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Abstract

The structure of real-world networks is often shaped by local clustering, i.e., densely connected
regions with few interconnections. Random graph models that are meant to replicate this
property can be attributed to one of two approaches. Geometric models on the one hand
assign a geometric position to each vertex. Vertices that lie close together are more likely to
be connected. Block models on the other hand work with a partition of the vertex set where
vertices in the same community have a better chance of forming an edge.

In this paper we take the geometric inhomogeneous random graphs (GIRGs) and the
stochastic block model (SBM) as representatives and state a hybrid model of the two. By
that we also take over the power law weights from the GIRG model which leads to an
inhomogeneous degree distribution.
In the resulting hybrid model we investigate the expected number of 𝑘-sized cliques for

constant 𝑘 . First we prove a matching lower and upper bound for a simplified variant of
our model. The proof also gives insight into the community structure of the dominating
clique type. Afterwards we generalize the lower bound for our original model and discuss an
experimental setup that approaches an upper bound. The setup compares the two variants of
our model in terms of the number of their triangles.

Zusammenfassung

Netzwerke aus der Realität weisen häufig eine clusterartige Struktur auf. Das heißt es gibt
Regionen die in sich sehr viele Kanten aufweisen, aber untereinander nur spärlich verbunden
sind. Modelle von Zufallsgraphen, die diese Eigenschaft wiederspiegeln sollen, folgen zumeist
einem von zwei verschiedenen Ansätzen. Geometrische Modelle weisen jedem Knoten eine
Koordinate zu. Knoten mit einer geringeren Distanz werden anschließend mit einer höheren
Wahrscheinlichkeit verbunden. Block-Modelle hingegen partitionieren die Knotenmenge,
wobei Kanten innerhalb einer Partitionsklasse eine höhere Auftrittswahrscheinlichkeit haben
als solche, die zwischen zwei Klassen verlaufen.
In diesem Paper nehmen wir die geometric inhomogeneous random graphs (GIRGs) und

das stochastic block model (SBM) als Repräsentaten der Ansätze heran und betrachten ein
Kreuzungsmodell der beiden. Damit übernehmen wir insbesondere auch die Gewichte des
GIRG Modells. Diese sorgen dafür, dass die Knotengrade einem Potenzgesetz folgen.
In dem Modell, welches wir auf diese Weise erhalten untersuchen wir die asymptotisch

erwartete Anzahl von Cliquen der Größe 𝑘 für ein konstantes 𝑘 . Zunächst zeigen wir eine
übereinstimmende obere und untere Schranke für eine vereinfachte Variante unseres Modells.
Durch den Beweis erhalten wir zusätzlich einen Einblick darin wie der dominante Cliquentyp
aussieht. Entweder gehören in den dominanten Cliquen alle Knoten der selben Partitionsklasse
an oder oder alle auftretenden Klassen sind unterschiedlich.
Anschließend verallgemeinern wir die untere Schranke für unser ursprüngliches Modell

und stellen einen Versuchsaufbau vor, dessen Absicht es ist sich einer oberen Schranke
anzunähern. Der Versuch vergleicht die beiden Varianten unseres Modells in der Anzahl ihrer
Dreiecke.
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1 Introduction

1.1 Motivation

In the recent past reflecting real-world networks such as social networks, citation networks,
or the internet has become an important objective of graph models [KZ09 | New03]. Real-
world networks form pairwise connections between entities based on the importance and
the similarity of the involved entities. For example in a social network there are prominent
individuals that are known by many people, and two individuals that share similar interest or
live near each other are more likely to know each other.
When we take a closer look at the properties in which the similarity of two entities is

measured, we notice that there are both continuous as well as discrete ones. Age and location
would be examples of continuous quantities, while the hobbies of a person or the scientific
field of a paper are discrete.
Both types of similarity are captured by existing random graph models. On the one hand

there are random geometric graphs. They assign a point from a continuous ground space to
each vertex and the edge probability of two vertices is inversely proportional to the distance
between them [Pen03]. Block based models like the stochastic block model (SBM) on the
other hand partition the vertex set into several clusters. Edges are assigned based on fixed a
priori connection probabilities defined for each pair of clusters [HLL83].
By themselves both approaches have been explored extensively, this paper investigates a

hybrid model that assigns continuous points as well as discrete cluster memberships. A similar
approach was already taken by Galhotra, Mazumdar, Pal, and Saha, when they generalized the
definition of geometric randomgraphs using the SBM [GMPS18]. Whatwill finally differentiate
our model from theirs is that in their model every vertex is stochastically equivalent which
leads to a homogeneous degree distribution.
This brings us back to the other factor in real-world connections which we called the

importance of entities earlier. While most vertices are of very low, constant degree, few are
very highly connected. This characteristic of real-world networks is called a scale-free or
inhomogeneous degree distribution.

The first random graph model to replicate this property are Chung Lu graphs. In this model
power law distributed weights are assigned to all vertices and edges are more likely granted
between high weighted vertices [CL02a | CL02b].

Through the incorporation of such weights other models can be modified to obtain a scale-
free degree distribution as well. Examples are geometric inhomogeneous random graphs
(GIRGs) [BKL19 | BKL16] which generalize random geometric graphs, or the degree-corrected
stochastic block model [KN11].

In this paper we want to create a model that has an inhomogeneous degree distribution and
is able to model relationships based on continuous and discrete properties. To achieve that we
propose a hybrid model of GIRGs and the SBM. The GIRGs model brings in inhomogeneous
weights and a continuous ground space, the SBM augments them with a discrete cluster
structure.
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1 Introduction

The pattern that we chose to analyse in greater detail within our new model are constant
sized cliques. Among other things cliques are a good indicator for the locality and therefore
for the clustering of graphs. There are known results when comes to counting cliques in other
random graph models. Bläsius, Friedrich, and Krohmer investigated the expected number
of not necessarily constant sized cliques in hyperbolic random graphs which in many ways
behave similar to GIRGs [BFK18]. Michielan and Stegehuis on the other hand showed the
asymptotic of constant sized cliques in GIRGs and that there is a dominating clique type for
most parameter settings [MS22]. The latter result will come up more often because a big part
of our results builds directly upon it.

1.2 Outline

In Chapter 2 we introduce some notations that we use through out our work. In Chapter 3 we
propose two variants of our hybrid model while also reiterating the definition of the GIRG
model. At the end of that chapter we also discuss potential alternatives and talk about the
relation to the generalized GIRG model from Bringmann, Keusch, and Lengler [BKL16]. The
main part of our work is presented in Chapter 4 where we determine the asymptotic number
of constant sized cliques in one variation of our model, draw conclusions for the other one,
and finally discuss an experimental setup in which we compare the two versions. All results
are summarized in Chapter 5.
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2 Preliminaries

For 𝑛 ∈ N we define [𝑛] := {1, . . . 𝑛} ⊆ N.
Further for a Set 𝑆 and 𝑘 ∈ [|𝑆 |] ∪ {0} we define

(
𝑆
𝑘

)
to be the family with all subsets of 𝑆

of exactly size 𝑘 . Formally that is
(
𝑆
𝑘

)
:= {𝑆 ′ ∈ 2𝑆 | |𝑆 ′ | = 𝑘}. The notation is based on the

binomial coefficient because the cardinality can be calculated with |
(
𝑆
𝑘

)
| =

( |𝑆 |
𝑘

)
.

For a graph 𝐺 = (𝑉 , 𝐸) and a subset of it’s vertices 𝑉 ′ ⊆ 𝑉 we denote the subgraph of 𝐺
induced by 𝑉 ′ as 𝐺 [𝑉 ′]. The induced subgraph has an edge between vertices 𝑢, 𝑣 ∈ 𝑉 ′ if and
only if the edge 𝑢𝑣 was present in 𝐺 as well.
At one point we will use the multinomial coefficient which is denoted by

(
𝑛

𝑘1,𝑘2,...,𝑘𝑚

)
and

refers to the number of different distributions of 𝑛 balls into𝑚 bins of the sizes 𝑘1, . . . 𝑘𝑚 for∑𝑛
𝑖=1 𝑘𝑖 = 𝑛. The balls are distinguishable and their order within a bin is arbitrary. Thus the

value of the multinomial coefficient is given by(
𝑛

𝑘1, 𝑘2, . . . , 𝑘𝑚

)
=

𝑛!
𝑘1! · 𝑘2! . . . 𝑘𝑚!

.

The binomial coefficient can be seen as the special case of the multinomial coefficient where
𝑚 = 2. Namely we have

(
𝑛
𝑘

)
=
(

𝑛
𝑘,(𝑛−𝑘 )

)
.
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3 Model

In this chapter we will propose two variants of a model that combines the concepts of both
GIRGs as well as the stochastic block model. When introducing the edge probabilities we
will also quickly revise the definition of the GIRG model to emphasize the similarities and
differences.

In the latter part of this section we will further discuss which model is more desirable and
what other variations we thought about.

3.1 Definitions

Let 𝑛 ∈ N be the number of vertices and 𝑟 (𝑛) ∈ N the number of clusters. The vertex set
is identified with [𝑛] := {1, . . . , 𝑛} and partitioned into disjoint sets 𝐶1 ∪ . . . ∪𝐶𝑟 = 𝑉 . For
𝑣 ∈ 𝑉 we also write𝑚𝑣 ∈ [𝑟 ] for the unique index with 𝑣 ∈ 𝐶𝑚𝑣

. The connection probability
between the blocks is controlled by a symmetric matrix 𝐷 := 𝐷 (𝑛) of size 𝑟 × 𝑟 . Below for
vertices 𝑢, 𝑣 ∈ 𝑉 the notation 𝐷𝑢,𝑣 := 𝐷𝑚𝑢 ,𝑚𝑣

is used.

