 . Then, we expect that the following property holds: if the hyperbolic

angle between two geometric objects 𝑜1, 𝑜2 ⊆ 𝑋 is defined and equals 𝛼 , then the hyperbolic angle

between 𝜙 (𝑜1), 𝜙 (𝑜2) ⊆ 𝑌 is also defined and equals 𝛼 as well. The same applies to hyperbolic volume:
if the hyperbolic volume of 𝑜1 ⊆ 𝑋 is defined, we expect that the hyperbolic volume of 𝜙 (𝑜1) ⊆ 𝑌 is

also defined and that both are equal. This coherency between different models is usually achieved by

definition.

Since our focus lies on sphericity and not on studying hyperbolic spaces as an end in itself, our

approach differs from Ratcliffe. Instead of the hyperboloid model, we study the Poincaré disk model
extensively, since the latter has much more to offer in the context of sphericity. We also define hyperbolic

angles and hyperbolic volume in this model. In order to understand where the following definitions

geometrically originate and why the different models are consistent in terms of angles, volume etc., we

refer to Ratcliffe [Rat06].

2.4.1 The Poincaré Disk Model

The name of this model originates from the Poincaré disk, a 2-dimensional model of hyperbolic plane

geometry, named after Henri Poincaré. Here, we follow the definitions of Ratcliffe [Rat06]. Generalizing

the 2-dimensional Poincaré disk yields the following model:

Definition 2.35: The 𝑛-dimensional Poincaré disk model is given by the metric space (𝔻𝑛, dD) where
𝔻𝑛

:= 𝐵𝐸 (0, 1) ⊆ ℝ𝑛
and the metric dD is given by

cosh dD (𝑥,𝑦) = 1 + 2∥𝑥 − 𝑦∥2
(1 − ∥𝑥 ∥2) (1 − ∥𝑦∥2) .

14



2 Preliminaries

D2

S1

C

0

l1 l2 l3

C2
c2

C1 = c1

Figure 2.1: Examples of hyperbolic lines 𝑙1, 𝑙2, 𝑙3 of 𝔻
2
and two equal-radius hyperbolic circles 𝐶1,𝐶2

(with center 𝑐1 resp. 𝑐2) of 𝔻
2
.

The case of 𝑛 = 2 will be most prominent throughout the thesis. In this case, we usually identify

𝐵𝐸 (0, 1) ⊆ ℝ2
with the unit ball of ℂ. This is justified by the isometry between (ℂ, dℂ) and 𝐸2 as

presented in Example 2.19. This view is helpful because the complex plane ℂ not only allows the

Cartesian-like representation of vectors in the form 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, but also a representation by angle

and vector length, based on the complex exponential function exp : ℂ→ ℂ that satisfies

exp(𝑖𝜑) = cos𝜑 + 𝑖 sin𝜑.

Consequently, for each 𝑧 ∈ ℂ \ {0}, there is a unique length 𝑟 > 0 and a unique angle 𝜑 ∈ [0, 2𝜋] such
that 𝑧 = 𝑟 exp(𝑖𝜑). In particular, we can capture all points in the Poincaré disk𝔻2

by requiring 𝑟 < 1. To

adapt the above definition for 𝑛 = 2 to this alternative view, one simply has to replace each occurrence

of the Euclidean norm ∥·∥ with the complex norm | · |.

Definition 2.36: A subset 𝑙 of𝔻𝑛
is a hyperbolic line of𝔻𝑛

if and only if 𝑙 is either an open diameter of

𝔻𝑛
or the intersection of 𝔻𝑛

with a circle orthogonal to 𝑆𝑛−1.

A hyperbolic line 𝑙 is an open diameter of 𝔻𝑛
if and only if it contains the origin. In this case, 𝑙 is

both a hyperbolic line and a Euclidean line restricted to 𝔻𝑛 ⊆ ℝ𝑛
. Figure 2.1 depicts the two types

of hyperbolic lines of 𝔻2
. It also illustrates that the Euclidean parallel postulate does not hold in the

context of 𝔻2
. The next theorem establishes a connection to the previous section:

Theorem 2.37: The hyperbolic lines of 𝔻𝑛
are its geodesics. Furthermore, 𝔻𝑛

is geodesically convex

and geodesically complete.

Proof. Ratcliffe provides proofs that the hyperboloid model 𝔽𝑛
of hyperbolic space has the above

properties [Rat06, p. 65, 70]. We have not encountered this model yet and will only do so briefly. This

is not an issue since Ratcliffe also presents an isometry 𝜙 : 𝔽𝑛 → 𝔻𝑛
that bijectively maps hyperbolic

lines of 𝔽𝑛
to hyperbolic lines of 𝔻𝑛

. Due to Theorem 2.32, we conclude that 𝔻𝑛
inherits the above

properties from 𝔽𝑛
.

In particular, all results presented in Section 2.3 apply to the Poincaré disk model 𝔻𝑛
. With the

knowledge of Theorem 2.37, we are also able to describe the geodesic segments of 𝔻𝑛
: a geodesic

segment 𝑠 of 𝔻𝑛
is either a Euclidean line segment of an open diameter of 𝔻𝑛

or an arc in 𝔻𝑛
of a

circle orthogonal to 𝑆𝑛−1. Next, we consider hyperbolic angles. Angles in 𝔻𝑛
are inherited from the

surrounding space ℝ𝑛
:
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Definition 2.38: The angle between two curves in 𝔻𝑛
is defined to be the angle between the curves

when they are considered to be curves in ℝ𝑛
, which in turn is defined to be the angle between their

tangent lines.

Hyperbolic spheres and balls play a major role in this thesis. The hyperbolic sphere of𝔻𝑛
, with center

𝑎 ∈ 𝔻𝑛
and radius 𝑠 > 0, is defined as the set

𝑆𝐷 (𝑎, 𝑠) := {𝑥 ∈ 𝔻𝑛 | dD (𝑎, 𝑥) = 𝑠} ⊆ 𝔻𝑛 .

Furthermore, the hyperbolic ball of 𝔻𝑛
with center 𝑎 ∈ 𝔻𝑛

and radius 𝑠 > 0 is defined to be the region

bounded by the corresponding hyperbolic sphere, i.e.

𝐵𝐷 (𝑎, 𝑠) := {𝑥 ∈ 𝔻𝑛 | dD (𝑎, 𝑥) < 𝑠} ⊆ 𝔻𝑛 .

In the context of𝔻2
, hyperbolic spheres resp. balls are called hyperbolic circles resp. disks. The Poincaré

disk model is particularly well-suited to study hyperbolic spheres and balls, as becomes clear with the

following theorem:

Theorem 2.39: A subset 𝑆 of 𝔻𝑛
is a hyperbolic sphere of 𝔻𝑛

if and only if 𝑆 is a Euclidean sphere 𝐸𝑛

that is contained in 𝔻𝑛
.

For a proof, we refer to Ratcliffe [Rat06, p. 124]. As an immediate consequence of this theorem, a

subset 𝐵 of 𝔻𝑛
is a hyperbolic ball of 𝔻𝑛

if and only if 𝐵 is a Euclidean ball in 𝐸𝑛 that is contained in

𝔻𝑛
. Two equal-radius hyperbolic circles of 𝔻2

are depicted in Figure 2.1. To better understand the

relationship between hyperbolic spheres of 𝔻𝑛
and Euclidean spheres, the following lemma is helpful:

Lemma 2.40: Let 𝑥 ∈ 𝔻𝑛
and let 𝑠 := dD (0, 𝑥) denote the hyperbolic distance from 𝑥 to the origin. It is

related to the Euclidean distance ∥𝑥 ∥ from 𝑥 to the origin by the following two formulas:

∥𝑥 ∥ = tanh

( 𝑠
2

)
and 𝑠 = log

(
1 + ∥𝑥 ∥
1 − ∥𝑥 ∥

)
.

For a proof, we refer again to Ratcliffe [Rat06, p. 127]. The next two remarks focus on the conversion

between hyperbolic spheres and Euclidean spheres in 𝔻𝑛
. They can also be applied to balls. Suppose

that we know the Euclidean representation of such a sphere, what is its hyperbolic radius? For our

purposes, it suffices to consider spheres whose corresponding balls do not contain the origin.

Remark 2.41: Consider a Euclidean sphere 𝑆 := 𝑆𝐸 (𝑥, 𝑟 ) contained in 𝔻𝑛
that satisfies ∥𝑥 ∥ > 𝑟 . Our

goal is to calculate the hyperbolic radius 𝑠 of 𝑆 as a hyperbolic sphere. Let 𝑙 denote the hyperbolic line

through the origin and 𝑥 . Since 𝑙 is on open diameter of 𝑆𝑛−1 and passes through the Euclidean center

of 𝑆 , we know that 𝑙 must intersect 𝑆 in exactly two points

𝑝 := 𝑥 − 𝑟 𝑥

∥𝑥 ∥ and 𝑞 := 𝑥 + 𝑟 𝑥

∥𝑥 ∥

due to Lemma 2.10. Clearly, these two points induce a Euclidean diameter [𝑝, 𝑞] of 𝑆 . As such, [𝑝, 𝑞] is
orthogonal to 𝑆 in the Euclidean sense, and thus also in the hyperbolic sense, because the Poincaré disk

model is conformal with respect to angles. Since [𝑝, 𝑞] is also a geodesic segment in𝔻𝑛
, this means that

[𝑝, 𝑞] is a hyperbolic diameter of 𝑆 as well. So the hyperbolic radius must satisfy 𝑠 = dD (𝑝, 𝑞)/2 and it

remains to calculate the right-hand side. To do so, we note that 𝑝 lies between the origin and 𝑞 on the

hyperbolic line 𝑙 . This is because ∥𝑥 ∥ > 𝑟 . Using Theorem 2.26, we obtain

dD (0, 𝑝) + dD (𝑝, 𝑞) = dD (0, 𝑞) =⇒ dD (𝑝, 𝑞) = dD (0, 𝑞) − dD (0, 𝑝) .
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Now Lemma 2.40 yields

dD (𝑝, 𝑞) = log

(
1 + ∥𝑞∥
1 − ∥𝑞∥

)
− log

(
1 + ∥𝑝 ∥
1 − ∥𝑝 ∥

)
= log

(
(1 + ∥𝑞∥)(1 − ∥𝑝 ∥)
(1 − ∥𝑞∥)(1 + ∥𝑝 ∥)

)
= log

(
(1 + (∥𝑥 ∥ + 𝑟 )) · (1 − (∥𝑥 ∥ − 𝑟 ))
(1 − (∥𝑥 ∥ + 𝑟 )) · (1 + (∥𝑥 ∥ − 𝑟 ))

)
= log

(
(1 + 𝑟 )2 − ∥𝑥 ∥2
(1 − 𝑟 )2 − ∥𝑥 ∥2

)
.

(2.1)

The following consequence is worth highlighting: if we have two spheres 𝑆𝐸 (𝑥, 𝑟 ) and 𝑆𝐸 (𝑦, 𝑟 ) both
contained in 𝔻𝑛

and if ∥𝑥 ∥ = ∥𝑦∥ holds, then the two spheres also have the same hyperbolic radius

because only the length of the center vector appears in Equation (2.1).

Assuming that we know the hyperbolic representation of a sphere, what is the Euclidean representa-

tion?

Remark 2.42: Given a hyperbolic sphere of𝔻𝑛
with hyperbolic center 𝑐𝐻 and hyperbolic radius 𝑟𝐻 . Let

𝜇𝐻 denote the hyperbolic distance of 𝑐𝐻 from the origin. The Euclidean representation as a sphere with

center 𝑐𝐸 and radius 𝑟𝐸 can be derived via the following steps: let 𝑙 be the hyperbolic line containing 𝑐𝐻
and the origin. It intersects the hyperbolic sphere in two points 𝑝1, 𝑝2 whose hyperbolic distance from

the origin is 𝑏1,𝐻 := 𝜇𝐻 − 𝑟𝐻 resp. 𝑏2,𝐻 := 𝜇𝐻 + 𝑟𝐻 . As argued in Remark 2.41, the geodesic segment

[𝑝1, 𝑝2] in 𝔻𝑛
is both a Euclidean and hyperbolic diameter of the sphere. In particular, 𝑐𝐸 must lie on

this line segment. Using the first formula from Lemma 2.40, we obtain that the Euclidean distance of 𝑝 𝑗

from the origin is 𝑏 𝑗,𝐸 := tanh(𝑏 𝑗,𝐻

2
) for 𝑗 ∈ {1, 2}. As a consequence, the Euclidean distance of 𝑐𝐸 from

the origin must be 𝜇𝐸 :=
𝑏1,𝐸+𝑏2,𝐸

2
and thus 𝑐𝐸 = 𝜇𝐸

𝑐𝐻
|𝑐𝐻 | . Furthermore, the Euclidean radius must satisfy

𝑟𝐸 = 𝜇𝐸 − 𝑏1,𝐸 =
𝑏2,𝐸−𝑏1,𝐸

2
.

For sake of completeness, we also provide a formula of hyperbolic volume in the context of the

Poincaré disk model. We will never use this definition directly, but always rely on explicit formulas for

particular geometric objects.

Definition 2.43: The hyperbolic volume of a set 𝑋 in 𝔻𝑛
is given by the integral

VolH(𝑋 ) :=
∫
𝑋

2
𝑛𝑑𝑥1 . . . 𝑑𝑥𝑛

(1 − ∥𝑥 ∥2)𝑛 ,

provided that this integral is defined.

As one would naturally expect from a volume notion, the hyperbolic volume of a set 𝑋 ⊆ 𝔻𝑛
is

nonnegative if it is defined. Furthermore, hyperbolic volume is countably additive: if {𝑋𝑖}𝑖∈ℕ is a

sequence of disjoint subsets 𝑋𝑖 ⊆ 𝔻𝑛
such that VolH(𝑋𝑖) is defined for each 𝑖 ∈ ℕ, then the hyperbolic

volume of 𝑋 := ∪𝑖∈ℕ𝑋𝑖 is also defined and equals

VolH(𝑋 ) =
∑︁
𝑖∈ℕ

VolH(𝑋𝑖).

Hyperbolic volume is also invariant under isometries of 𝔻𝑛
. In case of 𝔻2

, we speak of hyperbolic area
instead of hyperbolic volume, which we denote with AreaH(·).
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2.4.2 The Upper Half-Space Model

The following definitions and the theorem are taken from Ratcliffe with slight rephrasing [Rat06,

p. 128-132].

Definition 2.44: The 𝑛-dimensional upper half-space model is given by the metric space (𝕌𝑛, dU ) where
𝕌𝑛

:= {𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 | 𝑥1 > 0} and the metric dU is given by

cosh dU (𝑥,𝑦) = 1 + ∥𝑥 − 𝑦∥
2

2𝑥𝑛𝑦𝑛
.

Analogous to the Poincaré disk model, we define the hyperbolic sphere of𝕌𝑛
, with center 𝑎 ∈ 𝕌𝑛

and

radius 𝑠 > 0, as the set

𝑆𝑈 (𝑎, 𝑠) := {𝑥 ∈ 𝕌𝑛 | dU (𝑎, 𝑥) = 𝑠} ⊆ 𝕌𝑛 .

Furthermore, the hyperbolic ball of 𝕌𝑛
with center 𝑎 ∈ 𝕌𝑛

and radius 𝑠 > 0 is defined to be the region

bounded by the corresponding hyperbolic sphere, i.e.

𝐵𝑈 (𝑎, 𝑠) := {𝑥 ∈ 𝕌𝑛 | dU (𝑎, 𝑥) < 𝑠} ⊆ 𝕌𝑛 .

The following theorem reminds us of Theorem 2.39 in the way it relates hyperbolic spheres to Euclidean

spheres. It even provides a useful formula making the relationship more explicit. This formula is a core

reason why we sometimes prefer using 𝕌𝑛
instead of 𝔻𝑛

in the context of sphericity.

Theorem 2.45: A subset 𝑆 of 𝕌𝑛
is a hyperbolic sphere of 𝕌𝑛

if and only if 𝑆 is a Euclidean sphere of

𝐸𝑛 that is contained in 𝕌𝑛
. Furthermore, the following relationship holds:

𝑆𝑈 (𝑎, 𝑠) = 𝑆𝐸 (𝑐 (𝑠), 𝑎𝑛 sinh 𝑠) where 𝑐 (𝑠) = (𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛 cosh 𝑠) .

The same applies to hyperbolic balls of 𝕌𝑛
.

2.4.3 The Hyperboloid Model

Here, we model 𝑛-dimensional hyperbolic space by embedding it intoℝ𝑛+1
. Take the following quadratic

form on ℝ𝑛+1
:

𝑄𝑛 (𝑥) := −𝑥20 +
𝑛∑︁
𝑗=1

𝑥2𝑗 .

Note that in the context of the hyperboloid model, it is useful to use the vector notation 𝑥 = (𝑥0, . . . , 𝑥𝑛) ∈
ℝ𝑛+1

, i.e. index the first entry with zero. The quadratic form 𝑄 defines a two-sheeted hyperboloid

{𝑥 ∈ ℝ𝑛+1 | 𝑄𝑛 (𝑥) = −1}. The hyperbolic space is represented by all points on the forward sheet 𝔽𝑛
:

Definition 2.46: The hyperboloid model of 𝑛-dimensional hyperbolic space is given by the so-called

forward sheet
𝔽𝑛

:= {𝑥 ∈ ℝ𝑛+1 | 𝑄𝑛 (𝑥) = −1 and 𝑥0 > 0}

together with the metric dF given by

cosh dF (𝑥,𝑦) = 𝐵(𝑥,𝑦) with 𝐵(𝑥,𝑦) := 𝑥0𝑦0 −
(

𝑛∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗

)
for each pair of distinct points 𝑥,𝑦 ∈ 𝔽𝑛

.
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2.4.4 Model-Independent Properties

As noted in Remark 2.34, for a fixed dimension 𝑛 ∈ ℕ, any two models of 𝑛-dimensional hyperbolic

space are isometric. In the following, we use 𝐻𝑛
to denote any model of 𝑛-dimensional hyperbolic space.

Remark 2.47: How does hyperbolic space compare to Euclidean space? Ratcliffe shows the following:

𝐻 1
is isometric to 𝐸1, but 𝐻𝑛

is not isometric to 𝐸𝑛 for each 𝑛 > 1 [Rat06, p. 70].

When speaking of hyperbolic lines of 𝐻𝑛
, we always refer to the geodesics of the particular model

𝐻𝑛
. We know that an isometry 𝜙 maps geodesics onto geodesics, see Theorem 2.32 (4). Taking 𝜙−1

into account, this induced mapping between the geodesics of the two metric spaces must be bijective.

Combining this with the fact that any two models of 𝑛-dimensional space are isometric, the hyperbolic

lines of one model must correspond bijectively to the hyperbolic lines of any other model. As a

consequence, the proof of Theorem 2.37 generalizes to any model 𝐻𝑛
of 𝑛-dimensional hyperbolic space:

each model of 𝑛-dimensional space is geodesically convex and geodesically complete. In particular, all

results presented in Section 2.3 apply to each model 𝐻𝑛
.

Similar to Example 2.18, inclusions are also available for hyperbolic space. We can even use them to

convert between models while increasing the dimension:

Lemma 2.48: Let𝑚,𝑛 ∈ ℕ and𝑚 ≤ 𝑛. Let 𝐻𝑚
denote some model of𝑚-dimensional hyperbolic space

and let 𝐻𝑛
denote a potentially different model of 𝑛-dimensional hyperbolic space. Then, there is an

inclusion, i.e. a distance-preserving function 𝜄 : 𝐻𝑚 → 𝐻𝑛
.

Proof. If𝑛 =𝑚, we can define 𝜄 as an isometry from𝐻𝑚
to𝐻𝑛

whose existence is provided by Remark 2.34.

In the following, suppose that𝑚 < 𝑛. We first provide an inclusion for the special case of 𝔻𝑚
and 𝔻𝑛

:

clearly, the function

𝜄𝐷 : 𝔻𝑚 → 𝔻𝑛, (𝑥1, . . . , 𝑥𝑚) ↦→ (𝑥1, . . . , 𝑥𝑚, 0, . . . , 0)

is distance-preserving. Using 𝜄𝐷 , we are able to construct an inclusion for the general case. To do so,

consider two isometries 𝜙 : 𝐻𝑚 → 𝔻𝑚
and 𝜑 : 𝔻𝑛 → 𝐻𝑛

whose existence is provided by Remark 2.34.

Then, the function 𝜄 := 𝜑 ◦ 𝜄𝐷 ◦ 𝜙 : 𝐻𝑚 → 𝐻𝑛
is distance-preserving as a composition of distance-

preserving functions, i.e. an inclusion.

2.4.5 Hyperbolic Plane Geometry

We use 𝐻 2
to denote any model of 2-dimensional hyperbolic space. It can be shown that each hyperbolic

line 𝑙 of 𝐻 2
divides the set 𝐻 2 \ 𝑙 into two components. These components are referred to as open

half-planes in 𝐻𝑛
. The hyperbolic line that induced an open half-plane is called its bounding line.

It will be useful to explore the isometries taking 𝐻 2
to itself. Note that a characterization of these

isometries via elementary functions can be accomplished, at least in the 2-dimensional case and for

the models we considered [And05]. For our purposes, it is much more relevant how these isometries

of the form 𝜙 : 𝐻 2 → 𝐻 2
relate to certain geometric objects of the model 𝐻 2

. The following definition

formalizes such relationships:

Definition 2.49: Let 𝑋 denote a metric space and let 𝑌 denote a set of certain geometric objects with

respect to 𝑋 , e.g. its geodesics. Then the isometries of 𝑋 act transitively on 𝑌 if and only if for each pair

of distinct elements 𝑦1, 𝑦2 ∈ 𝑌 , there is an isometry 𝜙 : 𝑋 → 𝑋 such that 𝜙 (𝑦1) = 𝜙 (𝑦2).

Focusing on 𝐻 2 = 𝔻2
, the following useful transitivity properties hold:

Theorem 2.50: (1) The isometries of 𝔻2
act transitively on 𝔻2

.
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(2) The isometries of 𝔻2
act transitively on the set of hyperbolic lines, i.e. geodesics, of 𝔻2

.

(3) The isometries of𝔻2
act transitively on the set of triples (𝑙, 𝑟 , 𝑧) where 𝑙 is a hyperbolic line, 𝑧 is a

point on 𝑙 and 𝑟 is one of the two rays in 𝑙 determined by 𝑧.

(4) The isometries of 𝔻2
act transitively on the set of open half-planes of 𝔻2

.

(5) The isometries of 𝔻2
act transitively on the set of tuples (𝐻, 𝑝) where 𝐻 is an open half-plane

and 𝑝 is a point on the bounding line of 𝐻 .

Anderson provides proofs for the first four statements [And05, p. 62-65]. His proof of Theorem 2.50 (4)

easily generalizes to show the statement of Theorem 2.50 (5). Note that Anderson refers to the isometries

of 𝔻2
as Möbius transformations, a special type of functions that can be shown to characterize the

isometries of the form 𝜙 : 𝔻2 → 𝔻2
. We will only use this properties in the context of 𝔻2

, but it can

be shown that they hold for any model 𝐻 2
of 2-dimensional hyperbolic space. This is essentially a

consequence of Remark 2.34.

2.4.5.1 Hyperbolic Trigonometry

Three points 𝑥,𝑦, 𝑧 ∈ 𝐻 2
are said to be hyperbolically collinear if and only if there exists a hyperbolic

line of 𝐻 2
that contains all three points. Otherwise, they are called hyperbolically noncollinear.

Definition 2.51: Let 𝑥,𝑦, 𝑧 ∈ 𝐻 2
be three hyperbolically noncollinear points. The hyperbolic triangle

𝑇 (𝑥,𝑦, 𝑧) with vertices 𝑥,𝑦, 𝑧 is the region of 𝐻 2
bounded by the geodesic segments [𝑥,𝑦], [𝑦, 𝑧] and

[𝑧, 𝑥].

We refer to the geodesic segments [𝑥,𝑦], [𝑦, 𝑧] and [𝑧, 𝑥] as the sides of the hyperbolic triangle

𝑇 (𝑥,𝑦, 𝑧). Each side is contained in the triangle. The context will always clarify whether the notation

𝑇 (. . . ) refers to a Euclidean or hyperbolic triangle. For a proof of the following four well-known

theorems on hyperbolic triangles, we refer to Ratcliffe [Rat06, p. 79, 80].

Theorem 2.52: If 𝛼, 𝛽,𝛾 are the angles of a hyperbolic triangle, then

𝛼 + 𝛽 + 𝛾 < 𝜋.

Informally speaking, hyperbolic triangles are slimmer than Euclidean triangles. This also reflects in

their area, as we will soon observe.

Theorem 2.53 (Law of Sines): If 𝛼, 𝛽,𝛾 are the angles of a hyperbolic triangle and 𝑎, 𝑏, 𝑐 are the lengths

of the opposite sides, then

sinh𝑎

sin𝛼
=
sinh𝑏

sin 𝛽
=
sinh 𝑐

sin𝛾
.

Theorem 2.54 (The First Law of Cosines): If 𝛼, 𝛽,𝛾 are the angles of a hyperbolic triangle and 𝑎, 𝑏, 𝑐 are

the lengths of the opposite sides, then

cos𝛾 =
cosh𝑎 cosh𝑏 − cosh 𝑐

sinh𝑎 sinh𝑏
.

Theorem 2.55 (The Second Law of Cosines): If 𝛼, 𝛽,𝛾 are the angles of a hyperbolic triangle and 𝑎, 𝑏, 𝑐

are the lengths of the opposite sides, then

cosh 𝑐 =
cos𝛼 cos 𝛽 + cos𝛾

sin𝛼 sin 𝛽
.
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Analogous to the definition of congruent Euclidean triangles, we define two hyperbolic triangles 𝑇1
and 𝑇2 in 𝐻

2
to be congruent if and only if there exists an isometry of 𝐻 2

that maps 𝑇1 to 𝑇2. So-called

congruence theorems provide sufficient conditions for congruence of two hyperbolic triangles. For

example, the congruence theorem side-angle-side, commonly abbreviated with SAS, has the following
meaning: if two sides and the included angle of one hyperbolic triangle 𝑇1 are equal to two sides and

the included angle of another hyperbolic triangle 𝑇2, then 𝑇1 and 𝑇2 must be congruent. Note that the

order is significant: the angle is the one enclosed by the pair of sides. The following theorem lists some

congruence theorems for hyperbolic triangles. For a proof, we refer to the website of the university of

Glasgow [Sto].

Theorem 2.56 (Hyperbolic Congruence Theorems): The following conditions are sufficient for two

hyperbolic triangles to be congruent:

(1) side-angle-side (SAS),

(2) angle-side-angle (ASA),

(3) side-angle-angle (SAA),

(4) side-side-side (SSS),

(5) angle-angle-angle (AAA).

Note that all of the above congruence theorems also have a Euclidean counterpart, apart from the

AAA congruence theorem: clearly, scaling a Euclidean triangle preserves its angles, but does not yield

a congruent triangle. The next theorem characterizes isosceles hyperbolic triangles, i.e. hyperbolic

triangles that have two sides of equal length. The same characterization is known from Euclidean

isosceles triangles.

Theorem 2.57: Let 𝑇 denote a hyperbolic triangle with vertices 𝑥,𝑦, 𝑧. Then the sides [𝑥,𝑦] and [𝑦, 𝑧]
are of equal length if and only if the angle at 𝑥 and the angle at 𝑧 are equal.

For a proof, we refer again to the website of the university of Glasgow [Sto].

2.4.5.2 Hyperbolic Area

Since the formula of hyperbolic area as noted in Definition 2.43 is model-dependent and unhandy, it is

worth to collect explicit formulas for important geometric objects. A formula for the hyperbolic area of

a hyperbolic disk with radius 𝑠 can be found in Ratcliffe’s book [Rat06, p. 77]:

Theorem 2.58: Let 𝐵(𝑥, 𝑠) be the hyperbolic disk centered at a point 𝑥 of 𝐻 2
of radius 𝑠 . Then,

AreaH(𝐵(𝑥, 𝑠)) = 2𝜋 (cosh(𝑠) − 1) .

We define, as in the script of Walkden [Wal19]:

Definition 2.59: Let 𝑧1, . . . , 𝑧𝑛 ∈ 𝐻 2
. Then the hyperbolic 𝑛-gon 𝑃 with vertices at 𝑧1, . . . , 𝑧𝑛 is the

region of 𝐻 2
bounded by the geodesic segments [𝑧1, 𝑧2], . . . , [𝑧𝑛−1, 𝑧𝑛], [𝑧𝑛, 𝑧1].

