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Zusammenfassung

Damit Routingalgorithmen schnell viele Anfragen, auch Queries genannt, in kurzer Zeit
beantworten können, werden häufig Vorberechnungen verwendet. Da sich die Topologie des
Graphen nur selten verändert, sind auch aufwendigere Vorberechnungen akzeptabel. Der
Customizable Contraction Hierarchies (CCH) Algorithmus berechnet dazu in einem ersten,
teuren Schritt eine Ordnung, die in den weiteren, günstigeren Schritten verwendet wird. Fügt
man eine neue Kante in den Graphen ein, ändert sich seine Topologie und es müssen alle
Vorberechnungen erneut durchgeführt werden. In dieser Arbeit beschäftigen wir uns daher
mit der Frage, wie der CCH-Algorithmus besser auf lokale Änderungen in der Topologie
reagieren kann. Unser Ziel ist es daher, die Ordnung effizient und lokal an die neue Kante
anzupassen. Dafür stellen wir drei Lösungsansätze vor. Die erste Möglichkeit ist, die alte
Ordnung zu übernehmen, dies optimiert die Vorberechnungen. Alternativ kann lokal eine
optimale Ordnung berechnet werden, was zu schnellen Queryzeiten führt. Als Kompromiss
können wir nur die Ordnung von einem Endpunkt der Kante erhöhen, dadurch erhalten wir
sowohl in der Vorberechnung, als auch in den Queries schnelle Ergebnisse. Im abschließenden
experimentellen Vergleich der Varianten stellt sich heraus, dass der CCH-Algorithmus durch
die zuletzt genannte Variante effizient auf neue Kanten reagieren kann.
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1 Einleitung

Kürzeste Wege in einem Straßennetz zu finden, ist ein alltägliches Problem und es gibt diverse
Anwendungen, die es lösen [DGJ]. Um die Nutzerfreundlichkeit zu gewährleisten, müssen
die verwendeten Routingalgorithmen in der Lage sein, auf viele Anfragen innerhalb kür-
zester Zeit zu reagieren und verwenden dazu oft Vorberechnungen. Ein Beispiel für einen
Routingalgorithmus mit einer Vorberechnungsphase ist der Contraction Hierarchies Algo-
rithmus (CH) [GSSV12]. Damit sich der Aufwand für die Vorberechnungen rentiert, darf sich
der zugrundeliegende Straßengraph nur selten ändern, da die Vorberechnungen andernfalls
oft wiederholt werden müssen. In der Praxis beobachtet man aber, dass sich vor allem die
Reisezeit zwischen verschiedenen Orten, und damit der zugrundeliegende Graph, mehrmals
täglich ändert. Das führt beim CH-Algorithmus dazu, dass seine Vorberechnungen häufig neu
berechnet werden müssen, worunter seine Effizienz leidet [DSW16]. Dieses Problem wird
durch den Customizable Contraction Hierarchies Algorithmus (CCH) gelöst, indem die Vorbe-
rechnungen in mehrere Schritte aufgeteilt werden. Ändert sich die Topologie des Graphen,
müssen alle Vorberechnungen wiederholt werden, bei Änderungen an den Kantengewichten
dagegen nur die zweite Phase [DSW16].
Wird nun eine neue Straße gebaut, ändert sich die Topologie des Straßennetzes. Also

muss der CCH-Algorithmus alle Vorberechnungen erneuern und kann somit nur langsam auf
neue Straßen reagieren. Dabei können wir eine neue Straße formal durch das Einfügen einer
neuen Kante in den zugehörigen Graphen modellieren. In der praktischen Routenfindung im
Straßenverkehr können wir allerdings beobachten, dass sehr viele Straßen nur einen sehr
lokalen Einfluss haben [Blä+25]. Eine Straße in einem Wohngebiet ist in der Regel auch nur
für Strecken in diesem Wohngebiet relevant. Für Routen in einer anderen Stadt wird diese
Straße dagegen meistens nicht benötigt. Selbst eine Autobahn ist für Reisen, die sehr weit
von dieser Region entfernt sind, oftmals unbedeutend [SS15]. Eine neue Straße beeinflusst
also das Straßennetz an weit entfernten Orten nur geringfügig. Dennoch kann sie in einem
Routingalgorithmus zentrale Änderungen bewirken.
Aus diesem Grund beschäftigen wir uns in dieser Arbeit mit der Frage, welche Auswir-

kungen eine neue Kante auf den CCH Algorithmus hat. Dafür betrachten wir zunächst den
Algorithmus genauer und beschreiben seinen Ablauf. Anschließend stellen wir verschiedene
Optimierungen vor, durch die der Algorithmus schneller auf eine neue Kante reagieren kann.
Diese Ansätze evaluieren wir schließlich und vergleichen sie experimentell miteinander.
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2 Allgemeine Definitionen und Notationen

Im Folgenden führen wir wichtige Notationen und Begriffe ein, die wir in dieser Arbeit
verwenden.

Sei𝑉 eine Knotenmenge und 𝐸𝑢 ⊆
{
{𝑢, 𝜈} | 𝑢, 𝜈 ∈ 𝑉

}
eine Kantenmenge, dann nennen wir

𝐺𝑢 = (𝑉 , 𝐸𝑢) einen ungerichteten Graphen. In einem gerichteten Graph 𝐺𝑔 = (𝑉 , 𝐸𝑔) besteht
die Kantenmenge 𝐸𝑔 ⊆

{
(𝑢, 𝜈) | 𝑢, 𝜈 ∈ 𝑉

}
= 𝑉 ×𝑉 aus Tupeln anstatt Mengen. Wenn eine

Gewichtsfunktion 𝑐 : 𝐸 → ℝ existiert, die den Kanten Gewichte zuordnet, nennen wir den
Graphen zusätzlich gewichtet. Sowohl ein gerichteter, als auch ungerichteter Graph kann
gewichtet sein.
In einem ungerichteten Graphen sind zwei Knoten 𝑢, 𝜈 ∈ 𝑉 benachbart, falls die Kante

{𝑢, 𝜈} ∈ 𝐸 existiert. Alle Knoten, mit denen 𝜈 ∈ 𝑉 in 𝐺 benachbart ist, werden zu seiner
Nachbarschaft 𝑁𝐺 (𝜈) zusammengefasst. Wenn in einer Knotenteilmenge 𝐶 ⊆ 𝑉 alle Knoten
paarweise benachbart sind, ist𝐶 eine Clique. Eine nichtleere Teilmenge 𝑋 ⊊ 𝑉 definiert einen
Schnitt (𝑋,𝑉 \ 𝑋 ) auf dem Graphen. Ein Schnitt teilt einen Graphen in alle Knoten, die in 𝑋
enthalten sind, und alle übrigen Knoten.
In einem gerichteten Graph heißt eine Folge von Knoten 𝑃 = (𝜈1, . . . , 𝜈𝑛) ⊆ 𝑉 Pfad, falls

Kanten zwischen jeweils aufeinanderfolgende Knoten 𝜈𝑖 und 𝜈𝑖+1 existieren, also (𝜈𝑖 , 𝜈𝑖+1) ∈ 𝐸
gilt. Für zwei Knoten 𝑠, 𝑡 ∈ 𝑉 nennen wir den Pfad von 𝑠 nach 𝑡 einen 𝑠–𝑡–Pfad. Die Länge
eines Pfades ist definiert, als die Anzahl seiner Knoten. Ein Zyklus ist ein 𝑠–𝑡–Pfad, der
Länge mindestens zwei, bei dem 𝑠 = 𝑡 gilt. Ein gerichteter, kreisfreier Graph (DAG) ist
ein gerichteter Graph, in dem keine Zyklen existieren. Drei Knoten 𝑢, 𝜈,𝑤 ∈ 𝑉 bilden ein
Dreieck, falls die Kante (𝑢,𝑤) ∈ 𝐸, sowie der Pfad (𝑢, 𝜈,𝑤) im Graphen existieren. Falls
zusätzlich eine Totalordnung 𝜋 auf den Knoten existiert, nennen wir das Dreieck 𝑢, 𝜈,𝑤 ∈ 𝑉
mit 𝜋 (𝑢) < 𝜋 (𝜈) < 𝜋 (𝑤) ein unteres Dreieck von (𝜈,𝑤) ∈ 𝐸, weil die Ordnung von 𝑢 kleiner
ist als die von 𝜈 und𝑤 . Analog nennen wir in diesem Fall das Dreieck ein mittleres Dreieck
von (𝑢,𝑤) und ein oberes Dreieck von (𝑢, 𝜈).