Power-lawWeights. In addition to the assigned memberships there are weights𝑤1, . . . ,𝑤𝑛

that are following a power law with exponent 2 < 𝜏 < 3. The weights can be sampled from
distribution with a cumulative probability function 𝐹 = 𝐹𝑛 : R → [0, 1], where 𝐹 has to
own the following properties. For a fixed 𝑤𝑚𝑖𝑛 > 0 we demand 𝐹 (𝑧) = 0 for all 𝑧 ≤ 𝑤𝑚𝑖𝑛 ,
and 𝐹 (𝑧) = 1 − Θ(𝑧1−𝜏 ) for all 𝑧 ≥ 𝑤𝑚𝑖𝑛 . Alternatively we can use the deterministic weight
function𝑤𝑣 = 𝛾 · (𝑛/𝑣)1/(𝜏−1) with parameter 𝛾 = Θ(1).

Geometry. Let 𝑑 ∈ N be a constant. We denote the 𝑑-dimensional torus as T𝑑 and imagine
it as the 𝑑-dimensional cube [0, 1]𝑑 where 0 and 1 are identified in every dimension. For every
vertex 𝑣 we draw a position 𝑥𝑣 ∈ T𝑑 uniformly and independently at random. To measure the
distance between two points 𝑥,𝑦 ∈ T𝑑 we take | |𝑥 −𝑦 | | where | |.| | denotes the 𝐿∞-norm on the
torus. Due to the properties of the torus that is | |𝑥 −𝑦 | | = max1≤𝑖≤𝑑 min{|𝑥𝑖 −𝑦𝑖 |, 1− |𝑥𝑖 −𝑦𝑖 |}.

Edge Probability. We denote the sum over all weights as𝑊 . Moreover there is a parameter
0 < 𝑇 < 1 called the temperature of the model.
As announced we first recapture the edge probability for GIRGs. It mainly consists of the

term 𝑞𝑢𝑣 which is artificially capped to 1 to receive the actual edge probability 𝑝𝑢𝑣 .

𝑞𝑢𝑣 :=
(
𝑤𝑣𝑤𝑢/𝑊
| |𝑥𝑢 − 𝑥𝑣 | |𝑑

)1/𝑇
, 𝑝𝑢𝑣 := min{1, 𝑞𝑢𝑣}. (3.1)

We can say that intuitively heavier vertices are more likely to have edges than vertices with
little weight. Also two vertices with a small distance in the underlying geometry are more
likely to be connected than two vertices which lie far apart.
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3 Model

Now we can actually go into the definition of our models which we call the 𝐵 and 𝐵2
model. There will be a couple of definitions that expand on similar definitions made for GIRGs.
The notation for the new models will be the same as for the GIRGs supplemented by the
superscript 𝐵 or 𝐵2 respectively.

The first example for this are the edge probabilities 𝑝𝐵𝑢𝑣 and 𝑝𝐵2𝑢𝑣 . They additionally use the
cluster assignments of the vertices 𝑢 and 𝑣 as well as the matrix 𝐷 . The term 𝑞𝑢𝑣 however
remains untouched.

𝑝𝐵𝑢𝑣 := min
{
1, 𝐷𝑢,𝑣 · 𝑞𝑢𝑣

}
, (3.2)

𝑝𝐵2𝑢𝑣 := 𝐷𝑢,𝑣 ·min {1, 𝑞𝑢𝑣} = 𝐷𝑢,𝑣 · 𝑝𝑢𝑣 . (3.3)

Further for a graph 𝐺𝐵 drawn from the new model that uses the edge probability 𝑝𝐵 , we
will write 𝐺 or 𝐺𝐵2 for the graphs on the same weights, positions and cluster assignments
that instead use the edge probability 𝑝 or 𝑝𝐵2, respectively. For the event that 𝑢, 𝑣 ∈ 𝑉 are
connected in 𝐺 we write 𝑢 ∼ 𝑣 . Analogically the events that 𝑢 and 𝑣 are connected in 𝐺𝐵 and
𝐺𝐵2 are referred to as 𝑢 ∼𝐵 𝑣 and 𝑢 ∼𝐵2 𝑣 .

3.2 Discussion of Alternatives

Before jumping into any analysis of the models proposed above we want to talk about why
those are the definitions we settled with and what alternatives went through our minds. The
premise of all discussed models will be that they are combining GIRGs with the SBM in some
way. Why this general idea is of interest was broadly talked about in the introduction section
and won’t be subject here.

One of the first things we notice when trying to combine the GIRG and SMB model is that
they already have a lot of similarities. Both require some sort of additional vertex variables
and depending on those form a probability function for the edges 𝑝 : 𝐸 → [0, 1] from which
the edges are sampled independently at random.
Probably the most natural way of intersecting the two models would be to generate both

graphs and give the resulting graph an edge if and only if both or at least one of the generated
graphs have that exact edge. The resulting edge probability for the first approach is just the
product of the edge probabilities from both models. This is exactly what the 𝐵2 model does.
The latter option of granting an edge if at least one of the two graphs includes that edge
is rather unattractive on closer examination. First of all the resulting probability 1 − (1 −
𝑝GIRG) (1 − 𝑝SBM) = 𝑝GIRG + 𝑝SBM − 𝑝GIRG · 𝑝SBM is cumbersome to calculate. Besides that with
badly chosen parameters it could happen very easily that one of the models is completely
dominating the other one.

On the other hand coming from the standpoint of the GIRG model it is not unusual to have
a factor inside the min-term that controls the expected average degree inside the graph. From
there the idea of pulling the SBM factor inside as well isn’t all that far away. This is exactly
what we have done with our initial approach, the 𝐵 model. In this variant the Stochastic Block
Model is embedded inside the GIRG edge probability. In a sense we thereby soften the impact
of the Stochastic Block model. If the connection factor lies inside the minimum it can still be
balanced out by the GIRG term. On the contrary in the 𝐵2 model where the edge probabilities
are just multiplied the resulting probability is always capped by the probability of the SBM.

6



3.3 Relation to Model from Bringmann, Keusch, and Lengler

If we decide to have the SBM factor inside the min-term there are still at least two options
where to precisely put it. Either we could just write it in front of the 𝑞𝑢𝑣 expression from the
GIRG model or we could even draw it into the parenthesis where it is raised to the power of
1
𝑇
. First note that for a fixed temperature 𝑇 the two options are equivalent because we can

just normalize every entry of the SBM matrix 𝐷 with the exponent 𝑇 .
However, there comes one case to mind one might want to consider where𝑇 isn’t constant.

Observing the limit of the probability for𝑇 → 0 for GIRGs yields a threshold model where the
probability of every edge is either 1 or 0. For the GIRG edge probability given in Equation (3.1)
we receive

𝑝TH𝑢𝑣 =

{
1 if𝑤𝑢𝑤𝑣 ≥𝑊 | |𝑥𝑢 − 𝑥𝑣 | |𝑑 ,
0 otherwise.

When applying the same procedure to the models mentioned above where one time the SBM
factor is inside and the other time outside the bracket we obtain different results. If the factor
is inside the brackets we find it again in the inequality that distinguishes the cases. On the
other hand if in front of the brackets it either vanishes completely if greater than 1 or takes
the place of the value in the case of𝑤𝑢𝑤𝑣 ≥𝑊 | |𝑥𝑢 − 𝑥𝑣 | |𝑑 otherwise. That again is not in the
spirit of the threshold model which is supposed to grant edges deterministically for given
positions and weights.

Visible in the definition made by Equation (3.2) we decided to write the factor outside the
brackets. The results can be generalized for the other model without restrictions, because the
threshold model does not play a role in the following considerations.

3.3 Relation to Model from Bringmann, Keusch, and Lengler

To further differentiate our new models from previous inhomogeneous geometric graph
models we take a look at the fairly general model introduced by Bringmann, Keusch, and
Lengler that especially includes GIRGs and hyperbolic random graphs [BKL16].

Like GIRGs the model has power law weights and a ground space from which a position is
assigned to each vertex. Based on those an edge probability is formed for each vertex pair. The
main difference to GIRGs is that there are no restrictions on what the ground space exactly
looks like and what the belonging distance function is. Instead they demand that after fixing
the geometric position of one of two vertices the marginal edge probability is asymptotically
just the edge probability of Chung Lu graphs. That is the product of the weights of both
vertices divided by the sum over all weights.

Special case of Inclusion First we want to take a look at a restricted case of our model
which is covered by the general model. As a benefit we get a few properties that were proven
for the general model. Among those is the high probability for a giant component of size
Θ(𝑛), a small diameter and short average distances between vertices [BKL16].

The restrictionwe lay on ourmodel is that thematrix𝐷 only has constant entries. According
to Theorem 7.3 in the paper about the general model [BKL16] every edge probability function
𝑝∗ that satisfies the following equation for all 𝑥𝑢, 𝑥𝑣 ∈ [0, 1]𝑑 and a parameter 𝛼 ∈ R>0, 𝛼 ≠ 1
is included in their model.

