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Abstract

We consider the computational complexity of embedding graphs and especially trees into
various sorts of grids. To do this, we denote that a graph 𝐿 is embeddable into a graph 𝑀 if
and only if there is a map that maps vertices of𝐿 to vertices of𝑀 and edges of𝐿 to edges of𝑀 .
We understand a grid as a product of two paths. We investigate multiple embedding problems
of graphs and trees. We alternate this grid by using the cartesian product and the strong
product for the grid. We observe that deciding whether embedding a tree in the product of
two paths of in!nite and a clique is NP-complete for an arbitrary clique size. However, we
!nd that it is decidable in linear time whether a caterpillar is embeddable into such a grid.
Moreover, we also !nd that embedding a graph in the strong product of a path of in!nite
length and a path of given length 𝑁 is possible in 𝑂 (𝑃𝐿 (𝑀 ) ). Finally, we give a linear time
algorithm for embedding a tree in the strong product of a path of in!nite length and a path of
length 1.

Zusammenfassung

In dieser Arbeit betrachten wir die Komplexität, zu entscheiden ob ein Graph und vor allem
ein Baum in verschiedene Arten von Gittern einbettbar ist. Wir de!nieren, dass ein Graph𝐿
in einen Graphen 𝑀 einbettbar ist, falls wir eine Abbildung !nden, die die Knoten aus 𝐿 auf
Knoten aus 𝑀 abbildet und die Kanten von 𝑀 auf Kanten von 𝐿 .
Defür betrachten wir mehrere explizite Einbettungsprobleme, wobei wir verschiedene

Variationen von Gittern untersuchen, in die Graphen oder Bäume eingebettet werden. Wir
interpretieren das Gitter als einen Produktgraphen aus zwei Pfaden und betrachten sowohl
das Kartesische als auch das Strong Produkt. Für beide Produktarten multiplizieren wir das
jeweilige Gitter mit einem vollständigen Graphen beliebiger Größe. Wir stellen fest, dass
die Entscheidung ob ein Baum in dieses Gitter einbettbar ist, NP-vollständing ist. Trotzdem
ist es in Linearzeit entscheidbar, ob ein Caterpillar-Baum in ein solches Gitter einbettbar
ist. Schließlich schränken wir das Gitter ein. Wir sehen, dass zu entscheiden ob es möglich
ist einen beliebigen Graphen in das Strong Produkt aus einem unendlich langem Pfad und
einem Pfad der Länge 𝑁 einzubetten, in 𝑂 (𝑃𝐿 (𝑀 ) ) möglich ist. Außerdem stellen wir einen
Algorithmus vor, welcher in Linearzeit entscheidet, ob ein Graph in das Strong Produkt eines
unendlich langen Pfades und einem Pfad der Länge 1 einbettbar ist.
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1 Introduction

We say that a graph𝐿 is embedded into a graph𝑀 , if there is a subgraph of𝑀 that is isomorphic
to 𝐿 . Another way to look at the de!nition of embedding is to have a mapping that maps
edges of 𝐿 to edges of 𝑀 and vertices of 𝐿 to vertices of 𝑀 . Another possibility is to have
a map that maps edges of 𝐿 to paths in 𝑀 . For this de!nition we can !nd many di"erent
variations of the problem whether a graph is embeddable into another graph, for example the
VLSI-Layout problem [KV84].

Embedding graphs is not only interesting for VLSI-Layouts but also for !nding subgraphs,
which is possible with our de!nition of embedding. Embeddings can also be used to gain a
better understanding of the graph to embed, because it may inherit properties of the graph it
is embedded in, for example ful!lling Brouwser’s conjecture [TT24].

In this thesis we look at embedding graphs and trees into various forms of grids. So we look
at related problems to the VLSI-embedding but with a di"erent de!nition of embedding. The
grids are product graphs de!ned as being composed of two paths, where the vertex set is the
cartesian product of the vertex sets of the paths. The edge set of a product graph depend on
the product we use. We consider the strong product and the cartesian product. The cartesian
product of two paths is a grid, while the strong product also contains diagonal edges in the
grid. Finding an embedding into product graphs is interesting, because they provide some
regularity because of their construction.

It is already investigated that embedding a tree in both products is NP-complete ([BEU23],
[Gre89]). Since a tree is a special case of a graph, the general problem of embedding a graph
is also NP-complete. To get a better understanding where the complexity comes from, when
embedding a graph into a grid, we look at the computational complexity of di"erent related
problems, where we both alternate the grid and the graph to embed. We alternate the grid
and see that if we restrict the grid such that it has a constant height 𝑁 , deciding whether an
arbitrary graph 𝐿 is embeddable is possible in 𝑂 (𝑃𝐿 (𝑀 ) ). When considering 𝑁 = 1 we give a
linear time algorithm that provides an embedding of a graph 𝐿 if 𝐿 is embeddable. We also
enlarge the grid by multiplying it with a clique. We observe that even deciding wether a tree
is embeddable in this enlarged grid is NP-complete. We further restrict the graph to embed in.
Here we see that embedding a caterpillar in such an enlarged grid is possible in linear time.

In the following we !rst give an overview to related problems. Then, we introduce notation
and general concepts relevant for this thesis. Chapter 3 provides results on embedding trees
in the product of two paths of in!nite length and a clique. We !rst show for each product
that the embedding problem is NP-complete for a clique size of 2 and generalize the result by
using an arbitrary clique size but 2. In Chapter 4 we show that embedding a caterpillar in a
product of two paths of in!nite length and a clique is possible in polynomial time. Before we
draw a conclusion, we show that embedding a graph in the grid of limited hight is possible in
polynomial time and give an algorithm to !nd an embedding of a graph 𝐿 in linear time if 𝐿
is embeddable, when restricting the height to 1.
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1 Introduction

1.1 Related Work

In this thesis we investigate the embedding of trees (and graphs) in di"erent (multilayered)
grids. We understand grids as product graphs. We use the de!nition of embedding where
vertices are mapped to vertices and edges to edges. In literature one !nds a lot of related
problems with focus on variations of the problem of embedding graphs into graphs. First, one
can change the de!nition of embedding, by mapping edges to paths. In this case of embedding
the problem of !nding an VLSI-Layout is widely investigated [KV84]. The VLSI-Layout
problem is about !nding an embedding of a graph in a grid, that uses as little space as possible.
Kramer and Van Leeuwen show that the VLSI-Layout problem is NP-complete. Starting from
the VLSI-Layout problem many further investigations for di"erent variations of the problem
are made [KV84]. For VLSI-Layouts it is of great interest to have an embedding with the
fewest possible bending paths [AKS91]. Formann and Wagner show that the VLSI-Layout
problem is still NP-complete if the intersecting property of the paths is altered [FW91]. Some
restrictions to the problem were made by only embedding planar graphs if a planar embedding
is given [Tam87] or to only embed trees [BLSS04] even in multilayered grids [Iva16]. For each
of these restrictions they observe that the embedding problem is solvable in polynomial time.
But the main question in these kinds of embedding problems remains the space complexity.
Another de!nition of embedding is the embedding we use. Here vertices are mapped to

vertices again, but edges are mapped to edges and not to paths. In this case space complexity
is less important, since the graph 𝐿 to embed already gives the space of the embedding if
𝐿 is embeddable. We have that the general embedding problem is NP-complete [CGL17].
When looking on restrictions of the embedding problem, we can look at product graphs to
embed in. Embedding graphs into product graphs is interesting since product graphs may
inherit properties of the graphs they consists of or further constraints can be put on them
[TT24]. There is a lot of research on embedding a graph 𝐿 into the strong product of a path,
a clique and a graph with bounded treewidth ([UWY22], [Dvo+21], [HW25]). There, 𝐿 or
the product graph is further restricted and they show that the embedding problem is still
NP-complete. When restricting the graph to embed into to a multilayered grid, embedding a
graph is still NP-complete [Tik16]. We investigate a similar problem but try to embed a tree.
Gregori observes that embedding a tree in a grid is NP-complete [Gre89]. Biedl, Eppstein,
and Ueckerdt show that embedding tree in the strong product of two paths is NP-complete
[BEU23].

We generalize two results stated by Biedl, Eppstein, and Ueckerdt in Chapter 3 and Chapter 4.
In Chapter 3 the reduction follows the same idea as in [BEU23] for constructing a new tree
and reducing the problem of embedding a tree into a product of two paths and a clique to the
problem of embedding a tree in the cartesian product of two paths of in!nite length. Chapter 4
consist of two statements and proofs which are adapted from [BEU23]. They show a similar
statement but for embedding the caterpillar into the strong product of in!nite length, which
is a special case for Section 4.1 when choosing clique size 1.