Ein Straßennetz kann als gerichteter Graph modelliert werden. Jeder Straßenabschnitt wird
dabei als gerichtete Kante dargestellt und die Endpunkte der Segmente als die Knoten. Eine
Straße, die in beide Richtungen befahrbar ist, wird als zwei Einbahnstraßen in entgegenge-
setzten Richtungen modelliert, es existiert dann also eine Kante und ihre Gegenkante.
Ein zusammenhängender DAG 𝑇 = (𝑉 , 𝐸) mit einem Wurzelknoten 𝑤 ∈ 𝑉 heißt Baum,

falls 𝑤 Endpunkt keiner Kante ist, und alle übrigen Knoten 𝜈 ∈ 𝑉 \ {𝑤} Endpunkt genau
einer Kante in 𝐸 sind. Für einen Baum wird seine Tiefe definiert als die maximale Pfadlänge
ab Wurzel𝑤 . Knoten, die keine ausgehenden Kanten haben, werden Blätter genannt.
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3 CCH-Algorithmus

Der Customizable Contraction Hierarchies (CCH) Algorithmus ist eine Technik, kürzeste
Wege in einem Straßengraphen effizient für viele Anfragen in kurzer Zeit zu berechnen
[DSW16]. Dazu bekommt der Algorithmus als Eingabe einen gerichteten und gewichteten
Graphen 𝐺 = (𝑉 , 𝐸, 𝑐). Bei 𝑐 : 𝐸 → ℝ≥0 handelt es sich um eine Kostenfunktion auf den
Kanten. Für eine gegebene Metrik auf den Knoten sollen die Kosten einer Kante (𝑢, 𝜈) ∈ 𝐸 dem
Abstand zwischen den Knoten 𝑢 und 𝜈 in der Metrik entsprechen. In dieser Arbeit verwenden
wir als Metrik die Reisezeit zwischen Knoten, es sind aber auch andere Metriken wie z. B. der
euklidische Abstand möglich.

In der Praxis beobachtet man, dass sich die Topologie von Straßennetzen nur selten ändert.
Allerdings variiert die Reisezeit zwischen zwei Orten zu verschiedenen Tageszeiten zum Teil
erheblich. Aus diesem Grund besteht der CCH-Algorithmus aus insgesamt drei Phasen: Die
erste Phase ist Metrik-unabhängig, in ihr werden Vorberechnungen auf der Topologie des
Graphen ausgeführt. Nachdem sich die Topologie nur selten ändert, wird diese Phase nur
selten durchlaufen und hat daher geringen Einfluss auf die durchschnittliche Laufzeit. In
einer parallelen Implementierung dieser Phase liegen übliche Laufzeiten auf großen Stra-
ßengraphen im Bereich von mehreren Minuten, bei einer sequentiellen Implementierung
wird dagegen deutlich mehr Zeit benötigt [DSW16 | Blä+25]. In dieser Arbeit verwenden wir
DIMACS Straßengraphen von Europa, mit ca. 18 000 000 Knoten, er dient uns als Beispiel
einer großen Instanz [DGJ]. Die zweite Phase, die Customization, ist eine Metrik-abhängige
Vorberechnungsphase und soll schnell auf Änderungen in der Metrik reagieren können. Da
die Reisezeit, welche wir als Metrik nutzen, sich häufig ändert, wird diese Phase oft ausge-
führt. Aus diesem Grund ist eine kurze Laufzeit in dieser Phase wichtiger als in der ersten
Phase. Selbst in sequentiellen Implementierungen liegen hier übliche Laufzeiten auf großen
Instanzen im Bereich einiger Sekunden [DSW16 | Blä+25]. Abschließend werden in der Query-
Phase die Kosten von 𝑠–𝑡–Pfaden berechnet. Auch sequentiell sollte ein Query in unter einer
Millisekunde berechnet werden können [DSW16 | Blä+25].

3.1 Struktur des Algorithmus

In diesem Abschnitt beschreiben wir grob die Struktur des CCH-Algorithmus in Anlehnung
an Bläsius et al. [Blä+25]. In den folgenden Abschnitten dieses Kapitels erläutern wir dann
weitere Details zu den einzelnen Phasen des Algorithmus.

Ziel der Vorberechnungen ist es, Kanten so einzufügen, dass es für jeden 𝑠–𝑡–Pfad ausreicht,
nur Knoten mit höherer Ordnung als 𝑠 oder 𝑡 zu betrachten. Dadurch wird die Anzahl an
Knoten, welche wir in der Query-Phase besuchen müssen, stark reduziert. Die in den Vorbe-
rechnungen neu eingefügten Kanten nennen wir Shortcuts und den resultierenden Graphen
𝐺 ′ Augmented Graph. Die Queries bearbeiten wir dann auf dem neu berechneten Augmented
Graph 𝐺 ′.

Die Metrik-unabhängige Phase zu Beginn lässt sich in zwei Aufgaben unterteilen: Zunächst
berechnen wir eine Totalordnung 𝜋 : 𝑉 → {0, . . . , |𝑉 | − 1} der Knoten. Diese heißt Nested
Dissection Ordnung und wird von uns im Folgenden kurz als Ordnung bezeichnet [SS15]. In
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3 CCH-Algorithmus

dieser Reihenfolge werden die Knoten in den weiteren Schritten des CCH-Algorithmus abge-
arbeitet. In der Contractionwird anschließend für jeden Knoten 𝜈 ∈ 𝑉 seine Nachbarschaft mit
höherer Ordnung als 𝜈 zu einer Clique vervollständigt. Danach werden in der Customization
neue Kantengewichte für den Augmented Graph berechnet.
Eine Kante (𝑢, 𝜈) ∈ 𝐸 heißt aufwärts gerichtet, falls 𝜋 (𝑢) < 𝜋 (𝜈) gilt, andernfalls ist

sie nach unten gerichtet. Ausgehend von 𝐺 ′ definieren wir dann die Auf- und Abwärtsgra-
phen 𝐺↑ bzw. 𝐺↓, als die DAGs, in denen alle Kanten aus 𝐺 ′, die aufwärts bzw. abwärts
gerichtet sind, übernommen werden. Um die Kosten eines 𝑠–𝑡–Pfades zu berechnen, ist es
dann ausreichend, eine Aufwärtssuche in 𝐺↑ von 𝑠 und eine in 𝐺↓ von 𝑡 ausgehend durch-
zuführen. Um die Queries effizient berechnen zu können, benötigen wir einen Elimination
Tree. Dieser speichert für jeden Knoten 𝜈 ∈ 𝑉 seinen Parent. Der Parent von 𝜈 wird dabei
definiert als der eindeutige Knoten 𝑝 mit der niedrigsten Ordnung unter allen Nachbarn
von 𝜈 in 𝐺 ′ mit höherer Ordnung als 𝜈 . Wir schreiben dies als parent(𝜈) = 𝑝 und es gilt
parent(𝜈) = argmin{𝜋 (𝑤) | 𝑤 ∈ 𝑁𝐺 ′ (𝜈), 𝜋 (𝑤) > 𝜋 (𝜈)}.

In Abschnitt 3.5 stellen wir fest, dass die Ordnung einen großen Einfluss auf die Struktur des
Elimination Tree und die Performance des gesamten Algorithmus hat. Damit wir sowohl die
Vorberechnungen als auch die Queries effizient berechnen können, müssen wir eine Ordnung
finden, die zu einem balancierten Elimination Tree führt.

3.2 Metrik-unabhängige Vorberechnungen

Wie oben erwähnt besteht die Metrik-unabhängige Vorberechnungsphase aus zwei Teilen:
Zunächst berechnen wir eine Totalordnung 𝜋 der Knoten, danach fügen wir in der Con-
traction die Shortcuts ein. Dabei interessieren wir uns in der gesamten Phase nur für die
Topologie des Graphen. Daher sind hier die Richtungen und Gewichte der Kanten nicht
relevant [DSW16 | Blä+25].
Die Ordnung hat einen großen Einfluss auf die Performance der folgenden Schritte. Bei

einer schlechten Ordnung kann der Elimination Tree zu tief werden, wodurch die Query-
Berechnung ineffizient wird. Außerdem können die Vorberechnungen deutlich länger dauern,
da zu viele Shortcuts eingefügt werden. Des Weiteren kann es durch die vielen Kanten auch
zu Speicherprobleme kommen [Blä+25]. In Abschnitt 3.2.1 wird eine Variante beschrieben,
um eine gute Ordnung zu berechnen.

Auffällig ist, dass das Berechnen der Ordnung deutlich teurer ist, als die Contraction. Eine
gute Ordnung zu berechnen dauert mehrere Minuten, die Contraction ist im Gegensatz dazu
nach mehreren Sekunden abgeschlossen [Blä+25].

3.2.1 Inertial Flow

Der Inertial-Flow-Algorithmus ist eine Technik, um gute Ordnungen effizient zu berechnen
[SS15]. Eine Beobachtung aus der Praxis ist, dass nicht jede Straße gleich wichtig ist: Eine
Autobahn oder große Brücke ist z. B. deutlich wichtiger als ein Feldweg. Wenn eine Route
beispielsweise einen Fluss quert, so muss sie eine der Brücken über den Fluss nutzen. Die
Fragen, wie man zu der Brücke kommt, und wie man danach weiterfährt, sind unabhängig.
Daraus können wir ableiten, dass manche Knoten in einem Straßengraphen wichtiger sind
als andere. Kanten, die eine Route partitionieren, nennen wir wichtige Kanten und deren
Endpunkte sollen hohe Ordnungen bekommen. Man kann nun so lange wichtige Knoten
löschen, bis der Graph in mehrere Zusammenhangskomponenten zerfällt. Die gelöschten
Knoten bilden einen Separator 𝑆 ⊊ 𝑉 und alle Knoten aus 𝑆 erhalten die höchsten Ordnungen.
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3.2 Metrik-unabhängige Vorberechnungen

Ordnung

Abbildung 3.1: Schematisches Beispiel für die Berechnung einer Nested Dissection Ordnung
bis zum zweiten Rekursionsschritt. Links schematisch ein Graph mit einem Separator auf
höchster Ebene in violett, der den Graphen in einen roten und einen blauen Teil spaltet. Die
Separatoren in den jeweiligen Teilen sind wieder in kräftigem rot bzw. blau gefärbt. Rechts
wird gezeigt, wie die einzelnen Teile in die Ordnung zusammengefügt werden. Der rote Teil hat
die niedrigsten Ordnungen, anschließend der rote Separator die nächst höheren, anschließend
der gesamte blaue Teil gefolgt von seinem Separator. Der violette Separator auf höchster
Ebene erhält die höchsten Ordnungen.

