
Degree Independent Weights for Weighted
Embeddings

Bachelor’s Thesis of

Karl Bernhard

At the Department of Informatics

Institute of Theoretical Informatics (ITI)

Reviewer: T.T.-Prof. Dr. Thomas Bläsius

Second reviewer: Dr. rer. nat. Torsten Ueckerdt

Advisor: Jean-Pierre von der Heydt

December 2024 – March 2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe



I declare that I have developed and written the enclosed thesis completely by myself. I have not

used any other than the aids that I have mentioned. I have marked all parts of the thesis that

I have included from referenced literature, either in their original wording or paraphrasing

their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, March 2025

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Karl Bernhard)





Abstract

Geometric representations of discrete structures, such as graphs, can be useful for many

information processing tasks. In particular, hyperbolic and weighted graph embeddings have

gained significant attention in recent years, as they allow particularly good representations

of scale-free networks. A weighted embedding of a graph assigns each vertex a position in

ℝ𝑑
and a weight in ℝ+. We require that for any two vertices, they are adjacent iff. they are

assigned similar positions, where the required similarity of positions decreases as the weights

of the vertices increase.

While weights are usually assigned based on degree, this approach fails to embed complete

trees of sufficient height. Thus, we examine weight assignments based on more nuanced

centrality measures. For that reason, we consider sufficient and necessary conditions of

weights for high-quality weighted embeddings, in particular for trees and grids. Based on

those conditions, we propose choosing weights according to the 𝑘-hop centrality of a vertex.

We show that such weight assignments yield high-quality embeddings of complete trees.

Furthermore, we show that 𝑘-hop based weights perform comparably to degree-based weights

on grids. However, we also observe shortcomings of 𝑘-hop based weights on caterpillars,

some induced subgraphs of grids and random geometric graphs.

Zusammenfassung

Geometrische Repräsentationen diskreter Strukturen, wie beispielsweise von Graphen, können

zur Informationsverarbeitung nützlich sein. Insbesondere hyperbolische und gewichtete

Einbettungen von Graphen haben in letzter Zeit erhebliche Aufmerksamkeit erhalten, da diese

gute Repräsentationen, insbesondere für skalenfreie Netzwerke, ermöglichen. Eine gewichtete
Einbettung ordnet jedem Knoten eine Position in ℝ𝑑

sowie ein Gewicht in ℝ+ zu. Dabei

fordern wir, dass zwei Knoten genau dann adjazent sind, wenn sie ähnliche Positionen haben,

wobei die erforderliche Ähnlichkeit der Positionen umso geringer sein darf, je größer die

Gewichte der Knoten sind.

Während Gewichte üblicherweise basierend auf dem Knotengrad zugewiesen werden,

scheitert dieser Ansatz daran, vollständige Bäume mit hinreichend großer Tiefe einzubetten.

Daher untersuchen wir Gewichtszuweisungen, die auf differenzierteren Zentralitätsmaßen

basieren. Zu diesem Zweck betrachten wir hinreichende und notwendige Kriterien von ge-

wichteten Einbettungen von Bäumen und Gittern. Ausgehend von diesen Kriterien schlagen

wir vor, Gewichte gemäß der 𝑘-Hop-Zentralität eines Knotens zu wählen. Wir zeigen, dass

diese Gewichtszuweisung hochwertige Einbettungen von vollständigen Bäumen ermöglicht.

Zudem zeigen wir, dass Gewichte auf Basis der 𝑘-Hop-Zentralität und des Knotengrads Einbet-

tungen in vergleichbarer Qualität ermöglichen. Allerdings beobachten wir auch Schwächen

der vorgeschlagenen Gewichtszuweisung bei allgemeinen Bäumen, induzierten Teilgraphen

von Gittern und zufälligen geometrischen Graphen.
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1. Introduction

Graphs are a fundamental tool for modeling discrete relationships in real-world systems,

providing a natural representation for networks, social interactions, and various structured

data. Meanwhile, many information processing tasks, as for instance many machine learning

tasks, can only process continues information. This highlights the need for a geometric

representation of graphs, which can close the gap between discrete and continues data.

A popular way of solving this problem is using embeddings of graphs. A 𝑑-dimensional Eu-
clidean embedding of a graph assigns each vertex 𝜈 of a graph, a position 𝑝𝜈 ∈ ℝ𝑑

in Euclidean

space such that two vertices have similar positions if and only if they are adjacent [GF18].

In Euclidean space two points 𝑥,𝑦 ∈ ℝ𝑑
can be considered similar, if they have a Euclidean

distance ∥𝑥,𝑦∥ ≤ 1. By that definition, a suitable (Euclidean) embedding of a graph𝐺 requires

that

∥𝑝𝑢 − 𝑝𝜈 ∥ ≤ 1 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐺) (1.1)

for as many vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺) as possible.
The existence of such embeddings that satisfy this condition for all pairs of vertices

𝑢, 𝜈 ∈ 𝑉 (𝐺) has already been studied under the term sphericity [Mae84] [Fis83] and graph

dimension [RRS89]. Those concept concern the smallest dimension sufficient to represent

the graph perfectly. Graphs with sphericity 2 are also referred to as unit disk graphs and are

well-studied class in literature [CCJ90] [HHZ24] [An+24].

Maehara showed that it is always possible to find suitable embeddings of arbitrary graphs

in 𝑛 dimensions [Mae84]. However, as 𝑛 can become very big for a lot of real-world networks,

an embedding in such a high-dimensional space becomes unpractical. Furthermore, high-

dimensional embeddings have a high risk of overfitting. Hence, finding low-dimensional

embeddings of graphs is an important task.

Another important motivation for finding low-dimensional embeddings of a graph is

their potential to accelerate algorithms for classical graph problems. For instance, given

a 2-dimensional embedding that satisfies Condition 1.1 for all vertices 𝑢, 𝜈 , the maximum

clique can be found in polynomial time, whereas this problem remains 𝑁𝑃-hard on general

graphs [CCJ90].

However, not all graphs are best represented by Euclidean geometry. Findings from the

network science community indicate that scale-free graphs, i.e., graphs with a degree distribu-

tion that follows a power law, are better represented by hyperbolic geometry [PKBV10]. This

is particularly relevant, as most real-world graphs, for example the internet graph [BPK10],

tend to be scale-free.

Hyperbolic embeddings are an alternative to Euclidean embeddings. Hyperbolic embedders

tend to yield low-dimensional embeddings of scale-free graphs [NK17] [BFKL18]. However,

the task of finding hyperbolic embeddings that outperform Euclidean embeddings poses some

computational challenges [BHKM24] [Pen+22].
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1. Introduction

These problems partly arise, because shortest path between points in the hyperbolic space

curve toward the origin and central vertices being generally embedded near the origin.

Moreover, the mathematical complexity of hyperbolic space makes hyperbolic embeddings

not very accessible.

Similar problems arise in the related topic of graph generation, where the efficient generation

of hyperbolic random graphs (HRGs) is challenging. Here, these challenges were overcome

by considering the alternative graph model of geometric inhomogeneous random graphs

(GIRGs) [BKL19] [Blä+22]. In GIRGs the centrality of a vertex is explicitly given by a weight

parameter𝑤𝜈 . It was shown that the generation of GIRGs is much easier and that HRGs and

GIRGs are roughly equivalent.

The weighted geometry of GIRGs can also be used for embeddings: Similar to the Euclidean

case, a 𝑑-dimensional weighted embedding of a graph 𝐺 is an assignment of each vertex 𝜈 to a

position 𝑝𝜈 ∈ ℝ𝑑
in Euclidean space and a positive weight𝑤𝜈 ∈ ℝ+. We require

∥𝑝𝑢 − 𝑝𝜈 ∥
(𝑤𝑢𝑤𝜈 )1/𝑑 ≤ 1 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐺),

for as many 𝑢, 𝜈 ∈ 𝑉 (𝐺) as possible.
As in the GIRG model, the weight 𝑤𝜈 can be interpreted as the centrality of the vertex

𝜈 . A natural way of choosing weights, based on the GIRG model, is to set the weight of a

vertex based on it’s degree. Indeed, existing embedders, such as WEmbed [BHKM24], choose

weights in exactly that way. WEmbed computes𝑤𝜈 and 𝑝𝜈 in two separate steps:

1 Set the weight of every vertex 𝜈 to𝑤𝜈 = (deg𝜈)𝑑/8
.

2 Calculate suitable positions 𝑝𝜈 using gradient descent.

WEmbed reliably generates suitable embeddings on GIRGs and many real-world graphs.

However, even without knowing the details of the second step of the algorithm, it can be

seen that WEmbed has at least one major flaw: In a complete binary tree, all vertices except

the root and the leaves have a constant degree of 3. Thus, WEmbed assigns them the same

weight. However, a weighted embedding with constant weights is equivalent to a Euclidean

embedding and a complete binary tree can not be embedded into Euclidean space. This is due

to the number of leafs of a tree growing exponentially, while the Euclidean space only grows

polynomial. We state this argument in more depth in Section 3.1. This shows that WEmbed

is not suitable for finding low-dimensional weighted embeddings of complete trees, which

form a fundamental class of graphs. This is particularly interesting, as trees can be embedded

trivially into hyperbolic space.

1.1. Contribution

In this thesis, we will fix this problem, by considering weight assignments based on more

nuanced centrality measures as degree centrality. We will approach the problem from a

theoretical perspective, i.e., we will not consider the technical details of computationally

finding suitable positions 𝑝𝜈 of a weighted embedding. Instead, we only consider the question

of whether there exist such positions, given some assignment of weights.

Our contribution primarily consists of two parts.

2



1.2. Outline

First, wewill introduce necessary and sufficient conditions for theweights of low-dimensional

weighted embedding of high quality. In particular, we examine such conditions for 1-

dimensional weighted embeddings of trees and 2-dimensional embeddings of grids. As

a consequence, we show that there exist low-dimensional weighted embeddings of arbitrary

trees, even though no such embeddings exist with weights based on degree centrality. These

results are interesting on it’s one, but are also useful for finding weaknesses of arbitrary

weighted embedding algorithms

Second, we introduce concrete modifications to the weight assignment in the first step

of WEmbed. Concretely, we consider assigning the weight of a vertex 𝜈 based on it’s 𝑘-hop
centrality [NFWS14], i.e., the number of vertices with graph distance at most 𝑘 to 𝜈 , for some

carefully chosen 𝑘 . This alternative weight assignment outperforms degree based weights on

trees and is on par with it on grids. We critically assess the quality of embeddings with 𝑘-hop

based weights on more complex classes of graphs, namely arbitrary trees, induced subgraphs

of grids and unit disk graphs.

1.2. Outline

The remainder of this work is structured as follows: In Chapter 2, we define the mathematical

notions and concepts required. In Chapter 3, we analyze the existence of high-quality 1-

dimensional weighted embeddings of trees with given weights. In Chapter 4, we introduce

sufficient conditions of weights that yield weighted embeddings of high quality. In Chapter

5, we introduce and evaluate multiple alternative ways of assigning weights to vertices of

complete trees and grids. We show that the 𝑘-hop centrality is suitable for that purpose.

In Chapter 6, we assess the quality of this weight assignment on arbitrary trees, induced

subgraphs of grids and unit disk graphs. Finally, Chapter 7 is a summary of our work and an

outlook on possible future work.
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2. Preliminary

In this chapter, we will discuss some fundamental prerequisites for working with weighted

embeddings.

2.1. General Mathematical Notions

Sets and Numbers Let ℝ denote the set of all real numbers, ℝ+ the set of all positive real
numbers and ℝ≥0 ≔ ℝ+ ∪ {0}. Furthermore, ℤ denotes the set of all integers, ℕ+ the set of
all positive integers and ℕ0 = ℕ+ ∪ {0}. For a finite set 𝐴, |𝐴| denotes the cardinality of 𝐴.

Let e, 𝜋 be the usual mathematical constants and 𝜑 the golden ratio.

Geometry For each 𝑑 ∈ ℕ+, we consider the 𝑑-dimensional (euclidean) space ℝ𝑑
equipped

with the standard norm ∥·∥. We represent the elements ofℝ𝑑
as row vectors𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑 ).

We define ∥𝑥 ∥ by

∥𝑥 ∥ ≔
√︃
𝑥2

1
+ 𝑥2

2
+ · · · + 𝑥2

𝑑
.

For 𝑥,𝑦 ∈ ℝ𝑑
, we call ∥𝑥 − 𝑦∥ the (euclidean) distance between 𝑥 and 𝑦. For all 𝑥,𝑦, 𝑧 ∈ ℝ𝑑

,

the triangle inequality

∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥

and it’s consequence

∥𝑥 − 𝑧∥ ≤ ∥𝑥 − 𝑦∥ + ∥𝑦 − 𝑧∥

hold. For 𝑑 = 1, ∥𝑥 ∥ is equal to the absolute value |𝑥 | of 𝑥 .
For 𝑥 ∈ ℝ𝑑

and 𝑟 ∈ ℝ≥0, we define the (euclidean) (𝑑-dimensional) ball 𝐵 with radius 𝑟 ,

centered at 𝑥 by 𝐵 = {𝑦 ∈ ℝ𝑑 | ∥𝑥 − 𝑦∥ ≤ 𝑟 }. If 𝑑 = 2, we call 𝐵 a disk. We denote the volume
of a set 𝐴 by Vol(𝐴) and consider the lemma about volumes of balls:

Lemma 2.1: For any 𝑑 ∈ ℕ+ there exists a constant 𝐶𝑑 such that for all 𝑥 ∈ ℝ𝑑 and 𝑟 ∈ ℝ≥0,
the volume of the 𝑑-dimensional ball 𝐵 of radius 𝑟 , centered at 𝑥 has volume

Vol(𝐵) = 𝐶𝑑𝑟
𝑑 .

Furthermore, 𝐶1 = 2,𝐶2 = 𝜋 and 𝐶3 =
4

3
𝜋 .

Words Let 𝐴 be as set of symbols. If 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥ℓ−1 ∈ 𝐴 are symbols, we call the finite

sequence 𝜈 = 𝑥0𝑥1𝑥2 · · · 𝑥ℓ−1 a word over the alphabet 𝐴 and call |𝜈 | ≔ ℓ the length of

the word 𝜈 . The word of length 0 is called the empty word and is denoted by 𝜀. For two

words 𝑢 = 𝑥0𝑥1 . . . 𝑥ℓ−1 and 𝜈 = 𝑦0𝑦1 . . . 𝑦𝑟−1, we define the concatenation 𝑢𝜈 of 𝑢 and 𝜈 as

𝑢𝜈 ≔ 𝑥0𝑥1 . . . 𝑥ℓ−1𝑦0𝑦1 . . . 𝑦𝑟−1. For any 𝑘 ∈ ℕ0, we define 𝐴
≤𝑘

to be the set of all words 𝜈

over the alphabet 𝐴 with |𝜈 | ≤ 𝑘 .
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2. Preliminary

Big O Notation Let 𝑓 , 𝑔 : ℕ0 → ℝ≥0 such that the following limit exists:

𝑞 ≔ lim

𝑘→∞

𝑓 (𝑘)
𝑔(𝑘)

If 𝑞 = 0, we write 𝑓 ∈ 𝑜 (𝑔). If 𝑞 ∈ (0,∞), we write 𝑓 ∈ Θ(𝑔). If 𝑞 = ∞, we write 𝑓 ∈ 𝜔 (𝑔). We

define O(𝑔) ≔ 𝑜 (𝑔) ∪ Θ(𝑔) and Ω(𝑔) ≔ 𝜔 (𝑔) ∪ Θ(𝑔). We use this definitions not only for

functions 𝑓 , 𝑔, but also sequences of numbers and variables that depend on each other. In

some situations, we will write 𝑓 = 𝑜 (𝑔) instead of 𝑓 ∈ 𝑜 (𝑔) for convenience.

Probability Theory For any events 𝐴, 𝐵 and random variables 𝑋,𝑌 , we use the notions

ℙ (𝐴), ¬𝐴, 𝔼 [𝑋 ], Var (𝑋 ), Cov (𝑋,𝑌 ), 𝟙{𝐴} , ℙ (𝐴|𝐵) and 𝔼 [𝑋 |𝑌 ] as usual. We note that

𝔼
[
𝟙{𝐴}

]
= ℙ (𝐴) and Var

(
𝟙{𝐴}

)
= ℙ (𝐴) − ℙ (𝐴)2

. Furthermore, for any 𝜆 > 0, Var (𝜆𝑋 ) =
𝜆2
Var (𝑋 ). If 𝐴𝑛 is an event for each 𝑛 ∈ ℕ+, then we say that 𝐴𝑛 occurs with high probability

(w.h.p.), if ℙ (¬𝐴𝑛) ∈ 𝑜 (1).

2.2. Graph Theory

All graphs in this work are finite, simple, undirected and unweighted. For a graph𝐺 , we denote

the vertex set of𝐺 by𝑉 (𝐺) and the edge set of𝐺 by 𝐸 (𝐺). The number of vertices of a graph

is always denoted by 𝑛 and the number of edges by𝑚.

An edge is an unordered pair {𝑢, 𝜈} of vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺). If {𝑢, 𝜈} ∈ 𝐸 (𝐺), we say

that 𝑢 and 𝜈 are adjacent or that 𝑢 is a neighbor of 𝜈 . The number of neighbors of a fixed

vertex 𝜈 is called the degree of 𝜈 and denoted by deg𝜈 or deg𝐺 𝜈 . A path of length ℓ from

𝜈 to 𝜈 ′ is a sequence of vertices (𝜈 = 𝑢0, 𝑢1, . . . , 𝑢ℓ ), where 𝑢𝑖 is adjacent to 𝑢𝑖+1 for all

𝑖 ∈ {0, . . . , ℓ − 1}. The path of smallest length from 𝑢 to 𝜈 is called the distance between
𝑢 and 𝜈 and is denoted by dist𝐺 (𝑢, 𝜈). If no path from 𝑢 to 𝜈 exists, we set dist𝐺 (𝑢, 𝜈) ≔

∞. If vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺) exist with dist𝐺 (𝑢, 𝜈) = ∞, we call 𝐺 disconnected and oth-

erwise connected. Connected graphs 𝐻1, 𝐻2, . . . , 𝐻𝑘 are called the connected components
of 𝐺 , if 𝑉 (𝐺) =

⋃𝑘
𝑖=1

𝑉 (𝐻𝑖) and 𝐸 (𝐺) =
⋃𝑘

𝑖=1
𝐸 (𝐻𝑖) and 𝑘 is minimal. The diameter of

𝐺 is defined as diam𝐺 ≔ max𝑢,𝜈∈𝑉 (𝐺 ) dist𝐺 (𝑢, 𝜈). The radius of 𝐺 is defined as 𝑟 (𝐺) ≔

min𝜈∈𝑉 (𝐺 ) max𝜈∈𝑉 (𝐺 ) dist𝐺 (𝑢, 𝜈). A set 𝐼 of vertices is called an independent set of𝐺 , if for all

𝑢, 𝜈 ∈ 𝐼 , {𝑢, 𝜈} ∉ 𝐸 (𝐺).
A graph 𝐻 is called a subgraph of a graph 𝐺 , if 𝑉 (𝐻 ) ⊆ 𝑉 (𝐺) and 𝐸 (𝐻 ) ⊆ 𝐸 (𝐺). A graph

𝐻 is called an induced subgraph of 𝐺 , if 𝐻 is a subgraph of 𝐺 and 𝐸 (𝐻 ) = {{𝑢, 𝜈} ∈ 𝐸 (𝐺) |
𝑢, 𝜈 ∈ 𝑉 (𝐻 )}.

Two graphs 𝐻,𝐺 are called isomorphic, if there exists a mapping 𝑓 : 𝑉 (𝐺) → 𝑉 (𝐻 ) such
that for all 𝑢, 𝜈 ∈ 𝑉 (𝐺),

{𝑢, 𝜈} ∈ 𝐸 (𝐺) ⇐⇒ {𝑓 (𝑢), 𝑓 (𝜈)} ∈ 𝐸 (𝐻 ).

If this is the case, we write 𝐺 � 𝐻 .

Paths and Cycles For 𝑘 ∈ ℕ+, we define the path graph 𝑃𝑘 as the graph with 𝑉 (𝑃𝑘 ) ≔
{0, 1, . . . , 𝑘 − 1} and 𝐸 (𝑃𝑘 ) ≔ {{0, 1}, {1, 2}, . . . , {𝑘 − 2, 𝑘 − 1}}. The graph 𝐶𝑘 defined by

𝑉 (𝐶𝑘 ) ≔ 𝑉 (𝑃𝑘 ) and 𝐸 (𝐶𝑘 ) ≔ 𝐸 (𝑃𝑘 ) ∪ {{𝑘 − 1, 0}} is called a cycle graph.s
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2.3. Weighted Embeddings

Figure 2.1.: Illustration of the grid Γ6,4.

Grids For 𝑎, 𝑏 ∈ ℕ+, we call the graph Γ𝑎,𝑏 defined by𝑉 (Γ𝑎,𝑏) = {0, 1, . . . , 𝑎−1}×{0, 1, . . . , 𝑏−
1} and

𝐸 (Γ𝑎,𝑏) = {{(𝑥,𝑦), (𝑖, 𝑗)} | (𝑥,𝑦), (𝑖, 𝑗) ∈ 𝑉 (Γ𝑎,𝑏), |𝑖 − 𝑥 | + | 𝑗 − 𝑦 | = 1}

a grid. See Figure 2.1 for an illustration. An induced subgraph 𝐺 of Γ𝑎,𝑏 is called grid graph.

Trees For 𝑏 ∈ ℕ+ and ℎ ∈ ℕ0, the complete 𝑏-ary tree of height ℎ 𝑇𝑏
ℎ
is defined by 𝑉 (𝑇𝑏

ℎ
) ≔

{0, 1, . . . , 𝑏 − 1}≤ℎ and

𝐸 (𝑇𝑏
ℎ
) ≔ {{𝜈, 𝜈𝑥} | 𝜈 ∈ {0, 1, . . . , 𝑏 − 1}≤ℎ−1, 𝑥 ∈ {0, 1, . . . , 𝑏 − 1}}.

We note that for any 𝜈 ∈ 𝑉 (𝑇𝑏
ℎ
), |𝜈 | = dist𝐺 (𝜀, 𝜈). We call |𝜈 | the layer of 𝜈 . For each

𝜈 ∈ 𝑉 (𝑇𝑏
ℎ
), there exists a unique path 𝑝 of length |𝜈 | from 𝜀 to 𝜈 . A vertex 𝑢 is called an

ancestor of 𝜈 , if 𝑢 is contained in 𝑝 . An ancestor 𝑢 of 𝜈 with dist𝐺 (𝑢, 𝜈) = 1 is called the parent
of 𝜈 . If 𝑢 is an ancestor of 𝜈 , then we call 𝜈 a descendant of 𝑢. If 𝑢 is a parent of 𝜈 , then we call

𝜈 a child of 𝑢.

All vertices of 𝑇𝑏
ℎ
have degree at most 𝑏 + 1. A vertex 𝜈 with degree 1 (i.e. |𝜈 | = ℎ) is

called a leaf of 𝑇𝑏
ℎ
. The set of all leaves of 𝑇𝑏

ℎ
is an independent set of size 𝑏ℎ . The vertex 𝜀

has degree 𝑏 and is called the root of 𝑇𝑏
ℎ
. For a vertex 𝜈 and ℎ′ ∈ ℕ0, the subtree of height

ℎ′ rooted in vertex 𝜈 is defined as the subgraph 𝑇 of 𝑇𝑏
ℎ
induced by 𝑉 (𝑇 ) = {𝑢 ∈ 𝑉 (𝑇𝑏

ℎ
) |

𝑢 is a descendant of 𝜈, dist𝐺 (𝑢, 𝜈) ≤ ℎ′}.
If 𝑏 = 2, we call 𝑇𝑏

ℎ
a complete binary tree. If ℎ = 1, we call 𝑆𝑏 ≔ 𝑇𝑏

1
the 𝑏-star. A connected

induced subgraph of 𝑇𝑏
ℎ
for any ℎ and 𝑏 is called a tree.

Note that some authors use the term ‘complete tree’ differently, referring to a tree in which

all levels except possibly the last are fully populated and the last level is filled from left to

right.

2.3. Weighted Embeddings

A 𝑑-dimensional weighted embedding of a graph 𝐺 is an assignment of each vertex 𝜈 ∈
𝑉 (𝐺) to a position 𝑝𝜈 ∈ ℝ𝑑

and a weight 𝑤𝜈 ∈ ℝ+. More formally, for 𝑑 ∈ ℕ0, we call

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) a 𝑑-dimensional weighted embedding of 𝐺 if 𝑝𝜈 ∈ ℝ𝑑
and𝑤𝜈 ∈ ℝ+ for all

𝜈 ∈ 𝑉 (𝐺). For any 𝜈 ∈ 𝑉 (𝐺), we write𝜓𝜈 ≔ (𝑝𝜈 ,𝑤𝜈 ). We say that the embedding𝜓 is perfect
if, for all 𝑢, 𝜈 ∈ 𝑉 (𝐺),

∥𝑝𝑢 − 𝑝𝜈 ∥
(𝑤𝑢𝑤𝜈 )1/𝑑 ≤ 1 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐺) .
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2. Preliminary

For ease of notation, we define

dist : (ℝ𝑑 ×ℝ+) × (ℝ𝑑 ×ℝ+), ((𝑝1,𝑤1), (𝑝2,𝑤2)) ↦→
∥𝑝1 − 𝑝2∥
(𝑤1𝑤2)𝑑

.

With that notion, a weighted embedding𝜓 is perfect, if and only if, for all 𝑢, 𝜈 ∈ 𝑉 (𝐺),
dist(𝜓𝑢,𝜓𝜈 ) ≤ 1 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐺). (2.1)

We note that intuitively speaking, dist(𝜓𝑢,𝜓𝜈 ) can be interpreted as a weighted distance

between 𝜓𝑢 and 𝜓𝜈 : However, dist is not a metric in the mathematical sense, as it does

not satisfy the triangle-inequality (and is not positive definite): For instance consider 𝑥1 =

(𝑝1,𝑤1) = (−1, 1), 𝑥2 = (𝑝2,𝑤2) = (0, 2) and 𝑥3 = (𝑝3,𝑤3) = (1, 1), then

dist(𝑥1, 𝑥2) + dist(𝑥2, 𝑥3) =
| (−1) − 0|

1 · 2

+ |0 − 1|
2 · 1

= 1 < 2 =
| (−1) − 1|

1 · 1

= dist(𝑥1, 𝑥3) .

We also note that dist must not be confused with the graph distance dist𝐺 .

Like already mentioned in the introduction, we consider it desirable for an embedding

𝜓 to be perfect. However, sometimes it is only possible to construct an embedding that is

’almost perfect’, meaning that Condition 2.1 is only true for most, but not all, 𝑢, 𝜈 ∈ 𝑉 (𝐺). To
formalize this idea, we define

𝐸 (𝜓 ) ≔ {{𝑢, 𝜈} | 𝑢, 𝜈 ∈ 𝑉 (𝐺), dist(𝜓𝑢,𝜓𝜈 ) ≤ 1}
and call𝜓 an embedding with error (𝑠fn, 𝑠fp) of𝐺 , if 𝑠fn = |𝐸 (𝐺) \𝐸 (𝜓 ) | and 𝑠fp = |𝐸 (𝜓 ) \𝐸 (𝐺) |.
Thus, 𝑠fn counts the number of false negative edges and 𝑠fp the number of false positive edges.

If we don’t want to distinguish between those two types of error, we just say that 𝜓 has a

(total) error of 𝑠fn + 𝑠fp. Note that𝜓 is perfect, if and only if,𝜓 is an embedding with total error

0.

In most parts of this thesis, we are not just interested in an arbitrary perfect embedding or

arbitrary embedding with low total error, but an embedding that uses some given weights:

For an assignment of vertices to weights

(
𝑤 ′

𝜈

)
𝜈∈𝑉 (𝐺 ) , we say that 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) is an

embedding with weights
(
𝑤 ′

𝜈

)
𝜈∈𝑉 (𝐺 ) , if 𝑤𝜈 = 𝑤 ′

𝜈 for all 𝜈 ∈ 𝑉 (𝐺). In that case, we also

say that

(
𝑤 ′

𝜈

)
𝜈∈𝑉 (𝐺 ) yields the embedding 𝜓 . If 𝑤𝜈 = 1 for all 𝜈 ∈ 𝑉 (𝐺) then we say that

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) is an embedding with unit weights.
For multiple results in this thesis, the minimal and maximal weight in an embedding will

be relevant. Thus, we define the abbreviations

𝑤max(𝜓 ) = max

𝜈∈𝑉 (𝐺 )
𝑤𝜈 and 𝑤min(𝜓 ) = min

𝜈∈𝑉 (𝐺 )
𝑤𝜈

for an embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) .
One way to make the geometry of dist intuitively more approachable is to consider the

weighted ball

𝐵𝑟 (𝑥1) ≔ {𝑥2 = (𝑝2,𝑤2) ∈ ℝ𝑑 ×ℝ+ | dist(𝑥1, 𝑥2) ≤ 𝑟 }

for all 𝑥1 = (𝑝1,𝑤1) ∈ ℝ𝑑 ×ℝ+ and 𝑟 ∈ ℝ≥0. This becomes especially illustrative if 𝑑 = 1, as

we can replace ∥·∥ with |·| and observe that

dist(𝑥1, 𝑥2) ≤ 𝑟 ⇐⇒ |𝑝1 − 𝑝2 |
𝑤1𝑤2

≤ 𝑟

⇐⇒ |𝑝1 − 𝑝2 | ≤ 𝑟𝑤1𝑤2

⇐⇒ 𝑝1 − 𝑝2 ≤ 𝑟𝑤1𝑤2 ∧ 𝑝1 − 𝑝2 ≥ −𝑟𝑤1𝑤2

⇐⇒ 𝑝1 − 𝑟𝑤1𝑤2 ≤ 𝑝2 ∧ 𝑝2 ≤ 𝑝1 + 𝑟𝑤1𝑤2.
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2.3. Weighted Embeddings

Figure 2.2.: Illustration of the embedding 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐶4 ) define by 𝑝0 = −1, 𝑤0 = 2.5,

𝑝1 = 1,𝑤1 = 1, 𝑝1 = 2,𝑤0 = 1 and 𝑝3 = 3.5,𝑤3 = 2 and the balls 𝐵1(𝜓𝜈 ) for all 𝜈 ∈ {0, 1, 2, 3}.
We observe that the balls 𝐵1(𝜓𝜈 ) are cone-shaped. The lower 𝑤𝜈 , the steeper is the slope

of the boundary of 𝐵1(𝜓𝜈 ). We note that 𝜓 is perfect, as we can verify that for all different

vertices 𝑢, 𝜈 ∈ {0, 1, 2, 3}, the equivalence𝜓𝑢 ∈ 𝐵1(𝜓𝜈 ) ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐶4) holds.

