ST CS

Karlsruher Institut fur Technologie

Die Auswirkungen neuer Kanten auf den
CCH-Algorithmus

Bachelor Arbeit von

Benedikt Miller

an der Fakultat fir Informatik
Institut fiir Theoretische Informatik (ITI)

Erstgutachter: T.T.-Prof. Dr. Thomas Blasius
Zweitgutachter: Prof. Dr. Bernhard Beckert
Betreuer: Michael Ziindorf

Adrian Feilhauer

13.12.2024 - 17.03.2025

KIT - Die Forschungsuniversitat in der Helmholtz-Gemeinschaft www.kit.edu

https://www.kit.edu

Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe

Ich versichere wahrheitsgemaf, die Arbeit selbststindig verfasst, alle benutzten Quellen und
Hilfsmittel vollstandig und genau angegeben und alles kenntlich gemacht zu haben, was aus
Arbeiten anderer unverandert oder mit Abédnderungen entnommen wurde sowie die Satzung
des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils giiltigen Fassung beachtet
zu haben.

Karlsruhe, 17.03.2025

..... ol

(Benedikt Miiller)

Zusammenfassung

Damit Routingalgorithmen schnell viele Anfragen, auch Queries genannt, in kurzer Zeit
beantworten konnen, werden haufig Vorberechnungen verwendet. Da sich die Topologie des
Graphen nur selten verdndert, sind auch aufwendigere Vorberechnungen akzeptabel. Der
Customizable Contraction Hierarchies (CCH) Algorithmus berechnet dazu in einem ersten,
teuren Schritt eine Ordnung, die in den weiteren, giinstigeren Schritten verwendet wird. Fiigt
man eine neue Kante in den Graphen ein, dndert sich seine Topologie und es miissen alle
Vorberechnungen erneut durchgefithrt werden. In dieser Arbeit beschaftigen wir uns daher
mit der Frage, wie der CCH-Algorithmus besser auf lokale Anderungen in der Topologie
reagieren kann. Unser Ziel ist es daher, die Ordnung effizient und lokal an die neue Kante
anzupassen. Dafir stellen wir drei Losungsansatze vor. Die erste Moglichkeit ist, die alte
Ordnung zu iibernehmen, dies optimiert die Vorberechnungen. Alternativ kann lokal eine
optimale Ordnung berechnet werden, was zu schnellen Queryzeiten fithrt. Als Kompromiss
koénnen wir nur die Ordnung von einem Endpunkt der Kante erh6hen, dadurch erhalten wir
sowohl in der Vorberechnung, als auch in den Queries schnelle Ergebnisse. Im abschliefenden
experimentellen Vergleich der Varianten stellt sich heraus, dass der CCH-Algorithmus durch
die zuletzt genannte Variante effizient auf neue Kanten reagieren kann.

Inhaltsverzeichnis

1 Einleitung

2 Allgemeine Definitionen und Notationen

3 CCH-Algorithmus

3.1
3.2

3.3
34
3.5

Struktur des Algorithmus
Metrik-unabhangige Vorberechnungen
3.21 InertialFlow.
3.2.2 Contraction
Customization
Queries
Elimination Tree

4 Losungsansitze

4.1
4.2
4.3
4.4
4.5

Shortcut-Kante einfiigen
Allgemeine Ziele
Alte Ordnung tibernehmen
Ordnung vom Teilbaum neu berechnen
Ordnung anpassen

5 Evaluation

5.1

5.2

Vergleich der Varianten
5.1.1 Globale Sichtweise
5.1.2 Lokale Sichtweise

Unterschiede beim Anpassen der Ordnung

6 Zusammenfassung

Literatur

O O o0 N N v G

10

13
13
13
14
14
16

19
19
20
22
24

29

31

ii

Abbildungsverzeichnis

3.1
3.2

3.3
34

4.1

4.2

4.3

5.1

5.2

53

54

5.5

5.6

5.7

Schematisches Beispiel, wie die Nested Dissection Ordnung berechnet und
die Teilordnungen zusammengefiigt werden.
Beispiel einer Contraction.
Beispiel einer Customization. L.
Beispiel eines Elimination Trees.

Schematische Ubersicht, wie die Ordnung fiir eine neue Kante (x,y) neu
berechnet wird. L
Beispielgraph, in dem der von uns angepasste Separator vollstandig disjunkt
von einem optimalen Separatorist. L.
Schematische Ubersicht, wie die Ordnung fiir eine neue Kante (x, y) angepasst
wird. ...

Grofle der globalen Suchraume in Relation zu der Lange der eingefiigten
Kanten fiir die Varianten ,Ordnung tibernehmen®, ,Teilbaum neu berechnen®
und ,,Ordnung anpassen®.
Grofle des gemeinsamen Teilbaums in Relation zu der Lange der eingefiigten

Grofle der globalen Suchrdume in Relation zu der Lange der eingefiigten

Kanten fiir die Varianten ,Teilbaum neu berechnen® und ,,Ordnung anpassen®.

Grofle der lokalen Suchraume in Relation zu der Lange der eingefiigten Kanten
fiur die Varianten ,,Ordnung tibernehmen®, ,Teilbaum neu berechnen® und
LOrdnung anpassen®.
Grofle der lokalen Suchraume in Relation zu der Lange der eingefiigten Kanten
fiir die Differenz zwischen den Varianten ,Teilbaum neu berechnen® und
LOrdnung anpassen.
Beispielgraph, mit neuer Kante, wahlt man beim Anpassen der Ordnung den
Knoten mit héherer Ordnung, bleibt die Ordnung unverandert.
Grofie der lokalen Suchraume in Relation zu der Lange der eingefiigten Kanten
fur die Differenz zwischen der Wahl des niedrigeren Knotens, bzw. einer
zufalligen Wahl und der Wahl des héheren Knotens.

10

15

17

17

22

Tabellenverzeichnis

5.1 Eine Auswahl der Grof3e der lokalen Suchrdume in Relation zu der Lénge der
eingefiigten Kanten fir die drei Varianten, die Ordnung anzupassen. 26

vii

1 Einleitung

Kiirzeste Wege in einem Straf3ennetz zu finden, ist ein alltigliches Problem und es gibt diverse
Anwendungen, die es 16sen [DGJ]. Um die Nutzerfreundlichkeit zu gewahrleisten, miissen
die verwendeten Routingalgorithmen in der Lage sein, auf viele Anfragen innerhalb kiir-
zester Zeit zu reagieren und verwenden dazu oft Vorberechnungen. Ein Beispiel fiir einen
Routingalgorithmus mit einer Vorberechnungsphase ist der Contraction Hierarchies Algo-
rithmus (CH) [GSSV12]. Damit sich der Aufwand fiir die Vorberechnungen rentiert, darf sich
der zugrundeliegende Straflengraph nur selten dndern, da die Vorberechnungen andernfalls
oft wiederholt werden miissen. In der Praxis beobachtet man aber, dass sich vor allem die
Reisezeit zwischen verschiedenen Orten, und damit der zugrundeliegende Graph, mehrmals
taglich andert. Das fithrt beim CH-Algorithmus dazu, dass seine Vorberechnungen héufig neu
berechnet werden miissen, worunter seine Effizienz leidet [DSW16]. Dieses Problem wird
durch den Customizable Contraction Hierarchies Algorithmus (CCH) gel6st, indem die Vorbe-
rechnungen in mehrere Schritte aufgeteilt werden. Andert sich die Topologie des Graphen,
missen alle Vorberechnungen wiederholt werden, bei Anderungen an den Kantengewichten
dagegen nur die zweite Phase [DSW16].

Wird nun eine neue Strafle gebaut, dndert sich die Topologie des Straflennetzes. Also
muss der CCH-Algorithmus alle Vorberechnungen erneuern und kann somit nur langsam auf
neue Straflen reagieren. Dabei konnen wir eine neue Strafle formal durch das Einfiigen einer
neuen Kante in den zugehorigen Graphen modellieren. In der praktischen Routenfindung im
Straflenverkehr konnen wir allerdings beobachten, dass sehr viele Straflen nur einen sehr
lokalen Einfluss haben [Bl4+25]. Eine Strafe in einem Wohngebiet ist in der Regel auch nur
fiir Strecken in diesem Wohngebiet relevant. Fiir Routen in einer anderen Stadt wird diese
Strafle dagegen meistens nicht benétigt. Selbst eine Autobahn ist fiir Reisen, die sehr weit
von dieser Region entfernt sind, oftmals unbedeutend [SS15]. Eine neue Strafle beeinflusst
also das Straflennetz an weit entfernten Orten nur geringfiigig. Dennoch kann sie in einem
Routingalgorithmus zentrale Anderungen bewirken.

Aus diesem Grund beschéftigen wir uns in dieser Arbeit mit der Frage, welche Auswir-
kungen eine neue Kante auf den CCH Algorithmus hat. Dafiir betrachten wir zunichst den
Algorithmus genauer und beschreiben seinen Ablauf. Anschlieffend stellen wir verschiedene
Optimierungen vor, durch die der Algorithmus schneller auf eine neue Kante reagieren kann.
Diese Ansitze evaluieren wir schlie8lich und vergleichen sie experimentell miteinander.

2 Allgemeine Definitionen und Notationen

Im Folgenden fithren wir wichtige Notationen und Begriffe ein, die wir in dieser Arbeit
verwenden.

Sei V eine Knotenmenge und E,, C {{u, vi|uve V} eine Kantenmenge, dann nennen wir
Gy = (V,E,) einen ungerichteten Graphen. In einem gerichteten Graph G, = (V, E,) besteht
die Kantenmenge E; C {(u, V) |u,ve V} =V X V aus Tupeln anstatt Mengen. Wenn eine
Gewichtsfunktion ¢ : E — R existiert, die den Kanten Gewichte zuordnet, nennen wir den
Graphen zusitzlich gewichtet. Sowohl ein gerichteter, als auch ungerichteter Graph kann
gewichtet sein.