In jeder der neu entstandenen Zusammenhangskomponenten 𝑉1, . . . ,𝑉𝑘 ⊊ 𝑉 \ 𝑆 kann dann
rekursive eine Ordnung für die einzelnen Komponenten berechnet werden. Da die Komponen-
ten unabhängig voneinander sind, ist es für den Algorithmus irrelevant, auf welche Arten die
Teilordnungen zusammengefügt werden [SS15]. Zur besseren Übersicht werden wir in dieser
Arbeit die einzelnen Teile strikt hintereinander einfügen. Die erste Komponente erhält also die
niedrigsten Ordnungen, die zweite die nächst höheren und so weiter, dies wird schematisch
auch in Abbildung 3.1 gezeigt.
Es gilt also, kleine, balancierte Separatoren auf dem Graphen zu finden. Dieses Problem

ist im Allgemeinen allerdings NP-vollständig [GJS76]. Straßennetze haben jedoch natürliche
Barrieren wie Flüsse oder Gebirge. Solche Grenzen bilden kleine, balancierte Separatoren,
sodass die Berechnung auf realistischen Straßengraphen effizienter ist [SS15].

Zur Berechnung eines solchen Separators wird ein kleiner Schnitt 𝐶 ⊊ 𝑉 auf dem Graphen
berechnet. Daraus kann anschließend die Schnittkantenmenge 𝑋 ⊊ 𝐸 berechnet werden, die
genau die Kanten (𝑢, 𝜈) ∈ 𝐸 enthält, bei denen 𝑢 ∈ 𝐶 und 𝜈 ∉ 𝐶 gilt oder umgekehrt. Aus 𝑋
können schließlich zwei Separatoren 𝑆1, 𝑆2 ⊊ 𝑉 berechnet werden, indem für jede Kante aus
𝑋 der Endpunkt, welcher in 𝐶 liegt, in 𝑆1 eingefügt wird und der andere in 𝑆2 [SS15].

Um den Schnitt 𝐶 zu erhalten, wird ein Flussnetzwerk gelöst. Dafür wird der Graph auf
eine Gerade projiziert und ein maximaler Fluss entlang der Geraden gesucht. Dabei handelt es
sich bei der Quelle um den ersten und bei der Senke um den letzten Knoten in der Projektion.
Zwischen diesen Knoten wird dann ein maximaler Fluss mittels Dinics Algorithmus [Din70]
oder eines anderen Max-Flow-Algorithmus berechnet. Kanten aus dem Flussnetzwerk, die
keinen weiteren Fluss transportieren können, also saturiert sind, entsprechen dann den
wichtigsten Kanten im Straßengraphen. Der Schnitt 𝐶 enthält schließlich alle Knoten, die von
der Quelle aus über nicht saturierte Kanten erreichbar sind. Nach dem Max-Flow-Min-Cut-
Theorem handelt es sich bei 𝐶 um einen minimalen 𝑆–𝑇 -Schnitt, also ein Schnitt, bei dem
sich die Quelle in 𝐶 und die Senke in 𝑉 \𝐶 befindet [EFS56].

Das oben beschriebene wird für verschiedene Geraden durchgeführt, z. B. für die Nord-Süd-
und Ost-West-Achsen, und aus allen Optionen wird der kleinste Separator gewählt. Auf jeder
Komponente, in die der Graph durch Herausschneiden des Separators zerfällt, wird rekursiv
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Abbildung 3.2: Beispiel einer Contraction, der Knotenname entspricht auch seiner Ordnung
(𝜋 = 𝑖𝑑). Links der Originalgraph, in der Mitte wurde der Knoten „1“ fertig kontrahiert und
rechts der Graph nach der Abarbeitung von Knoten „2“. Letzterer ist gleichzeitig auch der
fertig kontrahierte Graph. Im aktuellen Schritt neu eingefügte Shortcuts werden rot dargestellt,
alte Shortcuts blau.

wieder ein solcher Separator berechnet. Schlussendlich werden die Ordnungen der Teilgraphen
zusammengefügt. Dies geht z. B. indem die erste Komponente die niedrigsten Ordnungen
bekommt, anschließend erhält die nächste Komponente die nächst höheren Ordnungen
und so weiter, bis alle Teilordnungen zusammengefügt wurden. Als Letztes werden den
Separatorknoten die höchsten Ordnungen zugewiesen. Damit der oben berechnete maximale
Fluss nicht durch die geringen Knotengrade des ersten und letzten Knotens beschränkt ist,
fasst der Algorithmus die ersten und letzten 30 % der Knoten zur Quelle bzw. Senke zusammen.
Auf diesem Graphen wird dann der maximale Fluss zwischen Quelle und Senke berechnet.

3.2.2 Contraction

In der Contraction fügen wir die Shortcuts in den Graphen ein und berechnen somit die Topo-
logie des Augmented Graphs 𝐺 ′ [DSW16]. Am Ende soll für jeden 𝑠–𝑡–Pfad 𝑃 = (𝜈1, . . . , 𝜈𝑘 )
in 𝐺 ′ mit 𝑠 = 𝜈1 und 𝑡 = 𝜈𝑘 ein 𝑖 ∈ {1, . . . , 𝑘} existieren, sodass 𝜋 (𝜈1) < · · · < 𝜋 (𝜈𝑖) sowie
𝜋 (𝜈𝑖) > · · · > 𝜋 (𝜈𝑘 ) gilt.
Wie in Abbildung 3.2 werden dazu die Knoten in aufsteigender Reihenfolge gemäß der

Ordnung durchlaufen. Für jeden Knoten 𝜈 ∈ 𝑉 wird seine Nachbarschaft mit höherer Ordnung
als 𝜈 zu einer Clique vervollständigt. Dabei können Shortcuts auch zu weiteren Shortcuts
führen. Es macht also einen Unterschied, in welcher Reihenfolge die Knoten durchlaufen
werden. In Abbildung 3.2 wird z. B. der Shortcut (2, 4) nur wegen des Shortcuts (1, 2) einge-
fügt. Wir bezeichnen mit 𝑆 die Menge aller Shortcuts und definieren anschließend die neue
Kantenmenge 𝐸′ = 𝐸 ∪ 𝑆 für den Augmented Graph 𝐺 ′. Insgesamt kann die Contraction in
O( |𝑉 | + |𝐸′ |) berechnet werden [DSW16].
Der in dieser Arbeit implementierte Algorithmus verwendet verschiedene, optimierte

Implementierungsdetails. Diese wurden von Bläsius et al. [Blä+25] zusammengefasst.
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Abbildung 3.3: Beispiel einer Customization, der Knotenname entspricht auch seiner Ord-
nung (𝜋 = 𝑖𝑑). Links ist der kontrahierte Originalgraph. In der Mitte wird das Dreieck 0, 1, 2
bearbeitet, das aktuelle Dreieck sowie das sich ändernde Kantengewicht ist rot eingefärbt.
Rechts der fertige Augmented Graph.

3.3 Customization

In der Customization berechnen wir nun die neuen Kantengewichte 𝑐′ : 𝐸′ → ℝ≥0. Dabei
werden folgende drei Bedingungen an die neuen Gewichte gestellt: Das neue Gewicht einer
Kante (𝑢, 𝜈) ∈ 𝐸 soll mindestens dem Abstand zwischen 𝑢 und 𝜈 gemäß unserer Metrik
entsprechen. Für alle Originalkanten darf das neue Gewicht höchstens so hoch wie das
alte Gewicht sein. Und für jedes Dreieck {𝑢, 𝜈,𝑤} ⊆ 𝑉 soll die untere Dreiecksungleichung
gelten [Blä+25]. Für eine Kante (𝑢, 𝜈) ∈ 𝐸 wird dazu 𝑐′((𝜈,𝑤)) auf das Minimum von den
ursprünglichen Kosten 𝑐 ((𝜈,𝑤)) und den Kosten über 𝑢, also 𝑐′((𝜈,𝑢)) + 𝑐′((𝑢,𝑤)) gesetzt.
Auch hier ist die Reihenfolge relevant, in der die Dreiecke durchlaufen werden, da ansonsten
Dreiecke mehrfach betrachtet werden müssen. Es gibt jedoch eine Reihenfolge, in der jedes
Dreieck höchstens einmal betrachtet werden muss [Blä+25]. Nach der Customization können
wir den Augmented Graph definieren als𝐺 ′ = (𝑉 , 𝐸′, 𝑐′). Die Laufzeit der Customization liegt
dann in O( |𝑉 | · 𝑑2𝜈 ), wobei 𝑑𝜈 den maximalen Knotengrad in 𝐺 ′ bezeichnet.
Auch hier verwenden wir wieder verschiedene optimierte Implementierungsdetails, die

Buchhold et al. [BSW19] beschrieben haben.