Thus:

Lemma 2.2: For all 𝑟 ∈ ℝ≥0 and 𝑥1 = (𝑝1,𝑤1) ∈ ℝ𝑑 ×ℝ+,

𝐵𝑟 (𝑥1) = {𝑥2 = (𝑝2,𝑤2) ∈ ℝ×ℝ+ | 𝑝1 − 𝑟𝑤1𝑤2 ≤ 𝑝2 ∧ 𝑝2 ≤ 𝑝1 + 𝑟𝑤1𝑤2}

holds.

Figure 2.2 illustrates some weighted balls 𝐵𝑟 (𝑥1) for 𝑑 = 1 in the half plane ℝ×ℝ+. By that

illustration or Lemma 2.2, we observe that 𝐵𝑟 (𝑥1) is a cone with apex (𝑝1, 0) and a boundary

with slope 𝑟𝑤1𝑤2.

We will now discuss some general claims about weighted embeddings. First, we note that

if 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) is a perfect (𝑑-dimensional) weighted embedding of a graph 𝐺 , then

for every 𝜆 > 0, the embedding 𝜓 ′ = (𝑝′𝜈 ,𝑤 ′
𝜈 )𝜈∈𝑉 (𝐺 ) with 𝑤 ′

𝜈 = 𝜆𝑤𝜈 and 𝑝′𝜈 = 𝜆2𝑑𝑝𝜈 for all

𝜈 ∈ 𝑉 (𝐺) is perfect too. This can be confirmed by verifying

dist(𝜓 ′
𝑢,𝜓

′
𝜈 ) =



𝜆2𝑑𝑝𝑢 − 𝜆2𝑑𝑝𝜈




(𝜆𝑤𝑢𝜆𝑤𝜈 )𝑑
=
𝜆2𝑑 ∥𝑝𝑢 − 𝑝𝜈 ∥
𝜆2𝑑 (𝑤𝑢𝑤𝜈 )𝑑

= dist(𝜓𝑢,𝜓𝜈 ),

for all 𝑢, 𝜈 ∈ 𝑉 (𝐺). Thus, if (𝑤𝜈 )𝜈∈𝑉 (𝐺 ) yields a perfect embedding, so does (𝜆𝑤𝜈 )𝜈∈𝑉 (𝐺 ) .

Similarly, we observe that if 𝑥 ∈ ℝ𝑑
and 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) is a perfect 𝑑-dimensional

weighted embedding of 𝐺 , then so is𝜓 ′ = (𝑝′𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) with 𝑝′𝜈 = 𝑝𝜈 + 𝑥 for all 𝜈 ∈ 𝑉 (𝐺).
Thus, the positions in an embedding can be translated arbitrarily without loosing it’s perfect

property.

Second, let 𝐺 be a disconnected graph, with connected components 𝐻0, 𝐻1, . . . , 𝐻𝑘−1. If

there exist embeddings of those connected components with some error, then there exists an

embedding𝜓 of 𝐺 such that the sum of the errors of the embeddings of 𝐻0, . . . , 𝐻𝑘−1 is equal

to the error of𝜓 . For that reason, we will only focus connected graphs in this work.
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2. Preliminary

A consequence of this remark is that if there exists an embedding with error (𝑠fn, 𝑠fp) of
any induced subgraph 𝐻 of 𝐺 , then there exists an embedding of 𝐺 with error

©­«𝑠fn +
∑︁

𝜈∈𝑉 (𝐺 )\𝑉 (𝐻 )
deg𝐺 𝜈, 𝑠fp

ª®¬ .
(Note that each vertex in𝑉 (𝐺) \𝑉 (𝐻 ) can be considered as a subgraph of𝐺 with one vertex.)

Third, if 𝐻 is an induced subgraph of a graph 𝐺 and there exists an embedding of 𝐺 with

error (𝑠fn, 𝑠fp), then there exists an embedding of 𝐻 with error (𝑠′
fn
, 𝑠′

fp
) such that 𝑠′

fn
≤ 𝑠fn and

𝑠′
fp
≤ 𝑠fp.

Last, for all 𝑑,𝑑 ′ ∈ ℕ+ with 𝑑 ′ > 𝑑 , if (𝑤𝜈 )𝜈∈𝑉 (𝐺 ) yields a 𝑑-dimensional weighted em-

bedding 𝜓 of 𝐺 with error (𝑠fn, 𝑠fp), then
(
𝑤

𝑑′
𝑑
𝜈

)
𝜈∈𝑉 (𝐺 )

yields a 𝑑 ′-dimensional weighted

embedding𝜓 ′
with error (𝑠fn, 𝑠fp).
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3. Embeddings of Trees

Trees are a fundamental class of graphs. However, the embedder WEmbed is not able to find

embeddings (with low error) of them. In this chapter, we will find sufficient conditions and

necessary conditions on the weights (𝑤𝜈 )𝜈∈𝑉 (𝑇 ) of any perfect embedding of a complete 𝑏-ary

tree. In particular, we will show that perfect 1-dimensional weighted embeddings of arbitrary

trees exist.

3.1. Necessary Condition

We claimedmultiple times already that it is impossible to find a perfect𝑑-dimensional weighted

embedding with unit weights of a complete binary tree𝑇 2

ℎ
for all 𝑑 ∈ ℕ+ and sufficiently large

height. This claim can be easily verified in 2 dimensions. Consider the binary tree𝑇 2

ℎ
. Assume

there exists a perfect 2-dimensional weighted embedding of this graph. For each leaf 𝜈 of 𝑇𝑏
ℎ
,

consider a disk of radius
1

2
around the position 𝑝𝜈 . By the definition of perfect embeddings,

those disks do not intersect and the centers of the disks have distance at most ℎ to the position

𝑝𝜀 of the root 𝜀. As there are 2
ℎ
leafs, the union of the disks has area 2

ℎ𝜋
(

1

2

)
2 ∈ Θ(2ℎ), but the

disks all fit into a bigger disk centered at 𝑝𝜀 with radius ℎ+ 1

2
which has area 𝜋 (ℎ+ 1

2
)2 ∈ Θ(ℎ2),

a contradiction for sufficiently large ℎ.

This argument can be generalized to a criterion about the quotient of the maximum and

minimum weight in an arbitrary perfect 𝑑-dimensional weighted embedding of an arbitrary

graph:

Theorem 3.1: Let 𝐺 be a graph, 𝑟 ∈ ℕ0 the radius of 𝐺 , 𝐼 ⊆ 𝑉 (𝐺) an independent set of 𝐺 and

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) a perfect 𝑑-dimensional weighted embedding of𝐺 . Then 𝑤max (𝜓 )
𝑤min (𝜓 ) >

√︃
|𝐼 |

(2𝑟+1)𝑑

Proof. For two adjacent vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺),

1 ≥ dist(𝜓𝑢,𝜓𝜈 ) =
∥𝑝𝑢 − 𝑝𝜈 ∥
(𝑤𝑢𝑤𝜈 )1/𝑑 ≥ ∥𝑝𝑢 − 𝑝𝜈 ∥

𝑤max(𝜓 )2/𝑑 ,

holds, yielding ∥𝑝𝑢 − 𝑝𝜈 ∥ ≤ 𝑤max(𝜓 )2/𝑑
. Since 𝑟 is the radius of 𝐺 , there exists a vertex

𝑐 ∈ 𝑉 (𝐺) such that dist𝐺 (𝑐, 𝜈) ≤ 𝑟 for all 𝜈 ∈ 𝑉 (𝐺). It follows that

∥𝑝𝑐 − 𝑝𝜈 ∥ ≤ 𝑟 ·𝑤max(𝜓 )2/𝑑
(3.1)

for all 𝜈 ∈ 𝑉 (𝐺), as there exists a path of length at most 𝑟 from 𝑐 to 𝜈 .

Now, let 𝑢, 𝜈 ∈ 𝐼 be different vertices. 𝑢 and 𝜈 are not adjacent and thus

1 < dist(𝜓𝑢,𝜓𝜈 ) =
∥𝑝𝑢 − 𝑝𝜈 ∥
(𝑤𝑢𝑤𝜈 )1/𝑑 ≤ ∥𝑝𝑢 − 𝑝𝜈 ∥

𝑤min(𝜓 )2/𝑑 .

It follows that

∥𝑝𝑢 − 𝑝𝜈 ∥ > 𝑤min(𝜓 )2/𝑑 . (3.2)
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3. Embeddings of Trees

Figure 3.1.: Illustration of the construction of balls 𝐵ℓ , 𝐵
′
and 𝐵̃ for 𝑑 = 2 in the proof of

Theorem 3.1 using 𝐺 = 𝑇 2

3
with 𝑟 = 3 and 𝐼 being the set of leaves.

For every vertex 𝜈 ∈ 𝐼 we construct the 𝑑-dimensional euclidean ball 𝐵𝜈 centered at

𝑝𝜈 with radius 𝑤min(𝜓 )2/𝑑/2. Note that 𝐵𝑢 ∩ 𝐵𝜈 = ∅ for different 𝑢, 𝜈 ∈ 𝐼 , follows from

Inequality 3.2. Furthermore, let 𝐵′
be the 𝑑-dimensional euclidean ball centered at 𝑝𝑐 with

radius 𝑟 ·𝑤max(𝜓 )2/𝑑
, and let 𝐵̃ be the 𝑑-dimensional euclidean ball centered at 𝑝𝑐 with radius

𝑟 ·𝑤max(𝜓 )2/𝑑 + 1

2
𝑤min(𝜓 )2/𝑑

. Figure 3.1 provides an illustration of this construction.

Using Inequality 3.1, we observe that 𝑝𝜈 ∈ 𝐵′
for all 𝜈 ∈ 𝐼 and thus 𝐵𝜈 ⊆ 𝐵̃. Thus,

¤⋃
𝜈∈𝑉𝐵𝜈 ⊆ 𝐵̃. This subset relation is even strict, since a (𝑑-dimensional) ball cannot be

partitioned into multiple smaller (𝑑-dimensional) balls. We compare the volumes of the sets

to obtain

𝐶𝑑 (𝑟𝑤max(𝜓 )2/𝑑 +𝑤min(𝜓 )2/𝑑/2)𝑑 = Vol(𝐵̃) >
∑︁
𝜈∈𝐼

Vol(𝐵𝜈 ) = |𝐼 | ·𝐶𝑑 (𝑤min(𝜓 )2/𝑑/2)𝑑 . (3.3)

Here,𝐶𝑑 is the constant introduced in Lemma 2.1 (e.g. 𝐶1 = 2,𝐶2 = 𝜋 and𝐶3 =
4

3
𝜋 ). Applying

𝑟𝑤max(𝜓 )2/𝑑 +𝑤min(𝜓 )2/𝑑/2 ≤ (𝑟 + 1

2
)𝑤max(𝜓 )2/𝑑

to Inequality 3.3 and simplifying yields

𝐶𝑑 (𝑟 +
1

2

)𝑑𝑤max(𝜓 )2 > 𝐶𝑑

|𝐼 |
2
𝑑
𝑤min(𝜓 )2.

Solving for
𝑤max (𝜓 )
𝑤min (𝜓 ) results in

𝑤max(𝜓 )
𝑤min(𝜓 )

>

√︄
|𝐼 |

(2𝑟 + 1)𝑑
.
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3.2. Perfect Embeddings of Binary Trees

Reiterman et al. used a somewhat similar idea to show a lower bound of the sphericity of

a graph dependent on it’s radius and size of an independent set [RRS89, Theorem 5.4]. To

return to the topic of trees, we can apply this theorem directly on complete 𝑏-ary trees:

Corollary 3.2: If𝜓 is a 𝑑-dimensional weighted embedding of the complete 𝑏-ary tree 𝑇𝑏
ℎ
, then

𝑤max (𝜓 )
𝑤min (𝜓 ) ∈ Ω(𝑏ℎ/2ℎ−𝑑/2). More precisely, 𝑤max (𝜓 )

𝑤min (𝜓 ) ∈ Ω
(√︃

𝑛

(log𝑛)𝑑

)
holds.

Proof. Note that the radius of 𝑇𝑏
ℎ
is ℎ. Let 𝐼 be the set of leaves of 𝑇𝑏

ℎ
. 𝐼 is an independent set

with |𝐼 | = 𝑏ℎ . Thus by Theorem 3.1,

𝑤max(𝜓 )
𝑤min(𝜓 )

>

√︄
𝑏ℎ

(2ℎ + 1)𝑑
∈ Ω

(√︄𝑏ℎ

ℎ𝑑

)
= Ω

(
𝑏ℎ/2ℎ−𝑑/2

)
holds. Expressing this in terms of 𝑛, we observe that ℎ ∈ Θ(log𝑛), |𝐼 | = 𝑏ℎ ∈ Θ(𝑛) and thus

𝑤max(𝜓 )
𝑤min(𝜓 )

∈ Ω
(√︂ 𝑛

(2 log𝑛 + 1)𝑑
)
= Ω

(√︂ 𝑛

(log𝑛)𝑑
)

We note that for any constant 𝑎 < 𝑏, it holds that 𝑏ℎ/2ℎ−𝑑/2 ∈ Ω
(
𝑎ℎ/2

)
. This shows that

for any perfect embedding of 𝑇𝑏
ℎ
, if one exists at all, the fraction

𝑤max (𝜓 )
𝑤min (𝜓 ) must grow at least

exponential with ℎ if we fix 𝑏 to be constant. In particular, there exists no embedding of 𝑇𝑏
ℎ
,

where the weights are constant or
𝑤max (𝜓 )
𝑤min (𝜓 ) only grows polynomial with ℎ. Note however that

this requirement for exponentiality only applies for growing ℎ and not necessarily for the

number of vertices 𝑛: As far as Corollary 3.2 is concerned,
𝑤max (𝜓 )
𝑤min (𝜓 ) might grow in Θ(

√
𝑛), as 𝑛

increases.

3.2. Perfect Embeddings of Binary Trees

In the previous section we have found necessary conditions a perfect weighted embedding of

𝑇𝑏
ℎ
must satisfy. However, note that we have not proven the existence of such an embedding

yet. We will make up for that now: We begin this section by finding perfect embeddings of

binary trees and will follow up in the next section with perfect embeddings for arbitrary trees.

Corollary 3.2 shows that the maximal weight divided by the minimal weight of a perfect

embedding of 𝑇 2

ℎ
must grow exponentially with ℎ. A natural assignment of weights that

satisfies the criterion is

𝑤𝜈 ≔ 𝛼−|𝜈 | ,

for each vertex 𝜈 , where 𝛼 >
√

2 is a constant and |𝜈 | denotes the layer of 𝜈 (i.e. the distance

to the root 𝜀). Note that Corollary 3.2 is satisfied, as

max𝜈∈𝑉 (𝑇 2

ℎ
) 𝑤𝜈

min𝜈∈𝑉 (𝑇 2

ℎ
) 𝑤𝜈

=
𝑤𝜀

𝑤any leaf

=
𝛼−0

𝛼−ℎ = 𝛼ℎ ≥
(√

2

)ℎ
= 2

ℎ/2.

13
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𝑝𝜈

𝑤𝜈

0 0.5−0.5

0.5

0.25

0.125

𝜀

01

0010 0111

000100 010110 001101 011111

Figure 3.2.: Illustration of the embedding
˜𝜓 (𝛼 )

of the binary tree 𝑇 2

3
of height 3 with 𝛼 = 2.

As we will show below, this construction of weights yields a perfect 1-dimensional weighted

embedding
˜𝜓 (𝛼 ) = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇 2

ℎ
) of𝑇

2

ℎ
(for some 𝛼). The positions in that embedding are set

recursively as as follows: We set the position of the root 𝜀 to 𝑝𝜀 = 0. For any non-leaf vertex 𝜈

we set the positions of its childs 𝜈0 and 𝜈1 to

𝑝𝜈1 = 𝑝𝜈 −𝑤𝜈𝑤𝜈1 = 𝑝𝜈 − 𝛼−2 |𝜈 |−1
and 𝑝𝜈0 = 𝑝𝜈 +𝑤𝜈𝑤𝜈0 = 𝑝𝜈 + 𝛼−2 |𝜈 |−1.

Figure 3.2 illustrates the embedding
˜𝜓 (𝛼 )

constructed.

One benefit of this construction is that

dist( ˜𝜓
(𝛼 )
𝜈 , ˜𝜓

(𝛼 )
𝜈1

) = dist( ˜𝜓
(𝛼 )
𝜈 , ˜𝜓

(𝛼 )
𝜈0

) = |𝑝𝜈 − (𝑝𝜈 +𝑤𝜈𝑤𝜈0) |
𝑤𝜈𝑤𝜈0

= 1

for all non-leaves 𝜈 ∈ 𝑉 (𝑇 2

ℎ
). It would remain to show that dist( ˜𝜓

(𝛼 )
𝑢 , ˜𝜓

(𝛼 )
𝜈 ) > 1 for all non-

adjacent vertices 𝑢, 𝜈 . Instead of doing this for
˜𝜓 (𝛼 )

explicitly, we will show a more general

claim:

Theorem 3.3: Let𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇 2

ℎ
) be any 1-dimensional weighted embedding of 𝑇 2

ℎ
with

𝑤𝑢

𝑤𝜈
> 𝜑 for all adjacent 𝑢, 𝜈 with |𝑢 | < |𝜈 |. Additionally, let 𝑝𝑢1

= 𝑝𝜈 − 𝑤𝑢1
𝑤𝜈 and 𝑝𝑢1

=

𝑝𝜈 +𝑤𝑢1
𝑤𝜈 , for all vertex 𝜈 with children 𝑢1 and 𝑢2. Then,𝜓 is perfect.

Here, we recall that 𝜑 =
1+

√
5

2
≈ 1.618 is defined as the positive solution of the equation

𝑥2 − 𝑥 − 1 = 0.

Thus,

𝜑2 − 1 = 𝜑. (3.4)

Proof of Theorem 3.3. We show this by induction over ℎ. For ℎ = 0 and ℎ = 1, the claim

obviously holds. Let ℎ ≥ 2. We assume the claim holds for ℎ − 1 and show that it then holds

for ℎ. For that we will verify the defining property of perfect embeddings

{𝑢, 𝜈} ∈ 𝐸 (𝑇 2

ℎ
) ⇐⇒ dist(𝜓𝑢,𝜓𝜈 ) ≤ 1, (3.5)

14



3.2. Perfect Embeddings of Binary Trees

Figure 3.3.: Illustration of the vertex sets 𝑉𝜀 , 𝑉0 and 𝑉1 from the proof of Theorem 3.3.

for all pairs of vertices 𝑢, 𝜈 ∈ 𝑉 (𝑇 2

ℎ
). Consider the following 3 subsets of 𝑉 (𝑇 2

ℎ
): 𝑉𝜀 = {𝜈 ∈

𝑉 (𝑇 2

ℎ
) | |𝜈 | ≠ ℎ}, 𝑉0 = {𝜈 ∈ 𝑉 (𝑇 2

ℎ
) | 𝜈 (0) = 0} and 𝑉1 = {𝜈 ∈ 𝑉 (𝑇 2

ℎ
) | 𝜈 (0) = 1}. Figure 3.3

illustrates these sets. W.l.o.g. let 𝑝1 < 𝑝𝜀 < 𝑝0.

Note that the subgraphs of 𝑇 2

ℎ
induced by 𝑉𝜀,𝑉0 and 𝑉1 respectively are isomorphic to 𝑇 2

ℎ−1

and thus Property 3.5 holds by the induction hypothesis for all 𝑢, 𝜈 with either both 𝑢, 𝜈 ∈ 𝑉𝜀
or both 𝑢, 𝜈 ∈ 𝑉0 or both 𝑢, 𝜈 ∈ 𝑉1. Thus, we only have to verify Property 3.5 in the case where

𝑢 = 𝜀 is the root and 𝜈 is a leaf, as well in the case where 𝜈 ∈ 𝑉0 and 𝑢 ∈ 𝑉1 are both leafs.

We start with the first case. So let𝑢 = 𝜀 be the root and 𝜈 any leaf. W.l.o.g. 𝜈 ∈ 𝑉0. As |𝑢 | = 0

and |𝜈 | = ℎ ≥ 2, 𝜀 and 𝜈 are not adjacent. Thus, we have to verify that dist(𝜓𝜀,𝜓𝜈 ) > 𝑤𝜀𝑤𝜈 .

Let (𝜀 = 𝜈0, 𝜈1, 𝜈2, . . . , 𝜈ℎ = 𝜈) be the shortest path from 𝜀 to 𝜈 . We observe that

𝑤𝜈𝑖 = 𝑤𝜈1 · 𝑤𝜈2

𝑤𝜈1︸︷︷︸
< 1

𝜑

· 𝑤𝜈3

𝑤𝜈2︸︷︷︸
< 1

𝜑

· · · · 𝑤𝜈𝑖

𝑤𝜈𝑖−1︸︷︷︸
< 1

𝜑

< 𝑤𝜈1

(
1

𝜑

)𝑖−1

= 𝑤𝜈1𝜑−𝑖+1 = 𝑤𝜈0

𝑤𝜈1

𝑤𝜈0

𝜑−𝑖+1 < 𝑤𝜈0𝜑−𝑖 ,

(3.6)

for all 𝑖 , where the inequality is strict if 𝑖 ≠ 0. Now, applying a telescope sum and the geometric

sum formula yields,

𝑝𝜈 − 𝑝𝜀 = 𝑝𝜈ℎ − 𝑝𝜈0 =

ℎ∑︁
𝑖=1

𝑝𝜈𝑖 − 𝑝𝜈𝑖−1 ≥ 𝑝𝜈1 − 𝑝𝜈0 −
ℎ∑︁
𝑖=2

|𝑝𝜈𝑖 − 𝑝𝜈𝑖−1 |

= 𝑤𝜈1𝑤𝜈0 −
ℎ∑︁
𝑖=2

𝑤𝜈𝑖𝑤𝜈𝑖−1

(3.6)
> 𝑤𝜈1𝑤𝜈0 −

ℎ∑︁
𝑖=2

𝑤𝜈1𝜑−𝑖+1𝑤𝜈0𝜑−𝑖+1

= 𝑤𝜈1𝑤𝜈0 −𝑤𝜈0𝑤𝜈1𝜑2

ℎ∑︁
𝑖=2

𝜑−2𝑖 = 𝑤𝜈1𝑤𝜈0 −𝑤2

𝜈0
𝜑2

𝜑−4 − 𝜑−2ℎ−2

1 − 𝜑−2

= 𝑤𝜈1𝑤𝜈0

(
1 − 𝜑−2 − 𝜑−2ℎ

1 − 𝜑−2

)
(3.7)

We will now show that for all 𝑡 ≥ 2 the inequality

1 − 𝜑−2 − 𝜑−2𝑡

1 − 𝜑−2
− 𝜑−𝑡+1 ≥ 0 (3.8)
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holds. For 𝑡 = 2 this is true, because

1 − 𝜑−2 − 𝜑−2·2

1 − 𝜑−2
= 1 − 𝜑−2

1 − 𝜑−2

1 − 𝜑−2
= 1 − 𝜑−2 = 𝜑−2(𝜑2 − 1︸︷︷︸

(3.4)
= 𝜑

) = 𝜑−1 = 𝜑−2+1. (3.9)

We now define 𝑔 : ℝ+ → ℝ, 𝑠 ↦→ 1 − 𝜑−2−𝑠2

1−𝜑−2
− 𝜑𝑠 and note that Inequality 3.8 is equivalent to

𝑔(𝜑−𝑡 ) ≥ 0. In addition to 𝑔(𝜑−2) ≥ 0 (by Equation 3.9), it follows from the chain rule that

𝑑

𝑑𝑡
𝑔(𝜑−𝑡 ) = −𝜑−𝑡︸︷︷︸

<0

·
( 2𝜑−𝑡

1 − 𝜑−2
− 𝜑

)
︸           ︷︷           ︸

≤ 2𝜑−2

1−𝜑−2
−𝜑≈−0.381<0

> 0

for all 𝑡 ≥ 2 and thus 𝑔(𝜑−𝑡 ) ≥ 0 or all 𝑡 ≥ 2. So we have finally shown that Inequality 3.8

holds. Inequalities 3.8 and 3.7 together imply that

𝑝𝜈 − 𝑝𝜀 > 𝑤𝜈1𝑤𝜈0𝜑−ℎ+1
(3.6)
> 𝑤𝜈ℎ𝑤𝜈0 = 𝑤𝜈𝑤𝜀 . (3.10)

Thus, dist(𝜓𝜀,𝜓𝜈 ) = |𝑝𝜀−𝑝𝜈 |
𝑤𝑢𝑤𝜈

> 1 which finishes this case.

Now, consider the second case: Let 𝜈 ∈ 𝑉0 and 𝑢 ∈ 𝑉1 be leafs of 𝑇
2

ℎ
. Recall that w.l.o.g.

𝑝1 < 𝑝𝜀 < 𝑝𝑜 and thus 𝑝𝑢 < 𝑝𝜀 < 𝑝𝜈 . Hence,

dist(𝜓𝑢,𝜓𝜈 ) =
𝑝𝜈 − 𝑝𝑢

𝑤𝑢𝑤𝜈

>
𝑝𝜈 − 𝑝𝜀

𝑤𝑢𝑤𝜈

(3.10)
>

𝑤𝜈𝑤𝜀

𝑤𝑢𝑤𝜈

=
𝑤𝜀

𝑤𝑢

> 1.

We have also verified Property 3.5 for the second case, which concludes the prove.

As a direct consequence,
˜𝜓 (𝛼 )

from above is a perfect embedding of 𝑇 2

ℎ
for all ℎ, if 𝛼 > 𝜑 .

However, we note that for 𝛼 = 𝜑 and ℎ ≥ 2,

|𝑝𝜀 − 𝑝01 | = 𝜑−1 − 𝜑−3 = 𝜑−3(𝜑2 − 1) (3.4)
= 𝜑−3𝜑 = 𝜑−2 = 𝑤01𝑤𝜀,

and thus, dist( ˜𝜓
(𝜑 )
𝜀 , ˜𝜓

(𝜑 )
01

) = 1 ≤ 1, despite {𝜀, 01} ∉ 𝐸 (𝑇 2

ℎ
). Hence, ˜𝜓 (𝜑 )

is not perfect. This

shows the importance of the strictness of the inequality
𝑤𝑢

𝑤𝜈
> 𝜑 in Theorem 3.3.

Additionally, we consider the following corollary of Theorem 3.3:

Corollary 3.4: For arbitrary given weights (𝑤𝜈 ∈ ℝ)𝜈∈𝑉 (𝑇 2

ℎ
) with

𝑤𝑢

𝑤𝜈
> 𝜑 for all adjacent 𝑢, 𝜈

with |𝑢 | < |𝜈 |, there exist positions (𝑝𝜈 ∈ ℝ)𝜈∈𝑉 (𝑇 2

ℎ
) such that𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇 2

ℎ
) is a perfect

1-dimensional weighted embedding of 𝑇 2

ℎ
.

Proof. We set 𝑝𝜀 = 0 and for each vertex 𝜈 ∈ 𝑉 (𝑇 2

ℎ
) with |𝜈 | < ℎ, we set recursively

𝑝𝜈0 = 𝑝𝜈 +𝑤𝜈𝑤𝜈0 and 𝑝𝜈1 = 𝑝𝜈 −𝑤𝜈𝑤𝜈1.

We then apply Theorem 3.3 on𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇 2

ℎ
) .
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3.3. Perfect Embeddings of 𝑏-ary Trees

In the previous section, we have shown among other things that perfect 1-dimensional

weighted embeddings of complete binary trees exist. For that purpose it was convenient

that each vertex of a binary tree has two or none children. This allowed us for each vertex

𝜈 to position one child of 𝜈 to the left and the other child to the right of 𝜈 . This idea can be

generalized to find higher-dimensional perfect embeddings of general complete 𝑘-ary trees.

However, instead of generalizing the idea from the previous section, we will try a completely

different approach. On the contrary to the previous approach, all children of a vertex 𝜈 will

be positioned to the right of 𝜈 . Before we describe this embedding in detail however, we show

a preliminary lemma about embeddings of disconnected graphs:

For a 1-dimensional weighted embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) of an arbitrary graph 𝐺 we

define 𝑝left(𝜓 ), 𝑝right(𝜓 ) and Δ(𝜓 ) in a similar fashion as𝑤max(𝜓 ) and𝑤min(𝜓 ):

𝑝left(𝜓 ) ≔ min

𝜈∈𝑉 (𝐺 )
𝑝𝜈 , 𝑝right(𝜓 ) ≔ max

𝜈∈𝑉 (𝐺 )
𝑝𝜈 , Δ(𝜓 ) ≔ 𝑝right(𝜓 ) − 𝑝left(𝜓 )

Observe that Δ(𝜓 ) can be alternatively characterized by

Δ(𝜓 ) = max

𝑢,𝜈∈𝑉 (𝐺 )
𝑝𝜈 − 𝑝𝑢 .

With that notation, we observe:

Lemma3.5: Let𝛿 > 0 be arbitrary and𝐺 be a graphwith𝑘 connected components𝐻0, 𝐻1, . . . 𝐻𝑘−1,
such that for each 𝑖 ∈ {0, . . . , 𝑘 − 1}, a perfect 1-dimensional weighted embedding 𝜓 (𝑖 ) =

(𝑝 (𝑖 )
𝜈 ,𝑤

(𝑖 )
𝜈 )𝜈∈𝑉 (𝐻𝑖 ) of 𝐻𝑖 exists. Then, there exists a perfect 1-dimensional weighted embedding

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) of 𝐺 such that𝑤𝜈 = 𝑤
(𝑖 )
𝜈 for all 𝜈 ∈ 𝑉 (𝐻𝑖), 𝑖 ∈ {0, . . . , 𝑘 − 1} and

Δ(𝜓 ) = 𝛿 + (𝑘 − 1)𝑤max(𝜓 )2 +
𝑘−1∑︁
𝑖=0

Δ(𝜓 (𝑖 ) ). (3.11)

Proof. W.l.o.g. assume that 𝑝left(𝜓 (𝑖 ) ) = 0 for all 𝑖 . We define𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) by𝑤𝜈 ≔ 𝑤
(𝑖 )
𝜈

and 𝑝𝜈 ≔ 𝑝
(𝑖 )
𝜈 + 𝑠𝑖 for all 𝜈 ∈ 𝑉 (𝐻𝑖), 𝑖 ∈ {0, . . . , 𝑘 − 1}, where

𝑠𝑖 ≔
𝑖

𝑘 − 1

𝛿 +
𝑖−1∑︁
ℓ=0

(
Δ(𝜓 (ℓ ) ) +𝑤max(𝜓 )2

)
. (3.12)

Figure 3.4 illustrates this construction.