Besides restricting either the graph to embed into or the graph to embed one can investigate
properties of both graphs. Matou#ek and Thomas investigates such properties at looking at
di"erent de!nitions of embedding [MT92]. Sudakov and Vondrák give some properties for
graphs such that a tree could be embedded into them, for example that the graph to embed in
does not contain cycles with to small diameter [SV10].
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2 Preliminaries

Let a graph 𝐿 be a tuple (𝑅 , 𝑆) consisting of a set of vertices 𝑅 and a set of edges 𝑆 →
(𝑁
2
)

connecting these vertices. If we refer to the vertices or edges of 𝐿 we write 𝑅 (𝐿) or 𝑆 (𝐿) to
specify the graph. We de!ne a subgraph 𝑇 → 𝐿 of a graph𝐿 as a graph, with𝑅 (𝑇) → 𝑅 (𝐿) and
𝑆 (𝑇) → 𝑆 (𝐿) and 𝑆 (𝑇) →

(𝑁 (𝑂 )
2

)
. Moreover for simpli!cation we also denote by 𝑇 a subgraph

of 𝐿 , if there is a subgraph 𝐿 ↑ of 𝐿 that is isomorphic to 𝑇 . So we want that the labeling of
the vertices is not relevant for de!ning a subgraph. We de!ne a restriction to an edge set of a
graph as follows: Let 𝐿 = (𝑅 , 𝑆) be a graph and 𝑈 → 𝑆. We de!ne 𝐿 |𝑃 = (𝑅 (𝐿 |𝑃 ),𝑈 ) with
𝑅 (𝐿 |𝑃 ) = {𝑉 | 𝑉𝑊 ↓ 𝑈 , 𝑉,𝑊 ↓ 𝑅 (𝐿)}, as the subgraph of 𝐿 that only contains vertices of 𝐿
that are part of an edge in 𝑈 as the vertex set of 𝐿 |𝑃 and 𝑈 as the edge set.
In the following we de!ne some properties of graphs. Let 𝐿 be a graph and 𝑋,𝑌 ↓ 𝑅 (𝐿).

We de!ne the distance between 𝑋 and𝑌 in 𝐿 dist𝑄 (𝑋,𝑌) is the length of a shortest path in 𝐿
between the given vertices 𝑋 and 𝑌 . We use the distance to de!ne the k-hop-neighborhood
of 𝑋 in 𝐿 , 𝑍𝑄

𝑀 (𝑋) as the set of all vertices in 𝐿 which have distance k to 𝑋 , i.e. 𝑍𝑄
𝑀 (𝑋) = {𝑌 ↓

𝑅 (𝐿) | dist(𝑋,𝑌) = 𝑁}. Sometimes we talk about the at-most-k-hop-neighborhood of 𝑋 in 𝐿 ,
which includes all vertices in 𝐿 with distance at most k to 𝑋 . i.e. 𝑍𝑄

↔𝑀 (𝑋) = {𝑌 ↓ 𝑅 (𝐿) |
dist(𝑋,𝑌) ↔ 𝑁}.

We omit the graph 𝐿 in all of the previous de!nitions if 𝐿 is clear from the context.
In the following we state some common graph concepts. A tree T is a connected and acyclic

graph. A path 𝑎 is a tree where every vertex has at most degree 2. We write 𝑏𝑋-path, if there
is a path 𝑎 , where 𝑏 and 𝑋 are the only vertices with degree 1. We de!ne 𝑏 and 𝑋 as the end
points of 𝑎 . To join two paths 𝑎 and 𝑐 we write 𝑎𝑐 . This only make sense when 𝑎 and 𝑐
share exactly one end point 𝑉 , where 𝑎 and 𝑐 get connected. We identify a the vertices of a
path with integers and we use 𝑎𝑀 as the path of length 𝑁 . Normally we refer to the vertices of
𝑎𝑀 in an enumerated way starting at 0. Note that 𝑁 = ↗ is possible. In this case we assume
that the path is in!nite in both directions. A clique of size 𝑄 , 𝑑𝑅 is a fully connected graph of
size 𝑄 .

We de!ne a product graph𝐿 as the product of at least two graphs𝐿1, . . . ,𝐿𝑆 in the following
way, which follows closely the de!nitions of Hickingbotham and Wood [HW21]. Since only
the edge set of a product graph is determined by the type of product we !rst introduce the
vertex set for all used products. The vertex set of 𝐿 is the cartesian product of the vertex
sets of the graphs 𝐿1, . . . ,𝐿𝑆 . We call the vertices of the product graph composed vertices. We
have that every vertex of a product graph consists of one vertex of each graph. We write
↘𝑏1, . . . ,𝑏𝑆≃ ↓ 𝑅 (𝐿1) ⇐ · · · ⇐ 𝑅 (𝐿𝑆), where each 𝑏𝑇 ↓ 𝑅 (𝐿𝑇). We use this notation if it is
important to know which vertices the composed vertex consists of. In this thesis we focus on
the cartesian product and on the strong product.
Let 𝐿 = 𝐿1⊋ · · ·⊋𝐿𝑆 the cartesian product of the graphs 𝐿1, . . . ,𝐿𝑆 . As de!ned above let

𝑅 (𝐿) = 𝑅 (𝐿1) ⇐ · · · ⇐𝑅 (𝐿𝑆). We then have the edge set

𝑆 (𝐿) = {↘𝑋11, . . . ,𝑋1𝑆≃↘𝑋21, . . . ,𝑋2𝑆≃ | ⇒!𝑒 ↓ [1,𝑃] : 𝑋1𝑇 𝑋2𝑇 ↓ 𝑆 (𝐿𝑇) ⇑ ⇓𝑓 ω 𝑒 : 𝑋1𝑈 = 𝑋2𝑈 }
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2 Preliminaries

(a) cartesian product (b) strong product

Figure 2.1: Both !gures show an example of the respective product of two paths of length 2
and 3 and with named vertices.

. Two vertices 𝑏,𝑋 in 𝐿 are connected if there is exactly one graph 𝐿𝑇 , where the vertex
components of 𝑏 and 𝑋 have an edge in𝐿𝑇 and all other vertex components are the same for 𝑏
and 𝑋 . Figure 2.1a gives an example of a product graph for a cartesian product of two paths. For
the strong product let𝐿 = 𝐿1 ⫅̸ · · ·⫅̸𝐿𝑆 be a product graph with𝑅 (𝐿) = 𝑅 (𝐿1) ⇐ · · ·⇐𝑅 (𝐿𝑆).
The edge set contains all edges of the cartesian product as well as the set

{↘𝑋11, . . . ,𝑋1𝑆≃↘𝑋21, . . . ,𝑋2𝑆≃ | ⇓𝑒 ↓ [𝑃] : 𝑋1𝑇 𝑋2𝑇 ↓ 𝑆 (𝐿𝑇)}.

Figure 2.1b shows an example for the strong product of two paths.
If nothing else is stated, all used graphs are simple, undirected and !nite. The only case

when we have in!nite graphs is graphs to embed into. Since we only embed !nite graphs, it
would be su$cient to look at “large enough” !nite graphs but we do not want to de!ne what
“large enough” means in every context.

We de!ne an embedding 𝑔 of a graph 𝐿 into another graph 𝑕 as an injective function 𝑔 :
𝑅 (𝐿) ⇔ 𝑅 (𝑕) such that if there is an edge 𝑏𝑋 ↓ 𝑆 (𝐿) there is also an edge 𝑔 (𝑏)𝑔 (𝑋) ↓ 𝑆 (𝑕).
For a graph 𝑇 we de!ne 𝑔 (𝑇) as the embedding of all vertices of 𝑇 .

4



3 Embedding a Tree in Di!erent Products
of Two Paths and a Clique

In this chapter we show that deciding whether a tree is embeddable in a product of two
in!nite paths and a clique is still NP-complete. Using similar arguments as Biedl, Eppstein,
and Ueckerdt we generalize their result [BEU23]. Biedl, Eppstein, and Ueckerdt state that
embedding a tree in either cartesian or the strong product of two paths of in!nite length is
NP-complete.
First, we introduce the graphs we try to embed trees in. The 𝑄-rectangle grid 𝑖𝑅 is the

cartesian product of two paths of in!nite length and a clique of size 𝑄 , i.e., 𝑖𝑅 = 𝑎↗⊋𝑎↗⊋𝑑𝑅 .
We call the strong product of two paths of in!nite length and a clique of size 𝑄 a 𝑄-full grid
𝑗𝑅 = 𝑎↗ ⫅̸ 𝑎↗ ⫅̸ 𝑑𝑅 for 𝑄 ↓ ε. Note that for 𝑄 = 1 each vertex of the respective grid has
𝑅 (𝑑1) as vertex component and this is the case that Biedl, Eppstein, and Ueckerdt showed
[BEU23].