3.4 Queries

Nachdem die Vorberechnungen abgeschlossen sind, können Nutzende konkrete 𝑠–𝑡–Pfad
Anfragen stellen und erhalten als Rückgabe die Kosten des Pfades. Die schnellste Variante dafür
ist die Elimination-Tree-Query-Technik [DSW16]. Dies geschieht wie oben schon erwähnt
auf dem Augmented Graph 𝐺 ′ und als zusätzliche Datenstruktur benötigen wir nur der
Elimination Tree. Diesen können wir einmal am Ende der Contraction berechnen, da er sich
durch die Customization oder Query-Berechnung nicht ändert [Blä+25].
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3 CCH-Algorithmus

Abbildung 3.4: Beispiel eines Elimination Trees. Die Wurzel hat die höchste Ordnung.

Für die Berechnung eines 𝑠–𝑡–Pfades wird der Elimination Tree von 𝑠 und 𝑡 nach oben bis
zurWurzel durchlaufen. Für jeden Knoten 𝜈 auf dem Pfad zurWurzel werden alle ausgehenden
Kanten (𝜈,𝑢) von 𝜈 in𝐺↑ bzw.𝐺↓ relaxiert und die Kosten zu von 𝑠 bzw. 𝑡 nach 𝑢 gespeichert.

Buchhold et al. [BSW19] haben auch für Queries einige optimierende Implementierungsde-
tails vorgestellt, die wir in dieser Arbeit verwenden.

3.5 Elimination Tree

Wie bei der Beschreibung der Queries in Abschnitt 3.4 erwähnt, ist der Elimination Tree eine
wichtige Datenstruktur für die Query-Berechnung. Daher werden wir uns in diesem Abschnitt
einige Eigenschaften des Elimination Trees ansehen. Abbildung 3.4 zeigt beispielhaft den
Elimination Tree des Karlsruher Stadtteils Stupferich. Für einen Knoten 𝑥 ∈ 𝑉 fassen wir alle
Knoten, die im Elimination Tree auf dem Pfad von 𝑥 zur Wurzel liegen, zum Knotensuchraum
von 𝑥 zusammen und schreiben diesen als 𝑆𝑉 (𝑥) ⊆ 𝑉 . Alle Kanten, die auf demWeg von 𝑥 zur
Wurzel relaxiert werden, fassen wir zum Kantensuchraum 𝑆𝐸 (𝑥) ⊆ 𝐸 von 𝑥 zusammen. Die
Suchräume sind ein Maß für die Effizienz der Queries, je größer die Suchräume sind, desto
langsamer wird die Berechnung der Queries [Blä+25].
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3.5 Elimination Tree

Wir nennen einen Knoten Kreuzungsknoten, falls er im Elimination Tree mindestens zwei
Kinder hat. Alle Knoten von der Wurzel bis zum ersten Kreuzungsknoten im Elimination Tree
sind Teil des ersten Separators. Danach spaltet sich der Elimination Tree in die jeweiligen
Zusammenhangskomponenten, in die der Graph durch den Separator zerfällt. Dieses Schema
setzt sich fort: Die Kinder eines Kreuzungsknotens bis zum nächsttieferen Kreuzungsknoten
gehören zu je einem Separator [Blä+25]. Um die Kosten eines 𝑠–𝑡–Pfades zu berechnen, muss
der Elimination Tree, wie in Abschnitt 3.4 beschrieben, von 𝑠 und 𝑡 bis zur Wurzel durchlaufen
werden [Blä+25].

Je tiefer der Elimination Tree ist, desto größer werden die Knotensuchräume von 𝑠 und 𝑡 ,
somit dauert die Berechnung eines Query länger. Fügt man in der Contraction dagegen viele
Shortcuts hinzu, wachsen die Kantensuchräume. Dies beeinträchtigt die Querylaufzeiten eben-
falls. Um die Laufzeit der Queries möglichst gering zu halten, dürfen also sowohl die Knoten-
als auch die Kantensuchräume nicht zu groß werden [DSW16 | Blä+25]. Ein anderes Problem
zu vieler Shortcuts ist, dass die Vorberechnungen deutlich länger dauern können. Außerdem
kann es, selbst auf Hochleistungsrechnern, durch die vielen Kanten zu Speicherproblemen
kommen [Blä+25].
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4 Lösungsansätze

Grundsätzlich ist der CCH-Algorithmus, wie er in Kapitel 3 beschrieben wurde, bekannt.
Ziel dieser Arbeit ist es aber, den Einfluss von neuen Kanten auf den CCH Algorithmus
zu diskutieren. Wenn wir eine neue Kante (𝑥,𝑦) in den Graphen einfügen, ändern wir die
Topologie des Graphen und nach der Definition des CCH-Algorithmus müssen wir alle Phasen
neu durchlaufen [DSW16]. Eine neue Ordnung zu berechnen ist aber sehr teuer, sodass
wir diesen Schritt vermeiden möchten. Die restlichen Vorberechnungen, die Contraction
und Customization, sind dagegen günstig und eine erneute Ausführung dieser Schritte hat
asymptotisch keine Auswirkungen auf die Gesamtlaufzeit [Blä+25 | DSW16].
Die Ordnung beeinflusst zwar nicht die Korrektheit der Queries, wohl aber die Effizienz

des Algorithmus [Blä+25]. Das heißt auf jeder Ordnung, und insbesondere der ursprüngli-
chen, werden die Queries korrekt berechnet. Allerdings leidet die Performance des gesamten
Algorithmus und besonders der Queries unter einer schlechten Ordnung [Blä+25].

In diesem Kapitel beschreiben wir verschiedene Varianten, wie die Ordnung an die neue
Kante angepasst werden kann. Anschließend führen wir die Contraction und Customization
gemäß der neuen Ordnung durch. In Kapitel 5 analysieren wir schließlich die Auswirkungen
von unseren Optimierungen. Wir bezeichnen mit (𝑥,𝑦) stets die neu eingefügte Kante und
mit 𝜋 die alte Ordnung.

4.1 Shortcut-Kante einfügen

Sei (𝑥,𝑦) ein Shortcut. Wenn wir diese Kante in den Ausgangsgraphen neu einfügen, ist die
alte Ordnung für den neuen Graphen nach Lemma 4.1 ebenfalls optimal. Aus diesem Grund
übernehmen wir immer, wenn eine Shortcut-Kante in den Graphen eingefügt wird, die alte
Ordnung und verfahren gemäß Abschnitt 4.3.

Lemma 4.1: Für einen Graphen𝐺 = (𝑉 , 𝐸) sei𝐺 ′ = (𝑉 , 𝐸′) der kontrahierte Graph bezüglich
einer Ordnung 𝜋 und 𝑒 ∈ 𝐸′ \𝐸 ein Shortcut. Dann wird der Graph (𝑉 , 𝐸 ∪ {𝑒}) mit der Ordnung
𝜋 ebenfalls zu 𝐺 ′ kontrahiert.

Beweis. Durch eine neue Kante im Ausgangsgraphen wird die Nachbarschaft der Knoten
höchstens vergrößert. Da für einen Knoten 𝜈 ∈ 𝑉 seine Nachbarschaft mit höherer Ordnung
in𝐺 ′ schon eine Clique ist, kann keine weitere Kante mehr hinzugefügt werden. Ist 𝑒 bereits
im Ausgangsgraphen enthalten, muss die Kante in der Contraction nicht mehr hinzugefügt
werden, dies beeinflusst aber nicht die Cliqueneigenschaft. Da die Ordnung 𝜋 nicht geändert
wird, bleibt der Graph nach der Contraction insgesamt unverändert.

4.2 Allgemeine Ziele

Nach Abschnitt 4.1 können wir ohne Beschränkung der Allgemeinheit davon ausgehen, dass
es sich bei der neuen Kante 𝑒 = (𝑥,𝑦) nicht um einen Shortcut handelt. Durch das Einfügen
der Kante ändern wir also die Topologie des Augmented Graphs. Wie oben schon erwähnt,
müssten wir nach der Definition des CCH-Algorithmus die Ordnung komplett neu berechnen.
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4 Lösungsansätze

Sei 𝐺 der ursprüngliche Graph und 𝐺∗ der Graph, in den die neue Kante eingefügt wurde.
Wir definieren, dass die Kante (𝑥,𝑦) einen Separator schneidet, falls 𝑥 und 𝑦 nicht in der
gleichen Komponente sind, nachdem der Separator herausgeschnitten wurde. Dabei ist es
im Allgemeinen möglich, dass entweder 𝑥 oder 𝑦 teil des Separators ist. Vergleichen wir
die Berechnung der Ordnung auf beiden Graphen, gibt es im ersten Rekursionsschritt zwei
Möglichkeiten: Entweder liegt 𝑒 komplett innerhalb einer Komponente oder 𝑒 schneidet
den gefundenen Separator. Im ersten Fall wird der Algorithmus in 𝐺∗ denselben Separator
finden wie in 𝐺 . Das bedeutet, dass sich die Ordnung in den Komponenten ohne 𝑒 sowie im
gefundenen Separator nicht verändert. Änderungen können also nur in der Komponente mit
der neuen Kante auftreten. Dieses Argument setzt sich rekursiv so lange fort, bis die neue
Kante erstmalig einen gefundenen Separator schneidet, dann befinden wir uns im zweiten
Fall. Nur in diesem Teil des Graphen unterschieden sich die gefundenen Separatoren von 𝐺
und𝐺∗ und im Allgemeinen wird sich die Ordnung für die gesamte Komponente grundlegend
ändern.