We claim that𝜓 is perfect: Let𝑢 ∈ 𝑉 (𝐻𝑖), 𝜈 ∈ 𝑉 (𝐻 𝑗 ), 𝑖 ∈ {0, . . . , 𝑘−1} and 𝑗 ∈ {0, . . . , 𝑘−1}
be arbitrary. If 𝑖 = 𝑗 , then

dist(𝜓𝑢,𝜓𝜈 ) =
∥𝑝𝑢 − 𝑝𝜈 ∥
𝑤𝑢𝑤𝜈

=
∥𝑝 (𝑖 )

𝑢 + 𝑠𝑖 − (𝑝 (𝑖 )
𝜈 + 𝑠𝑖)∥

𝑤
(𝑖 )
𝑢 𝑤

(𝑖 )
𝜈

= dist(𝜓 (𝑖 )
𝑢 ,𝜓

(𝑖 )
𝜈 )

and thus

dist(𝜓𝑢,𝜓𝜈 ) > 0 ⇐⇒ dist(𝜓 (𝑖 )
𝑢 ,𝜓

(𝑖 )
𝜈 ) > 0 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐻𝑖) .
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Figure 3.4.: Illustration of the construction of𝜓 and choice of 𝑠𝑖 in the proof of Lemma 3.5,

with 𝑘 = 3. The connected components are positioned in such a way that the positions of two

vertices 𝑢, 𝜈 in different components have distance more than𝑤max(𝜓 )2
. This guarantees that

dist(𝜓𝑢,𝜓𝜈 ) > 1 for all such 𝑢, 𝜈 . The weights and relative positions of vertices in the same

connected components remain unchanged.

Otherwise, if 𝑖 ≠ 𝑗 (w.l.o.g. 𝑖 > 𝑗, 𝑝𝑢 ≥ 𝑝𝜈 ), then {𝑢, 𝜈} ∉ 𝐸 (𝐺) and

𝑝𝑢 − 𝑝𝜈 = 𝑝
(𝑖 )
𝑢︸︷︷︸
≥0

+𝑠𝑖 − 𝑝
(𝑖 )
𝜈︸︷︷︸

≤Δ(𝜓 ( 𝑗 ) )

−𝑠 𝑗

(3.12)
≥ −Δ(𝜓 ( 𝑗 ) ) + 𝑖 − 𝑗

𝑘 − 1

𝛿 +
𝑖−1∑︁
ℓ=𝑗

(
Δ(𝜓 (ℓ ) ) +𝑤max(𝜓 )2

)
≥ −Δ(𝜓 ( 𝑗 ) ) + 𝑖 − 𝑗

𝑘 − 1

𝛿 +
(
Δ(𝜓 ( 𝑗 ) ) +𝑤max(𝜓 )2

)
≥ 𝑖 − 𝑗

𝑘 − 1

𝛿 +𝑤max(𝜓 )2 > 𝑤max(𝜓 )2.

Thus,

dist(𝜓𝑢,𝜓𝜈 ) =
∥𝑝𝑢 − 𝑝𝜈 ∥
𝑤𝑢𝑤𝜈

>
𝑤max(𝜓 )2

𝑤max(𝜓 )2
= 1.

So, we have shown that 𝜓 is perfect. We also confirm that Property 3.11 holds: Let 𝑢 =

arg max𝑢∈𝑉 (𝐻𝑘−1 ) 𝑤𝑢 and 𝜈 = arg min𝜈∈𝑉 (𝐻0 ) 𝑤𝜈 . Then,

Δ(𝜓 ) = 𝑝𝑢 − 𝑝𝜈 = 𝑝
(𝑘−1)
𝑢 + 𝑠𝑘−1 − 𝑝

(0)
𝜈 + 𝑠0

= 𝑝right(𝜓 (𝑘−1) ) − 𝑝left(𝜓 (0) ) + 𝑘 − 1

𝑘 − 1

𝛿 +
𝑘−2∑︁
ℓ=0

(
Δ(𝜓 (ℓ ) ) +𝑤max(𝜓 )2

)
= Δ(𝜓 (𝑘−1) ) − 0 + 𝛿 + (𝑘 − 1)𝑤max(𝜓 )2 +

𝑘−2∑︁
𝑖=0

Δ(𝜓 (𝑖 ) )

= 𝛿 + (𝑘 − 1)𝑤max(𝜓 )2 +
𝑘−1∑︁
𝑖=0

Δ(𝜓 (𝑖 ) ).
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3.3. Perfect Embeddings of 𝑏-ary Trees

With this in mind, we can tackle the construction of perfect 1-dimensional weighted

embeddings of the complete 𝑏-ary tree 𝑇𝑏
ℎ
: As in the case with 𝑏 = 2, we proof sufficient

conditions for weights that yields a perfect 1-dimensional weighted embedding. For 𝑏 = 2, the

ratio for weights of connected vertices
𝑤𝑢

𝑤𝜈
has to be larger than 𝜑 . For general 𝑏, this bound

on the ratio is dependent on the branching factor 𝑏. We denote this bound by 𝜉𝑏 and define it

by:

Definition 3.6: For all 𝑏 ∈ ℕ+ we define 𝜉𝑏 as the positive solution 𝑥 to the equation

𝑏𝑥−1 + 𝑏 = 𝑥 . (3.13)

With the quadratic equation, we can express 𝜉𝑏 explicitly as

𝜉𝑏 =
1

2

(
𝑏 +

√
𝑏2 + 4𝑏

)
,

which allows us to find the bounds,

𝑏 =
𝑏 +

√
𝑏2

2

< 𝜉𝑏 <

=
√

(𝑏+1)2︷         ︸︸         ︷√
𝑏2 + 2𝑏 + 1+𝑏 + 1

2

= 𝑏 + 1. (3.14)

As an additional change to the case 𝑏 = 2, we require that all vertices in the same layer of

𝑇𝑏
ℎ
(i.e. with the same distance to the root) have the same given weight𝑤𝜈 . Thus, for each 𝑖

there exists a number𝑤 𝑖 such that for all vertices 𝜈 in layer 𝑖 (i.e. |𝜈 | = 𝑖) have weight𝑤𝜈 = 𝑤 𝑖 .

As a consequence, we can rephrase the condition
𝑤𝑢

𝑤𝜈
> 𝜉𝑏 for all vertices 𝜈 with parent 𝑢, as

𝑤𝑖

𝑤𝑖+1

> 𝜉𝑏 for all 𝑖 ∈ {0, . . . , ℎ − 1}.

Theorem 3.7: For all ℎ ∈ ℕ0, 𝑏 ∈ ℕ+ \ {1} and (𝑤 𝑖)𝑖∈{0,...,ℎ} , with
𝑤𝑖

𝑤𝑖+1

> 𝜉𝑏 for all 𝑖 ∈
{0, . . . , ℎ − 1}, there exists a perfect 1-dimensional weighted embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏

ℎ
) of

𝑇𝑏
ℎ
such that𝑤𝜈 = 𝑤 |𝜈 | for all 𝜈 ∈ 𝑉 (𝑇𝑏

ℎ
) and

Δ(𝜓 ) < 𝜉𝑏𝑤0(𝑤0 −𝑤1), (3.15)

if ℎ ≥ 1.

Proof. We will prove by induction over ℎ that such an embedding 𝜓 exists. The claim is

obviously true for ℎ = 0. For ℎ = 1, we define 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏
2
) by 𝑝𝜀 = 0,𝑤𝜀 = 𝑤0 and

𝑝𝑢ℓ =
(
ℓ + ℓ

𝑏−1

)
𝑤2

1
,𝑤𝑢ℓ = 𝑤1 for the ℓ-th child 𝑢ℓ of 𝜀 (ℓ ∈ {0, 1, . . . , 𝑏 − 1}). See Figure 3.5 for

an illustration. Then,

dist(𝜓𝜀,𝜓𝑢ℓ ) =
(ℓ + ℓ

𝑏−1
)𝑤2

1

𝑤0𝑤1

≤
(𝑏 − 1 + 𝑏−1

𝑏−1
)𝑤2

1

𝑤0𝑤1

= 𝑏
𝑤1

𝑤0

(3.14)
< 𝜉𝑏

𝑤1

𝑤0

< 𝜉𝑏𝜉
−1

𝑏
= 1

and

dist(𝜓𝑢ℓ ,𝜓𝑢𝑘 ) =

(
ℓ − 𝑘 + ℓ

𝑏−1
− 𝑘

𝑏−1

)
𝑤̄2

1

𝑤2

1

≥
(1 + 1

𝑏−1
)𝑤2

1

𝑤2

1

> 1

for all ℓ, 𝑘 ∈ {0, 1 . . . , 𝑏 − 1}, ℓ > 𝑘 . Thus,𝜓 is perfect.
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3. Embeddings of Trees

Figure 3.5.: Illustration of the induction base case in the proof of Theorem 3.7 for 𝑏 = 4,𝑤0 =

5 > 𝜉4 and 𝑤1 = 1. The dashed, green area is the weighted ball 𝐵1(𝜓𝜀). We can see that all

vertices are contained in this ball and we can verify that the distance between two child of 𝜀

is sufficiently large.

Additionally, Condition 3.15 is satisfied, as

Δ(𝜓 ) = 𝑝𝑢𝑏−1 − 𝑝𝜀 =

(
𝑏 − 1 + 𝑏 − 1

𝑏 − 1

)
𝑤2

1
= 𝑏𝑤2

1

(3.14)
< 𝜉𝑏𝑤

2

1

< 𝜉𝑏𝑤0𝑤1 < 𝜉𝑏𝑤0𝑤1

(
𝑤0

𝑤1

− 1

)
︸     ︷︷     ︸

>𝜉𝑏−1>𝑏−1≥1

= 𝜉𝑏𝑤0(𝑤0 −𝑤1).

Now let ℎ ≥ 2 be arbitrary and assume that the claim holds for all trees𝑇𝑏
ℎ′ of height ℎ

′ < ℎ.

Consider the graph 𝐺 ′
that is obtained by removing the root 𝜀 from 𝑇𝑏

ℎ
. Notet that 𝐺 ′

has

exactly 𝑏 connected components 𝐻0, . . . , 𝐻𝑏−1. All connected components 𝐻𝑖 are isomorphic

to 𝑇𝑏
ℎ−1

. Thus, by the induction hypothesis, there exists a perfect 1-dimensional weighted

embedding𝜓 ′′
of 𝑇𝑏

ℎ−1
� 𝐻𝑖 (for all 𝑖), that satisfies the claims. By Lemma 3.5, for all 𝛿1 > 0,

there exists a perfect 1-dimensional weighted embedding𝜓 ′ = (𝑝′𝜈 ,𝑤 ′
𝜈 )𝜈∈𝑉 (𝐺 ′ ) of𝐺

′
such that

𝑤 ′
𝜈 = 𝑤 |𝜈 | and

Δ(𝜓 ′) = 𝛿1 + (𝑏 − 1)𝑤max(𝜓 ′)2︸      ︷︷      ︸
=𝑤2

1

+
𝑏−1∑︁
𝑖=0

Δ(𝜓 ′′)

= 𝛿1 + (𝑏 − 1)𝑤2

1
+ 𝑏Δ(𝜓 ′′). (3.16)

We will now show that the perfect embedding 𝜓 ′
of 𝐺 ′

can be extended to a perfect

embedding 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏
ℎ
) of 𝑇

𝑏
ℎ
with the required properties. In particular, we set

𝜓𝜈 ≔ 𝜓 ′
𝜈 for all 𝜈 ∈ 𝐺 ′

and 𝑤𝜀 ≔ 𝑤0. It only remains to determine a suitable position 𝑝𝜀 of

the root 𝜀 of 𝑇𝑏
ℎ
.

To show that𝜓 (with a suitable 𝑝𝜀 ) is perfect, we only need to confirm that dist(𝜓𝜀,𝜓𝑟𝑖 ) ≤ 1

for all 𝑖 ∈ {0, . . . , 𝑏 − 1}, where 𝑟𝑖 is the root of 𝐻𝑖 , and that dist(𝜓𝜀,𝜓𝜈 ) > 1 for all 𝜈 ∈ 𝑀𝑖 ,

where𝑀𝑖 ≔ 𝑉 (𝐻𝑖) \ {𝑟𝑖}. We observe that this is equivalent to𝜓𝜀 ∈ 𝐵1(𝜓𝑟𝑖 ) and𝜓𝜀 ∉ 𝐵1(𝜓𝜈 )
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3.3. Perfect Embeddings of 𝑏-ary Trees

Figure 3.6.: This figure illustrates a part of the proof of Theorem 3.7. More precisely, it

shows that it is possible for 𝑘 = 3 to find a 𝜓𝜀 such that 𝜓𝜀 ∈ 𝐵1(𝜓𝑟𝑖 ) (green, dashed) and
𝜓𝜀 ∉ 𝐵1(𝑀𝑖) ≔

⋃
𝜈∈𝑀𝑖

𝐵1(𝜓𝜈 ) (red, dotted) for all 𝑖 ∈ {0, 1, 2}. This is the case, due to the

boundary of the green, dashed cones 𝐵1(𝜓𝑟𝑖 having a less steep slope as the boundary of the

red, dotted areas 𝐵(𝑀𝑖).

for all 𝑖 ∈ {0, . . . , 𝑏 − 1}, 𝜈 ∈ 𝑀𝑖 , where we recall that 𝐵1(𝜓𝑟𝑖 ) denotes the set of all points
𝑧 ∈ ℝ×ℝ+ with dist(𝜓𝑟𝑖 , 𝑧) ≤ 1 (compare Section 2.3). Figure 3.6 illustrates these conditions.

By Lemma 2.2 it suffices to show that

𝑝𝜀 ≥ 𝑝𝑟𝑖 −𝑤𝜀𝑤𝑟𝑖 , (3.17)

𝑝𝜀 ≤ 𝑝𝑟𝑖 +𝑤𝜀𝑤𝑟𝑖 , (3.18)

𝑝𝜀 < 𝑝𝜈 −𝑤𝜀𝑤𝜈 (3.19)

for all 𝑖 ∈ {0, . . . , ℎ − 1}, 𝜈 ∈ 𝑀𝑖 . Note that instead of proving Inequality 3.19, it would be

similarly sufficient to show that 𝑝𝜀 > 𝑝𝜈 + 𝑤𝜀𝑤𝜈 . However we will stick with Inequality

3.19. Now, applying 𝑤𝜀 = 𝑤0,𝑤𝑟𝑖 = 𝑤1,𝑤𝜈 ≤ 𝑤2 and 𝑝left(𝜓 ′) ≤ 𝑝𝑢 ≤ 𝑝right(𝜓 ′) for all
𝑖 ∈ {0, . . . , 𝑏 − 1}, 𝑢 ∈ 𝑉 (𝐺 ′) and 𝜈 ∈ 𝑀𝑖 , shows that the Inequalities 3.17, 3.18 and 3.19 follow,

if

𝑝𝜀 ≥ 𝑝right(𝜓 ′) −𝑤0𝑤1, (3.20)

𝑝𝜀 ≤ 𝑝left(𝜓 ′) +𝑤0𝑤1, (3.21)

𝑝𝜀 < 𝑝left(𝜓 ′) −𝑤0𝑤2 (3.22)

We observe that Inequality 3.21 is a direct consequence of Inequality 3.22. Thus, it remains

to find 𝑝𝜀 such that Inequalities 3.22 and 3.20 hold. We note that

∃𝑝𝜀 : (3.22) ∧ (3.22) ⇐⇒ ∃𝑝𝜀 : 𝑝right(𝜓 ′) −𝑤0𝑤1 ≤ 𝑝𝜀 < 𝑝left(𝜓 ′) −𝑤0𝑤2

⇐⇒ 𝑝right(𝜓 ′) −𝑤0𝑤1 < 𝑝left(𝜓 ′) −𝑤0𝑤2

⇐⇒ Δ(𝜓 ′) < 𝑤0𝑤1 −𝑤0𝑤2 = 𝑤0(𝑤1 −𝑤2)
⇐= Δ(𝜓 ′) < 𝜉𝑏𝑤1(𝑤1 −𝑤2)

The last statement holds by the induction hypothesis (Inequality 3.15) for trees of height

ℎ − 1. Thus, we have proven that we can find a 𝑝𝜀 such that𝜓 is perfect. In particular, we can

set 𝑝𝜀 ≔ 𝑝left(𝜓 ′) −𝑤0𝑤2 − 𝛿2 for a sufficiently small 𝛿2 > 0.
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3. Embeddings of Trees

To complete the induction step, we need to prove that Inequality 3.15 also holds for 𝜓 .

We observe that Δ(𝜓 ′′) < 𝜉𝑏𝑤1(𝑤1 −𝑤2) by the induction hypothesis (IH). Also note that

𝑝𝜀 = 𝑝left(𝜓 ), as 𝑝𝜀 < 𝑝left(𝜓 ′) − 𝑤0𝑤2 < 𝑝left(𝜓 ′). Hence, 𝑝right(𝜓 ) = 𝑝right(𝜓 ′). We apply

those observations and obtain

Δ(𝜓 ) = 𝑝right(𝜓 ) − 𝑝left(𝜓 ) = 𝑝right(𝜓 ′) − 𝑝𝜀 = 𝑝right(𝜓 ′) − (𝑝right(𝜓 ′) −𝑤0𝑤2 − 𝛿2)

= 𝛿2 + Δ(𝜓 ′) +𝑤0𝑤2

(3.16)
= 𝛿1 + 𝛿2 + (𝑏 − 1)𝑤2

1
+ 𝑏Δ(𝜓 ′′) +𝑤0𝑤2

(𝐼𝐻 )
< 𝛿1 + 𝛿2 + (𝑏 − 1)𝑤2

1
+ 𝑏𝜉𝑏𝑤1 (𝑤1 −𝑤2)︸      ︷︷      ︸

<𝑤1<𝜉
−1

𝑏
𝑤0

+𝑤0𝑤2

< 𝛿1 + 𝛿2 + (𝑏 − 1)𝜉−1

𝑏
𝑤1𝑤0 + 𝑏𝜉𝑏𝑤1𝜉

−1

𝑏
𝑤0 + 𝜉−1

𝑏
𝑤0𝑤1

= 𝛿1 + 𝛿2 +𝑤0𝑤1 (𝑏𝜉−1

𝑏
+ 𝑏)︸      ︷︷      ︸

=𝜉𝑏 , by (3.13)

= 𝛿1 + 𝛿2 +𝑤0𝑤1𝜉𝑏

(
𝑤0

𝑤1

− 1

)
︸     ︷︷     ︸

>𝜉𝑏−1>𝑏−1≥1

= 𝜉𝑏𝑤0 (𝑤0 −𝑤1) ,

for some 𝛿1, 𝛿2 > 0. As we can choose 𝛿1 + 𝛿2 arbitrarily small, this implies

Δ(𝜓 ) < 𝜉𝑏𝑤0(𝑤0 −𝑤1) .

This theorem is a useful criterion: If given weights satisfy the condition, then there exists a

perfect 1-dimensional embedding that uses those weights. Note, however, that the criterion is

not necessary: It is easy to verify that there exists an assignment of weights to the vertices of

𝑇𝑏
ℎ
that yields a perfect embedding, but does not assign all vertices in the same layer the same

weight. Additionally, we note that 𝜑 ≈ 1.618 < 2.732 ≈ 𝜉2, thus Corollary 3.4 can be applied

in much more situations than Theorem 3.7, if 𝑏 = 2. It seems probable that the requirements

of Theorem 3.7 can also be relaxed for other values of 𝑏, however this is not done in this work.

As another note, consider the following corollary:

Corollary 3.8: For any tree 𝑇 there exists a perfect 1-dimensional weighted embedding of 𝑇 .

Proof. We select 𝑏 ∈ ℕ+ such that 𝑇 has maximal degree 𝑏 + 1 and ℎ ≔ 𝑟 (𝑇 ) to the radius of

𝑇 . Then, 𝑇 is an isomorphic to an induced subgraph of 𝑇𝑏
ℎ
. It remains to show that 𝑇𝑏

ℎ
can be

embedded in 1-dimension.

We set 𝑤𝜈 ≔ (𝑏 + 1)−|𝜈 | for each vertex 𝜈 ∈ 𝑉 (𝑇𝑏
ℎ
). Then the claim follows directly by

observing that 𝑏 + 1 > 𝜉𝑏 and applying Theorem 3.7.
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4. Embeddings of Grids

In this chapter, we will discuss weighted embeddings of grids. Even though grids, like complete

𝑏-ary trees, have a homogeneous degree distribution, wewill show embeddings of grids behave

very differently to those of trees.

We start by considering 1-dimensional weighted embeddings of the grid Γ𝑎,𝑏 . It seems

unlikely that there exists a perfect 1-dimensional weighted embedding Γ𝑎,𝑏 , if 𝑎 and 𝑏 are

sufficiently large, since such an embedding must satisfy various seemingly contradicting

properties. We even conjecture that no such embedding exists for the case 𝑎 = 𝑏 = 3. However,

we were not able to formulate a rigorous proof of this. Surprisingly, a perfect 1-dimensional

weighted embedding of Γ𝑎,2 exists for all 𝑎 ∈ ℕ+:

Lemma 4.1: For all 𝑎 ∈ ℕ+, there exists a perfect 1-dimensional weighted embedding of the grid
Γ𝑎,2.

Proof Sketch. Consider the embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,2 ) defined by

𝑤 (𝑥,𝑦) ≔ 2
−𝑥

and

𝑝 (𝑥,𝑦) ≔ (−1)𝑦2
−2𝑥−1,

for all (𝑥,𝑦) ∈ 𝑉 (Γ𝑎,2). Verify that𝜓 is perfect.

For a complete proof of this lemma, see Section A.1. See Figure 4.1 for an illustration of

the𝜓 constructed in the proof sketch. A consequence of Lemma 4.1 is that if 𝑎 ≤ 2 or 𝑏 ≤ 2,

then there exists a perfect 1-dimensional embedding of Γ𝑎,𝑏 . However, as mentioned above, it

seems like 1-dimensional embeddings are not suitable for arbitrary grids. Hence, we consider

2-dimensional embeddings instead:

We observe that for all 𝑎, 𝑏 ∈ ℕ+, the trivial 2-dimensional weighted embedding 𝜓 =

((𝑥,𝑦), 1) (𝑥,𝑦) ∈𝑉 (Γ𝑎,𝑏 ) of Γ𝑎,𝑏 is perfect. This is, because the positions of two adjacent vertices

differ by exactly 1, while the difference between the positions of two non-adjacent vertices is

at least

√
2. We note that the distance between the positions of any two vertices is never in

the open interval (1,
√

2). This observation allows us to make a more general claim, which is

stated in the next lemma. First, however, for an ease in notation, we define

𝑤max ≔ max

𝜈∈𝑉 (𝐺 )
𝑤𝜈 and 𝑤min ≔ min

𝜈∈𝑉 (𝐺 )
𝑤𝜈

for all graphs 𝐺 and weight assignments𝑤 = (𝑤𝜈 )𝜈∈𝑉 (𝐺 ) .

Lemma4.2: For all𝑎, 𝑏 ∈ ℕ+, an induced subgraph𝐻 of Γ𝑎,𝑏 , and givenweights𝑤 = (𝑤𝜈 )𝜈∈𝑉 (𝐻 ) ,
with 𝑤max

𝑤min
<
√

2, there exists a perfect 2-dimensional embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐻 ) of 𝐻 .

Proof. We set 𝑝 (𝑥,𝑦) ≔ (𝑥 ·𝑤min, 𝑦·𝑤min) for all (𝑥,𝑦) ∈ 𝑉 (𝐻 ) and claim that𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐻 )
is perfect. For all adjacent vertices 𝑢, 𝜈 ∈ 𝑉 (𝐻 ), it holds that ∥𝑝𝑢 − 𝑝𝜈 ∥ = 𝑤min and thus

dist(𝜓𝑢,𝜓𝜈 ) =
𝑤min

(𝑤𝑢𝑤𝜈 )1/2

≤ 𝑤min

(𝑤min𝑤min)1/2

= 1.
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𝑝𝜈

𝑤𝜈

0 0.5−0.5 0.25−0.25 0.125−0.125

1

0.5

0.25

0.125

Figure 4.1.: Plot of the perfect 1-dimensional weighted embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ4,2 ) of
Γ4,2 with 𝑝 (𝑥,𝑦) = (−1)𝑦2

−2𝑥−1
and𝑤 (𝑥,𝑦) = 2

−𝑥
for all (𝑥,𝑦) ∈ 𝑉 (Γ4,2),

For all non-adjacent vertices (𝑖, 𝑗) ∈ 𝑉 (𝐻 ) and (𝑥,𝑦) ∈ 𝑉 (𝐻 ), we observe that |𝑖−𝑥 |+| 𝑗−𝑦 | ≥ 2.

It follows

∥𝑝 (𝑖, 𝑗 ) − 𝑝 (𝑥,𝑦) ∥ =
√︃
(𝑖 − 𝑥)2𝑤2

min
+ ( 𝑗 − 𝑦)2𝑤2

min

= 𝑤min

√︁
(𝑖 − 𝑥)2 + ( 𝑗 − 𝑦)2 ≥ 𝑤min

√
2.

and thus

dist(𝜓 (𝑖, 𝑗 ) ,𝜓 (𝑥,𝑦) ) ≥
𝑤min

√
2

(𝑤max𝑤max)1/2

=
√

2 · 𝑤min

𝑤max

>
√

2 · 1

√
2

= 1.

This is a useful criterion for weight assignments that yield perfect embeddings of the

grid Γ𝑎,𝑏 . However, we note that the requirement
𝑤max

𝑤min

<
√

2 is very strict: For instance,

if we consider the weights 𝑤 = (𝑤𝜈 )𝜈∈Γ𝑎,𝑎 defined by 𝑤𝜈 = deg𝜈 for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑎), then
𝑤max

𝑤min

= 2 >
√

2. Thus, we cannot apply Lemma 4.2 directly.

However, instead of only focusing on perfect embeddings, we can more generally search for

embeddings with low total error. What exactly we consider as low total error, highly depends

on the use case. Yet, we note that if an embedding of Γ𝑎,𝑎 has error (𝑜 (𝑎2), 𝑜 (𝑎2)) = (𝑜 (𝑛), 𝑜 (𝑛)),
then

lim

𝑎→∞
|𝐸 (𝜓 ) \ 𝐸 (𝐺) ∪ 𝐸 (𝐺) \ 𝐸 (𝜓 ) |

|𝐸 (Γ𝑎,𝑎) |
= lim

𝑎→∞
𝑜 (𝑛) + 𝑜 (𝑛)

O(𝑛) = 0.

We will show a very general claim about embeddings of grids with sublinear total error.

However, we first introduce the following definition:

Definition 4.3 ((𝑐𝑥 , 𝑐𝑦)-Monotonicity): Let (𝑐𝑥 , 𝑐𝑦) ∈ ℝ2 be a point and 𝑤 = (𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑏 )
be a mapping with 𝑤𝜈 ∈ ℝ for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑏). We say that 𝑤 is (𝑐𝑥 , 𝑐𝑦)-monotone, if for all
(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑉 (Γ𝑎,𝑏) with |𝑥1 − 𝑐𝑥 | ≤ |𝑥2 − 𝑐𝑥 | and |𝑦1 − 𝑐𝑦 | ≤ |𝑦2 − 𝑐𝑦 |, the inequality
𝑤𝑢 ≥ 𝑤𝜈 holds.
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Intuitively speaking, a weight assignment is called (𝑐𝑥 , 𝑐𝑦)-monotone, if the weight of

vertices decreases, as they get further away from the center point (𝑐𝑥 , 𝑐𝑦). We note that this

monotonicity seems natural in the case where the weight assignment is a centrality measure.

We claim:

Theorem 4.4: For arbitrary 𝑎 ∈ ℕ+, (𝑐𝑥 , 𝑐𝑦) ∈ ℝ2 and a (𝑐𝑥 , 𝑐𝑦)-monotone mapping 𝑤 =

(𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) , there exist 𝑝𝜈 ∈ ℝ2 for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑎), such that 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) is a
2-dimensional weighted embedding of Γ𝑎,𝑎 with error (𝑠fn, 0), where

𝑠fn ≤ 4

⌈
2 log

2

(𝑤max

𝑤min

)⌉
𝑎 ∈ O(log

(𝑤max

𝑤min

)√
𝑛) .

Before we prove this theorem, we consider the following two corollaries:

Corollary 4.5: For arbitrary 𝑎 ∈ ℕ+, (𝑐𝑥 , 𝑐𝑦) ∈ ℝ2 and a (𝑐𝑥 , 𝑐𝑦)-monotone mapping 𝑤 =

(𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) with 𝑤max
𝑤min

∈ Θ(1), there exist 𝑝𝜈 ∈ ℝ2 for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑎), such that 𝜓 =

(𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) is a 2-dimensional weighted embedding of Γ𝑎,𝑎 with error
(
O

(√
𝑛
)
, 0

)
.

Corollary 4.6: For arbitrary 𝑎 ∈ ℕ+, (𝑐𝑥 , 𝑐𝑦) ∈ ℝ2 and a (𝑐𝑥 , 𝑐𝑦)-monotone mapping 𝑤 =

(𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) with
𝑤max
𝑤min

∈ 2
𝑜 (

√
𝑛) , there exist 𝑝𝜈 ∈ ℝ2 for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑎), such that 𝜓 =

(𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) is a 2-dimensional weighted embedding of Γ𝑎,𝑎 with error (𝑜 (𝑛) , 0).