In einem ungerichteten Graphen sind zwei Knoten u, v € V benachbart, falls die Kante
{u, v} € E existiert. Alle Knoten, mit denen v € V in G benachbart ist, werden zu seiner
Nachbarschaft Ng(v) zusammengefasst. Wenn in einer Knotenteilmenge C C V alle Knoten
paarweise benachbart sind, ist C eine Clique. Eine nichtleere Teilmenge X C V definiert einen
Schnitt (X, V \ X) auf dem Graphen. Ein Schnitt teilt einen Graphen in alle Knoten, die in X
enthalten sind, und alle tibrigen Knoten.

In einem gerichteten Graph heif3t eine Folge von Knoten P = (vy, ..., v,) C V Pfad, falls
Kanten zwischen jeweils aufeinanderfolgende Knoten v; und v;, existieren, also (v;, viy1) € E
gilt. Fur zwei Knoten s,t € V nennen wir den Pfad von s nach ¢ einen s—t-Pfad. Die Lange
eines Pfades ist definiert, als die Anzahl seiner Knoten. Ein Zyklus ist ein s—t-Pfad, der
Lange mindestens zwei, bei dem s = t gilt. Ein gerichteter, kreisfreier Graph (DAG) ist
ein gerichteter Graph, in dem keine Zyklen existieren. Drei Knoten u, v, w € V bilden ein
Dreieck, falls die Kante (u,w) € E, sowie der Pfad (u, v, w) im Graphen existieren. Falls
zusétzlich eine Totalordnung 7 auf den Knoten existiert, nennen wir das Dreieck u, v, w € V
mit 7(u) < 7(v) < w(w) ein unteres Dreieck von (v, w) € E, weil die Ordnung von u kleiner
ist als die von v und w. Analog nennen wir in diesem Fall das Dreieck ein mittleres Dreieck
von (u, w) und ein oberes Dreieck von (u, v).

Ein Straflennetz kann als gerichteter Graph modelliert werden. Jeder Straflenabschnitt wird
dabei als gerichtete Kante dargestellt und die Endpunkte der Segmente als die Knoten. Eine
Strafle, die in beide Richtungen befahrbar ist, wird als zwei Einbahnstraflen in entgegenge-
setzten Richtungen modelliert, es existiert dann also eine Kante und ihre Gegenkante.

Ein zusammenhangender DAG T = (V, E) mit einem Wurzelknoten w € V heif3t Baum,
falls w Endpunkt keiner Kante ist, und alle tibrigen Knoten v € V' \ {w} Endpunkt genau
einer Kante in E sind. Fiir einen Baum wird seine Tiefe definiert als die maximale Pfadlange
ab Wurzel w. Knoten, die keine ausgehenden Kanten haben, werden Blatter genannt.

3 CCH-Algorithmus

Der Customizable Contraction Hierarchies (CCH) Algorithmus ist eine Technik, kiirzeste
Wege in einem Straflengraphen effizient fiir viele Anfragen in kurzer Zeit zu berechnen
[DSW16]. Dazu bekommt der Algorithmus als Eingabe einen gerichteten und gewichteten
Graphen G = (V,E,c). Bei ¢ : E — Ry, handelt es sich um eine Kostenfunktion auf den
Kanten. Fiir eine gegebene Metrik auf den Knoten sollen die Kosten einer Kante (u, v) € E dem
Abstand zwischen den Knoten u und v in der Metrik entsprechen. In dieser Arbeit verwenden
wir als Metrik die Reisezeit zwischen Knoten, es sind aber auch andere Metriken wie z. B. der
euklidische Abstand moglich.

In der Praxis beobachtet man, dass sich die Topologie von Straflennetzen nur selten dndert.
Allerdings variiert die Reisezeit zwischen zwei Orten zu verschiedenen Tageszeiten zum Teil
erheblich. Aus diesem Grund besteht der CCH-Algorithmus aus insgesamt drei Phasen: Die
erste Phase ist Metrik-unabhingig, in ihr werden Vorberechnungen auf der Topologie des
Graphen ausgefiihrt. Nachdem sich die Topologie nur selten éndert, wird diese Phase nur
selten durchlaufen und hat daher geringen Einfluss auf die durchschnittliche Laufzeit. In
einer parallelen Implementierung dieser Phase liegen tibliche Laufzeiten auf groflen Stra-
Bengraphen im Bereich von mehreren Minuten, bei einer sequentiellen Implementierung
wird dagegen deutlich mehr Zeit benétigt [DSW16 | Bla+25]. In dieser Arbeit verwenden wir
DIMACS Straflengraphen von Europa, mit ca. 18 000 000 Knoten, er dient uns als Beispiel
einer groflen Instanz [DGJ]. Die zweite Phase, die Customization, ist eine Metrik-abhangige
Vorberechnungsphase und soll schnell auf Anderungen in der Metrik reagieren konnen. Da
die Reisezeit, welche wir als Metrik nutzen, sich haufig 4ndert, wird diese Phase oft ausge-
fiithrt. Aus diesem Grund ist eine kurze Laufzeit in dieser Phase wichtiger als in der ersten
Phase. Selbst in sequentiellen Implementierungen liegen hier iibliche Laufzeiten auf grof3en
Instanzen im Bereich einiger Sekunden [DSW16 | Bla+25]. AbschlieSend werden in der Query-
Phase die Kosten von s—t-Pfaden berechnet. Auch sequentiell sollte ein Query in unter einer
Millisekunde berechnet werden kénnen [DSW16 | Bla+25].

3.1 Struktur des Algorithmus

In diesem Abschnitt beschreiben wir grob die Struktur des CCH-Algorithmus in Anlehnung
an Blisius et al. [Bla+25]. In den folgenden Abschnitten dieses Kapitels erlautern wir dann
weitere Details zu den einzelnen Phasen des Algorithmus.

Ziel der Vorberechnungen ist es, Kanten so einzufiigen, dass es fiir jeden s—t-Pfad ausreicht,
nur Knoten mit héherer Ordnung als s oder t zu betrachten. Dadurch wird die Anzahl an
Knoten, welche wir in der Query-Phase besuchen miissen, stark reduziert. Die in den Vorbe-
rechnungen neu eingefiigten Kanten nennen wir Shortcuts und den resultierenden Graphen
G’ Augmented Graph. Die Queries bearbeiten wir dann auf dem neu berechneten Augmented
Graph G’.

Die Metrik-unabhéngige Phase zu Beginn lasst sich in zwei Aufgaben unterteilen: Zunachst
berechnen wir eine Totalordnung 7 : V. — {0,...,|V| — 1} der Knoten. Diese heif3t Nested
Dissection Ordnung und wird von uns im Folgenden kurz als Ordnung bezeichnet [SS15]. In

3 CCH-Algorithmus

dieser Reihenfolge werden die Knoten in den weiteren Schritten des CCH-Algorithmus abge-
arbeitet. In der Contraction wird anschliefiend fiir jeden Knoten v € V seine Nachbarschaft mit
héherer Ordnung als v zu einer Clique vervollstandigt. Danach werden in der Customization
neue Kantengewichte fiir den Augmented Graph berechnet.

Eine Kante (u,v) € E heift aufwirts gerichtet, falls 7(u) < n(v) gilt, andernfalls ist
sie nach unten gerichtet. Ausgehend von G’ definieren wir dann die Auf- und Abwartsgra-
phen G! bzw. G, als die DAGs, in denen alle Kanten aus G’, die aufwirts bzw. abwiirts
gerichtet sind, iibernommen werden. Um die Kosten eines s—t—Pfades zu berechnen, ist es
dann ausreichend, eine Aufwirtssuche in G! von s und eine in G von ¢ ausgehend durch-
zufithren. Um die Queries effizient berechnen zu kénnen, benétigen wir einen Elimination
Tree. Dieser speichert fiir jeden Knoten v € V seinen Parent. Der Parent von v wird dabei
definiert als der eindeutige Knoten p mit der niedrigsten Ordnung unter allen Nachbarn
von v in G’ mit hoherer Ordnung als v. Wir schreiben dies als parent(v) = p und es gilt
parent(v) = argmin{z(w) | w € N/ (v), 7(w) > 7m(v)}.

In Abschnitt 3.5 stellen wir fest, dass die Ordnung einen grofien Einfluss auf die Struktur des
Elimination Tree und die Performance des gesamten Algorithmus hat. Damit wir sowohl die
Vorberechnungen als auch die Queries effizient berechnen konnen, miissen wir eine Ordnung
finden, die zu einem balancierten Elimination Tree fiihrt.

3.2 Metrik-unabhangige Vorberechnungen

Wie oben erwiahnt besteht die Metrik-unabhéngige Vorberechnungsphase aus zwei Teilen:
Zunéchst berechnen wir eine Totalordnung 7 der Knoten, danach fiigen wir in der Con-
traction die Shortcuts ein. Dabei interessieren wir uns in der gesamten Phase nur fir die
Topologie des Graphen. Daher sind hier die Richtungen und Gewichte der Kanten nicht
relevant [DSW16 | Bla+25].

Die Ordnung hat einen grof3en Einfluss auf die Performance der folgenden Schritte. Bei
einer schlechten Ordnung kann der Elimination Tree zu tief werden, wodurch die Query-
Berechnung ineffizient wird. Auflerdem konnen die Vorberechnungen deutlich langer dauern,
da zu viele Shortcuts eingefiigt werden. Des Weiteren kann es durch die vielen Kanten auch
zu Speicherprobleme kommen [Bl4+25]. In Abschnitt 3.2.1 wird eine Variante beschrieben,
um eine gute Ordnung zu berechnen.

Auffallig ist, dass das Berechnen der Ordnung deutlich teurer ist, als die Contraction. Eine
gute Ordnung zu berechnen dauert mehrere Minuten, die Contraction ist im Gegensatz dazu
nach mehreren Sekunden abgeschlossen [Bla+25].