Wir sehen also ein, dass es ausreicht, die Ordnung lokal an die neue Kante anzupassen. Ziel
ist es daher, die Ordnung so zu verändern, dass sowohl die Vorberechnungen, als auch die
Queries möglichst effizient berechnet werden können.

4.3 Alte Ordnung übernehmen

Damit die Vorberechnungen möglichst schnell sind, ist ein trivialer Ansatz, die alte Ordnung
zu übernehmen. In diesem Fall müssen wir nur die Contraction und Customization erneut
durchführen. Wie oben erwähnt, werden die Queries dadurch weiterhin korrekt berechnet.
Nachdem die Ordnung 𝜋 aber nicht auf die neue Kante optimiert wurde, erwarten wir, dass
die Querylaufzeiten deutlich langsamer sind, als bei den folgenden Varianten.

4.4 Ordnung vom Teilbaum neu berechnen

Eine entgegengesetzte Strategie besteht darin, ausschließlich die Querylaufzeiten zu optimie-
ren. Dazu berechnen wir eine neue Ordnung 𝜋𝑟 . Wie in Abschnitt 4.2 ausgeführt, reicht es,
eine neue, optimale Ordnung für die Komponente 𝐾 ⊆ 𝑉 zu berechnen, in der die neue Kante
(𝑥,𝑦) das erste Mal einen Separator schneidet. In 𝐾 wird also im ursprünglichen Graphen das
erste Mal ein Separator 𝑆 ⊊ 𝐾 gewählt, der 𝑥 und 𝑦 in unterschiedliche Komponenten teilt.
Im Elimination Tree ist 𝑆 der niedrigste Separator, der sowohl auf dem Pfad von 𝑥 , als auch
von 𝑦 aus zur Wurzel liegt. Die Knoten aus 𝐾 sind dann genau die Knoten, die im Elimination
Tree in dem, an 𝑆 gewurzelten Teilbaum liegen. In 𝜋𝑟 berechnen wir dann für alle Knoten aus
𝐾 eine neue Ordnung gemäß dem Inertial-Flow-Algorithmus aus Abschnitt 3.2.1. Alle übrigen
Knoten aus dem Graphen behalten ihre ursprüngliche Ordnung.
Um alle Knoten aus 𝐾 effizient zu berechnen, suchen wir zunächst den höchsten Separa-

torknoten 𝑡 ∈ 𝑉 von 𝑥 und 𝑦. Dabei handelt es sich um den Knoten aus 𝑆 mit der höchsten
Ordnung in 𝜋 . Für die Berechnung von 𝑡 benötigen wir zuvor den kleinsten gemeinsamen
Vorfahren (lca) von 𝑥 und 𝑦 und nennen diesen ℓ . Dieser ist definiert, als der Knoten ℓ ∈ 𝑉 mit
kleinster Ordnung in 𝜋 , der sowohl in dem Pfad von 𝑥 als auch von 𝑦 zur Wurzel enthalten
ist. Von ℓ aus durchlaufen wir den Elimination Tree weiter nach oben und der erste Knoten
mit einem Geschwisterknoten ist der höchste Separatorknoten ℓ . Der lca sowie der höchste
Separatorknoten sind beide eindeutig. Das Beispiel in Abbildung 4.1 zeigt schematisch, wie
die Ordnung für eine neue Kante (𝑥,𝑦) berechnet wird.
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4.4 Ordnung vom Teilbaum neu berechnen
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Abbildung 4.1: Schematische Übersicht, wie die Ordnung für eine neue Kante (𝑥,𝑦) neu
berechnet wird. Oben der Elimination Tree des Graphen, in dem die Kante (𝑥,𝑦) rot einge-
zeichnet wurde. Unten die neu berechnete Ordnung 𝜋𝑟 . Der höchste Separator, der von (𝑥,𝑦)
geschnitten wird, besteht aus den Knoten {ℓ, 𝑡}. Gleichzeitig handelt es sich ℓ um den lca von
𝑥 und 𝑦, und bei 𝑡 um Knoten mit der höchsten Ordnung aus dem Separator. Die Ordnung
wird für alle blauen Knoten neu berechnet, alle grauen Knoten behalten ihre ursprüngliche
Ordnung.
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Das Neuberechnen der Ordnung für einen Teilbaum ist allerdings teuer. Es gibt verschie-
dene Algorithmen, um eine Nested Dissections Ordnung zu berechnen, ein Beispiel ist der
Inertial-Flow-Algorithmus aus Abschnitt 3.2.1. Alle bekannten Algorithmen für dieses Problem
benötigen aber auf großen Instanzen mehrere Minuten [SS15 | Blä+25]. Falls die neue Kante
den höchsten Separator schneidet, muss eine neue Ordnung für den gesamten Graphen berech-
net werden. Folglich ist die Laufzeit dieser Variante beschränkt durch die initiale Berechnung
der Ordnung auf dem Graphen. Für kleine Teilbäume wird die Laufzeit der Vorberechnung
noch durch die Contraction und Customization dominiert. Wenn der Teilbaum aber groß
genug wird, dominiert das Neuberechnen die Laufzeit. Allerdings erwarten wir, dass die so
berechnete Ordnung sehr gut auf die neue Kante optimiert ist. Daher gehen wir davon aus,
dass diese Variante zu den schnellsten Querylaufzeiten führt.

4.5 Ordnung anpassen

Damit wir sowohl in der Vorberechnung als auch in den Queries schnelle Ergebnisse erhalten,
können wir als Kompromiss die Ordnung von einem der beiden Endpunkte der neuen Kante
erhöhen. Wie oben sei 𝐾 ⊆ 𝑉 die Komponente mit zugehörigem Separator 𝑆 ⊊ 𝐾 , in der
die neue Kante (𝑥,𝑦) erstmals den gewählten Separator schneidet. Außerdem sei 𝐺 wieder
der originale Graph und 𝐺∗ der Graph, in dem die Kante (𝑥,𝑦) eingefügt wurde. Für die
neue Ordnung 𝜋𝑎 fügen wir entweder 𝑥 oder 𝑦 zu dem Separator 𝑆 hinzu und erhöhen
dadurch die Ordnung des entsprechenden Knotens. Nachdem 𝑆 ein Separator für 𝐾 in 𝐺
ist, sind sowohl 𝑆 ∪ {𝑥}, als auch 𝑆 ∪ {𝑦} Separatoren für 𝐾 in 𝐺∗. Aus dem Max-Flow-
Min-Cut-Theorem folgt, dass der minimale 𝑠–𝑡–Cut in einem Graphen durch eine weitere
Kante nicht kleiner werden kann [EFS56]. Folglich kann auch der minimale Separator für 𝐾
in 𝐺∗ nicht kleiner werden als 𝑆 . Insgesamt erhalten wir also durch die Anpassung in der
Komponente einen Separator, der maximal ein Knoten größer ist, als ein optimaler Separator.
Innerhalb der einzelnen Komponenten, in die 𝐾 durch den neuen Separator zerfällt, bleiben
die Separatoreigenschaften auf der jeweiligen Ebene erhalten. Unsere Aussagen beziehen
sich allerdings auf die Optimalwerte, wie in Abbildung 4.2 kann es passieren, dass in einem
optimalen Separator andere Knoten enthalten sind, als in unserem angepassten Separator.