Especially the latter is surprising, as it shows that even for some weights that differ super-

polynomial, there exists a corresponding embedding of the grid with sublinear total error,

as long as the condition of monotonicity is satisfied. We remark that another criterion for

the existence of embeddings with sublinear error with given weights, that does not rely on

any monotonicity, will be discussed as a consequence of a more general theorem in Chapter 6

(Corollary 6.5).

The fundamental idea of the proof of Theorem 4.4 relies on the idea of partitioning the

vertices of the grid Γ𝑎,𝑎 into multiple subgraphs such that each of those subgraphs satisfies

the requirements of Lemma 4.2. Thus, we can find perfect embeddings of those subgraphs

and, thus, a perfect embedding𝜓 of the (disjoint) union 𝐻 of all the subgraphs. If we show,

that 𝐸 (Γ𝑎,𝑎) \ 𝐸 (𝐻 ) only contains few edges, then 𝜓 is an embedding of Γ𝑎,𝑎 with low error.

We note that 𝐸 (Γ𝑎,𝑎) \ 𝐸 (𝐻 ) is the set of all edges {𝑢, 𝜈} of 𝐸 (Γ𝑎,𝑎) such that 𝑢 and 𝜈 are not

contained in the same subgraph. In this last step of the proof, the following definition and

lemma will be useful:

Definition 4.7: We call a set of vertices 𝑉 ′ ⊆ 𝑉 (Γ𝑎,𝑏) a 𝑤-upset, if𝑤𝑢 > 𝑤𝜈 for all 𝑢 ∈ 𝑉 ′ and
𝜈 ∈ 𝑉 (Γ𝑎,𝑏) \𝑉 ′.

Figure 4.2 shows an example of a𝑤-upset and a set that is not a𝑤-upset.

Lemma 4.8: For a point (𝑐𝑥 , 𝑐𝑦) ∈ ℝ2, a (𝑐𝑥 , 𝑐𝑦)-monotone mapping𝑤 = (𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑏 ) and a
𝑤-upset 𝑉 ′ ⊆ 𝑉 (Γ𝑎,𝑏), it holds that

|{{𝑢, 𝜈} ∈ 𝐸 (Γ𝑎,𝑏) | 𝑢 ∈ 𝑉 ′, 𝜈 ∈ 𝑉 (Γ𝑎,𝑏) \𝑉 ′}︸                                                    ︷︷                                                    ︸
=:𝐸̃

| ≤ 2𝑎 + 2𝑏.

Proof. Every edge {(𝑥1, 𝑦1), (𝑥2, 𝑦2)} ∈ 𝐸 (Γ𝑎,𝑏) is either a horizontal edge (i.e. 𝑦1 = 𝑦2 and

|𝑥1 − 𝑥2 | = 1) or a vertical edge (i.e. 𝑥1 = 𝑥2 and |𝑦1 − 𝑦2 | = 1). We show that there are at most

2𝑎 vertical edges and at most 2𝑏 horizontal edges in 𝐸. We will only prove that there are at

most 2𝑎 vertical edges in 𝐸. The other case follows analogously.
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4. Embeddings of Grids

Figure 4.2.: Example of a (𝑐𝑥 , 𝑐𝑦)-monotone mapping 𝑤 = (𝑤𝜈 )𝜈∈Γ𝑎,𝑏 , a 𝑤-upset and a set

that is not a𝑤-upset. The direction of the edges shows in which direction𝑤𝜈 gets smaller:

An edge {𝑢, 𝜈} ∈ 𝐸 (Γ𝑎,𝑏) is drawn as directed from 𝑢 to 𝜈 , if 𝑤𝑢 > 𝑤𝜈 . The mapping 𝑤 for

which this is shown, is (𝑐𝑥 , 𝑐𝑦)-monotone, where (𝑐𝑥 , 𝑐𝑦) = (1, 2). Additionally, we note that
the set of vertices 𝑉2 (highlighted in green and dashed) is a𝑤-upset. The set 𝑉1 (highlighted

in blue) is not a𝑤-upset, as there are vertices 𝑢1 ∉ 𝑉1 and 𝑢2 ∈ 𝑉1 such that𝑤𝑢1
> 𝑤𝑢2

.

For the sake of contradiction, we assume that there exist (at least) 3 vertical edges

{(𝑥1, 𝑦), (𝑥2, 𝑦)}, {(𝑥3, 𝑦), (𝑥4, 𝑦)}, {(𝑥5, 𝑦), (𝑥6, 𝑦)} ∈ 𝐸

in the same column with 𝑥1 < 𝑥2 ≤ 𝑥3 < 𝑥4 ≤ 𝑥5 < 𝑥6. Note that either 𝑥4 ≤ 𝑐𝑥 or 𝑐𝑥 ≤ 𝑥3

(𝑥3 < 𝑐𝑥 < 𝑥4 is not possible, because |𝑥3 − 𝑥4 | = 1). W.l.o.g. we assume 𝑐𝑥 ≤ 𝑥3. Now,

(𝑥𝑖 , 𝑦) ∈ 𝑉 (Γ𝑎,𝑏) \𝑉 ′
for some 𝑖 ∈ {3, 4} and (𝑥 𝑗 , 𝑦) ∈ 𝑉 ′

for some 𝑗 ∈ {5, 6}, by the definition

of 𝐸. Since 𝑉 ′
is a𝑤-upset, it follows that𝑤 (𝑥 𝑗 ,𝑦) > 𝑤 (𝑥𝑖 ,𝑦) . However, we observe that

|𝑥𝑖 − 𝑐𝑥 | = 𝑥𝑖 − 𝑐𝑥 ≤ 𝑥 𝑗 − 𝑐𝑥 = |𝑥 𝑗 − 𝑐𝑥 |

and, since𝑤 is 𝑐-monotone, it follows that𝑤 (𝑥𝑖 ,𝑦) ≥ 𝑤 (𝑥 𝑗 ,𝑦) . This is a contradiction. Hence
there exist at most 2 vertical edges in the same column. There are exactly 𝑏 columns in Γ𝑎,𝑏 ,
which implies the claim.

We can now prove Theorem 4.4:

Proof of Theorem 4.4. Let 𝑟 ≔
⌈
2 log

2
(𝑤max

𝑤min

)
⌉
. For every 𝑘 ∈ {0, 1, . . . , 𝑟 − 1} we define

𝑉𝑘 ≔ {𝜈 ∈ 𝑉 (Γ𝑎,𝑎) | 𝑤min · (
√

2)𝑘 ≤ 𝑤𝜈 < 𝑤min · (
√

2)𝑘+1}.

Now, 𝑉0,𝑉1, . . . ,𝑉𝑟−1 is a partition of all vertices, since each vertex 𝜈 ∈ 𝑉 (Γ𝑎,𝑎) is contained in

one of the sets, as

𝑤min(
√

2)0 = 𝑤max(𝑤) ≤ 𝑤𝜈 ≤ 𝑤max ≤ 𝑤min

𝑤max

𝑤min

= 𝑤min2

log
2

(
𝑤max

𝑤
min

)
≤ 𝑤min(

√
2) (𝑟−1)+1
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Figure 4.3.: Illustration of the proof of Theorem 4.4. Each vertex 𝜈 in the grid Γ10,10 has a given

weight𝑤𝜈 , which is displayed next to it. We note that this weight assignment is 𝑐-monotone,

where 𝑐 is a point in the center of the grid. The partition of vertices into sets 𝑉0 (orange), 𝑉1

(green),𝑉2 (blue) and𝑉3 (pink) is according to the proof. To verify that this sets are illustrated

correctly, we note that 10(
√

2)0 = 10, 10(
√

2)1 ≈ 14.1, 10(
√

2)2 = 20, 10(
√

2)3 ≈ 28.3 and

10(
√

2)4 = 40.

Figure 4.3 illustrates this partition.

By Lemma 4.2, for each 𝑘 ∈ {0, 1, . . . , 𝑟 − 1} there exists a perfect 2-dimensional weighted

embedding 𝜓 (𝑘 ) = (𝑝 (𝑘 )
𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺𝑘 ) of the subgraph 𝐺𝑘 of Γ𝑎,𝑎 induced by 𝑉𝑘 . Thus, there

exists a perfect 2-dimensional weighted embedding𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐻 ) of the graph𝐻 defined

by 𝑉 (𝐻 ) ≔ 𝑉 (Γ𝑎,𝑎) and
𝐸 (𝐻 ) ≔ 𝐸 (𝐺0) ∪ · · · ∪ 𝐸 (𝐺𝑟−1) .

Now, it holds that 𝐸 (𝜓 ) = 𝐸 (𝐻 ) ⊆ 𝐸 (Γ𝑎,𝑎) and thus 𝐸 (𝜓 ) \ 𝐸 (Γ𝑎,𝑎) = ∅. Additionally,

𝐸 (Γ𝑎,𝑎) \ 𝐸 (𝜓 ) = {{𝑢, 𝜈} ∈ 𝐸 (Γ𝑎,𝑎) | 𝑢 ∈ 𝑉𝑘 , 𝜈 ∈ 𝑉𝑘 ′, 𝑘 ≠ 𝑘 ′}

=

𝑟−1⋃
𝑘=0

{{𝑢, 𝜈} ∈ 𝐸 (Γ𝑎,𝑎) | 𝑢 ∈ 𝑉0 ∪ · · · ∪𝑉𝑘 , 𝜈 ∈ 𝑉𝑘+1 ∪ · · · ∪𝑉𝑟−1}︸                                                                         ︷︷                                                                         ︸
=:𝐸̃𝑘

. (4.1)

Observe that𝑉0 ∪ · · · ∪𝑉𝑘 is, by construction, a𝑤-upset. By Lemma 4.8 follows, that |𝐸𝑘 | ≤ 4𝑎.

With Equation 4.1 follows that

|𝐸 (Γ𝑎,𝑎) \ 𝐸 (𝜓 ) | ≤
𝑟−1∑︁
𝑘=0

|𝐸𝑘 | ≤ 𝑟 · 4𝑎 ∈ O(log

(𝑤max

𝑤min

)√
𝑛).
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5. Specific Weight Assignments

In the previous two chapters, we discussed criteria for weights that yield embeddings with

small error for complete trees and grids, respectively. The main goal of this work is to find a

general procedure that assigns each vertex 𝜈 of an arbitrary graph 𝐺 a weight, such that a

good embedding (i.e. an embedding with low error), using those weights, exists for as many

𝐺 as possible.

Given a procedure, it seems impossible (or at least very hard), to assess whether it generally

yields good embeddings for all graphs. Instead, we will focus on a few basic graph classes and

show the suitability of the procedure on them. We then hope that the procedure also yields

good embeddings for other graphs.

The two classes of graphs we will focus on in this chapter are complete trees and grids.

We require that a suitable procedure yields perfect 1-dimensional embeddings of complete

trees 𝑇𝑏
ℎ
and 2-dimensional embeddings with error at most O(

√
𝑛) for all grids Γ𝑎,𝑎 . The

second requirement may seem a bit arbitrary, however it is motivated by the fact that using

(deg𝜈)𝛽 (where 𝛽 is a constant) as weights in a grid results in embeddings with a total error

of O(
√
𝑛) (see further below). The degree centrality functions as our baseline procedure as it

was introduced in the original paper [BHKM24], thus we require an alternative procedure to

yield an embedding with asymptotically at most the same error.

We state the goal from above more formally: A weight-setter (or (weight-)procedure) is a
function 𝑓 that maps each pair (𝜈,𝐺) to a positive real number 𝑓 (𝜈,𝐺) ∈ ℝ+, where 𝐺 is any

graph and 𝜈 ∈ 𝑉 (𝐺). We desire a weight-setter 𝑓 that satisfies the requirements

for all ℎ,𝑏 ∈ ℕ+ there exist position (𝑝𝜈 ∈ ℝ)𝜈∈𝑇𝑏
ℎ
such that𝜓 = (𝑝𝜈 , 𝑓 (𝜈,𝑇𝑏

ℎ
))𝜈∈𝑉 (𝑇𝑏

ℎ
)

is perfect and

for all 𝑎 ∈ ℕ+ there exist position
(
𝑝𝜈 ∈ ℝ2

)
𝜈∈Γ𝑎,𝑎 such that𝜓 = (𝑝𝜈 , 𝑓 (𝜈, Γ𝑎,𝑎))𝜈∈𝑉 (Γ𝑎,𝑎 )

has total error O(
√
𝑛).

Even though not formally stated, we wish for 𝑓 to not just be a case distinction (distin-

guishing between grids and complete graphs) as this would probably not yield any desirable

embeddings of graphs outside those two classes of graphs.

Before we start discussing some concrete weight-setters, we note that a suitable weight-

setter 𝑓 must satisfy Corollary 3.1 and thus 𝑞𝑓 ≔
max

𝜈∈𝑉 (𝑇 2

ℎ
) 𝑓 (𝜈,𝑇

2

ℎ
)

min
𝜈∈𝑉 (𝑇 2

ℎ
) 𝑓 (𝜈,𝑇

2

ℎ
) ∈ Ω

(
(
√

2)ℎ
)
on binary

trees. However, some weight-setter will not satisfy this, but only 𝑞𝑓 ∈ Ω(𝑦ℎ) for another basis
𝑦 > 1. Even though that disqualifies 𝑓 , we can instead consider the modified weight-setter

𝑓 ′ with 𝑓 ′(𝜈,𝐺) = 𝑓 (𝜈,𝐺)𝛽 for some constant 𝛽 > 1. In that case 𝑞𝑓 ′ ∈ Ω
(
(𝑦𝛽 )ℎ

)
, which

satisfies the condition of Corollary 3.1 for sufficiently large 𝛽 . However, note that if 𝑞𝑓 is

sub-exponential, then so is 𝑞𝑓 ′ and this trick fails.

We will now discuss some possible weight-setters and whether they satisfy the 2 require-

ments stated above. Promising candidates as weight-setters are measures that measure the

centrality of a vertex in a graph. Intuitively speaking, this is because the weight of a ver-
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5. Specific Weight Assignments

tex in an embedding with low error often correlates with the centrality of that vertex (e.g.

compare to trees or GIRGs). We note that the centrality measures mentioned are already

well-studied [New16].

Degree Centrality A possible such centrality measure is the degree centrality 𝑓 (𝜈,𝐺) =
deg(𝜈)𝛽 = deg𝐺 (𝜈)𝛽 . This measure was used as a weight-setter in [BHKM24], where it was

experimentally shown to yield embeddings of GIRGs with low error. Furthermore, deg𝐺 (𝜈)𝛽
satisfies all requirements of Corollary 4.5 and thus yields embeddings with error O(

√
𝑛)

for grids Γ𝑎,𝑎 for all 𝑎 ∈ ℕ+. However, like also discussed in [BHKM24], this weight-setter

does not yield embeddings with low error on complete binary trees. We can proof formally

that no perfect weighted embeddings of 𝑇 2

ℎ
exists (for sufficiently high ℎ), by observing that

max
𝜈∈𝑉 (𝑇 2

ℎ
) deg 𝜈

min
𝜈∈𝑉 (𝑇 2

ℎ
) deg 𝜈

= 3

1
∈ Θ(1) for growing ℎ and applying Corollary 3.2. Thus, 𝑓 (𝜈,𝐺) = deg𝐺 (𝜈)

does not satisfy our goals.

Closeness Centrality The closeness centrality [Bav50] is defined as

𝐶cl(𝜈,𝐺) ≔
∑︁

𝑢∈𝑉 (𝐺 )
dist𝐺 (𝑢,𝜈 )<∞

dist𝐺 (𝑢, 𝜈) .

Closeness centrality has a similar problem as degree centrality: Consider 𝐺 = 𝑇 2

ℎ
and any

vertex 𝜈 ∈ 𝑉 (𝐺). Note that at least half the leafs have distance at least ℎ from 𝜈 . Thus,

𝐶cl(𝜈,𝐺) =
∑︁

𝑢∈𝑉 (𝐺 )
dist𝐺 (𝑢, 𝜈) ≥

∑︁
𝑢∈𝑉 (𝐺 )

dist𝐺 (𝑢,𝜈 )≥ℎ

dist𝐺 (𝑢, 𝜈) ≥
∑︁

𝑢∈𝑉 (𝐺 )
dist𝐺 (𝑢,𝜈 )≥ℎ

ℎ =
2
ℎ

2

ℎ

On the other hand,

𝐶cl(𝜈,𝐺) =
∑︁

𝑢∈𝑉 (𝐺 )
dist𝐺 (𝑢, 𝜈) ≤

∑︁
𝑢∈𝑉 (𝐺 )

diam𝑇 2

ℎ
= 𝑛 diam𝑇 2

ℎ
= (2ℎ+1 − 1) (2ℎ) ≤ 4 · 2

ℎℎ.

This implies

max
𝜈∈𝑉 (𝑇 2

ℎ
) 𝐶cl (𝜈,𝑇 2

ℎ
)

min
𝜈∈𝑉 (𝑇 2

ℎ
) 𝐶cl (𝜈,𝑇 2

ℎ
) ≤ 8 ∈ Θ(1), which yields the same problem as for degree

centrality.

Inbetweenness Centrality When considering inbetweenness centrality [Fre77], a vertex is

called central, if it lies on many shortest paths between two other vertices. There are multiple

variants of this measure. We define it as follows:

𝐶in(𝜈,𝐺) ≔ |{(𝑢1, 𝑢2) ∈ 𝑉 (𝐺)2 | 𝑢1 ≠ 𝜈 ≠ 𝑢2, 𝑝 is a shortest path between 𝑢1 and 𝑢2, 𝜈 lies on 𝑝}|.

Note that 0 ≤ 𝐶ib(𝜈,𝐺) ≤ (𝑛 − 1) (𝑛 − 2) < 𝑛2
, where 𝑛 ≔ |𝑉 (𝐺) |. We will first analyze

𝐶in(𝜈,𝐺) on the grid Γ𝑎,𝑎 for some odd 𝑎 ∈ ℕ+. Let 𝜈1 = (𝜈𝑥
1
, 𝜈

𝑦

1
) be the vertex in the center of

the Γ𝑎,𝑎 . Observe that for any 𝑢1 = (𝑢𝑥
1
, 𝑢

𝑦

1
), 𝑢2 = (𝑢𝑥

2
, 𝑢

𝑦

2
) ∈ 𝑉 (Γ𝑎,𝑎) with 𝑢𝑥

1
< 𝜈𝑥

1
< 𝑢𝑥

2
and

𝑢
𝑦

1
< 𝜈

𝑦

1
< 𝑢

𝑦

2
, there exists a shortest path from 𝑢1 to 𝑢2 that contains 𝜈1. For an illustration

see Figure 5.1a. Thus,

𝐶ib(𝜈1, Γ𝑎,𝑎) ≥
(
𝑎 − 1

2

)
2

·
(
𝑎 − 1

2

)
2

∈ Θ(𝑎4) = Θ(𝑛2) .
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(a) The set 𝐵1 (highlighted in blue) contains

all vertices that are to the upper-left of the

center 𝜈1. 𝐵2 (highlighted in green) contains

all vertices that are to the lower-right of 𝜈1.

For any 𝑢1 ∈ 𝐵1 and 𝑢2 ∈ 𝐵2, there exists a

shortest path from𝑢1 to𝑢2 that passes through

the center 𝜈1. Such a shortest path between

two vertices 𝑢1 and 𝑢2 is illustrated in fat red

in the figure.

(b) If any of two vertices𝑢1, 𝑢2 is not contained

in the highlighted set 𝐴, then no path from

𝑢1 to 𝑢2 pass through the corner 𝜈2: In this

example, 𝑢2 is contained in 𝐴, but 𝑢1 is not. A

shortest path between 𝑢1 and 𝑢2 is highlighted

in bold red. Any shortest path between 𝑢1

and 𝑢2 is fully contained by the rectangle 𝑅

highlighted in light red. Note, that 𝜈2 is never

contained in that rectangle.

Figure 5.1.: Illustrates the difference between the inbetweenness centrality of the central

vertex and a corner vertex in the grid Γ11,11.

On the other hand, consider the vertex 𝜈2 in the upper left corner of Γ𝑎,𝑎 . Let 𝐴 be the set

of all vertices that have no vertex above them or no vertex to the left of them. For any two

vertices 𝑢1, 𝑢2 with 𝑢1 ∉ 𝐴 or 𝑢2 ∉ 𝐴, there exists no shortest path from 𝑢1 to 𝑢2 that contains

𝜈2 (see Figure 5.1b). Thus,

𝐶ib(𝜈2, Γ𝑎,𝑎) ≤ |𝐴|2 = 𝑎2 = 𝑛.

Hence,

max𝜈∈𝑉 (Γ𝑎,𝑎 ) 𝐶ib(𝜈, Γ𝑎,𝑎)
min𝜈∈𝑉 (Γ𝑎,𝑎 ) 𝐶ib(𝜈, Γ𝑎,𝑎)

≥ Θ(𝑛2)
𝑛

= Θ(𝑛).

In turn, Corollary 4.5 cannot be used to show the existence of an embedding with total error

O(
√
𝑛) with weights 𝐶ib(·,𝐺). The lowest with Theorem 4.4 achievable upper bound for the

total error is O(
√
𝑛 log𝑛), assuming we could show that 𝐶ib(·,𝐺) is 𝜈1-monotone. This does

not mean, that no embedding with smaller error exists, just that we currently have no way of

showing the opposite. Since we are interested in a weight-setter that provably satisfies our

goals, we dismiss 𝐶ib for now.

𝑘-Hop Centrality For a graph 𝐺 , 𝑘 ∈ ℕ0 and 𝜈 ∈ 𝑉 (𝐺) we define the 𝑘-hop neighborhood
of 𝜈 as

Hop𝑘 (𝜈) ≔ Hop𝑘 (𝜈,𝐺) ≔ {𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈) ≤ 𝑘}.
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and call hop𝑘 (𝜈) ≔ hop𝑘 (𝜈,𝐺) ≔ |Hop𝑘 (𝜈,𝐺) | the 𝑘-hop centrality [NFWS14] of 𝜈 . For any

𝑘 = 𝑘 (𝐺), hop𝑘 (·) is a weight-setter. We will show that a variant of hop𝑘 (·) satisfies all the
requirements we stated above, if we choose 𝑘 carefully: In the next section, we will analyze

the 𝑘-hop centrality on trees and find a variation that yields perfect embeddings on them.

After that, we will show that this variation, also yields satisfying results on grids.

5.1. 𝑘-Hop Centrality on Complete Trees

5.1.1. Choice of 𝑘

We start by analyzing hop𝑘 (𝜈) as a weight-setter on the complete 𝑏-ary tree 𝐺 = 𝑇𝑏
ℎ
for

different choices of 𝑘 = 𝑘 (𝐺). We will see that most choices of 𝑘 immediately lead to

undesirable results, namely the nonexistence of a perfect embedding with the given weights.

We consider 𝑏 ∈ ℕ+ \ {1} as fixed. Throughout this subsection, all bounds in big O notation

are given for increasing ℎ while keeping 𝑏 constant.

For instance, consider any constant 𝑘 ∈ Θ(1). Since the maximal degree of𝑇𝑏
ℎ
is 𝑏+1 ∈ Θ(1)

(as ℎ increases, recall that 𝑏 is considered fixed), for all 𝜈 ∈ 𝑉 (𝑇 2

ℎ
),

1 ≤ hop𝑘 (𝜈) ≤ (𝑏 + 1)𝑘 ∈ Θ(1)Θ(1) = Θ(1) .

Hence, by Theorem 3.2, no perfect weighted embedding of 𝑇𝑏
ℎ
with weights hop𝑘 (·) exists

(for sufficiently high ℎ).

Thus, we must consider non constant 𝑘 (𝐺). However, we will observe in the following

Lemma that only few choices of 𝑘 make hop𝑘 (·) a suitable weight-setter. For the sake of

generality, we claim this not just for hop𝑘 (·), but for hop𝑘 (·)𝛽 for all constant 𝛽 ≥ 0. We will

discuss later, why (·)𝛽 is a useful modification to the 𝑘-hop centrality.

Lemma 5.1: For all constant 𝑏 ∈ ℕ+ \ {1}, 𝛽 ≥ 0 and 𝑑 ∈ ℕ+, there exist constants 𝑐1, 𝑐2

such that for all 𝑘 = 𝑘 (𝑇𝑏
ℎ
) ∉ [ℎ − 𝑐1, ℎ + 𝑐2] and sufficiently high ℎ, there exists no perfect

𝑑-dimensional weighted embedding of 𝑇𝑏
ℎ
with weights hop𝑘 (·)𝛽 .

Proof. First, consider any 𝑘 with 𝑘 (𝑇𝑏
ℎ
) > ℎ and 𝑘 − ℎ ∈ 𝜔 (1) (as ℎ increases). Then, let 𝑉 ′

be

the set of all vertices of 𝑇𝑏
ℎ
with distance at most 𝑘 − ℎ to the root 𝜀. Now, for all 𝜈 ∈ 𝑉 ′

and

𝑢 ∈ 𝑉 (𝑇𝑏
ℎ
),

dist𝐺 (𝑢, 𝜈) ≤ dist𝐺 (𝑢, 𝜀)︸      ︷︷      ︸
≤𝑘−ℎ

+ dist𝐺 (𝜀, 𝜈)︸      ︷︷      ︸
≤ℎ

≤ 𝑘 − ℎ + ℎ = 𝑘.

Thus, hop𝑘 (𝜈) = 𝑛 for all 𝜈 ∈ 𝑉 ′
. If we assume the existence of a perfect embedding with

weights 𝑤𝜈 = hop𝑘 (𝜈,𝑇𝑏
ℎ
)𝛽 of 𝑇𝑏

ℎ
for all ℎ ∈ ℕ+, then there also exists a perfect embedding

with the same weights𝑤𝜈 of the subtree of 𝑇
𝑏
ℎ
that is induced by 𝑉 ′

. However, as all vertices

in 𝑉 ′
have the same weight𝑤𝜈 = 𝑛𝛽 , this contradicts Theorem 3.2. Hence, if 𝑘 (𝑇𝑏

ℎ
) > ℎ either

𝑘 − ℎ ∈ O(1) ≤ 𝑐2 for a constant 𝑐2 or hop𝑘 (𝜈,𝑇𝑏
ℎ
)𝛽 yields no perfect embeddings of 𝑇𝑏

ℎ
for

sufficiently large ℎ. So, 𝑘 > ℎ + 𝑐2 implies the latter.

Second, consider any 𝑘 with 𝑘 (𝑇𝑏
ℎ
) < ℎ and ℎ′ ≔ ℎ − 𝑘 ∈ 𝜔 (1). Similarly as above, let 𝑉 ′′

be the set of all vertices with distance at most ℎ′ to the root 𝜀. Furthermore, let 𝑛𝑘 ≔ |𝑉 (𝑇𝑏
𝑘
) |

be the number of vertices in a complete 𝑏-ary tree of height 𝑘 . First note, that hop𝑘 (𝜈) ≥ 𝑛𝑘 ,

since Hop𝑘 (𝜈) contains at least all vertices in the subtree of height 𝑘 rooted in 𝜈 . For any
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𝜈 ∈ 𝑉 ′′
and 𝑢 ∈ Hop𝑘 (𝜈), there exists a unique vertex 𝜈 ′ such that 𝜈 ′ is an ancestor of 𝜈 and

of 𝑢 and lies on the shortest path from 𝜈 to 𝑢 (This is a general property of trees). We note,

that a fixed 𝜈 ∈ 𝑉 ′′
has at most ℎ′ ancestors and any fixed ancestor 𝜈 ′ of 𝜈 has at most 𝑛𝑘

descendants 𝑢 with dist𝐺 (𝑢, 𝜈 ′) ≤ 𝑘 . Thus, hop𝑘 (𝜈) ≤ ℎ′𝑛𝑘 . It follows

max𝜈∈𝑉 ′′ hop𝑘 (𝜈)𝛽

min𝜈∈𝑉 ′′ hop𝑘 (𝜈)𝛽
≤

(
ℎ′𝑛𝑘
𝑛𝑘

)𝛽
= (ℎ′)𝛽

As (ℎ′)𝛽 ∉ Ω(𝑏ℎ′/2), Theorem 3.2 implies the non-existence of a perfect embedding of the

subgraph of 𝑇𝑏
ℎ
induced by 𝑉 ′′

with weights hop𝑘 (·,𝑇𝑏
ℎ
)𝛽 (for sufficiently high ℎ′). Thus, 𝑇𝑏

ℎ

has no such embedding too (for sufficiently high ℎ). Hence, there exists a constant 𝑐1 such

that 𝑘 (𝑇𝑏
ℎ
) < ℎ − 𝑐1 implies the non-existence of a perfect weighted embedding of 𝑇𝑏

ℎ
with

weights hop𝑘 (·)𝛽 (for sufficiently high ℎ).

This lemma severely restricts the choice of 𝑘 (𝑇𝑏
ℎ
), as only 𝑘 (𝑇𝑏

ℎ
) = ℎ + 𝑐 is feasible where

𝑐 ∈ [−𝑐1, 𝑐2] ∩ℤ. We could explicitly calculate 𝑐1 and 𝑐2 and check the suitability of the finite

remaining options. Instead, however, we will directly take a closer look at the arguably most

natural choice of 𝑘 (𝑇𝑏
ℎ
), namely 𝑘 (𝑇𝑏

ℎ
) = ℎ.

5.1.2. Calculation of the 𝑘-Hop Centrality

So far, we have shown that there are only few choices of 𝑘 (𝑇𝑏
ℎ
) that make hop𝑘 (·)𝛽 a suitable

weight-setter for our purposes. One of those choices is 𝑘 (𝑇𝑏
ℎ
) = ℎ, on which we will focus from

now on. We will try to show that in this case hop𝑘 (·) yields perfect weighted embeddings on

complete 𝑏-ary trees. For that reason, we will explicitly calculate the ℎ-hop centrality for all

vertices in 𝑇𝑏
ℎ
.