Similar to triangles, the geodesic segments occurring in the above definition are called the sides of 𝑃
and they are subsets of 𝑃 . One particularity of hyperbolic geometry is that the area of a polygon can be

derived solely by the sum of its internal angles, as stated in the following famous theorem, which can

also be found in Walkden’s script [Wal19]:
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Theorem 2.60 (Gauss-Bonnet Theorem for a hyperbolic polygon): Let 𝑃 be an 𝑛-sided hyperbolic

polygon with vertices 𝜈1, . . . , 𝜈𝑛 and internal angles 𝛼1, . . . , 𝛼𝑛 . Then

AreaH(𝑃) = (𝑛 − 2)𝜋 − (𝛼1 + · · · + 𝛼𝑛).

In particular, the area of a hyperbolic triangle 𝑇 with internal angles 𝛼, 𝛽,𝛾 is given by

AreaH(𝑇 ) = 𝜋 − (𝛼 + 𝛽 + 𝛾) .
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We are finally ready to define the core concepts subject to this thesis.

3.1 Unit Ball Graph Representations

For the rest of the section, let 𝑛 ∈ ℕ and use (𝑋,𝑑) ∈ {𝐸𝑛, 𝐻𝑛} to denote 𝑛-dimensional Euclidean space

or any model of 𝑛-dimensional hyperbolic space.

Definition 3.1 (Unit Ball Graph Representation): Let 𝐺 = (𝑉 , 𝐸) be any graph. Let 𝜏 : 𝑉 → 𝑋 be an

injective function from the vertices of 𝐺 to 𝑋 and let 𝑟 > 0. Then the tuple (𝜏, 𝑟 ) is a unit ball graph
representation of 𝐺 in 𝑋 with threshold radius 𝑟 if and only if the following holds:

𝜈𝑤 ∈ 𝐸 ⇐⇒ 𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑟 for each pair of distinct vertices 𝜈,𝑤 ∈ 𝑉 .

To understand the idea behind the term unit ball graph and why we multiply 𝑟 with the factor 2 in

the above definition, it is worth recalling Lemma 2.28: when considering two balls of the same radius 𝑟 ,

this lemma states that

𝑑 (𝑥,𝑦) < 2𝑟 ⇐⇒ 𝐵(𝑥, 𝑟 ) ∩ 𝐵(𝑦, 𝑟 ) ≠ ∅.

This means that we may use balls to characterize a unit ball graph representation. By defining 𝑥 :=

𝜏 (𝜈) ∈ 𝑋 and 𝑦 := 𝜏 (𝑤) ∈ 𝑋 for any pair of distinct vertices 𝜈,𝑤 ∈ 𝑉 , the following corollary follows

immediately:

Corollary 3.2: Let𝐺 = (𝑉 , 𝐸) be a graph, let 𝜏 : 𝑉 → 𝑋 be an injective function and let 𝑟 > 0. Then the

tuple (𝜏, 𝑟 ) is a unit ball graph representation of 𝐺 in 𝑋 with threshold radius 𝑟 if and only if

𝜈𝑤 ∈ 𝐸 ⇐⇒ 𝐵(𝜏 (𝜈), 𝑟 ) ∩ 𝐵(𝜏 (𝑤), 𝑟 ) ≠ ∅ for each pair of distinct vertices 𝜈,𝑤 ∈ 𝑉 .

To avoid confusion, note that the term unit refers to a constant threshold radius 𝑟 and not necessarily

to 𝑟 = 1. The stated characterization of Definition 3.1 is often very useful to construct unit ball graph

representations. In order to verify whether a function 𝜏 : 𝑉 (𝐺) → 𝑋 is a unit ball graph representation

of some graph 𝐺 , the initial definition is usually handier.

If a graph 𝐺 = (𝑉 , 𝐸) has a unit ball graph representation (𝜏 : 𝑉 → 𝑋, 𝑟 ), we also say that 𝐺 is a unit
ball graph (UBG) in 𝑋 with threshold radius 𝑟 . Throughout the thesis, the case 𝑋 ∈ {𝐸2, 𝐻 2} will be of
particular interest. Since balls in the plane are usually called disks, we speak of Euclidean, respectively

hyperbolic, unit disk graph representations and unit disk graphs (UDGs) in this context.

Remark 3.3: Corollary 3.2 might remind us of intersection graphs, see Definition 2.3. Indeed, there is a

strong connection: consider the set 𝐴 consisting precisely of the balls with center 𝜏 (𝜈) and radius 𝑟 for

each 𝜈 ∈ 𝑉 . In particular, we have 𝐴 ⊆ P (𝑋 ). Let G (𝐴) denote the intersection graph of 𝐴. Then, we

observe that (𝜏, 𝑟 ) is a UBG representation of 𝐺 if and only if the function that identifies vertices with

their corresponding balls

𝑓 : 𝑉 (𝐺) → 𝐴,𝜈 ↦→ 𝐵(𝜏 (𝜈), 𝑟 )

is a graph isomorphism between 𝐺 and 𝐺 ′.
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This also illustrates why we require that a UBG representation 𝜏 : 𝑉 → 𝑋 is injective: if we boil a

UBG representation down to some balls positioned in a space 𝑋 , we still want to be able to recover the

represented graph𝐺 , at least up to graph isomorphism. If multiple vertices correspond to the same ball,

this is not possible because we cannot even count the number of vertices.

Remark 3.4: Another viewpoint is occasionally useful: start with a tuple (𝜏 : 𝑉 → 𝑋, 𝑟 ) where 𝑉 is

some finite set, 𝜏 is injective and 𝑟 > 0. We then say that (𝜏, 𝑟 ) induces the graph𝐺 = (𝑉 , 𝐸) whose edge
set is defined by 𝜈𝑤 ∈ 𝐸 :⇐⇒ 𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑟 for each pair of distinct vertices 𝜈,𝑤 ∈ 𝑉 . Clearly,
(𝜏, 𝑟 ) then is a UBG representation of the induced graph 𝐺 .

How relevant is the threshold radius when dealing with UBG representations? In the Euclidean case,

it can be neglected, as the next theorem justifies:

Theorem 3.5: Let 𝐺 be any graph, 𝑛 ∈ ℕ and 𝑟 > 0. Suppose that 𝐺 is a UBG in 𝐸𝑛 with threshold

radius 𝑟 . Then, for each 𝑟 ′ > 0, the graph 𝐺 is also a UBG in 𝐸𝑛 with threshold radius 𝑟 ′.

Proof. Let 𝑉 denote the vertices of 𝐺 . Choose a UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 𝑟 ) of 𝐺 . Set 𝜆 := 𝑟 ′

𝑟
.

Using the fact that dE (𝜆𝑥, 𝜆𝑦) = 𝜆 dE (𝑥,𝑦) as observed in Lemma 2.7, we obtain

dE (𝜆𝑥, 𝜆𝑦) < 𝑟 ′ ⇐⇒ 𝜆 dE (𝑥,𝑦) < 𝑟 ′ ⇐⇒ dE (𝑥,𝑦) < 𝑟 for all 𝑥,𝑦 ∈ 𝐸𝑛 .

Thus, define the injection 𝜏 ′ : 𝑉 → 𝐸𝑛 by 𝜏 ′(𝜈) := 𝜆𝜏 (𝜈) for each 𝜈 ∈ 𝑉 . Due to the above observation,

the tuple (𝜏 ′, 𝑟 ′) is a UBG representation of 𝐺 in 𝐸𝑛 with threshold radius 𝑟 ′.

In this thesis, the following situation will often occur: we start with a UBG representation (𝜏 : 𝑉 →
𝑋, 𝑟 ) of 𝐺 in some metric space 𝑋 and want to convert it to a UBG representation (𝜌 : 𝑉 → 𝑌, 𝑠) of
𝐺 in another metric space 𝑌 . Theorem 3.5 addresses the special case of 𝑋 = 𝑌 = 𝐸𝑛 and focuses on

the threshold radius. What if 𝑋 and 𝑌 are distinct metric spaces? If a distance-preserving function

𝜙 : 𝑋 → 𝑌 is available, then (𝜙 ◦ 𝜏 : 𝑉 → 𝑌, 𝑟 ) is clearly a UBG representation of 𝐺 in 𝑌 . As an

important consequence, the existence of inclusions 𝜄 : 𝐻𝑚 → 𝐻𝑛
for𝑚 ≤ 𝑛, see Lemma 2.48, implies

that a UBG representation of 𝐺 in some model 𝐻𝑚
of𝑚-dimensional hyperbolic space can be converted

to a UBG representation of 𝐺 in some model 𝐻𝑛
of 𝑛-dimensional hyperbolic space, when keeping the

same threshold radius. We can use this for both increasing the dimension of a model and for converting

between different models. Similarly, this increase of dimension also applies to UBG representations in

Euclidean space, due to Euclidean inclusions, see Example 2.18.

What if 𝑋 and 𝑌 are not related by an isometry or distance-preserving function? This is usually the

most interesting case. Similar to above, the idea of composing 𝜏 : 𝑉 → 𝑋 with some special function

𝑓 : 𝑋 → 𝑌 is worth further investigation. Note that in this scenario, we are willing to tolerate a change

of threshold radius, i.e. do not require 𝑟 = 𝑠 . Then, the following type of function arises naturally:

Definition 3.6 (Threshold-Preserving Functions): Let (𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ) be metric spaces. A function

𝑓 : 𝑋 → 𝑌 is threshold-preserving with respect to the thresholds 𝑟, 𝑠 > 0 if and only if 𝑓 is injective and

satisfies

𝑑𝑋 (𝑥,𝑦) < 𝑟 ⇐⇒ 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑦)) < 𝑠 for all 𝑥,𝑦 ∈ 𝑋 .

Note that the order of the thresholds 𝑟, 𝑠 > 0 clearly matters. Clearly, any distance-preserving function

𝑓 : 𝑋 → 𝑌 is also threshold-preserving when choosing any equal thresholds 𝑟 = 𝑠 > 0. The scalar

multiplication function used in the proof of Theorem 3.5 is an example of a threshold-preserving function

with respect to distinct thresholds.
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Remark 3.7: If𝑋 ∈ {𝐸𝑛, 𝐻𝑛}, we can drop the requirement of 𝑓 : 𝑋 → 𝑌 being injective in Definition 3.6,

because it follows from the rest of the definition. To see this, consider a function 𝑓 : 𝑋 → 𝑌 that satisfies

the rest of Definition 3.6 with respect to some fixed thresholds 𝑟, 𝑠 > 0. Assume that 𝑓 is not injective,

i.e. there are two distinct points 𝑥,𝑦 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑓 (𝑦) ∈ 𝑌 . If 𝑋 ∈ {𝐸𝑛, 𝐻𝑛}, there is a point
𝑧 ∈ 𝑋 such that 𝑑𝑋 (𝑧, 𝑥) < 𝑟 and 𝑟 < 𝑑𝑋 (𝑧,𝑦). For example, such a point can be found by considering

the unique geodesic of 𝑋 containing 𝑥 and 𝑦. Then, we obtain 𝑠 < 𝑑𝑌 (𝑓 (𝑧), 𝑓 (𝑦)) = 𝑑𝑌 (𝑓 (𝑧), 𝑓 (𝑥)) < 𝑠 ,
a contradiction. So if 𝑓 satisfies the rest of Definition 3.6, it is guaranteed to be injective.

Note that this argument does not work for any metric space, for example if the distance of any two

points is bounded by some constant. Spherical space has this property, we will encounter it in Chapter 7.

The natural application of threshold-preserving functions is shown in the following theorem:

Theorem 3.8: Let 𝑓 : 𝑋 → 𝑌 be a threshold-preserving function with respect to the thresholds 2𝑟, 2𝑠 > 0.

Let𝐺 = (𝑉 , 𝐸) be a graph with a UBG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) of𝐺 in 𝑋 . Then, (𝑓 ◦ 𝜏 : 𝑉 → 𝑌, 𝑠)
is a UBG representation of 𝐺 in 𝑌 .

Proof. The function 𝑓 ◦ 𝜏 is injective as a composition of two injective functions. By definition of 𝑓 , we

have

𝑑𝑋 (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑟 ⇐⇒ 𝑑𝑌 (𝑓 ◦ 𝜏 (𝜈), 𝑓 ◦ 𝜏 (𝑤)) < 2𝑠 for each 𝜈,𝑤 ∈ 𝑉 .

Following the terminology introduced in Remark 3.4, we conclude that the tuples (𝜏, 𝑟 ) and (𝑓 ◦ 𝜏, 𝑠)
must induce the same graph, i.e. they are both UBG representations of 𝐺 .

It is worth highlighting that this type of conversion is graph independent: it can be applied to any

graph, as long as it has a UBG representation in 𝑋 . Another important property of UBG representations

is that they can be restricted to vertex-induced subgraphs:

Remark 3.9: Let 𝐺 = (𝑉 , 𝐸) be any graph with a UBG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) in a space 𝑋 .

Consider any vertex subset 𝑉 ′ ⊆ 𝑉 . By restriction of 𝜏 to the domain 𝑉 ′, we obtain the tuple (𝜏 |𝑉 ′, 𝑟 ).
Let 𝐺 ′ = (𝑉 ′, 𝐸′) denote the induced graph of this tuple. By construction, two vertices 𝜈,𝑤 ∈ 𝑉 ′ ⊆ 𝑉
are adjacent with respect to 𝐸′ if and only if they are adjacent with respect to 𝐸. Thus 𝐺 ′ is the vertex-
induced subgraph of𝐺 by the set 𝑉 ′ and the tuple (𝜏 |𝑉 ′, 𝑟 ) is a UBG representation of𝐺 ′ in the same

space 𝑋 .

3.1.1 Strict UBG Representations

From the perspective of Remark 3.3, we only considered intersection graphs of open balls of a fixed

radius 𝑟 so far. In this thesis, we will not treat the setting where different balls can have different radii,

but it is worth considering what happens if one uses only closed balls instead of open ones. Due to

𝐵(𝑥, 𝑟 ) ∩ 𝐵(𝑦, 𝑟 ) ≠ ∅ ⇐⇒ 𝑑 (𝑥,𝑦) ≤ 2𝑟

as mentioned in the context of Lemma 2.28, using closed balls is equivalent to replacing the comparator <

with ≤ in Definition 3.1. In this case, we speak of unit closed ball graph representations and unit closed ball
graphs (UCBGs). At first glance, UCBG representations do not differ much from UBG representations. For

example, they can also be restricted to vertex-induced subgraphs. Indeed, both types of representations

are equivalent, as we show in the remainder of this section. However, in practice, it is often easier to

construct UCDG representations of certain graphs. As a first result, a UBG representation can be viewed

as a UCBG representation when slightly adapting the threshold radius, and vice versa:

Lemma 3.10: Let 𝐺 be any graph. The following two implications hold:
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(1) If 𝐺 is a UBG in 𝑋 with threshold radius 𝑟 > 0, then there is 𝑟0 < 𝑟 such that for any 𝑟 ′ ∈ [𝑟0, 𝑟 ):
𝐺 is a UCBG in 𝑋 with threshold radius 𝑟 ′.

(2) If 𝐺 is a UCBG in 𝑋 with threshold radius 𝑟 > 0, then there is 𝑟0 > 𝑟 such that for any 𝑟 ′ ∈ (𝑟, 𝑟0]:
𝐺 is a UBG in 𝑋 with threshold radius 𝑟 .

Proof. To prove the first statement, choose a UBG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) of 𝐺 . Then,

𝑟0 :=
1

2

max{𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) | 𝜈,𝑤 ∈ 𝑉 and 𝜈𝑤 ∈ 𝐸} < 𝑟

has the desired property: if 𝑟 ′ ∈ [𝑟0, 𝑟 ), then each tuple (𝜏, 𝑟 ′) is a UCBG representation of 𝐺 .

Concerning the second statement, choose a UCBG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) of 𝐺 . Similarly,

𝑟0 :=
1

2

min{𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) | 𝜈,𝑤 ∈ 𝑉 and 𝜈𝑤 ∉ 𝐸} > 𝑟

has the desired property: if 𝑟 ′ ∈ (𝑟, 𝑟0], then each tuple (𝜏, 𝑟 ′) is a UBG representation of 𝐺 .

For our purposes, this way of converting between the two types of representations is impractical. For

example, suppose that 𝐺 is a UCBG in 𝑋 for each threshold radius 𝑟 > 0. Then we would expect that 𝐺

is also a UBG in 𝑋 for each threshold radius 𝑟 > 0. Unfortunately, we cannot derive such a statement

from Lemma 3.10. To see this, let 𝑟0 = 𝑟0(𝑟 ) denote the value provided by Theorem 3.10 (2) for each

threshold radius 𝑟 > 0. This means that we can be certain that𝐺 is a UBG in 𝑋 for each threshold radius

𝑟 ′ contained in the union

𝐴 :=
⋃
𝑟>0

(𝑟, 𝑟0(𝑟 )] .

But this set does not necessarily contain every positive real number. For example, 1 > 𝑟0(𝑟 ) = 1+𝑟
2

> 𝑟

might hold for each 𝑟 < 1. Then the set 𝐴 does not contain 𝑟 ′ = 1.

So we must take another approach. Instead of modifying the threshold radius of a UBG or UCBG

representation (𝜏 : 𝑉 → 𝐺, 𝑟 ), we must modify the function 𝜏 . If done correctly, we can even convert

a given UBG or UCBG representation to a strict UBG representation, meaning tuples (𝜏, 𝑟 ) that are
simultaneously UBG and UCBG representations.

Some terminology is helpful: suppose a graph𝐺 = (𝑉 , 𝐸) together with a UBG or UCBG representation

(𝜏 : 𝑉 → 𝑋, 𝑟 ) of𝐺 is known from context. If 𝜈𝑤 ∈ 𝐸, we refer to 𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) as the length of the edge
𝜈𝑤 . Similarly, if 𝜈𝑤 ∉ 𝐸, we refer to 𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) as the length of the non-edge 𝜈𝑤 . Inspired by scalar

multiplication functions in 𝐸𝑛 , we define:

Definition 3.11: Let 𝑎 < 0 < 𝑏 and 𝑋0 ⊆ 𝑋 . A function 𝑓𝜀 : 𝑋0 → 𝑋 is distance-scaling if and only if for

each pair of distinct points 𝑥,𝑦 ∈ 𝑋0, the following holds:

(1) 𝑑 (𝑥,𝑦) = 𝑑 (𝑓0(𝑥), 𝑓0(𝑦)),

(2) 𝑑 (𝑥,𝑦) > 𝑑 (𝑓𝜀 (𝑥), 𝑓𝜀 (𝑦)) > 0 for each 𝜀 ∈ (𝑎, 0),

(3) 𝑑 (𝑥,𝑦) < 𝑑 (𝑓𝜀 (𝑥), 𝑓𝜀 (𝑦)) for each 𝜀 ∈ (0, 𝑏),

(4) the function 𝑔𝑥,𝑦 : (𝑎, 𝑏) → ℝ, 𝜀 ↦→ 𝑑 (𝑓𝜀 (𝑥), 𝑓𝜀 (𝑦)) is continuous.

In the above definition, the values 𝑎 = −∞ and 𝑏 = ∞ are allowed as well. A distance-scaling function

𝑓𝜀 is injective for each 𝜀 in the provided interval (𝑎, 𝑏). With the help of distance-scaling functions, we

can convert UBG representations to strict UBG representations while keeping the same threshold radius:

26



3 Unit Ball Graphs and Sphericity

Lemma 3.12: Let (𝜏 : 𝑉 → 𝑋, 𝑟 ) be a UBG representation of𝐺 = (𝑉 , 𝐸) in 𝑋 . Set 𝑋0 = 𝜏 (𝑉 ). Suppose
that 𝑓𝜀 : 𝑋0 → 𝑋 is distance-scaling function where 𝜀 ∈ (𝑎, 𝑏). Then there is an 𝜀0 ∈ (0, 𝑏) such that

𝑅 := (𝑓𝜀0 ◦ 𝜏, 𝑟 ) is a strict UBG representation of 𝐺 .

Proof. We restrict ourselves to values 𝜀0 > 0, implicating that every non-edge has length strictly greater

than 2𝑟 with respect to the representation 𝑅, due to Lemma 3.11 (3). So it suffices to ensure that we do

not lose any edge of 𝐺 . To do so, define the function

𝑔 : (𝑎, 𝑏) → ℝ, 𝜀 ↦→ max

𝜈𝑤∈𝐸
𝑔𝜏 (𝜈 ),𝜏 (𝑤 ) (𝜀)

where functions of the form 𝑔𝜏 (𝜈 ),𝜏 (𝑤 ) are defined as in Lemma 3.11 (4) and are thereby continuous. As

a consequence, the function 𝑔 is continuous as the maximum of a finite number of continuous functions.

Since (𝜏, 𝑟 ) is a UBG representation, we have

𝑔(0) = max

𝜈𝑤∈𝐸
𝑑 (𝑓0(𝜏 (𝜈)), 𝑓0(𝜏 (𝑤))) = max

𝜈𝑤∈𝐸
𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑟 .

Due to the continuity of 𝑔, we may choose 𝜀0 ∈ (0, 𝑏) such that 𝑔(𝜀0) < 2𝑟 also holds. This means that

every edge of 𝐺 has length strictly smaller than 2𝑟 with respect to the representation 𝑅. In summary, 𝑅

is a strict UBG representation of 𝐺 with the above choice of 𝜀0 > 0.

Using a similar argument, we can also convert UCBG representations to strict UBG representations

while keeping the same threshold radius:

Lemma 3.13: Let (𝜏 : 𝑉 → 𝑋, 𝑟 ) be a UCBG representation of 𝐺 = (𝑉 , 𝐸) in 𝑋 . Set 𝑋0 = 𝜏 (𝑉 ). Suppose
that 𝑓𝜀 : 𝑋0 → 𝑋 is distance-scaling function where 𝜀 ∈ (𝑎, 𝑏). Then there is an 𝜀0 ∈ (𝑎, 0) such that

𝑅 := (𝑓𝜀0 ◦ 𝜏, 𝑟 ) is a strict UBG representation of 𝐺 .

Proof. We restrict ourselves to values 𝜀0 < 0, implicating that every edge of𝐺 has length strictly less

than 2𝑟 with respect to the representation 𝑅, due to Lemma 3.11 (3). So it suffices to ensure that every

non-edge of 𝐺 stays a non-edge with respect to 𝑅. To do so, define the function

ℎ : (𝑎, 𝑏) → ℝ, 𝜀 ↦→ min

𝜈𝑤∉𝐸
𝑔𝜏 (𝜈 ),𝜏 (𝑤 ) (𝜀)

where functions of the form 𝑔𝜏 (𝜈 ),𝜏 (𝑤 ) are defined as in Lemma 3.11 (4) and are thereby continuous. As

a consequence, the function ℎ is continuous as the minimum of a finite number of continuous functions.

Since (𝜏, 𝑟 ) is a UCBG representation, we have

𝑔(0) = min

𝜈𝑤∉𝐸
𝑑 (𝑓0(𝜏 (𝜈)), 𝑓0(𝜏 (𝑤))) = min

𝜈𝑤∉𝐸
𝑑 (𝜏 (𝜈), 𝜏 (𝑤)) > 2𝑟 .

Due to the continuity of 𝐺 , we may choose 𝜀 ∈ (𝑎, 0) such that 𝑔(𝜀0) > 2𝑟 also holds. This means that

every non-edge of𝐺 has length strictly greater than 2𝑟 with respect to the representation 𝑅. In summary,

𝑅 is a strict UBG representation of 𝐺 with the above choice of 𝜀0 < 0.

It remains to provide concrete distance-scaling functions. For 𝑋 = 𝐸𝑛 , define

𝑓𝜀 : 𝐸
𝑛 → 𝐸𝑛, 𝑥 ↦→ (1 + 𝜀) · 𝑥 for each 𝜀 ∈ (−1,∞).

Due to Lemma 2.7, we conclude that 𝑓 satisfies the first three properties of a distance-scaling function.

It also satisfies the fourth property since the function

𝑔𝑥,𝑦 : (−1,∞) → ℝ, 𝜀 ↦→ dE (𝑓𝜀 (𝑥), 𝑓𝜀 (𝑦)) = (1 + 𝜀) dE (𝑥,𝑦)
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is clearly continuous for each 𝑥,𝑦 ∈ 𝐸𝑛 . It is also evident that 𝑓 remains distance-scaling when restricted

to any subset 𝑋0 ⊆ 𝐸𝑛 .
Finding a distance-scaling function in the hyperbolic context is a little trickier. Consider the upper

half-space model 𝐻𝑛
of 𝑛-dimensional hyperbolic space. Definition 2.44 suggests that distances in 𝕌𝑛

become smaller when points are translated upwards. This impression is indeed correct: given any finite

set 𝑋0 ⊆ 𝐻𝑛
, define 𝑏 := min{𝑥𝑛 | 𝑥 ∈ 𝑋0} > 0. For any 𝜀 ∈ (−∞, 𝑏), define the function

𝐹𝜀 : 𝑋0 → 𝕌𝑛, (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛 − 𝜀)
that subtracts 𝜀 from the last component of the argument 𝑥 ∈ 𝑋0. By choice of 𝑏, we have 𝐹𝜀 (𝑥) ∈ 𝕌𝑛

since (𝐹𝜀 (𝑥))𝑛 > 0. How does 𝐹𝜀 influence the hyperbolic distance dU ? Since 𝐹𝜀 keeps the Euclidean

distance of two points invariant, we have

dU (𝐹𝜀 (𝑥), 𝐹𝜀 (𝑦)) = arcosh

(
1 + ∥𝑥 − 𝑦∥2

2(𝑥𝑛 − 𝜀) (𝑦𝑛 − 𝜀)

)
for each 𝑥,𝑦 ∈ 𝑋0 ⊆ 𝕌𝑛 . (3.1)

Treating this as a function of 𝜀 for fixed and distinct points 𝑥,𝑦 ∈ 𝕌𝑛
, we get

𝐺𝑥,𝑦 : (−∞, 𝑏) → ℝ, 𝜀 ↦→ dU (𝐹𝜀 (𝑥), 𝐹𝜀 (𝑦)) .
By evaluating Equation (3.1), we conclude that 𝐺𝑥,𝑦 is continuous as a composition of continuous

functions. Furthermore, 𝐺𝑥,𝑦 is strictly increasing since arcosh is strictly increasing. Combining this

with the fact that 𝐺𝑥,𝑦 (0) = dU (𝑥,𝑦), we conclude that 𝐹𝜀 : 𝑋0 → 𝕌𝑛
where 𝜀 ∈ (−∞, 𝑏) is indeed a

distance-scaling function. The fact that we used the upper half-space model 𝐻𝑛
is not a restriction since

UBG and UCBG representations in any model of 𝑛-dimensional hyperbolic space may be converted to

𝕌𝑛
and back.

The existence of the functions 𝑓𝜀 and 𝐹𝜀 together with Lemma 3.12 and Lemma 3.13 yield the following

corollary:

Corollary 3.14: Let 𝑋 ∈ {𝐸𝑛, 𝐻𝑛}. If a graph 𝐺 is a UBG or UCBG in 𝑋 with threshold radius 𝑟 > 0,

then 𝐺 is also a strict UBG in 𝑋 with the same threshold radius 𝑟 .

In particular, each UBG is a UCBG with the same threshold radius, and vice versa.

3.2 Sphericity

Given a graph 𝐺 , studying in which spaces 𝐺 has a UBG representation provides interesting insights

concerning the graph’s structure. When dealing with spaces of the type 𝑋 ∈ {𝐸𝑛, 𝐻𝑛}, the fact that we
can always convert a UBG representation in 𝑋 to a UBG representation in a higher-dimensional version

of 𝑋 suggests that finding UBG representations in low-dimensional spaces provides more structural

insights about the represented graphs. This leads to the concept of sphericity. We start with the case of

𝑋 = 𝐸𝑛 .

Definition 3.15 (Euclidean Sphericity): Let 𝐺 be any graph. The Euclidean sphericity of 𝐺 , denoted

ESph(𝐺), is the smallest integer 𝑛 ∈ ℕ such that there is a UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 1) of 𝐺 in

𝑛-dimensional Euclidean space.

Note that the threshold radius of 1 in the above definition can be replaced with any other threshold

radius 𝑟 > 0 without altering the Euclidean sphericity, because these UBG representations can all be

converted to each other while keeping the number of dimensions, as seen in Theorem 3.5. Immediately,

the question arises whether Euclidean sphericity is well-defined. Could there be some finite graph𝐺

that does not have a UBG representation in each finite-dimensional Euclidean space 𝐸𝑛? Such graphs do

not exist, as the following theorem by Maehara shows, by providing a first upper bound of Euclidean

sphericity [Mae84b]:
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Theorem 3.16: For any graph 𝐺 = (𝑉 , 𝐸), we have ESph(𝐺) ≤ |𝑉 |.