Let 𝐿𝑅 ↓ {𝑗𝑅 ,𝑖𝑅 }. We also introduce notation for some parts of 𝐿𝑅 . A layer is a subgraph
of a 𝑄-rectangle/full grid where all composed vertices contain the same vertex of 𝑑𝑅 as vertex
component.

For the following de!nition of the partitions of the edge set of𝐿𝑅 we use𝐿 ↓ {𝑎↗⊋𝑎↗, 𝑎↗⫅̸
𝑎↗}. By using 𝐿 , we de!ne edge sets which are needed for both the cartesian and the strong
product.

All edges in the same layer are horizontal. The set of all horizontal edges is de!ned as

𝑀 = {↘𝑘,𝑊≃↘𝑙,𝑊≃ | 𝑘,𝑙 ↓ 𝑅 (𝐿) ⇑ 𝑊 ↓ 𝑅 (𝑑𝑅 ) ⇑ 𝑘𝑙 ↓ 𝑆 (𝐿)}. (3.1)

All composed vertices that consists of the same vertices of the in!nite paths, but di"erent
vertices of 𝑑𝑅 are vertical copies of each other. Edges connecting vertical copies are vertical.
We de!ne the set of all vertical edges

𝑇 = {↘𝑘, 𝑉≃↘𝑘,𝑊≃ | 𝑘 ↓ 𝑅 (𝐿) ⇑ 𝑉,𝑊 ↓ 𝑅 (𝑑𝑅 ) ⇑ 𝑉𝑊 ↓ 𝑆 (𝑑𝑅 )}. (3.2)

Now we have that 𝑖𝑅 = 𝑎↗⊋𝑎↗⊋𝑑𝑅 with the vertex set 𝑅 (𝑖𝑅 ) = 𝑅 (𝑎↗) ⇐𝑅 (𝑎↗) ⇐𝑅 (𝑖𝑅 )
and the edge set 𝑆 (𝑖𝑅 ) = 𝑀 ↖𝑇 . In Figure 3.1 𝑇 and 𝑀 are color coded for 𝑖2 and also di"erent
layers are color coded.

In the 𝑄-full grid there are still other edges which are neither horizontal nor vertical. The
remaining edges in 𝑗𝑅 are slanted and we de!ne the set of all slanted edges

𝑕 = {↘𝑋,𝑏≃↘𝑉,𝑊≃ | 𝑋𝑉 ↓ 𝑆 (𝑗1) ⇑ 𝑏𝑊 ↓ 𝑆 (𝑑𝑅 )}. (3.3)

Then we have 𝑗𝑅 = 𝑎↗ ⫅̸ 𝑎↗ ⫅̸ 𝑑𝑅 with the vertex set 𝑅 (𝑗𝑅 ) = 𝑅 (𝑎↗) ⇐𝑅 (𝑎↗) ⇐𝑅 (𝑑𝑅 ) and
the edge set 𝑆 (𝑗𝑅 ) = 𝑀 ↖ 𝑇 ↖𝑕. Figure 3.2 shows a section of a 2-full grid where 𝑀 , 𝑇 and 𝑕
are color coded as well as di"erent layers.

5



3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

Figure 3.1: A section of a 2-rectangle grid. We have that all edges of 𝑇 are colored green and
we have two layers, where one is colored blue and the other one red. Note that both the red
and the blue edges are all edges of 𝑀

Figure 3.2: A section of a 2-full grid. Here all edges are color coded. Vertical edges are purple
and thus of 𝑇 . Red and green edges belong to 𝑀 but we see a red and a green layer. All orange
edges are slanting edges and thus belong to the set 𝑕. Note that some edges are not visible in
the !gure because of the perspective of the drawing.

Note that 𝑗1 is isomorphic to 𝑎↗ ⫅̸ 𝑎↗ and 𝑖1 to 𝑎↗⊋𝑎↗ respectively, since every vertex
of 𝐿1 contains the vertex of 𝑑1 as vertex component. By looking at the edge set we see that
𝑑1 does not provide any edges at all. Thus for convenience we do not make a di"erence
between using the product without or with 𝑑1. i.e. we use 𝑗1 and 𝑎↗ ⫅̸ 𝑎↗ and 𝑖1 and 𝑎↗⊋𝑎↗
respectively interchangeably.
Note that 𝑀 , 𝑇 and 𝑕 are all pairwise disjoint, since none of 𝑖1, 𝑗1 and 𝑑𝑅 have self-loops

and thus an edge cannot be in two sets of 𝑀 , 𝑇 and 𝑕.
In this chapter we prove for the presented grids that embedding trees is NP-complete. To

do this, we reduce this from the problem𝒽 of embedding a tree in a grid to embedding a tree
in the cartesian product of two paths of in!nite length, because𝒽 is NP-complete. First, we
construct a new tree𝑚 ↑ from the given tree𝑚 we want to embed. We call𝑚 ↑ the gadget tree for
𝑚 . We construct 𝑚 ↑ by replacing every vertex 𝑏 of 𝑚 by some gadget 𝐿 (𝑏) and connect these
gadgets 𝐿 (𝑏) through connecting vertices. For constructing this gadget tree, let 𝑚 be a tree
with degree at most four. Let𝐿 (𝑌) be a rooted tree with root𝑌 and four pairwise di"erent
connecting vertices 𝑘1, . . . ,𝑘4, which are all di"erent from𝑌 . We construct the gadget tree 𝑚 ↑

by replacing every vertex 𝑋 of 𝑚 by 𝐿 (𝑋). Replace every edge 𝑏𝑋 ↓ 𝑆 (𝑚 ) by a connecting edge
between 𝐿 (𝑏) and 𝐿 (𝑋) by connecting 𝑘𝑇 and 𝑘 𝑈 for some 𝑒, 𝑓 ↓ {1, . . . , 4} and 𝑘𝑇 ↓ 𝑅 (𝐿 (𝑋))
and 𝑘 𝑈 ↓ 𝑅 (𝐿 (𝑏)). We !rst show that the gadget tree is indeed a tree, so that we only have to
specify the gadgets and the connecting vertices for every following reduction in this chapter.
Note that every tree having at least one vertex of degree at least !ve, does not have an

embedding in 𝑖1 since every vertex in 𝑖1 has degree 4.

Lemma 3.1: Let 𝑚 be a tree where every vertex has at most degree four. Let 𝐿 (𝑋) be a rooted
tree with root 𝑋 and four pairwise di!erent connecting vertices 𝑘1, . . . ,𝑘4, which are all di!erent
from 𝑋 and 𝑚 ↑ the gadget tree as de"ned above.

Then 𝑚 ↑ is a tree.

6



Proof. To show that 𝑚 ↑ is a tree, we show that 𝑚 ↑ contains |𝑅 (𝑚 ↑) | ↙ 1 = 𝑃 ↙ 1 edges and is
connected. Let 𝑚 ↑ be constructed as described above.

First we show that𝑚 ↑ is connected. Assume for the sake of contradiction that𝑚 ↑ contains at
least two connected components. Then there are two gadgets𝐿 (𝑏) and𝐿 (𝑋), with𝑏,𝑋 ↓ 𝑅 (𝑚 )
which are in di"erent connected components of 𝑚 ↑. Thus there is no path connecting 𝑏 and 𝑋
in 𝑚 ↑. Since edges are only present if there is a corresponding edge in 𝑚 there cannot be a
𝑏𝑋-path in 𝑚 . This is a contradiction to 𝑚 being a tree.

Now we show that 𝑚 ↑ has 𝑃 ↙ 1 edges. Since every gadget is a tree, we have that for
all 𝑋 ↓ 𝑅 (𝑚 ) the gadget 𝐿 (𝑋) contains |𝑅 (𝐿 (𝑋)) | ↙ 1 edges. Since every connecting edge 𝑛
connects two di"erent connected components 𝑜1,𝑜2, we have that the connected component
consisting of𝑜1,𝑜2 and 𝑛 has |𝑅 (𝑜1) | + |𝑅 (𝑜2) | vertices and ( |𝑅 (𝑜1) |↙ 1) + (|𝑅 (𝑜2) |↙ 1) + 1 =
|𝑅 (𝑜1) | + |𝑅 (𝑜2) | ↙ 1 edges and thus is a tree. We have that each of the connecting edges
connects di"erent components otherwise 𝑚 would not be a tree.