𝑝∗𝑢𝑣 = Θ

(
min

{
1,𝑉 ( | |𝑥𝑢 − 𝑥𝑣 | |)−𝛼 ·

(𝑤𝑢𝑤𝑣

𝑊

)max{𝛼,1}
})

,

7



3 Model

where 𝑉 (𝑟 ) denotes the volume of the 𝑟 -ball around 0 where the 𝑟 -ball around 𝑥 is defined as
𝐵𝑟 (𝑥) := {𝑦 ∈ T𝑑 | | |𝑥 − 𝑦 | | ≤ 𝑟 } for 𝑟 ≥ 0.
On behalf of both models we show this equation for the probability function 𝑝𝐵 . With

𝛼 := 1/𝑇 ,

𝑝𝐵𝑢𝑣
(3.2)
= min

{
1, 𝐷𝑢,𝑣 ·

(
𝑤𝑣𝑤𝑢/𝑊
| |𝑥𝑢 − 𝑥𝑣 | |𝑑

)1/𝑇 }
= min

{
1, 𝐷𝑢,𝑣 · | |𝑥𝑢 − 𝑥𝑣 | |−𝑑/𝑇 ·

(𝑤𝑣𝑤𝑢

𝑊

)1/𝑇 }
= min

{
1, 𝐷𝑢,𝑣 · | |𝑥𝑢 − 𝑥𝑣 | |−𝛼𝑑 ·

(𝑤𝑣𝑤𝑢

𝑊

)𝛼 }
★
= Θ

(
min

{
1,
(

𝜋𝑑/2

Γ(𝑑/2 + 1) | |𝑥𝑢 − 𝑥𝑣 | |𝑑
)−𝛼

·
(𝑤𝑣𝑤𝑢

𝑊

)max{𝛼,1}
})

= Θ

(
min

{
1,𝑉 ( | |𝑥𝑢 − 𝑥𝑣 | |)−𝛼 ·

(𝑤𝑢𝑤𝑣

𝑊

)max{𝛼,1}
})

,

where in ★ we only change constants factors in front of | |𝑥𝑢 − 𝑥𝑣 | |𝑑 and use 𝛼 ≥ 1 which
follows from 𝑇 ≤ 1. In the step after we apply the formula for the volume of a 𝑟 -ball that uses
Euler’s gamma function.

Cases of Exclusion Now we also want to argue that there are instances of our models that
are not included in the general model. We consider a vertex 𝑢 with a fixed position and cluster
membership𝑚𝑢 = 𝑖 . Further we assume that the amount of clusters 𝑟 (𝑛) is super constant and
for almost all 𝑗 ∈ [𝑟 (𝑛)] we have 𝐷𝑖, 𝑗 ∈ 𝑜 (1). Then we see that the marginal edge probability
E𝑥𝑣,𝑚𝑣

[𝑝𝐵𝑢𝑣 | 𝑥𝑢,𝑚𝑢] is in 𝑜 (min
{
1, 𝑤𝑢𝑤𝑣

𝑊

}
) and therefore does not satisfy the condition of the

model from Bringmann, Keusch, and Lengler.
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4 Cliques of Constant Size 𝑘

In this section we want to investigate the asymptotic number of 𝑘-sized cliques, for a fixed
constant 𝑘 , in graphs drawn from one of our new models. The following results build on a
paper by Michielan and Stegehuis that is counting cliques in GIRGs [MS22].

4.1 Setting

In this consideration we assume slight simplifications that apply to both models. Instead of
allowing any symmetric matrix 𝐷 , we focus on the case where there are only two different
factors: one for inter- and one for intra-cluster connections. While the edge probabilities of
vertices in the same cluster are multiplied by 1, the probability for inter-cluster connections is
diminished by the prefactor 𝑓 (𝑛) with 𝑓 (𝑛) ≤ 1. Formally the connection matrix 𝐷 is given
by

𝐷 :=
1
. . .

1

©­­«
ª®®¬

𝑓 (𝑛)

𝑓 (𝑛)
.

Further we want to restrict 𝑟 (𝑛), the number of clusters in which the vertices are distributed
to be 𝑟 (𝑛) ∈ 𝜔 (1) i.e. to be super constant. With that we exclude the case 𝑟 (𝑛) ∈ Θ(1) which
would represent an unpleasant special case at a later point in time. Luckily we can reduce
that case to the plain GIRG model for which the number of constant sized cliques is already
extensively covered, for example in [MS22].

If 𝑟 (𝑛) ∈ Θ(1) there always has to be a cluster that hasΘ(𝑛) vertices by pigeonhole principle.
Because according to our earlier assumption the diagonal entries of the matrix 𝐷 are equal to
1, the subgraph induced by the vertices of such a cluster is nothing but a GIRG with less, but
still a linear amount of vertices. According to the results of [MS22] the expected number of
𝑘-sized cliques in a GIRG is polynomial in 𝑛 and therefore won’t change asymptotically as
long as the new number of vertices stays linear in 𝑛. On the other hand the expected amount
of cliques surely won’t be enlarged because for every vertex pair {𝑢, 𝑣} ∈

(
𝑉
2
)
the inequality

𝑝𝐵2𝑢𝑣 ≤ 𝑝𝐵𝑢𝑣 ≤ 𝑝𝑢𝑣 holds.

4.2 Definitions

For a subset𝑈 ⊆ 𝑉 we denote the biggest number of vertices in𝑈 that share the same cluster
as 𝑐max(𝑈 ). Formally that is

𝑐max(𝑈 ) := max
𝑖∈[𝑟 ]

{|𝐶𝑖 ∩𝑈 |} . (4.1)
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4 Cliques of Constant Size 𝑘

In the following we want to look at subsets𝑈 ⊆ 𝑉 with |𝑈 | = 𝑘 , in other words potential
cliques of size 𝑘 . Moreover we are interested in the cluster distribution within those subsets.
Specifically we will distinguish them by the size of their biggest cluster i.e. the number
𝑐max(𝑈 ). To count the number of cliques among such subsets for 𝑘 ∈ N, 𝑙 ∈ [𝑘] we define the
random variables

𝑁 𝐵 (𝑘, 𝑙) :=
����{𝑈 ∈

(
𝑉

𝑘

) ���� 𝐺𝐵 [𝑈 ] is clique ∧ 𝑐max(𝑈 ) = 𝑙

}����
≤
����{𝑈 ∈

(
𝑉

𝑘

) ���� 𝐺𝐵 [𝑈 ] is clique
}���� =: 𝑁 𝐵 (𝑘).

(4.2)

While 𝑁 𝐵 (𝑘) is just the total number of cliques of size 𝑘 in 𝐺𝐵 , the random variable 𝑁 𝐵 (𝑘, 𝑙)
only counts those cliqueswhose biggest cluster is of size 𝑙 exactly. The supplemented inequality
holds trivially because the first set is a subset of the second one. For the 𝐵2 model both
definitions are analogous.
On the same basis let 𝑁 (𝑘) denote the number of cliques of size 𝑘 in the graph 𝐺 which

uses the edge probability from the GIRG model.

4.3 Simplified Model (𝐵2)

We start of with the analysis of the 𝐵2 model. To prove the precise asymptotic of the expected
number of 𝑘-sized cliques we show a matching lower and upper bound.

4.3.1 Lower Bound

Our first goal will be to lower boundE[𝑁 𝐵2(𝑘)]. The rough plan is to lower boundE[𝑁 𝐵2(𝑘, 𝑙)]
by a product of the expected number of cliques in the GIRG model, E[𝑁 (𝑘)] and a diminishing
function ℎ(𝑙) which will turn out to be

ℎ(𝑙) := 𝑟 (𝑛) (1−𝑙 ) · 𝑓 (𝑛) (
𝑘
2)−(𝑙2) .

As defined above 𝑟 (𝑛) ≥ 1 is the total number of clusters and 𝑓 (𝑛) ≤ 1 is the factor appearing
in the probability for inter-cluster edges.
We have 𝑁 𝐵2(𝑘) = ∑

𝑙∈[𝑘 ] 𝑁
𝐵2(𝑘, 𝑙) and 𝑁 𝐵2(𝑘, 𝑙) ≥ 0 for 𝑙 ∈ [𝑘] which follows naturally

from the definitions in Equation (4.2). Therebywe can lower boundE[𝑁 𝐵2(𝑘)] byE[𝑁 𝐵2(𝑘, 𝑙)]
for every 𝑙 ∈ [𝑘]. To receive the biggest and thus tightest lower bound from this we find out
which E[𝑁 𝐵2(𝑘, 𝑙)] grows the fastest asymptotically by finding the maximum of the function
ℎ(𝑙).

The following lemma states the maxima of ℎ(𝑙) which we will use in the proof the of lower
bound.
Lemma 4.1: In the value domain 𝑙 ∈ [𝑘] the function ℎ(𝑙) is maximized by

max
𝑙∈[𝑘 ]

(ℎ(𝑙)) =
{
ℎ(1) = 𝑓 (𝑛) (𝑘2) if 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘

2 ,

ℎ(𝑘) = 𝑟 (𝑛)1−𝑘 if 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 .