This upper bound is of theoretical relevance, but it is not tight: in the same paper, Maehara proves

that

ESph(𝐺) ≤ |𝑉 | − 𝜔 (𝐺),

where 𝜔 (𝐺) ≥ 1 denotes the clique number of 𝐺 , i.e. the size of the largest complete subgraph of 𝐺 .

When defining hyperbolic sphericity, we need to pay attention to the threshold radius. In the Euclidean

case, it could be neglected because of Theorem 3.5. As we do not have a hyperbolic version of this

theorem, we need to make hyperbolic sphericity depend on the threshold radius used. We will encounter

examples which demonstrate that this is indeed necessary, e.g. trees, see Chapter 5.

Definition 3.17 (Hyperbolic Sphericity): Let 𝐺 be any graph, 𝑠 > 0 and let 𝐻𝑛
denote any model

of 𝑛-dimensional hyperbolic space. The hyperbolic sphericity of 𝐺 with threshold radius 𝑠 , denoted

HSph𝑠 (𝐺), is the smallest integer 𝑛 ∈ ℕ such that there is a UBG representation (𝜌 : 𝑉 → 𝐻𝑛, 𝑠) of 𝐺
in 𝐻𝑛

.

To prove that this definition is well-defined, we need to show that it does not depend on the choice of

the model 𝐻𝑛
and that HSph𝑠 (𝐺) is finite for any finite graph 𝐺 and any threshold radius 𝑠 > 0. The

independence of the model 𝐻𝑛
is something we already noted in the previous section: if one finds a

UBG representation in some model, it can be converted to a UBG representation in any other model,

assuming a fixed dimension 𝑛 and a fixed threshold radius 𝑠 . This is an important insight because it

permits to pick a model that favors specific constructions or geometric intuitions without worrying

about the other models. Concerning the second aspect of HSph𝑠 (𝐺) ∈ ℕ, we postpone its proof to

Section 4.1 where we compare Euclidean and hyperbolic sphericity.

It is worth noting that Euclidean sphericity and hyperbolic sphericity are both graph invariants,

i.e. they are invariant under graph isomorphisms. This is because we can freely convert between

UBG representation of isomorphic graphs. To see this, let𝐺 = (𝑉 , 𝐸) and 𝐺 ′ = (𝑉 ′, 𝐸′) be isomorphic

graphs via a graph isomorphism 𝑓 : 𝑉 ′ → 𝑉 . If (𝜏 : 𝑉 → 𝑋, 𝑟 ) is a UBG representation of 𝐺 , then

(𝜏 ◦ 𝑓 : 𝑉 ′ → 𝑋, 𝑟 ) clearly is a UBG representation of 𝐺 ′ in the same space. This even holds for any

metric space 𝑋 .

Remark 3.18: If we defined Euclidean or hyperbolic sphericity not via UBG representations, but via

UCBG representations or via strict UBG representations, this would lead to equivalent definitions due to

Corollary 3.14.

Concerning vertex-induced subgraphs, an immediate consequence of Remark 3.9 is the following

corollary:

Corollary 3.19: Let 𝐺 = (𝑉 , 𝐸) be any graph and let 𝐺 ′ be a vertex-induced subgraph of 𝐺 . Then, for

each 𝑠 > 0, we have

ESph(𝐺 ′) ≤ ESph(𝐺) and HSph𝑠 (𝐺 ′) ≤ HSph𝑠 (𝐺) .

Such a statement does not hold for subgraphs in general: each graph 𝐺 = (𝑉 , 𝐸) is isomorphic to

a subgraph of 𝐾 |𝑉 | , the complete graph with |𝑉 | vertices. But complete graphs have Euclidean and

hyperbolic sphericity of 1, as the next example shows.

Example 3.20: If 𝐺 is a complete graph, then for any 𝑠 > 0 we have that HSph𝑠 (𝐺) = ESph(𝐺) = 1.
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3 Unit Ball Graphs and Sphericity

Proof. Let 𝐺 := 𝐾𝑛 and let 𝑉 := {𝜈0, . . . , 𝜈𝑛−1} denote its vertices. We start by providing a UBG

representation (𝜏 : 𝑉 → 𝐸1, 𝑠) of 𝐺 in 𝐸1 with threshold radius 𝑠 . Define 𝜏 (𝜈𝑖) := 𝑖
𝑛
𝑠 ∈ ℝ for each

𝑖 ∈ {0, . . . , 𝑛 − 1}. Then

dE (𝜏 (𝜈𝑖), 𝜏 (𝜈 𝑗 )) =
|𝑖 − 𝑗 |
𝑛

𝑠 < 𝑠 < 2𝑠 for each pair of distinct vertices 𝜈𝑖 , 𝜈 𝑗 ∈ 𝑉 .

Hence (𝜏, 𝑠) has the desired property. ESph(𝐺) = 1 follows because the threshold radius does not matter

in the Euclidean case.

To seeHSph𝑠 (𝐺) = 1, let𝐻 1
denote any model of 𝑛-dimensional hyperbolic space and let 𝜙 : 𝐸1 → 𝐻 1

denote an isometry according to Remark 2.47. Then (𝜙 ◦ 𝜏 : 𝑉 → 𝐻 1, 𝑠) must be a UBG representation

of 𝐺 in 𝐻 1
with threshold radius 𝑠 .

Remark 3.21: The above technique easily generalizes to showing that each UBG representation (𝜏 : 𝑉 →
𝐸1, 1) of some graph 𝐺 = (𝑉 , 𝐸), not necessarily complete, can be converted to a UBG representation

(𝜌 : 𝑉 → 𝐻 1, 𝑠) of 𝐺 with any threshold radius 𝑠 > 0. Similarly, with the help of the isometry 𝜙−1, we
can convert in the other direction. This means that the class of graphs𝐺 with ESph(𝐺) = 1 corresponds

to the class of graphs 𝐺 with HSph𝑠 (𝐺) = 1 and that the threshold radius can be neglected in the

hyperbolic 1-dimensional case. This graph class is commonly known as unit interval graphs. It is already
studied extensively, so we may focus on graphs with Euclidean and hyperbolic sphericity greater than

one in this thesis.

We proceed with a nontrivial example of such graphs:

Example 3.22: Let𝑚 ∈ ℕ,𝑚 ≥ 2 and let𝐺 = 𝐾𝑚 (2) be the complete𝑚-partite graph on𝑚 sets of size

two, i.e. there are 2𝑚 vertices and every vertex in 𝐺 is adjacent to every other vertex except for one.

Then, for any 𝑠 > 0, we have that HSph𝑠 (𝐺) = ESph(𝐺) = 2.

Proof. Let𝑉 := {𝜈1, . . . , 𝜈𝑚,𝑤1, . . . ,𝑤𝑚} denote the vertices of𝐺 such that 𝜈𝑖 is adjacent to each other ver-

tex except𝑤𝑖 and vice versa, for each 𝑖 ∈ {1, . . . ,𝑚}. Consider the vertex subset𝑉 ′ := {𝜈1, 𝜈2,𝑤1,𝑤2} ⊆ 𝑉 .
The vertex-induced subgraph 𝐺 |𝑉 ′ corresponds to the cycle graph with four vertices 𝐶4. Unit interval

graphs are known to be 𝐶4-free, which implies that ESph(𝐺) > 1 and HSph𝑠 (𝐺) > 1 for each 𝑠 > 0.

It remains to show that two dimensions are sufficient. Starting with Euclidean sphericity, we may

define an injective function 𝜏 : 𝑉 → 𝑆𝐸 (0, 1) ⊆ 𝐸2 which places the vertices on the unit circle, such that

𝜈𝑖 and 𝑤𝑖 are placed on antipodal points, i.e. 𝜏 (𝜈𝑖) = −𝜏 (𝑤𝑖) for each 𝑖 ∈ {1, . . . ,𝑚}. This means that

dE (𝜏 (𝜈𝑖), 𝜏 (𝑤𝑖)) = 2 and dE (𝜏 (𝜈𝑖), 𝜏 (𝜈 ′)) < 2 for each 𝜈 ′ ∈ 𝑉 \ {𝑤𝑖}. Since the distance must be strictly

smaller than 2 for two vertices to be adjacent when using threshold radius 𝑟 = 1, the tuple (𝜏, 1) is a
UDG representation of 𝐺 in 𝐸2.

This idea also works in the context of hyperbolic sphericity. We choose to work with the Poincaré disk

model 𝔻2
. Let 𝑠 > 0 denote the threshold radius that shall be used. Then there is an injective function

𝜌 : 𝑉 → 𝑆𝐷 (0, 𝑠) ⊆ 𝔻2
such that 𝜈𝑖 and 𝑤𝑖 are placed on antipodal points of the sphere 𝑆𝐷 (0, 𝑠), i.e.

𝜌 (𝜈𝑖) = −𝜌 (𝑤𝑖) for each 𝑖 ∈ {1, . . . ,𝑚}. Similarly to the Euclidean case, dD (𝜌 (𝜈𝑖), 𝜌 (𝑤𝑖)) = 2𝑠 holds for

each 𝑖 because the geodesic segment [𝜌 (𝜈𝑖), 𝜌 (𝑤𝑖)] contains the origin, making the triangle inequality

tight, see Corollary 2.27. Let 𝜈 ′ ∈ 𝑉 \ {𝜈𝑖 ,𝑤𝑖}. We claim that the geodesic segment 𝑎 := [𝜏 (𝜈𝑖), 𝜏 (𝜈 ′)]
cannot contain the origin: otherwise, 𝑎 would be a Euclidean line segment containing the origin, see

Section 2.4.1. As such, it could intersect the sphere 𝑆𝐷 (0, 𝑠) in at most two points, due to Theorem 2.39

and Lemma 2.10. This would imply 𝜏 (𝜈 ′) = 𝜏 (𝑤𝑖) and thus 𝜈 ′ = 𝑤𝑖 since we required that 𝜏 is injective.

However we also required 𝜈 ′ ≠ 𝑤𝑖 . This proves 0 ∉ 𝑎. With this knowledge, Theorem 2.26 yields that

dD (𝜏 (𝜈𝑖), 𝜏 (𝜈 ′)) < dD (𝜏 (𝜈𝑖), 0) + dD (𝜏 (𝜈 ′), 0) = 𝑠 + 𝑠 = 2𝑠 .

We conclude that (𝜌, 𝑠) is a UDG representation of 𝐺 in 𝔻2
.
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4 Comparing Euclidean and Hyperbolic
Sphericity

In this chapter, we compare Euclidean and hyperbolic sphericity. We show that hyperbolic sphericity

is bounded from above by Euclidean sphericity, if the threshold radius is chosen small enough. If the

threshold radius may not depend on the graph, a similar bound holds: in this case, hyperbolic sphericity

may exceed Euclidean sphericity, but by at most one. With the help of these results, we show in the last

section that hyperbolic sphericity is computable.

4.1 Hyperbolic Sphericity Is Well-Defined

In this section, we focus on the scenario where the threshold may not depend on the graph.

Theorem 4.1: For any graph 𝐺 and any 𝑠 > 0, we have

HSph𝑠 (𝐺) ≤ ESph(𝐺) + 1.

Proof. Let 𝐺 = (𝑉 , 𝐸) and 𝑛 := ESph(𝐺) ∈ ℕ. Fix any threshold radius 𝑠 > 0. We will construct a UBG

representation (𝜌 : 𝑉 → 𝕌𝑛+1, 𝑠) of 𝐺 in the (𝑛 + 1)-dimensional upper half-space model 𝕌𝑛+1
with

threshold radius 𝑠 . Then, the statement of the theorem follows immediately.

Start by setting 𝑠′ := 2𝑠 . Using Theorem 3.5, we can choose a UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 𝑟 ) of
𝐺 in 𝐸𝑛 with threshold radius 𝑟 such that

(2𝑟 )2 = 2(cosh(𝑠′) − 1) ⇐⇒ 𝑟 =
1

2

√︁
2(cosh(𝑠′) − 1)

since the last term is always greater than zero, due to cosh(𝑠′) > 1. We define the function 𝜌 : 𝑉 → 𝕌𝑛+1

by setting

𝜌 (𝜈)𝑖 := 𝜏 (𝜈)𝑖 for each 𝑖 ∈ {1, . . . , 𝑛} and 𝜌 (𝜈)𝑛+1 := 1

for each vertex 𝜈 ∈ 𝑉 . Here, 𝜌 (𝜈)𝑖 denotes the 𝑖-th entry of the vector 𝜌 (𝜈). In particular, 𝜌 (𝜈) ∈ 𝕌𝑛+1

holds for each vertex 𝜈 ∈ 𝑉 because the last coordinate is positive. Clearly, 𝜌 inherits injectivity from

𝜏 . By construction, the following holds: 𝑑𝐸 (𝜏 (𝜈), 𝜏 (𝑤)) = ∥𝜏 (𝜈) − 𝜏 (𝑤)∥ = ∥𝜌 (𝜈) − 𝜌 (𝑤)∥. Now, let
𝜈,𝑤 ∈ 𝑉 be any pair of distinct vertices. Then the following equivalence transformation shows that the

tuple (𝜌, 𝑠) has the desired property, see Definition 3.1:

𝜈𝑤 ∈ 𝑉 ⇐⇒ 𝑑𝐸 (𝜏 (𝜈), 𝜏 (𝑤)) < 2𝑟

⇐⇒ 𝑑𝐸 (𝜏 (𝜈), 𝜏 (𝑤))2 < (2𝑟 )2

⇐⇒ ∥𝜌 (𝜈) − 𝜌 (𝑤)∥2 < (2𝑟 )2

⇐⇒ ∥𝜌 (𝜈) − 𝜌 (𝑤)∥2
𝜌 (𝜈)𝑛+1 · 𝜌 (𝑤)𝑛+1

< 2(cosh(𝑠′) − 1)

⇐⇒ 1 + ∥𝜌 (𝜈) − 𝜌 (𝑤)∥2
2 · 𝜌 (𝜈)𝑛+1 · 𝜌 (𝑤)𝑛+1

< cosh(𝑠′)

⇐⇒ cosh(dU (𝜌 (𝜈), 𝜌 (𝑤))) < cosh(𝑠′)
⇐⇒ dU (𝜌 (𝜈), 𝜌 (𝑤)) < 𝑠′ = 2𝑠 .
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4 Comparing Euclidean and Hyperbolic Sphericity

In the last two steps, we used the definition of dU (see Definition 2.44) and the fact that cosh is a strictly

increasing function when restricted to positive real numbers.

Using Theorem 3.16, the following corollary is an immediate consequence of the preceding theorem:

Corollary 4.2: For any graph 𝐺 = (𝑉 , 𝐸) and any 𝑠 > 0, we have HSph𝑠 (𝐺) ≤ |𝑉 | + 1.

This justifies that hyperbolic sphericity is well-defined, in the sense that it is finite if the given graph

is finite (no matter the threshold radius used).

4.2 Euclidean UBGs as a Special Case of Hyperbolic UBGs

It is a well-known fact that models of hyperbolic 𝑛-dimensional space look locally almost like Euclidean

𝑛-dimensional space. This leads to the idea that one could copy a Euclidean UBG representation into

some model of hyperbolic space and hope that with enough downscaling, the hyperbolic representation

induces the same graph as the Euclidean representation. Bläsius et al. show that this works in two

dimensions [BFKS23]. In the following, we generalize this statement to any dimension 𝑛 ∈ ℕ. To do so,

we need an auxiliary lemma. Informally speaking, the lemma states that, given a UBG representation in

𝐸𝑛 , the radius of each vertex’s ball can be reduced by a small amount without loss of graph edges.

Lemma 4.3: Let 𝐺 = (𝑉 , 𝐸) be any graph with a UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 𝑟 ). Then, there is
an 𝑟0 < 𝑟 such that the following holds: if we attribute to each vertex 𝜈 ∈ 𝑉 some arbitrary radius

𝑟 ′(𝜈) ∈ (𝑟0, 𝑟 ], then the intersection graph G (𝐴) of the set of Euclidean balls

𝐴 := {𝐵𝐸 (𝜏 (𝜈), 𝑟 ′(𝜈)) | 𝜈 ∈ 𝑉 }

is isomorphic to𝐺 by identifying each vertex 𝜈 ∈ 𝑉 with the ball centered at 𝜏 (𝜈) in 𝐴. Furthermore, the

value 𝑟0 still has the above property for UBG representations (𝜙 ◦ 𝜏, 𝑟 ) of𝐺 that originate by composing

𝜏 with an isometry 𝜙 : 𝐸𝑛 → 𝐸𝑛 .

Proof. Because 𝐺 = (𝑉 , 𝐸) is finite, we may define the value

𝛼 := max{𝑑𝐸 (𝜏 (𝜈), 𝜏 (𝑤)) | 𝜈𝑤 ∈ 𝐸}. (4.1)

Note that we set 𝛼 := 0 in case of 𝐸 = ∅. In particular, 𝛼 < 2𝑟 holds. Define 𝑟0 := 𝛼/2 < 𝑟 . Clearly, the

values 𝛼 and 𝑟0 are the same if we replace 𝜏 with 𝜙 ◦ 𝜏 in Equation (4.1), where 𝜙 : 𝐸𝑛 → 𝐸𝑛 is any

isometry. We proceed by proving that 𝑟0 has the desired property. Let 𝑟 ′ : 𝑉 → (𝑟0, 𝑟 ] be any function.

We need to verify that the function

𝑓 : 𝑉 → 𝐴,𝜈 ↦→ 𝐵𝐸 (𝜏 (𝜈), 𝑟 ′(𝜈))

is a graph isomorphism from𝐺 to the intersection graph G (𝐴), as claimed above. Clearly, 𝑓 is a bijection.

Let 𝜈𝑤 ∈ 𝐸 be any edge. Using Lemma 2.28, we get

𝜈𝑤 ∈ 𝐸 =⇒ dE (𝜏 (𝜈), 𝜏 (𝑤)) ≤ 𝛼 = 2𝑟0 < 𝑟
′(𝜈) + 𝑟 ′(𝑤) =⇒ 𝑓 (𝜈) ∩ 𝑓 (𝑤) ≠ ∅

i.e. the intersection graph G (𝐴) has an edge 𝑓 (𝜈) 𝑓 (𝑤).
Conversely, consider an edge 𝑓 (𝜈) 𝑓 (𝑤) of G (𝐴). We need to show that 𝜈𝑤 ∈ 𝐸. Now using the other

implication of Lemma 2.28, we get

𝑓 (𝜈) ∩ 𝑓 (𝑤) ≠ ∅ =⇒ 𝐵𝐸 (𝜏 (𝜈), 𝑟 ′(𝜈)) ∩ 𝐵𝐸 (𝜏 (𝑤), 𝑟 ′(𝑤)) ≠ ∅
=⇒ dE (𝜏 (𝜈), 𝜏 (𝑤)) < 𝑟 ′(𝜈) + 𝑟 ′(𝑤) ≤ 2𝑟 .

Hence, 𝜈𝑤 ∈ 𝐸 follows from the fact that (𝜏, 𝑟 ) is a UBG representation.
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4 Comparing Euclidean and Hyperbolic Sphericity

Theorem 4.4: For any graph 𝐺 , there is a value 𝑠0 > 0 such that for every 𝑠 ∈ (0, 𝑠0], we have

HSph𝑠 (𝐺) ≤ ESph(𝐺) .

Proof. Let 𝐺 = (𝑉 , 𝐸) and 𝑛 := ESph(𝐺) ∈ ℕ. As in the previous section, we work with the upper

half-space model 𝕌𝑛
of 𝑛-dimensional hyperbolic space. To prove the statement, we provide suitable

UBG representations of𝐺 in𝕌𝑛
. Start by choosing some UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 1) of𝐺 in 𝐸𝑛

with threshold radius 1. Define the function

𝑐Δ : 𝑉 → 𝐸𝑛, 𝜈 ↦→ (𝜏 (𝜈)1, . . . , 𝜏 (𝜈)𝑛−1, 𝜏 (𝜈)𝑛 + Δ)

which adds a fixed value Δ ∈ ℝ to the last component of 𝜏 (𝜈). In particular, 𝑐Δ is the composition of 𝜏

with a Euclidean isometry, namely a translation. From Section 3.1 we know that the tuple (𝑐Δ, 1) is a
UBG representation of 𝐺 in 𝐸𝑛 as well, for each Δ ∈ ℝ. In the following, two vertices are of particular

interest: let 𝑢 ∈ 𝑉 denote some vertex who is positioned the highest, i.e. 𝜏 (𝑢)𝑛 = max{𝜏 (𝜈)𝑛 | 𝜈 ∈ 𝑉 }.
Similarly, let𝑤 ∈ 𝑉 denote some vertex who is positioned the lowest, i.e. 𝜏 (𝑤)𝑛 = min{𝜏 (𝜈)𝑛 | 𝜈 ∈ 𝑉 }.
Since 𝐺 is finite, 𝑢 and 𝑤 exist, but are not necessarily unique. Note that 𝑢 and 𝑤 are still positioned

the highest resp. the lowest with respect to the function 𝑐Δ. In the following, we may assume that

𝜏 (𝑢)𝑛 ≥ 𝜏 (𝑤)𝑛 > 1, otherwise replace 𝜏 with 𝑐Δ for a value of Δ great enough. Under this circumstances,

we may restrict ourselves to values of Δ ≥ 0. This ensures that for each 𝜈 ∈ 𝑉 , the Euclidean ball

𝐵𝐸 (𝑐Δ (𝜈), 1) is completely contained in 𝕌𝑛
.

Recall that hyperbolic balls of the upper half-space model𝕌𝑛
correspond to Euclidean balls contained

in 𝕌𝑛
and vice-versa, see Theorem 2.45. Our goal is to construct a function 𝜌Δ : 𝑉 → 𝕌𝑛

and a value

𝑠 (Δ) > 0 such that the following holds: for each vertex 𝜈 ∈ 𝑉 , the hyperbolic ball 𝐵𝑈 (𝜌Δ (𝜈), 𝑠 (Δ))
shall have the Euclidean center 𝑐Δ (𝜈) and shall be contained in the Euclidean ball 𝐵𝐸 (𝑐Δ (𝜈), 1) (that
is, its Euclidean radius shall be ≤ 1). Furthermore, in the case of 𝜈 = 𝑢, we ask for equality, i.e.

𝐵𝑈 (𝜌Δ (𝑢), 𝑠 (Δ)) = 𝐵𝐸 (𝑐Δ (𝑢), 1). In this context, let B𝑈 (Δ) denote the set of hyperbolic balls of the

form 𝐵𝑈 (𝜌Δ (𝜈), 𝑠 (Δ)). Everything we need to fulfill these requirements is provided by the formula of

Theorem 2.45: fix any vertex 𝜈 ∈ 𝑉 . By calculation, we see that the ball with hyperbolic radius 𝑠 and

Euclidean center 𝑐 := 𝑐Δ (𝜈) must have the hyperbolic center

𝑎 := 𝑎Δ (𝜈) :=
(
𝑐1, . . . , 𝑐𝑛−1,

𝑐𝑛

cosh 𝑠 (Δ)

)
and the Euclidean radius

𝑟 := 𝑟Δ (𝜈) := 𝑐𝑛 ·
sinh 𝑠 (Δ)
cosh 𝑠 (Δ) = 𝑐𝑛 tanh 𝑠 (Δ) .

Both are well-defined since cosh𝑥 > 0 for each 𝑥 ∈ ℝ. Set 𝜌Δ (𝜈) := 𝑎Δ (𝜈) for each 𝜈 ∈ 𝑉 . We have not

yet decided on the value of 𝑠 (Δ). Here, the last requirement comes into play:

𝐵𝑈 (𝜌Δ (𝑢), 𝑠 (Δ)) = 𝐵𝐸 (𝑐Δ (𝑢), 1)

⇐⇒ 𝑟Δ (𝑢) = 1 ⇐⇒ (𝑐Δ (𝑢))𝑛 · tanh 𝑠 (Δ) = 1 ⇐⇒ 𝑠 (Δ) = tanh
−1

(
1

(𝑐Δ (𝑢))𝑛

)
.

We define 𝑠 (Δ) accordingly. Plugging this into the definition of 𝑟Δ (𝜈), we obtain the simplified formula

𝑟Δ (𝜈) =
(𝑐Δ (𝜈))𝑛
(𝑐Δ (𝑢))𝑛

=
𝜏 (𝜈)𝑛 + Δ
𝜏 (𝑢)𝑛 + Δ

for each 𝜈 ∈ 𝑉 . (4.2)

Division by zero cannot occur, since we required that 𝜏 (𝑢)𝑛 > 0 and Δ ≥ 0. We observe that the

Euclidean radius 𝑟Δ (𝜈) is the greatest for 𝜈 = 𝑢 because 𝑢 maximizes 𝑐𝑛 by definition. So each vertex

𝜈 ≠ 𝑢 has 𝑟Δ (𝜈) ≤ 1. Hence, by construction,

𝐵𝑈 (𝜌Δ (𝜈), 𝑠 (Δ)) ⊆ 𝐵𝐸 (𝑐Δ (𝜈), 1) for each 𝜈 ∈ 𝑉
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4 Comparing Euclidean and Hyperbolic Sphericity

and the two balls have the same Euclidean center, as desired. So all requirements are fulfilled.

Finally, Lemma 4.3 comes into play: we have a UBG representation (𝑐Δ, 1) of 𝐺 in 𝐸𝑛 . Let 𝑟0 denote

the threshold given by Lemma 4.3. Since 𝑐Δ is the composition of 𝜏 with a Euclidean isometry for

each Δ, the value 𝑟0 does not depend on Δ. If we can guarantee that every ball in the set B𝑈 (Δ)
has Euclidean radius greater than 𝑟0, then the intersection graph of B𝑈 (Δ) must be isomorphic to 𝐺

according to the lemma. Indeed, we can guarantee this by choosing Δ great enough, as the following

argument shows: by definition of𝑤 ∈ 𝑉 , the smallest occurring Euclidean radius of balls in B𝑈 (Δ) is
𝑟Δ (𝑤) ∈ (0, 1]. Considering Equation (4.2), we may treat 𝑟Δ (𝑤) as a function of Δ ≥ 0. With means of

calculus, it can easily be checked that this function is increasing, bounded from above by 1 and satisfies

limΔ→∞ 𝑟Δ (𝑤) = 1 since the values 𝜏 (𝑢)𝑛 ≥ 𝜏 (𝑤)𝑛 > 1 are constant. We conclude that by choosing Δ
great enough, 𝑟Δ (𝑤) grows arbitrarily close to 1 and will eventually surpass 𝑟0 < 1 for some finite value

Δ0. In particular, 𝑟Δ0
(𝜈) ∈ (𝑟0, 1] holds for each vertex 𝜈 ∈ 𝑉 .

Hence, the intersection graph of B𝑈 (Δ0) is isomorphic to 𝐺 by identifying each vertex 𝜈 ∈ 𝑉 with

the ball having the Euclidean center 𝑐Δ0
(𝜈) resp. the hyperbolic center 𝜌Δ0

(𝜈). By construction, this

intersection graph corresponds to the tuple (𝜌Δ0
, 𝑠 (Δ0)), so we conclude from Remark 3.3 that this tuple

is a UBG representation of 𝐺 in 𝕌𝑛
.

By setting 𝑠0 := 𝑠 (Δ0), the last thing we need to show is that every value 𝑠′ ∈ (0, 𝑠0] can be used as

a hyperbolic threshold radius as well. Note that the function 𝑠 (Δ) = tanh
−1

(
1

(𝑐Δ (𝑢 ) )𝑛

)
is continuous

and strictly decreasing with respect to Δ > 0. Furthermore, we have limΔ→∞ 𝑠 (Δ) = 0. Using the

intermediate value theorem, we obtain that 𝑠 ( [Δ0,∞)) = (0, 𝑠0]. In particular, for every 𝑠′ ∈ (0, 𝑠0],
there is a Δ′ ≥ Δ0 such that 𝑠′ = 𝑠 (Δ′). Since 𝑟Δ (𝑤) is increasing with respect to Δ, we conclude that
𝑟Δ′ (𝑤) ≥ 𝑟Δ0

(𝑤) > 𝑟0. Thus the tuple (𝜌Δ′, 𝑠′) is a UBG representation of 𝐺 as well.

Again using Theorem 3.16, the next corollary follows immediately:

Corollary 4.5: For any graph 𝐺 = (𝑉 , 𝐸), there is an 𝑠0 > 0 such that for every 𝑠 ∈ (0, 𝑠0], we have
HSph𝑠 (𝐺) ≤ |𝑉 |.

In the remainder of this section, we focus on deriving a graph class G = {𝐺1,𝐺2, . . . }with the following
property: for each𝑚 ∈ ℕ,

HSph𝑠 (𝐺𝑚) ≥ ESph(𝐺𝑚) =𝑚 for each 𝑠 > 0.