We fix ℎ and 𝑏 and consider the complete 𝑏-ary tree 𝐺 = 𝑇𝑏
ℎ
. Let 𝜈ℎ be any fixed leaf

of 𝑇𝑏
ℎ
and (𝜈ℎ, 𝜈ℎ−1, . . . , 𝜈2, 𝜈1, 𝜈0 = 𝜀) be the shortest path from 𝜈ℎ to the root 𝜈𝜀 . Note that

dist𝐺 (𝜈𝑖 , 𝜀) = 𝑖 for all 𝑖 ∈ {0, . . . , ℎ}. Furthermore, for any vertex 𝑢 with dist𝐺 (𝑢, 𝜀) = 𝑖 , by

reasons of symmetry, hopℎ (𝑢) = hopℎ (𝜈𝑖). Hence, it suffices to evaluate hopℎ (𝜈𝑖) for all 𝑖 . For
ease in notation, let 𝑛ℎ′ = |𝑉 (𝑇𝑏

ℎ
) | denote the number of vertices in a complete 𝑏-ary tree of

height ℎ′.

Lemma 5.2: For all 𝑏 ≥ 2 and 0 ≤ 𝑖 ≤ ℎ,

hopℎ (𝜈𝑖) =
{

𝑏ℎ−𝑖/2 (𝑏+1)−𝑏ℎ−𝑖−1

𝑏−1
if 𝑖 is even

2𝑏ℎ−(𝑖−1)/2−𝑏ℎ−𝑖−1

𝑏−1
if 𝑖 is odd.

Proof. Let 𝑖 ∈ {0, . . . , ℎ} be arbitrary, but fixed. We will now partition Hopℎ (𝜈𝑖) into 3 parts,

as can be seen in Figure 5.2. First, note that all vertices in the subtree rooted in 𝜈𝑖 are in

the ℎ-hop neighborhood of 𝜈𝑖 . This subtree has exactly 𝑛ℎ−𝑖 vertices. Furthermore, for each

0 ≤ 𝑗 < 𝑖 , the vertex 𝜈 𝑗 is also contained in Hopℎ (𝜈𝑖). Additionally, for each 0 ≤ 𝑗 < 𝑖 , let

𝑢 ≠ 𝜈 𝑗+1 be any child of 𝜈 𝑗 (there are (𝑏 − 1) such childs) and let 𝑢′
be any descendant of 𝑢.

Then

dist𝐺 (𝑢′, 𝜈𝑖) ≤ ℎ ⇐⇒ dist𝐺 (𝑢′, 𝑢) + dist𝐺 (𝑢, 𝜈 𝑗 )︸        ︷︷        ︸
=1

+ dist𝐺 (𝜈 𝑗 , 𝜈𝑖)︸        ︷︷        ︸
=𝑖− 𝑗

≤ ℎ

⇐⇒ dist𝐺 (𝑢′, 𝑢) ≤ ℎ − 𝑖 + 𝑗 − 1.
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Figure 5.2.: This shows a complete 3-ary tree 𝑇 3

7
of height 7. For visibility, not all vertices

have been drawn individually. Each triangle in the figure represents a subtree of 𝑇 3

7
. We set

𝑖 = 3 and consider the set Hopℎ (𝜈𝑖). All vertices in the subtree below 𝜈𝑖 (highlighted in violet)

are in Hopℎ (𝜈𝑖). All vertices 𝜈 𝑗 with 𝑗 < 𝑖 (highlighted in red) are in Hopℎ (𝜈𝑖). The remaining

vertices in Hopℎ (𝜈𝑖) are descendants of the vertices 𝜈𝑖 and are highlighted in green.

Since dist𝐺 (𝑢, 𝜀) = 𝑗 + 1 (and thus has 𝑛ℎ−( 𝑗+1) = 𝑛ℎ− 𝑗−1 descendants, including 𝑢 itself), it

has exactly 𝑛min{ℎ−𝑖+𝑗−1,ℎ− 𝑗−1) } descendants with dist𝐺 (𝑢′, 𝑢) ≤ ℎ − 𝑖 + 𝑗 − 1. In total we get

hopℎ (𝜈𝑖) = 𝑛ℎ−𝑖 +
𝑖−1∑︁
𝑗=0

1 + (𝑏 − 1)𝑛min{ℎ−𝑖+𝑗−1,ℎ− 𝑗−1}

= 𝑛ℎ−𝑖 +
⌈𝑖/2⌉−1∑︁
𝑗=0

1 + (𝑏 − 1)𝑛ℎ−𝑖+𝑗−1 +
𝑖−1∑︁

𝑗=⌈𝑖/2⌉
1 + (𝑏 − 1)𝑛ℎ− 𝑗−1, (5.1)

where we used that ℎ − 𝑖 + 𝑗 − 1 ≤ ℎ − 𝑗 − 1 ⇐⇒ 𝑗 ≤ 𝑖/2. We recall that

𝑛ℎ′ =

ℎ′∑︁
𝑗=0

𝑏 𝑗 =
1 − 𝑏ℎ

′+1

1 − 𝑏

and thus

1 + (𝑏 − 1)𝑛ℎ′ = 1 − (1 − 𝑏) 1 − 𝑏ℎ
′+1

1 − 𝑏
= 1 − (1 − 𝑏ℎ

′+1) = 𝑏ℎ
′+1. (5.2)

We now find simpler expressions for the three terms in Equation 5.1 separately:

𝑛ℎ−𝑖 =
1 − 𝑏ℎ−𝑖+1

1 − 𝑏
=
𝑏ℎ−𝑖+1 − 1

𝑏 − 1

⌈𝑖/2⌉−1∑︁
𝑗=0

1 + (𝑏 − 1)𝑛ℎ−𝑖+𝑗−1

(5.2)
=

⌈𝑖/2⌉−1∑︁
𝑗=0

𝑏ℎ−𝑖+𝑗 = 𝑏ℎ−𝑖
⌈𝑖/2⌉−1∑︁
𝑗=0

𝑏 𝑗 = 𝑏ℎ−𝑖
𝑏 ⌈𝑖/2⌉ − 1

𝑏 − 1

𝑖−1∑︁
𝑗=⌈𝑖/2⌉

1 + (𝑏 − 1)𝑛ℎ− 𝑗−1

(5.2)
=

𝑖−1∑︁
𝑗=⌈𝑖/2⌉

𝑏ℎ− 𝑗 = 𝑏ℎ
𝑖−1∑︁

𝑗=⌈𝑖/2⌉
(𝑏−1) 𝑗 = 𝑏ℎ

𝑏−⌈𝑖/2⌉ − 𝑏−𝑖

1 − 𝑏−1

= 𝑏ℎ+1
𝑏−⌈𝑖/2⌉ − 𝑏−𝑖

𝑏 − 1
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Putting them together, we have

hopℎ (𝜈𝑖) =
𝑏ℎ−𝑖+1 − 1 + 𝑏ℎ−𝑖 (𝑏 ⌈𝑖/2⌉ − 1) + 𝑏ℎ+1(𝑏−⌈𝑖/2⌉ − 𝑏−𝑖)

𝑏 − 1

=
𝑏ℎ−𝑖+1 − 1 + 𝑏ℎ−𝑖+⌈𝑖/2⌉ − 𝑏ℎ−𝑖 + 𝑏ℎ+1−⌈𝑖/2⌉ − 𝑏ℎ−𝑖+1

𝑏 − 1

=
𝑏ℎ−𝑖+⌈𝑖/2⌉ + 𝑏ℎ+1−⌈𝑖/2⌉ − 𝑏ℎ−𝑖 − 1

𝑏 − 1

=

{
𝑏ℎ−𝑖/2 (𝑏+1)−𝑏ℎ−𝑖−1

𝑏−1
if 𝑖 is even

2𝑏ℎ−(𝑖−1)/2−𝑏ℎ−𝑖−1

𝑏−1
if 𝑖 is odd.

With this explicit formula, we can calculate (assuming ℎ is even),

max𝜈∈𝑉 (𝑇𝑏
ℎ
) hopℎ (𝜈)

min𝜈∈𝑉 (𝑇𝑏
ℎ
) hopℎ (𝜈)

=
hopℎ (𝜈0)
hopℎ (𝜈ℎ)

=

𝑏ℎ−0/2 (𝑏+1)−𝑏ℎ−0−1

𝑏−1

𝑏ℎ−ℎ/2 (𝑏+1)−𝑏ℎ−ℎ−1

𝑏−1

=
𝑏ℎ (𝑏 + 1) − 𝑏ℎ − 1

𝑏ℎ/2(𝑏 + 1) − 2

=
𝑏ℎ+1 − 1

𝑏ℎ/2(𝑏 + 1) − 2

∈ Θ

(
𝑏ℎ+1

𝑏ℎ/2+1

)
= Θ(𝑏ℎ/2) . (5.3)

We get the same result, if we assume ℎ is odd. This is great news, as it satisfies the necessary

asymptotic condition of Theorem 3.2. This shows, that hopℎ (·) respects the need of exponential
decay of weights in complete 𝑏-ary trees.

However, as Theorem 3.2 is only a necessary condition, this does not prove the existence of

a perfect embedding of𝑇𝑏
ℎ
with those weights. For that, we must show that hopℎ (𝜈)𝛽 satisfies

the sufficient conditions of Corollary 3.4 (for 𝑏 = 2) and Theorem 3.7 (for 𝑏 ≥ 2). The latter

requires us, to show that
hopℎ (𝜈𝑖 )

hopℎ (𝜈𝑖+1 ) > 𝜉𝑏 for all 𝑖 , where 𝜉𝑏 < 𝑏 + 1 is a real number that only

depends on 𝑏 (compare to Definition 3.6).

If we now (wrongfully) assume, that 𝑥 ≔
hopℎ (𝜈𝑖 )

hopℎ (𝜈𝑖+1 ) is identical for all 𝑖 , we could follow

from Equation 5.3 that

𝑥ℎ ≥ 𝑥ℎ−1 =

ℎ−1∏
𝑖=0

hopℎ (𝜈𝑖)
hopℎ (𝜈𝑖+1)

=
hopℎ (𝜈0)
hopℎ (𝜈ℎ)

∈ Θ(𝑏ℎ/2)

and thus,

𝑥 ∈ ℎ
√︁
Θ(𝑏ℎ/2) = Θ

(
𝑏

ℎ
2ℎ

)
= Θ(

√
𝑏),

as 𝑏 increases. For sufficiently high 𝛽 ≥ 2, this would allow us to apply Theorem 3.7 on

hopℎ (𝜈)𝛽 . The 𝛽 in that case would allow us to increase the exponential growth factor of

hopℎ (𝜈𝑖) from Θ(
√
𝑏) to 𝜉𝑏 . However, the assumption that the fraction

hopℎ (𝜈𝑖 )
hopℎ (𝜈𝑖+1 ) is equal for

all 𝑖 , is wrong. In reality, the fraction changes drastically, depending on whether 𝑖 is even or

odd. Figure 5.3 illustrates this behavior.
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(a) The diagram illustrates for multiple values of

𝑏 and fixed ℎ = 10, how the value hopℎ (𝜈𝑖 ,𝑇𝑏
ℎ
)

changes for growing 𝑖 . For reasons of readability,

the 𝑦-axis is logarithmic and the ℎ-hop centrality

was normalized by the total number of vertices in

𝑇𝑏
ℎ
. Note, that if hopℎ (𝜈𝑖 ) was purely exponential,

the logarithmic plot would be a straight line with

a constant slope. Here, however, the slope of a line

segment alternates between two values. Figure

5.3b shows the slope in more detail.

(b) This diagram illustrates 𝑞𝑖 ≔
hopℎ (𝜈𝑖 ,𝑇𝑏

ℎ
)

hopℎ (𝜈𝑖+1,𝑇
𝑏
ℎ
) for

different values of𝑏 and fixedℎ = 10, as 𝑖 increases.

We notice that for fixed 𝑏, 𝑞𝑖 takes vastly different

values, depending on whether 𝑖 is even or odd. We

also observe that for a fixed odd 𝑖 , 𝑞𝑖 takes similar

values for different 𝑏.

Figure 5.3.: Illustration of the ℎ-hop centrality on the tree 𝑇𝑏
10
for different values of 𝑏.

The problem of this already becomes apparent, when focusing on the fraction for 𝑖 = 1.

Apply Lemma 5.2:

hopℎ (𝜈1)
hopℎ (𝜈2)

=
2𝑏ℎ−(1−1)/2 − 𝑏ℎ−1 − 1

𝑏ℎ−2/2(𝑏 + 1) − 𝑏ℎ−2 − 1

=
2𝑏ℎ − 𝑏ℎ−1 − 1

𝑏ℎ−1(𝑏 + 1) − 𝑏ℎ−2 − 1

=
𝑏ℎ (2 − 𝑏−1 − 𝑏−ℎ)

𝑏ℎ (1 + 𝑏−1 − 𝑏−2 − 𝑏−ℎ)
(ℎ→∞)
−→ 2 − 𝑏−1

1 + 𝑏−1 − 𝑏−2
<

2 −

>0︷︸︸︷
𝑏−1

1 + 𝑏−1︸︷︷︸
>𝑏−2

−𝑏−2

< 2. (5.4)

Thus, for any constant 𝛽 > 0 and sufficiently high ℎ, we consider 𝑏 =
⌈
2
𝛽
⌉
and note that

hopℎ (𝜈1)𝛽

hopℎ (𝜈2)𝛽
< 2

𝛽 ≤
⌈
2
𝛽
⌉
= 𝑏 < 𝜉𝑏 .

Thus, we can not apply Theorem 3.7 to prove the existence of a perfect weighted embedding

of 𝑇𝑏
ℎ
with weights hopℎ (·)𝛽 . However, as we will show in the next subsection, a small

modification of hopℎ (·)𝛽 fixes this problem.

5.1.3. Smooth 𝑘-Hop Centrality

The problem of hopℎ (·) as a weight-setter is that the fraction
hopℎ (𝜈𝑖 )

hopℎ (𝜈𝑖+1 ) is much smaller for

odd 𝑖 , than for even 𝑖 , as can be seen in Figure 5.3b. For that reason, hopℎ (·)𝛽 does not satisfy

the requirements of Theorem 3.7 for odd 𝑖 and we can not apply this theorem.
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5.1. 𝑘-Hop Centrality on Complete Trees

This problem can be solved: Note that hopℎ+1
(𝜈0) = hopℎ (𝜈0) and for all 𝑖 > 0, hopℎ+1

(𝜈𝑖) =
hopℎ (𝜈𝑖−1). This implies, that the fraction

hopℎ+1
(𝜈𝑖)

hopℎ+1
(𝜈𝑖+1)

=
hopℎ (𝜈𝑖−1)
hopℎ (𝜈𝑖)

for 𝑖 > 0 has the exact opposite problem: For even 𝑖 this fraction is significantly smaller than

for odd 𝑖 .

The key idea of the smooth 𝑘-hop centrality is to consider the geometric mean√︁
hopℎ (𝜈) · hopℎ+1

(𝜈)

between both centrality measures and hoping that the problematic effects cancel each other

out. Since, we will take this centrality measure to the power of some constant, the square

root has no relevance and we simply define the smooth 𝑘-hop centrality as

s-hop(𝜈) ≔ s-hop(𝜈,𝑇𝑏
ℎ
) ≔ hopℎ (𝜈,𝑇𝑏

ℎ
) · hopℎ+1

(𝜈,𝑇𝑏
ℎ
).

We will show in this subsection, that s-hop(·) yields perfect weighted embeddings of 𝑇𝑏
ℎ

for all ℎ and 𝑏. We first note that

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

=
hopℎ (𝜈𝑖) hopℎ (𝜈𝑖−1)
hopℎ (𝜈𝑖+1) hopℎ (𝜈𝑖)

=
hopℎ (𝜈𝑖−1)
hopℎ (𝜈𝑖+1)

for 𝑖 > 1 and

s-hop(𝜈0)
s-hop(𝜈1)

=
hopℎ (𝜈0) hopℎ (𝜈0)
hopℎ (𝜈1) hopℎ (𝜈0)

=
hopℎ (𝜈0)
hopℎ (𝜈1)

for 𝑖 = 0. This observation allows us to find a lower bound of
s-hop(𝜈𝑖 )

s-hop(𝜈𝑖+1 ) :

Lemma 5.3: For all ℎ > 𝑖 ≥ 0 and 𝑏 ≥ 2,

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

≥
{

23

20
if 𝑏 = 2

1

2
𝑏 if 𝑏 ≥ 3

holds.

The proof of this lemma is somewhat tedious and offers little additional insight, so we defer

it to the appendix (see Section A.2). This is partly because we need to distinguish between

several cases for the possible values of 𝑖 and 𝑏. Moreover, we are concerned with exact values

rather than asymptotic results or limits. If one is only interested in correctness for sufficiently

large ℎ, 𝑖 and 𝑏, a similar approach as in Equation 5.4 can be used.

Equipped with this lemma, we can finally prove that s-hop(·) is suitable for all complete

𝑏-ary trees:

Theorem 5.4: For any fixed 𝛽 ≥ 4, there exists a perfect 1-dimensional weighted embedding
𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏

ℎ
) of 𝑇

𝑏
ℎ
with𝑤𝜈 = (s-hop(𝜈))𝛽 for all 𝑏 ∈ ℕ+, ℎ ∈ ℕ0.
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Proof. We first assume 𝑏 ≥ 3. We will apply Theorem 3.7, where we set 𝑤 𝑖 ≔ 𝑤𝜈𝑖 =

(s-hop(𝜈)𝑖)𝛽 . We observe that all vertices in the same layer of 𝑇𝑏
ℎ
have identical 𝑘-hop

centralities. Thus, 𝑤𝜈 = 𝑤 |𝜈 | for all 𝜈 ∈ 𝑉 (𝑇𝑏
ℎ
). Let 0 ≤ 𝑖 < ℎ be arbitrary. Now, by Lemma

5.3,

𝑤 𝑖

𝑤 𝑖+1

=

(
s-hop(𝜈𝑖)

s-hop(𝜈𝑖+1)

)𝛽
≥

(
1

2

𝑏

)𝛽
≥

(
1

2

𝑏

)
4

=
1

16

𝑏3︸︷︷︸
≥3

3

𝑏

=
27𝑏

16

= 𝑏 + 11

16

𝑏︸︷︷︸
≥ 33

16

≥ 𝑏 + 33

16

> 𝑏 + 2 > 𝜉𝑏 .

Thus, all assumptions of Theorem 3.7 are satisfied, which yields the desired result.

Now, we focus on the case 𝑏 = 2. Again, by Lemma 5.3,(
s-hop(𝜈𝑖)

s-hop(𝜈𝑖+1)

)𝛽
≥

(
23

30

)
4

= 1.749 . . . > 𝜑

for all 0 ≤ 𝑖 < ℎ. The claim follows by Theorem 3.4.

Lastly, the claim holds obviously for 𝑏 = 1, since 𝑇 1

ℎ
is a path, which has a trivial perfect

embedding for arbitrary given weights.

Remark that The lower bound of 4 for 𝛽 is not optimized. It can be decreased by considering

less generous estimates in Lemma 5.3, as well as Theorem 5.4. However, a lower bound of 1 is

not achievable.

Additionally, remark that if weights (𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏
ℎ
) yield a perfect 1-dimensional embedding

of𝑇𝑏
ℎ
then (𝑤𝑑

𝜈 )𝜈∈𝑉 (𝑇𝑏
ℎ
) yields a perfect 𝑑-dimensional embedding of𝑇𝑏

ℎ
(compare Section 2.3).

Thus, s-hop(·)𝛽 yields perfect 𝑑-dimensional embeddings of 𝑇𝑏
ℎ
, if 𝛽 ≥ 4/𝑑 .

In the next section and chapter, we will try to assess the suitability of hopℎ (·) and s-hop(·)𝛽
on other classes of graphs. Before we can do so, however, we have one remaining problem:

The definition of s-hop(𝜈,𝑇𝑏
ℎ
) depends on the 𝑘-hop centrality hop𝑘 (𝜈,𝑇𝑏

ℎ
) for 𝑘 ∈ {ℎ,ℎ + 1}.

If we try to apply this definition to graphs 𝐺 that are no complete trees, we notice that the

height ℎ is not necessary defined for 𝐺 . Thus, we have to find a general property 𝑝 (𝐺) of 𝐺 ,
that happens to equal ℎ, if 𝐺 = 𝑇𝑏

ℎ
. The only three somewhat natural such properties 𝑝 (𝐺)

we found are:

𝑝 (𝐺) = 𝑟 (𝐺), the radius of 𝐺 ,

𝑝 (𝐺) =
⌊

diam𝐺
2

⌋
, half the diameter of 𝐺 , rounded down and

𝑝 (𝐺) =
⌈

diam𝐺
2

⌉
, half the diameter of 𝐺 , rounded up.

As all three properties behave very similar on the graphs we consider in this work (except

RGGs, see Section 6.3), we were not able to find qualitative differences of them. For no

particular reason, we commit to the latter of the three options for the rest of this work.

Most results, however, can be easily transferred to the other two options, except when noted

otherwise.

Definition 5.5: We define, for any 𝐺 and 𝜈 ∈ 𝑉 (𝐺), the smooth 𝑘-hop centrality of 𝜈 (in 𝐺) as

s-hop(𝜈) ≔ s-hop(𝜈,𝐺) ≔ hop𝑘 (𝜈) hop𝑘+1
(𝜈),

where 𝑘 ≔
⌈

diam𝐺
2

⌉
.
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5.2. 𝑘-Hop Centrality on Grids

5.2. 𝑘-Hop Centrality on Grids

In the last section, we defined s-hop(𝜈)𝛽 and showed that it yields perfect embeddings of

complete 𝑏-ary trees, if 𝛽 ≥ 4. To achieve the goal of the start of this chapter, it remains

to show that s-hop(𝜈)𝛽 yields 2-dimensional weighted embeddings of Γ𝑎,𝑎 with total error

O(
√
𝑛). To make this section more readable, we will not show this result for the smooth

𝑘-hop centrality s-hop(𝜈)𝛽 , but instead for the ’standard’ 𝑘-hop centrality hop𝑘 (·)𝛽 , where
𝑘 ≔

⌈
diam𝐺

2

⌉
. However, we note that the same result can be shown for s-hop(𝜈)𝛽 in a very

similar way.

We start by noting that diam Γ𝑎,𝑎 = 2(𝑎 − 1) and thus 𝑘 = 𝑎 − 1. We will use Corol-

lary 4.5 to show the desired result. It has two requirements: First, we have to show that

max𝜈∈𝑉 (Γ𝑎,𝑎 ) hop𝑎−1
(𝜈 )

min𝜈∈𝑉 (Γ𝑎,𝑎 ) hop𝑎−1
(𝜈 ) is constant. Second, we have to show that there exists a point (𝑐𝑥 , 𝑐𝑦) ∈ ℤ2

,

such that

(
hop𝑎−1

(𝜈)
)
𝜈∈𝑉 Γ𝑎,𝑎 ) is (𝑐𝑥 , 𝑐𝑦)-monotone (as defined in Definition 4.3).

We start with the second requirement.

Lemma 5.6: For all 𝑎 ∈ ℕ+, let (𝑐𝑥 , 𝑐𝑦) ≔
(
𝑎−1

2
, 𝑎−1

2

)
. Then,

(
hop𝑎−1

(𝜈)
)
𝜈∈𝑉 (Γ𝑎,𝑎 ) is (𝑐𝑥 , 𝑐𝑦)-

monotone.

Proof. Let 𝜈1 = (𝑥1, 𝑦1) and 𝜈2 = (𝑥2, 𝑦2) be arbitrary vertices of Γ𝑎,𝑎 with |𝑥1 − 𝑐𝑥 | ≤ |𝑥2 − 𝑐𝑥 |
and |𝑦1 − 𝑐𝑦 | ≤ |𝑦2 − 𝑐𝑦 |. We need to show that hop𝑎−1

(𝜈1) ≥ hop𝑎−1
(𝜈2). W.l.o.g. assume

that 𝑥1, 𝑦1, 𝑥2, 𝑦2 ≤ 𝑐𝑥 = 𝑐𝑦 . Thus, 𝑥2 ≤ 𝑥1 ≤ 𝑐𝑥 and 𝑦2 ≤ 𝑦1 ≤ 𝑐𝑦 . Let 𝑢 = (𝑥1, 𝑦2). We will

show that hop𝑎−1
(𝑢) ≤ hop𝑎−1

(𝜈1). Figure 5.4 illustrates the remainder of this proof.

We consider the set 𝐴 ≔ Hop𝑎−1
(𝑢) \ Hop𝑎−1

(𝜈1). Furthermore, we consider the point

𝑝 = (𝑥1,
𝑦1+𝑦2

2
) directly between 𝜈1 and 𝑢. Let 𝑔 be the horizontal line that goes through 𝑝 . Let

𝐵 be the set of all vertices above 𝑔.

We note that 𝐴 ⊆ 𝐵, since all vertices below 𝑔 are closer to 𝜈1 than to 𝑢. Now, let 𝐴′

(respectively 𝐵′
) be the set obtained by reflecting 𝐴 (respectively 𝐵) across 𝑔. We note that

still 𝐴′ ⊆ 𝐵′ ⊆ 𝑉 (Γ𝑎,𝑎). By symmetry, 𝐴′ ⊆ Hop𝑎−1
(𝜈1) \ Hop𝑎−1

(𝑢). We conclude,

hop𝑎−1
(𝜈1) − hop𝑎−1

(𝑢) = |Hop𝑎−1
(𝜈1) \ Hop𝑎−1

(𝑢) | − |Hop𝑎−1
(𝑢) \ Hop𝑎−1

(𝜈1) |
≥ |𝐴′ | − |𝐴| = 0.

Thus, hop𝑎−1
(𝜈1) ≥ hop𝑎−1

(𝑢). Analogously follows hop𝑎−1
(𝑢) ≥ hop𝑎−1

(𝜈2), which finishes

the proof.

We can now verify the first requirement:

Lemma 5.7: For all 𝑎 ∈ ℕ+ and 𝑘 = 𝑎 − 1,

max𝜈∈𝑉 (Γ𝑎,𝑎 ) hop𝑘 (𝜈)
min𝜈∈𝑉 (Γ𝑎,𝑎 ) hop𝑘 (𝜈)

≤ 2.

Proof. Let 𝜈ct ≔
( ⌊

𝑎−1

2

⌋
,
⌊
𝑎−1

2

⌋ )
be a vertex in the center of Γ𝑎,𝑎 and 𝜈co = (0, 0) be the vertex

in the upper left corner of Γ𝑎,𝑎 . By Lemma 5.6 follows that 𝜈ct maximizes hop𝑎−1
(·) and 𝜈co

minimizes hop𝑎−1
(·). Thus,

max

𝜈∈𝑉 (Γ𝑎,𝑎 )
hop𝑘 (𝜈) = hop𝑘 (𝜈ct) ≤ 𝑛
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Figure 5.4.: Illustration of the proof of Lemma 5.6.

and

min

𝜈∈𝑉 (Γ𝑎,𝑎 )
hop𝑘 (𝜈co) = hop𝑘 (𝜈co) =

𝑎−1∑︁
𝑖=0

|Hop𝑘 (𝜈co) ∩ {(𝑖, 𝑗) ∈ 𝑉 (Γ𝑎,𝑎) | 𝑗 ∈ ℕ0}|

≥
𝑎−1∑︁
𝑖=0

(𝑎 − 𝑖) =
𝑎∑︁
𝑖=1

𝑖 =
𝑎(𝑎 + 1)

2

≥ 𝑎2

2

=
𝑛

2

.

The claim follows.

We conclude:

Corollary 5.8: For all 𝛽 ≥ 0 and 𝑎 ∈ ℕ+, there exist positions 𝑝𝜈 ∈ ℝ2 for all 𝜈 ∈ 𝑉 (Γ𝑎,𝑎) such
that𝜓 = (𝑝𝜈 , hop𝑘 (𝜈)𝛽 )𝜈∈𝑉 (Γ𝑎,𝑎 ) is a weighted embedding of Γ𝑎,𝑎 with error

(
O(

√
𝑛), 0

)
, where

𝑘 ≔
⌈

diam𝐺
2

⌉
.

Proof. Note that 𝑘 = 𝑎 − 1, apply Lemma 5.7, Lemma 5.6 and Corollary 4.5 to show the claim

for 𝛽 = 1. Note, that (·)𝛽 is monotone and maps constants to constants, thus the claim also

holds for any other 𝛽 ≥ 0.

Like noted in the beginning of this section, we can show that s-hop(·)𝛽 is suitable for

all grids Γ𝑎,𝑎 in a very similar way. This has the consequence of s-hop(·)𝛽 yielding perfect

embeddings of complete 𝑏-ary trees 𝑇𝑏
ℎ
and embeddings of error

(
O(

√
𝑛), 0

)
on grids Γ𝑎,𝑎 ,

when 𝛽 ≥ 4. Thus, we have found a weight-setter that satisfies the requirements from the

start of this chapter.
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6. Challenges of 𝑘-Hop Centrality

In the previous chapter, we established the weight-setter s-hop(·)𝛽 (see Definition 5.5). We

showed that it yields good embeddings for complete trees 𝑇𝑏
ℎ
and grids Γ𝑎,𝑎 , which are the

classes of graphs we set our main focus on. In this chapter, however, we will focus on some

other, more generic classes of graphs and examine if s-hop(·)𝛽 also yields good embeddings on

those. We will see that this is not necessary the case. In particular, we will focus on arbitrary

trees (Section 6.1), subgraphs of grids (Section 6.2) and unit disk graphs (Section 6.3).

6.1. Arbitrary Trees

Corollary 3.8 shows that for any arbitrary tree𝑇 there exists a perfect 1-dimensional weighted

embedding. However, when we fix the weights to s-hop(·)𝛽 , the previous chapter only showed
the existence of perfect embeddings of complete trees𝑇𝑏

ℎ
. Thus, the question remains, whether

such embeddings exist for all trees. As we will show in this section, the answer to that question

is no. We will introduce a counterexample.

For any ℎ ∈ ℕ0 and 𝑏 ∈ ℕ+ \ {1}, we define the tree 𝑇𝑏
ℎ
as the subgraph of 𝑇𝑏

ℎ
induced by

the vertex set

𝑉

(
𝑇𝑏
ℎ

)
≔ {𝜀} ∪ {0𝑖𝑥 | 𝑖 ∈ {0, . . . , ℎ − 1}, 𝑥 ∈ {0, 1, 2, . . . , 𝑏 − 1}}.

Alternatively, a graph that is isomorphic to 𝑇𝑏
ℎ
can be obtained as follow: Consider the path

graph 𝑃ℎ of length ℎ and name one of the two endpoints 𝜈 ′ For each vertex 𝜈 ∈ 𝑉 (𝑃ℎ) \ {𝜈 ′}:
Add 𝑏 − 1 new vertices that are only adjacent to 𝜈 . Figure 6.1 illustrates the tree 𝑇 4

6
.