(4.3)

Proof. To find the arguments that maximize the functionℎ(𝑙) we use the fact that the logarithm
of a function maintains the position of extremes and only changes their value. We then pretend
the function is continuous and derive it to find local maxima inside the interval (1, 𝑘). For
each of those points the floor and the ceiling are potential candidates for maxima on [𝑘].
After that we calculate the values at the edges 1 and 𝑘 . Finally from all those candidates we
will determine the global maximum depending on the relation of the functions 𝑓 (𝑛) and 𝑟 (𝑛).
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4.3 Simplified Model (𝐵2)

As proposed we first apply the logarithm and start simplifying:

log(ℎ(𝑙)) = log(𝑟 (𝑛) (1−𝑙 ) · 𝑓 (𝑛) (
𝑘
2)−(𝑙2))

= (1 − 𝑙) log(𝑟 (𝑛)) + (
(
𝑘

2

)
−
(
𝑙

2

)
) log(𝑓 (𝑛))

= (1 − 𝑙) log(𝑟 (𝑛)) + 𝑘 (𝑘 − 1)
2

log(𝑓 (𝑛)) − 𝑙 (𝑙 − 1)
2

log(𝑓 (𝑛)) .

Now calculating the derivation with respect to 𝑙 is way easier because instead of a product
we have a sum on our hands.

log(ℎ(𝑙)) 𝑑
𝑑𝑙

=

(
(1 − 𝑙) log(𝑟 (𝑛)) + 𝑘 (𝑘 − 1)

2
log(𝑓 (𝑛)) − 𝑙 (𝑙 − 1)

2
log(𝑓 (𝑛))

)
𝑑

𝑑𝑙

= − log(𝑟 (𝑛)) + 0 − 2𝑙 − 1
2

log(𝑓 (𝑛)) !
= 0

⇔ − log(𝑟 (𝑛)) + 1
2
log(𝑓 (𝑛)) = 𝑙 log(𝑓 (𝑛))

⇔ − log(𝑟 (𝑛))
log(𝑓 (𝑛)) +

1
2
= 𝑙 .

This makes ⌊− log(𝑟 (𝑛) )
log(𝑓 (𝑛) ) +

1
2⌋ and ⌈− log(𝑟 (𝑛) )

log(𝑓 (𝑛) ) +
1
2⌉ potential candidates for our global maximum.

Before we calculate their values we check the sign of the second derivation to find out if the
point is a local minimum or maximum in the continuous extension of log(ℎ(𝑙)). We get

log(ℎ(𝑙)) 𝑑
2

𝑑𝑙2
=

(
− log(𝑟 (𝑛)) − 2𝑙 − 1

2
log(𝑓 (𝑛))

)
𝑑

𝑑𝑙

= − log(𝑓 (𝑛)) = log( 1
𝑓 (𝑛) )

𝑓 (𝑛)≤1
≥ 0.

More precisely the second derivation is either non-negative or 0 in the special case that
𝑓 (𝑛) = 1.
Let us look at the special case first. We know there has to be at least one cluster which is

why we have 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘
2 = 1− 𝑘

2 = 1. At the same time our function ℎ shrinks down to
ℎ(𝑙) = 𝑟 (𝑛) (1−𝑙 ) · 1 and is easily maximized by ℎ(1) = 𝑟 (𝑛)0 = 1. This fits into the first case of
Equation (4.3) in Lemma 4.1.

On the other hand if 𝑓 (𝑛) < 1, the second derivative is strictly positive and the extreme we
found earlier is in fact a minimum and therefore not of further interest. So all that we are left
with are the boundary points 1 and 𝑘 . We calculate their values and compare them to find a
decision rule depending on 𝑟 (𝑛) and 𝑓 (𝑛):

ℎ(1) = 𝑓 (𝑛) (
𝑘
2) ≤ 𝑟 (𝑛) (1−𝑘 ) = ℎ(𝑘)

⇔ 𝑓 (𝑛) 1
2 ·𝑘 (𝑘−1) ≤ 𝑟 (𝑛) (1−𝑘 )

⇔ 𝑓 (𝑛) ≤ 𝑟 (𝑛)− 2
𝑘

⇔ 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 ,

completing the proof of Lemma 4.1.

Under the use of Lemma 4.1 we are now able to prove the following theorem that states a
lower bound for E[𝑁 𝐵2(𝑘)].
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4 Cliques of Constant Size 𝑘

Theorem 4.2: For a natural constant 𝑘 the following lower bound is applicable:

𝐸 [𝑁 𝐵2(𝑘)] ∈
{
Ω(𝑓 (𝑛) (𝑘2) · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘

2 ,

Ω(𝑟 (𝑛)1−𝑘 · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 .

Proof. We start by breaking down the expected value into two probabilities. For that we can
use the linearity of expectation and conditional probabilities as follows

E[𝑁 𝐵2(𝑘, 𝑙)] = E

∑︁

𝑈 ∈(𝑉𝑘 )
1{𝐺𝐵2 [𝑈 ] is clique∧𝑐max (𝑈 )=𝑙 }


=

∑︁
𝑈 ∈(𝑉𝑘 )

E
[
1{𝐺𝐵2 [𝑈 ] is clique∧𝑐max (𝑈 )=𝑙 }

]
=

∑︁
𝑈 ∈(𝑉𝑘 )

P
(
𝐺𝐵2 [𝑈 ] is clique ∧ 𝑐max(𝑈 ) = 𝑙

)
=

∑︁
𝑈 ∈(𝑉𝑘 )

P
(
𝐺𝐵2 [𝑈 ] is clique | 𝑐max(𝑈 ) = 𝑙

)
· P (𝑐max(𝑈 ) = 𝑙) .

(4.4)

We first look at the latter probability. To determine the asymptotic behavior of the probability
we state both an upper and lower bound that match asymptotically.

We start with the lower bound. Note that we can only decrease the probability of an event
by replacing it with a more special event. If the first 𝑙 vertices of a subset𝑈 ∈

(
𝑉
𝑘

)
are all in the

same cluster and all the remaining vertices are all in different, unique clusters we especially
have 𝑐max(𝑈 ) = 𝑙 . Using this idea we get

P(𝑐max(𝑈 ) = 𝑙) ≥
(

1
𝑟 (𝑛)

)𝑙−1
·

𝑘∏
𝑖=𝑙+1

(
1 − 𝑖 − 𝑙

𝑟 (𝑛)

)
∈ Θ(𝑟 (𝑛) (1−𝑙 ) ), (4.5)

where we can exclude the case that there are less than 𝑘−𝑙+1 clusters and the event is therefore
impossible. This is because 𝑘 − 𝑙 + 1 ≤ 𝑘 ∈ Θ(1), while 𝑟 (𝑛) ∈ 𝜔 (1). The case is therefore, at
least for the asymptotic probability, irrelevant. Along the same line of argumentation we get
that (1 − 𝑖−𝑙

𝑟 (𝑛) ) = (1 − Θ( 1
𝑟 (𝑛) )) = 1 − 𝑜 (1) ∈ Θ(1).

Now to receive a upper bound for the probability we calculate the probability of a more
general event namely that for a subset 𝑈 ∈

(
𝑉
𝑘

)
there is a cluster of size at least 𝑙 within 𝑈 .

The probability for this more general event we further bound up by taking the probability
that the event happens for a fixed cluster times the number of clusters 𝑟 (𝑛). By that we factor
in every scenario where the generalized event occurs at least once. The scenarios where more
than one cluster in𝑈 has size at least 𝑙 we count even more often.
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4.3 Simplified Model (𝐵2)

Overall we get

P(𝑐max(𝑈 ) = 𝑙) ≤ P(𝑐max(𝑈 ) ≥ 𝑙)
≤ 𝑟 (𝑛) · P( |𝐶1 ∩𝑈 | ≥ 𝑙)

= 𝑟 (𝑛) ·
𝑘∑︁
𝑖=𝑙

(
𝑘

𝑖

) (
1

𝑟 (𝑛)

)𝑖 (
1 − 1

𝑟 (𝑛)

)𝑘−𝑖
≤

𝑘∑︁
𝑖=𝑙

(
𝑘

𝑖

) (
1

𝑟 (𝑛)

)𝑖−1
≤

(
1

𝑟 (𝑛)

)𝑙−1 𝑘∑︁
𝑖=𝑙

(
𝑘

𝑖

)
∈ Θ(𝑟 (𝑛) (1−𝑙 ) ),

(4.6)

where we use 𝑘, 𝑙 ∈ Θ(1).

Next we turn to the first probability in Equation (4.4), it describes the event that𝐺𝐵2 [𝑈 ] is
a clique under the assumption that the biggest cluster in𝑈 is of size 𝑙 .

Note that the original edge probability of the GIRG model 𝑝𝑢𝑣 doesn’t depend on the cluster
memberships of the vertices. Thus we can lower bound our overall probability by arranging
the clusters such that the number of inter-cluster edges is maximized. When sticking with the
premise that 𝑐max(𝑈 ) = 𝑙 , an upper bound on the number of inter-cluster edges is achieved if
besides the one cluster of size 𝑙 every smaller appearing cluster in𝑈 is of size 1. In that setting
every edge is an inter-cluster edge except those within the set of size 𝑙 where all vertices are
in the same cluster. By that argument the number of inter-cluster edges is at most

(
𝑘
2
)
−
(
𝑙
2
)
.