Der verbleibende Freiheitsgrad bei dieser Variante ist, welchem der beiden Endpunkte wir
eine höhere Ordnung gebenmöchten und wir bezeichnen den gewählten Knotenmit 𝑠 ∈ {𝑥,𝑦}.
Mögliche Strategien sind immer den Knoten mit aktuell höherer bzw. niedrigerer Ordnung
in 𝜋 zu wählen sowie eine zufällige Wahl zu treffen. Den Einfluss der Wahl evaluieren wir
experimentell in Abschnitt 5.2. Wir erwarten aber, dass sich die Strategien nur geringfügig
unterscheiden.
Für die konkrete Berechnung der neuen Ordnung 𝜋𝑎 benötigen wir wieder den lca ℓ von

𝑥 und 𝑦. Anschließend möchten wir dem Knoten 𝑠 die nächst niedrigere Ordnung relativ
zu ℓ geben. Für alle Knoten 𝜈 ∈ 𝑉 mit 𝜋 (𝑠) < 𝜋 (𝜈) < 𝜋 (ℓ) reduzieren wir die Ordnung von
𝜈 in 𝜋𝑎 um eins. Schließlich bekommt 𝑠 die Ordnung 𝜋𝑎 (𝑠) = 𝜋 (𝑙) − 1. Alle übrigen Knoten
behalten ihre ursprüngliche Ordnung bei. Abbildung 4.3 zeigt die Anpassung der Ordnung
schematisch.
Diese Anpassung der Ordnung ist günstig. Die Laufzeit, um den lca zweier Knoten zu

berechnen, ist nach oben beschränkt durch die Tiefe des Elimination Trees. Im schlimmsten
Fall handelt es sich beim Elimination Tree um einen Pfad und wir müssen somit linear viele
Knoten betrachten. Allerdings erwarten wir, dass der Elimination Tree balanciert ist, dann ist
seine Tiefe logarithmisch in der Anzahl an Knoten. Im Worst Case muss danach die Ordnung
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4.5 Ordnung anpassen

Abbildung 4.2: Beispiel, in dem der von uns angepasste Separator andere Knoten als ein
optimaler Separator enthält. Die neue Kante ist orange gestrichelt dargestellt. Der vom Inertial-
Flow-Algorithmus ursprünglich gewählte, optimale Separator ist in Blau und durchgehend
gezeichnet, der zum Separator hinzugefügte Knoten ist blau gestrichelt. Die roten Knoten
bilden einen optimalen Separator, der von unserem vollständig disjunkt ist.

s

s

`

Ordnung

`
Abbildung 4.3: Schematische Übersicht, wie die Ordnung für eine neue Kante (𝑥,𝑦) angepasst
wird. Oben die ursprüngliche Ordnung 𝜋 , unten die angepasste Ordnung 𝜋𝑎 . Wir geben dem
roten Knoten 𝑠 ∈ {𝑥,𝑦} eine höhere Ordnung und fügen 𝑠 dazu direkt vor dem violetten lca ℓ
von 𝑥 und 𝑦 ein. Die Ordnung der blauen Knoten wird somit um eins reduziert. Die Ordnung
der grauen Knoten bleibt unverändert.

von allen Knoten in dem Teilbaum unter dem lca angepasst werden. Das sind aber maximal
linear viele, wenn der lca eine sehr hohe Ordnung hat, andernfalls deutlich weniger. Insgesamt
liegt die Laufzeit dieser Variante also inO( |𝑉 |) und wird somit durch die folgende Contraction
und Customization dominiert. Es ist also deutlich schneller, die Ordnung anzupassen, als
sie für einen Teilbaum neu zu berechnen. Unsere Erwartung ist, dass die Queries durch die
Anpassung schneller bearbeitet werden, im Vergleich zur alten Ordnung (Abschnitt 4.3), aber
langsamer verglichen mit einer Neuberechnung der Komponente (Abschnitt 4.4).
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5 Evaluation

In diesem Kapitel vergleichen wir die in Kapitel 4 vorgestellten Optimierungen. Dazu be-
rechnen wir zunächst eine initiale Ordnung 𝜋 . Anschließend fügen wir eine neue Kante der
Länge 𝑑 in den Graphen ein und berechnen die neuen, angepassten Ordnungen gemäß den
Abschnitten 4.3, 4.4 und 4.5. Dabei untersuchen wir, wie sich die verschiedenen Varianten auf
neue Straßen der Länge 1 km, 5 km 10 km, . . . , 40 km, 45 km und 50 km auswirken. Die Längen
wurden bewusst so gewählt, dass wir sowohl unwichtige als auch sehr wichtige Kanten neu
einfügen.

Um eine neue Kante der Länge 𝑑 zu erzeugen, ziehen wir zufällig einen Knoten 𝑥 aus allen
Knoten. Danach berechnen wir, welche Knoten euklidischen Abstand 𝑑 ± 10 % zu 𝑥 haben
und ziehen daraus zufällig einen Knoten 𝑦. Die neue Kante (𝑥,𝑦) fügen wir dann in beide
Richtungen ein. Damit neue Kanten sich nicht gegenseitig beeinflussen, fügen wir in den
Ausgangsgraphen immer nur eine Kante auf einmal und löschen alle Änderungen, bevor wir
die nächste Kante einfügen.

Die Qualität der Ordnungen vergleichen wir, indem wir die Suchräume der Knoten analysie-
ren. Wie in Abschnitt 3.5 erwähnt, sind die Suchräume ein gutes Maß für die Geschwindigkeit
der Queries. Je kleiner die Suchräume sind, desto schneller können die Queries berechnet
werden [DSW16]. Wir berechnen dann die durchschnittliche und maximale Größe der Such-
räume für alle Knoten im Graphen sowie für die Knoten im gemeinsamen Teilbaum der neuen
Kante. Werden bei der Berechnung alle Knoten des Graphen berücksichtigt, nennen wir die
Suchräume global, andernfalls lokal. Die Größe der globalen Suchräume sind dann ein Maß
für zufällige Queries [DSW16]. Die lokalen Suchräume sind dagegen ein Indikator für die
Geschwindigkeit von Queries in der Nähe der neuen Kante. Dabei definieren wir, dass sich
alle Knoten im gemeinsamen Teilbaum der neuen Kante in ihrer der Nähe befinden. Die neue
Kante beeinflusst also potenziell alle Queries in ihrer Nähe. Auf Queries, die sich nicht in
ihrer Nähe Kante befinden, hat die Kante dagegen keine Auswirkungen. Aus den maximalen
Suchräumen erhält man eine gute Worst Case Abschätzung. Im Gegensatz dazu bieten die
durchschnittlichen Suchräume Average Case-Bewertungen [DSW16].

5.1 Vergleich der Varianten

Zunächst vergleichenwir die Varianten, die alte Ordnung zu übernehmen aus Abschnitt 4.3, die
Ordnung von dem Teilbaum neu zu berechnen aus Abschnitt 4.4 und die Ordnung anzupassen
aus Abschnitt 4.5. Dazu berechnen wir für jeden Knoten seine Suchräume und analysieren,
wie sich diese verändern. Wie oben beschrieben können wir beim Anpassen der Ordnung den
Knoten, demwir eine höhere Ordnung geben, wählen. In diesem Abschnitt erhöhen wir immer
den Knoten mit aktuell niedrigerer Ordnung. Welchen Einfluss die Wahl des Knotens konkret
hat, untersuchen wir dann in Abschnitt 5.2. Bei den Experimenten in diesem Abschnitt fügen
wir für jede Kantenlänge 10 neue Kanten nacheinander ein.
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Abbildung 5.1: Plot, in dem die globalen Suchräume auf dem Europa Graphen für die
Varianten „Ordnung übernehmen“, „Teilbaum neu berechnen“ und „Ordnung anpassen“ in
Relation zu der eingefügten Kantenlänge gezeigt wird. Oben links sind die durchschnittlichen
Knotensuchräume zu sehen. Unten links sieht man die durchschnittlichen Kantensuchräume.
Rechts sind die zugehörigen maximalen Suchräume der Knoten (oben) und Kanten (unten)
abgebildet. Die alte Ordnung zu übernehmen, führt in allen Fällen zu den größten Suchräumen.
Die Suchräume der anderen beiden Varianten sind ähnlich groß, sodass in den meisten Fällen
nur eine der beiden Linien zu sehen ist.

5.1.1 Globale Sichtweise

Betrachten wir zunächst den Einfluss von unseren Optimierungen auf zufällige Queries.
Im Vordergrund steht dabei die Geschwindigkeit, mit der diese in der jeweiligen Ordnung
berechnet werden können. Wie oben erwähnt, sind die globalen Suchräume dafür ein gutes
Maß. In Abbildung 5.1 sieht man, dass die alte Ordnung immer deutlich größere Suchräume
hat, als die anderen beiden Varianten. Die erwarteten Querylaufzeiten sind dadurch bei der
Variante „alte Ordnung übernehmen“ merklich langsamer als bei den anderen. Interessiert man
sich für die Worst Case Laufzeiten der Queries, sind die Unterschiede sogar noch stärker. Im
Gegensatz dazu unterscheiden sich die Größen der Suchräume von den Varianten „Ordnung
anpassen“ und „Teilbaum neu berechnen“ nur sehr geringfügig voneinander.
Das Neuberechnen der Ordnung für einen Teilbaum ist deutlich teurer, als das Anpassen

der Ordnung. Fügen wir eine längere Kante ein, steigt die Wahrscheinlichkeit, dass diese
weiter entfernte Teilbäume miteinander verbindet und somit höhere Separatoren schneidet.
Wie erwartet, sieht man daher in Abbildung 5.2, dass die Größe des gemeinsamen Teilbaums
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5.1 Vergleich der Varianten
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Abbildung 5.2: In dem Diagramm wird die Größe des gemeinsamen Teilbaums von der ein-
gefügten Kante in Relation zu ihrer Länge gezeigt. Zu sehen ist, dass die Größe der Teilbäume
in der Länge der eingefügten Kante wächst. Im Gegensatz zu den übrigen Experimenten in
diesem Abschnitt wurde hier für jede Länge der Durchschnitt aus 100 anstatt 10 eingefügten
Kanten gebildet.

mit der Länge der eingefügten Kante wächst. Das führt dazu, dass das Neuberechnen für
längere Kanten auch deutlich langsamer wird. Die Laufzeit der Neuberechnung ist nach oben
beschränkt, durch die Laufzeit eine initiale Ordnung für den gesamten Graphen zu berechnen,
und liegt also maximal bei mehreren Minuten [SS15 | Blä+25]. Bei dem Anpassen der Ordnung
muss dagegen maximal die Ordnung von jedem Knoten verschoben werden und ist damit
auch für große Teilbäume deutlich schneller.