3.2.1 Inertial Flow

Der Inertial-Flow-Algorithmus ist eine Technik, um gute Ordnungen effizient zu berechnen
[SS15]. Eine Beobachtung aus der Praxis ist, dass nicht jede Strafle gleich wichtig ist: Eine
Autobahn oder grofie Briicke ist z. B. deutlich wichtiger als ein Feldweg. Wenn eine Route
beispielsweise einen Fluss quert, so muss sie eine der Briicken {iber den Fluss nutzen. Die
Fragen, wie man zu der Briicke kommt, und wie man danach weiterfahrt, sind unabhangig.
Daraus kénnen wir ableiten, dass manche Knoten in einem Straflengraphen wichtiger sind
als andere. Kanten, die eine Route partitionieren, nennen wir wichtige Kanten und deren
Endpunkte sollen hohe Ordnungen bekommen. Man kann nun so lange wichtige Knoten
16schen, bis der Graph in mehrere Zusammenhangskomponenten zerfillt. Die geloschten
Knoten bilden einen Separator S € V und alle Knoten aus S erhalten die h6chsten Ordnungen.

3.2 Metrik-unabhdingige Vorberechnungen

Ordnung _

Abbildung 3.1: Schematisches Beispiel fiir die Berechnung einer Nested Dissection Ordnung
bis zum zweiten Rekursionsschritt. Links schematisch ein Graph mit einem Separator auf
hochster Ebene in violett, der den Graphen in einen roten und einen blauen Teil spaltet. Die
Separatoren in den jeweiligen Teilen sind wieder in kréftigem rot bzw. blau gefirbt. Rechts
wird gezeigt, wie die einzelnen Teile in die Ordnung zusammengefiigt werden. Der rote Teil hat
die niedrigsten Ordnungen, anschlielend der rote Separator die nachst héheren, anschliefend
der gesamte blaue Teil gefolgt von seinem Separator. Der violette Separator auf hochster
Ebene erhalt die hochsten Ordnungen.

In jeder der neu entstandenen Zusammenhangskomponenten Vi, ..., Vi € V' \ S kann dann
rekursive eine Ordnung fiir die einzelnen Komponenten berechnet werden. Da die Komponen-
ten unabhéngig voneinander sind, ist es fiir den Algorithmus irrelevant, auf welche Arten die
Teilordnungen zusammengefiigt werden [SS15]. Zur besseren Ubersicht werden wir in dieser
Arbeit die einzelnen Teile strikt hintereinander einfiigen. Die erste Komponente erhalt also die
niedrigsten Ordnungen, die zweite die niachst héheren und so weiter, dies wird schematisch
auch in Abbildung 3.1 gezeigt.

Es gilt also, kleine, balancierte Separatoren auf dem Graphen zu finden. Dieses Problem
ist im Allgemeinen allerdings NP-vollstdndig [GJS76]. Straflennetze haben jedoch natiirliche
Barrieren wie Fliisse oder Gebirge. Solche Grenzen bilden kleine, balancierte Separatoren,
sodass die Berechnung auf realistischen Straflengraphen effizienter ist [SS15].

Zur Berechnung eines solchen Separators wird ein kleiner Schnitt C C V auf dem Graphen
berechnet. Daraus kann anschlieffend die Schnittkantenmenge X C E berechnet werden, die
genau die Kanten (u, v) € E enthilt, bei denen u € C und v ¢ C gilt oder umgekehrt. Aus X
konnen schlie8lich zwei Separatoren S, S, & V berechnet werden, indem fiir jede Kante aus
X der Endpunkt, welcher in C liegt, in S; eingefiigt wird und der andere in S; [SS15].

Um den Schnitt C zu erhalten, wird ein Flussnetzwerk geldst. Dafiir wird der Graph auf
eine Gerade projiziert und ein maximaler Fluss entlang der Geraden gesucht. Dabei handelt es
sich bei der Quelle um den ersten und bei der Senke um den letzten Knoten in der Projektion.
Zwischen diesen Knoten wird dann ein maximaler Fluss mittels Dinics Algorithmus [Din70]
oder eines anderen Max-Flow-Algorithmus berechnet. Kanten aus dem Flussnetzwerk, die
keinen weiteren Fluss transportieren kénnen, also saturiert sind, entsprechen dann den
wichtigsten Kanten im Stralengraphen. Der Schnitt C enthélt schlieflich alle Knoten, die von
der Quelle aus iiber nicht saturierte Kanten erreichbar sind. Nach dem Max-Flow-Min-Cut-
Theorem handelt es sich bei C um einen minimalen S—-T-Schnitt, also ein Schnitt, bei dem
sich die Quelle in C und die Senke in V \ C befindet [EFS56].

Das oben beschriebene wird fiir verschiedene Geraden durchgefiihrt, z. B. fiir die Nord-Sid-
und Ost-West-Achsen, und aus allen Optionen wird der kleinste Separator gewahlt. Auf jeder
Komponente, in die der Graph durch Herausschneiden des Separators zerfillt, wird rekursiv

3 CCH-Algorithmus

Abbildung 3.2: Beispiel einer Contraction, der Knotenname entspricht auch seiner Ordnung
(7 = id). Links der Originalgraph, in der Mitte wurde der Knoten ,,1“ fertig kontrahiert und
rechts der Graph nach der Abarbeitung von Knoten ,,2“. Letzterer ist gleichzeitig auch der
fertig kontrahierte Graph. Im aktuellen Schritt neu eingefiigte Shortcuts werden rot dargestellt,
alte Shortcuts blau.

wieder ein solcher Separator berechnet. Schlussendlich werden die Ordnungen der Teilgraphen
zusammengefiigt. Dies geht z. B. indem die erste Komponente die niedrigsten Ordnungen
bekommt, anschlieend erhalt die nidchste Komponente die nachst hoheren Ordnungen
und so weiter, bis alle Teilordnungen zusammengefiigt wurden. Als Letztes werden den
Separatorknoten die hochsten Ordnungen zugewiesen. Damit der oben berechnete maximale
Fluss nicht durch die geringen Knotengrade des ersten und letzten Knotens beschrankt ist,
fasst der Algorithmus die ersten und letzten 30 % der Knoten zur Quelle bzw. Senke zusammen.
Auf diesem Graphen wird dann der maximale Fluss zwischen Quelle und Senke berechnet.

3.2.2 Contraction

In der Contraction fiigen wir die Shortcuts in den Graphen ein und berechnen somit die Topo-
logie des Augmented Graphs G’ [DSW16]. Am Ende soll fiir jeden s—t-Pfad P = (vy,..., k)
inG' mits = viundt = vpeini € {1,...,k} existieren, sodass 7(v{) < --- < w(v;) sowie
m(vi) > -+ > m(vy) gilt.

Wie in Abbildung 3.2 werden dazu die Knoten in aufsteigender Reihenfolge gemaf3 der
Ordnung durchlaufen. Fir jeden Knoten v € V wird seine Nachbarschaft mit héherer Ordnung
als v zu einer Clique vervollstandigt. Dabei konnen Shortcuts auch zu weiteren Shortcuts
fihren. Es macht also einen Unterschied, in welcher Reihenfolge die Knoten durchlaufen
werden. In Abbildung 3.2 wird z. B. der Shortcut (2, 4) nur wegen des Shortcuts (1, 2) einge-
fugt. Wir bezeichnen mit S die Menge aller Shortcuts und definieren anschlieBend die neue
Kantenmenge E’ = E U S fiir den Augmented Graph G’. Insgesamt kann die Contraction in
O(|V| + |E’|) berechnet werden [DSW16].

Der in dieser Arbeit implementierte Algorithmus verwendet verschiedene, optimierte
Implementierungsdetails. Diese wurden von Blésius et al. [Bla+25] zusammengefasst.

3.3 Customization

Abbildung 3.3: Beispiel einer Customization, der Knotenname entspricht auch seiner Ord-
nung (7 = id). Links ist der kontrahierte Originalgraph. In der Mitte wird das Dreieck 0, 1, 2
bearbeitet, das aktuelle Dreieck sowie das sich dndernde Kantengewicht ist rot eingefirbt.
Rechts der fertige Augmented Graph.

3.3 Customization

In der Customization berechnen wir nun die neuen Kantengewichte ¢’ : E’ — Ry(. Dabei
werden folgende drei Bedingungen an die neuen Gewichte gestellt: Das neue Gewicht einer
Kante (u,v) € E soll mindestens dem Abstand zwischen u und v gemaf3 unserer Metrik
entsprechen. Fiir alle Originalkanten darf das neue Gewicht hochstens so hoch wie das
alte Gewicht sein. Und fiir jedes Dreieck {u, v, w} C V soll die untere Dreiecksungleichung
gelten [Bla+25]. Fir eine Kante (u, v) € E wird dazu ¢’ ((v, w)) auf das Minimum von den
urspriinglichen Kosten ¢((v, w)) und den Kosten tiber u, also ¢’ ((v,u)) + ¢/ ((u, w)) gesetzt.
Auch hier ist die Reihenfolge relevant, in der die Dreiecke durchlaufen werden, da ansonsten
Dreiecke mehrfach betrachtet werden miissen. Es gibt jedoch eine Reihenfolge, in der jedes
Dreieck hochstens einmal betrachtet werden muss [Bld+25]. Nach der Customization kénnen
wir den Augmented Graph definieren als G’ = (V, E’, ¢’). Die Laufzeit der Customization liegt
dann in O(|V| - d2), wobei d,, den maximalen Knotengrad in G’ bezeichnet.

Auch hier verwenden wir wieder verschiedene optimierte Implementierungsdetails, die
Buchhold et al. [BSW19] beschrieben haben.

3.4 Queries

Nachdem die Vorberechnungen abgeschlossen sind, kénnen Nutzende konkrete s—t—Pfad
Anfragen stellen und erhalten als Riickgabe die Kosten des Pfades. Die schnellste Variante dafiir
ist die Elimination-Tree-Query-Technik [DSW16]. Dies geschieht wie oben schon erwéhnt
auf dem Augmented Graph G’ und als zusétzliche Datenstruktur benétigen wir nur der
Elimination Tree. Diesen konnen wir einmal am Ende der Contraction berechnen, da er sich
durch die Customization oder Query-Berechnung nicht dndert [Bla+25].