We will show that𝑤𝜈 ≔ (s-hop(𝜈))𝛽/𝑑 does not yield embeddings of 𝑇𝑏
ℎ
with small error

for sufficiently large 𝑏 and ℎ. The key idea of the proof is based on the observation that 𝑇𝑏
ℎ

contains multiple induced subgraphs that are isomorphic to the star graph 𝑆𝑏−1 with 𝑏 − 1

edges. We will show in the next lemma, that the weights of any embedding of 𝑆𝑏−1 must satisfy

some necessary condition. However, we will observe that the weights given by s-hop(·)𝛽 do

not satisfy these conditions for sufficiently large 𝑏 and ℎ.

Lemma 6.1: For 𝑑 ∈ ℕ+ and 𝑏 ∈ ℕ+, let 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑆𝑏 ) be an arbitrary perfect 𝑑-
dimensional weighted embedding of 𝑆𝑏 . Then,

𝑤max(𝜓 )
𝑤min(𝜓 )

>

√︂
𝑏

3
𝑑

Proof. Let 𝑐 be the distinct vertex of 𝑆𝑏 with deg 𝑐 = 𝑏. Then dist𝑆𝑏 (𝑐, 𝜈) ≤ 1 for all 𝜈 ∈ 𝑉 (𝑆𝑏).
Thus 𝑆𝑏 has radius 1. Additionally,𝑉 (𝑆𝑏) \ {𝑐} is an independent set of size 𝑏 of 𝑆𝑏 . The claim

follows directly by Lemma 3.1.

Lemma 6.2: For all 𝑖 ∈ {0, . . . , ℎ − 1} and 𝑥 ∈ {1, . . . , 𝑏 − 1},

1 ≤ s-hop(0𝑖)
s-hop(0𝑖𝑥) ≤ 1 + 8𝑏

ℎ
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6. Challenges of 𝑘-Hop Centrality

Figure 6.1.: Illustration of the tree𝑇 4

6
. The 2-hop neighborhood of the vertex 0

3
is highlighted

in red. The vertices 0 and 0
5
(marked as squares) are the only two vertices in the 2-hop

neighborhood of 0
3
that have neighbors that are not in the 2-hop neighborhood of 0

3
.

holds.

Proof. We first observe that for any 𝑘 ′ ≥ 2,

Hop𝑘 ′ (0𝑖𝑥) = {0𝑖𝑥} ∪ Hop𝑘 ′−1
(0𝑖) = Hop𝑘 ′−1

(0𝑖) .

Since, there exist at most 2 vertices 𝑢1, 𝑢2 ∈ Hop𝑘 ′ (0𝑖) that have a neighbor which is not an

element of Hop𝑘 ′ (0𝑖) (see Figure 6.1), we obtain��
Hop𝑘 ′+1

(0𝑖)
�� = ��

Hop𝑘 ′ (0𝑖)
�� + ∑︁

𝜈∈{𝑢1,𝑢2}

��
Hop

1
(𝜈) \ Hop𝑘 ′ (0𝑖)

��︸                      ︷︷                      ︸
≤𝑏

≤
��
Hop𝑘 ′ (0𝑖)

�� + 2𝑏. (6.1)

We set 𝑘 =

⌈
diam𝑇𝑏

ℎ

2

⌉
=

⌈
ℎ+1

2

⌉
and apply Inequality 6.1 twice to obtain,

s-hop(0𝑖)
s-hop(0𝑖𝑥) =

hop𝑘 (0𝑖) hop𝑘+1
(0𝑖)

hop𝑘 (0𝑖𝑥) hop𝑘+1
(0𝑖𝑥) =

hop𝑘 (0𝑖) hop𝑘+1
(0𝑖)

hop𝑘−1
(0𝑖) hop𝑘 (0𝑖)

=
hop𝑘+1

(0𝑖)
hop𝑘−1

(0𝑖)

≤
hop𝑘−1

(0𝑖) + 2𝑏 + 2𝑏

hop𝑘−1
(0𝑖) = 1 + 4𝑏

hop𝑘−1
(0𝑖)

≤ 1 + 4𝑏

𝑘
= 1 + 4𝑏⌈

ℎ+1

2

⌉ ≤ 1 + 4𝑏

ℎ+1

2

≤ 1 + 8𝑏

ℎ
.
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Also, obviously,

s-hop(0𝑖)
s-hop(0𝑖𝑥) =

hop𝑘+1
(0𝑖)

hop𝑘−1
(0𝑖) ≥ 1.

Equipped with those two lemmas, we show:

Theorem 6.3: For all 𝛽 > 0 and 𝑑 ∈ ℕ+, choose 𝑏 = 3
𝑑 + 2 and a sufficiently large ℎ. Let

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑇𝑏
ℎ
) be an arbitrary𝑑-dimensional weighted embedding of𝑇𝑏

ℎ
with error (𝑠fn, 𝑠fp),

where𝑤𝜈 = (s-hop(𝜈))𝛽/𝑑 for all 𝜈 ∈ 𝑉

(
𝑇𝑏
ℎ

)
. Then, 𝑠fn + 𝑠fp ≥ ℎ ∈ Θ(𝑛/𝑏). In particular,𝜓 is

not perfect.

Proof. For an arbitrary 𝑖 ∈ {0, . . . , ℎ − 1}, let 𝐻𝑖 be the subgraph of 𝑇𝑏
ℎ
induced by the vertices

𝑉𝑖 ≔ {0
𝑖 , 0𝑖1, 0𝑖2, . . . , 0𝑖 (𝑏−1)}. We observe, that𝐻𝑖 is isomorphic to the star graph 𝑆𝑏−1. Let𝜓

𝑖

be the weighted embedding of 𝑆𝑏−1, that is obtained canonically from𝜓 , by the isomorphism.

For the sake of contradiction, we assume 𝜓 𝑖
to be a perfect embedding of 𝑆𝑏−1. Then, by

Lemma 6.2,

𝑤max(𝜓 𝑖)
𝑤min(𝜓 𝑖) =

𝑤
0
𝑖

𝑤
0
𝑖𝑥

=

(
s-hop(0𝑖)

s-hop(0𝑖𝑥)

)𝛽/𝑑
≤

(
1 + 8𝑏

ℎ

)𝛽/𝑑
(6.2)

for some 𝑥 ∈ {1, . . . , 𝑏 − 1}. On the other hand, by Lemma 6.1,

𝑤max(𝜓 𝑖)
𝑤min(𝜓 𝑖) >

√︂
𝑏 − 1

3
𝑑

=

√︄
3
𝑑 + 1

3
𝑑

=

√︂
1 + 1

3
𝑑
. (6.3)

We now choose ℎ sufficiently large, such that√︂
1 + 1

3
𝑑
>

(
1 + 8𝑏

ℎ

)𝛽/𝑑
. (6.4)

This is possible, since

√︃
1 + 1

3
𝑑 > 1 is independent of ℎ and limℎ→∞

(
1 + 8𝑏

ℎ

)𝛽/𝑑
= 1. Now,

Inequalities 6.2, 6.3 and 6.4 lead to a direct contradiction. Thus,𝜓 𝑖
is not perfect and there exist

vertices 𝑢, 𝜈 ∈ 𝑉𝑖 such that {𝑢, 𝜈} ∈ (𝐸 (𝐺) \ 𝐸 (𝜓 )) ∪ (𝐸 (𝜓 ) \ 𝐸 (𝐺)) for all 𝑖 ∈ {0, . . . , ℎ − 1}.
The claim follows by

𝑠fn + 𝑠fp = |𝐸 (𝐺) \ 𝐸 (𝜓 ) | + |𝐸 (𝜓 ) \ 𝐸 (𝐺) | = | (𝐸 (𝐺) \ 𝐸 (𝜓 )) ∪ (𝐸 (𝜓 ) \ 𝐸 (𝐺)) | ≥ ℎ.

So, there exist trees that not only have no perfect embedding with weights s-hop(·)𝛽 ,
but they don’t even have embeddings with sublinear error. Furthermore, we notice that

alternatively the weights deg(·) yields perfect 1-dimensional embeddings of the graph 𝑇𝑏
ℎ
for

all ℎ and 𝑏. This give as a first example for a graph, where setting the weights to the degree

instead of using s-hop(·)𝛽 gives (significantly) better results. This shows a big problem of

using the 𝑘-hop centrality for non-constant 𝑘 as weights: Intuitively speaking, the 𝑘-hop

centrality only considers the global structure of the graph and loses sight over the local

structure. On the other hand, deg𝜈 only considers the local structure (the direct neighborhood

of 𝜈) and not the global structure of the graph. Thus, 𝑤𝜈 ≔ deg𝜈 is not suitable for trees

with exponential growth of vertices. We claim that a weight-setter that works on all trees

(if it exists) must depend not only on one of those elements, but both: the local and global

structure. This thesis does not delve deeper in this idea.
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6.2. Subgraphs of the Grid

In Section 5.2, we discussedwhy the𝑘-hop centrality yields embeddings with total errorO(
√
𝑛)

for all grids Γ𝑎,𝑎 . One might be interested whether there also exist low-error embeddings of grid
graphs (i.e. induced subgraphs of Γ𝑎,𝑎). As this problem gets trivial if we allow disconnected

graphs, we will focus only on connected grid graphs. We will try to answer this question,

however we will examine the existence of sublinear total error (𝑜 (𝑛)) instead of O(
√
𝑛).

We introduce some notation: Let S be the set of all connected graphs 𝐺 , for which 𝑎 ∈ ℕ+
exists, such that 𝐺 is an induced subgraph of Γ𝑎,𝑎 . Furthermore, for 𝐺 ∈ S , let 𝑎(𝐺) be the
smallest 𝑎 such that 𝐺 is an induced subgraph of Γ𝑎,𝑎 .
We are not able to show the existence of embeddings with sublinear total error for all

graphs in S , but instead will try to show the existence of such embeddings for all graphs

in subsets F of S . We will first consider the following lemma, which is a general statement

about embeddings of grid graphs with given weights, not just hop𝑘 (·).

Theorem 6.4: Let F ⊆ S be an infinite family of graphs and (𝑤𝜈 )𝜈∈𝑉 (𝐺 ) given weights for
each 𝐺 ∈ F such that for all adjacent 𝑢, 𝜈 ∈ 𝑉 (𝐺), 𝑤𝑢

𝑤𝜈
≤ 1 + 𝑜 (1) for increasing 𝑛 = |𝑉 (𝐺) |.

Furthermore, assume |𝑉 (𝐺) | ∈ Θ
(
𝑎(𝐺)2

)
for all 𝐺 ∈ F . Then, there exist positions (𝑝𝜈 )𝜈∈𝑉 (𝐺 ) ,

such that𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) is a 2-dimensional weighted embedding of 𝐺 with error (𝑜 (𝑛), 0).

Proof. Fix any 𝐺 ∈ F . By assumption, there exists 𝑔 ∈ 𝑜 (1) such that
𝑤𝑢

𝑤𝜈
≤ 1 + 𝑔. Note, that

𝑔−1 ≔ 1

𝑔
∈ 𝜔 (1). For a fixed 𝛾 > 0, let 𝑢,𝑢′ ∈ 𝑉 (𝐺) be vertices with 𝑘 ′ ≔ dist𝐺 (𝑢,𝑢′) ≤ 𝛾𝑔−1

.

Then, there exists a path (𝑢, 𝜈1, . . . , 𝜈𝑘 ′−1, 𝑢
′) of length 𝑘 ′ from 𝑢 to 𝑢′

. Thus,

𝑤𝑢′

𝑤𝑢

=
𝑤𝑢′

𝑤𝜈𝑘′−1︸ ︷︷ ︸
≤1+𝑔

·
𝑤𝜈𝑘′−1

𝑤𝜈𝑘′−2︸ ︷︷ ︸
≤1+𝑔

· · ·
𝑤𝜈2

𝑤𝜈1︸︷︷︸
≤1+𝑔

·
𝑤𝜈1

𝑤𝑢︸︷︷︸
≤1+𝑔

≤ (1 + 𝑔)𝑘 ′ ≤ (1 + 𝑔)𝛾𝑔−1

=

((
1 + 1

𝑔−1

)𝑔−1
)𝛾

< e
𝛾 ,

where e ≔ sup𝑥>0

(
1 + 1

𝑥

)𝑥 ≈ 2.718 is Euler’s number. If we set 𝛾 ≔ ln(
√

2), then

𝑤𝑢′

𝑤𝑢

<
√

2 (6.5)

follows.

We now partition the vertices of𝐺 into subgraphs with diameter at most 𝛾𝑔−1
. There will

exist perfect embeddings of the individual subgraphs and we will show that only few edges

between two different subgraphs exist. A suitable partition is the partition into squares with

side length 𝑠 ≔
√︁
𝛾𝑔−1

:

Let 𝐻𝑖, 𝑗 be the subgraph of 𝐺 induced by the vertices

𝑉𝑖, 𝑗 ≔ {(𝑥,𝑦) ∈ 𝑉 (𝐺) | 𝑥 ∈ [𝑖𝑠, (𝑖 + 1)𝑠), 𝑦 ∈ [ 𝑗𝑠, ( 𝑗 + 1)𝑠)}

for all 𝑖, 𝑗 ∈ {0, 1, . . . ,
⌈
𝑎 (𝐺 )
𝑠

⌉
− 1}. For fixed 𝑖, 𝑗 , let 𝐻 ′

be an arbitrary connected component

of 𝐻𝑖, 𝑗 . Since

diam𝐻 ′ ≤ |𝑉 (𝐻 ′) | ≤ |𝑉 (𝐻𝑖, 𝑗 ) | ≤ 𝑠2 = 𝛾𝑔−1(𝑘),
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6.2. Subgraphs of the Grid

we have
𝑤𝑢′
𝑤𝑢

<
√

2 for all vertices 𝑢,𝑢′ ∈ 𝑉 (𝐻 ′) by Inequality 6.5. Thus, by Lemma 4.2, there

exists a perfect embedding of𝐻 ′
with the given weights. The existence of a perfect embedding

of 𝐻𝑖, 𝑗 with the given weights follows directly (as 𝐻𝑖, 𝑗 is a union of all connected components

𝐻 ′
of 𝐻𝑖, 𝑗 ). Let𝐺

′
be the union of all graphs 𝐻𝑖, 𝑗 . As all connected components of𝐺 ′

can be

embedded perfectly with the given weights, there exist 𝑝𝜈 ∈ ℝ2
for all 𝜈 ∈ 𝑉 (𝐺), such that

𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ′ ) is a perfect embedding of 𝐺 ′
.

As 𝐺 ′
is a subgraph of 𝐺 , we have

|𝐸 (𝜓 ) \ 𝐸 (𝐺) | ≤ |𝐸 (𝜓 ) \ 𝐸 (𝐺 ′) | = 0.

Furthermore,

|𝐸 (𝐺) \ 𝐸 (𝜓 ) | ≤ |{{𝑢, 𝜈} ∈ 𝐸 (𝐺) | 𝑢 ∈ 𝑉 (𝐻𝑖1, 𝑗1), 𝜈 ∈ 𝑉 (𝐻𝑖2, 𝑗2), (𝑖1, 𝑗1) ≠ (𝑖2, 𝑗2)}|

=
1

2

∑︁
𝑖1, 𝑗1

|{{𝑢, 𝜈} ∈ 𝐸 (𝐺) | 𝑢 ∈ 𝑉 (𝐻𝑖1, 𝑗1), 𝜈 ∉ 𝑉 (𝐻𝑖1, 𝑗1)}|

≤ 1

2

∑︁
𝑖1, 𝑗1

4𝑠 =
1

2

⌈
𝑎(𝐺)
𝑠

⌉
2

4𝑠 ∈ Θ

(
𝑎(𝐺)2

𝑠

)
= Θ

(𝑛
𝑠

)
= 𝑜 (𝑛) .

Remark that this theorem requires
𝑤𝑢

𝑤𝜈
≤ 1 + 𝑜 (1) for all adjacent vertices 𝑢, 𝜈 ∈ 𝑉 (𝐺).

However, it is actually sufficient if this inequality holds for at most 𝑜 (𝑛) pairs of adjacent
vertices, as noted in Section 2.3.

As another side note, if we set F = {Γ𝑎,𝑎 | 𝑎 ∈ ℕ+}, Theorem 6.4 yields the following

general criterion for the existence of embeddings of complete grids for given weights:

Corollary 6.5: For all 𝑎 ∈ ℕ+ let (𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) be weights with
𝑤𝑢

𝑤𝜈
> 1 + 𝑜 (1) for all adjacent

vertices 𝑢, 𝜈 ∈ 𝑉 (Γ𝑎,𝑎). Then there exist positions (𝑝𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) such that𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,𝑎 ) is
a 2-dimensional weighted embedding of Γ𝑎,𝑎 with error (𝑜 (𝑛), 0).

Note, that this corollary is different from Corollary 4.6, as it does not require some form of

monotonicity of the weights.

We will now apply Theorem 6.4 particularly for the case that the given weights are the

𝑘-hop centrality. Again, like in Section 5.2, we will only focus on the normal 𝑘-hop centrality

hop𝑘 (·)𝛽 (with 𝑘 =
⌈

diam𝐺
2

⌉
) instead of the smooth 𝑘-hop centrality s-hop(·)𝛽 . However, all

results in this section also apply to s-hop(·)𝛽 and can be proven in a very similar fashion. We

start by rephrasing the requirement
𝑤𝑢

𝑤𝜈
≤ 1 +𝑜 (1) in Theorem 6.4, which is a statement about

a pair of adjacent vertices, into a statement about single vertices:

Corollary 6.6: Let 𝛽 ≥ 0 and F ⊆ S be an infinite family of graphs with |𝑉 (𝐺) | ∈ Θ
(
𝑎(𝐺)2

)
for all 𝐺 ∈ F . Furthermore, assume

|{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈) = 𝑘}| ∈ 𝑜 ( |{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈) ≤ 𝑘}|) (6.6)

for all 𝜈 ∈ 𝑉 (𝐺), where 𝑘 ≔
⌈

diam𝐺
2

⌉
. Then, for all𝐺 ∈ F , there exists a 2-dimensional weighted

embedding𝜓 = (𝑝𝜈 , hop𝑘 (𝜈)𝛽 )𝜈∈𝑉 (𝐺 ) of 𝐺 with error (𝑜 (𝑛), 0).

We note that Relation 6.6 is equivalent to

hop𝑘 (𝜈) − hop𝑘−1
(𝜈) ∈ 𝑜 (hop𝑘 (𝜈)) . (6.7)
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Proof of Corollary 6.6. Wewill apply Theorem 6.4. First, let 𝜈1, 𝜈2 ∈ 𝑉 (𝐺) be arbitrary adjacent
vertices. Then, by the fact that Hop𝑘−1

(𝜈1) ⊆ Hop𝑘 (𝜈2) and Relation 6.7, we obtain

hop𝑘 (𝜈1)
hop𝑘 (𝜈2)

≤
hop𝑘 (𝜈1)

hop𝑘−1
(𝜈1)

=
hop𝑘 (𝜈1) − hop𝑘−1

(𝜈1) + hop𝑘−1
(𝜈1)

hop𝑘−1
(𝜈1)

≤
𝑜 (hop𝑘 (𝜈1)) + hop𝑘−1

(𝜈1)
hop𝑘−1

(𝜈1)
≤ 1 +

𝑜 (hop𝑘 (𝜈1))
hop𝑘−1

(𝜈1)
.

We note, that the maximal degree of𝐺 is 4 and thus, hop𝑘 (𝜈1) ≤ (4+ 1) hop𝑘−1
(𝜈1). It follows,

hop𝑘 (𝜈1)𝛽

hop𝑘 (𝜈2)𝛽
≤

(
1 +

𝑜 (hop𝑘 (𝜈1))
hop𝑘−1

(𝜈1)

)𝛽
≤

(
1 +

𝑜 (5 hop𝑘−1
(𝜈1))

hop𝑘−1
(𝜈1)

)𝛽
= (1 + 𝑜 (1))𝛽 = 1 + 𝑜 (1) .

Thus, we have shown all requirements of Theorem 6.4 and are done.

The proof above heavily relies on the assumption that Relation 6.6 holds. For ease in

notation, we will call this assumption A2. We denote the assumption that |𝑉 (𝐺) | ∈ Θ
(
𝑎(𝐺)2

)
with A1. Now, the usefulness of this Corollary heavily depends on the number of graphs

(or more precisely, family of graphs) that satisfy assumption A2. For that reason, we will

investigate A2 below.

For a fixed 𝑎 ∈ ℕ+, we consider the complete grid Γ𝑎,𝑎 . We verify easily, that hop𝑘 (𝜈) ∈
Θ(𝑘2) for all 𝜈 ∈ Γ𝑎,𝑎 (and 𝑘 ∈ {

⌈
diam𝐺

2

⌉
,
⌈

diam𝐺
2

⌉
+ 1}), and that the number of vertices with

distance exactly 𝑘 to 𝜈 is at most 4𝑘 . This shows, that the family {Γ𝑎,𝑎 | 𝑎 ∈ ℕ+} satisfies A2

(and obviously A1 too). Using Theorem 6.6 yields an alternative proof for Corollary 5.8.

With this result in mind, one might guess that any family of graphs for which A1 holds,

does also satisfyA2. The existence of a family that doesn’t satisfyA2 might even sound absurd.

However, we will now show that not every family F ⊆ S satisfying A1 does also satisfy A2:

For 𝑠 ∈ ℕ+, set 𝑎 = 2
𝑠+1 − 3 and define 𝐻𝑠 as an induced subgraph of Γ𝑎,𝑎 . The vertex set

𝑉 (𝐻𝑠) consists of all vertices lying on paths that start at the center of Γ𝑎,𝑎 and proceed as

follows: first, take 2
𝑠−1

steps either left or right; then 2
𝑠−1

steps either up or down; followed

by 2
𝑠−2

steps left or right; then 2
𝑠−2

steps up or down; continuing in this pattern until ending

with 2 steps up or down. Figure 6.2 illustrates 𝐻𝑠 . 𝐻𝑠 is known as a H-tree 1
. All leafs of 𝐻𝑠

have distance exactly

𝑘 ≔
diam𝐻𝑠

2

=

𝑠−1∑︁
𝑖=1

2 · 2
𝑖 = 2(2𝑠 − 2) (6.8)

to the center vertex 𝜈𝑐 of Γ𝑎,𝑎 . We observe that there are exactly 2
2𝑠−2

leafs, since 𝐻𝑠 is a

balanced binary tree with 2𝑠 − 2 forks. Thus,

|{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈𝑐) = 𝑘}| = 2
2𝑠−2 = 2

−4
(
2
𝑠+1

)
2

= 2
−4(𝑎 + 3)2

and (6.9)

|{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈𝑐) ≤ 𝑘}| ≤ 𝑎2.

We consider the family F𝐻 = {𝐻𝑠 | 𝑠 ∈ ℕ+}. The first equation implies assumption

A1. Both equations together show that Relation 6.6 does not hold for the vertex 𝜈𝑐 , which

contradict A2. Which is the counterexample we searched for. In particular, we cannot apply

Corollary 6.6 on F𝐻 . From this alone, however, does not follow that no embeddings for the

graphs in F𝐻 with sublinear error and weights hop𝑘 (·) exist. However, we will now modify

𝐻𝑠 to a graph for which provably no such embeddings exist.

1
The idea of considering H-trees as subgraphs of a grid is inspired by an answer on math.stackexchange.com of

dtldarek [dtl17].
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Figure 6.2.: The H-tree 𝐻5 is illustrated in black. The fractal nature of the H-tree allows it

leafs to cover a fixed proportion of the grid. This can visually be confirmed by observing that

in each 4 times 4 square of the grid, there is exactly one leaf of 𝐻5 contained. The blue crosses

show a path 𝑃 . The union of 𝐻5 and 𝑃 is the modified H-tree 𝐻 5.

We describe this modification in 3 steps. Figure 6.3 illustrates all 3 steps of the construction.

Firstly, let 𝐻
(1)
𝑠 be the graph obtained by replacing each edge of 𝐻𝑠 with a path 𝑃2 of length 2.

For precisely,

𝑉 (𝐻 (1)
𝑠 ) = 𝑉 (𝐻𝑠) ∪ {𝑢𝑒 | 𝑒 ∈ 𝐸 (𝐻𝑠)} and 𝐸 (𝐻 (1)

𝑠 ) = {{𝜈,𝑢𝑒 } | 𝑒 = {𝜈, 𝜈 ′} ∈ 𝐸 (𝐻𝑠)}

Secondly, let 𝐻
(2)
𝑠 be the graph obtained in the following way: For each leaf 𝜈 of 𝐻

(1)
𝑠 , let 𝜈𝑝

be it’s unique neighbor in𝐻
(1)
𝑠 and let 𝜈 ′, 𝜈𝑧 be new vertices such that {𝜈, 𝜈𝑝 , 𝜈 ′, 𝜈𝑧} induces a 4-

cycle𝐶4 in𝐻
(2)
𝑠 (i.e. {𝜈, 𝜈𝑝 }, {𝜈𝑝 , 𝜈 ′}, {𝜈 ′, 𝜈𝑧}, {𝜈𝑧, 𝜈} ∈ 𝐸 (𝐻 (2)

𝑠 ) and {𝜈, 𝜈 ′}, {𝜈𝑝 , 𝜈𝑧} ∉ 𝐸 (𝐻 (2)
𝑠 )).

Finally, let 𝐻
(3)
𝑠 be the union of 𝐻

(2)
𝑠 and a path 𝑃 of length 6𝑘 − 1 = 12 · 2

𝑠 − 25 that starts

at the center of 𝐻
(2)
𝑠 and is otherwise disjoint from 𝐻

(2)
𝑠 (here 𝑘 =

diam𝐻𝑠

2
, which we analyzed

in Equation 6.8).

We note that 𝐻𝑠 is an induced subgraph of Γ𝑎,𝑎 by definition. Thus, 𝐻
(1)
𝑠 is an induced

subgraphs of Γ2𝑎,2𝑎 . 𝐻
(2)
𝑠 is still an induced subgraph of Γ2𝑎,2𝑎 , as the vertices 𝜈

′
and 𝜈𝑧 in the

construction can be embedded into Γ2𝑎,2𝑎 as the vertex one to the left of 𝜈𝑝 and 𝜈 respectively
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(a) 𝐻4 (b) 𝐻 (1)
4

(c) 𝐻 (2)
4

(d) 𝐻 (3)
4

Figure 6.3.: Illustration of the construction of the graphs 𝐻
(1)
𝑠 , 𝐻

(2)
𝑠 and 𝐻

(3)
𝑠 for 𝑠 = 4 and

how they are induced subgraphs of a grid.

(compare Figure 6.3c). Now, 𝐻
(3)
𝑠 is an induced subgraph of Γ2𝑎,2𝑎+6 (which is an induced

subgraph of Γ2𝑎+6,2𝑎+6), as 𝑃 can be constructed as follows: Start at the center of 𝐻
(2)
𝑠 , take

2
𝑠+1 − 2 steps down, then 2

𝑠+1 − 4 steps left, then 2 steps down, then 2
𝑠+2 − 8 steps right, then

2 steps down, then 2
𝑠+2 − 19 steps left. Now 𝑃 is a path of length 12 · 2

𝑠 − 25 = 6𝑘 − 1 that

does not contain any vertices of 𝐻
(2)
𝑠 (except the central vertex). Thus, 𝐻

(3)
𝑠 is a grid graph.

Again, Figure 6.3d illustrates this construction. We now claim:

Theorem6.7: For all 𝛽 ≥ 90, 𝑠 ∈ ℕ+ and 2-dimensional weighted embedding𝜓 = (𝑝𝜈 , hop𝑘 ′ (𝜈)𝛽 )𝜈∈𝑉 (𝐻 (3)
𝑠 )

of the grid graph 𝐻 (3)
𝑠 with error (𝑠fn, 𝑠fp), it holds that 𝑠fn + 𝑠fp ∈ Ω(𝑛), where 𝑘 ′ ≔

⌈
diam𝐻

(3)
𝑠

2

⌉
.
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6.2. Subgraphs of the Grid

The key idea behind the proof of this theorem is to realize that for each leaf 𝜈 of 𝐻𝑠 , the

vertices 𝜈, 𝜈𝑧 and 𝜈 ′ (see construction of 𝐻
(2)
𝑠 ) induce a subgraph of 𝐻

(3)
𝑠 that is isomorphic

to the 3-path 𝑃3. Thus, before we prove Theorem 6.7, we make the following axillary claim

about the 3-path 𝑃3.

Lemma 6.8: If𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝑃3 ) is a perfect 𝑑-dimensional weighted embedding of the path
𝑃3 with 𝐸 (𝑃3) = {{0, 1}, {1, 2}} and𝑤0 = 𝑤2, then

𝑤0

𝑤1

< 2
𝑑 .

Proof. By the definition of perfect embeddings,

{0, 1} ∈ 𝐸 (𝑃3) =⇒ ∥𝑝0 − 𝑝1∥ ≤ (𝑤0𝑤1)1/𝑑 ,

{1, 2} ∈ 𝐸 (𝑃3) =⇒ ∥𝑝1 − 𝑝2∥ ≤ (𝑤1𝑤2)1/𝑑 = (𝑤0𝑤1)1/𝑑
and

{2, 0} ∉ 𝐸 (𝑃3) =⇒ ∥𝑝2 − 𝑝0∥ > (𝑤2𝑤0)1/𝑑 = 𝑤
2/𝑑
0

.

As 𝑝0, 𝑝1, 𝑝2 are points in ℝ2
, the triangle inequality ∥𝑝2 − 𝑝0∥ ≤ ∥𝑝0 − 𝑝1∥ + ∥𝑝1 − 𝑝2∥ must

hold, thus

𝑤
2/𝑑
0

< 2(𝑤0𝑤1)1/𝑑 ,

which implies

𝑤2

0
< 2

𝑑𝑤0𝑤1 =⇒
(
𝑤0

𝑤1

)
2

< 2
𝑑𝑤0

𝑤1

=⇒ 𝑤0

𝑤1

< 2
𝑑 .