Verglichen mit der alten Ordnung liefern das Anpassen sowie das Neuberechnen für einen
Teilbaum ähnlich gute Ordnungen. Daher vergleichen wir diese beiden Varianten in Abbil-
dung 5.3 direkt miteinander. Man sieht, dass beide Varianten sich im Worst Case nahezu
identisch verhalten. Im Average Case stellen wir sogar überraschenderweise fest, dass das
Anpassen insgesamt zu kleineren Suchräumen führt. Dies widerspricht unserer Erwartung,
dass das Neuberechnen die besten Ordnungen liefert. Nachdem diese Abweichungen nicht
nur in einzelnen Datenpunkten auftreten, sollten weiterführende Arbeiten dieses Phänomen
genauer untersuchen. Erwartungsgemäß wachsen aber die durchschnittlichen Suchräume in
der Länge der Kanten für diese beiden Varianten.

Zusammenfassend ist das Anpassen der Ordnung für zufällige Queries eine gute Lösung.
Diese Variante ist in der Vorberechnung effizienter als das Neuberechnen und die Queries
können schneller beantwortet werden, als bei der alten Ordnung. Außerdem skaliert das
Anpassen der Ordnung auch für lange Kanten sehr gut.
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Abbildung 5.3: Die globalen Suchräume der Varianten „Teilbaum neu berechnen“ und „Ord-
nung anpassen“ in Abhängigkeit zu der Länge der eingefügten Kante. Oben links der durch-
schnittliche Knotensuchraum. Oben rechts der zugehörige maximale Knotensuchraum. Unten
links der durchschnittliche und unten rechts der maximale Kantensuchraum. Die maximalen
Suchräume unterscheiden sich nur sehr geringfügig. „Teilbaum neu berechnen“ hat dagegen
größere durchschnittliche Suchräume als „Ordnung anpassen“.

5.1.2 Lokale Sichtweise

Nachdem wir im obigen Abschnitt zufällige Queries betrachtet haben, untersuchen wir hier
lokale Queries in der Nähe der neuen Kante genauer. Wie oben schon erwähnt, kann die neue
Kante nur Knoten im gemeinsamen Teilbaum, also in ihrer Nähe, beeinflussen. In den lokalen
Suchräumen sind die Auswirkungen unserer Optimierungen also noch besser messbar.

In Abbildung 5.4 sieht man, dass auch lokal die Variante „Ordnung übernehmen“ deutlich
schlechter performt, als die anderen beiden. Hier sind die Unterschiede sogar noch ausgepräg-
ter als im Abschnitt 5.1.1. Die Varianten „Teilbaum neu berechnen“ und „Ordnung anpassen“
sind dagegen im Verhältnis auch wieder sehr ähnlich zueinander. Damit wird unsere Erwar-
tung erneut bestätigt, dass die alte Ordnung zu den längsten Queryzeiten führt und dass
„Ordnung anpassen“ eine gute Alternative zum Neuberechnen darstellt.

Vergleicht man die Varianten „Ordnung anpassen“ und „Teilbaum neu berechnen“ direkt, ist
auch hier das Neuberechnen überraschenderweise schlechter als das Anpassen. Abbildung 5.5
zeigt die Differenz der Suchräume zwischen dem Neuberechnen und Anpassen. Unsere Erwar-
tung ist, dass die Differenz immer positiv ist, weil wir vermuten, dass Neuberechnen bessere
Ergebnisse liefert als Anpassen. Aber auch hier müssen wir feststellen, dass das Anpassen oft
sogar kleinere Suchräume liefert. Allerdings sind die Unterschiede zwischen den beiden Vari-
anten sehr gering und stark verrauscht, sodass auch dieses Phänomen in weiteren Arbeiten
untersucht werden sollte.
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Abbildung 5.4: Lokale Suchräume in Abhängigkeit der Länge der neuen Kante für die
Varianten „Ordnung übernehmen“, „Teilbaum neu berechnen“ sowie „Ordnung anpassen“. Die
unteren Kurven in den Grafiken zeigen jeweils die durchschnittlichen Suchräume, die oberen
die maximalen. Links sind die Knotensuchräume zu sehen und rechts die Kantensuchräume.
Die Suchräume von der alten Ordnung sind immer deutlich größer als die der anderen beiden
Varianten.
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Abbildung 5.5: Lokale Suchräume in Abhängigkeit der Länge der neuen Kante für die
Varianten „Teilbaum neu berechnen“ und „Ordnung anpassen“. Gezeigt wird die Differenz der
durchschnittlichen Suchraumgrößen zwischen der Neuberechnung und dem Anpassen. Links
handelt es sich um die Differenz in Knotensuchräume, rechts um die der Kantensuchräume.
Wider erwartend ist die Differenz oftmals negativ, an den Stellen führt Neuberechnen zu
schlechteren Ergebnissen als Anpassen.

Insgesamt können wir dennoch festhalten, dass das Anpassen der Ordnung ein sehr gutes
Verfahren ist, um im CCH-Algorithmus mit neuen Kanten umzugehen. Dieses Verfahren
liefert mit wenig Aufwand auch für lange und wichtige Kanten schnell gute Ordnungen.
Dadurch kann der Algorithmus effizient auf Änderungen in der Topologie reagieren und
Queries weiterhin in kurzer Zeit beantworten.

5.2 Unterschiede beim Anpassen der Ordnung

Im obigen Abschnitt haben wir festgestellt, dass wir durch das Anpassen der Ordnung sowohl
die Vorberechnungen, als auch die Queries schnell bearbeiten können. Der verbleibende Frei-
heitsgrad beim Anpassen der Ordnung aus Abschnitt 4.5 ist, welchem der beiden Endpunkte
der neuen Kante wir eine höhere Ordnung geben. Wir unterscheiden dabei zwischen den
Varianten, bei denen der Knoten mit aktuell niedriger bzw. höherer Ordnung gewählt wird,
sowie einer zufälligen Wahl. Wie in Abschnitt 5.1 fügen wir dazu neue Kanten in den Graphen
ein und passen die Ordnung auf verschiedene Varianten an. Allerdings fügen wir bei den Ex-
perimenten in diesem Abschnitt für jede Kantenlänge 100 anstatt 10 Kanten nacheinander ein.
Anschließend berechnen wir für jeden Knoten seine Suchräume. Nachdem die Unterschiede
zwischen den Varianten hier sehr viel geringer sind, fokussieren wir uns dabei nur auf die
lokalen Suchräume, weil dort die Unterschiede besser messbar sind.
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5.2 Unterschiede beim Anpassen der Ordnung

x
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Abbildung 5.6: Beispielgraph, mit neuer Kante (𝑥,𝑦) in rot gestrichelt. Der Graph ist gleich-
zeitig auch sein Elimination Tree und 𝑦 ist der lca von 𝑥 und 𝑦. Wird beim Anpassen der
Ordnung der Knoten mit aktuell höherer Ordnung, also 𝑦, gewählt, wird die Ordnung nicht
geändert. Wählt man dagegen den anderen Knoten 𝑥 , so ändert sich die Ordnung.

Eine erste Beobachtung ist, dass die Ordnung identisch bleiben kann, falls wir den Knoten
mit aktuell höherer Ordnung wählen. Wählen wir dagegen den niedrigeren Knoten, ändern
wir die Ordnung in jedem Fall. In Abbildung 5.6 sehen wir ein Beispiel eines Elimination
Trees, in dem der höhere Endpunkt der neuen Kante (𝑥,𝑦) gleichzeitig der lca von 𝑥 und
𝑦 ist. Das bedeutet aber, dass die neue Kante im Separator endet. Folglich können wir bei
der Wahl des höheren Knotens nichts ändern. Der Knoten mit aktuell niedrigerer Ordnung
kann aber niemals gleichzeitig der lca sein und die Ordnung wird bei dieser Wahl definitiv
geändert. Da 𝑆 von der neuen Kante nicht geschnitten wird, separiert es die Komponente mit
der neuen Kante ebenfalls. Eine Erweiterung des Separators ist daher nicht notwendig. Der
Algorithmus, den wir für die Nested Dissections Ordnung verwenden, wählt dann also auch
mit der neuen Kante denselben Separator 𝑆 für die entsprechende Komponente. Außerdem
hat die neue Kante keinen Einfluss auf die Komponente, in dem sich der andere Endpunkt 𝑥
der Kante befindet, da sie durch das Herausschneiden des Separators ebenfalls entfernt wird.
Das bedeutet, dass sich die Qualität der alten Ordnung unter diesen Umständen durch die
neue Kante nicht ändert. Treffen wir in diesem Fall eine andere Wahl, können wir die Qualität
der Ordnung nur verschlechtern.