In particular, such a result demonstrates that Theorem 4.4 cannot be improved in general and that

hyperbolic sphericity can get arbitrarily great.

The graph class can be found in one of Maehara’s papers on Euclidean sphericity [Mae84b]. For

𝑚 = 1, set 𝐺1 := 𝑃4, the path graph of order 4. Suppose now that𝑚 ≥ 2. Let 𝑘 := 2
𝑚+1

. Observe that

the set {1, 2, . . . ,𝑚 + 1} ⊆ ℕ has exactly 𝑘 distinct subsets, label them 𝐴1, . . . , 𝐴𝑘 . Define 𝐺𝑚 to be the

following graph: start with the complete graph with vertex set {𝑢1, . . . , 𝑢𝑘 }. Each vertex 𝑢𝑖 represents

the set 𝐴𝑖 ⊆ {1, . . . ,𝑚 + 1}. Next, add (𝑚 + 1) vertices 𝜈1, . . . , 𝜈𝑚+1 and add an edge 𝑒 = 𝜈 𝑗𝑢𝑖 if and only

if 𝑗 ∈ 𝐴𝑖 where 𝑗 ∈ {1, . . . ,𝑚 + 1}, 𝑖 ∈ {1, . . . , 𝑘}. Figure 4.1 depicts the graph 𝐺2.

For a proof that ESph(𝐺𝑚) ≤ 𝑚, we refer to the original paper [Mae84b]. Here, we will reproduce

Maehara’s proof that ESph(𝐺) ≥ 𝑚 and explain how it can be applied to hyperbolic sphericity as well.

The idea is based on a set-theoretical observation:

Remark 4.6: Given 𝑃1, . . . , 𝑃𝑚 subsets of some set 𝑃 . Let 𝑃𝑐𝑗 := 𝑃 \ 𝑃 𝑗 denote the complement of 𝑃 𝑗 .

Assume that, for each 𝑗 ∈ {1, . . . ,𝑚}, we have to pick either 𝑃 𝑗 or its complement and then intersect all

the𝑚 sets we picked. It is clear that there are 2
𝑚
possible ways of constructing such intersections. If

each intersection obtained in this way is nonempty, we say that 𝑃1, . . . , 𝑃𝑚 are independent subsets of 𝑃 .
Formally, this condition can be expressed as

|{𝑇 | 𝑇 = 𝑇1 ∩ · · · ∩𝑇𝑚 where each 𝑇𝑗 is either 𝑃 𝑗 or 𝑃
𝑐
𝑗 and 𝑇 ≠ ∅}| = 2

𝑚 .
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∅
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

1

2

3

Figure 4.1: The graph 𝐺2. The sets in the middle correspond to the vertices 𝑢1, . . . , 𝑢8. For a better

overview, we have omitted the edges making these vertices a complete subgraph. The other vertices

correspond to 𝜈1, 𝜈2 and 𝜈3.

This concept should not be confused with independent sets in graph theory. Now, consider the particular

case of some Euclidean balls 𝑃 𝑗 := 𝐵𝐸
(
𝑥 𝑗 , 𝑟 𝑗

)
as subsets of Euclidean space 𝐸𝑛 . By a result of Rényi et al.,

there may be at most (𝑛 + 1) independent balls in 𝐸𝑛 [RRS50]. Note that it is not required that the balls

have a common radius.

How does this concept relate to the graph family G? Fix any graph (𝑉 , 𝐸) := 𝐺𝑚 ∈ G. The case𝑚 = 1

is trivial, so let𝑚 ≥ 2 in the following. By construction, any UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 𝑟 ) of
𝐺𝑚 in 𝑛-dimensional Euclidean space must contain (𝑚 + 1) independent balls. To see this, consider the

balls 𝑃 𝑗 := 𝐵𝐸
(
𝜏 (𝜈 𝑗 ), 2𝑟

)
⊆ 𝐸𝑛 for 𝑗 ∈ {1, . . . ,𝑚 + 1}. Then, for any fixed set 𝐴𝑖 like above, the following

implications hold:

𝑗 ∈ 𝐴𝑖 =⇒ 𝜈 𝑗𝑢𝑖 ∈ 𝐸 =⇒ dE (𝜏 (𝜈 𝑗 ), 𝜏 (𝑢𝑖)) < 2𝑟 =⇒ 𝜏 (𝑢𝑖) ∈ 𝑃 𝑗

and similarly,

𝑗 ∉ 𝐴𝑖 =⇒ 𝜈 𝑗𝑢𝑖 ∉ 𝐸 =⇒ dE (𝜏 (𝜈 𝑗 ), 𝜏 (𝑢𝑖)) ≥ 2𝑟 =⇒ 𝜏 (𝑢𝑖) ∈ 𝑃𝑐𝑗 .

Combining this, we conclude that the following intersection is nonempty because it contains 𝜏 (𝑢𝑖):

𝜏 (𝑢𝑖) ∈
(⋂
𝑗∈𝐴𝑖

𝑃 𝑗

)
∩

(⋂
𝑗∉𝐴𝑖

𝑃𝑐𝑗

)
≠ ∅ for each 𝑖 ∈ {1, . . . , 𝑘}.

Since 𝐴𝑖 can be any subset of {1, . . . ,𝑚 + 1}, it follows that 𝑃1, . . . , 𝑃𝑚+1 are independent subsets of 𝐸𝑛 .
Since 𝐸𝑛 can contain at most (𝑛 + 1) independent balls, 𝑛 + 1 ≥ 𝑚 + 1 must hold, i.e. 𝑛 ≥ 𝑚. In particular,

ESph(𝐺) ≥ 𝑚 by the definition of Euclidean sphericity.

The same argument applies when one assumes a UBG representation (𝜌, 𝑠) of 𝐺𝑚 in the upper

half-space model 𝕌𝑛
of 𝑛-dimensional hyperbolic space. Recall that assuming a certain model for a

hyperbolic UBG representation is not a restriction, since all models are isometric for a fixed dimension.

Similarly to above, define 𝑃 𝑗 := 𝐵𝑈
(
𝜌 (𝜈 𝑗 ), 2𝑠

)
⊆ 𝕌𝑛

. For the same reason as previously, 𝑃1, . . . , 𝑃𝑚+1
are independent subsets of 𝕌𝑛

. However, it is well known that each 𝑃 𝑗 can also be interpreted as a

Euclidean ball in 𝐸𝑛 , see Theorem 2.45. As Euclidean balls, 𝑃1, . . . , 𝑃𝑚+1 potentially have different radii,

but as noted in remark Remark 4.6, this case is covered as well. We summarize:

Theorem 4.7: Let G = {𝐺1,𝐺2, . . . } denote the previous graph family. Then, for each𝑚 ∈ ℕ and each

𝑠 > 0:

ESph(𝐺𝑚) =𝑚 and HSph𝑠 (𝐺𝑚) ≥ 𝑚.
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4.3 Computability of Hyperbolic Sphericity

Anatural question that arises when considering graph invariants like Euclidean and hyperbolic sphericity

is the computational complexity of calculating them algorithmically. Before searching for efficient

algorithms, one should ensure that the invariant is computable for every finite graph. For common

invariants like size of largest clique, this is usually the case and can be accomplished with simple

exponential-time brute-force algorithms.

When it comes to geometric graph invariants like sphericity, such brute-force algorithms usually

are not evident: if we want to know whether some graph 𝐺 satisfies ESph(𝐺) ≤ 𝑛, we cannot simply

test every tuple of the form (𝜏 : 𝑉 (𝐺) → 𝐸𝑛, 1) to see if it is a UBG representation of 𝐺 since there are

uncountably many of these tuples. The challenge lies in the nature of the real numbers, so it is a good

idea to study the following complexity class that deals with true sentences over ℝ.

Definition 4.8 (∃ℝ): The existential theory of the reals is the set of all true sentences of the form

∃𝑋 ∈ ℝ𝑛
: 𝜙 (𝑋 ), where 𝜙 (𝑋 ) is a quantifier-free formula consisting of polynomial equations and

inequalities. We denote the decision problem whether such a sentence is true by ETR and define the

complexity class ∃ℝ to contain all decision problems that polynomial-time reduce to ETR.

The wording of the above definition is taken from Bläsius et al., since their paper will be our guideline

in this section [BBDJ23]. For a more technical definition and deeper analysis of this complexity class,

we refer to the work of Schaefer and Štefankovič [SS17]. In particular, they state the following result

about the class ∃ℝ:

NP ⊆ ∃ℝ ⊆ PSPACE.

The second part of this statement is due to the dissertation of Canny and can be read in the following

way: every decision problem in ∃ℝ is decidable by a deterministic Turing machine using a polynomial

amount of space [Can88].

We focus on hyperbolic sphericity. One can easily verify that all results presented in this section also

apply to Euclidean sphericity, using the the same or even simpler arguments. Bläsius et al. show that the

problem of recognizing hyperbolic unit disk graphs is ∃ℝ-complete [BBDJ23]. This recognition problem

corresponds to the question whether, for a given graph 𝐺 , there is a threshold radius 𝑠 = 𝑠 (𝐺) > 0 such

that HSph𝑠 (𝐺) ≤ 2. The natural extension of this is to define the graph class HUBG(𝑛) as the set of
graphs 𝐺 for whom there is a threshold radius 𝑠 = 𝑠 (𝐺) > 0 such that HSph𝑠 (𝐺) ≤ 𝑛. Accordingly, we
define the generalized recognition problem Recog(HUBG(𝑛)) as the problem of testing whether a given

graph is part of HUBG(𝑛). We suspect that Recog(HUBG(𝑛)) is ∃ℝ-complete for any dimension 𝑛 ≥ 2,

but for our purposes it suffices to show membership of ∃ℝ:

Lemma 4.9: The recognition problem Recog(HUBG(𝑛)) is in ∃ℝ.

Proof. Bläsius et al. have provided a proof for the 2-dimensional case [BBDJ23]. Their proof is based on

the hyperboloid model and generalizes well to any dimension 𝑛, as shown in the following:

by a result from Erickson, van der Hoog and Miltzow we can prove ∃ℝ-membership by describing

a polynomial-time verification algorithm on a real RAM machine [EvM20]. Given a graph𝐺 = (𝑉 , 𝐸)
and a function 𝜌 : 𝑉 → 𝔽𝑛

where 𝜌 (𝜈) represents the center of an equal-radius ball in the hyperboloid

model for each vertex 𝜈 ∈ 𝑉 . We may assume that 𝑛 < |𝑉 |, otherwise the recognition problem is trivial

due to Corollary 4.5. Compute

𝑑adj := max

𝜈𝑤∈𝐸
𝐵(𝜌 (𝜈), 𝜌 (𝑤)) and 𝑑non-adj := min

𝜈𝑤∉𝐸
𝐵(𝜌 (𝜈), 𝜌 (𝑤))
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where 𝐵 is the bilinear form as in Definition 2.46. Note that 𝐵(𝑥,𝑦) can be evaluated using (𝑛 + 1)
multiplication operations and 𝑛 summation operations of real numbers, so we can evaluate 𝐵(𝑥,𝑦) in
time O(𝑛) on a real RAM machine, for any arguments 𝑥,𝑦 ∈ ℝ𝑛+1

. We can think of 𝑑adj and 𝑑non-adj as

distances in the hyperboloid model of hyperbolic space (actually they are the hyperbolic cosine of a

distance), but since arcosh = cosh
−1

is a strictly increasing function, this view is justified. Now if and

only if 𝑑adj < 𝑑non-adj, there is a threshold radius 𝑠 such that the tuple (𝜌, 𝑠) is a UBG representation of𝐺

(choose 𝑠 such that 𝑑adj < cosh(𝑠)/2 ≤ 𝑑non-adj). The algorithm takes O(𝑛 · |𝑉 |2) time. Since we have

assumed that 𝑛 < |𝑉 |, we can bound the time by O( |𝑉 |3) which is polynomial in the input time, proving

∃ℝ-membership.

One can also define the graph class HUBG(𝑛, 𝑠) as the set of graphs 𝐺 that satisfy HSph𝑠 (𝐺) ≤ 𝑛. In
contrast to HUBG(n), we do not assume an optimal threshold radius in this case, but have to work with

a given threshold radius 𝑠 . For this new graph class, we can also define the corresponding recognition

problem Recog(HUBG(𝑛, 𝑠)) as the problem of testing whether a given graph is part of HUBG(𝑛, 𝑠). By
slight modification of the proof of Lemma 4.9, we derive the similar lemma:

Lemma 4.10: For each 𝑛 ∈ ℕ and 𝑠 > 0, the recognition problem Recog(HUBG(𝑛, 𝑠)) is in ∃ℝ.

Proof. We can use the same real RAM verification algorithm as in the proof of Lemma 4.9, with a slight

difference: the given function 𝜌 now depends not only on 𝑛, but also on 𝑠 . Also, we do not choose a

threshold radius anymore, but verify whether 𝑑adj < cosh(𝑠)/2 ≤ 𝑑non-adj holds. The runtime is still

bounded by O( |𝑉 |3) because each case where 𝑛 ≥ |𝑉 | + 1 is trivial due to Corollary 4.2, i.e. we only

need to run the algorithm if 𝑛 ≤ |𝑉 |.

Theorem 4.11: Let G denote the set containing all finite graphs. Consider the two functions

𝑓 : G → ℕ, 𝐺 ↦→ min{HSph𝑠 (𝐺) | 𝑠 > 0},
𝑔 : G ×ℝ>0 → ℕ, (𝐺, 𝑠) ↦→ HSph𝑠 (𝐺) .

They are both computable by a deterministic Turing machine using a polynomial amount of space.

Proof. A simple algorithm A that calculates 𝑓 (𝐺) for any graph 𝐺 = (𝑉 , 𝐸) is given by the following

instructions: start with 𝑛 = 1. Run a PSPACE subroutine 𝐴𝑛 that decides whether𝐺 ∈ HUBG(n). Such
a subroutine exists for every 𝑛 ∈ ℕ because the corresponding decision problem is in ∃ℝ ⊆ PSPACE,
see Lemma 4.9. If 𝐴𝑛 outputs that 𝐺 is a member of HUBG(n), return 𝑛. Else, increment 𝑛 by one

and proceed as before. There will be at most |𝑉 | iterations because we know that 𝑓 (𝐺) ≤ |𝑉 | due to
Corollary 4.5. In particular, A always terminates. Furthermore, A only uses a polynomial amount of

space since this is true for each iteration and after each iteration, we can clear everything from storage

expect the variable 𝑛.

The same principle can be used to construct an algorithm B that calculates 𝑔(𝐺, 𝑠) for any graph

𝐺 = (𝑉 , 𝐸) and any 𝑠 > 0. In this case, in the 𝑛-th iteration, call a PSPACE subroutine 𝐵𝑛 that decides

whether 𝐺 ∈ HUBG(n, s). Such a subroutine exists due to Lemma 4.10 and the fact that ∃ℝ ⊆ PSPACE.
Now, there will be at most |𝑉 | + 1 iterations because we know that 𝑔(𝐺, 𝑠) ≤ |𝑉 | + 1 for every 𝑠 ∈ 𝑆 due

to Corollary 4.2. The algorithm B only uses a polynomial amount of space for the same reason that

A does. A and B are both deterministic since we can require each subroutine to be deterministic by

definition of PSPACE.
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In this chapter, we prove that every finite tree is a hyperbolic UDG, if the threshold radius is chosen

great enough. In contrast, Euclidean sphericity of trees is unbounded. Let 𝑇𝑘
𝑚 denote the 𝑘-ary tree of

depth𝑚, i.e. every vertex in𝑇𝑘
𝑚 is either a leaf or has 𝑘 children. Note that a depth of𝑚 = 0 corresponds

to the tree consisting of a single vertex.

5.1 Euclidean Sphericity of Trees

Using a simple volume argument, we can show that the Euclidean sphericity of a tree 𝑇𝑘
𝑚 is unbounded

in terms of 𝑘 and𝑚.

Theorem 5.1: If𝑚,𝑘 ∈ ℕ and 𝑘 ≥ 2, then the following lower bound holds:

ESph(𝑇𝑘
𝑚) ≥

𝑚 log(𝑘)
log(2𝑚 + 1) .

Proof. Let (𝑉 , 𝐸) := 𝑇𝑘
𝑚 . Suppose that (𝜏 : 𝑉 → 𝐸𝑛, 1) is a UBG representation of 𝑇𝑘

𝑚 in 𝑛-dimensional

Euclidean space. Let 𝜈0 ∈ 𝑉 denote the root vertex. Let𝑊 ⊆ 𝑉 denote the leaves. Note that |𝑊 | = 𝑘𝑚 .
For any leaf𝑤 ∈𝑊 , there is a unique path 𝑃 = (𝑝0 = 𝜈0, 𝑝1, . . . , 𝑝𝑚−1, 𝑝𝑚 = 𝑤) from the root 𝜈0 to the

leaf𝑤 . We use this path to approximate dE (𝜏 (𝜈0), 𝜏 (𝑤)) by the triangle inequality:

dE (𝜏 (𝜈0), 𝜏 (𝑤)) ≤
𝑚∑︁
𝑖=1

dE (𝜏 (𝑝𝑖−1), 𝜏 (𝑝𝑖)) <
𝑚∑︁
𝑖=1

2 = 2𝑚

We conclude that each ball of the form 𝐵𝐸 (𝜏 (𝑤), 1) for some leaf𝑤 is completely contained in the ball

𝐵𝐸 (𝜏 (𝜈0), 2𝑚 + 1). Since the leafs𝑊 form an independent set of 𝑇𝑘
𝑚 , balls of the form 𝐵𝐸 (𝜏 (𝑤), 1) must

be pairwise disjoint. The Euclidean volume of a ball of 𝐸𝑛 with radius 𝑅 > 0 is given by the formula

𝑉𝑛 (𝑅) :=
𝜋

𝑛
2

Γ(𝑛
2
+ 1)𝑅

𝑛

where Γ denotes the gamma-function [Gip14]. Our previous observations now yield the desired inequal-

ity, since Euclidean volume is countably additive:

𝑘𝑚 𝑉𝑛 (1) ≤ 𝑉𝑛 (2𝑚 + 1) =⇒ 𝑘𝑚1𝑛 ≤ (2𝑚 + 1)𝑛 =⇒ log
2𝑚+1(𝑘𝑚) ≤ 𝑛.

Using the change of base formula and the power rule for logarithms, we may rewrite log
2𝑚+1(𝑘𝑚) as

𝑚 log(𝑘 )
log(2𝑚+1) to obtain the desired inequality.

This shows that the Euclidean sphericity of regular trees increases logarithmically with 𝑘 and almost

linearly with the depth𝑚, as long as 𝑘 ≥ 2. Note that the inequality can be further refined: we just used

the fact that the leafs form an independent set of the tree. This independent set can be increased by

adding every second layer of vertices from the bottom to the top. However, the above inequality suffices

for our purposes.
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5.2 Trees Are Hyperbolic UDGs

In this section, we develop a recursive construction of the 𝑘-ary tree𝑇𝑘
𝑚 with an arbitrary depth𝑚 ∈ ℕ0

as a hyperbolic unit closed disk graph (UCDG) for each 𝑘 ≥ 1. The threshold radius depends only

on 𝑘 and not on the number of layers𝑚, i.e. an arbitrary depth is possible for an appropriate, fixed

threshold radius. In the following, we let 𝔻+ := 𝔻2 ∩ {𝑧 ∈ ℂ | Im(𝑧) > 0} denote the upper half of the
2-dimensional Poincaré disk model.

Lemma 5.2: Let 𝑔 be a hyperbolic line of 𝔻2
that induces the two open half-planes 𝐻1 and 𝐻2. Then,

the following implication holds for any two points 𝑥1, 𝑥2 ∈ 𝔻2
:

𝐵𝐷 (𝑥𝑖 , 𝑠/2) ⊆ 𝐻𝑖 for 𝑖 ∈ {1, 2} =⇒ dD (𝑥1, 𝑥2) > 𝑠 . (5.1)

Proof. Suppose that 𝑥1, 𝑥2 ∈ 𝔻2
satisfy the condition on the left side of Equation (5.1). Because𝑔 separates

𝔻2\𝑔 into two sides and 𝑥1 and 𝑥2 lie on distinct sides, the geodesic segment [𝑥1, 𝑥2] joining 𝑥1 to 𝑥2 must

intersect 𝑔 in some point 𝑦. Formally, this is known as plane separation and it holds for both Euclidean

and hyperbolic plane geometry. Since𝑦 lies on 𝑔, it cannot be contained in 𝐵𝐷 (𝑥𝑖 , 𝑠/2) ⊆ 𝐻𝑖 for 𝑖 ∈ {1, 2}.
As a consequence, we have dD (𝑥𝑖 , 𝑦) > 𝑠/2 for 𝑖 ∈ {1, 2}. Combining this inequality with Corollary 2.27

yields dD (𝑥1, 𝑥2) = dD (𝑥1, 𝑦) + dD (𝑥2, 𝑦) > 𝑠 .

Lemma 5.3: For any fixed 𝑘 ∈ ℕ and 𝑡 ∈ (0, 1), consider the points 𝑦 𝑗 = 𝑡 · exp
(
𝑖
𝑗𝜋

𝑘+1

)
for 𝑗 ∈ {1, . . . , 𝑘}

on the upper half of the Poincaré disk 𝔻+. Due to Lemma 2.40, their hyperbolic distance to the origin

is 𝑠 > 0 such that 𝑡 = tanh(𝑠/2). Then there is a threshold 𝑠0(𝑘) > 0 such that any choice of 𝑠 > 𝑠0(𝑘)
leads to the following constraints being fulfilled simultaneously:

(1) For all distinct 𝑗, 𝑙 ∈ {1, . . . , 𝑘} : dD (𝑦 𝑗 , 𝑦𝑙 ) > 𝑠 .

(2) For each 𝑗 ∈ {1, . . . , 𝑘}, the closed hyperbolic disk of radius 𝑠/2 centered at 𝑦 𝑗 is a subset of 𝔻
+
.

(3) For each 𝑗 ∈ {1, . . . , 𝑘}, there is a hyperbolic line 𝑔 𝑗 ⊆ 𝔻+ such that 𝑦 𝑗 ∈ 𝑔 𝑗 . Each hyperbolic

line 𝑔 𝑗 is induced by a Euclidean circle 𝐶 𝑗 orthogonal to 𝑆
1
. Let 𝑝 𝑗 denote the Euclidean center of

𝐶 𝑗 . Each hyperbolic line 𝑔 𝑗 induces an open half-plane 𝐻 𝑗 ⊆ 𝔻+ as the side of 𝑔 𝑗 that does not
contain the origin.

(4) The closed hyperbolic disk of radius 𝑠/2 centered at the origin is disjoint from each 𝑔 𝑗 and thus

from each 𝐻 𝑗 .

(5) The hyperbolic lines 𝑔 𝑗 are pairwise disjoint and so are their corresponding open half-planes 𝐻 𝑗 .

(6) For all distinct 𝑗, 𝑙 ∈ {1, . . . , 𝑘}, the closed hyperbolic disk of radius 𝑠/2 centered at 𝑦 𝑗 is disjoint

from 𝑔𝑙 and thus from 𝐻𝑙 .

Proof. The proof has the following structure: we show for each constraint individually that it is equivalent

to some inequality of the form 𝑓 (𝑠) < 𝑐 (𝑘) or 𝑓 (𝑠) > 𝑐 (𝑘) where 𝑐 (𝑘) is constant for fixed 𝑘 . In case of

the first form, we then show that the function 𝑓 satisfies lim𝑠→∞ 𝑓 (𝑠) < 𝑐 (𝑘). In case of the second form,

we show that 𝑓 satisfies lim𝑠→∞ 𝑓 (𝑠) > 𝑐 (𝑘). This means we can fulfill all constraints simultaneously by

choosing 𝑠 great enough, i.e. there is a 𝑠0(𝑘) such that each choice 𝑠 > 𝑠0(𝑘) is valid. We do not calculate

𝑠0(𝑘) explicitly, because there is not much insight in doing so. For the rest of the proof, fix any distinct

𝑗, 𝑙 ∈ {1, . . . , 𝑘}. We may assume that 𝑗 < 𝑙 .
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(1) The origin, 𝑦 𝑗 and 𝑦𝑙 form an isosceles hyperbolic triangle. Let 𝛼 denote the angle at the origin of

this triangle. Then 𝛼 = 𝜃
(
𝑦 𝑗 , 𝑦𝑙

)
=
(𝑙− 𝑗 )𝜋
𝑘+1 holds because hyperbolic angles correspond to Euclidean

angles in the Poincaré disk model. Let 𝑥 := dD (𝑦 𝑗 , 𝑦𝑙 ) denote the side length of the triangle’s side

connecting 𝑦 𝑗 and 𝑦𝑙 . We need to ensure that 𝑥 > 𝑠 if 𝑠 is chosen great enough. Using the fact that

cosh is strictly increasing for positive arguments and the first law of cosines, see Theorem 2.54,

we derive the following equivalence:

𝑥 > 𝑠

⇐⇒ cosh(𝑥) > cosh(𝑠)

⇐⇒ cosh
2(𝑠) − cosh(𝑠)
sinh

2(𝑠)
>

cosh
2(𝑠) − cosh(𝑥)
sinh

2(𝑠)

⇐⇒ 𝑓1(𝑠) :=
cosh

2(𝑠) − cosh(𝑠)
sinh

2(𝑠)
> cos𝛼.

Since 𝛼 ∈ (0, 𝜋), we have cos𝛼 < 1. Note that 𝛼 does not depend on 𝑠 . With means of calculus

one can verify that lim𝑠→∞ 𝑓1(𝑠) = 1 > cos𝛼 . Due to the presented equivalence, this implies that

the constraint 𝑥 > 𝑠 can always be fulfilled by choosing 𝑠 great enough.

(2) Let 𝛽 :=
𝑗𝜋

𝑘+1 denote the angle of𝑦 𝑗 with respect to the real line. It is helpful to find a representation

of 𝐵𝐷
(
𝑦 𝑗 , 𝑠/2

)
as a Euclidean circle with Euclidean center 𝑐𝐸 and Euclidean radius 𝑟𝐸 . To fulfill the

constraint, we then need to ensure that Im(𝑐𝐸) −𝑟𝐸 > 0. Following the instructions of Remark 2.42,

we set

𝜇𝐻 = dD (0, 𝑦 𝑗 ) = 𝑠, 𝑟𝐻 = 𝑠/2,

𝑏1,𝐻 =
1

2

𝑠, 𝑏2,𝐻 =
3

2

𝑠, 𝑏1,𝐸 = tanh

( 𝑠
4

)
, 𝑏2,𝐸 = tanh

(
3𝑠

4

)
,

𝜇𝐸 =
1

2

(
tanh

( 𝑠
4

)
+ tanh

(
3𝑠

4

))
, 𝑐𝐸 = 𝜇𝐸 exp(𝑖𝛽),

𝑟𝐸 =
1

2

(
tanh

(
3𝑠

4

)
− tanh

( 𝑠
4

))
.

(5.2)

Since lim𝑥→∞ tanh(𝑥) = 1, the following two limits hold:

lim

𝑠→∞
𝜇𝐸 (𝑠) = 1, lim

𝑠→∞
𝑟𝐸 (𝑠) = 0. (5.3)

Now we see that we can always fulfill the constraint by choosing 𝑠 great enough because

Im(𝑐𝐸 (𝑠)) − 𝑟𝐸 (𝑠) > 0 ⇐⇒ 𝜇𝐸 (𝑠) sin(𝛽) − 𝑟𝐸 (𝑠) > 0 ⇐⇒ sin(𝛽) > 𝑟𝐸 (𝑠)
𝜇𝐸 (𝑠)

=: 𝑓2(𝑠)

and lim𝑠→∞ 𝑓2(𝑠) = 0/1 = 0.

(3) For 𝛽 =
𝑗𝜋

𝑘+1 like above and some value 𝜆 > 1, define the point 𝑝 𝑗 and the Euclidean circle 𝐶 𝑗 via

𝑝 𝑗 := 𝜆 exp(𝑖𝛽) and 𝐶 𝑗 := 𝑆𝐸 (𝑝 𝑗 , 𝜆 − 𝑡) .