3 CCH-Algorithmus

—

Abbildung 3.4: Beispiel eines Elimination Trees. Die Wurzel hat die hochste Ordnung.

Fir die Berechnung eines s—t—Pfades wird der Elimination Tree von s und ¢ nach oben bis
zur Wurzel durchlaufen. Fiir jeden Knoten v auf dem Pfad zur Wurzel werden alle ausgehenden
Kanten (v, u) von v in GT bzw. G! relaxiert und die Kosten zu von s bzw. ¢ nach u gespeichert.

Buchhold et al. [BSW19] haben auch fiir Queries einige optimierende Implementierungsde-
tails vorgestellt, die wir in dieser Arbeit verwenden.

3.5 Elimination Tree

Wie bei der Beschreibung der Queries in Abschnitt 3.4 erwahnt, ist der Elimination Tree eine
wichtige Datenstruktur fiir die Query-Berechnung. Daher werden wir uns in diesem Abschnitt
einige Eigenschaften des Elimination Trees ansehen. Abbildung 3.4 zeigt beispielhaft den
Elimination Tree des Karlsruher Stadtteils Stupferich. Fiir einen Knoten x € V fassen wir alle
Knoten, die im Elimination Tree auf dem Pfad von x zur Wurzel liegen, zum Knotensuchraum
von x zusammen und schreiben diesen als Sy (x) € V. Alle Kanten, die auf dem Weg von x zur
Whurzel relaxiert werden, fassen wir zum Kantensuchraum Sg(x) C E von x zusammen. Die
Suchrdume sind ein Maf} fiir die Effizienz der Queries, je grofier die Suchraume sind, desto
langsamer wird die Berechnung der Queries [Bl4+25].

10

3.5 Elimination Tree

Wir nennen einen Knoten Kreuzungsknoten, falls er im Elimination Tree mindestens zwei
Kinder hat. Alle Knoten von der Wurzel bis zum ersten Kreuzungsknoten im Elimination Tree
sind Teil des ersten Separators. Danach spaltet sich der Elimination Tree in die jeweiligen
Zusammenhangskomponenten, in die der Graph durch den Separator zerféllt. Dieses Schema
setzt sich fort: Die Kinder eines Kreuzungsknotens bis zum néchsttieferen Kreuzungsknoten
gehoren zu je einem Separator [Bld+25]. Um die Kosten eines s—t-Pfades zu berechnen, muss
der Elimination Tree, wie in Abschnitt 3.4 beschrieben, von s und ¢ bis zur Wurzel durchlaufen
werden [Bl4a+25].

Je tiefer der Elimination Tree ist, desto grofier werden die Knotensuchrdume von s und ¢,
somit dauert die Berechnung eines Query langer. Fiigt man in der Contraction dagegen viele
Shortcuts hinzu, wachsen die Kantensuchréaume. Dies beeintréachtigt die Querylaufzeiten eben-
falls. Um die Laufzeit der Queries moglichst gering zu halten, diirfen also sowohl die Knoten-
als auch die Kantensuchrdume nicht zu grofl werden [DSW16 | Bla+25]. Ein anderes Problem
zu vieler Shortcuts ist, dass die Vorberechnungen deutlich ldnger dauern kénnen. Aufierdem
kann es, selbst auf Hochleistungsrechnern, durch die vielen Kanten zu Speicherproblemen
kommen [Bla+25].

11

4 Losungsansatze

Grundsitzlich ist der CCH-Algorithmus, wie er in Kapitel 3 beschrieben wurde, bekannt.
Ziel dieser Arbeit ist es aber, den Einfluss von neuen Kanten auf den CCH Algorithmus
zu diskutieren. Wenn wir eine neue Kante (x, y) in den Graphen einfiigen, dndern wir die
Topologie des Graphen und nach der Definition des CCH-Algorithmus miissen wir alle Phasen
neu durchlaufen [DSW16]. Eine neue Ordnung zu berechnen ist aber sehr teuer, sodass
wir diesen Schritt vermeiden méchten. Die restlichen Vorberechnungen, die Contraction
und Customization, sind dagegen giinstig und eine erneute Ausfithrung dieser Schritte hat
asymptotisch keine Auswirkungen auf die Gesamtlaufzeit [Bla+25| DSW16].

Die Ordnung beeinflusst zwar nicht die Korrektheit der Queries, wohl aber die Effizienz
des Algorithmus [Bla+25]. Das heifit auf jeder Ordnung, und insbesondere der urspriingli-
chen, werden die Queries korrekt berechnet. Allerdings leidet die Performance des gesamten
Algorithmus und besonders der Queries unter einer schlechten Ordnung [Bla+25].

In diesem Kapitel beschreiben wir verschiedene Varianten, wie die Ordnung an die neue
Kante angepasst werden kann. Anschlieffend fithren wir die Contraction und Customization
gemifl der neuen Ordnung durch. In Kapitel 5 analysieren wir schliellich die Auswirkungen
von unseren Optimierungen. Wir bezeichnen mit (x, y) stets die neu eingefiigte Kante und
mit 7 die alte Ordnung.

4.1 Shortcut-Kante einfiigen

Sei (x, y) ein Shortcut. Wenn wir diese Kante in den Ausgangsgraphen neu einfiigen, ist die
alte Ordnung fiir den neuen Graphen nach Lemma 4.1 ebenfalls optimal. Aus diesem Grund
tibernehmen wir immer, wenn eine Shortcut-Kante in den Graphen eingefiigt wird, die alte
Ordnung und verfahren gemafl Abschnitt 4.3.

Lemma 4.1: Fiir einen Graphen G = (V,E) sei G’ = (V,E’) der kontrahierte Graph beziiglich
einer Ordnung i und e € E’ \ E ein Shortcut. Dann wird der Graph (V, EU {e}) mit der Ordnung
7 ebenfalls zu G’ kontrahiert.

Beweis. Durch eine neue Kante im Ausgangsgraphen wird die Nachbarschaft der Knoten
héchstens vergrofiert. Da fiir einen Knoten v € V seine Nachbarschaft mit héherer Ordnung
in G’ schon eine Clique ist, kann keine weitere Kante mehr hinzugefiigt werden. Ist e bereits
im Ausgangsgraphen enthalten, muss die Kante in der Contraction nicht mehr hinzugefiigt
werden, dies beeinflusst aber nicht die Cliqueneigenschaft. Da die Ordnung 7 nicht geédndert
wird, bleibt der Graph nach der Contraction insgesamt unveriandert. a

4.2 Allgemeine Ziele

Nach Abschnitt 4.1 kénnen wir ohne Beschrankung der Allgemeinheit davon ausgehen, dass
es sich bei der neuen Kante e = (x, y) nicht um einen Shortcut handelt. Durch das Einfiigen
der Kante dndern wir also die Topologie des Augmented Graphs. Wie oben schon erwahnt,
miissten wir nach der Definition des CCH-Algorithmus die Ordnung komplett neu berechnen.

13

4 Losungsansdtze

Sei G der urspriingliche Graph und G* der Graph, in den die neue Kante eingefiigt wurde.
Wir definieren, dass die Kante (x, y) einen Separator schneidet, falls x und y nicht in der
gleichen Komponente sind, nachdem der Separator herausgeschnitten wurde. Dabei ist es
im Allgemeinen moglich, dass entweder x oder y teil des Separators ist. Vergleichen wir
die Berechnung der Ordnung auf beiden Graphen, gibt es im ersten Rekursionsschritt zwei
Moglichkeiten: Entweder liegt e komplett innerhalb einer Komponente oder e schneidet
den gefundenen Separator. Im ersten Fall wird der Algorithmus in G* denselben Separator
finden wie in G. Das bedeutet, dass sich die Ordnung in den Komponenten ohne e sowie im
gefundenen Separator nicht verindert. Anderungen kénnen also nur in der Komponente mit
der neuen Kante auftreten. Dieses Argument setzt sich rekursiv so lange fort, bis die neue
Kante erstmalig einen gefundenen Separator schneidet, dann befinden wir uns im zweiten
Fall. Nur in diesem Teil des Graphen unterschieden sich die gefundenen Separatoren von G
und G* und im Allgemeinen wird sich die Ordnung fiir die gesamte Komponente grundlegend
andern.

Wir sehen also ein, dass es ausreicht, die Ordnung lokal an die neue Kante anzupassen. Ziel
ist es daher, die Ordnung so zu veréndern, dass sowohl die Vorberechnungen, als auch die
Queries moglichst effizient berechnet werden kénnen.

4.3 Alte Ordnung iibernehmen

Damit die Vorberechnungen méglichst schnell sind, ist ein trivialer Ansatz, die alte Ordnung
zu iibernehmen. In diesem Fall miissen wir nur die Contraction und Customization erneut
durchfithren. Wie oben erwihnt, werden die Queries dadurch weiterhin korrekt berechnet.
Nachdem die Ordnung 7z aber nicht auf die neue Kante optimiert wurde, erwarten wir, dass
die Querylaufzeiten deutlich langsamer sind, als bei den folgenden Varianten.

4.4 Ordnung vom Teilbaum neu berechnen

Eine entgegengesetzte Strategie besteht darin, ausschliefSlich die Querylaufzeiten zu optimie-
ren. Dazu berechnen wir eine neue Ordnung .. Wie in Abschnitt 4.2 ausgefiihrt, reicht es,
eine neue, optimale Ordnung fiir die Komponente K C V zu berechnen, in der die neue Kante
(x,y) das erste Mal einen Separator schneidet. In K wird also im urspriinglichen Graphen das
erste Mal ein Separator S ¢ K gewahlt, der x und y in unterschiedliche Komponenten teilt.
Im Elimination Tree ist S der niedrigste Separator, der sowohl auf dem Pfad von x, als auch
von y aus zur Wurzel liegt. Die Knoten aus K sind dann genau die Knoten, die im Elimination
Tree in dem, an S gewurzelten Teilbaum liegen. In 7, berechnen wir dann fiir alle Knoten aus
K eine neue Ordnung geméifl dem Inertial-Flow-Algorithmus aus Abschnitt 3.2.1. Alle tibrigen
Knoten aus dem Graphen behalten ihre urspriingliche Ordnung,.