Having that 𝑚 ↑ is connected and contains |𝑅 (𝑚 ↑) | ↙ 1 edges, 𝑚 ↑ is a tree.

For showing that a problem is NP-complete we show that the problem is in NP and that
we can reduce the problem from another NP-complete problem. For showing the reduction
we use the problem of deciding whether a tree is embeddable in 𝑖1. Every section in this
chapter uses the following idea for its respective proof of the reduction, which closely follow
the proof by Biedl, Eppstein, and Ueckerdt [BEU23]. For the reduction, we build a gadget tree
𝑚 ↑ from a tree 𝑚 and show that the problem of deciding whether there is an embedding 𝑚 ↑ in
the respective product graph 𝐿 is equivalent to deciding whether there is an embedding 𝑚 in
the 1-rectangle grid. For the proof of the equivalence we want to sketch the idea of “if there
is an embedding of a gadget tree, we !nd an embedding of a tree”. To show the implication
it is su$cient to show that the construction of a gadget and thus the gadget tree forces a
shortest path 𝑎 in the respective grid connecting two gadget roots 𝑏,𝑋 to always have the
same length. In this case we have that these paths 𝑎 are some sort of straight paths and of the
same length. We identify the respective gadget with a vertex in 𝑖1 and each of those paths 𝑎
with an edge. The de!nition of a straight path and the embedding of the gadgets is speci!ed
in the respective proof.

For showing that the problem of embedding a tree in the respective grid is in NP, we give a
more general statement.

Lemma 3.2: Let 𝑚 be tree. Let 𝐿 be a graph. Then deciding whether 𝑚 is embeddable in 𝐿 is in
NP.

Proof. We claim for a map 𝑔 : 𝑅 (𝑚 ) ⇔ 𝑅 (𝐿) to be an embedding of a tree 𝑚 in 𝐿 .
To justify whether 𝑔 embeds𝑚 in𝐿 we check that the de!nition set of 𝑔 is the whole vertex

set of 𝑚 . Next we check that 𝑔 is injective by counting the vertices in the image of 𝑔 . We
have that 𝑔 is injective if and only if the image is of size |𝑅 (𝑚 ) |. Then we consider every edge
𝑏𝑋 ↓ 𝑆 (𝑚 ) and check if there is an edge 𝑔 (𝑏)𝑔 (𝑋).

All these checks are possible in polynomial time. Checking the size of the image set and
the de!nition set is possible in linear time. Checking if there is always a corresponding edge
is also possible in polynomial time.
Thus we have that deciding whether 𝑚 is embeddable in 𝐿 is in NP.
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3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

Figure 3.3: An embedding of the gadget𝐿 (𝑋) in 𝑖2. The vertex 𝑋 is colored in orange. The
connecting vertices are colored in green. The blue dotted lines suggest where other gadgets
can be connected.

3.1 Embedding a Tree in the 2-Rectangle Grid

We show that deciding whether there is an embedding of a tree into the cartesian product of
two paths of in!nite length and a clique of size 2, 𝑖2 is NP-complete. To do this, we reduce
this problem from the problem of deciding whether a tree is embeddable into the 1-rectangle
grid 𝑖1 = 𝑎↗⊋𝑎↗. We only need to show that the problem of deciding whether a gadget tree
𝑚 ↑ is embeddable in the 2-rectangle grid is an equivalent problem to decide whether a tree
𝑚 is embeddable into the 𝑖1 and that constructing the gadget tree is possible in polynomial
time. The gadget tree 𝑚 ↑ is constructed of 𝑚 and a given gadget.

We distinguish two sorts of paths within the 𝑄-rectangle grid. A path 𝑎 is called straight if
every vertex on 𝑎 contains the same vertex component of one of the two 𝑎↗. If the vertex
component changes we say that 𝑎 bends.
We use a gadget tree 𝑚 ↑ constructed of the original tree by using Lemma 3.1. Let 𝑚 be a

tree without loss of generation with maximal degree 4. Then we construct a gadget 𝐿 (𝑋) by
using 𝑋 ↓ 𝑅 (𝑚 ) as a root of 𝐿 (𝑋). This gadget is shown in Figure 3.3. Let 𝑋 have !ve child
vertices𝑌1, . . . ,𝑌5. Let𝑌1 have four own children. Let𝑌2, . . . ,𝑌5 have two children𝑌1

𝑈 ,𝑌
1
𝑈

for 𝑓 ↓ {2, . . . , 5}, where𝑌1
𝑈 has one child itself and𝑌2

𝑈 has three own children. We have that
𝐿 (𝑋) is a tree by construction and𝐿 (𝑋) has four vertices of degree 4, i.e. 𝑌2

𝑈 for 𝑓 ↓ {2, . . . , 5}.
Use𝑌2

𝑈 for 𝑓 ↓ {2, . . . , 5} as connecting vertices. Now we can apply Lemma 3.1 to construct
𝑚 ↑.

We see that constructing 𝑚 ↑ from 𝑚 is possible in polynomial time, since every vertex of 𝑚
only gets replaced by a constant amount of vertices. In particular the enlargement of each
vertex of𝑚 does not depend on the size of𝑚 itself. With this, we show the needed equivalence.

Theorem 3.3: Let 𝑚 ,𝑚 ↑ be trees, where 𝑚 ↑ is the gadget tree as de"ned above.
Then it holds that 𝑚 → 𝑖1 if and only if 𝑚 ↑ → 𝑖2.

Proof. First, let 𝑚 → 𝑖1 and 𝑅 (𝑑2) = {𝑘,𝑙}. Now we show that we !nd an embedding of 𝑚 ↑ in
the 2-rectangle grid 𝑖2.
To do this, we construct an embedding 𝑔 : 𝑅 (𝑚 ↑) ⇔ 𝑅 (𝑖2). The embedding 𝑔 maps every

vertex of 𝑚 to a vertex with vertex component 𝑘. To embed 𝑚 ↑ each gadget is placed as
shown in Figure 3.3. Place the gadgets in such a way that for every edge 𝑏𝑋 ↓ 𝑆 (𝑚 ), the
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3.1 Embedding a Tree in the 2-Rectangle Grid

respective path 𝑔 (𝑏)𝑔 (𝑋) is a straight path of length 5 in 𝑖2. Since the gadgets only cover the
at-most-2-neighborhood of each vertex in 𝑖2 all vertices of each gadget can be placed. The
connecting edges are placed between two gadgets by construction of the embedding. Thus 𝑔
is an embedding of 𝑚 ↑ in 𝑖2.

Now let 𝑚 ↑ → 𝑖2 with an embedding 𝑔 . For showing that there is an embedding of 𝑚 in 𝑖1
it is su$cient to show, that the construction of the gadget enforces that the shortest path to
connect two gadgets is a straight path with length 5 between their roots. Since we only have
four connecting vertices at each gadget 𝐿 (𝑋) we can map each of these shortest paths to an
edge in 𝑖1 and each root 𝑋 the respective vertex 𝑋 . In this case we have at most four outgoing
edges of the same length for each vertex. Since each root vertex of 𝑚 ↑ is also a vertex of 𝑚 we
have an embedding of 𝑚 in 𝑖1. To show that the construction of 𝑚 ↑ enforces straight paths
between the roots of the gadgets in 𝑚 ↑, we show that the whole at-most-2-hop neighborhood
of a vertex 𝑋 ↓ 𝑅 (𝑚 ) is covered by 𝑔 (𝐿 (𝑋)).
To do this, we see that |𝑍𝑉 ↑

↔2(𝑋) | = 18. This is exactly the number of vertices that have
distance at most two to 𝑔 (𝑋) in 𝑖2. Thus we have that 𝑔 uses 𝑍𝑊2

↔2(𝑔 (𝑋)) to embed 𝑍𝑉 ↑
↔2(𝑋).