The choice of the Euclidean radius ensures that 𝑦 𝑗 ∈ 𝐶 𝑗 . For 𝑔 𝑗 := 𝐶 𝑗 ∩𝔻2
to be a hyperbolic line

of 𝔻2
, the circle 𝐶 𝑗 must be orthogonal to 𝑆1. This translates to the condition

𝜆 − 𝑡 =
√
𝜆2 − 1 ⇐⇒ 𝑡 = 𝜆 −

√
𝜆2 − 1 ⇐⇒ 𝜆 =

𝑡2 + 1
2𝑡
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according to Lemma 2.15. Set 𝜆 = 𝜆(𝑡) accordingly in the following. Because of the relationship

𝑡 = tanh(𝑠/2) we can treat 𝑡 and 𝜆 as a function of 𝑠 . This leads to the following two limits:

lim

𝑠→∞
𝑡 (𝑠) = 1 = lim

𝑠→∞
𝜆(𝑠) . (5.4)

In order to show 𝑔 𝑗 ∈ 𝔻+, it suffices that show that 𝐶 𝑗 ∈ 𝔻+, i.e. Im(𝑝 𝑗 ) − (𝜆 − 𝑡) > 0. This is

equivalent to

𝜆(𝑠) sin 𝛽 = Im(𝑝 𝑗 ) > 𝜆(𝑠) − 𝑡 (𝑠) ⇐⇒ sin 𝛽 > 1 − 𝑡 (𝑠)
𝜆(𝑠) =: 𝑓3(𝑠) .

This corresponds to the desired form because 𝛽 does not depend on 𝑠 and lim𝑠→∞ 𝑓3(𝑠) = 1 − 1

1
=

0 < sin 𝛽 . Define the open half-plane 𝐻 𝑗 as the side of 𝑔 𝑗 that does not contain the origin. Then

𝐻 𝑗 is the region bounded by 𝐶 𝑗 , in particular 𝐻 𝑗 ⊆ 𝐵𝐸
(
𝑝 𝑗 , 𝜆 − 𝑡

)
⊆ 𝔻+.

(4) This result is always fulfilled, no matter the choice of 𝑠: by the previous construction, 𝐵𝐷 (0, 𝑠)
and 𝑔 𝑗 intersect in a single point, namely 𝑦 𝑗 , that has hyperbolic distance 𝑠 from the origin. Since

𝐵𝐷 (0, 𝑠/2) ⊆ 𝐵𝐷 (0, 𝑠) \ {𝑦 𝑗 }, it follows that 𝐵𝐷 (0, 𝑠/2) and 𝑔 𝑗 must be disjoint.

(5) In order to show that 𝑔 𝑗 and 𝑔𝑙 are disjoint, it suffices to show that their corresponding circles 𝐶 𝑗

and 𝐶𝑙 are disjoint, i.e. we need to show that

dE (𝑝 𝑗 , 𝑝𝑙 ) > 2(𝜆(𝑠) − 𝑡 (𝑠)). (5.5)

By construction, 𝛼 =
𝑙− 𝑗
𝑘+1𝜋 is the angle between 𝑝 𝑗 and 𝑝𝑙 as well. Due to Lemma 2.13 (2),

Inequality (5.5) is then equivalent to

2𝜆(𝑠) sin(𝛼/2) > 2(𝜆(𝑠) − 𝑡 (𝑠)) ⇐⇒ sin(𝛼/2) > 1 − 𝑡 (𝑠)
𝜆(𝑠) = 𝑓3(𝑠).

Since we already observed that lim𝑠→∞ 𝑓3(𝑠) = 0 and since sin(𝛼/2) > 0, we are done.

(6) To check this constraint, it is again useful to take the Euclidean perspective. Like before, use

𝑐 := 𝑐𝐸 and 𝑟 := 𝑟𝐸 to denote the Euclidean center and radius of 𝐵𝐷
(
𝑦 𝑗 , 𝑠/2

)
viewed as a Euclidean

closed disk, see Equation (5.2). Similarly, let 𝜇 := 𝜇𝐸 = ∥𝑐 ∥. Recall that 𝐶𝑙 refers to the Euclidean

circle inducing the hyperbolic line 𝑔𝑙 . We know that 𝐶𝑙 has the Euclidean center 𝑝 := 𝑝𝑙 and

Euclidean radius 𝑟 ′ := 𝜆 − 𝑡 . Furthermore, 𝜆 = ∥𝑝 ∥ is the norm of the center. The angle between

the vectors 𝑝 and 𝑐 is given by 𝛼 =
(𝑙− 𝑗 )𝜋
𝑘+1 . With these variables defined, the constraint translates

to ensuring that dE (𝑐 (𝑠), 𝑝 (𝑠)) > 𝑟 (𝑠) + 𝑟 ′(𝑠) for 𝑠 great enough. Because of Lemma 2.13 (1), this

inequality is equivalent to

0 > 𝑟 (𝑠) + 𝑟 ′(𝑠) −
√︁
𝜇2(𝑠) + 𝜆2(𝑠) − 2𝜇 (𝑠)𝜆(𝑠) cos𝛼 =: 𝑓4(𝑠) (5.6)

One could isolate cos𝛼 to obtain the usual form, but it is easier to take limits directly: using the

limits we have already stated in Equation (5.3) and Equation (5.4), we obtain that

lim

𝑠→∞
𝑓4(𝑠) = 0 + 0 −

√
1 + 1 − 2 cos𝛼 = −

√︁
2(1 − cos𝛼) < 0

since 𝛼 ∈ (0, 𝜋). In particular, Inequality (5.6) can always be fulfilled by choosing 𝑠 great enough.

The existence of such a configuration for the case 𝑘 = 3 and an appropriate value of 𝑠 is illustrated in

Figure 5.1. We now benefit from the lemma by deriving the following theorem:
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Figure 5.1: Points 𝑦1, 𝑦2, 𝑦3 ∈ 𝔻+ that fulfill the constraints of Lemma 5.3 for 𝑘 = 3 and serve as a

baseline for constructing the 3-ary tree as a hyperbolic UCDG recursively.

Theorem 5.4: For each 𝑘 ∈ ℕ, there is a threshold 𝑠0(𝑘) > 0 such that the following holds:

HSph𝑠/2(𝑇𝑘
𝑚) ≤ 2 for each 𝑠 > 𝑠0(𝑘) and each𝑚 ∈ ℕ0.

Proof. Let 𝑠0 be the function from Lemma 5.3. Fix any 𝑘 ∈ ℕ and any 𝑠 > 𝑠0(𝑘). Due to Remark 3.18, we

may prove the theorem by providing a UCDG representation of 𝑇𝑘
𝑚 in 𝔻2

for each𝑚 ∈ ℕ0. We do so by

induction over the tree depth𝑚. The corse idea of this induction is visualized in Figure 5.1: the star-like

configuration of closed disks provided by Lemma 5.3 may be copy-pasted into each open half-plane 𝐻 𝑗 ,

leading to a tree of depth two. This process can be repeated since new open half-planes appear in every

step that are nested inside the other open half-planes. Formally, the statement of induction in terms of

𝑚 ∈ ℕ0 is as follows:

The tree 𝑇𝑘
𝑚 has a UCDG representation (𝜌 : 𝑉 (𝑇𝑘

𝑚) → 𝔻2, 𝑠/2) (where 𝜌 depends on𝑚) with the

following two properties:

(1) The root vertex 𝜈0 is placed on the origin, i.e. 𝜌 (𝜈0) = 0 ∈ 𝔻2
.

(2) For every other vertex 𝜈 ∈ 𝑉 (𝑇𝑘
𝑚) \{𝜈0}, the closed disk of radius 𝑠/2 centered at 𝜌 (𝜈) is completely

contained in 𝔻+.

The start of induction𝑚 = 0 is trivial since there are no vertices other than the root. We proceed with the

induction step from𝑚 to (𝑚 + 1). Let (𝑉 , 𝐸) := 𝑇𝑘
𝑚+1. Note that the tree𝑇

𝑘
𝑚+1 can be seen as a root vertex

𝜈0 with 𝑘 children 𝑐1, . . . , 𝑐𝑘 such that the subtree rooted at 𝑐 𝑗 is a copy of 𝑇𝑘
𝑚 for each 𝑗 ∈ {1, . . . , 𝑘}.

Label each such copy 𝑇𝑗 := (𝑉𝑗 , 𝐸 𝑗 ). In conclusion, the vertex set and edge set of 𝑇𝑘
𝑚+1 are given by

𝑉 = {𝜈0} ∪
𝑘⋃
𝑗=1

𝑉𝑗 and 𝐸 =

𝑘⋃
𝑗=1

{𝜈0𝑐 𝑗 } ∪
𝑘⋃
𝑗=1

𝐸 𝑗 . (5.7)
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Furthermore, let (𝜌 𝑗 : 𝑉𝑗 → 𝔻2, 𝑠/2) be a UCDG representation of each 𝑇𝑗 according to the induction

hypothesis. Let 𝑦 𝑗 and 𝐻 𝑗 be the points resp. open half-planes from Lemma 5.3 and let 𝑔 𝑗 denote the

hyperbolic line bounding 𝐻 𝑗 . Observe that 𝔻
+
is also an open half-plane. Because of Theorem 2.50 (5)

there is an isometry 𝜑 𝑗 : 𝔻
2 → 𝔻2

of the Poincaré disk that satisfies 𝜑 𝑗 (𝔻+) = 𝐻 𝑗 and 𝜑 𝑗 (0) = 𝑦 𝑗 .
Define the function 𝜌 : 𝑉 → 𝔻2

by

𝜌 (𝜈0) := 0 and 𝜌 (𝜈) := 𝜑 𝑗 ◦ 𝜌 𝑗 (𝜈) for each 𝑗 ∈ {1, . . . , 𝑘} and each 𝜈 ∈ 𝑉𝑗 ⊆ 𝑉 .

The function 𝜌 is clearly injective because the open half-planes 𝐻1, . . . , 𝐻𝑘 ⊆ 𝔻+ are pairwise disjoint,
see Lemma 5.3 (5). It remains to verify that (𝜌, 𝑠/2) is a UCDG representation of 𝑇𝑘

𝑚 . Start by showing

that each edge 𝑒 = 𝜈𝑤 ∈ 𝐸 satisfies dD (𝜌 (𝜈), 𝜌 (𝑤)) ≤ 𝑠 . To do so, distinguish two cases based on

Equation (5.7). If 𝑒 ∈ 𝐸 𝑗 for some 𝑗 , then the desired inequality is satisfied because

dD (𝜌 (𝜈), 𝜌 (𝑤)) = dD (𝜌 𝑗 (𝜈), 𝜌 𝑗 (𝑤)) ≤ 𝑠

since 𝜑 𝑗 is an isometry. The remaining edges have the form 𝑒 = 𝜈0𝑐 𝑗 for some 𝑗 . In this case, we get

dD (𝜌 (𝜈0), 𝜌 (𝑐 𝑗 )) = dD (0, 𝜙 𝑗 ◦ 𝜌 𝑗 (𝑐 𝑗 )) = dD (0, 𝜙 𝑗 (0)) = dD (0, 𝑦 𝑗 ) = 𝑠 ≤ 𝑠,

having used that 𝜌 𝑗 (𝑐 𝑗 ) = 0 due to the induction hypothesis. In summary, all edges are preserved.

It remains to show that non-edges are preserved as well, i.e. that each pair of distinct vertices

𝑢,𝑢′ ∈ 𝑉 with 𝑢𝑢′ ∉ 𝐸 satisfies dD (𝜌 (𝑢), 𝜌 (𝑢′)) > 𝑠 . There are also two types of non-edges: the first one

corresponds to 𝑢 ∈ 𝑉𝑗 and 𝑢
′ ∈ 𝑉𝑙 for some distinct 𝑗, 𝑙 ∈ {1, . . . , 𝑘}. The second type corresponds to

𝑢 = 𝜈0 and 𝑢
′ ∉ {𝑐1, . . . , 𝑐𝑘 }. Suppose that 𝑒′ is of the first type. If 𝑒′ = 𝑢𝑢′ = 𝑐 𝑗𝑐𝑙 , we are done since

dD (𝜌 (𝑐 𝑗 ), 𝜌 (𝑐𝑙 )) = dD (𝜑 𝑗 (0), 𝜑𝑙 (0)) = dD (𝑦 𝑗 , 𝑦𝑙 ) > 𝑠

as noted in Lemma 5.3 (1). Otherwise, we may assume that 𝑢 ∈ 𝑉𝑗 \ {𝑐 𝑗 }. Then

𝐵𝐷
(
𝜌 𝑗 (𝑢), 𝑠/2

)
⊆ 𝔻+ =⇒ 𝐵𝐷 (𝜌 (𝑢), 𝑠/2) ⊆ 𝐻 𝑗

by choice of 𝜑 𝑗 . The left side holds due to the second part of the induction hypothesis. Either 𝑢′ = 𝑐𝑙 ,
then

𝐵𝐷 (𝜌 (𝑢′), 𝑠/2) = 𝐵𝐷 (𝑦𝑙 , 𝑠/2) ⊆ 𝔻2 \ (𝐻 𝑗 ∪ 𝑔 𝑗 )

due to Lemma 5.3 (6). Or 𝑢′ ∈ 𝑉𝑙 \ {𝑐𝑙 }, then we similarly have

𝐵𝐷 (𝜌 (𝑢′), 𝑠/2) ⊆ 𝐻𝑙 ⊆ 𝔻2 \ (𝐻 𝑗 ∪ 𝑔 𝑗 )

due to Lemma 5.3 (5). Either way, we obtain from Lemma 5.2 that dD (𝜌 (𝑢), 𝜌 (𝑢′)) > 𝑠 as desired.
Now, suppose that 𝑒′ is of the second type, i.e. 𝑒′ = 𝜈0𝑢′ for some 𝑢′ ∈ 𝑉𝑗 \ {𝑐 𝑗 } and 𝑗 ∈ {1, . . . , 𝑘}. As

argued above, we have 𝐵𝐷 (𝜌 (𝑢′), 𝑠/2) ⊆ 𝐻 𝑗 . Due to Lemma 5.3 (4), we have 𝐵𝐷 (0, 𝑠/2) ⊆ 𝔻2 \ (𝐻 𝑗 ∪𝑔 𝑗 ).
Now Lemma 5.2 implies that

dD (𝜌 (𝜈0), 𝜌 (𝑢′)) = dD (0, 𝜌 (𝑢′)) > 𝑠

as desired.

We conclude that the tuple (𝜌, 𝑠/2) is indeed a UCBG representation of 𝑇𝑘
𝑚+1. Clearly, it satisfies the

first property stated in the induction hypothesis. It also satisfies the second property: let 𝜈 ∈ 𝑉 \ {𝜈0},
i.e. 𝜈 ∈ 𝑉𝑗 for some 𝑗 . If 𝜈 = 𝑐 𝑗 , then the property follows from Lemma 5.3 (2). Otherwise, we have

𝐵𝐷 (𝜌 (𝜈), 𝑠/2) ⊆ 𝐻 𝑗 ⊆ 𝔻+ where the first inclusion was argued above and the second inclusion follows

from Lemma 5.3 (3).
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With this knowledge about 𝑘-ary trees, we are able to conclude the following statement about arbitrary

trees:

Corollary 5.5: For each finite tree 𝑇 , there is a threshold 𝑠0 = 𝑠0(maxdeg(𝑇 )) only dependent of the

maximum degree of 𝑇 such that the following holds:

HSph𝑠/2(𝑇 ) ≤ 2 for each 𝑠 > 𝑠0.

Proof. Let 𝑘 := maxdeg(𝑇 ) − 1. Then, since 𝑇 is finite, there is a depth𝑚 ∈ ℕ0 such that 𝑇 is a vertex-

induced subgraph of 𝑇𝑘
𝑚 . As such, 𝑇 inherits a UDG representation with threshold radius 𝑠/2 > 0 if

one exists for 𝑇𝑘
𝑚 with the same threshold radius, see Remark 3.9. The statement now follows from

Theorem 5.4 and the therein provided function 𝑠0: define the function 𝑠0 by

𝑠0(maxdeg(𝑇 )) := 𝑠0(maxdeg(𝑇 ) − 1) = 𝑠0(𝑘).

So all trees are hyperbolic UDGs if the threshold radius is chosen great enough, but which trees

are even unit interval graphs? Clearly, trees of the form 𝑇𝑘
𝑚 where𝑚 = 0 or 𝑘 = 1 are path graphs,

and therefore unit interval graphs. In turns out that this description captures every tree that is a unit

interval graph: every tree𝑇 which is not of the above form must contain the star 𝐾1,3 as a vertex-induced

subgraph, but unit interval graphs are known to be 𝐾1,3-free.

Note that the techniques presented in this section are not necessarily restricted to trees. They could

also be helpful in the context of other graphs with a recursive structure.

5.2.1 Hyperbolic Tilings

In this section, we explore hyperbolic tilings and present a way to find each 𝑘-ary tree as a vertex-induced

subgraph of an appropriate hyperbolic tiling. This can be used to provide a second proof that each 𝑘-ary

tree is a hyperbolic UDG by showing that tiling graphs are hyperbolic UDGs. Initially, we hoped that this

approach would be less technical and more concise than the previous approach by direct construction.

This did not turn out to be the case. Nevertheless, tilings appear to be a strong tool in the context of

hyperbolic UDGs which could also be applied to other graph families, not just trees.

In the remainder of this chapter, we only need the Poincaré disk 𝔻2
as a model of the hyperbolic

plane, i.e. 2-dimensional hyperbolic space, so we will use the two terms synonymously in the context of

tilings.

Definition 5.6: Let 𝑝, 𝑞 ∈ ℕ. A {𝑝, 𝑞} regular tiling of the hyperbolic plane 𝔻2
is a collection A of

convex regular polygons of 𝑝 vertices, called tiles, such that the following holds:

(1) A is a covering, i.e. 𝔻2 =
⋃

𝐴∈A𝐴.

(2) A is a packing, i.e. the interiors of two distinct polygons 𝐴,𝐴′ ∈ A are disjoint.

(3) If two distinct polygons 𝐴,𝐴′ ∈ A touch, they either share one edge and two vertices or just one

vertex and nothing else.

(4) At each vertex, exactly 𝑞 polygons touch.

The notation {𝑝, 𝑞} is called a Schläfli symbol and must not be confused with notation of sets because

the order of 𝑝 and 𝑞 clearly matters. As an example, the {4, 5} regular tiling of 𝔻2
is depicted in

Figure 5.2. Regular tilings have a high degree of symmetry, which might not be immediately obvious

from Definition 5.6. In particular, they are known to be vertex-transitive: for any two vertices of the
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regular tiling, there exists a symmetry of the tiling mapping the first vertex isometrically onto the

second. For a proof, we refer to The Tiling Book by Adams which characterizes regular tilings via the

existence of such (and even stronger) symmetries [Ada22, p. 55]. Informally speaking, if we have no

coordinate system, the regular tiling looks the same at every vertex.

Concerning the existence of regular hyperbolic tilings, the following theorem states an easy-to-check

necessary and sufficient condition. For a proof, we refer again to Adams [Ada22, p. 227].

Theorem 5.7: A {𝑝, 𝑞} regular tiling of the hyperbolic plane 𝔻2
exists if and only if

1

𝑝
+ 1

𝑞
< 1

2
.

Suppose fixed values 𝑝 and 𝑞 admitting a {𝑝, 𝑞} regular tiling of the hyperbolic plane 𝔻2
. As Adams

mentions, each interior angle of each tile must be 𝜑 := 2𝜋
𝑞

and the side length of the tiles is thereby

uniquely determined [Ada22, p. 228]. So any two tiles are congruent.

Remark 5.8: Similarly to regular tilings of the hyperbolic plane, one can define regular tilings of the

Euclidean plane 𝐸2 and of the spherical plane (i.e. the surface of the sphere 𝑆2). Then Theorem 5.7 has

the following extension: a {𝑝, 𝑞} regular tiling of the Euclidean plane exists if and only if
1

𝑝
+ 1

𝑞
= 1

2
.

Furthermore, a {𝑝, 𝑞} regular tiling of the spherical plane exists if and only if
1

𝑝
+ 1

𝑞
> 1

2
. In particular,

for each combination of natural numbers 𝑝 and 𝑞, there exists a {𝑝, 𝑞} regular tiling in exactly one of

the three planes.

Each {𝑝, 𝑞} regular tiling A of the hyperbolic plane 𝔻2
induces an infinite graph 𝐺𝑝,𝑞 = (𝑉 , 𝐸) by

defining

𝑉 := {𝑥 ∈ 𝔻2 | 𝑥 is a vertex of some tile of A},
𝐸 := {𝑥𝑦 | there is a side of a tile of A that has 𝑥 and 𝑦 as its two vertices}.

The main idea is the find the 𝑘-ary tree 𝑇𝑘
𝑚 as a vertex-induced subgraph of an appropriate 𝐺𝑝,𝑞 .

Similarly to the previous approach, we allow for 𝑝 and 𝑞 to depend on 𝑘 , but not on the depth𝑚 of the

tree. We may exclude the case 𝑘 = 1, since this makes𝑇𝑘
𝑚 degenerate to the path graph 𝑃𝑚+1. This graph

clearly is a hyperbolic UDG (even a unit interval graph).

Theorem 5.9: Let 𝑘 ∈ ℕ, 𝑘 ≥ 2. The infinite graph of the {4, 𝑘 + 3} regular tiling of𝔻2
contains 𝑇𝑘

𝑚 as a

vertex-induced subgraph for any depth𝑚 ∈ ℕ0.

Proof. Fix any 𝑘 and𝑚. Let 𝑞 = 𝑘 + 3 ≥ 5. Then, there is a {4, 𝑞} regular tiling of 𝔻2
because

1

4
+ 1

𝑞
< 1

2

(see Theorem 5.7). Following the notation introduced above, we set 𝐺 := (𝑉 , 𝐸) := 𝐺4,𝑞 . The {4, 𝑞}
regular tiling of 𝔻2

that induced 𝐺 also induces a planar drawing of 𝐺 . In particular, for each vertex

𝜈 of 𝐺 , the neighbors of 𝜈 possess a cyclic order with respect to the planar drawing. Based on this

observation, we define the following algorithm to choose a vertex subset 𝑉 ′ ⊆ 𝑉 :
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Figure 5.2: Constructing the binary tree of arbitrary depth on the polygons’ vertices and sides of the

{4, 5} regular tiling of 𝔻2
.

Algorithm 5.1: Construction of 𝑇𝑘
𝑚 via regular tiling.

Input: Tuple of integers (𝑘,𝑚) with 𝑘 ≥ 2.

Output: Subset 𝑉 ′ of the vertices of {4, 𝑘 + 3} regular hyperbolic tiling.
1 𝑞 ←− 𝑘 + 3
2 𝐺 = (𝑉 , 𝐸) ←− 𝐺4,𝑞

// pick any root vertex, init parent and layer function

3 𝑉 ′ ←− {𝜈0} where 𝜈0 ∈ 𝑉 is chosen arbitrarily

4 parent : 𝑉 ′ → 𝑉 ′, parent(𝜈0) ←− 𝜈0
5 layer : 𝑉 ′ → ℕ0, layer(𝜈0) ←− 0

6 for 𝑖 = 0 to𝑚 − 1 do // expand each vertex in the current layer, similar to BFS

7 forall 𝜈 ∈ 𝑉 ′ with layer(𝜈) = 𝑖 do
8 let𝑤1,𝑤2, . . . ,𝑤𝑝 be the neighbors of 𝜈 in cyclic order where𝑤1 = parent(𝜈)
9 (if 𝜈 = 𝜈0, let𝑤1 be any neighbor of 𝜈0)

// expand the edges 𝜈𝑤3, . . . , 𝜈𝑤𝑝−1 (skip the vertices 𝑤2 and 𝑤𝑝)

10 𝑉 ′ ←− 𝑉 ′ ∪ {𝑤3, . . . ,𝑤𝑝−1}
11 parent(𝑤 𝑗 ) ←− 𝜈 for each 𝑗 ∈ {3, . . . , 𝑝 − 1}
12 layer(𝑤 𝑗 ) ←− (𝑖 + 1) for each 𝑗 ∈ {3, . . . , 𝑝 − 1}
13 return 𝑉 ′

Figure 5.2 illustrates the algorithm’s behavior for 𝑘 = 2. In the following, let 𝐺 ′ denote the vertex-
induced subgraph 𝐺 |𝑉 ′ . Our goal is to show that 𝐺 ′ corresponds to 𝑇𝑘

𝑚 . We start by showing that 𝐺 ′ is
a tree. Recall that a tree is a connected acyclic graph. Also, recall that cycle detection can be done with

breath-first-search (BFS): a graph contains a cycle if and only if BFS visits a vertex more than once. It is

clear that𝐺 ′ is connected, because the following invariant holds at any step of the algorithm: 𝐺 |𝑉 ′ is
connected. We prove by contradiction that 𝐺 ′ is acyclic.
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Assume that𝐺 ′ contains a cycle𝐶 . The cycle𝐶 may contain edges along which we expanded (see line

10 of the algorithm) and edges 𝑢𝜈 ∈ 𝐸 along which we did not expand. This second type of edges 𝑢𝜈 ∈ 𝐸
is characterized by the fact that 𝑢 and 𝜈 are not in a parent-relationship (i.e. 𝑢 is neither the parent of 𝜈

nor vice-versa). As soon as𝑉 ′ contains two vertices 𝑢, 𝜈 with this property, the vertex-induced subgraph

𝐺 |𝑉 ′ contains a cycle: this a because a BFS search on this graph encounters the vertex 𝑢 twice, once via

its parent and once via 𝜈 . This has the following important consequence: by assuming that 𝐶 is the first

cycle that occurs during the algorithm’s execution, we are ensured that 𝐶 contains at most one edge

𝑢𝜈 along which we did not expand. By identifying the vertex 𝑢1 of 𝐶 in the lowest layer, we may thus

decompose 𝐶 into the following three components:

(1) a path 𝑢1, . . . , 𝑢𝑘 of length 𝑘 where parent(𝑢𝑖+1) = 𝑢𝑖 for each 𝑖 ∈ {1, . . . , 𝑘 − 1},

(2) a path 𝜈1, . . . , 𝜈𝑙 of length 𝑙 with 𝜈1 = 𝑢1 where parent(𝜈 𝑗+1) = 𝜈 𝑗 for each 𝑗 ∈ {1, . . . , 𝑙 − 1},

(3) an edge 𝑢𝑘𝜈𝑙 closing the cycle (potentially an edge along which we did not expand).

Let 𝑔 := 𝑘+𝑙−1 denote the length of𝐶 . The fact that𝐶 is the first cycle that occurs during the algorithm’s

execution implies that the vertex-induced subgraph

𝐺 |𝑊 where 𝑊 := {𝑢1, . . . , 𝑢𝑘−1} ∪ {𝜈1, . . . , 𝜈𝑙−1} ⊆ 𝑉 (𝐶)

is acyclic, thus simply a path graph. In the {4, 𝑞} regular tiling, 𝐶 induces a hyperbolic 𝑔-gon 𝑃 . We

continue by studying the internal angles and the hyperbolic area of 𝑃 . Let 𝛼𝑖 denote the internal angle

at 𝑢𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}. Let 𝛽 𝑗 denote the internal angle at 𝜈 𝑗 for each 𝑗 ∈ {1, . . . , 𝑙}. As the edges of
𝑃 align with the tiling, each internal angle 𝛼𝑖 and 𝛽 𝑗 must be a positive integer multiple of the constant

internal angle of each tile, namely 𝜑 := 2𝜋
𝑞
. Due to the parent-relationship and line 10 of the algorithm,

we know that

𝛼𝑖 ≥ 2𝜑 for each 𝑖 ∈ {2, . . . , 𝑘 − 1} and 𝛽 𝑗 ≥ 2𝜑 for each 𝑖 ∈ {2, . . . , 𝑙 − 1}.