Wie wir in Tabelle 5.1 sehen können, sind die durchschnittlichen, lokalen Suchräume für alle
drei Varianten sehr ähnlich. Allerdings sind die Suchräume bei der Wahl des höheren Knotens
in den meisten Fällen minimal kleiner. Aus diesem Grund untersuchen wir in Abbildung 5.7 die
Änderungen relativ zu der Wahl des höheren Knotens. Dazu ziehen wir von den Suchräumen
jeweils den Suchraum von der Wahl des höheren Knotens ab und betrachten die Differenz.
Es fällt auf, dass die Schwankungen zwischen den Varianten minimale sind und im Bereich
von 0,035 Knoten bzw. 2,5 Kanten liegen. Die Wahl des höheren Knotens führt aber in den
meisten Fällen zu den kleinsten durchschnittlichen Suchräumen. Die maximalen Suchräume
sind dagegen für alle Varianten vollständig identisch. Das bedeutet, dass die Queries bei der
Wahl des höheren Knotens im Average Case minimal schneller berechnet werden können. Im
Worst Case sind dagegen keine Unterschiede feststellbar.
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Tabelle 5.1: Eine Auswahl der durchschnittlichen, lokalen Suchräume in Abhängigkeit der
Kantenlänge für die drei Varianten, die Ordnung anzupassen. Oben Knotensuchräume, unten
die Kantensuchräume. Die Größe der Suchräume unterscheiden sich nur sehr geringfügig. In
jeder Spalte ist kleinste Eintrag fett markiert.

10 20 30 40 50

Niedrigeren 740,870 724,389 719,761 746,348 728,260
Höheren 740,859 724,380 719,744 746,345 728,262
Zufälligen 740,872 724,390 719,744 746,348 728,261

Niedrigeren 139 467,964 133 521,370 128 942,936 144 129,162 132 399,587
Höheren 139 467,773 133 520,815 128 940,750 144 129,033 132 399,733
Zufälligen 139 468,246 133 521,381 128 941,326 144 129,168 132 399,613

In der Vorberechnung liegt die Laufzeit von allen Varianten in O(𝑛), wobei 𝑛 die Anzahl
an Knoten beschreibt. In jeder Variante muss der lca von der neuen Kante (𝑥,𝑦) bestimmt
werden. Dies benötigt im Worst Case O(𝑛) Zeit. Ohne Einschränkung gehen wir davon aus,
dass die Ordnung von 𝑥 kleiner ist, als die von 𝑦. Im extremsten Fall hat dann 𝑥 die niedrigste
Ordnung und 𝑦 die höchste. Wenn wir nun 𝑥 erhöhen, müssen wir die Ordnung von jedem
Knoten verschieben und dafür erneut O(𝑛) Operationen durchführen. Wählen wir dagegen 𝑦,
benötigen wir keine weiteren Operationen und sind fertig. Insgesamt müssen wir bei der Wahl
des niedrigeren Knotens die Ordnung von mehr Knoten verändern, als wenn wir den höheren
Knoten anpassen, da wir mindestens die Ordnung von 𝑥 zusätzlich verändern. Die Laufzeiten
der beiden Varianten unterscheiden sich also nur in einer Konstanten in der Landau Notation.
Betrachten wir dagegen reale, balancierte Elimination Trees, so kann der lca in O(log𝑛)

bestimmt werden. Die Worst Case Abschätzung ändert sich dadurch zwar nicht, da immer
noch bis zu linear viele Knoten existieren, die Ordnung zwischen 𝑦 und dem lca haben.
Allerdings können dann die Unterschiede deutlicher ausfallen. Wählen wir im obigen Beispiel
den niedrigeren Knoten 𝑥 , so müssen wir weiterhin O(𝑛) Zeit investieren, bei der Wahl von 𝑦
nur O(log𝑛). Wie oben schon erwähnt, wird die Laufzeit für das Anpassen der Ordnung in
jedem Fall durch die folgende Contraction und Customization dominiert.
Zusammenfassend können wir also festhalten, dass die Wahl des höheren Knotens zu

minimal besseren Ergebnissen führt. Dabei ist diese Variante in der Berechnung mindestens
genauso schnell wie die anderen Varianten.
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Abbildung 5.7: Lokale Suchräume in Abhängigkeit der Länge der neuen Kante. Gezeigt
wird die Differenz der durchschnittlichen Suchraumgrößen zwischen der Wahl des höheren
Knotens bzw. einer zufälligen Wahl und der Wahl des höheren Knotens. Links handelt es
sich um die Differenz in Knotensuchräume, rechts um die der Kantensuchräume. In den
meisten Fällen ist die Differenz positiv, an den Stellen ist die Wahl des höheren Knotens also
die bestmögliche. Allerdings führen bei manchen Datenpunkten andere Wahlen zu besseren
Ergebnissen. Die schwarze Linie zeigt jeweils den größtmöglichen Unterschied zwischen den
maximalen Suchräumen. Dieser ist also offensichtlich für alle Varianten identisch.

27





6 Zusammenfassung

Wir sehen, dass der CCH-Algorithmus in seiner bisherigen Form nur langsam auf neue Kanten
reagieren kann. Durch das Hinzufügen einer Kante ändern wir die Topologie des Ausgangs-
graphen und müssen in einem teuren Schritt eine neue Ordnung berechnen. Dazu werden
rekursiv kleine, balancierte Separatoren auf dem Graphen gesucht. Der CCH-Algorithmus
liefert zwar bei jeder Ordnung korrekte Ergebnisse, allerdings wird der Algorithmus bei einer
schlechten Ordnung sehr ineffizient. Nachdem wir die Topologie aber nur geringfügig ändern,
ist unser erster Ansatz, die alte Ordnung zu übernehmen. Anschließend stellen wir fest, dass
sich die Ordnung nur in dem gemeinsamen Teilbaum der neuen Kante im Elimination Tree
ändert, also ab dem Punkt, an dem die neue Kante erstmalig einen Separator schneidet. Daher
ist unsere zweite Überlegung, die Ordnung für den gesamten Teilbaum neu zu berechnen.
Unsere letzte Idee ist, den geschnittenen Separator um einen der beiden Endpunkte der neuen
Kante zu erweitern und die Ordnung somit anzupassen.

Wie erwartet, ist die alte Ordnung in der Query-Phase am langsamsten, dafür sind hier die
Vorberechnungen am schnellsten. Die Neuberechnung des Teilbaums soll dagegen vor allem
die Querylaufzeiten optimieren. Hier sind dafür die Vorberechnungen, insbesondere für große
Teilbäume, am aufwendigsten. Allerdings stellen wir fest, dass die Ordnung anzupassen in
vielen Fällen zu minimal kleineren Suchräumen führt und die Queries dadurch noch schneller
berechnet werden können. Dieses Phänomen ist insbesondere in der Nähe der neuen Kante
gut messbar. Das Anpassen der Ordnung ist auch in der Vorberechnung sehr effizient und die
Laufzeit ist vergleichbar mit den Vorberechnung in der alten Ordnung. Durch das Anpassen
der Ordnung kann der CCH-Algorithmus also schnell auf neue Kanten reagieren. Die alte
Ordnung zu übernehmen, ist dagegen in jedem Fall die schlechteste Variante und sollte
vermieden werden.

Beim Anpassen der Ordnung können wir den Endpunkt der Kante wählen, den wir erhöhen.
Wir unterscheiden dabei zwischen der Wahl des Knotens mit aktuell niedrigerer bzw. höherer
Ordnung sowie einer zufälligen Wahl. Erwartungsgemäß unterschieden sich die Laufzeiten
der drei Varianten sowohl in der Vorberechnung als auch bei der Bearbeitung der Queries
nur geringfügig. Bei der Wahl des höheren Knotens sind die Vorberechnungen aber minimal
schneller. In der Query-Phase ist dieWahl des höheren Knotens in den meisten Fällen ebenfalls
besser. Insgesamt führt diese Variante also zu den besseren Ergebnissen.

Zukünftige Arbeiten Unsere Vermutung, dass das Neuberechnen zu den kleinsten Suchräu-
men führt, konnte nicht bestätigt werden. Daher sollte in weiterführenden Arbeiten untersucht
werden, warum das Anpassen der Ordnung zu schnelleren Antworten in der Query-Phase
führt. Außerdem haben wir uns bei unseren Experimenten nur auf die Suchraumgrößen fo-
kussiert. Man könnte daher konkrete Queries berechnen, um zu überprüfen, ob die benötigte
Zeit zu unseren Ergebnissen passt. Des Weiteren haben wir in dieser Arbeit die initiale Nested
Dissection Ordnung nur mittels des Inertial-Flow-Algorithmus berechnet. Man könnte die
Effekte von unseren Optimierungen noch für andere Partitionierungsalgorithmen wie den
Inertial-Flow-Cutter-Algorithmus untersuchen [GHUW19].
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