For each 𝑏𝑋 ↓ 𝑆 (𝑚 ) there is a path 𝑎 of length 5 in 𝑚 ↑. Let 𝑎 be 𝑏𝑌1𝑌2𝑌3𝑌4𝑋 . Here,𝑌1,𝑌2 ↓
𝑅 (𝐿 (𝑏)) and 𝑌3,𝑌4 ↓ 𝑅 (𝐿 (𝑋)). By construction of the gadget, 𝑌2 has three neighbors in
𝐿 (𝑏) besides𝑌1 as well as𝑌3 has three neighbors in𝐿 (𝑏) besides𝑌4. The 𝑔 (𝑌2)𝑔 (𝑋)-path 𝑎
is straight and of length 2, because𝑌2 has four neighbors in 𝑚 ↑ as well as 𝑔 (𝑌2) in 𝑖2. One of
the neighbors of𝑌2 or 𝑔 (𝑌2) is𝑌1 or 𝑔 (𝑌1) respectively. We have that 𝑔 (𝑌1) and𝑌1 have
distance 1 to 𝑏 and 𝑔 (𝑏) respectively. The remaining three neighbors have distance 3 to 𝑏 or
𝑔 (𝑏) respectively. From this it follows that 𝑔 (𝑌1) is connected to all its neighbors in 𝑖2. If
𝑎 contains a vertex which is obtained from 𝑙 ↓ 𝑅 (𝑑2), so the edge changes the layer. Then
𝑔 (𝑌2) has a neighbor 𝑔 (𝑌 ↑) with 𝑝𝑒𝑞𝑟 (𝑔 (𝑌 ↑),𝑔 (𝑏)) = 2. Since both vertex components of 𝑏
changed once each. We have that𝑌 ↑𝑏 ϑ 𝑆 (𝑚 ↑), because otherwise there would be a cycle. If 𝑎
bends but stays in the same layer, 𝑔 (𝑌2) has neighbor 𝑔 (𝑌 ↑↑) with distance 1 to 𝑔 (𝑏). Again,
𝑌1𝑌 ↑↑ ϑ 𝑆 (𝑚 ↑) because it would close a cycle. So 𝑔 (𝐿 (𝑏)) for an 𝑏 ↓ 𝑅 (𝑚 ) is unambiguous.
The edge 𝑔 (𝑌2)𝑔 (𝑌3) extends 𝑎 in a straight way, because otherwise there are not six vertices,
which are adjacent to one of𝑌2 and𝑌3 and have distance at least 3 to both 𝑏 and 𝑋 . Thus, we
have that the gadget𝐿 (𝑌) covers exactly the at-most-2-hop neighborhood of their respective
vertex𝑌 in 𝑚 and the only edges connecting this vertices are the four connecting edges, such
that every two root of adjacent gadgets have distance 5 in 𝑖2 and are connected through a
path of length 5.

Having this equivalence it remains to show that embedding a tree is indeed in NP.

Theorem 3.4: Deciding whether a tree 𝑚 is embeddable in 𝑖2 is NP-complete.

Proof. To show that the given problem R is NP-compete we have to show that deciding
whether a tree 𝑚 is embeddable in 𝑖2 is in NP and that we !nd a polynomial reduction from
another NP-hard problem. By Lemma 3.2 we have that R is in NP. Now we reduce R to the
problem P of deciding whether 𝑚 is embeddable into 𝑖1. Remember that P is NP-complete.
Let 𝑚 be a tree. We construct a gadget tree 𝑚 ↑ as explained above. As already seen, this is
possible in polynomial time. By Theorem 3.3 we have that P is equivalent to the deciding
whether the gadget tree 𝑚 ↑ is embeddable in 𝑖2.

Thus we have that R is NP-complete.
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3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

3.2 Embedding a Tree in the 𝑄-Rectangle Grid

We generalize Section 3.1, by showing that deciding whether a tree is embeddable in 𝑖𝑅 but
𝑖2 is still NP-complete. To do this, we construct a gadget tree 𝑚 ↑ with help of Lemma 3.1 with
a gadget𝐿𝑅 (𝑋), which may depend on the used clique size 𝑄 . We show that the problem P of
deciding whether a tree is embeddable into the 1-rectangle grid is equivalent to the problem
R of deciding whether a gadget tree is embeddable into the 𝑄-rectangle grid. We make sure
that the construction of the gadget tree only needs polynomial time. We also use the same
de!nition for straight and bending paths as in Section 3.1. Before looking atR, we show some
neighborhood properties of the 𝑄-rectangle grid.

Lemma 3.5: Let 𝑄 ↓ ε, 𝑖𝑅 = 𝑖1⊋𝑑𝑅 , then for all 𝑋 ↓ 𝑅 (𝑖𝑅 ) holds:

(1) |𝑍𝑊𝐿
1 (𝑋) | = 4 + (𝑄 ↙ 1)

(2) |𝑍𝑊𝐿
2 (𝑋) | = 8 + 4(𝑄 ↙ 1)

Proof. Before looking at both statements we look at the partition of the edge set 𝑆 (𝑖𝑅 ) = 𝑇↖𝑀
given by Equation (3.1) and Equation (3.2). Remember that the sets of vertical edges 𝑇 and
horizontal edges 𝑀 are disjoint. Thus, to determine the neighborhood of an arbitrary vertex
𝑋 in 𝑖𝑅 , it is su$cient to determine the neighborhood of 𝑋 in each of 𝑖𝑅 |𝑂 and 𝑖𝑅 |𝑋 . Let
𝑋 = ↘𝑘,𝑙, 𝑠≃ ↓ 𝑅 (𝑖𝑅 ), with ↘𝑘,𝑙≃ ↓ 𝑅 (𝑖1) and 𝑠 ↓ 𝑅 (𝑑𝑅 ).

Now we show (1). Since 𝑖𝑅 |𝑂 connects a vertex with its copies, each connected component
in 𝑖𝑅 |𝑂 is isomorphic to 𝑑𝑅 . Therefore |𝑍𝑊𝐿 |𝑀

1 (𝑋) | = |𝑍𝑌𝐿
1 (𝑠) | = 𝑄 ↙ 1. We also have that

𝑖𝑅 |𝑋 only connects vertices within a layer, thus it holds that |𝑍𝑊𝐿 |𝑁
1 (𝑋) | = |𝑍𝑊1

1 (↘𝑘,𝑙≃) | = 4.
Hence, |𝑍𝑊𝐿

1 | = |𝑍𝑊𝐿 |𝑀
1 (𝑋) | + |𝑍𝑊𝐿 |𝑁

1 (𝑋) | = (𝑄 ↙ 1) + 4.
For showing (2) we see that each path starting from 𝑋 to a vertex of 𝑍𝑊𝐿

2 (𝑋) contains at
least one horizontal edge. Otherwise, assume for sake of contradiction that there is a vertex
𝑌 ↓ 𝑍𝑊𝐿

2 (𝑋) and both edges 𝑛, 𝑡 on the 𝑋𝑌-path are vertical. Thus 𝑛 and 𝑡 lay in the same
connected component of 𝑖𝑅 |𝑂 . Since every connected component of 𝑖𝑅 |𝑂 is isomorphic to
𝑑𝑅 , there have to be the edge 𝑋𝑌 ↓ 𝑆 (𝑖𝑅 ), which contradicts the assumption of𝑌 ↓ 𝑍𝑊𝐿

2 (𝑋).
So, to determine 𝑍𝑊𝐿

2 (𝑋) there are two sorts of possible paths. First consider the paths𝒽
consisting of two horizontal edges. In this case the paths𝒽 stay in the same layer as 𝑋 and
we have |𝑍𝑊1

2 (𝑋) | = 8. Now consider a path 𝑎 consisting of one horizontal and one vertical
edge. In 𝑖𝑅 it does not matter whether the vertical edge is the !rst to take. Without loss of
generality, the vertical edge is the !rst to pick and the second one is the horizontal. Since
𝑋 has 𝑄 ↙ 1 vertical copies 𝑎 can reach 4(𝑄 ↙ 1) di"erent vertices. Theses both cases are
disjunct, because they all take place in di"erent layers and only count neighbors within one
layer. Hence, |𝑍𝑌𝐿

2 (𝑋) | = 8 + 4(𝑄 ↙ 1).