Um alle Knoten aus K effizient zu berechnen, suchen wir zunéchst den hochsten Separa-
torknoten t € V von x und y. Dabei handelt es sich um den Knoten aus S mit der hochsten
Ordnung in 7. Fiir die Berechnung von t bendtigen wir zuvor den kleinsten gemeinsamen
Vorfahren (lca) von x und y und nennen diesen ¢. Dieser ist definiert, als der Knoten ¢ € V mit
kleinster Ordnung in 7, der sowohl in dem Pfad von x als auch von y zur Wurzel enthalten
ist. Von ¢ aus durchlaufen wir den Elimination Tree weiter nach oben und der erste Knoten
mit einem Geschwisterknoten ist der hochste Separatorknoten ¢. Der Ica sowie der hochste
Separatorknoten sind beide eindeutig. Das Beispiel in Abbildung 4.1 zeigt schematisch, wie
die Ordnung fiir eine neue Kante (x, y) berechnet wird.

14

4.4 Ordnung vom Teilbaum neu berechnen

Ordnung

Abbildung 4.1: Schematische Ubersicht, wie die Ordnung fiir eine neue Kante (x,y) neu
berechnet wird. Oben der Elimination Tree des Graphen, in dem die Kante (x, y) rot einge-
zeichnet wurde. Unten die neu berechnete Ordnung 7. Der hochste Separator, der von (x, y)
geschnitten wird, besteht aus den Knoten {¢, ¢}. Gleichzeitig handelt es sich £ um den Ica von
x und y, und bei ¢ um Knoten mit der hochsten Ordnung aus dem Separator. Die Ordnung
wird fiir alle blauen Knoten neu berechnet, alle grauen Knoten behalten ihre urspriingliche
Ordnung.

15

4 Losungsansdtze

Das Neuberechnen der Ordnung fiir einen Teilbaum ist allerdings teuer. Es gibt verschie-
dene Algorithmen, um eine Nested Dissections Ordnung zu berechnen, ein Beispiel ist der
Inertial-Flow-Algorithmus aus Abschnitt 3.2.1. Alle bekannten Algorithmen fiir dieses Problem
benétigen aber auf grofien Instanzen mehrere Minuten [SS15 | Bla+25]. Falls die neue Kante
den hochsten Separator schneidet, muss eine neue Ordnung fiir den gesamten Graphen berech-
net werden. Folglich ist die Laufzeit dieser Variante beschrankt durch die initiale Berechnung
der Ordnung auf dem Graphen. Fir kleine TeilbAume wird die Laufzeit der Vorberechnung
noch durch die Contraction und Customization dominiert. Wenn der Teilbaum aber grof3
genug wird, dominiert das Neuberechnen die Laufzeit. Allerdings erwarten wir, dass die so
berechnete Ordnung sehr gut auf die neue Kante optimiert ist. Daher gehen wir davon aus,
dass diese Variante zu den schnellsten Querylaufzeiten fiihrt.

4.5 Ordnung anpassen

Damit wir sowohl in der Vorberechnung als auch in den Queries schnelle Ergebnisse erhalten,
koénnen wir als Kompromiss die Ordnung von einem der beiden Endpunkte der neuen Kante
erhohen. Wie oben sei K C V die Komponente mit zugehérigem Separator S C K, in der
die neue Kante (x, y) erstmals den gewéhlten Separator schneidet. Auflerdem sei G wieder
der originale Graph und G* der Graph, in dem die Kante (x,y) eingefuigt wurde. Fiir die
neue Ordnung r, fiigen wir entweder x oder y zu dem Separator S hinzu und erhéhen
dadurch die Ordnung des entsprechenden Knotens. Nachdem S ein Separator fiir K in G
ist, sind sowohl S U {x}, als auch S U {y} Separatoren fiir K in G*. Aus dem Max-Flow-
Min-Cut-Theorem folgt, dass der minimale s—t—Cut in einem Graphen durch eine weitere
Kante nicht kleiner werden kann [EFS56]. Folglich kann auch der minimale Separator fiir K
in G* nicht kleiner werden als S. Insgesamt erhalten wir also durch die Anpassung in der
Komponente einen Separator, der maximal ein Knoten gréfler ist, als ein optimaler Separator.
Innerhalb der einzelnen Komponenten, in die K durch den neuen Separator zerfallt, bleiben
die Separatoreigenschaften auf der jeweiligen Ebene erhalten. Unsere Aussagen beziehen
sich allerdings auf die Optimalwerte, wie in Abbildung 4.2 kann es passieren, dass in einem
optimalen Separator andere Knoten enthalten sind, als in unserem angepassten Separator.

Der verbleibende Freiheitsgrad bei dieser Variante ist, welchem der beiden Endpunkte wir
eine hohere Ordnung geben mochten und wir bezeichnen den gewéhlten Knoten mit s € {x, y}.
Mogliche Strategien sind immer den Knoten mit aktuell héherer bzw. niedrigerer Ordnung
in 7 zu wihlen sowie eine zufillige Wahl zu treffen. Den Einfluss der Wahl evaluieren wir
experimentell in Abschnitt 5.2. Wir erwarten aber, dass sich die Strategien nur geringfiigig
unterscheiden.

Fir die konkrete Berechnung der neuen Ordnung 7, benttigen wir wieder den lca £ von
x und y. Anschlieflend méchten wir dem Knoten s die nichst niedrigere Ordnung relativ
zu ¢ geben. Fiir alle Knoten v € V mit n(s) < 7(v) < n(f) reduzieren wir die Ordnung von
v in 7, um eins. Schliellich bekommt s die Ordnung 7,(s) = 7(l) — 1. Alle ibrigen Knoten
behalten ihre urspriingliche Ordnung bei. Abbildung 4.3 zeigt die Anpassung der Ordnung
schematisch.

Diese Anpassung der Ordnung ist ginstig. Die Laufzeit, um den Ica zweier Knoten zu
berechnen, ist nach oben beschrankt durch die Tiefe des Elimination Trees. Im schlimmsten
Fall handelt es sich beim Elimination Tree um einen Pfad und wir miissen somit linear viele
Knoten betrachten. Allerdings erwarten wir, dass der Elimination Tree balanciert ist, dann ist
seine Tiefe logarithmisch in der Anzahl an Knoten. Im Worst Case muss danach die Ordnung

16

4.5 Ordnung anpassen

Abbildung 4.2: Beispiel, in dem der von uns angepasste Separator andere Knoten als ein
optimaler Separator enthilt. Die neue Kante ist gestrichelt dargestellt. Der vom Inertial-
Flow-Algorithmus urspriinglich gewahlte, optimale Separator ist in Blau und durchgehend
gezeichnet, der zum Separator hinzugefiigte Knoten ist blau gestrichelt. Die roten Knoten
bilden einen optimalen Separator, der von unserem vollstindig disjunkt ist.

Ordnung

Abbildung 4.3: Schematische Ubersicht, wie die Ordnung fiir eine neue Kante (x, y) angepasst
wird. Oben die urspriingliche Ordnung 7, unten die angepasste Ordnung ,. Wir geben dem
roten Knoten s € {x, y} eine héhere Ordnung und fiigen s dazu direkt vor dem violetten lca ¢
von x und y ein. Die Ordnung der blauen Knoten wird somit um eins reduziert. Die Ordnung
der grauen Knoten bleibt unverandert.

von allen Knoten in dem Teilbaum unter dem lca angepasst werden. Das sind aber maximal
linear viele, wenn der lca eine sehr hohe Ordnung hat, andernfalls deutlich weniger. Insgesamt
liegt die Laufzeit dieser Variante also in O(]V|) und wird somit durch die folgende Contraction
und Customization dominiert. Es ist also deutlich schneller, die Ordnung anzupassen, als
sie fiir einen Teilbaum neu zu berechnen. Unsere Erwartung ist, dass die Queries durch die
Anpassung schneller bearbeitet werden, im Vergleich zur alten Ordnung (Abschnitt 4.3), aber
langsamer verglichen mit einer Neuberechnung der Komponente (Abschnitt 4.4).

17

5 Evaluation

In diesem Kapitel vergleichen wir die in Kapitel 4 vorgestellten Optimierungen. Dazu be-
rechnen wir zunichst eine initiale Ordnung . Anschlieend fiigen wir eine neue Kante der
Lange d in den Graphen ein und berechnen die neuen, angepassten Ordnungen gemaf3 den
Abschnitten 4.3, 4.4 und 4.5. Dabei untersuchen wir, wie sich die verschiedenen Varianten auf
neue Straffen der Lange 1km, 5km 10km, ..., 40 km, 45 km und 50 km auswirken. Die Langen
wurden bewusst so gewahlt, dass wir sowohl unwichtige als auch sehr wichtige Kanten neu
einfigen.

Um eine neue Kante der Lange d zu erzeugen, ziehen wir zufillig einen Knoten x aus allen
Knoten. Danach berechnen wir, welche Knoten euklidischen Abstand d + 10 % zu x haben
und ziehen daraus zufallig einen Knoten y. Die neue Kante (x, y) figen wir dann in beide
Richtungen ein. Damit neue Kanten sich nicht gegenseitig beeinflussen, fiigen wir in den
Ausgangsgraphen immer nur eine Kante auf einmal und 16schen alle Anderungen, bevor wir
die nachste Kante einfiigen.