Note that taking an edge as an inter- instead of an intra-cluster edge will never increase its
likelihood and thus the likelihood of the clique. We call the 𝑙-sized cluster𝑊 ⊆ 𝑈 and obtain

P(𝐺𝐵2 [𝑈 ] is clique | 𝑐max(𝑈 ) = 𝑙) =
∏

{𝑢,𝑣}∈(𝑊2 )
𝑝𝐵2𝑢𝑣

∏
{𝑢,𝑣}∈(𝑈2 )\(𝑊2 )

𝑝𝐵2𝑢𝑣

≥
∏

{𝑢,𝑣}∈(𝑊2 )
1 · 𝑝𝑢𝑣

∏
{𝑢,𝑣}∈(𝑈2 )\(𝑊2 )

𝑓 (𝑛) · 𝑝𝑢𝑣

=
©­­«

∏
{𝑢,𝑣}∈(𝑈2 )

𝑝𝑢𝑣
ª®®¬ · 𝑓 (𝑛) (

𝑘
2)−(𝑙2)

= P(𝐺 [𝑈 ] is clique) · 𝑓 (𝑛) (
𝑘
2)−(𝑙2) .

(4.7)
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4 Cliques of Constant Size 𝑘

Now we are finally putting everything back together with Equation (4.4) and get

E[𝑁 𝐵2(𝑘, 𝑙)] =
∑︁

𝑈 ∈(𝑉𝑘 )
P(𝐺𝐵2 [𝑈 ] is clique | 𝑐max(𝑈 ) = 𝑙) · P(𝑐max(𝑈 ) = 𝑙)

4.5−4.7
≥

∑︁
𝑈 ∈(𝑉𝑘 )

P(𝐺 [𝑈 ] is clique) · 𝑓 (𝑛) (
𝑘
2)−(𝑙2) · Θ(𝑟 (𝑛) (1−𝑙 ) )

=
∑︁

𝑈 ∈(𝑉𝑘 )
Ω
(
P(𝐺 [𝑈 ] is clique) · 𝑓 (𝑛) (

𝑘
2)−(𝑙2) · 𝑟 (𝑛) (1−𝑙 )

)
= Ω

©­­«𝑓 (𝑛) (
𝑘
2)−(𝑙2)) · 𝑟 (𝑛) (1−𝑙 )

∑︁
𝑈 ∈(𝑉𝑘 )

P(𝐺 [𝑈 ] is clique)
ª®®¬

= Ω (ℎ(𝑙) · E[𝑁 (𝑘)]) .

Together with E[𝑁 𝐵2(𝑘, 𝑙)]
4.2
≤ E[𝑁 𝐵2(𝑘)] and Lemma 4.1 this completes the proof of Theo-

rem 4.2.

4.3.2 Upper Bound

In this section we will prove a matching upper bound to the lower bound shown above. By
that we overall determine the precise asymptotic difference between the expected amount of
𝑘-sized cliques in the 𝐵2 model compared to the GIRG model.

Our approach is very similar to what we did for lower bound. First of all we use the linearity
of expectation to rewrite the expected value into the probability that a 𝑘-vertex subset is a
clique. We then split this probability up with the law of total probability along the number of
inter cluster edges 𝑥 in the clique. For each 𝑥 ∈ {0, . . . ,

(
𝑘
2
)
} we then bound the probability by

a product of the clique probability in GIRGs and a diminishing function that we will call 𝑔(𝑥).
Before we state our upper bound we will show two lemmas which we need for the proof.

The first lemma will help us to find an upper-bound for the number of involved clusters given
a fixed number of inter-cluster edges inside a clique.

Lemma 4.3: Let 𝐻 = (𝑉1 ∪ . . . ∪ 𝑉𝑟 , 𝐸) be a complete 𝑟 -partite graph on 𝑛 vertices with the
minimal number of edges. Then 𝑟 − 1 of the disjoint vertex sets are of size 1.

Proof. Let 𝐻 = (𝑉 = 𝑉1 ∪ . . . ∪ 𝑉𝑟 , 𝐸) be a complete 𝑟 -partite graph on 𝑛 vertices with the
minimal number of edges. For the sake of contradiction assume that there are 𝑖, 𝑗 ∈ [𝑟 ] with
𝑖 ≠ 𝑗 and |𝑉𝑖 |, |𝑉𝑗 | > 1.

Construct a new partition by moving |𝑉𝑗 | − 1 vertices from𝑉𝑗 to𝑉𝑖 . Let 𝐻 ′ = (𝑉 , 𝐸′) be the
𝑟 -partite graph on that new vertex set partition. We now want to compare |𝐸′ | with |𝐸 |. For
every vertex in 𝑉𝑖 we lose |𝑉𝑗 | − 1 edges because all but one vertex from 𝑉𝑗 are now in the
same partition class. At the same time the one vertex left behind in 𝑉𝑗 gains that many edges.
Therefore we have |𝐸′ | = |𝐸 | − |𝑉𝑖 | · ( |𝑉𝑗 | − 1) + (|𝑉𝑗 | − 1) = |𝐸 | − (|𝑉𝑖 | − 1) · ( |𝑉𝑗 | − 1). Because
we assumed |𝑉𝑖 |, |𝑉𝑗 | > 1 we can bound from below |𝐸 | − (|𝑉𝑖 | − 1) · ( |𝑉𝑗 | − 1) ≤ |𝐸 | − 1 < |𝐸 |.
This contradicts our first assumption that 𝐻 had a minimal number of edges among 𝑟 -partite
graphs with 𝑛 vertices which concludes the proof of Lemma 4.3.

The mentioned function 𝑔(𝑥) that diminishes the clique probability depending on the
amount of involved inter-cluster edges will turn out to be

𝑔(𝑥) := 𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑓 (𝑛)𝑥 ,
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4.3 Simplified Model (𝐵2)

where 𝑎+(𝑘, 𝑥) = 𝑘 + 1
2 −

√︃
𝑘2 − 𝑘 − 2𝑥 + 1

4 . For the latter proof we need to determine the
maximum of 𝑔(𝑥). The second lemma does just that.

Lemma 4.4: On the interval 𝑥 ∈ [0,
(
𝑘
2
)
] the function 𝑔(𝑥) is bounded by

max
𝑥∈[0,(𝑘2) ]

𝑔(𝑥) ≤
{
𝑓 (𝑛) (𝑘2) if 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘

2 ,

𝑟 (𝑛)1−𝑘 if 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 .

Proof. We treat the cases separately.

Case 1: 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘
2 Remember that because we are searching for an upper bound, its

always fine to make the maximum of 𝑔(𝑥) bigger than it actually is. Therefore we simplify

𝑔(𝑥) = 𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑓 (𝑛)𝑥

≤ 𝑓 (𝑛)− 𝑘
2 (𝑎

+ (𝑘,𝑥 )−𝑘 ) · 𝑓 (𝑛)𝑥

= 𝑓 (𝑛)− 𝑘
2 (𝑎

+ (𝑘,𝑥 )−𝑘 )+𝑥 ,

(4.8)

where the upper bound can be confusing at first, but is still correct because the exponent of
the 𝑟 (𝑛)-term in 𝑔(𝑥) is negative. When maximizing the last expression in the above equation
we just minimize the exponent because 0 ≤ 𝑓 (𝑛) ≤ 1. Like in the proof of Lemma 4.1 we
achieve this by first finding potential local extremes through the derivation and comparing
them against the values of the boundaries 0 and

(
𝑘
2
)
. We first write out the full exponent and

reshape it with the intention to make it easier to derive.

−𝑘
2
(𝑎+(𝑘, 𝑥) − 𝑘) + 𝑥 = −𝑘

2
(𝑘 + 1

2
−
√︂
𝑘2 − 𝑘 − 2𝑥 + 1

4
− 𝑘) + 𝑥

= −𝑘
4
+ 𝑘

2
(𝑘2 − 𝑘 − 2𝑥 + 1

4
) 1
2 + 𝑥 .

Now we calculate the derivation we search for zeros.

(−𝑘
2
(𝑎+(𝑘, 𝑥) − 𝑘) + 𝑥) 𝑑

𝑑𝑥
=
𝑘

4
(−2) (𝑘2 − 𝑘 − 2𝑥 + 1

4
)− 1

2 + 1 !
= 0

⇔ 𝑘

2(𝑘2 − 𝑘 − 2𝑥 + 1
4 )

1
2
= 1

⇔ 𝑘 = 2(𝑘2 − 𝑘 − 2𝑥 + 1
4
) 1
2

(∗)
⇒ 𝑘2 = 4(𝑘2 − 𝑘 − 2𝑥 + 1

4
)

⇔ 8𝑥 = 3𝑘2 − 4𝑘 + 1

⇔ 𝑥 =
3
8
𝑘2 − 1

2
𝑘 + 1

8
,

where the other direction of (*) is also valid. This can be reproduced by inserting the resulting
value of 𝑥 in the upper equation. Also we notice that for 𝑘 ≥ 2 the potential extreme lies
inside the interval of our interest.
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4 Cliques of Constant Size 𝑘

This now leaves us behind with three candidates for the minimum of the exponent as a
function of 𝑥 ∈ [0,

(
𝑘
2
)
]. There are the borders 0 and

(
𝑘
2
)
as well as the potential local extreme

3
8𝑘

2 − 1
2𝑘 + 1

8 . By simply plugging those candidates into the exponent we receive the value
(
𝑘
2
)

for both boundaries and 5
8𝑘

2 − 3
4𝑘 + 1

8 for the inner point. The comparison yields

5
8
𝑘2 − 3

4
𝑘 + 1

8
𝑘≥2
≥ 4

8
𝑘2 + 1

4
𝑘 − 3

4
𝑘 + 1

8
=

(
𝑘

2

)
+ 1
8
>

(
𝑘

2

)
.