Now we construct the gadget 𝐿𝑅 (𝑋) for 𝑄 ↓ ε, as shown in Figure 3.4.
Let 𝑋 have 4 + (𝑄 ↙ 1) children 𝑏1, . . . ,𝑏4+(𝑅↙1) . Let 𝑏5,𝑏6, . . . ,𝑏4+(𝑅↙1) have four children

each. Let 𝑏1, . . . ,𝑏4 have two children 𝑏1𝑈 and 𝑏
2
𝑈 for 𝑓 ↓ [4] each with 𝑏1𝑈 having 𝑄 ↙ 1 own

children and 𝑏2𝑈 having 𝑄 + 1 own children. We have that 𝐿𝑅 (𝑋) is a tree by construction. We
have four vertices with degree𝑄 +2, i.e. 𝑏21, . . . ,𝑏2

4 . We use𝑏21, . . . ,𝑏
2
4 as connecting vertices for

applying Lemma 3.1 and constructing a gadget tree𝑚 ↑. Note that the gadget tree is constructed
in polynomial time, since every vertex of𝑚 is enlarged by a constant number of vertices, since
𝑄 is given by 𝑖𝑄 . Next, we show the needed equivalence.
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3.2 Embedding a Tree in the 𝑄-Rectangle Grid

Figure 3.4: The embedding of the gadget𝐿 (𝑋) in 𝑑𝑅 . This is quite the same gadget as seen in
Figure 3.3. The turquoise edges connect all di"erent layers and 𝑋 ↑ is the vertical copy of 𝑋 in
each layer. For better readability only two layers are displayed. The purple edges and vertices
show the structure which is on every layer with an 𝑋 ↑. Again the orange vertex is 𝑋 and the
green vertices are connecting vertices. The blue dotted lines suggest where to connect other
gadgets.

Theorem 3.6: Let 𝑚 be a tree and 𝑚 ↑ a gadget tree as de"ned above. Let 𝑄 ↓ ε. Then it holds
that 𝑚 → 𝑖1if and only if 𝑚 ↑ → 𝑖𝑅 .

Proof. First, let 𝑚 → 𝑖1. Now we construct an embedding 𝑔 : 𝑅 (𝑚 ↑) ⇔ 𝑅 (𝑖𝑅 ). Let 𝑋 ↓ 𝑅 (𝑚 ).
Let 𝐿 (𝑋) be a gadget as constructed above. Embed all gadgets such that their roots are all
in the same layer. For each vertex 𝑌 ↓ 𝑅 (𝐿 (𝑋)) with four children 𝑉1, . . . , 𝑉4 let 𝑔 (𝑌) be
a vertical copy of 𝑔 (𝑋) and 𝑉1, . . . , 𝑉4 in their respective layer. Embed the remaining four
children𝑏1, . . . ,𝑏4 of 𝑋 in the same layer as 𝑔 (𝑋). Let𝑏1𝑇 the child of𝑏𝑇 with𝑄 ↙1 own children
for 𝑒 ↓ [4]. Embed 𝑏1𝑇 such that the 𝑔 (𝑏1𝑇 )𝑔 (𝑋) path bends. Embed all 𝑄 ↙ 1 as vertical copies
of 𝑏1𝑇 . Let 𝑏

2
𝑇 the other child of 𝑏𝑇 . Embed 𝑏2𝑇 such that the 𝑔 (𝑏2𝑇 )𝑔 (𝑋) path is straight. Embed

𝑄 ↙ 1 of 𝑏2𝑇 children as vertical copies of 𝑔 (𝑏2𝑇 ) and the last two in a bending way for all 𝑒 ↓ [4].
To connect two gadgets 𝐿 (𝑋),𝐿 (𝑌), there is an path of length 5 by and using the connecting
vertices. Therefore all gadgets and edges are embedded. Figure 3.4 shows the 𝑔 of a gadget.
We have that the whole at-most-2-hop neighborhood of a vertex of 𝑚 in 𝑖𝑅 is covered and at
most four edges may connect di"erent gadgets. The path connecting two root vertices of the
gadgets are straight. So we have that there is an embedding of 𝑚 ↑ in 𝑖𝑅 .
To show the other direction, let 𝑚 ↑ → 𝑖𝑅 with an embedding 𝑔 . To obtain an embedding

of 𝑚 in 𝑖1 it is su$cient to show that the construction of 𝑚 ↑ forces that, if two gadgets are
connected their roots are connected through shortest straight paths of length 5. If this is the
case there is an embedding of 𝑚 in 𝑖1 because every root of a gadget is connected to at most
four other roots through straight paths 𝑎 of length 5. Thus we can identify 𝑎 with an edge in
𝑖1. To show that the construction of 𝑚 ↑ enforces straight paths, we show that each gadget
covers the complete at-most-2-hop-neighborhood of a vertex of 𝑚 embedded in 𝑖𝑅 .
To do this, choose an arbitrary 𝑋 ↓ 𝑅 (𝑚 ). With Lemma 3.5 (1), we have that |𝑍𝑊𝐿

1 (𝑔 (𝑋)) | =
4+ (𝑄↙1) = |𝑍𝑄𝐿 (𝑍 )

1 (𝑋) |, by construction of𝐿𝑅 (𝑋). The whole 1-hop-neighborhood of 𝑔 (𝑋) is
covered by𝑔 (𝐿𝑅 (𝑋)). We have that |𝑍𝑄𝐿 (𝑍 )

2 (𝑋) | = 4(𝑄↙1) +4 ·2 = 4(𝑄↙1) +8 = |𝑍𝑊𝐿
2 (𝑔 (𝑋)) |,

with Lemma 3.5 (2). Again we have that the 𝑍𝑊𝐿
↔2 (𝑔 (𝑋)) is covered by 𝑔 (𝐿 (𝑋)).
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3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

There is a vertex𝑌 ↓ 𝑍𝑄𝐿
2 (𝑋) such that 𝑔 (𝑌) has only one adjacent vertex 𝑏 in 𝑖𝑅 , such

dist(𝑔 (𝑏),𝑔 (𝑋)) ↔ dist(𝑔 (𝑌),𝑔 (𝑋)). Assume for the sake of contradiction that 𝑔 (𝑌) is not on
the same layer as 𝑔 (𝑋). Then 𝑔 (𝑌) is neighboring a vertical copy of 𝑔 (𝑋) and the vertical copy
of 𝑔 (𝑌) on the layer of 𝑔 (𝑋). Both of these vertices have distance one to 𝑔 (𝑋). This contradicts
the assumption. From this follows that the connecting vertices are on the same layer as 𝑔 (𝑋).
We have that 𝑔 (𝑌)𝑔 (𝑋)-path is straight, since we only change the vertex component of 𝑖1.
Note that changing the vertex component of 𝑑𝑅 does not extend the distance, since all vertices
with the same vertex component of 𝑖1 but di"erent vertex component of 𝑑𝑅 have distance
1 to 𝑋 . We have four straight paths starting at 𝑔 (𝑋) and having distinct endpoints 𝑌𝑇 for
𝑒 ↓ {1, . . . , 4}. Since the connecting vertices have 𝑄 + 1 children they are 𝑌𝑇 , since 𝑌𝑇 is
adjacent to 𝑄 + 1 vertices in 𝑖𝑅 with distance 3 to 𝑔 (𝑋). When connecting two gadgets𝐿𝑅 (𝑏)
and 𝐿𝑅 (𝑋), the path 𝑔 (𝑏)𝑔 (𝑋) has length 5 and it is straight. Let 𝑔 (𝑏)𝑘1𝑘2𝑘3𝑘4𝑔 (𝑋) be this
path. As already shown 𝑔 (𝑏)𝑘1𝑘2 and 𝑘3𝑘4𝑔 (𝑋) have to be straight paths. The vertices 𝑘2 and
𝑘3 have 2(𝑄 + 1) neighbors, which have distance at least 3 to both 𝑔 (𝑏) and 𝑔 (𝑋). Thus each
of 𝑘2 and 𝑘3 can be adjacent to most one vertex except 𝑘2 or 𝑘3 which has distance 2 to either
𝑔 (𝑏) or 𝑔 (𝑋). This enforces the edge 𝑘2𝑘3 to be in a straight path.

With this equivalence we show the NP-completeness of the problem of deciding whether a
tree is embeddable in the 𝑄-rectangle grid.

Theorem 3.7: Deciding whether a tree 𝑚 is embeddable in 𝑖𝑅 is NP-complete.

Proof. To show that the problem R of deciding whether a tree 𝑚 is embeddable in 𝑖𝑅 is
NP-complete, we have to show thatR is NP and reduce it from another NP-complete problem.
By Lemma 3.2 we have that R is in NP. For the reduction we use the problem P of deciding
whether a tree 𝑚 is embeddable in 𝑖1. We construct a gadget tree of 𝑚 ↑ as described above,
which is possible in polynomial time, as mention above. With Theorem 3.6 we have that P is
equivalent to deciding whether 𝑚 ↑ is embeddable in 𝑖𝑅 . Thus R is Np-complete.