Die Qualitat der Ordnungen vergleichen wir, indem wir die Suchraume der Knoten analysie-
ren. Wie in Abschnitt 3.5 erwahnt, sind die Suchraume ein gutes Maf fiir die Geschwindigkeit
der Queries. Je kleiner die Suchraume sind, desto schneller kénnen die Queries berechnet
werden [DSW16]. Wir berechnen dann die durchschnittliche und maximale Grofle der Such-
raume fir alle Knoten im Graphen sowie fiir die Knoten im gemeinsamen Teilbaum der neuen
Kante. Werden bei der Berechnung alle Knoten des Graphen beriicksichtigt, nennen wir die
Suchriume global, andernfalls lokal. Die Gréf3e der globalen Suchraume sind dann ein Mafl
fir zufillige Queries [DSW16]. Die lokalen Suchraume sind dagegen ein Indikator fiir die
Geschwindigkeit von Queries in der Ndhe der neuen Kante. Dabei definieren wir, dass sich
alle Knoten im gemeinsamen Teilbaum der neuen Kante in ihrer der Nahe befinden. Die neue
Kante beeinflusst also potenziell alle Queries in ihrer Nahe. Auf Queries, die sich nicht in
ihrer Nahe Kante befinden, hat die Kante dagegen keine Auswirkungen. Aus den maximalen
Suchridumen erhilt man eine gute Worst Case Abschitzung. Im Gegensatz dazu bieten die
durchschnittlichen Suchrdume Average Case-Bewertungen [DSW16].

5.1 Vergleich der Varianten

Zunichst vergleichen wir die Varianten, die alte Ordnung zu iibernehmen aus Abschnitt 4.3, die
Ordnung von dem Teilbaum neu zu berechnen aus Abschnitt 4.4 und die Ordnung anzupassen
aus Abschnitt 4.5. Dazu berechnen wir fiir jeden Knoten seine Suchrdume und analysieren,
wie sich diese verdndern. Wie oben beschrieben kénnen wir beim Anpassen der Ordnung den
Knoten, dem wir eine hohere Ordnung geben, wihlen. In diesem Abschnitt erhdhen wir immer
den Knoten mit aktuell niedrigerer Ordnung. Welchen Einfluss die Wahl des Knotens konkret
hat, untersuchen wir dann in Abschnitt 5.2. Bei den Experimenten in diesem Abschnitt fiigen
wir fiir jede Kantenldnge 10 neue Kanten nacheinander ein.

19

5 Evaluation

—— Ordnung Ubernehmen
—— Teilbaum neu berechnen
Ordnung anpassen

Durchschnittlicher globaler Knotensuchraum Maximaler globaler Knotensuchraum
7241 1600
T 723 3
° °
S 7224 < 1500 1
= =
T 721 IS
£ £ 1400 -
720
719 - 1300 /\/\
10 20 30 40 50 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange
Durchschnittlicher globaler Kantensuchraum Maximaler globaler Kantensuchraum
5 T 475 4
S 131.50 ¢ 475
e 3 450
i© 131.25 4 ©
[= C
= = 425 1
= 131.00 1 =
2 £ 400 A
€ 130.75 S
X ¥ 3751
< 130.50 A =
£ 130.25 1 - < AN
10 20 30 40 50 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange

Abbildung 5.1: Plot, in dem die globalen Suchraume auf dem Europa Graphen fiir die
Varianten ,,Ordnung iibernehmen®, ,Teilbaum neu berechnen® und ,,Ordnung anpassen® in
Relation zu der eingefiigten Kantenlédnge gezeigt wird. Oben links sind die durchschnittlichen
Knotensuchraume zu sehen. Unten links sieht man die durchschnittlichen Kantensuchraume.
Rechts sind die zugehorigen maximalen Suchraume der Knoten (oben) und Kanten (unten)
abgebildet. Die alte Ordnung zu iibernehmen, fithrt in allen Fallen zu den gréfiten Suchraumen.
Die Suchridume der anderen beiden Varianten sind dhnlich grof3, sodass in den meisten Fallen
nur eine der beiden Linien zu sehen ist.

5.1.1 Globale Sichtweise

Betrachten wir zunichst den Einfluss von unseren Optimierungen auf zufillige Queries.
Im Vordergrund steht dabei die Geschwindigkeit, mit der diese in der jeweiligen Ordnung
berechnet werden konnen. Wie oben erwahnt, sind die globalen Suchrdume dafiir ein gutes
Maf. In Abbildung 5.1 sieht man, dass die alte Ordnung immer deutlich gréiere Suchriume
hat, als die anderen beiden Varianten. Die erwarteten Querylaufzeiten sind dadurch bei der
Variante ,alte Ordnung ibernehmen® merklich langsamer als bei den anderen. Interessiert man
sich fiir die Worst Case Laufzeiten der Queries, sind die Unterschiede sogar noch stérker. Im
Gegensatz dazu unterscheiden sich die Grofien der Suchraume von den Varianten ,Ordnung
anpassen” und ,Teilbaum neu berechnen® nur sehr geringfiigig voneinander.

Das Neuberechnen der Ordnung fiir einen Teilbaum ist deutlich teurer, als das Anpassen
der Ordnung. Fiigen wir eine langere Kante ein, steigt die Wahrscheinlichkeit, dass diese
weiter entfernte Teilbdume miteinander verbindet und somit héhere Separatoren schneidet.
Wie erwartet, sieht man daher in Abbildung 5.2, dass die Gr63e des gemeinsamen Teilbaums

20

5.1 Vergleich der Varianten

Teilbaum GroRe

106 .

105 .

Anzahl Knoten

104 .

0 10 20 30 40 50
Maximale Kantenldange

Abbildung 5.2: In dem Diagramm wird die Grée des gemeinsamen Teilbaums von der ein-
gefiigten Kante in Relation zu ihrer Lénge gezeigt. Zu sehen ist, dass die Groéfle der Teilbaume
in der Lange der eingefiigten Kante wichst. Im Gegensatz zu den tibrigen Experimenten in
diesem Abschnitt wurde hier fiir jede Lange der Durchschnitt aus 100 anstatt 10 eingefiigten
Kanten gebildet.

mit der Lange der eingefiigten Kante wachst. Das fithrt dazu, dass das Neuberechnen fiir
langere Kanten auch deutlich langsamer wird. Die Laufzeit der Neuberechnung ist nach oben
beschrénkt, durch die Laufzeit eine initiale Ordnung fiir den gesamten Graphen zu berechnen,
und liegt also maximal bei mehreren Minuten [SS15 | Bl4+25]. Bei dem Anpassen der Ordnung
muss dagegen maximal die Ordnung von jedem Knoten verschoben werden und ist damit
auch fiir grofie Teilbdume deutlich schneller.

Verglichen mit der alten Ordnung liefern das Anpassen sowie das Neuberechnen fiir einen
Teilbaum ghnlich gute Ordnungen. Daher vergleichen wir diese beiden Varianten in Abbil-
dung 5.3 direkt miteinander. Man sieht, dass beide Varianten sich im Worst Case nahezu
identisch verhalten. Im Average Case stellen wir sogar iiberraschenderweise fest, dass das
Anpassen insgesamt zu kleineren Suchridumen fithrt. Dies widerspricht unserer Erwartung,
dass das Neuberechnen die besten Ordnungen liefert. Nachdem diese Abweichungen nicht
nur in einzelnen Datenpunkten auftreten, sollten weiterfithrende Arbeiten dieses Phdnomen
genauer untersuchen. Erwartungsgemaf; wachsen aber die durchschnittlichen Suchrdume in
der Lange der Kanten fiir diese beiden Varianten.

Zusammenfassend ist das Anpassen der Ordnung fiir zufillige Queries eine gute Losung.
Diese Variante ist in der Vorberechnung effizienter als das Neuberechnen und die Queries
konnen schneller beantwortet werden, als bei der alten Ordnung. Aufierdem skaliert das
Anpassen der Ordnung auch fiir lange Kanten sehr gut.

21

5 Evaluation

—— Teilbaum neu berechnen
Ordnung anpassen

Durchschnittlicher globaler Knotensuchraum Maximaler globaler Knotensuchraum
718.90 - 1302.0 1

c 718.88 1 - 1301.8 A

] s

2 718.86 - 2 1301.6 A

¥ p4

S 718.84 'S 1301.4

N N

c f

< 718.82 - /\ < 1301.2 1

— ’/
718.80 4 - 1301.0
10 20 30 40 50 10 20 30 40 50
Maximale Kantenldnge Maximale Kantenlédnge
Durchschnittlicher globaler Kantensuchraum Maximaler globaler Kantensuchraum

S 130.230 1 =S

= =

[] [

2 130.225 2 335.0
I e
£ 130.220 £

= j=
£ 130.215 - g 334.81

T L]
¥ pv4
= 1302109 =

E / I E 334.6 1
< 130.2057 . — . . < : : : .

10 20 30 40 50 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange

Abbildung 5.3: Die globalen Suchrdume der Varianten ,Teilbaum neu berechnen® und ,Ord-
nung anpassen” in Abhangigkeit zu der Lange der eingefiigten Kante. Oben links der durch-
schnittliche Knotensuchraum. Oben rechts der zugehorige maximale Knotensuchraum. Unten
links der durchschnittliche und unten rechts der maximale Kantensuchraum. Die maximalen
Suchrdume unterscheiden sich nur sehr geringfiigig. ,Teilbaum neu berechnen® hat dagegen
grofiere durchschnittliche Suchraume als ,,Ordnung anpassen®.

5.1.2 Lokale Sichtweise

Nachdem wir im obigen Abschnitt zufallige Queries betrachtet haben, untersuchen wir hier
lokale Queries in der Nahe der neuen Kante genauer. Wie oben schon erwéhnt, kann die neue
Kante nur Knoten im gemeinsamen Teilbaum, also in ihrer Néhe, beeinflussen. In den lokalen
Suchraumen sind die Auswirkungen unserer Optimierungen also noch besser messbar.