That means for 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘
2 we now have that 𝑔(𝑥) ≤ 𝑓 (𝑛) (𝑘2) as claimed.

Case 2: 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 We now proceed in a very similar way with the case 𝑟 (𝑛) ≤

𝑓 (𝑛)− 𝑘
2 ⇔ 𝑟 (𝑛)− 2

𝑘 ≥ 𝑓 (𝑛). Again, as in Equation (4.8), we can upper bound 𝑔(𝑥) by an
expression that has only one base, namely

𝑔(𝑥) = 𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑓 (𝑛)𝑥

≤ 𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑟 (𝑛)− 2
𝑘
·𝑥 .

(4.9)

This expression however is maximized by maximizing the exponent, because 𝑟 (𝑛) ≥ 1. This
can again be achieved by finding the zeros of the derivation and comparing their values to
those of the boundaries.

𝑎+(𝑘, 𝑥) − 𝑘 − 2
𝑘
𝑥 = 𝑘 + 1

2
−
√︂
𝑘2 − 𝑘 − 2𝑥 + 1

4
− 𝑘 − 2

𝑘
𝑥

=
1
2
− (𝑘2 − 𝑘 − 2𝑥 + 1

4
) 1
2 − 2

𝑘
𝑥

( 1
2
− (𝑘2 − 𝑘 − 2𝑥 + 1

4
) 1
2 − 2

𝑘
𝑥) 𝑑

𝑑𝑥
= (−2) · 1

2
· (𝑘2 − 𝑘 − 2𝑥 + 1

4
)− 1

2 − 2
𝑘

!
= 0

We notice that after multiplying the equation with −𝑘
2 , adding 1 to both sides afterwards and

squaring them, we arrive at the exact same equality as with the other derivation, which means
that the zero is in fact the same, namely 3

8𝑘
2 − 1

2𝑘 + 1
8 . Despite that the value of the exponent

in that point can be different. That is why we again plug all three candidates, the potential
extreme as well as the boundary points into the exponent. We receive (1 − 𝑘) for both edges
of the interval and 3

2 −
5
4𝑘 − 1

4𝑘 for the inner point. Because

3
2
− 5
4
𝑘 − 1

4𝑘
𝑘≥2
≤ 3

2
− 1
2
− 𝑘 = 1 − 𝑘,

we obtain 1 − 𝑘 as the biggest possible exponent for 𝑥 ∈ [0,
(
𝑘
2
)
]. With that follows 𝑔(𝑥) ≤

𝑟 (𝑛)1−𝑘 concluding the proof of Lemma 4.4.

Now we are ready to state and prove the upper bound.

Theorem 4.5: For a natural constant 𝑘 the following upper bound is applicable:

𝐸 [𝑁 𝐵2(𝑘)] ∈
{
O(𝑓 (𝑛) (𝑘2) · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘

2 ,

O(𝑟 (𝑛)1−𝑘 · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 .
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4.3 Simplified Model (𝐵2)

Proof. For 𝑈 ∈
(
𝑉
𝑘

)
with a fixed cluster distribution we call𝑚inter(𝑈 ) the number of inter-

cluster edges inside 𝑈 . This function is closely related to 𝑐max(𝑈 ) defined in Equation (4.1).
Especially we know that𝑚inter(𝑈 ) = 0 if and only if 𝑐max(𝑈 ) = 𝑘 and𝑚inter(𝑈 ) =

(
𝑘
2
)
if and

only if 𝑐max(𝑈 ) = 1.
As we did for the lower bound in Equation (4.4) we will break down the expected value to

two probabilities that are easier to estimate. Both the linearity of expectation as well as the
law of total probability come in handy.

E[𝑁 𝐵2(𝑘)] = E

∑︁

𝑈 ∈(𝑉𝑘 )
1{𝐺𝐵2 [𝑈 ] is clique}


=

∑︁
𝑈 ∈(𝑉𝑘 )

E
[
1{𝐺𝐵2 [𝑈 ] is clique}

]
=

∑︁
𝑈 ∈(𝑉𝑘 )

P
(
𝐺𝐵2 [𝑈 ] is clique

)
=

∑︁
𝑈 ∈(𝑉𝑘 )

(𝑘2)∑︁
𝑥=0
P (𝑚inter(𝑈 ) = 𝑥) P

(
𝐺𝐵2 [𝑈 ] is clique | 𝑚inter(𝑈 ) = 𝑥

)
.

(4.10)

We first turn towards the second probability. We can draw the SBM prefactors in front of
the entire product, exactly as in Equation (4.7), because they are outside the minimum in our
simplified model. This time we already know the exact number of inter-cluster connections
instead of having to derive them from the size of the biggest cluster in 𝑈 . The remaining
product over the 𝑝𝑢𝑣-terms is nothing but the probability to form a clique in the original GIRG
model. Formally that means

P
(
𝐺𝐵2 [𝑈 ] is clique | 𝑚inter(𝑈 ) = 𝑥

)
= 𝑓 (𝑛)𝑥 · P (𝐺 [𝑈 ] is clique) . (4.11)

Now we arrive at the more complicated probability that a cluster configuration causes
exactly 𝑥 inter-cluster edges when the 𝑘 vertices of𝑈 are distributed uniformly at random
among the 𝑟 (𝑛) clusters. Calculating the exact function in 𝑥 ∈ {0, . . . ,

(
𝑘
2
)
} is cumbersome, not

only because it is by nature discontinuous but also because it has various jumps. For example
there always are 𝑟 (𝑛) configurations where all vertices have fallen into the same cluster and
𝑚inter(𝑈 ) = 0, but for 𝑘 ≥ 3 there is no configuration for exactly one inter-cluster edge. As
a solution for this problem we will come up with a continuous function that represents an
upper bound for the probability at every point 𝑥 ∈ {0, . . . ,

(
𝑘
2
)
}.

The amount of different clusters appearing inside a vertex set𝑈 ∈ 2𝑉 will be referred to as
𝑎(𝑈 ) := |{𝑖 ∈ [𝑟 (𝑛)] | 𝐶𝑖 ∪𝑈 ≠ ∅}| in the remainder. The next step is to find a lower bound
for𝑚inter(𝑈 ) depending on 𝑎(𝑈 ).
Because the subgraph induced by the inter-cluster edges is just a complete 𝑎(𝑈 )-partite

graph, we can apply Lemma 4.3. The direct consequence is that for a fixed value of 𝑎(𝑈 ) the
cluster distributions with the least amount of inter-cluster connections are those who put
𝑘 −𝑎(𝑈 ) + 1 vertices in one cluster and only 1 in every other cluster. In this setting every edge
outside this one big cluster is an inter-cluster edge, which makes

(
𝑘
2
)
−
(
𝑘−𝑎 (𝑈 )+1

2
)
inter-cluster

edges in total. Overall this yields

𝑚inter(𝑈 ) ≥
(
𝑘

2

)
−
(
𝑘 − 𝑎(𝑈 ) + 1

2

)
.
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4 Cliques of Constant Size 𝑘

We will now solve this inequality for 𝑎(𝑈 ). Then for a fixed𝑚inter(𝑈 ) we obtain an upper
bound for the amount of different clusters 𝑎(𝑈 ) in 𝑈 . This will be very helpful because as it
turns out asymptotically the likelihood for a certain cluster arrangement only depends on
how many clusters are involved.
We proceed by first simplifying the term and then solving for 𝑎(𝑈 ):

𝑚inter(𝑈 ) ≥
(
𝑘

2

)
−
(
𝑘 − 𝑎(𝑈 ) + 1

2

)
=
1
2
(𝑘 (𝑘 − 1) − (𝑘 − 𝑎(𝑈 ) + 1) (𝑘 − 𝑎(𝑈 )))

=
1
2
(𝑘2 − 𝑘 − 𝑘2 + 2𝑘𝑎(𝑈 ) − 𝑎(𝑈 )2 − 𝑘 + 𝑎(𝑈 ))

=
1
2
(−𝑎(𝑈 )2 + (2𝑘 + 1)𝑎(𝑈 ) − 2𝑘)

⇔ 0 ≥ 1
2
(−𝑎(𝑈 )2 + (2𝑘 + 1)𝑎(𝑈 ) − 2𝑘 − 2𝑚inter(𝑈 ))

⇔ 0 ≤ 𝑎(𝑈 )2 + (1 − 2𝑘)𝑎(𝑈 ) + 2𝑘 + 2𝑚inter(𝑈 )) .

The latter quadratic polynomial in 𝑎(𝑈 ) has two roots at the points 𝑎+(𝑘,𝑚inter(𝑈 )) and
𝑎− (𝑘,𝑚inter(𝑈 )) with

𝑎∗(𝑘, 𝑥) := 𝑘 + 1
2
∗
√︂
𝑘2 − 𝑘 − 2𝑥 + 1

4
,

for ∗ ∈ {+,−}. Because the sign of the 𝑎(𝑈 )2 term is positive the function is positive if and
only if 𝑎(𝑈 ) is either smaller than 𝑎− (𝑘,𝑚inter(𝑈 )) or greater than 𝑎+(𝑘,𝑚inter(𝑈 )). Note that
the latter criteria implies 𝑎(𝑈 ) > 𝑘 and is therefore unfulfillable because there can be at most
𝑘 different clusters among the 𝑘 vertices.