3.3 Embedding a Tree in the 2-Full Grid

We show that deciding whether a tree is embeddable into the 2-full grid is NP-complete. Biedl
et al. have already shown that the problem of deciding whether a tree is embeddable into the
1-full grid is NP-complete [BEU23].

For the reduction part, we show that deciding whether a gadget tree 𝑚 ↑ embeddable into 𝑗2
is equivalent to the problem of deciding whether a tree embeddable in 𝑖1, which we know
that this is NP-complete by [BEU23]. We also remark that constructing the gadget tree is
possible in polynomial time.
First, we construct the gadget 𝐿 (𝑋) shown as in Figure 3.5 We choose 𝑋 as a root with 17

child vertices 𝑌1, . . . ,𝑌17. Let 𝑌5, . . . ,𝑌16 have two child vertices each. Let 𝑌1, . . . ,𝑌4 also
have two children𝑌1

𝑇 ,𝑌
2
𝑇 for 𝑒 ↓ [4] and let𝑌1

𝑇 have six children itself. Note that𝑌17 is a leaf.
We have at four vertices of degree 7, i.e. 𝑌1

1, . . . ,𝑌
1
4 , which we use as the connecting vertices

in Lemma 3.1 and refer to them as 𝑓-vertices in the following. By Lemma 3.1 we get a gadget
tree 𝑚 ↑. This gadget is an alternation of the gadget for 𝑗1 presented in [BEU23]. Since every
vertex of𝑚 is enlarged by a constant amount of vertices, the construction of the gadget tree is
possible in polynomial time. Now we show the needed equivalence.

Theorem 3.8: Let 𝑚 be a tree and 𝑚 ↑ a gadget tree constructed as above.
𝑚 → 𝑖1if and only if 𝑚 ↑ ∝ 𝑎↗ ⫅̸ 𝑎↗ ⫅̸ 𝑑2
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3.3 Embedding a Tree in the 2-Full Grid

(a) The embedding of 𝐿 (𝑋) in 𝑗2. 𝑋 is marked
orange. For readability all edges ending in the
same layer as 𝑋 are painted blue. All others are
painted black. The purple edges are these edges
that provide unique possibility for connecting two
gadgets.

(b) An embedding where of two edges of the
adjacent gadgets. The green edge connects two
connecting vertices. The blue and purple edges
belong to one gadget, the orange and red edges
to another.

Figure 3.5: For a better understanding of the picture all edges that distinguish 𝑖2 and 𝑗2 are
omitted. The edges restricting the connecting edges are colored in another color.

Proof. First, let𝑚 → 𝑖1. Nowwe show that there is an embedding𝑔 of𝑚 ↑ in 𝑗2. We construct𝑚 ↑

as described above and embed it as shown in Figure 3.5. Since each gadget has four 𝑓-vertices
and the maximum degree of 𝑚 is at most 4, there is an embedding 𝑔 (𝑚 ↑).
To show the other direction, let 𝑚 ↑ → 𝑗2 with an embedding 𝑔 . It is su$cient to show that

the construction of the gadgets forces an embedding such that for adjacent gadgets 𝐿 (𝑋) and
𝐿 (𝑏) with 𝑏,𝑋 ↓ 𝑅 (𝑚 ) that 𝑔 (𝑏) and 𝑔 (𝑋) have distance 5 and the 𝑍 𝑎2

↔2(𝑋) ′ 𝑍 𝑎2
↔2(𝑏) = ∞. We

also !nd that there are only four possibilities to build connecting paths. If this is the case we
can identify each gadget with its root in 𝑚 and each path connecting two roots with an edge
in 𝑚 . To do this, let 𝑋 ↓ 𝑅 (𝑚 ) arbitrarily chosen. We have |𝑍 𝑎2

1 (𝑔 (𝑋)) | = 17 = |𝑍𝑉 ↑
1 (𝑋) | thus

𝑔 (𝑍𝑄 (𝑍 )
1 (𝑋)) covers 𝑍 𝑎2

1 (𝑔 (𝑋)). The vertical copy of 𝑔 (𝑋) has only neighbors in 𝑗2 which are
either 𝑔 (𝑋) or in 𝑍𝑉 ↑

1 (𝑔 (𝑋)). There are 16 vertices 𝑏1, . . . ,𝑏16 in 𝑍𝑉 ↑
1 (𝑋), that have a neighbor

with distance 2 to 𝑋 . Each of 𝑏1, . . . ,𝑏16 has exactly two children by construction, so there are
|𝑍𝑉 ↑

1 (𝑋) | ↔ 2 · 16 = 32. Since 𝑚 ↑ is a tree, every vertex (except the root) has exactly one parent
vertex, thus |𝑍𝑉 ↑

2 (𝑋) | = 32. We also have that |𝑍 𝑎2
2 (𝑔 (𝑋)) | = 32. From this follows that 𝑍𝑉 ↑

2 (𝑋)
covers of 𝑍 𝑎𝐿

2 (𝑔 (𝑋)) completely. Note that embedding all vertices of 𝑍𝑉 ↑
2 (𝑋) in 𝑗2 is possible

as shown in Figure 3.5a, limited to vertices of distance at most 2 to 𝑔 (𝑋).
The edge 𝑏𝑋 ↓ 𝑆 (𝑚 ) corresponds to a path 𝑎 of length 5 in 𝑚 ↑. Let 𝑎 be 𝑏𝑌1𝑌2𝑌3𝑌4𝑋 ,

where 𝑌1,𝑌2 ↓ 𝑅 (𝐿 (𝑏)) and 𝑌3,𝑌4 ↓ 𝑅 (𝐿 (𝑋)), because 𝐿 (𝑏),𝐿 (𝑋) contain each the 2-
hop-neighborhood of their respective root 𝑏,𝑋 . To connect 𝐿 (𝑏) and 𝐿 (𝑋) two connecting
vertices are connected and these connecting vertices are 𝑌2 and 𝑌3. We claim that for
all 𝑉 ↓ (𝑍𝑄 (𝑏 )

1 \ {𝑌1}) we have dist(𝑏, 𝑉) = 3. Since the path 𝑏𝑌1𝑌2 is in 𝐿 (𝑏) and the
parent vertex of each vertex in a tree is unique, each child of 𝑌2 has distance 3 to 𝑏. Each
connecting vertex, has six children outside of 𝑍𝑄 (𝑏 )

↔2 (𝑏). This holds, because 𝑍 𝑎2
↔2(𝑏) is covered

by 𝑔 (𝑍𝑄 (𝑏 )
↔2 (𝑏)). We identify 𝑗2 by a ε ⇐ε ⇐ 2 grid. So we have that a neighborhood of a

vertex is always a cuboid. We see that each gadget looks like a cuboid with some additional
edges coming out of it.
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3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

There are three possibilities where connecting vertices can be placed Let 𝐿 (𝑋) be a gadget.
First: A connecting vertex𝑌 is embedded on the side of a gadget but not in a corner. Then𝑌
has 11 neighbors are in the at-most-2-hop-neighborhood of 𝑔 (𝑋) in the gadget. Thus 𝑔 (𝑌)
is only adjacent to six vertices outside of 𝑍 𝑎2

↔2(𝑋). In this case it is impossible to embed all
child vertices of𝑌 . Second: Assume for the sake of contradiction that two connecting vertices
𝑌 ,𝑊 lay in one corner of𝑍 𝑎2

↔2(𝑋) and 𝑔 (𝑌) and 𝑔 (𝑊) are vertical copies of each other. The
1-hop-neighborhood for 𝑔 (𝑌) and 𝑔 (𝑊) that is outside of 𝑍 𝑎2

↔2(𝑔 (𝑋)) contains ten vertices. It
is not possible to embed all child vertices of𝑌 and 𝑊 since they have in total 12 child vertices.
The last possibility is that only one connecting vertex 𝑌 that is embedded in the corner of
𝑍 𝑎2

↔2(𝑔 (𝑋)). Then 𝑋 has ten neighbors outside 𝑍 𝑎2
↔2(𝑔 (𝑋)), so there is enough space to place

all six child vertices and a connecting edge is also embeddable. From this follows that all
connecting vertices are placed in a corner of 𝑍 𝑎2

↔2(𝑔 (𝑋)). When having a connecting edge
𝑌2𝑌3, there are 12 vertices in 𝑗2 that are adjacent to either 𝑔 (𝑌2) or 𝑔 (𝑌3) and have at least
distance 3 to 𝑔 (𝑏) and 𝑔 (𝑋). This is the case if 𝑔 (𝑌2)𝑔 (𝑌3) is diagonal. Note that this edge
can change the layer. So we have that every two adjacent gadgets 𝐿 (𝑋) and 𝐿 (𝑌), 𝑋 and𝑌
are connected through a path of length 5. We also have that the whole 𝑍 𝑎2

↔2(𝑋) is covered by
𝑔 (𝐿 (𝑋)).