In Abbildung 5.4 sieht man, dass auch lokal die Variante ,Ordnung iibernehmen® deutlich
schlechter performt, als die anderen beiden. Hier sind die Unterschiede sogar noch ausgeprag-
ter als im Abschnitt 5.1.1. Die Varianten ,Teilbaum neu berechnen® und ,Ordnung anpassen®
sind dagegen im Verhéltnis auch wieder sehr dhnlich zueinander. Damit wird unsere Erwar-
tung erneut bestitigt, dass die alte Ordnung zu den langsten Queryzeiten fithrt und dass
,Ordnung anpassen” eine gute Alternative zum Neuberechnen darstellt.

Vergleicht man die Varianten ,,Ordnung anpassen” und ,Teilbaum neu berechnen® direkt, ist
auch hier das Neuberechnen iiberraschenderweise schlechter als das Anpassen. Abbildung 5.5
zeigt die Differenz der Suchraume zwischen dem Neuberechnen und Anpassen. Unsere Erwar-
tung ist, dass die Differenz immer positiv ist, weil wir vermuten, dass Neuberechnen bessere
Ergebnisse liefert als Anpassen. Aber auch hier miissen wir feststellen, dass das Anpassen oft
sogar kleinere Suchraume liefert. Allerdings sind die Unterschiede zwischen den beiden Vari-
anten sehr gering und stark verrauscht, sodass auch dieses Phanomen in weiteren Arbeiten
untersucht werden sollte.

22

5.1 Vergleich der Varianten

—— Ordnung Ubernehmen durchschn.
—— Teilbaum neu berechnen durchschn.
——— 0Ordnung anpassen durchschn.

—— Ordnung Ubernehmen max

—— Teilbaum neu berechnen max

—— Ordnung anpassen max

Lokaler Knotensuchraum Lokaler Kantensuchraum
500 A
1600 A
450 A
400 A
1400 A
2 350 1
(]
3
< o
9] J S
= 1200 c
g <3001
= 3
8 1S
g 2
< 250 A
1000 - g
fs
<
200 A
800 A
150 -
100 A
600
10 20 30 40 50 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange

Abbildung 5.4: Lokale Suchrdume in Abhéngigkeit der Lange der neuen Kante fiir die
Varianten ,,Ordnung iibernehmen®, ,Teilbaum neu berechnen® sowie ,Ordnung anpassen®. Die
unteren Kurven in den Grafiken zeigen jeweils die durchschnittlichen Suchraume, die oberen
die maximalen. Links sind die Knotensuchrdume zu sehen und rechts die Kantensuchraume.
Die Suchriaume von der alten Ordnung sind immer deutlich grofler als die der anderen beiden
Varianten.

23

5 Evaluation

Lokaler Knotensuchraum Lokaler Kantensuchraum
0.3 1
10 -
0.2 1
5 -
0.1 1
0 -
] @
5 0.01 1S
c g —51
pv4 pv4
= =
5 -017 ¥ 10
< <
_02 -
_15 -
_03 -
_20 -
_04 -
_25 -
10 20 30 40 50 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange

Abbildung 5.5: Lokale Suchraume in Abhéngigkeit der Lange der neuen Kante fiir die
Varianten ,Teilbaum neu berechnen® und ,Ordnung anpassen®. Gezeigt wird die Differenz der
durchschnittlichen Suchraumgrofien zwischen der Neuberechnung und dem Anpassen. Links
handelt es sich um die Differenz in Knotensuchriaume, rechts um die der Kantensuchraume.
Wider erwartend ist die Differenz oftmals negativ, an den Stellen fithrt Neuberechnen zu
schlechteren Ergebnissen als Anpassen.

Insgesamt konnen wir dennoch festhalten, dass das Anpassen der Ordnung ein sehr gutes
Verfahren ist, um im CCH-Algorithmus mit neuen Kanten umzugehen. Dieses Verfahren
liefert mit wenig Aufwand auch fiir lange und wichtige Kanten schnell gute Ordnungen.
Dadurch kann der Algorithmus effizient auf Anderungen in der Topologie reagieren und
Queries weiterhin in kurzer Zeit beantworten.

5.2 Unterschiede beim Anpassen der Ordnung

Im obigen Abschnitt haben wir festgestellt, dass wir durch das Anpassen der Ordnung sowohl
die Vorberechnungen, als auch die Queries schnell bearbeiten kénnen. Der verbleibende Frei-
heitsgrad beim Anpassen der Ordnung aus Abschnitt 4.5 ist, welchem der beiden Endpunkte
der neuen Kante wir eine hohere Ordnung geben. Wir unterscheiden dabei zwischen den
Varianten, bei denen der Knoten mit aktuell niedriger bzw. hoherer Ordnung gewahlt wird,
sowie einer zufilligen Wahl. Wie in Abschnitt 5.1 fiigen wir dazu neue Kanten in den Graphen
ein und passen die Ordnung auf verschiedene Varianten an. Allerdings fiigen wir bei den Ex-
perimenten in diesem Abschnitt fiir jede Kantenlédnge 100 anstatt 10 Kanten nacheinander ein.
Anschlielend berechnen wir fir jeden Knoten seine Suchrdume. Nachdem die Unterschiede
zwischen den Varianten hier sehr viel geringer sind, fokussieren wir uns dabei nur auf die
lokalen Suchriaume, weil dort die Unterschiede besser messbar sind.

24

5.2 Unterschiede beim Anpassen der Ordnung

Abbildung 5.6: Beispielgraph, mit neuer Kante (x, y) in rot gestrichelt. Der Graph ist gleich-
zeitig auch sein Elimination Tree und y ist der lca von x und y. Wird beim Anpassen der
Ordnung der Knoten mit aktuell héherer Ordnung, also y, gew#hlt, wird die Ordnung nicht
geandert. Wahlt man dagegen den anderen Knoten x, so dndert sich die Ordnung.

Eine erste Beobachtung ist, dass die Ordnung identisch bleiben kann, falls wir den Knoten
mit aktuell hoherer Ordnung wéhlen. Wihlen wir dagegen den niedrigeren Knoten, dndern
wir die Ordnung in jedem Fall. In Abbildung 5.6 sehen wir ein Beispiel eines Elimination
Trees, in dem der hohere Endpunkt der neuen Kante (x,y) gleichzeitig der lca von x und
y ist. Das bedeutet aber, dass die neue Kante im Separator endet. Folglich kénnen wir bei
der Wahl des hoheren Knotens nichts d&ndern. Der Knoten mit aktuell niedrigerer Ordnung
kann aber niemals gleichzeitig der Ica sein und die Ordnung wird bei dieser Wahl definitiv
geandert. Da S von der neuen Kante nicht geschnitten wird, separiert es die Komponente mit
der neuen Kante ebenfalls. Fine Erweiterung des Separators ist daher nicht notwendig. Der
Algorithmus, den wir fiir die Nested Dissections Ordnung verwenden, wahlt dann also auch
mit der neuen Kante denselben Separator S fir die entsprechende Komponente. Auflerdem
hat die neue Kante keinen Einfluss auf die Komponente, in dem sich der andere Endpunkt x
der Kante befindet, da sie durch das Herausschneiden des Separators ebenfalls entfernt wird.
Das bedeutet, dass sich die Qualitat der alten Ordnung unter diesen Umsténden durch die
neue Kante nicht dndert. Treffen wir in diesem Fall eine andere Wahl, konnen wir die Qualitat
der Ordnung nur verschlechtern.

Wie wir in Tabelle 5.1 sehen konnen, sind die durchschnittlichen, lokalen Suchraume fir alle
drei Varianten sehr dhnlich. Allerdings sind die Suchrdume bei der Wahl des héheren Knotens
in den meisten Féllen minimal kleiner. Aus diesem Grund untersuchen wir in Abbildung 5.7 die
Anderungen relativ zu der Wahl des hoheren Knotens. Dazu ziehen wir von den Suchrdumen
jeweils den Suchraum von der Wahl des hoheren Knotens ab und betrachten die Differenz.
Es fallt auf, dass die Schwankungen zwischen den Varianten minimale sind und im Bereich
von 0,035 Knoten bzw. 2,5 Kanten liegen. Die Wahl des hoheren Knotens fithrt aber in den
meisten Fallen zu den kleinsten durchschnittlichen Suchraumen. Die maximalen Suchriume
sind dagegen fiir alle Varianten vollstandig identisch. Das bedeutet, dass die Queries bei der
Wabhl des hoheren Knotens im Average Case minimal schneller berechnet werden konnen. Im
Worst Case sind dagegen keine Unterschiede feststellbar.

25

5 Evaluation

Tabelle 5.1: Eine Auswahl der durchschnittlichen, lokalen Suchraume in Abhangigkeit der
Kantenlédnge fiir die drei Varianten, die Ordnung anzupassen. Oben Knotensuchraume, unten
die Kantensuchraume. Die Gréfie der Suchraume unterscheiden sich nur sehr geringfiigig. In
jeder Spalte ist kleinste Eintrag fett markiert.

10 20 30 40 50
Niedrigeren 740,870 724,389 719,761 746,348 728,260
Hoheren 740,859 724,380 719,744 746,345 728,262
Zufalligen 740,872 724,390 719,744 746,348 728,261
Niedrigeren 139467,964 133 521,370 128 942,936 144 129,162 132 399,587
Hoheren 139467,773 133520,815 128940,750 144129,033 132 399,733
Zufalligen 139 468,246 133 521,381 128 941,326 144 129,168 132 399,613

In der Vorberechnung liegt die Laufzeit von allen Varianten in O(n), wobei n die Anzahl
an Knoten beschreibt. In jeder Variante muss der lca von der neuen Kante (x, y) bestimmt
werden. Dies benoétigt im Worst Case O(n) Zeit. Ohne Einschrankung gehen wir davon aus,
dass die Ordnung von x kleiner ist, als die von y. Im extremsten Fall hat dann x die niedrigste
Ordnung und y die héchste. Wenn wir nun x erhéhen, miissen wir die Ordnung von jedem
Knoten verschieben und dafiir erneut O(n) Operationen durchfithren. Wihlen wir dagegen v,
benotigen wir keine weiteren Operationen und sind fertig. Insgesamt miissen wir bei der Wahl
des niedrigeren Knotens die Ordnung von mehr Knoten veréndern, als wenn wir den héheren
Knoten anpassen, da wir mindestens die Ordnung von x zusitzlich verandern. Die Laufzeiten
der beiden Varianten unterscheiden sich also nur in einer Konstanten in der Landau Notation.