Only the three angles 𝛼1 = 𝛽1, 𝛼𝑘 and 𝛽𝑙 are potentially equal to 𝜑 . It follows that the sum of internal

angles Γ of the polygon 𝑃 satisfies

Γ = 𝛼1 + · · · + 𝛼𝑘 + 𝛽2 + · · · + 𝛽𝑙 ≥ 3𝜑 + (𝑔 − 3)2𝜑 = (2𝑔 − 3)𝜑. (5.8)

Next, we want to estimate the hyperbolic area of 𝑃 . Because the edges of 𝑃 align with the tiling, it can be

decomposed into distinct tiles, each tile being a copy of the regular quadrilateral 𝑄 whose every interior

angle is 𝜑 = 2𝜋
𝑞
. We argue that 𝑃 must contain at least

𝑔−1
2

distinct tiles: we may assume that 𝑘 ≤ 𝑙 .
Consider the (𝑙 − 1) edges of the form 𝑒 𝑗 := 𝜈 𝑗−1𝜈 𝑗 of 𝐶 , for 𝑗 ∈ {2, . . . , 𝑙}. Two neighbored edges 𝑒 𝑗 and

𝑒 𝑗+1 cannot be edges of the same tile since each tile’s internal angle is 𝜑 , but the corresponding angle

formed by the two edges is 𝛽 𝑗 ≥ 2𝜑 . Furthermore, any two non-neighbored edges cannot be edges of the

same tile since this would contradict the fact that 𝐺 |𝑊 is a path graph, as noted above. Consequently,

each edge 𝑒 𝑗 corresponds to a unique tile contained in 𝑃 . Since there are 𝑙 − 1 of these edges, 𝑃 must

contain at least 𝑙 − 1 distinct tiles. Furthermore, we have

𝑙 ≥ 𝑘 =⇒ 2(𝑙 − 1) ≥ 𝑘 − 1 + 𝑙 − 1 = 𝑔 − 1 =⇒ 𝑙 − 1 ≥ 𝑔 − 1
2

,

concluding the statement about the number of tiles 𝑃 contains. In particular, the area of 𝑃 must be at

least
𝑔−1
2

times the area of each tile. Using Theorem 2.60 we can express the area of 𝑃 and of each tile,

i.e. of the regular quadrilateral 𝑄 , using the sum of their internal angles:

AreaH(𝑃) = (𝑔 − 2)𝜋 − Γ and AreaH(𝑄) = 2𝜋 − 4𝜑.
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Linking this with the above observation and Inequality (5.8), we obtain

(𝑔 − 2)𝜋 − (2𝑔 − 3)𝜑 ≥ (𝑔 − 2)𝜋 − Γ = AreaH(𝑃) ≥
𝑔 − 1
2

AreaH(𝑄) = (𝑔 − 1) (𝜋 − 2𝜑)

=⇒ (𝑔 − 2)𝜋 − (2𝑔 − 3)𝜑 − (𝑔 − 1) (𝜋 − 2𝜑) ≥ 0

=⇒ (𝑔 − 2)𝜋 − (2𝑔 − 3) 2𝜋
𝑞
− (𝑔 − 1)𝜋

(
1 − 4

𝑞

)
≥ 0

=⇒ (𝑔 − 2) − 2(2𝑔 − 3)
𝑞

− (𝑔 − 1)
(
1 − 4

𝑞

)
≥ 0

=⇒ 𝑔 − 2 − 4𝑔

𝑞
+ 6

𝑞
− (𝑔 − 1) + 4(𝑔 − 1)

𝑞
≥ 0

=⇒ − 1 + 2

𝑞
≥ 0

=⇒ 2 ≥ 𝑞.

This contradicts our choice of 𝑞 = 𝑘 + 3 ≥ 5made in the beginning, so𝐺 ′ must be acyclic and thus a tree.

Now, it follows easily that 𝐺 ′ corresponds to 𝑇𝑘
𝑚 : the fact that 𝐺

′
is a tree implies that the algorithm

constructs a BFS layering of𝐺 ′. In particular, the layer of each vertex of𝐺 ′ is set exactly once (if BFS

encounters a vertex more than once, this would imply a cycle). As a consequence, each vertex in layer

𝑖 < 𝑚 is parent of exactly 𝑞 − 3 = 𝑘 other vertices in the layer 𝑖 + 1 and each vertex in layer𝑚 is parent

of no other vertex, i.e. a leaf. This is precisely the structure of 𝑇𝑘
𝑚 .

It remains to show that the obtained representation of 𝑇𝑘
𝑚 is a hyperbolic UCDG representation with

some threshold radius. This will follow from Corollary 3.19 if we can show that the corresponding tiling

graph 𝐺4,𝑞 with 𝑞 = 𝑘 + 3 is an infinite hyperbolic UCDG. Doing so is rather technical and will take up

the remainder of this chapter. Some preparation is necessary. To start with, we explore properties of

individual tiles, i.e. of convex regular quadrilaterals in 𝔻2
.

Lemma 5.10: Each convex regular hyperbolic quadrilateral 𝑃 is circumscribed by a unique hyperbolic

circle 𝐶 whose center is contained in 𝑃 . Let 𝑥 > 0 denote the length of each side of 𝑃 and let 𝜑 denote

the angle at each vertex of 𝑃 . Then, the hyperbolic radius of 𝐶 is given by 𝑦 > 0 such that

sinh(𝑦) = sinh(𝑥) sin(𝜑/2).

Proof. We will make frequent use of the congruency conditions for hyperbolic triangles in this proof, see

Theorem 2.56. Refer to Figure 5.3 for a visual aid. Let 𝜈1, 𝜈2, 𝜈3, 𝜈4 denote the vertices of 𝑃 in circular order.

Because of the side-angle-side congruency theorem, the two triangles 𝑇 (𝜈1, 𝜈2, 𝜈3) and 𝑇 (𝜈1, 𝜈3, 𝜈4) are
congruent. Consequently, the geodesic segment [𝜈1, 𝜈3] partitions the angle 𝜑 at 𝜈1 into two equal-sized

angles. We conclude that [𝜈1, 𝜈3] is the angle bisector at 𝜈1. It is also the angle bisector at 𝜈3 for reasons

of symmetry. Similarly, [𝜈2, 𝜈4] must be the angle bisector at 𝜈2 and at 𝜈4. Since 𝜈2 and 𝜈4 lie on distinct

sides of [𝜈1, 𝜈3], we know that [𝜈1, 𝜈3] and [𝜈2, 𝜈4] must intersect in a unique point which we call 𝑐 .

Since 𝑃 is convex, 𝑐 ∈ 𝑃 holds. We observe that 𝑐 partitions 𝑃 into four triangles, each having 𝑐 as

one vertex and two adjacent 𝜈𝑖 , 𝜈 𝑗 as the other two. Due to the angle-side-angle congruency theorem,

these triangles are congruent. In particular, 𝑐 has the same distance to every vertex 𝜈𝑖 . Let 𝑦 denote

this distance. To prove the statement concerning sinh(𝑦), consider the triangle 𝑇 (𝜈1, 𝜈2, 𝑐). Clearly, this
triangle has a right angle at 𝑐 . Taking this into consideration when using the law of sines (Theorem 2.53),

we get

sinh(𝑦)
sin(𝜑/2) = sinh(𝑥) .
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Figure 5.3: Circumcircle of a regular hyperbolic quadrilateral.

To show uniqueness, assume there is another center point 𝑐′ of 𝑃 . In particular, 𝑐′ must also be equidistant

from all vertices. By the side-side-side congruency theorem, all four triangles of the form 𝑇 (𝜈𝑖 , 𝜈 𝑗 , 𝑐′)
where 𝜈𝑖 and 𝜈 𝑗 are adjacent must be congruent. Consequently, 𝑐′ must also lie on each angle bisector of

𝑃 . Since the angle bisectors of 𝑃 intersect in the unique point 𝑐 as shown above, we obtain 𝑐′ = 𝑐 .

In the following, let

−→
𝑎𝑏 denote the ray starting at point 𝑎 through point 𝑏. We use this notation both

in Euclidean and hyperbolic context. Given three noncollinear points in 𝐸2 or three hyperbolically

noncollinear points in 𝔻2
, we use the notation ∡(𝑏, 𝑎, 𝑐) to describe the region bounded by the rays

−→
𝑎𝑏

and
−→𝑎𝑐 , both rays included. We call this region an angular sector.

Lemma 5.11: Consider an isosceles Euclidean triangle with vertices 𝑢, 𝜈,𝑤 such that dE (𝑢, 𝜈) = dE (𝑢,𝑤).
Let 𝑟 denote this common side length. Let 𝐾 denote the Euclidean circle centered at 𝑢 with radius 𝑟 .

Let 𝐶 denote the unique circumcircle of the triangle provided by Lemma 2.14. Then, every point in

𝐶 ∩ ∡(𝜈,𝑢,𝑤) \ {𝜈,𝑤} lies outside 𝐾 .

Proof. Figure 5.4 depicts the situation. We start by naming some variables: let 𝑠 = dE (𝜈,𝑤) denote the
remaining side length of the triangle. Let 𝑐 denote the center of 𝐶 and let 𝑅 denote the radius of 𝐶 . Let

𝑢′ denote the antipodal point of 𝑢 with respect to𝐶 . We observe that 𝑐 must lie inside the triangle (more

precisely, on the angle bisector at 𝑢 due to the Euclidean side-side-side congruency theorem applied to

the Euclidean triangles𝑇 (𝑢, 𝜈, 𝑐) and𝑇 (𝑢, 𝑐,𝑤)). Since 𝑢′ lies on the ray
−→𝑢𝑐 , if follows that𝑢′ is contained

in the angular sector ∡(𝜈,𝑢,𝑤). Wolfram MathWorld provides a formula to calculate the circumradius 𝑅

[Wei]:

𝑅 =
𝑟 2𝑠√︁

(2𝑟 + 𝑠) (2𝑟 − 𝑠)𝑠2
=

𝑟 2√︁
(2𝑟 + 𝑠) (2𝑟 − 𝑠)

=
𝑟 2√︁

(2𝑟 )2 − 𝑠2
>
𝑟 2

2𝑟
=
𝑟

2

.

Consequently, dE (𝑢,𝑢′) = 2𝑅 > 𝑟 , i.e. the point 𝑢′ ∈ 𝐶 ∩ ∡(𝜈,𝑢,𝑤) lies outside the circle 𝐾 = 𝑆𝐸 (𝑢, 𝑟 ).
Because𝐶 and 𝐾 are distinct circles, they may intersect at most in two points due to Lemma 2.14, namely

𝜈 and 𝑤 . We know that 𝐶′ := 𝐶 ∩ ∡(𝜈,𝑢,𝑤) is a (topologically) connected subset of 𝐶 . Consider the

continuous function

𝑓 : 𝐶 → ℝ, 𝑥 ↦→ dE (𝑢, 𝑥) − 𝑟 .
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Figure 5.4: Comparing the circumcircle 𝐶 of an isosceles Euclidean Triangle 𝑇 (𝑢, 𝜈,𝑤) with apex 𝑢 to

the circle 𝐾 centered at 𝑢 through 𝜈 and𝑤 .

Clearly, zeros of 𝑓 correspond to intersection points of 𝐶 and 𝐾 , so 𝜈 and 𝑤 are the only zeros of 𝑓 .

Furthermore, we know that 𝑓 (𝑢′) > 0. Let 𝑥 denote any point in 𝐶′ \ {𝜈,𝑤}. We need to show that

𝑓 (𝑥) > 0 to prove the statement. Clearly, 𝑓 (𝑥) = 0 is impossible since 𝑥 ∉ {𝜈,𝑤}. Since 𝑓 is continuous
and𝐶′ is connected, 𝑓 (𝐶′) ⊆ ℝ is also connected. Similar to the intermediate value theorem, this implies

that a point 𝑥 ∈ 𝐶′ with 𝑓 (𝑥) < 0 would lead to a third zero of 𝑓 since 𝑓 (𝑤) = 0, 𝑓 (𝑢′) > 0 and 𝑓 (𝜈) = 0.

But we know that 𝑓 has only two zeros. This means that every point in 𝐶′ \ {𝜈,𝑤} must lie outside

𝐾 .

Lemma 5.12: Let 𝑃 denote a convex regular hyperbolic quadrilateral with side length 𝑥 and internal

angle 𝜑 at each vertex of 𝑃 . Let 𝜈1, 𝜈2, 𝜈3, 𝜈4 denote the vertices of 𝑃 in circular order. Then,

𝐵𝐷 (𝜈1, 𝑧) ∩ ∡(𝜈2, 𝜈1, 𝜈4) ⊆ 𝑃 where sinh(𝑧) = sinh(𝑥) sin(𝜑) .

Proof. Figure 5.5 depicts the situation. As argued before, 𝑃 may be decomposed into the two con-

gruent hyperbolic triangles 𝑇1 := 𝑇 (𝜈1, 𝜈2, 𝜈3) and 𝑇2 := 𝑇 (𝜈1, 𝜈3, 𝜈4). Similarly, the angular sector

𝐴 := ∡(𝜈2, 𝜈1, 𝜈4) may be decomposed into the two sub-sectors 𝐴1 := ∡(𝜈2, 𝜈1, 𝜈3) and 𝐴2 := ∡(𝜈3, 𝜈1, 𝜈4).
If we can show that

𝐵𝐷 (𝜈1, 𝑧) ∩𝐴𝑖 ⊆ 𝑇𝑖 for each 𝑖 ∈ {1, 2},

the statement of the theorem follows from the distributive law of set theory. In order to show this

inclusion, we may focus on 𝑖 = 1 since the triangles 𝑇1 and 𝑇2 are congruent. The following observation

is helpful: let 𝑤 denote some point on the geodesic segment [𝜈2, 𝜈3]. Then, the points 𝜈1, 𝜈2 and 𝑤

induce a hyperbolic triangle. Concerning this triangle, the internal angle at 𝜈2 is 𝜑 and we know that

dD (𝜈1, 𝜈2) = 𝑥 . Let 𝛼 denote the internal angle at𝑤 . Using the law of sines (Theorem 2.53), we obtain

sinh(dD (𝜈1,𝑤)) =
sinh(𝑥) sin(𝜑)

sin(𝛼) ≥ sinh(𝑥) sin(𝜑) = sinh(𝑧),

thus dD (𝜈1,𝑤) ≥ 𝑧 since sinh is strictly increasing.

Now consider any point 𝑝 ∈ 𝐵𝐷 (𝜈1, 𝑧) ∩ 𝐴1. Due to the crossbar theorem known from axiomatic

geometry, we know that the hyperbolic ray
−−→
𝜈1𝑝 must intersect [𝜈2, 𝜈3] in some point𝑤 . Since dD (𝜈1, 𝑝) <

𝑧 and dD (𝜈1,𝑤) ≥ 𝑧, we may conclude that 𝑝 lies between 𝜈1 and 𝑤 on the ray
−−→
𝜈1𝑝 . Since hyperbolic

triangles are convex, 𝑝 ∈ [𝜈1,𝑤] implies that 𝑝 ∈ 𝑇1, since 𝜈1,𝑤 ∈ 𝑇1. This concludes the proof.
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Figure 5.5: Illustration of Lemma 5.12.

Theorem 5.13: Let 𝑞 ∈ ℕ, 𝑞 ≥ 5. Let 𝑥 denote the side length of the tiles used in the regular {4, 𝑞} tiling
of the hyperbolic plane 𝔻2

. Then, 𝐺4,𝑞 is a hyperbolic UCDG with threshold radius 𝑥/2.

Proof. Let (𝑉 , 𝐸) := 𝐺4,𝑞 . Let 𝜑 denote the internal angle at each vertex of each tile. The vertices 𝑉 are

already a subset of 𝔻2
, so it suffices to show that (id : 𝑉 → 𝔻2, 𝑥/2) is a UCDG representation. Since

the tiling is vertex-transitive, it suffices to focus on any vertex 𝜈1. Our goal is to show that each vertex

𝑤 ∈ 𝑉 \ {𝜈1} such that dD (𝜈1,𝑤) ≤ 𝑥 also satisfies 𝜈1𝑤 ∈ 𝐸. Consider a tile 𝑃 in the tiling having 𝜈1 as a

vertex. Let 𝜈1, 𝜈2, 𝜈3, 𝜈4 denote the vertices of this tile 𝑃 in circular order.

Due to the transitivity properties of hyperbolic isometries, in particular Theorem 2.50 (3), we may

assume without loss of generality that 𝜈1 is placed on the origin and that 𝜈2 is placed on the positive

real axis. Now, the tiling is arranged like the tiling depicted in Figure 5.2. Under this circumstances, the

tiling’s rotational symmetries allow us to restrict our task to showing that the only vertices𝑤 ∈ 𝑉 \ {𝜈1}
contained in the angular sector

𝐴 := ∡(𝜈2, 𝜈1, 𝜈4) = {𝑧 ∈ 𝔻2 | arg 𝑧 ∈ [0, 𝜑]}

with dD (𝜈1,𝑤) ≤ 𝑥 are precisely 𝜈2 and 𝜈4. In one formula, we equivalently need to show that

𝐵𝐷 (𝜈1, 𝑥) ∩𝐴 ∩ (𝑉 \ {𝜈1}) = {𝜈2, 𝜈4}.

Clearly, 𝜈2 and 𝜈4 are contained in the set on the left side, so we may restrict ourselves to showing that

𝐵𝐷 (𝜈1, 𝑥) ∩𝐴 ∩ (𝑉 \ {𝜈1, 𝜈2, 𝜈4}) = ∅. (5.9)

Let 𝑐 ∈ 𝑃 ⊆ 𝔻2
denote the center of 𝑃 whose existence is provided by Lemma 5.10. Let 𝑦 := dD (𝜈1, 𝑐).

We claim that there is no vertex 𝑤 ∈ 𝑉 such that dD (𝑤, 𝑐) < 𝑦. To prove this claim by contradiction,

assume that such a vertex𝑤 exists. Then, there must also exist a center 𝑐′ of some other tile such that

dD (𝜈1, 𝑐′) = dD (𝑤, 𝑐) < 𝑦 because the tiling is vertex-transitive. This means that the ball 𝐵𝐷 (𝜈1, 𝑦) must

contain the center of some tile. Let 𝑧 denote the hyperbolic length defined in Lemma 5.12. From

sinh(𝑦) = sinh(𝑥) sin(𝜑/2) < sinh(𝑥) sin(𝜑) = sinh(𝑧)

we conclude that 𝑦 < 𝑧. It is helpful to consider all tiles 𝑃1, 𝑃2, . . . , 𝑃𝑞 of the tiling having 𝜈1 as a vertex.

Assuming that 𝑃 = 𝑃1, all of these tiles originate from 𝑃 by rotation around the origin, i.e. around 𝜈1.

Applying Lemma 5.12 to all of these tiles, we get

𝑐′ ∈ 𝐵𝐷 (𝜈1, 𝑦) ⊆ 𝐵𝐷 (𝜈1, 𝑧) ⊆ 𝑃1 ∪ 𝑃2 ∪ · · · ∪ 𝑃𝑞 . (5.10)
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Because a tile’s center is contained in the tile, 𝑐′ must be the center of some 𝑃 𝑗 , 𝑗 ∈ {1, . . . , 𝑞}. However,
since we can obtain 𝑃 𝑗 by rotating 𝑃 around 𝜈1, we know that the center of 𝑐 𝑗 of 𝑃 𝑗 satisfies dD (𝜈1, 𝑐 𝑗 ) =
dD (𝜈1, 𝑐) = 𝑦. Thus 𝑐′ ≠ 𝑐 𝑗 for each 𝑗 , which brings us to a contradiction. We sum up that 𝐵𝐷 (𝑐,𝑦)∩𝑉 = ∅.
Now, we can apply Lemma 5.11 to the vertices 𝜈1, 𝜈2, 𝜈4 that induce an isosceles Euclidean triangle.

Since each hyperbolic circle corresponds to a Euclidean circle inside 𝔻2
, see Theorem 2.39, the circle

𝐾 from the lemma must be the boundary of 𝐵𝐷 (𝜈1, 𝑥) and the circle 𝐶 from the lemma must be the

boundary of 𝐵𝐷 (𝑐,𝑦). Hence, the lemma implies that

𝐵𝐷 (𝜈1, 𝑥) ∩𝐴 \ {𝜈1, 𝜈2, 𝜈4} ⊆ 𝐵𝐷 (𝑐,𝑦) ∩𝐴

Intersecting both sides with 𝑉 , we obtain the following relationship:

𝐵𝐷 (𝜈1, 𝑥) ∩ (𝐴 \ {𝜈1, 𝜈2, 𝜈4}) ∩𝑉 ⊆ 𝐵𝐷 (𝑐,𝑦) ∩𝑉 ∩𝐴 = ∅

which directly implies that Equation (5.9) holds. This concludes the proof.

We strongly suspect that each graph𝐺𝑝,𝑞 induced by a regular hyperbolic tiling is an infinite hyperbolic

UCDG. Many elements of the above proof can be generalized. For example, one can easily show that

any regular convex hyperbolic 𝑝-gon can be circumscribed by a unique circle, similar to Lemma 5.10.

The only part where the arguments fail to generalize is in Equation (5.10). By visual inspection of

{𝑝, 𝑞} regular hyperbolic tilings with large 𝑝 , one observes that the stated subset relationship does not

generally hold. Here, a more sophisticated argument must be found to show that, given the center 𝑐 of

some tile 𝑃 , the vertices closest to 𝑐 are precisely the vertices of 𝑃 .
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6 Hyperbolic UDGs: Influence of Threshold
Radius

In the last chapter, we observed that each tree is a hyperbolic unit disk graph (HUDG) if the threshold

radius is chosen great enough. In this chapter, we will develop on this by examining other graphs,

paying particular attention to how their hyperbolic sphericity changes with respect to the threshold

radius used.

6.1 Star Graphs

Clearly, every star graph 𝐾1,𝑛 can be viewed as the 𝑛-ary tree of depth 1. In particular, every star graph

is a HUDG, if the threshold radius is chosen great enough in terms of 𝑛. A well-known fact about the

Euclidean sphericity of stars is [Mae84b]:

ESph(𝐾1,𝑚) = 1 for𝑚 ∈ {1, 2}, ESph(𝐾1,𝑛) = 2 for 𝑛 ∈ {3, 4, 5} and ESph(𝐾1,6) = 3. (6.1)

Since models of the hyperbolic plane look locally almost Euclidean, one could suspect thatHSph𝑠 (𝐾1,6) =
2 if and only if 𝑠 is great enough, in the sense that 𝑠 ≈ 0 would lead to a higher hyperbolic sphericity. A

little surprisingly, this is not the case, due to the word almost in the above statement. In fact, we have

Lemma 6.1: HSph𝑠 (𝐾1,6) = 2 for each 𝑠 > 0.

Proof. It is clear that 𝐾1,6 is not a unit interval graph (see Remark 3.21), since ESph(𝐾1,6) = 3 > 1. To

show that HSph𝑠 (𝐺) ≤ 2, let 𝜈 ∈ 𝑉 (𝐾1,6) denote the central vertex of 𝐾1,6 and let𝑤0, . . . ,𝑤5 denote the

other vertices. Working with the Poincaré disk model 𝔻2
, we claim the following: given any threshold

radius 𝑠 > 0, the tuple (𝜌 : 𝑉 (𝐾1,6) → 𝔻2, 𝑠) defined by

𝜌 (𝜈) := 0 and 𝜌 (𝑤𝑘 ) := tanh(𝑠) exp
(
𝑖𝑘
𝜋

3

)
for each 𝑘 ∈ {0, . . . , 5}

is a UCDG representation of 𝐾1,6 in 𝔻2
. To verify this, first note that dD (𝜌 (𝜈), 𝜌 (𝑤𝑘 )) = 2𝑠 holds for

each 𝑘 because of ∥𝜌 (𝑤𝑘 )∥ = tanh(𝑠), see Lemma 2.40. So all edges are respected by (𝜌, 𝑠). It remains to

show that dD (𝜌 (𝑤), 𝜌 (𝑤 ′)) > 2𝑠 for each pair of distinct vertices𝑤,𝑤 ′ ∈ {𝑤0, . . . ,𝑤𝑘 }. If the hyperbolic
angle between 𝜌 (𝑤) and 𝜌 (𝑤 ′) is 𝜋 , then the geodesic segment [𝑤,𝑤 ′] must contain the origin. Hence,

we have dD (𝜌 (𝑤), 𝜌 (𝑤 ′)) = 4𝑠 > 2𝑠 in this case due to Corollary 2.27. If the angle between 𝑤 and 𝑤 ′

is less then 𝜋 , then 0 = 𝜌 (𝜈), 𝜌 (𝑤) and 𝜌 (𝑤 ′) must form an isosceles hyperbolic triangle. Let 𝛼 < 𝜋

denote the angle at the origin. By construction, 𝛼 ∈ { 𝜋
3
, 2𝜋

3
} holds. Because the triangle is isosceles, the

two other angles must be equal as noted in Theorem 2.57. Denote them with 𝛽 . From the fact that the

angle sum in a hyperbolic triangle is always less than 𝜋 , see Theorem 2.52, we conclude that 𝛽 < 𝜋
3
. As

a consequence, sin𝛼 > sin 𝛽 due to

sin𝛼 = sin

(
2𝜋

3

)
= sin

(𝜋
3

)
> sin 𝛽 > 0
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where we used the fact that sin is strictly increasing on [0, 𝜋
3
]. Finally, let 𝑥 := dD (𝑤,𝑤 ′) denote the

length of the triangle’s side opposite the angle 𝛼 . Using the hyperbolic law of sines (Theorem 2.53) and

the fact that
sin𝛼
sin 𝛽

> 1, we get

sinh(2𝑠)
sin(𝛽) =

sinh(𝑥)
sin(𝛼)

=⇒ sin(𝛼)
sin(𝛽) sinh(2𝑠) = sinh(𝑥)

=⇒ sinh(2𝑠) < sinh(𝑥)
=⇒ 2𝑠 < 𝑥

because sinh is strictly increasing. In summary, the tuple (𝜌, 𝑠) is a UCDG representation of 𝐾1,6. Due to

Remark 3.18, this concludes the proof.

Equation (6.1) suggests that at least 𝐾1,7 does not have a HUDG representation in 𝔻2
with small

threshold radii. Proving this formally is a little tedious. We will use the Mathematica software as a

support for technical calculus statements, like evaluation of limits and checking function properties

[Inc].

Lemma 6.2: There is a threshold 𝑠0 > 0 such that for each 𝑠 ∈ [0, 𝑠0),

HSph𝑠 (𝐾1,7) > 2.

Proof. Without loss of generality, we may again work with the Poincaré disk model. Assume a UDG

representation (𝜌 : 𝑉 (𝐾1,7) → 𝔻2, 𝑠) of 𝐾1,7. We show that this implies certain conditions concerning

the threshold radius 𝑠 . Let 𝜈 ∈ 𝑉 (𝐾1,7) denote the central vertex and let 𝑤0, . . . ,𝑤6 denote the other

vertices. As usually, we may assume that 𝜌 (𝜈) = 0 ∈ 𝔻2
, otherwise compose 𝜌 with an isometry of 𝔻2

that maps 𝜌 (𝜈) to the origin (such an isometry exists due to Theorem 2.50 (1)). Let 𝑞𝑘 = 𝜌 (𝑤𝑘 ) ∈ 𝔻2

denote the image of each vertex 𝜈𝑘 for 𝑘 ∈ {0, . . . , 6}. By writing each point 𝑞𝑘 in polar coordinates, we

may assume that 𝑞0, . . . , 𝑞6 are sorted in circular angular order. With respect to this order, let 𝛼0, . . . , 𝛼6
denote the hyperbolic angles between neighbored vectors 𝑞𝑘 , 𝑞𝑙 . Clearly, we have

6∑︁
𝑘=0

𝛼𝑘 = 2𝜋.

It follows that at least one angle 𝛼𝑘 satisfies 𝛼𝑘 ≤ 2𝜋
7
. Because the order is circular, we may assume that

this angle corresponds to the vectors 𝑞0 and 𝑞1. Together with the origin, 𝑞0 and 𝑞1 induce a hyperbolic

triangle. Let 𝛼 := 𝛼𝑘 be the angle at the origin. In particular,

cos𝛼 ≥ cos

(
2𝜋

7

)
since cos is strictly decreasing on [0, 𝜋]. Because 𝜌 is a UDG representation of 𝐾1,7 in 𝔻2

, the side

lengths of the triangle must satisfy

𝑥 := dD (0, 𝑞0) < 2𝑠, 𝑦 := dD (0, 𝑞1) < 2𝑠 and 𝑧 := dD (𝑞0, 𝑞1) ≥ 2𝑠 .

We may assume that 𝑥 ≥ 𝑦. We also know that cosh𝑥 ≤ cosh 𝑧 because cosh is strictly increasing for

positive real numbers. Furthermore, the following identity will be useful:

tanh

(𝑦
2

)
=
cosh(𝑦) − 1

sinh𝑦
for each 𝑦 > 0.
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It can be obtained from basic identities about hyperbolic functions or via Mathematica. Combining the

above facts with the first law of cosines, see Theorem 2.54, we derive

cos𝛼 =
cosh𝑥 cosh𝑦 − cosh 𝑧

sinh𝑥 sinh𝑦

≤ cosh𝑥 cosh𝑦 − cosh𝑥
sinh𝑥 sinh𝑦

=
cosh𝑥

sinh𝑥
· cosh(𝑦) − 1

sinh𝑦

= coth𝑥 · tanh
(𝑦
2

)
≤ coth𝑥 · tanh

(𝑥
2

)
=: 𝑓 (𝑥)

having used that tanh is strictly increasing in the last step. Clearly, the function 𝑓 is defined for positive

real numbers and is continuous. With the help of Mathematica, we verify that 𝑓 : ℝ>0 → ℝ is strictly

increasing. This implies

cos

(
2𝜋

7

)
≤ cos𝛼 ≤ 𝑓 (𝑥) < 𝑓 (2𝑠) = coth(2𝑠) tanh(𝑠) =: 𝑔(𝑠) (6.2)

giving us a necessary condition on 𝑠 for the existence of a HUDG representation (𝜌, 𝑠) of 𝐾1,7. Cleary,

the function 𝑔 : ℝ>0 → ℝ is strictly increasing since 𝑓 is. Thus 𝑔 has an inverse 𝑔−1 that is also strictly

increasing. While 𝑔(0) is undefined, we again use Mathematica to see that

lim

𝑠→0

𝑔(𝑠) = 1

2

= cos

(
2𝜋

6

)
< cos

(
2𝜋

7

)
We also have lim𝑠→∞ 𝑔(𝑠) = 1, so the domain of 𝑔−1 is given by the open interval

(
1

2
, 1

)
. Consequently,

the necessary condition on 𝑠 as stated in Inequality (6.2) is nontrivial because it is violated by every

choice of 𝑠 below the threshold

𝑠0 := 𝑔
−1

(
cos

(
2𝜋

7

))
.