Proof of Theorem 6.7. We recall that the distance of each leaf of𝐻𝑠 to the center of𝐻𝑠 is exactly

𝑘 ≔ 2(2𝑠 − 2) (see Equation 6.8). Thus, the diameter of 𝐻𝑠 is diam𝐻𝑠 = 2𝑘 . We note, that the

diameter is doubled in the construction of 𝐻
(1)
𝑠 , and then is increased by 2 in the construction

of 𝐻
(2)
𝑠 . Thus diam𝐻

(2)
𝑠 = 4𝑘 + 2. We note, that the largest distance between any nodes in

𝐻
(3)
𝑠 lies between the end vertex of the path 𝑃 and 𝜈𝑧 for any leaf 𝜈 in 𝐻

(1)
𝑠 . Thus,

diam𝐻
(3)
𝑠 =

diam𝐻
(2)
𝑠

2

+ |𝐸 (𝑃) | = 4𝑘 + 2

2

+ 6𝑘 − 1 = 8𝑘.

So,

𝑘 ′ ≔
diam𝐻

(3)
𝑠

2

= 4𝑘.

Now let 𝜈 ∈ 𝑉 (𝐻 (3)
𝑠 be any vertex on the left side of the center 𝜈𝑐 (i.e. the first edge of

shortest path from the center to 𝜈 goes left) with dist
𝐻

(3)
𝑠
(𝜈, 𝜈𝑐) = 2𝑘 . Note, that 𝜈 was a leaf

in the original tree 𝐻𝑠 and we constructed vertices 𝜈𝑝 , 𝜈 ′, 𝜈𝑧 with {𝜈, 𝜈𝑧}, {𝜈 ′, 𝜈𝑧} ∈ 𝐸 (𝐻 (3)
𝑠 )

and {𝜈, 𝜈 ′} ∉ 𝐸 (𝐻 (3)
𝑠 ). Now consider any vertex 𝑢 on the right side of the center 𝜈𝑐 with

dist
𝐻

(3)
𝑠
(𝑢, 𝜈𝑐) = 2𝑘 . Again let 𝑢𝑝 , 𝑢′

and 𝑢𝑧 be as constructed. Now observe that

dist
𝐻

(3)
𝑠
(𝜈,𝑢) = dist

𝐻
(3)
𝑠
(𝜈,𝑢′) = 2(2𝑘 + 1) = 4𝑘 = 𝑘 ′,
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which implies

dist
𝐻

(3)
𝑠
(𝜈𝑧, 𝑢) = dist

𝐻
(3)
𝑠
(𝜈𝑧, 𝑢′) = 𝑘 ′ + 1 > 𝑘 ′.

Thus, 𝑢,𝑢′ ∈ Hop𝑘 ′ (𝜈, 𝐻
(3)
𝑠 ), but 𝑢,𝑢′ ∉ Hop𝑘 ′ (𝜈𝑧, 𝐻

(3)
𝑠 ). As 𝐻𝑠 has exactly 2

2𝑠−2
leafs, it has

2
2𝑠−3

leafs on the left side of 𝜈𝑐 and 2
2𝑠−3

leafs on the right side of 𝜈𝑐 . So, there are 2
2𝑠−3

possible choices of 𝑢 and thus,

hop𝑘 ′ (𝜈, 𝐻
(3)
𝑠 ) − hop𝑘 ′ (𝜈𝑧, 𝐻

(3)
𝑠 ) ≥ 2 · 2

2𝑠−3 = 2
2𝑠−2 = 2

−4(𝑎 + 3)2

(recall that 𝑎 = 2
𝑠+1 − 3). Now,

hop𝑘 ′ (𝜈, 𝐻
(3)
𝑠 )

hop𝑘 ′ (𝜈𝑧, 𝐻
(3)
𝑠 )

=
hop𝑘 ′ (𝜈𝑧, 𝐻

(3)
𝑠 ) + hop𝑘 ′ (𝜈, 𝐻

(3)
𝑠 ) − hop𝑘 ′ (𝜈𝑝 , 𝐻

(3)
𝑠 )

hop𝑘 ′ (𝜈𝑧, 𝐻
(3)
𝑠 )

≥ 1 +
hop𝑘 ′ (𝜈, 𝐻

(3)
𝑠 ) − hop𝑘 ′ (𝜈𝑧, 𝐻

(3)
𝑠 )

|𝑉 (𝐻 (3)
𝑠 ) |

≥ 1 + 2
−4(𝑎 + 3)2

2𝑎(2𝑎 + 6)
≥ 1 + 2

−6 = 1.015625.

For any 𝛽 ≥ 90, we note that {𝜈, 𝜈𝑧, 𝜈 ′} induce a copy of the path 𝑃3 with hop𝑘 ′ (𝜈 ′, 𝐻
(3)
𝑠 )𝛽 =

hop𝑘 ′ (𝜈, 𝐻
(3)
𝑠 )𝛽 and

hop𝑘 ′ (𝜈, 𝐻
(3)
𝑠 )𝛽

hop𝑘 ′ (𝜈𝑧, 𝐻
(3)
𝑠 )𝛽

≥ 1.015625
𝛽 ≥ 1.015625

90 ≈ 4.036 > 2
2.

Thus, by Lemma 6.8, there exist no perfect 2-dimensional weighted embedding of 𝑃3 with

weights hop𝑘 ′ (·, 𝐻
(3)
𝑠 )𝛽 . Since there are exactly 2

2𝑠−3 ∈ Θ(𝑎2) = Θ(𝑛) possible choices of 𝜈 ,
resulting in Θ(𝑛) different induced copies of 𝑃3 (which have no perfect embedding), the total

error 𝑠fn + 𝑠fp of𝜓 is at least Θ(𝑛) (if 𝛽 ≥ 90).

This theorem shows that the weight-setter hop𝑘 (·,𝐺)𝛽 (with 𝑘 ≔
⌈

diam𝐺
2

⌉
) is not suitable

for all grid graphs 𝐺 , if 𝛽 ≥ 90. We claim (without proof) that the same is true for the weight-

setter s-hop(·,𝐺)𝛽 . This is especially interesting, if we compare this result with Theorem 5.4,

which only shows the suitability of s-hop(·,𝐺)𝛽 as weight-setter for all complete trees 𝑇𝑏
ℎ
, if

𝛽 ≥ 4. Thus, if we need a weight-setter that is suitable for both classes of graphs, we need to

select 𝛽 carefully between 4 and 90 (if a suitable 𝛽 exists at all).

Additionally, we note that we did not optimize the lower bound of 𝛽 in Theorem 6.7. We

conjecture that it can be reduced significantly by adjusting the construction of 𝐻
(3)
𝑠 . The

question, whether 𝛽 can be reduced down to 4 and we come in direct conflict with Theorem

5.4, remains unanswered.

Even though we have found a graph for which hop𝑘 (·)𝛽 is not necessary suitable, we

claim that this is no sign of superiority of the baseline weight-setter deg(𝜈)𝛽 over the 𝑘-hop

centrality: Consider the graph 𝐺
↘
𝑎 , which is defined as the subgraph of Γ𝑎,𝑎 induced by

𝑉 (𝐺↘
𝑎 ) ≔ {(𝑥,𝑦) ∈ 𝑉 (Γ𝑎,𝑎) | |𝑥 − 𝑦 | ≤ 1}. For an illustration see Figure 6.4. We make the

following claim:

Theorem 6.9: For 𝛽 ≥ 2, let𝜓 = (𝑝𝜈 , (deg𝜈)𝛽 )
𝜈∈𝑉 (𝐺↘

𝑎 ) be an arbitrary 2-dimensional weighted

embedding of 𝐺↘
𝑎 with error (𝑠fn, 𝑠fp). Then, 𝑠fn + 𝑠fp ≥ 𝑎 − 3 ∈ Ω(𝑎) = Ω(𝑛).

50



6.3. Unit Disk Graphs

Figure 6.4.: Illustration of the graph 𝐺
↘
7
.

Proof. For any 𝑖 ∈ {1, . . . , 𝑎 − 3} consider the vertices 𝜈𝑖 ≔ (𝑖, 𝑖), 𝜈𝑖+1 ≔ (𝑖 + 1, 𝑖 + 1) and
𝑢 ≔ (𝑖 + 1, 𝑖). Note that deg𝜈𝑖 = deg𝜈𝑖+1 = 4 and deg𝑢 = 2. Thus,

(deg 𝜈𝑖 )𝛽
(deg𝑢 )𝛽 = 2

𝛽 ≥ 2
2 = 4.

Additionally, note that {𝜈𝑖 , 𝑢, 𝜈𝑖+1} induces a copy of 𝑃3. Thus, by Lemma 6.8, (deg(·,𝐺↘
𝑎 ))𝛽

yields no perfect 2-dimensional weighted embedding of 𝑃3. As we can choose 𝑎 − 3 different

values of 𝑖 and thus have 𝑎 − 3 such induced copies of 𝑃3, we have shown 𝑠fn + 𝑠fp ≥ 𝑎 − 3.

So, we have also found a counterexample for deg(·)𝛽 . The severity of this counterexample

differs from Theorem 6.7 in at least 2 ways: First, the construction of 𝐺
↘
𝑎 is much simpler

then the one of 𝐻
(3)
𝑠 . As a consequence, it seems much easier to find variations of𝐺

↘
𝑎 that act

as counterexamples too, then to find such variations of 𝐻
(3)
𝑠 . Second, Theorem 6.7 requires 𝛽

to be at least 90, while Theorem 6.9 already gets relevant for 𝛽 = 2.

In summary, if we also keep in mind the result of Corollary 6.6, it seems like using the

𝑘-hop centrality as weights still is a better (or at least equally good) option for embedding

grid graphs, as using the degree centrality. However, we have to keep in mind that there exist

grid graphs that cannot be embedded with sublinear error with weights hop𝑘 (·)𝛽 .

6.3. Unit Disk Graphs

In this section, we will discuss embeddings of unit disk graphs, which are a generalization of

grid graphs:

A graph 𝐺 is called a unit disk graph (UDG), if there exist positions (𝑝𝜈 ∈ ℝ2)𝜈∈𝑉 (𝐺 ) such
that

∥𝑝𝑢 − 𝑝𝜈 ∥ ≤ 1 ⇐⇒ {𝑢, 𝜈} ∈ 𝐸 (𝐺)

for all 𝑢, 𝜈 ∈ 𝑉 (𝐺). Alternatively, a graph𝐺 is an UDG iff. there exists a perfect 2-dimensional

weighted embedding of 𝐺 with unit weights.

Notably, all grid graphs (i.e. induced subgraphs of the grid Γ𝑎,𝑎) are UDGs. Consequently,
we have already established in the previous section that neither hop𝑘 (·)𝛽 nor deg(·)𝛽 yield

embeddings with sublinear error for all UDGs when 𝛽 is sufficiently large (see Theorems

6.7 and 6.9). This presents a methodological challenge in our comparison of hop𝑘 (·)𝛽 and

deg(·)𝛽 , not only for UDGs but also for any class of graphs that includes the counterexample

from the previous section.

One way to address this issue is to shift the focus from determining whether suitable

embeddings exist for all graphs in a class to asking whether they exist for most graphs in
the class. This reformulation is equivalent to determining whether a randomly chosen graph

from the class is likely to admit a suitable embedding. To explore this question, we introduce

random geometric graphs:
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For 𝑛 ∈ ℕ+ and 𝑟 = 𝑟 (𝑛), we consider the random geometric graph (RGG) G = G (𝑛, 𝑟 ), which
has vertex set {𝑋1, . . . , 𝑋𝑛}, where 𝑋𝑖 ∈ D ≔ [−

√
𝑛/2,

√
𝑛/2]2

are uniform and independent

random variables [Pen03] [DMPP14]. Two vertices𝑋𝑖 and𝑋 𝑗 are adjacent in G iff.



𝑋𝑖 − 𝑋 𝑗



 ≤
𝑟 . G is a random graph and all properties of G are random variables.

One useful fact is that for any fixed 𝐴 ⊆ D and 𝑖 ∈ {1, . . . , 𝑛}, ℙ (𝑋𝑖 ∈ 𝐴) =
|𝐴 |
|D | =

|𝐴 |
𝑛
,

where |𝐴| is the area of 𝐴. More generally, let C be an event that is independent of 𝑋𝑖 , then

ℙ (𝑋𝑖 ∈ 𝐴|C) = |𝐴 |
𝑛
. With that fact, we can calculate the probability that the vertices 𝑋𝑖 and 𝑋 𝑗

(𝑖 ≠ 𝑗 ) are adjacent, given that 𝑋𝑖 has distance at least 𝑟 from the boundary of D (we denote

this assumption with B𝑖 ):

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐸 (G)

��B𝑖

)
= ℙ

(
𝑋 𝑗 ∈ 𝐵𝑟 (𝑋𝑖)

��B𝑖

)
=

|𝐵𝑟 (𝑋𝑖) |
𝑛

=
𝜋𝑟 2

𝑛
. (6.10)

Recall that 𝐵𝜌 (𝑥) denotes the Euclidean disk of radius 𝜌 ∈ ℝ+, centered at 𝑥 ∈ ℝ2
and that

𝐵𝜌 (𝑥) has area 𝜋𝜌2
. As a consequence of Equation 6.10, we can calculate the expected degree

of a vertex 𝑋𝑖 under the assumption B𝑖 ,

𝔼 [deg𝑋𝑖 |B𝑖] =
𝑛∑︁
𝑗=1

𝑗≠𝑖

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐸 (G)

��B𝑖

)
= (𝑛 − 1)𝜋𝑟

2

𝑛
.

Similarly, we can show that under the assumption that𝑋𝑖 is in the upper left corner (−
√
𝑛

2
,−

√
𝑛

2
)

of D, the expected degree is given by

𝔼

[
deg𝑋𝑖

���𝑋𝑖 =

(
−
√
𝑛/2,−

√
𝑛/2

)]
= (𝑛 − 1)𝜋𝑟

2

4𝑛
.

Thus, the degree of a vertex in the corner of D is expected to be smaller by a factor of 4 in

comparison to the expected degree of a more central vertex. These effects on the boundary of

D can make the analysis of properties of G tedious. Hence, we introduce a toroidal variant of

RGGs:

For 𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2) ∈ D, we define the toroidal distance between 𝑧1 and 𝑧2 by

𝑑T(𝑧1, 𝑧2) ≔ min

𝑖, 𝑗∈ℤ



(𝑥1 − 𝑥2 + 𝑖
√
𝑛,𝑦1 − 𝑦2 + 𝑗

√
𝑛)



 .
Figure 6.5 illustrates, how this toroidal distance can be visualized. For 𝑛 ∈ ℕ+ and 𝑟 ∈ ℝ+, we
define the toroidal random geometric graph GT as the graph with the same vertices 𝑋1, . . . , 𝑋𝑛

as G, but with an edge {𝑋𝑖 , 𝑋 𝑗 } iff. 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝑟 [BGPS25].

We note that 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤


𝑋𝑖 − 𝑋 𝑗




and thus, G is a subgraph of GT. The main advantage

of GT over G is that for any 𝑧1 ∈ D and 𝜌 ∈ ℝ+ with 𝜌 ≤
√

2𝑛, the set

{𝑧2 ∈ D | 𝑑T(𝑧1, 𝑧2) ≤ 𝜌}

has area exactly 𝜋𝜌2
. Thus,

ℙ
(
𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝜌

)
=
𝜋𝜌2

𝑛
,

independent on whether 𝑋𝑖 and 𝑋 𝑗 are near the boundary of D or not. Thus, 𝔼 [deg𝑋𝑖] =
(𝑛 − 1) 𝜋𝑟 2

𝑛
.
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Figure 6.5.: The toroidal distance on D can be visualized as the top and bottom, aswell the

left and right boundary of D being identified. The figure shows three toroidal disks centered

at the vertices 𝜈1, 𝜈2 and 𝜈3 with a fixed radius. We observe that all those disks have the same

area.

We now consider embeddings of toroidal RGGs. For that reason, we need to consider

a toroidal variant of weighted embeddings: We define a 2-dimensional weighted toroidal

embedding 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (𝐺 ) analogously to standard weighted embeddings, with the

difference that 𝑝𝜈 ∈ D for all 𝜈 ∈ 𝑉 (𝐺). However,𝜓 is called perfect, if for all 𝑢, 𝜈 ∈ 𝑉 (𝐺),

{𝑢, 𝜈} ∈ 𝐸 (𝐺) ⇐⇒ 𝑑T(𝑝𝑢, 𝑝𝜈 )
(𝑤𝑢𝑤𝜈 )1/2

≤ 𝑟,

for some 𝑟 ∈ ℝ+. We define 𝐸 (𝜓 ) and the error of 𝜓 analogously to standard weighted

embeddings.

We are now interested, which weight assignments yield a toroidal weighted embedding

of GT with sublinear error. If we assume that the weight of a vertex 𝑋𝑖 is based on some

centrality measure, as for instance deg𝑋𝑖 or hop𝑘 (𝑋𝑖), then the weight𝑊𝑖 assigned to 𝑋𝑖

depends on𝑋1, . . . , 𝑋𝑛 . Thus,𝑊𝑖 is a random variable. Furthermore, for any reasonable weight

assignment, the variables𝑊𝑖 and𝑊𝑗 should be distributed equally for all 𝑖, 𝑗 . Hence, we

assume that𝑊𝑖 ∼𝑊1 for all 𝑖 .

We note that, if𝑊𝑖 = 1 is constant for all 𝑖 , then the toroidal weighted embedding 𝜓 =

(𝑋𝑖 ,𝑊𝑖)𝑋𝑖 ∈GT
is perfect by the definition of toroidal weighted embeddings and GT.𝑊𝑖 being

constant is equivalent to Var (𝑊𝑖) = 0. As we are interested in an embedding with sublinear

error, one might hope that 𝜓 has sublinear error not only when Var (𝑊𝑖) = 0, but when

Var (𝑊𝑖) is sufficiently small. This hope turns out to be true, if𝑊𝑖 satisfies some additional

properties:

Theorem 6.10: Let𝑊1, . . . ,𝑊𝑛 be random variables, such that 𝔼 [𝑊𝑖] = 1, Var (𝑊𝑖) ∈ 𝑜 (1) and
there exists a constant 𝑐 ≥ 1 such that𝑊𝑖 < 𝑐 deterministically. Additionally, let𝑊𝑖 and𝑊𝑗

be independent of 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) for all 𝑖, 𝑗 . Then, w.h.p. 𝜓 = (𝑋𝑖 ,𝑊𝑖)𝑋𝑖 ∈GT is a toroidal weighted
embedding of GT with error (𝑜 (𝑛𝑟 2), 𝑜 (𝑛𝑟 2)).
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Proof. We define 𝐹1 ≔ 𝐸 (G) \𝐸 (𝜓 ) and 𝐹2 ≔ 𝐸 (𝜓 ) \𝐸 (G). We need to show that |𝐹1 | ∈ 𝑜 (𝑛𝑟 2)
and |𝐹2 | ∈ 𝑜 (𝑛𝑟 2). We start with the first goal. We note that for any 𝑖 ≠ 𝑗 and 𝑡 ∈ (0, 1):

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

��𝑊𝑖 ,𝑊𝑗 > 1 − 𝑡
)
= ℙ

(
𝑟
√︁
𝑊𝑖𝑊𝑗 < 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝑟

���𝑊𝑖 ,𝑊𝑗 > 1 − 𝑡

)
= ℙ

(
𝑟
√︁
(1 − 𝑡) (1 − 𝑡) < 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝑟

���𝑊𝑖 ,𝑊𝑗 > 1 − 𝑡

)
=
𝜋𝑟 2

𝑛
− 𝜋𝑟 2(1 − 𝑡)

𝑛
=
𝜋𝑟 2𝑡

𝑛
(6.11)

Furthermore,

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

��𝑊𝑖 ≤ 1 − 𝑡 ∨𝑊𝑗 ≤ 1 − 𝑡
)
= ℙ

(
𝑟
√︁
𝑊𝑖𝑊𝑗 < 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝑟

���𝑊𝑖 ≤ 1 − 𝑡 ∨𝑊𝑗 ≤ 1 − 𝑡

)
≤ ℙ

(
𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≤ 𝑟

��𝑊𝑖 ≤ 1 − 𝑡 ∨𝑊𝑗 ≤ 1 − 𝑡
)

=
𝜋𝑟 2

𝑛
. (6.12)

Since 𝜎2 ≔ Var (𝑊𝑖) ∈ 𝑜 (1), there exist 𝑠 ∈ 𝑜 (1) ∩ 𝜔 (𝜎). By Chebychev’s inequality, it

follows that

ℙ ( |1 −𝑊𝑖 | ≥ 𝑠) ≤ 𝜎2

𝑠2
∈ 𝑜 (1).

This implies

ℙ (𝑊𝑖 ≤ 1 − 𝑠) ∈ 𝑜 (1) and ℙ (𝑊𝑖 ≥ 1 + 𝑠) ∈ 𝑜 (1).

Now, for all 𝑖 ≠ 𝑗 ,

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

)
=

≤𝜋𝑟 2𝑠/𝑛=𝜋𝑟 2𝑜 (1)/𝑛 (by Inequality 6.11)︷                                    ︸︸                                    ︷
ℙ

(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

��𝑊𝑖 ,𝑊𝑗 > 1 − 𝑠
) ≤1︷                 ︸︸                 ︷
ℙ

(
𝑊𝑖 ,𝑊𝑗 > 1 − 𝑠

)
+ ℙ

(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

��𝑊𝑖 ≤ 1 − 𝑠 ∨𝑊𝑗 ≤ 1 − 𝑠
)︸                                                  ︷︷                                                  ︸

≤𝜋𝑟 2/𝑛 (by Inequality 6.12)

ℙ
(
𝑊𝑖 ≤ 1 − 𝑠 ∨𝑊𝑗 ≤ 1 − 𝑠

)︸                               ︷︷                               ︸
≤ℙ(𝑊𝑖≤1−𝑠 )+ℙ(𝑊𝑖≤1−𝑠 ) ∈𝑜 (1)

≤ 𝜋𝑟 2𝑜 (1) + 𝜋𝑟 2𝑜 (1) ∈ 𝑜 (𝑟 2/𝑛).

We now find an upper bound for 𝔼 [|𝐹1 |]:

𝔼 [|𝐹1 |] =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹1

)
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑜 (𝑟 2/𝑛)

≤ 𝑛2𝑜 (𝑟 2/𝑛) = 𝑜 (𝑛𝑟 2).

Hence, we can choose 𝑠′ ∈ 𝑜 (𝑛𝑟 2) ∩ 𝜔 (𝔼 [|𝐹1 |]) and apply Markov’s inequality, to show that

ℙ ( |𝐹1 | ≥ 𝑠′) ≤ 𝔼 [|𝐹1 |]
𝑠′

∈ 𝑜 (1) .

Thus, |𝐹1 | < 𝑠′ ∈ 𝑜 (𝑛𝑟 2) w.h.p.
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We can proceed almost analogously to show |𝐹2 | ∈ 𝑜 (𝑛𝑟 2). We will not go into detail here.

However, we note that in this case the proof of the equivalent to Inequality 6.12 uses that

𝑊𝑖 < 𝑐 deterministically:

ℙ
(
{𝑋𝑖 , 𝑋 𝑗 } ∈ 𝐹2

��𝑊𝑖 ≥ 1 + 𝑡 ∨𝑊𝑗 ≥ 1 + 𝑡
)
= ℙ

(
𝑟
√︁
𝑊𝑖𝑊𝑗 > 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≥ 𝑟

���𝑊𝑖 ≥ 1 + 𝑡 ∨𝑊𝑗 ≥ 1 + 𝑡

)
≤ ℙ

(
𝑟
√
𝑐2 > 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) ≥ 𝑟

���𝑊𝑖 ≥ 1 + 𝑡 ∨𝑊𝑗 ≥ 1 + 𝑡

)
=
𝜋𝑟 2𝑐

𝑛
− 𝜋𝑟 2

𝑛
∈ O(𝜋𝑟 2/𝑛) .

We have shown that if the requirements of Theorem 6.10 are met, then there exists an

toroidal weighted embedding of GT with weights𝑊1, . . . ,𝑊𝑛 with error (𝑜 (𝑟 2𝑛), 𝑜 (𝑟 2𝑛)). The
reason, we call this error sublinear is, because

𝔼 [𝐸 (GT)] =
1

2

𝑛∑︁
𝑖=1

𝔼 [deg𝑋𝑖] =
1

2

𝑛(𝑛 − 1)𝜋𝑟
2

𝑛
∈ Θ(𝑟 2𝑛) .

We note that Theorem 6.10 only can be applied, if𝑊𝑖 and𝑊𝑗 are independent of 𝑑T(𝑋𝑖 , 𝑋 𝑗 )
for all 𝑖, 𝑗 . This might seem like a strong requirement, and it is. However, we note that it

seems like𝑊𝑖 𝑊𝑗 is, in some sense, almost independent of 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) for many natural weight

assignments𝑊1, . . . ,𝑊𝑛 . For instance, if we set𝑊𝑖 ≔ deg𝑋𝑖 , then knowing what 𝑑T(𝑋𝑖 , 𝑋 𝑗 )
is, seems to gives very little information about deg𝑋𝑖 and deg𝑋 𝑗 : Knowing 𝑑T(𝑋𝑖 , 𝑋 𝑗 ) gives
information about whether 𝑋𝑖 and 𝑋 𝑗 are adjacent, but not whether any third vertex 𝑋ℓ is

adjacent to 𝑋𝑖 . A similar behavior seems to be the case for𝑊𝑖 ≔ hop𝑘 (𝑋𝑖). We were not

able to formalize this intuition of almost independence yet and not able to formulate a more

general version of Theorem 6.10. In it’s current form, Theorem 6.10 is not applicable on any

reasonable weight assignment that is calculated based on properties of GT. However, Theorem
6.10 shows that𝑊𝑖 having a low variance is a property that is highly relevant for finding

embeddings of GT.
For that reason, we will now compare the variance of deg𝑋𝑖 and hop𝑘 (𝑋𝑖). We begin with

𝑊𝑖 = deg𝑋𝑖 . Since𝑊𝑖 and𝑊𝑗 are identically distributed for all 𝑖, 𝑗 , it suffices to only calculate

Var (deg𝑋1). For 𝑖 ≠ 1, we define the Bernoulli variable 𝐿𝑖 = 𝟙{{𝑋𝑖 ,𝑋1}∈𝐸 (GT ) } . Above, we have

remarked that ℙ (𝐿𝑖 = 1) = 𝜋𝑟 2

𝑛
and thus,

Var (𝐿𝑖) = ℙ (𝐿𝑖 = 1) − ℙ (𝐿𝑖 = 1)2 ≤ ℙ (𝐿𝑖 = 1) = 𝜋𝑟 2

𝑛
.

Since 𝐿𝑖 and 𝐿 𝑗 are independent for 𝑖 ≠ 𝑗 , we have shown that

Var (deg𝑋1) = Var

(
𝑛∑︁
𝑖=2

𝐿𝑖

)
=

𝑛∑︁
𝑖=2

Var (𝐿𝑖) ≤ (𝑛 − 1)𝜋𝑟
2

𝑛
∈ O(𝑟 2) .

Comparing variances (in the context of Theorem 6.10) is only relevant, if 𝔼 [𝑊𝑖] = 1,

however, as mentioned further above, 𝔼 [deg𝑋1] ∈ Θ(𝑟 2). This can be easily fixed, as we can

rescale deg𝑋𝑖 and instead consider

𝑊𝑖 ≔
deg𝑋𝑖

𝔼 [deg𝑋𝑖]
.
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We note that 𝔼 [𝑊1] = 1 and that if the weights𝑊𝑖 yield an embedding with error (𝑠fn, 𝑠fp),
then so does deg𝑋𝑖 . We can now consider the variance of𝑊1,

Var (𝑊1) = Var

(
deg𝑋1

𝔼 [deg𝑋𝑖]

)
=
Var (deg𝑋1)
𝔼 [deg𝑋𝑖]2

=
O(𝑟 2)
Θ(𝑟 2)2

= O(1/𝑟 2), (6.13)

which is in 𝑜 (1), if 𝑟 ∈ 𝜔 (1).
We now consider the variance of the 𝑘-hop centrality hop𝑘 (𝑋𝑖) on GT. In the previous

sections, we considered the case 𝑘 =
⌈

diam𝐺
2

⌉
. As the calculations get complicated if 𝑘 is also

a random variable that depends on GT, we will instead consider the case that 𝑘 = 𝜆
√
𝑛

𝑟
for

some constant 0 < 𝜆 ≤ 1

2
. This choice of 𝑘 is motivated by the fact that diamG ∈ Θ(

√
𝑛/𝑟 )

w.h.p. [DMPP14]. We also note, that we only consider values of 𝑟 for which 𝑟 ∈ 𝜔 (𝑟𝑐), where
𝑟𝑐 =

√︁
log𝑛 is the connectivity threshold of GT, i.e., for all 𝑟 ∈ 𝜔 (𝑟𝑐), the graph GT is connected

w.h.p. and disconnected w.h.p. if 𝑟 ∈ 𝑜 (𝑟𝑐).
For any 𝑋𝑖 ∈ 𝑉 (GT(𝑛, 𝑟 )), we denote the 𝑘-hop centrality of 𝑋𝑖 as 𝐻𝑖 . The goal of the

remainder of this subsection is to show that Var (𝐻𝑖) ∈ 𝑜 (𝑛2) for all 𝑖 . Since 𝐻𝑖 and 𝐻 𝑗 have

identical distributions for all 𝑖, 𝑗 , it suffices to show Var (𝐻1) ∈ 𝑜 (𝑛2). To prove this, we define
the random variable 𝑁𝑖 = 𝟙{𝑋𝑖 ∈Hop𝑘 (𝑋1 ) } = 𝟙{distG

T
(𝑋1,𝑋𝑖 )≤𝑘 } for each 𝑖 ∈ {1, . . . , 𝑛}.

The following Lemma by Diaz et al. about the relation between graph and toroidal distance

will be very helpful:

Lemma 6.11 (Theorem 1.1(ii) and Remark 1.1(iv) in [DMPP14]): If 𝑟 ∈ 𝜔 (𝑟𝑐), then w.h.p., for
all 𝑖, 𝑗 ,

distGT (𝑋𝑖 , 𝑋 𝑗 ) ≤ distG (𝑋𝑖 , 𝑋 𝑗 ) ≤
⌈
𝑑T(𝑋𝑖 , 𝑋 𝑗 )

𝑟
(1 + 𝑜 (1))

⌉
.