Our actual insight from this is that for a fixed value of 𝑚inter(𝑈 ) we know 𝑎(𝑈 ) lies
within [1, 𝑎+(𝑘,𝑚inter(𝑈 ))] ∩ N. In other words the event 𝑚inter(𝑈 ) = 𝑥 implies 𝑎(𝑈 ) ∈
[1, 𝑎+(𝑘, 𝑥)] ∩ N. By this reasoning we can upper bound P (𝑚inter(𝑈 ) = 𝑥) which is the
probability we are interested in by P (𝑎(𝑈 ) ∈ [1, 𝑎+(𝑘, 𝑥)] ∩ N) which is easier to calculate.
The probability space that we are moving in is still the uniformly random and independent

distribution of 𝑘 vertices in 𝑟 (𝑛) different clusters. There are 𝑟 (𝑛)𝑘 possible events in total of
those we now want to count the positive events i.e. the cluster distributions that use at most
⌊𝑎+(𝑘, 𝑥)⌋ different clusters.
First there are

(
𝑟 (𝑛)
𝑎

)
combinations of 𝑎 clusters. We may assume that the set of used

clusters is already selected and they are arbitrarily ordered. For every of the 𝑎 clusters we
call 𝑐𝑖 : 𝑖 ∈ [𝑎] the number of vertices within that cluster. After choosing that function 𝑐 all
that is left is to distribute the 𝑘 vertices into those bins of already fixed size. For counting the
options in the last step we can use the multinomial coefficient. Overall we get

P (𝑚inter(𝑈 ) = 𝑥) ≤ P
(
𝑎(𝑈 ) ∈ [1, 𝑎+(𝑘, 𝑥)] ∩ N

)
=

⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁
𝑎=1

P (𝑎(𝑈 ) = 𝑎)

=

⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁
𝑎=1

#cluster assignments with 𝑎(𝑈 ) = 𝑎

𝑟 (𝑛)𝑘

=

⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁
𝑎=1

(
𝑟 (𝑛)
𝑎

)
·∑𝑐 :

∑
𝑐𝑖=𝑘

(
𝑘

𝑐1,...𝑐𝑎

)
𝑟 (𝑛)𝑘

.
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4.3 Simplified Model (𝐵2)

At this point we realize two things. On the one hand, the multinomial coefficient is computed
as

(
𝑘

𝑐1,...𝑐𝑎

)
= 𝑘!

𝑐1!...𝑐𝑎 ! ∈ Θ(1) because for 𝑖 ∈ [𝑎] we have 𝑐𝑖 ≤ 𝑘 ∈ Θ(1). On the other hand,
the total number of options for 𝑐 can be upper bounded by 𝑎𝑘 ≤ 𝑘𝑘 ∈ Θ(1), again because
every 𝑐𝑖 is in [𝑘]. Further we use Stirling’s approximation and 𝑎 ≤ 𝑘 ∈ Θ(1) to receive(
𝑟 (𝑛)
𝑎

)
∈ Θ(𝑟 (𝑛)𝑎). We get

P (𝑚inter(𝑈 ) = 𝑥) ≤
⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁

𝑎=1

(
𝑟 (𝑛)
𝑎

)
·∑𝑐 :

∑
𝑐𝑖=𝑘

(
𝑘

𝑐1,...𝑐𝑎

)
𝑟 (𝑛)𝑘

=

⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁
𝑎=1

(
𝑟 (𝑛)
𝑎

)
Θ(1)

𝑟 (𝑛)𝑘

=

⌊𝑎+ (𝑘,𝑥 ) ⌋∑︁
𝑎=1

Θ(𝑟 (𝑛)𝑎)
𝑟 (𝑛)𝑘

≤ ⌊𝑎+(𝑘, 𝑥)⌋ · Θ(𝑟 (𝑛) ⌊𝑎+ (𝑘,𝑥 ) ⌋ )

𝑟 (𝑛)𝑘
∈ O

(
𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘

)
,

where in the end we leave out the floor function. By doing that we can only make the term
bigger. If we plug all those results into Equation (4.10) we arrive at

E[𝑁 𝐵2(𝑘)] =
∑︁

𝑈 ∈(𝑉𝑘 )

(𝑘2)∑︁
𝑥=0

O
(
𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘

)
· 𝑓 (𝑛)𝑥 · P (𝐺 [𝑈 ] is clique)

=
∑︁

𝑈 ∈(𝑉𝑘 )
P (𝐺 [𝑈 ] is clique) · O

©­­«
(𝑘2)∑︁
𝑥=0

𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑓 (𝑛)𝑥
ª®®¬

= E[𝑁 (𝑘)] · O
©­­«
(𝑘2)∑︁
𝑥=0

𝑟 (𝑛)𝑎+ (𝑘,𝑥 )−𝑘 · 𝑓 (𝑛)𝑥
ª®®¬

=: E[𝑁 (𝑘)] · O
©­­«
(𝑘2)∑︁
𝑥=0

𝑔(𝑥)
ª®®¬ ,

where in the last step we define the function 𝑔(𝑥) which we know from Lemma 4.4. Note that
because the sum over 𝑥 has only

(
𝑘
2
)
+ 1 ∈ Θ(1) terms the asymptotic behavior is dictated

by the largest of those terms. So all that is left to do to arrive at the bound postulated in
Theorem 4.5 is to plug the result for the maximum of 𝑔 for 𝑥 ∈ {0, . . .

(
𝑘
2
)
} from Lemma 4.4.

Note that the maximum over [0,
(
𝑘
2
)
] will always be at least as big as the maximum over its

subset {0, . . . ,
(
𝑘
2
)
}.

4.3.3 Interpretation

As already said, when put together the statements of the Theorems 4.2 and 4.5 provide the
precise asymptotic of the expected number of 𝑘-sized cliques in graphs of the simplified model.
Notably the way in which we proved the lower bound gives us further insight in the clique
structure of the model.
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4 Cliques of Constant Size 𝑘

By first estimating E[𝑁 𝐵2(𝑘, 𝑙)] we basically counted the cliques appearing in vertex sets of
different cluster structure separately. The structural variable that we distinguished the classes
by was the size of the biggest cluster within the vertex set. Depending on the variable functions
𝑓 (𝑛) and 𝑟 (𝑛) we then found the class of vertex sets which contributes the most to the overall
number of cliques. Showing afterwards that the upper bound asymptotically matches the
expected cliques emerging from that dominant class alone, gives us the insight that only
the cliques from that class are asymptotically significant. In the case that 𝑟 (𝑛) > 𝑓 (𝑛)− 𝑘

2

the dominating class of cliques consists of vertex sets where every vertex is from a different
cluster, while when 𝑟 (𝑛) < 𝑓 (𝑛)− 𝑘

2 cliques with all vertices from the same cluster are the
most significant.
Intuitively if there are a lot of clusters and the penalty factor for inter-cluster edges is in

comparison not that big, it is not worth searching for subsets with a big common cluster
which in this setting are very rare. Instead it is most promising to just look at vertex sets
where every cluster is unique, which there are a lot of, and accept to only have inter-cluster
edges. On the other hand if the inter-cluster penalty is large compared to a rather small
amount of clusters, it is worthwhile to search for subsets where all vertices are in the same
cluster to avoid inter-cluster edges completely.

A very similar result was found by [MS22] for the basic GIRG model, where the dominating
clique type can either be geometric or non-geometric. Vertex sets where all the vertices
lie geometrically very close together and thus are very likely to form a clique are called
geometric cliques, while vertex sets with pairwise constant distance but very high weights
form non-geometric cliques. Whether one or the other clique type is dominant is determined
by the ratio of the constant clique size 𝑘 as well as the exponent of the power law weight
distribution 𝜏 . More precisely if 𝑘 > 2

3−𝜏 the non-geometric cliques outweigh asymptotically
and their expected number is Θ(𝑛 (3−𝜏 )𝑘/2). On the other hand if 𝑘 < 2

3−𝜏 geometric cliques
dominate the overall expected number of cliques, asymptotically growing with Θ(𝑛).
In the simplified model we analysed above we were able to split the expected number of

cliques into the expected number of cliques in GIRGs and another cluster dependent factor.
Therefore the two phase shifts described above are both applicable to our model and operate
orthogonally to each other. If we want to state the full asymptotic of expected𝑘-sized cliques in
our model we therefore have to distinct four cases in total. Figure 4.1 illustrates the parameter
space divided into the four corresponding quadrants.

4.4 Original Model (𝐵)

As indicated earlier the main purpose of the so called simplified model was to function as
an intermediate step for the analysis of our original model. Even though the attempt of
totally generalizing the bounding process wasn’t successful, there are still many things we
can transfer back for our original model. Our main objective still is to determine the expected
number of 𝑘-sized cliques for a natural constant 𝑘 .

4.4.1 Lower Bound

The first thing we can get right away is a lower bound. Note that we are still in the restricted
setting where 𝐷𝑢𝑣 = 1 if 𝑢 and 𝑣 are in the same cluster and 𝐷𝑢𝑣 = 𝑓 (𝑛) ≤ 1 otherwise. Thus
we have 𝐷𝑢𝑣 ≤ 1 for all vertices 𝑢, 𝑣 ∈ 𝑉 . With that

𝑝𝐵𝑢𝑣 = min{1, 𝐷𝑢𝑣 · 𝑞𝑢𝑣} ≥ 𝐷𝑢𝑣 ·min{1, 𝑞𝑢𝑣} = 𝑝𝐵2𝑢𝑣 . (4.12)
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4.4 Original Model (𝐵)
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Figure 4.1: Visualization of the asymptotic number of 𝑘-sized cliques across the parameter
space.