Clearly, the above proof can be applied to star graphs 𝐾1,𝑛 with 𝑛 ≥ 7 as well.

6.2 Relation Between Unit Disk Graphs and Planarity

In this section, we study the relationship between planar graphs and unit ball graphs in metric spaces

with certain properties. We focus mainly on 𝐸2 and 𝔻2
, but the results are not restricted to these two

spaces. Nevertheless, spaces in this section can generally be imagined as plain-like. For this reason, we
only speak of unit disk graphs (UDGs) in this section. At first glance, a strong relationship between

UDGs and planar graphs does not exist. For example, complete graphs 𝐾𝑛 are Euclidean and hyperbolic

UDGs (even unit interval graphs), but they are famously nonplanar if 𝑛 ≥ 5. On the other hand, star

graphs 𝐾1,𝑛 are always planar, but they are Euclidean UDGs if and only if 𝑛 ≤ 5. However, as the main

result of this section, a relationship can be established if we take the property of having triangles, i.e. a

𝐾3 subgraph, into account.

To pursuit, a formal definition of planar graphs is necessary, based on graph drawings in the plane

ℝ2
.
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Definition 6.3: Let 𝐺 = (𝑉 , 𝐸) be any graph. A tuple (𝑓 , Γ) is an ℝ2-drawing of 𝐺 if and only of the

following holds:

(1) 𝑓 : 𝑉 → ℝ2
is an injective function.

(2) There is a bijection from 𝐸 to Γ. Moreover, the element 𝛾𝑒 corresponding to the edge 𝑒 = 𝜈𝑤 is an

injective, continuous curve 𝛾𝑒 : [𝑎𝑒 , 𝑏𝑒] → ℝ2
that satisfies

{𝛾𝑒 (𝑎𝑒), 𝛾𝑒 (𝑏𝑒)} = {𝑓 (𝜈), 𝑓 (𝑤)} and 𝛾𝑒 (𝑡) ∉ 𝑓 (𝑉 ) for each 𝑎𝑒 < 𝑡 < 𝑏𝑒 .

Note that continuity in this context is defined via the standard topology on closed real intervals and

the standard topology on ℝ2
. Furthermore, we call an ℝ2

-drawing (𝑓 , Γ) planar if and only if for each

pair of distinct edges 𝑒, 𝑒′ ∈ 𝐸

𝛾𝑒 (𝑡) ≠ 𝛾𝑒′ (𝑡 ′) for all 𝑡 ∈ (𝑎𝑒 , 𝑏𝑒), 𝑡 ′ ∈ (𝑎𝑒′, 𝑏𝑒′) .

A planar graph is a graph that has at least one planar ℝ2
-drawing. Note that the particular wording of

our definition of planarity might alter slightly from usual definitions, but it is equivalent.

For the remainder of this section, let (𝑋,𝑑) be a geodesically convex metric space, see Definition 2.25.

Recall that this means that for each pair of distinct points 𝑥,𝑦 ∈ 𝑋 , there is a unique geodesic segment

[𝑥,𝑦] joining 𝑥 to𝑦. Call 𝑥 and𝑦 the endpoints of the geodesic segment [𝑥,𝑦]. Furthermore, this geodesic

segment is the image of some geodesic arc 𝛼 : [𝑎, 𝑏] → 𝑋 . We also require (𝑋,𝑑) to be geodesically

complete, as this allows us to use Lemma 2.33 later on. We come to the core definition of this section:

Definition 6.4: Let 𝐺 = (𝑉 , 𝐸) be a graph with a UDG representation 𝑅 := (𝜏 : 𝑉 → 𝑋, 𝑟 ) of 𝐺 in 𝑋

with threshold radius 𝑟 > 0. Then 𝑅 induces the UDG-drawing D = (V, E) of𝐺 defined by the following

two components:

(1) The drawn vertices are given by the set V := {𝜏 (𝜈) | 𝜈 ∈ 𝑉 } ⊆ 𝑋 .

(2) The drawn edges E are given by the set E := {[𝜏 (𝜈), 𝜏 (𝑤)] | 𝜈𝑤 ∈ 𝐸} .
For a fixed representation 𝑅, such a UDG-drawingD exists and is unique because we asked for 𝑋 to be

geodesically convex. Furthermore, we call the UDG-drawing D crossing-free if and only if the following

holds: any two distinct geodesic segments [𝑥1, 𝑥2], [𝑦1, 𝑦2] ∈ E are either disjoint or they intersect in

exactly one point 𝑝 that is a common endpoint of both geodesic segments.

Remark 6.5: How do UDG-drawings and ℝ2
-drawings relate? This question arises if the considered

space 𝑋 is a subset of ℝ2
, e.g. 𝑋 = 𝔻2

. As a technical side note, we should require that an open set

𝐴 ⊆ 𝑋 is also an open set in ℝ2
and that 𝐵 ∩ 𝑋 is an open set in 𝑋 for each open set 𝐵 ⊆ ℝ2

. This then

leads to the nice property that a function 𝛼 : [𝑎, 𝑏] → 𝑋 is continuous if and only if it is continuous

when treating it as a function from [𝑎, 𝑏] to ℝ2
. For example, 𝐸2 trivially has this property. Another

example of a space with this property is 𝔻2
, since 𝔻2 ⊆ ℝ2

is an open set in ℝ2
and since the metric

topology of 𝔻2
is the same as the subspace-topology of 𝔻2 ⊆ ℝ2

due to Theorem 2.39.

In the following, suppose that the space𝑋 satisfies the said property. Given a UDG-drawingD = (V, E)
corresponding to a UDG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) of some graph𝐺 , we attempt to convert it to an

ℝ2
-drawing of 𝐺 : to do so, define the set E ′ by converting each geodesic segment [𝑥,𝑦] in E to some

corresponding geodesic arc 𝛼 : [𝑎, 𝑏] → 𝑋 ⊆ ℝ2
. Then, one could hope that (𝜏, E ′) is an ℝ2

-drawing of

𝐺 because each geodesic arc in E ′ can also be viewed as a continuous injection from a closed interval

to ℝ2
. There is only one problem: this construction might not satisfy the last part of Definition 6.3 (2).

Informally speaking, a vertex might be drawn on an edge connecting two other vertices. However, if we

additionally suppose that the UDG-drawing is crossing-free, this issue is impossible. In this case, we

obtain a valid ℝ2
-drawing using the above conversion. Furthermore, it follows immediately that this

ℝ2
-drawing is planar.
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Now let us consider some fixed graph 𝐺 = (𝑉 , 𝐸) with a UDG representation (𝜏 : 𝑉 → 𝑋, 𝑟 ) and an

induced UDG-drawing D = (V, E) like in Definition 6.4. We suppose that D is not crossing-free, so there

are at least two distinct elements [𝑥1, 𝑥2], [𝑦1, 𝑦2] ∈ E that violate the condition of being crossing-free.

It is helpful to differentiate two cases.

First of all, suppose that [𝑥1, 𝑥2] and [𝑦1, 𝑦2] have a common endpoint, say 𝑥1 = 𝑦1. Then 𝑥2 ≠ 𝑦2,

otherwise the two geodesic segments would be identical. So there are three vertices involved here: label

them 𝑢, 𝜈,𝑤 ∈ 𝑉 such that 𝑥1 = 𝑦1 = 𝜏 (𝑢), 𝑥2 = 𝜏 (𝜈) and 𝑦2 = 𝜏 (𝑤). Because the two geodesic segments

cause a crossing, they must intersect in some point 𝑧 ≠ 𝑥1. Here, Lemma 2.33 comes into play: it implies

that [𝑥1, 𝑥2] ⊆ [𝑥1, 𝑦2] or [𝑥1, 𝑦2] ⊆ [𝑥1, 𝑥2]. In particular, 𝑥2 ∈ [𝑥1, 𝑦2] or 𝑦2 ∈ [𝑥1, 𝑥2]. Either way, all
three vertices 𝑢, 𝜈 and 𝑤 are mapped onto a geodesic segment of length less than 2𝑟 . Corollary 2.27

yields that each pairwise distance of the points 𝜏 (𝑢), 𝜏 (𝜈), 𝜏 (𝑤) ∈ 𝑋 must be less than 2𝑟 . Consequently,

all three vertices are pairwise adjacent, that is we have found a triangle. The existence of a triangle will

be the core observation of the second case as well.

Concerning the second case, suppose that [𝑥1, 𝑥2] and [𝑦1, 𝑦2] do not have a common endpoint. Because

𝜏 is injective, this means that there are four distinct vertices involved: label them 𝑢1, 𝑢2, 𝜈1, 𝜈2 ∈ 𝑉 such

that 𝑒 := 𝑢1𝑢2 ∈ 𝐸, 𝑒′ := 𝜈1𝜈2 ∈ 𝐸 and 𝑥𝑖 = 𝜏 (𝑢𝑖), 𝑦𝑖 = 𝜏 (𝜈𝑖) for 𝑖 ∈ {1, 2}. Since D is not crossing-free,

there is 𝑧 ∈ [𝑥1, 𝑥2] ∩ [𝑦1, 𝑦2]. Due to Corollary 2.27, we obtain d (𝑥1, 𝑧) + d (𝑥2, 𝑧) = d (𝑥1, 𝑥2) < 2𝑟 .

Because d is a metric, each term is nonnegative and we conclude that at least one of the terms d (𝑥1, 𝑧)
and d (𝑥2, 𝑧) is strictly less than 𝑟 . The same argument applies to the geodesic segment [𝑦1, 𝑦2]. Without

loss of generality, we may assume that d (𝑥1, 𝑧) < 𝑟 and d (𝑦1, 𝑧) < 𝑟 . Using the triangle inequality which

holds for any metric space, we obtain d (𝑥1, 𝑦1) ≤ d (𝑥1, 𝑧) + d (𝑧,𝑦1) < 2𝑟 . Because the UDG-drawing D
was induced by a unit disk graph representation 𝑅, there must be an edge 𝑒′′ = 𝑢1𝜈1 ∈ 𝐸.

We just observed that crossings in a UDG-drawing enforce the existence of certain graph edges. This

leads to the question if a single crossing in a UDG-drawing enforces even more edges or if one is already

able to provide a concrete UDG-drawing with a single crossing of the graph consisting of four nodes

𝜈1, 𝜈2, 𝑢1, 𝑢2 and edges 𝜈1𝜈2, 𝑢1𝑢2, 𝜈1𝑢1, thus of the path graph 𝑃4. To answer this question, we derive the

system of conditions concerning distances that needs to be satisfiable if 𝑃4 has an UDG-drawing with

one crossing:

d (𝑥1, 𝑥2) < 2𝑟, d (𝑦1, 𝑦2) < 2𝑟, d (𝑥1, 𝑦1) < 2𝑟 (6.3)

d (𝑥1, 𝑦2) ≥ 2𝑟, d (𝑥2, 𝑦1) ≥ 2𝑟, d (𝑥2, 𝑦2) ≥ 2𝑟 (6.4)

d (𝑥1, 𝑥2) = d (𝑥1, 𝑧) + d (𝑥2, 𝑧), d (𝑦1, 𝑦2) = d (𝑦1, 𝑧) + d (𝑦2, 𝑧) (6.5)

Inequality (6.3) decodes the existing edges in 𝑃4. Inequality (6.4) decodes the forbidden edges in 𝑃4.

Inequality (6.5) is a consequence of the fact that 𝑧 has to lie on the geodesic segment [𝑥1, 𝑥2] and on

the geodesic segment [𝑦1, 𝑦2], see above. Now that we have convinced ourselves that all conditions

are necessary, we try to find some contradiction in the system allowing us to conclude that there is no

UDG-drawing of 𝑃4 like described. In fact, by assuming without loss of generality that d (𝑥1, 𝑧) ≤ d (𝑦1, 𝑧),
we get

2𝑟 > d (𝑦1, 𝑦2) = d (𝑦1, 𝑧) + d (𝑦2, 𝑧) ≥ d (𝑥1, 𝑧) + d (𝑦2, 𝑧) ≥ d (𝑥1, 𝑦2) ≥ 2𝑟 (6.6)

Thus 𝑟 > 𝑟 , a contradiction no matter the choice of 𝑟 .

So the next question is what other edges we have to allow in order to obtain a UDG-drawing with at

least one crossing of 𝑃4 plus some other edges. If we simply allow all edges, we obtain the complete

graph 𝐾4 and a UDG-drawing with one or more crossings is clearly possible, but this might be more

than strictly necessary.

Continuing to assume that d (𝑥1, 𝑧) ≤ d (𝑦1, 𝑧), we first test what happens if we ask for an edge 𝑢2𝜈1,

thus flip the second condition in Inequality (6.4). Flipping denotes change of the ≥-comparator to

<-comparator and vice versa. We see that adding this edge is still not enough, because we did not use
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Figure 6.1: Euclidean (left) and hyperbolic (right) UDG-drawing of 𝑃 ′
4
with one crossing.

𝑥2 in the contradiction found in Inequality (6.6). The same applies if we ask for an additional edge

𝑢2𝜈2 instead, thus flip the third condition in Inequality (6.4). However, the situation is different if we

try to add the edge 𝑢1𝜈2 to 𝑃4. Now, d (𝑥1, 𝑦2) ≥ 2𝑟 does not hold anymore, thus the contradiction

is no longer valid for the new system of inequalities. Label the obtained graph 𝑃 ′
4
:= (𝑉 , 𝐸) where

𝑉 := {𝑢1, 𝑢2, 𝜈1, 𝜈2}, 𝐸 := {𝑢1𝑢2, 𝜈1𝜈2, 𝑢1𝜈1, 𝑢1𝜈2}. We see immediately that this graph contains a triangle,

consisting of the vertices {𝑢1, 𝜈1, 𝜈2}. In fact, we are now able to provide a UDG-drawing of 𝑃 ′
4
with

one crossing, at least for the two cases that interest us the most: 𝑋 ∈ {𝐸2,𝔻2}, see Figure 6.1. The
new system might not be satisfiable for any metric space 𝑋 , but we are certain that there are no longer

any problems due to the triangle inequality, because it is satisfiable for 𝑋 ∈ {𝐸2,𝔻2}. The key aspect

here is that no matter if we add only the edge 𝑢1𝜈2 or this edge and one or both of the two others, the

resulting graph will always contain a triangle. In other words, we have seen that transforming 𝑃4 into

the triangle-free cycle graph 𝐶4 is not enough to fix the contradiction noted in Inequality (6.6).

In summary, we observed that in both cases, a graph𝐺 that has a UDG-drawing in 𝑋 with at least

one crossing must also have a triangle as a subgraph. Consequently, if a graph 𝐺 is a UDG in 𝑋 and

also triangle-free, every UDG-drawing of 𝐺 is crossing-free. If 𝑋 ∈ {𝐸2,𝔻2}, we can choose any such

crossing-free UDG-drawing D (at least one exists) and convert it to a planar ℝ2
-drawing of 𝐺 , as noted

in Remark 6.5. As this result will be helpful in the next section, we capture it in the following theorem:

Theorem 6.6: Let 𝑋 ∈ {𝐸2,𝔻2} and let 𝐺 be a graph without triangles that has a UDG representation

in 𝑋 . Then, each UDG-drawing of 𝐺 is crossing-free and its corresponding ℝ2
-drawing is planar. In

particular, 𝐺 is planar.

Note that any UDG representation of 𝐺 is sufficient: we just have to find a single threshold radius

that works. In terms of𝐺 being planar, we note that the condition of having a UDG representation is

necessary: the complete bipartite graph 𝐾3,3 is an example of a graph without triangles that is famously

nonplanar.

6.3 Great Threshold Radius Potentially Suboptimal

Recall that Euclidean UDGs are HUDGs, at least if the threshold radius 𝑠 is chosen small enough, see

Theorem 4.4. In this section, we construct graphs that are Euclidean UDGs but ceise to be HUDGs when

the threshold radius 𝑠 is chosen too great. In particular, this shows that the inequality of Theorem 4.1

can be tight.

The idea of constructing such graphs is based on the following informal observation with respect to

the Poincaré disk model 𝔻2
: when representing star graphs or trees as HUDGs, we usually have one

large disk centered at the origin. The other disks are small in comparison, so we can arrange many of
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Figure 6.2: The graph 𝐶9 (left) with a Euclidean UDG representation (right).

them to touch the large disk but to not touch each other. Note that the terms large and small refer to the
Euclidean perspective. What happens if we want each small disk to touch two other small disks in a

circular manner, but not the large disk? In such a situation, the small disks would surround the large

disk, and this can only work if there are sufficiently many of them.

We proceed by formalizing the described idea. Consider the graph family obtained by the following

construction: start with the cycle graph 𝐶𝑛 of nodes 𝑐0, . . . , 𝑐𝑛−1. Augment it in the following way: add

nodes 𝑎0, 𝑎1, 𝑎2 and edges 𝑐0𝑎0, 𝑎0𝑎1, 𝑎1𝑎2, 𝑎2𝑐2. Add further nodes 𝑏0, 𝑏1, 𝑏2 and edges 𝑐1𝑏0, 𝑏0𝑏1, 𝑏1𝑏2, 𝑏2𝑐3.

Call the resulting graph 𝐶𝑛 . Ensure that 𝐶𝑛 is a Euclidean UDG, otherwise increase 𝑛. Figure 6.2 depicts

the graph 𝐶9 and a Euclidean UDG representation of 𝐶9. By visual inspection, we suspect that 𝑛 = 9 is

the smallest 𝑛 that still allows a Euclidean UDG representation. More importantly, we observe visually

that choosing 𝑛 ≥ 9 ensures that a Euclidean UDG representation exists. We continue by showing that

this graph family has the desired property:

Theorem 6.7: Let 𝑛 ∈ ℕ, 𝑛 ≥ 9 and 𝑠 > arcosh

(
𝑛−2
2
+ 1

)
. Then, HSph𝑠 (𝐶𝑛) > 2 = ESph(𝐶𝑛).

Proof. Fix any graph (𝑉 , 𝐸) := 𝐶𝑛 with 𝑛 ≥ 9. The fact that ESph(𝐶𝑛) = 2 was argued above. We prove

the rest of the statement by contraposition: let 𝑠 > 0 such that HSph𝑠 (𝐶𝑛) ≤ 2 holds. In this case, there

is a UDG representation (𝜌 : 𝑉 → 𝔻2, 𝑠) of 𝐺 in the 2-dimensional Poincaré disk model with threshold

radius 𝑠 . We will show that 𝑠 ≤ arcosh

(
𝑛−2
2
+ 1

)
must necessarily hold.

Clearly, the graph𝐶𝑛 contains no triangles. Due to Theorem 6.6, the UDG-drawingD = (V, E) induced
by (𝜌, 𝑠) must be crossing-free. As argued in Remark 6.5, we can convert D to a planar ℝ2

-drawing

(𝜌, E ′) of𝐶𝑛 by converting each geodesic segment in E to a geodesic arc in E ′. In this planarℝ2
-drawing,

three curves are of particular interest: let 𝛼 denote the curve corresponding to the path 𝑐0, 𝑎0, 𝑎1, 𝑎2, 𝑐2 in

𝐶𝑛 . Refer to Figure 6.2 for a visual aid. Let 𝛽 denote the curve corresponding to the path 𝑐1, 𝑏0, 𝑏1, 𝑏2, 𝑐3
in 𝐶𝑛 . Finally, let 𝛾 denote the closed curve corresponding to the circle 𝑐0, . . . , 𝑐𝑛−1 in 𝐶𝑛 . We know that

the region of 𝔻2
bounded by 𝛾 is a hyperbolic 𝑛-gon as defined in Definition 2.59, because the curve 𝛾

is composed of the geodesic segments [𝜌 (𝑐0), 𝜌 (𝑐1)], . . . , [𝜌 (𝑐𝑛−2), 𝜌 (𝑐𝑛−1)], [𝜌 (𝑐𝑛−1), 𝜌 (𝑐0)] ∈ E . Label
this 𝑛-gon 𝑃 . In particular, 𝛾 has a well-defined inner and outer region. From planar graph theory we

know that one of the points 𝜌 (𝑎1) and 𝜌 (𝑏1) must be in the inner region of 𝛾 and the other one in the

outer region. Otherwise, the curves 𝛼 and 𝛽 would intersect, but the ℝ2
-drawing is planar. We may

assume that 𝜌 (𝑎1) is in the inner region, i.e. contained in the 𝑛-gon 𝑃 . We proceed by studying the

hyperbolic disk 𝐵𝐷 (𝜌 (𝑎1), 𝑠). We claim that it is contained in 𝑃 as well. If it was not, there would be
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some point 𝑥 ∈ 𝐵𝐷 (𝜌 (𝑎1), 𝑠) that would lie on the boundary of 𝑃 . Since the boundary of 𝑃 consists of the

geodesic segments induced by the circle 𝑐0, . . . , 𝑐𝑛−1, there would be a geodesic segment [𝜌 (𝑐𝑖), 𝜌 (𝑐 𝑗 )]
where 𝑐𝑖𝑐 𝑗 ∈ 𝐸 which contains 𝑥 . We obtain

dD (𝜌 (𝑐𝑖), 𝑥) + dD (𝜌 (𝑐 𝑗 ), 𝑥) = dD (𝜌 (𝑐𝑖), 𝜌 (𝑐 𝑗 )) < 2𝑠

due to Corollary 2.27. So at least one of the terms dD (𝜌 (𝑐𝑖), 𝑥) and dD (𝜌 (𝑐 𝑗 ), 𝑥) must be smaller than 𝑠 .

We may assume that the first one is. Then, the triangle inequation would imply

dD (𝜌 (𝑐𝑖), 𝜌 (𝑎1)) ≤ dD (𝜌 (𝑐𝑖), 𝑥) + dD (𝑥, 𝜌 (𝑎1)) < 𝑠 + 𝑠 = 2𝑠 .

Because (𝜌, 𝑠) is a UDG representation of 𝐶𝑛 , an edge 𝑎1𝑐𝑖 ∈ 𝐸 would have to exist, but this is not the

case. Consequently, such a point 𝑥 cannot exist and 𝐵𝐷 (𝜌 (𝑎1), 𝑠) ⊆ 𝑃 must hold. Now, we obtain an

upper bound on 𝑠 by calculating the hyperbolic area of this ball and of the 𝑛-gon 𝑃 : as an immediate

consequence of the Gauss-Bonnet-Theorem (Theorem 2.60) we have AreaH(𝑃) ≤ (𝑛 − 2)𝜋 . Combining

this with the formula of the area of a hyperbolic disk with radius 𝑠 provided in Theorem 2.58, we get

2𝜋 (cosh(𝑠) − 1) = AreaH(𝐵𝐷 (𝜌 (𝑎1), 𝑠)) ≤ AreaH(𝑃) ≤ (𝑛 − 2)𝜋

=⇒ 𝑠 ≤ arcosh

(
𝑛 − 2
2

+ 1
)

because arcosh = cosh
−1

is strictly increasing.

It is worth noting that this bound on 𝑠 could be further improved, due to the rough estimate concerning

the area of a hyperbolic 𝑛-gon made in the proof.

So far, we observed graphs that allow a HUDG representation if one chooses the threshold radius

either great enough (star graphs) or small enough (graphs of the family 𝐶𝑛, 𝑛 ≥ 9). Without much effort,

this allows us to construct examples of graphs that are HUDGs if and only if the threshold radius is

chosen well-balanced, i.e. neither too great nor too small. The main idea is to create a graph having

a vertex-induced subgraph that requires a small threshold radius and having another vertex-induced

subgraph that requires a great threshold radius. This is based on the fact that, given a fixed threshold

radius, a UDG representation of a graph induces a UDG representation of each of its vertex-induced

subgraphs, as proven in Corollary 3.19. For example, we can consider the disjoint union of some 𝐶𝑛

graph and the star graph 𝐾1,7. If we choose 𝑛 too small, the restriction on the threshold radius as noted

in Theorem 6.7 will prevent a simultaneous representation of 𝐾1,7. By trial and error, we notice that

𝑛 ≥ 16 is sufficient, see Figure 6.3.

6.3.1 Upper Bound for Great Threshold Radii

Previously, we observed graphs that are HUDGs for small threshold radii, but have hyperbolic sphericity

of at least three when the threshold radius is increased. However, visually we get the impression that

models of 3-dimensional hyperbolic space are always sufficient to find UBG representations of these

particular graphs. In the following, we generalize and prove this impression, by comparing𝑛-dimensional

hyperbolic space to (𝑛 + 1)-dimensional hyperbolic space in terms of sphericity.

Theorem 6.8: Let 𝐺 = (𝑉 , 𝐸) be any graph. Let 𝑠0 > 0 such that HSph𝑠0
(𝐺) = 𝑛 ∈ ℕ. Then, for each

𝑠 > 𝑠0, HSph𝑠 (𝐺) ≤ 𝑛 + 1.

Proof. We may assume a UBG representation (𝜌 : 𝑉 → 𝕌𝑛, 𝑠0) of 𝐺 in the upper half-space model 𝕌𝑛

of 𝑛-dimensional hyperbolic space. For each 𝑡 > 0, define the function

𝑓𝑡 : 𝕌
𝑛 → 𝕌𝑛+1, (𝑥1, . . . , 𝑥𝑛) ↦→

(√
1 + 𝑡 𝑥1, . . . ,

√
1 + 𝑡 𝑥𝑛−1,

√
𝑡 𝑥𝑛, 𝑥𝑛

)
.
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D2

K1,7

C̃16

Figure 6.3: The disjoint union of 𝐾1,7 and 𝐶16 has a HUDG representation, but only if the threshold

radius is chosen well-balanced.

This is well-defined because 𝑥𝑛 > 0 implies 𝑓𝑡 (𝑥)𝑛+1 = 𝑥𝑛 > 0. Clearly, 𝑓𝑡 is injective for each 𝑡 > 0.

From Definition 2.44, recall that the metric on 𝕌𝑛
is given by

dU (𝑥,𝑦) = arcosh

(
1 + ∥𝑥 − 𝑦∥

2

2𝑥𝑛𝑦𝑛

)
for all 𝑥,𝑦 ∈ 𝕌𝑛

where arcosh = cosh
−1

denotes the inverse hyperbolic cosine function. Some properties of this function

are worth highlighting: the domain of arcosh is given by [1,∞) and arcosh : [1,∞) → ℝ≥0 is a strictly
increasing bijection.
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For any 𝑥,𝑦 ∈ 𝕌𝑛
, using the definition of dU and the fact that arcosh is strictly increasing, we calculate

for any value 𝛼 > 0

dU (𝑓𝑡 (𝑥), 𝑓𝑡 (𝑦)) < arcosh(1 + 𝛼)

⇐⇒ ∥ 𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑦)∥2
2𝑓𝑡 (𝑥)𝑛+1 𝑓𝑡 (𝑦)𝑛+1

< 𝛼

⇐⇒

(∑𝑛−1
𝑖=1

(√
1 + 𝑡 (𝑥𝑖 − 𝑦𝑖)

)
2

)
+

(√
𝑡 (𝑥𝑛 − 𝑦𝑛)

)
2

+ (𝑥𝑛 − 𝑦𝑛)2

2𝑥𝑛𝑦𝑛
< 𝛼

⇐⇒
(1 + 𝑡)

(∑𝑛−1
𝑖=1 (𝑥𝑖 − 𝑦𝑖)2

)
+ (1 + 𝑡) (𝑥𝑛 − 𝑦𝑛)2

2𝑥𝑛𝑦𝑛
< 𝛼

⇐⇒ (1 + 𝑡) ∥𝑥 − 𝑦∥
2

2𝑥𝑛𝑦𝑛
< 𝛼

⇐⇒ ∥𝑥 − 𝑦∥
2

2𝑥𝑛𝑦𝑛
<

𝛼

1 + 𝑡
⇐⇒ dU (𝑥,𝑦) < arcosh

(
1 + 𝛼

1 + 𝑡

)
.