We define the event

𝐸 ≔

{
For all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, distGT

(𝑋𝑖 , 𝑋 𝑗 ) ≤
⌈
𝑑T(𝑋𝑖 , 𝑋 𝑗 )

𝑟
(1 + 𝑜 (1))

⌉}
. (6.14)

and note that by Lemma 6.11, 𝐸 holds with high probability. Thus, ℙ (¬𝐸) ∈ 𝑜 (1). Note that
for any event 𝐴 with ℙ (𝐴) ∈ Θ(1),

ℙ (𝐸 |𝐴) = ℙ (𝐴, 𝐸)
ℙ (𝐴) =

ℙ (𝐴) − ℙ (𝐴,¬𝐸)
ℙ (𝐴) = 1 − ℙ (𝐴,¬𝐸)

ℙ (𝐴) ≥ 1 − ℙ (¬𝐸)
ℙ (𝐴) = 1 − 𝑜 (1). (6.15)

Furthermore, observe that

𝐻1 =

𝑛∑︁
𝑖=1

𝑁𝑖

and thus

Var (𝐻1) =
𝑛∑︁
𝑖=1

Var (𝑁𝑖) +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

Cov

(
𝑁𝑖 , 𝑁 𝑗

)
.

Hence, we are interested in finding an upper bound for Cov

(
𝑁𝑖 , 𝑁 𝑗

)
. We first state some,

more general, facts about the distribution of 𝑁𝑖 .

Lemma 6.12: For all 𝑖 ∈ {1, . . . , 𝑛},

ℙ (𝑁𝑖 = 1, 𝑑T(𝑋𝑖 , 𝑋1) > 𝑟𝑘) = 0

and

ℙ

(
𝑁𝑖 = 1

����𝑑T(𝑋𝑖 , 𝑋1) ≤
𝑟𝑘

1 + 𝑜 (1) , 𝐸
)
= 1.
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Figure 6.6.: Illustration of the radii 𝜌1 and 𝜌2. The result of this section heavily relies on the

fact that w.h.p. all vertices in the inner disk (green) are contained in Hop𝑘 (𝑋1), no vertex

outside the outer disk (white) is contained in Hop𝑘 (𝑋1) and only very few vertices are in the

area between the two circles (blue).

Proof. If 𝑁𝑖 = 1, then there exist points 𝑋1 = 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑘 = 𝑋𝑖 with 𝑑T(𝑦 𝑗 , 𝑦 𝑗−1) ≤ 𝑟 for

all 𝑗 ∈ {1, . . . , 𝑘}. Applying the triangle inequality yields

𝑑T(𝑋𝑖 , 𝑋1) ≤
𝑘∑︁
𝑗=1

𝑑T(𝑦 𝑗 , 𝑦 𝑗−1)︸        ︷︷        ︸
≤𝑟

≤ 𝑘𝑟 .

Thus, the event {𝑁𝑖 = 1} ∩ {𝑑T𝑋𝑖 − 𝑋1 > 𝑟𝑘} = ∅ does not occur, which implies the first part

of the lemma.

If 𝐸 and 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝑟𝑘
1+𝑜 (1) hold, then

distGT
(𝑋𝑖 , 𝑋1) ≤

⌈
𝑑T(𝑋𝑖 , 𝑋1)

𝑟
(1 + 𝑜 (1))

⌉
≤

⌈
𝑟𝑘

1+𝑜 (1)
𝑟

(1 + 𝑜 (1))
⌉
= 𝑘

deterministically and thus, 𝑁𝑖 = 1. This proves the second part of the lemma.

This motivates us to define 𝜌1 =
𝑟𝑘

1+𝑜 (1) = 𝑟𝑘 (1 − 𝑜 (1)) and 𝜌2 = 𝑟𝑘 . We note that

ℙ (𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1) =
𝜋𝜌2

1

𝑛
=
𝜋𝑟 2𝑘2(1 − 𝑜 (1))

𝑛
= 𝜋𝜆2(1 − 𝑜 (1)) ∈ Θ(1) (6.16)

ℙ (𝜌1 < 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2) =
𝜋𝜌2

2
− 𝜋𝜌2

1

𝑛
=
𝜋 (𝑟 2𝑘2 − 𝑟 2𝑘2(1 − 𝑜 (1)))

𝑛

=
𝜋𝑟 2𝑘2𝑜 (1)

𝑛
= 𝜋𝜆2𝑜 (1) = 𝑜 (𝜋𝜆2) = 𝑜 (1) (6.17)

ℙ (𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2) =
𝜋𝜌2

2

𝑛
=
𝜋𝑟 2𝑘2

𝑛
= 𝜋𝜆2 ∈ Θ(1) . (6.18)

As a consequence

ℙ (𝑁𝑖 = 1) ≥ ℙ (𝑁𝑖 = 1, 𝐸, 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1)
= ℙ (𝑁𝑖 = 1|𝐸,𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1)︸                                ︷︷                                ︸

=1, by Lemma 6.12

ℙ (𝐸 |𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1)︸                      ︷︷                      ︸
=1−𝑜 (1) by Inequality 6.15

ℙ (𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1)︸                   ︷︷                   ︸
=𝜋𝜆2 (1−𝑜 (1) ), by Equation 6.16

≥ 𝜋𝜆2(1 − 𝑜 (1))2 = 𝜋𝜆2(1 − 𝑜 (1)) = 𝜋𝜆2 − 𝑜 (1) (6.19)
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and

ℙ (𝑁𝑖 = 1) = ℙ (𝑁𝑖 = 1, 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2) + ℙ (𝑁𝑖 = 1, 𝑑T(𝑋𝑖 , 𝑋1) > 𝜌2)︸                             ︷︷                             ︸
=0 by Lemma 6.12

≤ ℙ (𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2) = 𝜋𝜆2
(6.20)

for all 𝑖 ∈ {2, . . . , 𝑛}.
These observations allows us to calculate the covariance of 𝑁𝑖 and 𝑁 𝑗 for 𝑖 ≠ 𝑗 .

Lemma 6.13: For all 1 ≠ 𝑖 ≠ 𝑗 ≠ 1, Cov
(
𝑁𝑖 , 𝑁 𝑗

)
≤ 𝑜 (1).

Proof. By the definition of covariance

Cov

(
𝑁𝑖 , 𝑁 𝑗

)
= 𝔼

[
𝑁𝑖𝑁 𝑗

]
− 𝔼 [𝑁𝑖] 𝔼

[
𝑁 𝑗

]
= ℙ

(
𝑁𝑖 = 𝑁 𝑗 = 1

)
− ℙ (𝑁𝑖 = 1)2 . (6.21)

By law of total probability and union bound (verify that all cases are considered), we observe

that

ℙ
(
𝑁𝑖 = 𝑁 𝑗 = 1

)
≤ ℙ

(
𝑁𝑖 = 𝑁 𝑗 = 1,¬𝐸

)
+ 2ℙ

(
𝑁𝑖 = 𝑁 𝑗 = 1, 𝜌1 ≤ 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2, 𝐸

)
+ 2ℙ

(
𝑁𝑖 = 𝑁 𝑗 = 1, 𝑑T(𝑋𝑖 , 𝑋1) > 𝜌2, 𝐸

)
+ ℙ

(
𝑁𝑖 = 𝑁 𝑗 = 1, 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1, 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1, 𝐸

)
We evaluate these four terms separately. For the first term,

ℙ
(
𝑁𝑖 = 𝑁 𝑗 = 1,¬𝐸

)
≤ ℙ (¬𝐸) ∈ 𝑜 (1)

holds. For the second term, we use Equation 6.17, to show that

ℙ
(
𝑁𝑖 = 𝑁 𝑗 = 1, 𝜌1 ≤ 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2, 𝐸

)
≤ ℙ (𝜌1 ≤ 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌2) ∈ 𝑜 (1) .

The third term is equal to 0 by Lemma 6.12 and the fourth term can be bound from above by

ℙ (𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1, 𝑑T(𝑋𝑖 , 𝑋1) ≤ 𝜌1) ,

which, by Equation 6.16 and the independence of 𝑑T(𝑋𝑖 , 𝑋1) and 𝑑T(𝑋 𝑗 , 𝑋1), is equal to(
𝜋𝜆2(1 − 𝑜 (1))

)
2

= 𝜋2𝜆4(1 − 𝑜 (1)) .

So

ℙ
(
𝑁𝑖 = 𝑁 𝑗 = 1

)
≤ 𝑜 (1) + 𝑜 (1) + 0 + 𝜋2𝜆4(1 − 𝑜 (1)) = 𝜋2𝜆4 ± 𝑜 (1) .

Inserting this, together with Inequality 6.19, into Equation 6.21, yields

Cov

(
𝑁𝑖 , 𝑁 𝑗

)
≤ 𝜋2𝜆4 + 𝑜 (1) − (𝜋𝜆2 − 𝑜 (1))2

= 𝜋2𝜆4 + 𝑜 (1) − (𝜋2𝜆4 − 𝑜 (1)) = ±𝑜 (1) ≤ 𝑜 (1) .
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6.3. Unit Disk Graphs

We are now able to estimate the variance and the expected value of 𝐻𝑖 (see next two

lemmata):

Lemma 6.14: For all ℓ ∈ {1, . . . , 𝑛}, Var (𝐻ℓ ) ∈ 𝑜 (𝑛2)

Proof. We note that for all 𝑖 ∈ {1, . . . , 𝑛},

Var (𝑁𝑖) = 𝔼
[
𝑁 2

𝑖

]︸  ︷︷  ︸
≤1

−𝔼 [𝑁𝑖]2︸  ︷︷  ︸
≥0

≤ 1

holds and that𝑁1 = 1 deterministically (every vertex is always in it’s own𝑘-hop neighborhood)

and thus,

Cov (𝑁1, 𝑁𝑖) = 𝔼[ 𝑁1︸︷︷︸
=1

𝑁𝑖] − 𝔼 [𝑁1]︸ ︷︷ ︸
=1

𝔼 [𝑁𝑖] = 0.

By these observations and Lemma 6.13, it follows that

Var (𝐻ℓ ) = Var (𝐻1) =
𝑛∑︁
𝑖=1

Var (𝑁𝑖)︸   ︷︷   ︸
≤1

+
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

Cov

(
𝑁𝑖 , 𝑁 𝑗

)︸         ︷︷         ︸
≤𝑜 (1) or =0

≤ 𝑛 · 1 + 𝑛2𝑜 (1) = 𝑛 + 𝑜 (𝑛2) = 𝑜 (𝑛2) .

Lemma 6.15: For all ℓ ∈ {1, . . . , 𝑛}, 𝔼 [𝐻ℓ ] ∈ Θ(𝑛)

Proof. By Equations 6.19 and 6.20, it follows that

Θ(1) ∋ 𝜋𝜆2 − 𝑜 (1) ≤ ℙ
(
𝑁 𝑗 = 1

)
≤ 𝜋𝜆2 ∈ Θ(1)

and thus ℙ
(
𝑁 𝑗 = 1

)
∈ Θ(1) for all 𝑗 ∈ {2, . . . , 𝑛}. Now

𝔼 [𝐻ℓ ] = 𝔼 [𝐻1] =
𝑛∑︁
𝑗=1

𝔼
[
𝑁 𝑗

]
= 𝑛Θ(1) = Θ(𝑛) .

As for the degree centrality, we note that 𝔼 [𝐻𝑖] ≠ 1. To allow comparison, we consider

the normalized 𝑘-hop centrality𝑊𝑖 ≔
𝐻𝑖

𝔼[𝐻𝑖 ] . Note that 𝔼 [𝑊𝑖] = 1 and

Var (𝑊𝑖) =
Var (𝐻𝑖)
𝔼 [𝐻𝑖]

=
𝑜 (𝑛2)
Θ(𝑛)2

= 𝑜 (1) .

In summary, we have shown that if 0 < 𝜆 ≤ 1

2
is constant, 𝑘 = 𝜆

√
𝑛

𝑟
and 𝑟 ∈ 𝜔 (𝑟𝑐), then the

variance of the normalized 𝑘-hop centrality of a vertex in GT(𝑛, 𝑟 ) is in 𝑜 (1). Similarly, we

have shown that the normalized degree centrality of a vertex in GT(𝑛, 𝑟 ) has variance O(1/𝑟 2)
(see Equation 6.13). The last expression is equal to 𝑜 (1/log𝑛), if 𝑟 ∈ 𝜔 (𝑟𝑐) = 𝜔 (

√︁
log𝑛). We

can note that the latter bound 𝑜 (1/log𝑛) is smaller then the bound 𝑜 (1) for the variance of
the normalized 𝑘-hop centrality. However, we remark that the upper bound 𝑜 (1) might be

further decreased by a deeper analysis. We also remark that 𝑜 (1/log𝑛) and 𝑜 (1) are very
similar bounds.
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6. Challenges of 𝑘-Hop Centrality

Additionally, we note that we only considered the toroidal RGG GT. For the degree centrality,
the boundary effects on the normal RGG G make the analysis a little harder for vertices near

the boundary of D. For the 𝑘-hop centrality, the boundary effects not only make the analysis

much harder, but also affect much more vertices. It seems likely that no 2-dimensional

weighted embedding of G with weights hop𝑘 (·) and sublinear error exists.

In this section, we were unable to establish definitive evidence for the superiority of

degree centrality over 𝑘-hop centrality as a weight assignment. However, we discussed some

indicative observations supporting this notion. We also note that it remains possible that

neither of the two centrality measures is well-suited for the graphs GT and G.
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7. Conclusion

In this thesis, we have established several theoretical results on weighted embeddings. In

Chapter 3, we presented multiple theorems that provide a clearer understanding of the

structure and properties of weighted embeddings of trees. Additionally, we have gained some

insights into the properties of weighted embeddings of grids.

Building on those insights, we proposed an alternative to assigning the weight of a vertex

in an embedding based on it’s degree - the (smooth) 𝑘-hop centrality: We assign the weight

𝑤𝜈 of a vertex 𝜈 ∈ 𝑉 (𝐺) to

𝑤𝜈 ≔ (s-hop(𝜈))𝛽

≔

(����{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈) ≤
⌈
diam𝐺

2

⌉
}
���� · ����{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝜈) ≤

⌈
diam𝐺

2

⌉
+ 1}

����)𝛽
for a constant 𝛽 ≥ 4/𝑑 (compare Definition 5.5).

We proceeded by analyzing the quality of weighted embeddings with weights (s-hop(·))𝛽
and compared it to embeddings with weights deg(·)𝛽 . Table 7.1 gives an overview of this

comparison.

In particular, using 𝑘-hop centrality outperforms degree-based weighting on complete trees

and yields comparable results on grids. The analysis on arbitrary graphs and grid graphs

was inconclusive: For both weight assignment methods, there exist graphs that can not

be embedded under some conditions. However, particularly on grid graphs it seems like

counterexamples for the 𝑘-hop centrality are much rarer as ones for degree-based weights.

For RGGs it seems as degree-based weights are more suitable than 𝑘-hop based weights,

however no conclusive evidence for this claim was found.

In summary, our modification appears to yield embeddings that are at least as good as, if not

better than, those obtained with degree-based weights across all graph classes we considered,

except RGGs. However, we have not examined geometric inhomogeneous random graphs

(GIRGs) or real-world networks, where degree-based weights have been shown to perform

well in experiments [BHKM24]. Whether replacing the first step of the WEmbed algorithm

with a 𝑘-hop-based weight assignment is beneficial depends on how well it performs on

these two graph classes. Therefore, experimental research in this direction would be highly

valuable.

Another caveat to keep in mind is that all our results assume that, given the right weights,

the embedding positions can be determined effortlessly. However, in practice, WEmbed relies

on gradient descent to optimize the positions, and it is not guaranteed to always succeed.

Analyzing whether it does is an interesting problem. This question is particularly relevant for

embeddings of grids, as the proof of Theorem 4.4 carefully partitions the graph into multiple

subgraphs and embeds them separately. It seems unlikely that a machine learning algorithm

could replicate this process.

Furthermore, we note that we used trees as the example for a graph with a homogeneous

degree distribution that cannot be embeddedwith homogeneous weights. However, hyperbolic

tilings are another class of graphs with that property. As they can be trivially embedded in
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7. Conclusion

Table 7.1.: Comparison of the existence of weighted embeddings with weights set to degree

centrality (deg𝜈)𝛽 or (smooth) 𝑘-hop centrality s-hop(𝜈)𝛽 on different classes of graphs, for

sufficiently large instances and sufficiently large 𝛽 .

Degree centrality (deg𝜈)𝛽 (Smooth) 𝑘-hop centrality

s-hop(𝜈)𝛽

Complete trees No embedding with sublinear

error for all graphs (Variant of

Corollary 3.2)

Perfect 1-dimensional

embeddings (Theorem 5.4)

Grids 2-dimensional embeddings with

total error Θ(
√
𝑛) (Corollary 4.5)

2-dimensional embeddings with

total error Θ(
√
𝑛) (Section 5.2)

Arbitrary trees See complete trees above Graph exists with no embedding

with sublinear error (Theorem

6.3)

Grid graphs (in-

duced subgraphs of

grids)

Simple/basic graph exists with

no embedding with sublinear

error (Theorem 6.9)

Complex graph exists with no

embedding with sublinear error

(Theorem 6.7)

GIRGs and real-

world networks

Low-dimensional embeddings of

high quality (empirically)

[BHKM24]

Unknown

the hyperbolic space it seems likely that they can also be perfectly embedded in a weighted

setting. Nevertheless, we were unable to find such embeddings for hyperbolic tilings. Whether

such embeddings exist, and whether using 𝑘-hop-based weights can yield them, remains an

open question.

On another vein, we note that calculating the 𝑘-hop neighborhood of all vertices in a graph

using Breadth-First Search or Depth-First Search has time complexity Θ(𝑛𝑚 +𝑛2). This can be

computational infeasible for big real-world graphs. Hence, it might be useful to have a weight

assignment that can be calculated more easily, but behaves similar to the 𝑘-hop centrality.

Lastly, in Section 6.1 we identified a tree for which no suitable embedding with 𝑘-hop-

based weights exists. The proof relied on the fact that this tree had a highly ‘path-like’

structure (caterpillar). It would be interesting to investigate whether there exists another

counterexample that is more ‘tree-like’ or whether a positive result can be found for ‘tree-like’

trees. In either case, it remains true that not all trees can be embedded with 𝑘-hop-based

weights, nor can all trees be embedded with degree-based weights. As discussed at the end of

Section 6.1, it seems promising to find a middle ground between these two approaches, e.g.,

by considering an weight assignment that depends on hop𝑘 (·) for all 𝑘 ∈ {1, 2, . . . , diam𝐺}.
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A. Appendix

A.1. Proof of Lemma 4.1

Lemma A.1 (Lemma 4.1): For all 𝑎 ∈ ℕ+, there exists a perfect 1-dimensional weighted embed-
ding of the grid Γ𝑎,2.

Proof. We show that 𝜓 = (𝑝𝜈 ,𝑤𝜈 )𝜈∈𝑉 (Γ𝑎,2 ) , with 𝑤 (𝑥,𝑦) ≔ 2
−𝑥

and 𝑝 (𝑥,𝑦) ≔ (−1)𝑦2
−2𝑥−1

for

all (𝑥,𝑦) ∈ 𝑉 (Γ𝑎,2), is a perfect 1-dimensional weighted embedding of Γ𝑎,2. See Figure 4.1 for
an illustration of𝜓 .

Let {(𝑥1, 𝑦1), (𝑥2, 𝑦2)} ∈ 𝐸 (Γ𝑎,2), W.l.o.g. 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2. Now, either 𝑥1 = 𝑥2, 𝑦1 =

0, 𝑦2 = 1 or 𝑥2 = 𝑥1 + 1, 𝑦1 = 𝑦2 holds. In the former case follows

dist(𝜓 (𝑥1,0) ,𝜓 (𝑥1,1) ) =
2
−2𝑥1−1 − (−2

−2𝑥1−1)
2
−𝑥12

−𝑥1

= 1.

In the second case follows

dist(𝜓 (𝑥1,𝑦1 ) ,𝜓 (𝑥1+1,𝑦1 ) ) =
2
−2(𝑥1+1)−1 − 2

−2𝑥1−1

2
−𝑥12

−𝑥1−1
≤ 2

−2𝑥1 − 2
−2𝑥1−1

2
−2𝑥1−1

= 1.

Now let (𝑥1, 𝑦2), (𝑥2, 𝑦2) ∈ 𝑉 (Γ𝑎,2), with {(𝑥1, 𝑦2), (𝑥2, 𝑦2)} ∉ 𝐸 (Γ𝑎,2). W.l.o.g. assume 𝑥1 ≤ 𝑥2

and 𝑦1 ≤ 𝑦2. Now, either 𝑦1 ≠ 𝑦2, 𝑥2 ≥ 𝑥1 + 1 or 𝑦1 = 𝑦2, 𝑥2 ≥ 𝑥1 + 2. In the first case

dist(𝜓 (𝑥1,0) ,𝜓 (𝑥2,1) ) =
2
−2𝑥1−1 −

<0︷       ︸︸       ︷
(−2

−2𝑥2−1)
2
−𝑥12

−𝑥2

>
2
−2𝑥1−1

2
−𝑥12

−(𝑥1+1) = 1

holds and in the second case follows

dist(𝜓 (𝑥1,𝑦1 ) ,𝜓 (𝑥2,𝑦1 ) ) =

>2
−2𝑥

1
−2︷                ︸︸                ︷

2
−2𝑥1−1 − 2

−2𝑥2−1

2
−𝑥1 2

−𝑥2︸︷︷︸
≤2

−(𝑥
2
+2)

>
2
−2𝑥1−2

2
−2𝑥1−2

= 1.

For the last inequality, we used

2
−2𝑥1−1 − 2

−2𝑥2−1 ≥ 2
−2𝑥1−1 − 2

−2(𝑥1+1)−1 > 2 · 2
−2𝑥1−2 − 2

−2𝑥1−2 = 2
−2𝑥1−2.

Thus, we have shown that𝜓 is perfect.

A.2. Proof of Lemma 5.3

Lemma A.2 (Lemma 5.3): For all ℎ > 𝑖 ≥ 0 and 𝑏 ≥ 2,

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

≥
{

23

20
if 𝑏 = 2

1

2
𝑏 if 𝑏 ≥ 3

holds.
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A. Appendix

Proof. We will use Lemma 5.2 multiple times in this proof. Furthermore, we will use that

−ℎ + 𝑖 ≤ −1 follows from 𝑖 < ℎ.

We will show the claim for 𝑖 = 0 first:

s-hop(𝜈0)
s-hop(𝜈1)

=
hopℎ (𝜈0)
hopℎ (𝜈1)

=
𝑏ℎ−0/2(𝑏 + 1) − 𝑏ℎ−0 − 1

2𝑏ℎ−(1−1)/2 − 𝑏ℎ−1 − 1

=
𝑏ℎ (𝑏 + 1) − 𝑏ℎ − 1

2𝑏ℎ − 𝑏ℎ−1 − 1

=
𝑏ℎ+1 − 1

2𝑏ℎ − 𝑏ℎ−1 − 1

=
𝑏2𝑥 − 1

2𝑏𝑥 − 𝑥 − 1︸        ︷︷        ︸
𝑔 (𝑥 )≔

Here, we defined 𝑥 ≔ 𝑏ℎ−1
. We observe that for all 𝑥 ≥ 1

𝑑

𝑑𝑥
𝑔(𝑥) = 𝑏2(2𝑏𝑥 − 𝑥 − 1) − (𝑏2𝑥 − 1) (2𝑏 − 1)

2𝑏𝑥 − 𝑥 − 1

=
2𝑏3𝑥 − 𝑏2𝑥 − 𝑏2 − 2𝑏3𝑥 + 𝑏2𝑥 + 2𝑏 − 1

2𝑏𝑥 − 𝑥 − 1

=
−𝑏2 + 2𝑏 − 1

2𝑏𝑥 − 𝑥 − 1

< 0.

Thus 𝑔 is monotonically decreasing (for 𝑥 ≥ 1) and

s-hop(𝜈0)
s-hop(𝜈1)

= 𝑔(𝑏ℎ−1) ≥ lim

𝑥→∞
𝑔(𝑥) = lim

𝑥→∞
𝑏2𝑥 − 1

2𝑏𝑥 − 𝑥 − 1

= lim

𝑥→∞
𝑥 (𝑏2 − 𝑥−1)

𝑥 (2𝑏 − 1 − 𝑥−1)) = lim

𝑥→∞
𝑏2 − 𝑥−1

2𝑏 − 1 − 𝑥−1)

=
𝑏2

2𝑏 − 1

≥
{

4

3
≥ 23

20
if 𝑏 = 2

𝑏2

2𝑏
= 𝑏

2
if 𝑏 ≥ 3

.

We now show the claim for all even 𝑖 ≥ 2 (in that case 𝑖 − 1 and 𝑖 + 1 are odd):

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

=
hopℎ (𝜈𝑖−1)
hopℎ (𝜈𝑖+1)

=
2𝑏ℎ−(𝑖−1−1)/2 − 𝑏ℎ−(𝑖−1) − 1

2𝑏ℎ−(𝑖+1−1)/2 − 𝑏ℎ−(𝑖+1) − 1

=
2𝑏ℎ−𝑖/2+1 − 𝑏ℎ−𝑖+1 − 1

2𝑏ℎ−𝑖/2 − 𝑏ℎ−𝑖−1 − 1

=
𝑏ℎ−𝑖/2+1

(
2 − 𝑏−𝑖/2 − 𝑏−ℎ+𝑖/2−1

)
𝑏ℎ−𝑖/2+1

(
2𝑏−1 − 𝑏−𝑖/2−2 − 𝑏−ℎ+𝑖/2−1

)
=

2

𝐵︸︷︷︸
𝐶0≔

− 𝑏−𝑖/2

𝐵︸︷︷︸
𝐶1≔

− 𝑏−ℎ+𝑖/2−1

𝐵︸     ︷︷     ︸
𝐶2≔

.

Here, we set 𝐵 ≔ 2𝑏−1 − 𝑏−𝑖/2−2 − 𝑏−ℎ+𝑖/2−1
. Now,

𝐶0 ≥ 2

2𝑏−1
= 𝑏,

𝐶1 =
1

2𝑏𝑖/2−1 − 𝑏−2 − 𝑏−ℎ+𝑖−1

≤ 1

2𝑏2/2−1 − 𝑏−2 − 𝑏−1−1

=
1

2 − 2𝑏−2
≤ 1

2 − 2 · 2
−2

=
2

3

and

𝐶2 =
𝑏−ℎ+𝑖/2−1

𝐵
≤ 𝑏−(𝑖+1)+𝑖/2−1

𝐵
= 𝑏−2

𝑏−𝑖/2

𝐵︸︷︷︸
𝐶1

≤ 2𝑏−2

3

.
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A.2. Proof of Lemma 5.3

Thus,

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

≥ 𝑏 − 2

3

− 2𝑏−2

3

= 𝑏 − 𝑏

©­­­­­­«
2𝑏−1

3

+ 2𝑏−3

3︸          ︷︷          ︸
≤ 1

3
+ 1/4

3
= 5

12

ª®®®®®®¬
≥ 7

12

𝑏 ≥ 1

2

𝑏.

In the case 𝑏 = 2, we observe that
7

12
𝑏 = 7

6
≥ 23

20
.

We will now show the claim for all odd 𝑖 in a very similar way. Again, by Lemma 5.2 (𝑖 − 1

and 𝑖 + 1 are even and 𝑖 ≥ 1),

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

=
hopℎ (𝜈𝑖−1)
hopℎ (𝜈𝑖+1)

=
𝑏ℎ−(𝑖−1)/2(𝑏 + 1) − 𝑏ℎ−(𝑖−1) − 1

𝑏ℎ−(𝑖+1)/2(𝑏 + 1) − 𝑏ℎ−(𝑖+1) − 1

=
𝑏ℎ−𝑖/2+3/2

(
1 + 𝑏−1 − 𝑏−𝑖/2−1/2 − 𝑏−ℎ+𝑖/2−3/2

)
𝑏ℎ−𝑖/2+3/2

(
𝑏−1 + 𝑏−2 − 𝑏−𝑖/2−5/2 − 𝑏−ℎ+𝑖/2−3/2

)
=

1 + 𝑏−1

𝐵′︸  ︷︷  ︸
≔𝐶′

0

− 𝑏−𝑖/2−1/2

𝐵′︸     ︷︷     ︸
≔𝐶′

1

− 𝑏−ℎ+𝑖/2−3/2

𝐵′︸       ︷︷       ︸
≔𝐶′

2

,

where 𝐵′ ≔ 𝑏−1 + 𝑏−2 − 𝑏−𝑖/2−5/2 − 𝑏−ℎ+𝑖/2−3/2
. Now

𝐶′
0
≥ 1 + 𝑏−1

𝑏−1 + 𝑏−2 − 𝑏−1/2−5/2

≥ 1 + 𝑏−1

𝑏−1 + 𝑏−2 − 𝑏−3
≥

{
1+2

−1

2
−1+2

−2−2
−3

= 12

5
if 𝑏 = 2

1+𝑏−1

𝑏−1+𝑏−2
= 𝑏 if 𝑏 ≥ 3

,

𝐶′
1
=

1

𝑏𝑖/2−1/2 + 𝑏𝑖/2−3/2 − 𝑏−2 − 𝑏−ℎ+𝑖−1

≤ 1

𝑏1/2−1/2 + 𝑏1/2−3/2 − 𝑏−2 − 𝑏−1−1

=
1

1 + 𝑏−1 − 2𝑏−2
≤ 1

1 + 𝑏−1 − 𝑏𝑏−2
= 1 and

𝐶′
2
=
𝑏−ℎ+𝑖/2−3/2

𝐵′ ≤ 𝑏−(𝑖+1)+𝑖/2−3/2

𝐵′ = 𝑏−2
𝑏−𝑖/2−1/2

𝐵′︸     ︷︷     ︸
𝐶′

1

≤ 𝑏−2.

If 𝑏 = 2, this implies

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

≥ 12

5

− 1 − 2
−2 =

23

20

and if 𝑏 ≥ 3, we obtain

s-hop(𝜈𝑖)
s-hop(𝜈𝑖+1)

≥ 𝑏 − 1 − 𝑏−2 = 𝑏 − 𝑏 (𝑏−1 + 𝑏−3︸     ︷︷     ︸
≤3

−1+3
−3

) = 𝑏 − 10

27

𝑏 =
17

27

𝑏 ≥ 1

2

𝑏.
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