Betrachten wir dagegen reale, balancierte Elimination Trees, so kann der lca in O(logn)
bestimmt werden. Die Worst Case Abschiatzung dndert sich dadurch zwar nicht, da immer
noch bis zu linear viele Knoten existieren, die Ordnung zwischen y und dem lca haben.
Allerdings kénnen dann die Unterschiede deutlicher ausfallen. Wahlen wir im obigen Beispiel
den niedrigeren Knoten x, so miissen wir weiterhin O(n) Zeit investieren, bei der Wahl von y
nur O(logn). Wie oben schon erwiahnt, wird die Laufzeit fiir das Anpassen der Ordnung in
jedem Fall durch die folgende Contraction und Customization dominiert.

Zusammenfassend konnen wir also festhalten, dass die Wahl des hoheren Knotens zu
minimal besseren Ergebnissen fiithrt. Dabei ist diese Variante in der Berechnung mindestens
genauso schnell wie die anderen Varianten.

26

5.2 Unterschiede beim Anpassen der Ordnung

—— niedrigeren Knoten
—— zufalligen Knoten

Durchschnittlicher lokaler Knotensuchraum Durchschnittlicher lokaler Kantensuchraum

0.015 | 2.0 1

0.010 1 1.5

0.005 -

Anzahl Knoten
Anzahl Kanten
=
o

0.000 1
' \/ \ 0.5 A

—0.005 A

0.0 1 / V v \

0 10 20 30 40 50 0 10 20 30 40 50
Maximale Kantenlange Maximale Kantenlange

Abbildung 5.7: Lokale Suchraume in Abhéngigkeit der Lange der neuen Kante. Gezeigt
wird die Differenz der durchschnittlichen Suchraumgrélen zwischen der Wahl des héheren
Knotens bzw. einer zufalligen Wahl und der Wahl des hoheren Knotens. Links handelt es
sich um die Differenz in Knotensuchriaume, rechts um die der Kantensuchraume. In den
meisten Fillen ist die Differenz positiv, an den Stellen ist die Wahl des hoheren Knotens also
die bestmogliche. Allerdings fithren bei manchen Datenpunkten andere Wahlen zu besseren
Ergebnissen. Die schwarze Linie zeigt jeweils den gro3tmoglichen Unterschied zwischen den
maximalen Suchrdumen. Dieser ist also offensichtlich fiir alle Varianten identisch.

27

6 Zusammenfassung

Wir sehen, dass der CCH-Algorithmus in seiner bisherigen Form nur langsam auf neue Kanten
reagieren kann. Durch das Hinzufiigen einer Kante dndern wir die Topologie des Ausgangs-
graphen und missen in einem teuren Schritt eine neue Ordnung berechnen. Dazu werden
rekursiv kleine, balancierte Separatoren auf dem Graphen gesucht. Der CCH-Algorithmus
liefert zwar bei jeder Ordnung korrekte Ergebnisse, allerdings wird der Algorithmus bei einer
schlechten Ordnung sehr ineffizient. Nachdem wir die Topologie aber nur geringfiigig dndern,
ist unser erster Ansatz, die alte Ordnung zu tibernehmen. Anschlieend stellen wir fest, dass
sich die Ordnung nur in dem gemeinsamen Teilbaum der neuen Kante im Elimination Tree
andert, also ab dem Punkt, an dem die neue Kante erstmalig einen Separator schneidet. Daher
ist unsere zweite Uberlegung, die Ordnung fiir den gesamten Teilbaum neu zu berechnen.
Unsere letzte Idee ist, den geschnittenen Separator um einen der beiden Endpunkte der neuen
Kante zu erweitern und die Ordnung somit anzupassen.

Wie erwartet, ist die alte Ordnung in der Query-Phase am langsamsten, dafiir sind hier die
Vorberechnungen am schnellsten. Die Neuberechnung des Teilbaums soll dagegen vor allem
die Querylaufzeiten optimieren. Hier sind dafiir die Vorberechnungen, insbesondere fir grof3e
Teilbaume, am aufwendigsten. Allerdings stellen wir fest, dass die Ordnung anzupassen in
vielen Fallen zu minimal kleineren Suchrédumen fithrt und die Queries dadurch noch schneller
berechnet werden kénnen. Dieses Phanomen ist insbesondere in der Nahe der neuen Kante
gut messbar. Das Anpassen der Ordnung ist auch in der Vorberechnung sehr effizient und die
Laufzeit ist vergleichbar mit den Vorberechnung in der alten Ordnung. Durch das Anpassen
der Ordnung kann der CCH-Algorithmus also schnell auf neue Kanten reagieren. Die alte
Ordnung zu iibernehmen, ist dagegen in jedem Fall die schlechteste Variante und sollte
vermieden werden.

Beim Anpassen der Ordnung kénnen wir den Endpunkt der Kante wihlen, den wir erhéhen.
Wir unterscheiden dabei zwischen der Wahl des Knotens mit aktuell niedrigerer bzw. hoherer
Ordnung sowie einer zufilligen Wahl. Erwartungsgeméif} unterschieden sich die Laufzeiten
der drei Varianten sowohl in der Vorberechnung als auch bei der Bearbeitung der Queries
nur geringfiigig. Bei der Wahl des hoheren Knotens sind die Vorberechnungen aber minimal
schneller. In der Query-Phase ist die Wahl des hoheren Knotens in den meisten Féllen ebenfalls
besser. Insgesamt fiithrt diese Variante also zu den besseren Ergebnissen.

Zukiinftige Arbeiten Unsere Vermutung, dass das Neuberechnen zu den kleinsten Suchrau-
men fihrt, konnte nicht bestatigt werden. Daher sollte in weiterfithrenden Arbeiten untersucht
werden, warum das Anpassen der Ordnung zu schnelleren Antworten in der Query-Phase
fuhrt. Auflerdem haben wir uns bei unseren Experimenten nur auf die Suchraumgréfien fo-
kussiert. Man konnte daher konkrete Queries berechnen, um zu tiberpriifen, ob die benétigte
Zeit zu unseren Ergebnissen passt. Des Weiteren haben wir in dieser Arbeit die initiale Nested
Dissection Ordnung nur mittels des Inertial-Flow-Algorithmus berechnet. Man kénnte die
Effekte von unseren Optimierungen noch fiir andere Partitionierungsalgorithmen wie den
Inertial-Flow-Cutter-Algorithmus untersuchen [GHUW19].

29

Literatur

[Bla+25]

[BSW19]

[DGJ]
[Din70]

[DSW16]

[EFS56]

[GHUW19]

[GJS76]

[GSSV12]

[SS15]

Thomas Blasius, Valentin Buchhold, Dorothea Wagner, Tim Zeitz und Michael
Zundorf. ,,Customizable Contraction Hierarchies—A Survey®. In: arXiv preprint
arXiv:2502.10519 (2025).

Valentin Buchhold, Peter Sanders und Dorothea Wagner. ,Real-time traffic
assignment using engineered customizable contraction hierarchies®. In: Journal
of Experimental Algorithmics (JEA) Jg. 24 (2019), S. 1-28.

Camil Demetrescu, Andrew V Goldberg und David S Johnson. Dimacs.

Efim A Dinic. ,Algorithm for solution of a problem of maximum flow in net-
works with power estimation®. In: Soviet Math. Doklady. Bd. 11. 1970, S. 1277~
1280.

Julian Dibbelt, Ben Strasser und Dorothea Wagner. ,,Customizable contraction
hierarchies®. In: Journal of Experimental Algorithmics (FJEA)Jg. 21 (2016), S. 1-49.

P. Elias, A. Feinstein und C. Shannon. ,A note on the maximum flow through a
network®. In: IRE Transactions on Information Theory Jg. 2 (1956), S. 117-119.
DOLI: 10.1109/TTT.1956.1056816.

Lars Gottesbiiren, Michael Hamann, Tim Niklas Uhl und Dorothea Wagner.
,Faster and Better Nested Dissection Orders for Customizable Contraction
Hierarchies®. In: ArXiv Jg. abs/1906.11811 (2019).

M. R. Garey, David S. Johnson und Larry J. Stockmeyer. ,Some Simplified
NP-Complete Graph Problems®. In: Theor. Comput. Sci. Jg. 1 (1976), S. 237-267.

Robert Geisberger, Peter Sanders, Dominik Schultes und Christian Vetter. ,Exact
routing in large road networks using contraction hierarchies®. In: Transportation
Science Jg. 46 (Apr. 2012), S. 388-404. DOL: 10.1287 /trsc.1110.0401.

Aaron Schild und Christian Sommer. ,,On balanced separators in road networks*®.
In: International Symposium on Experimental Algorithms. Springer. 2015, S. 286—
297.

31

https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1287/trsc.1110.0401

	Einleitung
	Allgemeine Definitionen und Notationen
	CCH-Algorithmus
	Struktur des Algorithmus
	Metrik-unabhängige Vorberechnungen
	Inertial Flow
	Contraction

	Customization
	Queries
	Elimination Tree

	Lösungsansätze
	Shortcut-Kante einfügen
	Allgemeine Ziele
	Alte Ordnung übernehmen
	Ordnung vom Teilbaum neu berechnen
	Ordnung anpassen

	Evaluation
	Vergleich der Varianten
	Globale Sichtweise
	Lokale Sichtweise

	Unterschiede beim Anpassen der Ordnung

	Zusammenfassung
	Literatur