Note that the metric dU in the first line refers to the space 𝕌𝑛+1
while in the last line, dU refers to

𝕌𝑛
. By setting 𝛽 := 𝛼

1+𝑡 > 0, we conclude that the injection 𝑓𝑡 : 𝕌
𝑛 → 𝕌𝑛+1

is a threshold-preserving

function with respect to the thresholds arcosh(1 + 𝛽) and arcosh(1 + (1 + 𝑡)𝛽) for any values 𝛽, 𝑡 > 0,

see Definition 3.6.

Now, back to the graph 𝐺 and its UBG representation (𝜌 : 𝑉 → 𝕌𝑛, 𝑠0). Fix any value 𝑠 > 𝑠0.

We prove the statement by providing a UBG representation of 𝐺 in 𝕌𝑛+1
with threshold radius 𝑠 .

Because arcosh : [1,∞) → ℝ≥0 is a strictly increasing bijection, there is a unique value 𝛽 > 0 such that

2𝑠0 = arcosh(1+𝛽). For the same reason, there is a unique value 𝛽 ′(𝑠) > 𝛽 such that 2𝑠 = arcosh(1+𝛽 ′(𝑠)).
By setting 𝑡 (𝑠) := 𝛽 ′ (𝑠 )

𝛽
− 1 > 0, we have 𝛽 ′(𝑠) = (1 + 𝑡 (𝑠))𝛽 . Summarizing this construction, we get

2𝑠0 = arcosh(1 + 𝛽) < arcosh(1 + (1 + 𝑡 (𝑠))𝛽) = 2𝑠 .

That is, we have chosen the parameter 𝑡 (𝑠) > 0 in a way such that the two thresholds of the threshold-

preserving function 𝑓𝑡 (𝑠 ) match precisely 2𝑠0 and 2𝑠 . Consequently, Theorem 3.8 yields that

(𝑓𝑡 (𝑠 ) ◦ 𝜌 : 𝑉 → 𝕌𝑛+1, 𝑠)

is a UBG representation of𝐺 in 𝕌𝑛+1
with threshold radius 𝑠 . Since 𝑠 > 𝑠0 was chosen arbitrarily, this

concludes the proof.

The presented theorem reminds us of the inequalities obtained in Chapter 4 where we compared

Euclidean and hyperbolic space in terms of sphericity. Here, we compared hyperbolic space with itself. It

is worth mentioning that combining the above theorem with Theorem 4.4 directly implies the statement

of Theorem 4.1.

6.4 Open Question: Medium Threshold Radius Potentially Suboptimal

So far, we observed examples of graphs that are HUDGs if and only if the threshold radius is either

chosen great enough (large trees), small enough (𝐶𝑛 with 𝑛 ≥ 9) or well-balanced (disjoint union of

appropriate 𝐶𝑛 and 𝐾1,7). Apart from graphs that are HUDGs for every threshold radius, the question

arises whether the influence of the threshold radius is fully classified by the above three categories.
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We conjecture that this is not the case. The three categories above have in common that the range of

threshold radii permitting a HUDG representation can be described by a real interval. In contrast, we are

looking for a graph𝐺 where the said range is not connected, i.e. there are threshold radii 0 < 𝑠1 < 𝑠2 < 𝑠3
such that 𝑠1 and 𝑠3 permit HUDG representations of 𝐺 , but 𝑠2 does not.

What could such a graph 𝐺 look like? Our idea resembles the construction of 𝐶𝑛 from above: start

with a cycle graph 𝐶𝑛 . Fix any vertex 𝑐0 of 𝐶𝑛 . Add two other graphs 𝐺 ′ and 𝐺 ′′ and connect both of

them to 𝑐0 by adding an edge each. Let 𝐺 denote the obtained graph from this construction. For now,

we treat the subgraphs 𝐺 ′ and𝐺 ′′ as black boxes, but we assume that both of them are connected and

triangle-free. Again, this allows us to use Theorem 6.6: suppose a HUDG representation of 𝐺 with

some threshold radii 𝑠 exists. We may assume a representation in the Poincaré disk 𝔻2
. Since this

representation induces a planar ℝ2
-drawing of 𝐺 , the subgraph 𝐺 ′ must be drawn either completely

inside or completely outside the region 𝑃 ⊆ 𝔻2
bounded by the closed curve corresponding to the cycle

𝐶𝑛 . The same applies to 𝐺 ′′. We know that this region 𝑃 is a hyperbolic polygon and that its area is

bounded by a constant, no matter how great the threshold radius is chosen.

Now it comes down to finding graphs 𝐺 ′ and 𝐺 ′′ such that the following holds: for a small threshold

radius 𝑠1, the subgraph 𝐺
′
can be drawn as a HUDG inside the cycle 𝐶𝑛 since the corresponding region

provides enough area. Meanwhile, 𝐺 ′′ can be drawn as a HUDG outside the cycle. For a medium

threshold radius 𝑠2, the area necessary to draw 𝐺 ′ as a HUDG shall exceed the available area inside

the cycle 𝐶𝑛 (and the same shall hold for 𝐺 ′′), so both subgraphs 𝐺 ′ and 𝐺 ′′ must be drawn outside 𝐶𝑛 .

However, since they are both attached to 𝐶𝑛 , drawing 𝐺
′
and𝐺 ′′ as HUDGs outside 𝐶𝑛 shall also not

work, unless the threshold radius is further increased to an adequate value 𝑠3.

After some experimentation, the following choices appear promising: let 𝐺 ′ and 𝐺 ′′ be copies of the
tree 𝑇 whose root has four children that each have two children. Furthermore, we choose 𝐶𝑛 as 𝐶19

since this seems to be the smallest cycle that provides enough area to contain 𝐺 ′ for small threshold

radii. Figure 6.4 depicts two successful HUDG representations of the resulting graph 𝐺 , one with a

small threshold radius 𝑠1 where 𝐺
′
lies inside 𝐶19 and one with a great threshold radius 𝑠3 where 𝐺

′

and 𝐺 ′′ both lie outside 𝐶19. Moreover, Figure 6.4 depicts two failed attempts to construct a HUDG

representation of 𝐺 with a specific threshold radius 𝑠2 that satisfies 𝑠1 < 𝑠2 < 𝑠3. Again, in one attempt,

𝐺 ′ shall be placed inside 𝐶19 and in the other attempt, 𝐺 ′ and 𝐺 ′′ shall both be placed outside 𝐶19. Both

attempts seem to make nearly optimal use of the available space. Unfortunately, the tools we have at

hand are not precise enough to formally prove that the graph 𝐺 has no HUDG representation with the

threshold radius 𝑠2 as specified in Figure 6.4.
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✗✗

s1 ≈ 0.19 ✓

s2 ≈ 0.254 s2 ≈ 0.254

s3 ≈ 0.385 ✓

D2 D2

D2 D2

Figure 6.4:Graph𝐺 that has a HUDG representationwith certain threshold radii 𝑠1 and 𝑠3, but potentially

not with every threshold radius 𝑠2 in between.
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Spherical space is obtained when considering the length of shortest paths between points on the unit

sphere 𝑆𝑛 embedded in ℝ𝑛+1
. There are many analogies between spherical and hyperbolic space. In

certain aspects, the two spaces even appear to be counterparts of each other. For example, the angle

sum of a hyperbolic triangle is always less than 𝜋 , see Theorem 2.52. In contrast, the angle sum of a

spherical triangle is always greater than 𝜋 , as Ratcliffe proves [Rat06, p. 47]. For these reasons, we are

also interested in exploring unit ball graphs in spherical space. While we initially defined UBGs in the

context of Euclidean and hyperbolic space, Definition 3.1 can clearly be applied to any metric space

(𝑋,𝑑).

Definition 7.1: The 𝑛-dimensional spherical space is given by the metric space (𝑆𝑛, dS) where

𝑆𝑛 = {𝑥 ∈ ℝ𝑛+1 | ∥𝑥 ∥ = 1} and dS (𝑥,𝑦) = 𝜃 (𝑥,𝑦) for each 𝑥,𝑦 ∈ 𝑆𝑛 .

Here, 𝜃 (𝑥,𝑦) ∈ [0, 𝜋] denotes the angle between the vectors 𝑥 and 𝑦, as defined in Definition 2.11.

For a proof that the spherical distance function dS is indeed a metric on 𝑆𝑛 , we refer to Ratcliffe [Rat06,

p. 36]. Ratcliffe also shows that the geodesics of 𝑆𝑛 are its great circles, i.e. intersections of 𝑆𝑛 with

a 2-dimensional vector subspace of ℝ𝑛+1
. As with Euclidean space, a single model of spherical space

is sufficient for our purposes. This is why we do not need to make a clear distinction between the

abstract spherical geometry (that could also be defined axiomatically) and the metric space as given in

the previous definition.

We proceed by studying unit ball graphs in spherical space and sphericity in this context. Asmentioned

above, Definition 3.1 can also be applied to spherical space. When trying to define the spherical sphericity
of graphs, we soon encounter some particularities of spherical space. Similar to hyperbolic sphericity,

the threshold radius generally has an influence on the the spherical sphericity of a graph. But unlike the

hyperbolic case, not every threshold radius leads to a finite sphericity in spherical space: to see this,

consider some threshold radius 𝛼 > 𝜋/2. Because of Definition 3.1, two distinct vertices 𝜈,𝑤 are adjacent

if and only if they are mapped to distinct points on the sphere 𝑥,𝑦 ∈ 𝑆𝑛 that satisfy dS (𝑥,𝑦) < 2𝛼 . But

because 2𝛼 > 𝜋 and dS (𝑥,𝑦) ≤ 𝜋 in any case, this condition is always fulfilled, i.e. two distinct vertices

are always adjacent. As a consequence, with such a threshold radius 𝛼 > 𝜋/2, we are only able to

represent complete graphs. These thoughts lead to the following definition:

Definition 7.2 (Spherical Sphericity): Let 𝐺 be any graph and 𝛼 > 0. The spherical sphericity of 𝐺

with threshold radius 𝛼 , denoted SSph𝛼 (𝐺), is the smallest integer 𝑛 ∈ ℕ such that there is a UBG

representation (𝜓 : 𝑉 → 𝑆𝑛, 𝛼) of𝐺 in 𝑛-dimensional spherical space. If such an integer 𝑛 ∈ ℕ does not

exist, we leave SSph𝛼 (𝐺) undefined.

In the following theorem, we compare spherical UBG representations to Euclidean ones.

Theorem 7.3: Let 𝐺 = (𝑉 , 𝐸) be a graph with a UBG representation (𝜓 : 𝑉 → 𝑆𝑛, 𝛼) of 𝐺 in 𝑛-

dimensional spherical space with threshold radius 𝛼 ∈ (0, 𝜋/2). Then, there exists a UBG representation

(𝜏 : 𝑉 → 𝐸𝑛+1, 𝑟 ) of 𝐺 in (𝑛 + 1)-dimensional Euclidean space. Furthermore, this UBG representation

satisfies ∥𝜏 (𝜈)∥ = 𝑐 for each 𝜈 ∈ 𝑉 where 𝑐 > 𝑟 is some constant.
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Proof. Define the function
𝑓 : 𝑆𝑛 → 𝐸𝑛+1, 𝑥 ↦→ 𝑥

cos𝛼
.

This function is well-defined because cos𝛼 > 0 holds. Let 𝑥,𝑦 ∈ 𝑆𝑛 . Then

dE (𝑓 (𝑥), 𝑓 (𝑦)) < 2 tan𝛼

⇐⇒ dE
( 𝑥

cos𝛼
,
𝑦

cos𝛼

)
< 2 tan𝛼 | using Lemma 2.7

⇐⇒ 1

cos𝛼
dE (𝑥,𝑦) < 2 tan𝛼

⇐⇒ dE (𝑥,𝑦) < 2 sin𝛼 | using Lemma 2.13 (2)

⇐⇒ 2 sin

(
𝜃 (𝑥,𝑦)

2

)
< 2 sin𝛼 | sin strictly increasing on domain (0, 𝜋/2)

⇐⇒ 𝜃 (𝑥,𝑦)
2

< 𝛼

⇐⇒ dS (𝑥,𝑦) < 2𝛼.

Since 𝑓 is clearly injective, we conclude that 𝑓 is a threshold-preserving function with respect to the

thresholds 2𝛼 and 2 tan𝛼 for each 𝛼 ∈ (0, 𝜋/2), see Definition 3.6. Consequently, Theorem 3.8 implies

that the tuple (𝜏, 𝑟 ) := (𝑓 ◦𝜓, tan𝛼) is also a UBG representation of 𝐺 , but in 𝐸𝑛+1.
It remains to verify that all vectors 𝜏 (𝜈) have the same length in ℝ𝑛+1

. This follows from

∥𝜏 (𝜈)∥ =
 1

cos𝛼
𝜓 (𝜈)

 = 1

cos𝛼
∥𝜓 (𝜈)∥ = 1

cos𝛼
=: 𝑐

because the Euclidean norm ∥·∥ is absolute homogeneous and because𝜓 (𝜈) ∈ 𝑆𝑛 . This concludes the
proof since 𝛼 ∈ (0, 𝜋/2) implies the inequality

𝑐 =
1

cos𝛼
>

sin𝛼

cos𝛼
= tan𝛼 = 𝑟 .

Remark 7.4:Where do the values in the above proof come from? This is best seen from a geometric

approach: we want to “simulate” the spherical ball 𝐵𝑆 (𝑥, 𝛼) ⊆ 𝑆𝑛 ⊆ ℝ𝑛+1
with some Euclidean ball

𝐵𝐸 (𝜆𝑥, 𝑟 ) ⊆ ℝ𝑛+1
. By considering the simplest case, namely 𝑆1, we get the impression that it would be

a good idea to make 𝐵𝐸 (𝜆𝑥, 𝑟 ) and 𝑆1 intersect precisely in 𝐵𝑆 (𝑥, 𝛼). This ensures that an edge of the

spherical representation is kept in the Euclidean representation. To avoid new, undesired edges in the

Euclidean representation, we need to ensure that two Euclidean balls intersect only if the corresponding

spherical balls intersect. This can be generally achieved by requiring that 𝐵𝐸 (𝜆𝑥, 𝑟 ) is contained in the

infinite cone 𝐶 (𝑥, 𝛼) := {𝑦 ∈ ℝ𝑛+1 | 𝜃 (𝑥,𝑦) < 𝛼}. We refer to Figure 7.1 for a visualization. Next, we

notice that we can combine the two requirements if we make 𝑆𝐸 (𝜆𝑥, 𝑟 ) (i.e. the boundary of 𝐵𝐸 (𝜆𝑥, 𝑟 ))
and 𝑆1 intersect orthogonally. In this case, we obtain a triangle induced by the origin 0, the point 𝜆𝑥 and

one of the two points where 𝑆𝐸 (𝜆𝑥, 𝑟 ) and 𝑆1 intersect. Call the last point 𝑝 . We know that the angle at

𝑝 is 𝜋/2 and that the angle at the origin is 𝛼 . Because dE (0, 𝑝) = 1, we obtain (see Figure 7.1)

cos𝛼 =
1

dE (0, 𝜆𝑥)
=⇒ 𝜆 = dE (0, 𝜆𝑥) =

1

cos𝛼
,

tan𝛼 =
dE (𝜆𝑥, 𝑝)

1

=⇒ 𝑟 = dE (𝜆𝑥, 𝑝) = tan𝛼.

Next, we focus on Euclidean UBG representations with the special property provided by Theorem 7.3,

i.e. all vertices are placed on points equidistant to the origin. This special property allows a conversion

to the Poincaré disk model 𝔻𝑛
for each threshold radius, without increase of dimension:
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Figure 7.1: Illustration of Theorem 7.3 for 𝑆1.

Lemma 7.5: Let𝐺 = (𝑉 , 𝐸) be a graph with a UBG representation (𝜏 : 𝑉 → 𝐸𝑛, 1) of𝐺 . Suppose that
this UBG representation satisfies ∥𝜏 (𝜈)∥ = 𝑐 for each 𝜈 ∈ 𝑉 where 𝑐 > 1 is some constant. Then, for

any 𝑠 > 0, there is a UBG representation (𝜌𝑠 : 𝑉 → 𝔻𝑛, 𝑠) of 𝐺 in 𝑛-dimensional hyperbolic space with

threshold radius 𝑠 .

Proof. First of all, we may scale the UBG representation by a factor 𝜆 > 0. Define the function 𝜏𝜆 : 𝑉 →
𝐸𝑛, 𝜈 ↦→ 𝜆 𝜏 (𝜈). Then, the tuple (𝜏𝜆, 𝜆) is a UBG representation of 𝐺 as well because of Theorem 3.5.

For a fixed value of 𝜆, consider the sphere 𝑆𝜈 := 𝑆𝐸 (𝜏𝜆 (𝜈), 𝜆) for each 𝜈 ∈ 𝑉 . Note that ∥𝜏𝜆 (𝜈)∥ = 𝜆𝑐
holds. In order to achieve that all these spheres are contained in 𝔻𝑛

, we require that the point on each

sphere that is furthest from the origin has Euclidean norm less than one. For each sphere, this point

has the Euclidean norm 𝜆(𝑐 + 1), so all choices 0 < 𝜆 < 1

𝑐+1 lead to 𝑆𝜈 ⊆ 𝔻𝑛
for each 𝜈 ∈ 𝑉 . Given such

a value of 𝜆 in the above range, we know from Theorem 2.39 that each 𝑆𝜈 is a hyperbolic sphere in

𝔻𝑛
as well. Furthermore, we observed in Remark 2.41 that these spheres all have the same hyperbolic

radius 𝑠 > 0 since their Euclidean radius is the same, namely 𝜆, and their Euclidean centers all have

the same Euclidean norm, namely 𝜆𝑐 . This implies that for a fixed value of 𝜆 ∈ (0, 1

𝑐+1 ), we can convert

(𝜏𝜆, 𝜆) to a hyperbolic UBG representation (𝜌 : 𝑉 → 𝔻𝑛, 𝑠) by setting 𝜌 (𝜈) as the hyperbolic center of
the sphere 𝑆𝜈 and by letting 𝑠 denote the common hyperbolic radius of these spheres like above. By

construction, the induced graphs of (𝜏𝜆, 𝜆) and (𝜌, 𝑠) both correspond the the intersection graph of the

set {𝑆𝜈 | 𝜈 ∈ 𝑉 }, so both tuples must be UBG representations of 𝐺 .

It remains to show that every threshold radius 𝑠 > 0 can result from this construction. Again,

Remark 2.41 is helpful: for a fixed 𝜆 ∈ (0, 1

𝑐+1 ), we deduce that the corresponding value 𝑠 = 𝑠 (𝜆) is given
by

𝑠 (𝜆) = 1

2

· log
(
(1 + 𝜆)2 − 𝜆2𝑐2
(1 − 𝜆)2 − 𝜆2𝑐2

)
=:

1

2

· log
(
𝑓 (𝜆)
𝑔(𝜆)

)
.
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It will be helpful to allow the case 𝜆 = 0 as well. By calculation, we see that the denominator 𝑔(𝜆) in the

log is greater than zero if 𝜆 ∈ [0, 1

𝑐+1 ). This means that 𝑠 as a function of 𝜆 is well-defined for the domain

𝜆 ∈ [0, 1

𝑐+1 ). Furthermore, 𝑠 is continuous as a composition of continuous functions. We calculate

𝑓

(
1

𝑐 + 1

)
=

(
1 + 1

𝑐 + 1

)
2

− 𝑐2

(𝑐 + 1)2 =
4

𝑐 + 1 ,

i.e. some positive constant. More interestingly, we have 𝑔
(

1

𝑐+1
)
= 0. In summary, we can get the

denominator 𝑔 arbitrarily close to zero by approaching 𝜆 → 1

𝑐+1 from below, while the enumerator 𝑓

converges to some positive constant. Since log is strictly increasing, we conclude

lim

𝜆→ 1

𝑐+1

𝑠 (𝜆) = ∞.

Furthermore, we have 𝑠 (0) = 0. When combining the above observations, the intermediate value theorem

implies that the function 𝑠 can take any positive value for arguments 𝜆 ∈ (0, 1

𝑐+1 ). This concludes the
proof.

Next, we treat the case 𝛼 = 𝜋/2:

Lemma 7.6: Let 𝐺 = (𝑉 , 𝐸) be a graph with a UBG representation (𝜓 : 𝑉 → 𝑆𝑛, 𝜋/2) of 𝐺 in 𝑛-

dimensional spherical space with threshold radius 𝜋/2. Then, 𝐺 is a vertex-induced subgraph of some

graph 𝐾𝑚 (2) , i.e. of a complete𝑚-partite graph on𝑚 sets of size 2.

Proof. Following Definition 3.1, two distinct vertices𝜈,𝑤 ∈ 𝑉 are adjacent if and only if dS (𝜓 (𝜈),𝜓 (𝑤)) <
𝜋 . Recall that the greatest possible spherical distance between two points 𝑥,𝑦 ∈ 𝑆𝑛 is 𝜋 which is attained

if and only if 𝑥 = −𝑦. So for every vertex 𝜈 ∈ 𝑉 , the following holds: either there is some other vertex

𝑤 ∈ 𝑉 such that 𝜓 (𝑤) = −𝜓 (𝜈), then 𝜈 is not adjacent to 𝑤 but to every other vertex (expect itself),

because𝜓 is an injection. Or there is no such𝑤 , then 𝜈 is adjacent to every other vertex (expect itself).

In the second case, we can add a new vertex 𝜈0 to 𝑉 and define𝜓 (𝜈0) := −𝜓 (𝜈). Again, 𝜈0 is adjacent to
every vertex expect 𝜈 and itself. Repeat this process for every vertex to obtain a new vertex set 𝑉 ′ ⊇ 𝑉 .
Let 𝐺 ′ denote the induced graph of the tuple (𝜓 : 𝑉 ′ → 𝑆𝑛, 𝜋/2). By construction, 𝐺 ′ is of the type
𝐾𝑚 (2) . In each step of the process of creating𝐺 ′ from𝐺 , we either did nothing or added one new vertex

and added edges between this new vertex and existing vertices. In particular, we have neither added

nor deleted edges between vertices in the initial vertex set 𝑉 . This implies that 𝐺 is a vertex-induced

subgraph of 𝐺 ′.

Finally, we are ready to combine all results of this chapter in the following corollary.

Corollary 7.7: Let 𝐺 = (𝑉 , 𝐸) denote any graph. For each 𝛼 > 0 such that SSph𝛼 (𝐺) is defined in the

sense of Definition 7.2, the following holds:

ESph(𝐺) ≤ SSph𝛼 (𝐺) + 1 and HSph𝑠 (𝐺) ≤ SSph𝛼 (𝐺) + 1 for each 𝑠 > 0.

Proof. We differentiate between three cases. First of all, if𝛼 > 𝜋/2, then𝐺 is necessarily a complete graph

as noted in the introduction of this chapter. From Example 3.20 we know that ESph(𝐺) = HSph𝑠 (𝐺) = 1

in this case, which implies the statement. Next, consider the case 𝛼 = 𝜋/2. As observed in Lemma 7.6,𝐺

must be vertex-induced subgraph of some graph 𝐾𝑚 (2) . As such, we have

HSph𝑠 (𝐺) ≤ HSph𝑠 (𝐾𝑚 (2) ) ∈ {1, 2} and ESph(𝐺) ≤ ESph(𝐾𝑚 (2) ) ∈ {1, 2}
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because of Corollary 3.19 and Example 3.22. This concludes this case since 2 ≤ SSph𝛼 (𝐺) + 1. The final
case corresponds to 𝛼 ∈ (0, 𝜋/2). The statement concerning Euclidean sphericity follows immediately

from Theorem 7.3. For the statement concerning hyperbolic sphericity, Theorem 7.3 is helpful as well:

take the therein provided UBG representation of 𝐺 in 𝐸𝑛+1. Then, scale it to a UBG representation of 𝐺

in 𝐸𝑛+1 with threshold 1. This is possible due to Theorem 3.5. Finally, use Lemma 7.5 to convert the

obtained UBG representation to a UBG representation of 𝐺 in 𝐻𝑛+1
with an arbitrary threshold radius

𝑠 > 0.

To sum up, spherical space is not particular advantageous when it comes to a low sphericity of graphs.

Furthermore, it illustrates that sphericity with respect to a metric space and some threshold radius might

not behave as nicely as in the Euclidean and hyperbolic case.
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8 Conclusion

We have established the notion of hyperbolic sphericity HSph𝑠 (·) as a graph invariant in dependence of

the threshold radius 𝑠 > 0 and introduced related concepts like threshold-preserving functions. We made

several contributions towards a better understanding of this graph invariant and the corresponding

graph classes, mainly by proving the following upper bounds: for each graph 𝐺 ,

HSph𝑠 (𝐺) ≤ ESph(𝐺) + 1 for each 𝑠 > 0, (8.1)

HSph𝑠 (𝐺) ≤ ESph(𝐺) for all 𝑠 in a certain interval (0, 𝑠0(𝐺)], (8.2)

HSph𝑠0
(𝐺) = 𝑛 =⇒ HSph𝑠 (𝐺) ≤ 𝑛 + 1 for each 𝑠 ≥ 𝑠0. (8.3)

While Inequality (8.1) can be derived immediately from the other two inequalities, it is still worth men-

tioning, as this inequality shows that hyperbolic sphericity is always finite for finite graphs. Concerning

tightness of the three inequalities, we obtained the following insights: we identified a graph family

showing that Inequality (8.2) cannot be refined for any dimension, see Theorem 4.7. We also identified a

graph𝐺 that satisfies HSph𝑠 (𝐺) = ESph(𝐺) = 2 for small threshold radii 𝑠 , but HSph𝑠 (𝐺) = 3 when 𝑠 is

too great, see Theorem 6.7. This demonstrates that Inequality (8.1) cannot be refined in general. In the

process, we observed that every triangle-free graph 𝐺 having a UDG representation in 𝑋 ∈ {𝐸2,𝔻2} is
planar.

Confirming the empiric evidence that hyperbolic UDGs are well suited to model hierarchical networks

[Kri+10], we showed that every tree is a hyperbolic UDG, as long as the threshold radius is chosen great

enough. In contrast, Euclidean sphericity of trees is unbounded since the volume of Euclidean balls

only grows polynomially in terms of the radius. Moreover, we took a brief excursion into complexity

theory, proving that hyperbolic sphericity is computable using a polynomial amount of space. In the

last chapter, we took another excursion towards spherical space, since it is often mentioned in the same

context as hyperbolic space. However, we observed that, unlike hyperbolic space, spherical space does

not produce any graphs with particular low sphericity in comparison to Euclidean space.

8.1 Future Work

We end this thesis by calling attention to three interesting directions for future research:

(1) Deepening the understanding of hyperbolic sphericity. As explained in Section 6.4, the influence of

the threshold radius might not be fully understood yet. Furthermore, concerning Inequalities (8.1)

to (8.3), we suspect that all of them cannot be refined for any dimension 𝑛 ≥ 2 (i.e. they can be tight

with respect to every dimension𝑛 ≥ 2). Wewere only able to prove so for Inequality (8.2). Similarly,

it would be interesting to attempt characterizing the graphs that are particular non-hyperbolic in
the sense that they satisfy ESph(𝐺) ≤ HSph𝑠 (𝐺) for every 𝑠 > 0. Conversely, another challenge

is to identify more graphs with a great Euclidean sphericity, but a low hyperbolic sphericity for

adequate threshold radii, similar to trees. Our approach based on hyperbolic tilings has framework

character and can potentially be applied to other graph classes with a recursive structure.
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(2) Research on efficient algorithms on hyperbolic unit ball graphs. In the multi-dimensional setting,

this topic was only addressed by Kisfaludi-Bak until now [Kis20]. Can our insights on hyperbolic

unit ball graphs be exploited algorithmically?

(3) Research on other graph embeddings. The concepts of unit ball graphs and sphericity can be applied

to other metric spaces, for example ℝ𝑛
with the 𝑙𝑝 norm for 𝑝 ∈ {1, . . . ,∞} (note that 𝑝 = 2

corresponds to Euclidean sphericity). Which types of graphs display a particular low sphericity

with respect to these spaces? It may even be interesting to consider non-metric spaces: for

example, Fiduccia et al. define the dot product dimension of a graph 𝐺 = (𝑉 , 𝐸) as the smallest

𝑛 ∈ ℕ such that there is a function with the following property [FSTZ98]:

𝑓 : 𝑉 → ℝ𝑛
such that 𝜈𝑤 ∈ 𝐸 ⇐⇒ ⟨𝑓 (𝜈) , 𝑓 (𝑤)⟩ ≥ 1.

This can be seen as a generalization of unit ball graphs in spherical space due to Definition 2.11.

So far, this graph invariant has received little attention. Its beauty lies in the simplicity of the

representation, also making it attractive for practical applications like machine learning. In

contrast, dealing with hyperbolic distances is computationally expensive.
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