In other words, every edge in our original model is at least as likely as in the simplified model.
Therefore the lower bound shown in Section 4.3.1 functions as a lower bound for the expected
number of 𝑘-sized cliques in the 𝐵 model as well. Formally that is

𝐸 [𝑁 𝐵 (𝑘)] ∈
{
Ω(𝑓 (𝑛) (𝑘2) · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≥ 𝑓 (𝑛)− 𝑘

2 ,

Ω(𝑟 (𝑛)1−𝑘 · E[𝑁 (𝑘)]) if 𝑟 (𝑛) ≤ 𝑓 (𝑛)− 𝑘
2 .

(4.13)

Note that this bound is weaker for our original model than it is for the simplified variant.
While we already succeeded finding a matching upper bound for the latter, it is yet possible
that this bound isn’t tight for the former.

4.4.2 Upper Bound

Finding a fitting upper bound turned out to be too difficult within the limits of this bachelor
thesis. In this chapter we will on the one hand try to substantiate what makes it difficult and
why we can’t just generalize the approach we took with the simplified model. On the other
hand we want to present and discuss some experimental results in which we compared the
two models with each other.

Difficulties When we look at the upper as well as the lower bound that we were able to
show for the simplified model we notice that they aren’t even fully written out. In both cases
the expected value E[𝑁 (𝑘)] that denotes the expected amount of cliques inside the GIRG
model remains inside the expression. We were always able to transform the expected value
into a shape were we had the expected value for GIRGs, which is asymptotically determined
by [MS22], and a multiplicative factor. Further that latter factor was always relatively easy to
handle because it had no dependencies to the weights, positions or other parameters from the
GIRG model.
The process of isolating those two independent factors was not that hard as long as the

cluster connection factor originating from the SBM stood outside the min-term. This is exactly
what makes the original model with the factor inside the minimum operation significantly
harder to analyse. Even if for an edge 𝑢𝑣 we already know that it is an inter-cluster edge

21



4 Cliques of Constant Size 𝑘

𝑘 𝜏 𝑟 (𝑛) 𝑓 (𝑛)
Non-geometric mixed-cluster cliques 3 2.1 𝑛

1
3 𝑛− 3

9

Geometric mixed-cluster cliques 3 2.6 𝑛
1
3 𝑛− 3

9

Non-geometric one cluster cliques 3 2.1 𝑛
1
3 𝑛− 1

9

Geometric one cluster cliques 3 2.6 𝑛
1
3 𝑛− 1

9

Figure 4.2: Table of the four different parameter configurations we used for our experiments

it’s still possible for the two vertices to be that heavy or that close to each other that there
connection probability is still 1. In other words the connection probabilities of the two models
are much more entangled in this model.

Experimental Results Note that since we were not able to show a matching upper bound
we can not tell if the lower bound we derived in the previous section is tight. Even though
practical experiments can neither formally confirm nor deny the tightness of the lower bound
they can give a cue where to search for the correct answer. In this section we first want to
propose a generic experimental setup to check the tightness of our lower bound. Further we
will discuss the results of an implementation of the setup.

In order to see if the lower bound is tight we have to check if the model matches the lower
bound asymptotically. This can be done by generating graphs and counting their 𝑘-sized
cliques. Rather than dividing this number directly through the asymptotic term, our setup
compares the two model variants with each other. Both methods are basically equivalent
because we already know that the proposed asymptotic is tight for the 𝐵2 model.
We start out by generating the weights, positions and cluster memberships for all the

vertices. From those values we can already compute 𝑝𝐵𝑢𝑣 and 𝑝𝐵2𝑢𝑣 for all potential edges 𝑢𝑣 . We
reduce the variance of the experiment by using a coupled random experiment for each edge.
That means for two vertices 𝑢, 𝑣 a uniformly random value 𝑦𝑢𝑣 is drawn from the interval
[0, 1). For ∗ ∈ {𝐵, 𝐵2} the edge 𝑢𝑣 in 𝐺∗ is then granted if and only if 𝑝∗𝑢𝑣 ≥ 𝑦𝑢𝑣 .
After the generation of the graphs we count the 𝑘-sized cliques for each of them. We then

divide the number of cliques in the 𝐵2 graph through that of the 𝐵 graph. Because of the
coupled random events we have 𝑢 ∼𝐵2 𝑣 ⇒ 𝑢 ∼𝐵 𝑣 , and the number of cliques in𝐺𝐵 is always
higher, thus we end up with a ratio between 0 and 1.
This procedure is repeated for different values of 𝑛. The quotient staying constant for

variable values of 𝑛 could indicate that the two models share the same asymptotic. If the
diagram runs to zero for 𝑛 → ∞ it could indicate that the 𝐵 graph has an asymptotic that
grows strictly faster than 𝐵2.

We performed this experiment on a small scale. Figures 4.3 to 4.6 show the average quotient
for four different combinations of the inter-cluster function 𝑓 (𝑛), the number of clusters 𝑟 (𝑛),
the clique size 𝑘 and the power law exponent 𝜏 . The actual parameters are documented in
Figure 4.2. We chose them such that each parameter set covers one quadrant in Figure 4.1.
We considered triangles only, i.e. kept 𝑘 = 3 because counting bigger cliques takes much
longer. Each point in the diagrams is an average of about 80 quotients 𝑁𝐵2 (3)

𝑁𝐵 (3) . The red error
bars visualize the standard deviation of the sample. We aligned the average degree of graphs
between the four parameter sets to make them comparable. We achieve this by multiplying
the edge probability with a constant we experimentally estimated beforehand.
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4.4 Original Model (𝐵)

1000 1500 2000 2500 3000 3500 4000 4500 5000
n: Number of vertices

0.88

0.90

0.92

0.94

0.96

0.98

1.00

NB2(3)
NB(3)

Non-geometric mixed-cluster cliques

T=0.1
T=0.5
T=0.9

Figure 4.3: Ratio of the number of triangles in 𝐺𝐵 and 𝐺𝐵2 as a function of 𝑛 = |𝑉 | for
different temperatures. In the parameter quadrant where non-geometric cliques with multiple
clusters are dominant in 𝐵2.

Unfortunately the four diagrams show no clear, common trend. Some graphs tend to zero
for increasing 𝑛 e.g. the blue line in Figure 4.4, others indicate constant behaviour like the
green line in Figure 4.4. For the two parameter sets with one-cluster cliques, the model variants
behave almost the some for low temperature and lie further apart for high temperature, see
Figures 4.5 and 4.6. Further experimentation is required to evaluate and interpret the observed
trends.
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4 Cliques of Constant Size 𝑘

1000 1500 2000 2500 3000 3500 4000 4500 5000
n: Number of vertices

0.6

0.7

0.8

0.9

1.0

NB2(3)
NB(3)

Geometric mixed-cluster cliques
T=0.1
T=0.5
T=0.9

Figure 4.4: Ratio of the number of triangles in 𝐺𝐵 and 𝐺𝐵2 as a function of 𝑛 = |𝑉 | for
different temperatures. In the parameter quadrant where geometric cliques with multiple
clusters are dominant in 𝐵2.

1000 1500 2000 2500 3000 3500 4000 4500 5000
n: Number of vertices

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

NB2(3)
NB(3)

Non-geometric one cluster cliques

T=0.1
T=0.5
T=0.9

Figure 4.5: Ratio of the number of triangles in 𝐺𝐵 and 𝐺𝐵2 as a function of 𝑛 = |𝑉 | for
different temperatures. In the parameter quadrant where non-geometric cliques with only
one clusters are dominant in 𝐵2.
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4.4 Original Model (𝐵)

1000 1500 2000 2500 3000 3500 4000 4500 5000
n: Number of vertices

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NB2(3)
NB(3)

Geometric one cluster cliques

T=0.1
T=0.5
T=0.9

Figure 4.6: Ratio of the number of triangles in 𝐺𝐵 and 𝐺𝐵2 as a function of 𝑛 = |𝑉 | for
different temperatures. In the parameter quadrant where geometric cliques with only one
clusters are dominant in 𝐵2.
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5 Conclusion

We discussed different approaches of defining a hybrid random graph model that is able to
model continuous as well as discrete similarities between entities. The definition we came up
with gives each vertex a power law weight, a point in the 𝑑-dimensional torus and a cluster
membership. After stating two variants of our model, we investigated the asymptotic number
of 𝑘-sized cliques for constant 𝑘 in each of them. For the simplified version we were able to
show a matching lower and upper bound. The resulting asymptotic showed a phase shift
depending on the number of clusters and the factor diminishing the probability of inter-cluster
connections.

We saw that the simplified model presents a lower bound for the other model. To approach
an upper bound we suggested an experimental setup that compares the two model variants.
Unfortunately we could not see a clear result in a first basic implementation yet.
With the definition of this new model many interesting questions turned up. A natural

next step would be to further study the asymptotic of the second model to come up with
an upper bound. In addition the investigation of 𝑘-sized cliques could be expanded to super
constant values for 𝑘 . With that one could also study the expected clique number of both
models. Moreover, it would be interesting to see if some of the inherent GIRG characteristics,
like the scale-free degree distribution or a small diameter, also apply to the hybrid models.
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