With this equivalence we can show the NP-completeness.

Theorem 3.9: Deciding whether a tree 𝑚 is embeddable into 𝑗2 is NP-complete.

Proof. To show the NP-completeness, we !rst note that the problem R of deciding whether
a tree 𝑚 is embeddable into 𝑗2 is in NP by Lemma 3.2. Next, reduce R to the problem P of
deciding whether a tree is embeddable into 𝑖1. To do this, we construct a gadget tree 𝑚 ↑ of 𝑚 .
As mentioned above, we have that the construction of the gadget tree is possible in polynomial
time. With Theorem 3.8 we have the needed reduction. Thus R is NP-complete.

3.4 Embedding a Tree in the 𝑄-Full-Grid

We generalize the result of Section 3.3 by showing that deciding whether a tree is embeddable
into 𝑖𝑅 but 𝑖1 is still NP-complete. We show that the problem of deciding whether a gadget
tree 𝑚 ↑ is embeddable into the 𝑄-full grid is equivalent to the problem of deciding if a tree is
embeddable into 𝑑1. We show that constructing a gadget tree 𝑚 ↑ is possible in polynomial
time. To do so, we introduce a gadget𝐿𝑅 (𝑋) and construct a gadget tree 𝑚 ↑ with Lemma 3.1.
First, we introduce some properties of the neighborhood in the 𝑄-full grid, to justify the proof
of the following theorem.
We have a closer look at the vertices and edges of 𝑗𝑅 and use the de!nition presented

in Equation (3.1), Equation (3.2) and Equation (3.3). Remember that the sets of horizontal
edges 𝑀 , vertical edges 𝑇 and slanted edges 𝑕 are pairwise disjointed. We have that |𝑆 (𝑗𝑅 ) | =
|𝑇 | + |𝑀 | + |𝑕|.

Corollary 3.10: If 𝑋 and𝑌 adjacent in 𝑗𝑅 then 𝑋 is also adjacent to every vertical copy of𝑌 .

Proof. Let 𝑋 = ↘𝑘,𝑙, 𝑠≃,𝑌 = ↘𝑉,𝑊, 𝑢≃ ↓ 𝑅 (𝑗𝑅 ) with ↘𝑘,𝑙≃, ↘𝑉,𝑊≃ ↓ 𝑅 (𝑗1) and 𝑠, 𝑢 ↓ 𝑅 (𝑖𝑅 ).
Assume that they are on the same layer. i.e. 𝑠 = 𝑢. Then we have 𝑋𝑌 ↓ 𝑀 . Let𝑌 ↑ = ↘𝑉,𝑊, 𝑢↑≃,
𝑢↑ ↓ 𝑅 (𝑖𝑅 ) be a vertical copy of𝑌 . Thus we have that𝑌𝑌 ↑ ↓ 𝑇 . By de!nition of 𝑇 and 𝑀 we
have ↘𝑘,𝑙≃↘𝑉,𝑊≃ ↓ 𝑆 (𝑗1) and 𝑢𝑢↑ = 𝑠𝑢↑ ↓ 𝑆 (𝑖𝑅 ). By Equation (3.3) we have that 𝑋𝑌 ↑ ↓ 𝑕.
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3.4 Embedding a Tree in the 𝑄-Full-Grid

Assume that 𝑋,𝑌 are not on the same layer. Then there is a vertical copy 𝑌 ↑ of 𝑌 which
is on the same layer as 𝑋 , i.e. 𝑌 ↑ = ↘𝑉,𝑊, 𝑠≃. By de!nition𝑌𝑌 ↑ is vertical and thus in 𝑇 . The
edge 𝑋𝑌 ↑ is in 𝑀 . Thus, we have that ↘𝑘,𝑙≃↘𝑉,𝑊≃ ↓ 𝑆 (𝑗1) and 𝑠𝑢 ↓ 𝑆 (𝑖𝑅 ), so 𝑋𝑌 ↓ 𝑕. Since
𝑋,𝑌 were arbitrarily chosen, it holds.

With this corollary we look at most of properties just in one layer and adjust the result
with 𝑄 in the correct way. We have that the neighborhood of a vertex in the 𝑄-full grid is a
rectangle cuboid. We already showed that it holds for 𝑄 = 2 and with Corollary 3.10 we can
extend the cuboid.

We show some properties concerning the size of neighborhoods in 𝑗𝑅 .

Lemma 3.11: Let 𝑄 ↓ ε, 𝑋,𝑏 ↓ 𝑅 (𝑗𝑅 ) and 𝑗𝑅 = 𝑗1 ⫅̸ 𝑑𝑅 , then:

(1) |𝑍 𝑎𝐿
1 (𝑋) | = 8 + 9(𝑄 ↙ 1)

(2) |𝑍 𝑎𝐿
2 (𝑋) | = 16𝑄

(3) The amount of vertices which are in the neighborhood of a corner of 𝑍 𝑎𝐿
2 , but not in

𝑍 𝑎𝐿
↔2 (𝑋) is 5𝑄

(4) The amount of vertices which are in the neighborhood of a side of 𝑍 𝑎𝐿
2 , but not in 𝑍 𝑎𝐿

↔2 (𝑋)
is 3𝑄 .

(5) Amount of vertices needed to enforce that the only possibility to connect 𝑍 𝑎𝐿
↔2 (𝑏) and

𝑍 𝑎𝐿
↔2 (𝑋) by a diagonal edge between corners is 6𝑄 .

Proof. Let 𝑋 = ↘𝑘,𝑙, 𝑠≃ ↓ 𝑅 (𝑗𝑅 ). For proving the !rst statement we look at the di"erent
neighborhoods determined by 𝑇,𝑀 and𝑕. The size of the neighborhood of 𝑋 can be determined
as follows:

|𝑍 𝑎𝐿
1 (𝑋) | = |𝑍 𝑎𝐿 |𝑀

1 (𝑋) | + |𝑍 𝑎𝐿 |𝑂
1 (𝑋) | + |𝑍 𝑎𝐿 |𝑁

1 (𝑋) |

. First we look at 𝑇 . We have |𝑍 𝑎𝐿 |𝑀
1 (𝑋) | = |𝑍𝑌𝐿

1 (𝑠) | = 𝑄 ↙ 1. The !rst equality holds,
because only the vertex component of 𝑑𝑅 changes in a connected component 𝑜 in 𝑗𝑅 |𝑂 .
We have that 𝑜 is isomorphic to 𝑑𝑅 . For 𝑀 we have |𝑍 𝑎𝐿 |𝑁

1 (𝑋) | = |𝑍 𝑎1
1 (↘𝑘,𝑙≃) | = 8, since

only the vertex component of 𝑗1 changes in a connected component 𝑜 in 𝑗𝑅 |𝑋 . Thus 𝑜 is
isomorphic to 𝑗1. Finally we have for 𝑕 that |𝑍 𝑎𝐿 |𝑂

1 (𝑋) | = |𝑍𝑌𝐿
1 (𝑠) | |𝑍 𝑎1

1 (↘𝑘,𝑙≃) | = 8(𝑄 ↙ 1).
Each neighbor in 𝑑𝑅 has an edge to each neighbor in 𝑗1, with Corollary 3.10. So we have
|𝑍 𝑎𝐿

1 (𝑋) | = (𝑄 ↙ 1) + 8 + 8(𝑄 ↙ 1) = 8 + 9(𝑄 ↙ 1).
To prove the second statement, we have that |𝑍 𝑎1

2 (↘𝑘,𝑙≃) | = 16. To extend this to all layers,
we use Corollary 3.10. There are 𝑄 layers in total, since each vertex of 𝑑𝑅 is in its own layer.
Thus there are 𝑄 ↙ 1 vertical copies of each vertex in 𝑗𝑅 .

|𝑍 𝑎𝐿
2 (𝑋) | = |𝑍 𝑎1

2 (↘𝑘,𝑙≃) | (𝑄 ↙ 1) + |𝑍 𝑎1
2 (𝑋) | = 𝑄 |𝑍 𝑎1

2 (↘𝑘,𝑙≃) | = 16𝑄

.
We use this argumentation again for the third and fourth statement. For the third statement,

let 𝑌 = ↘𝑉,𝑊, 𝑢≃ ↓ 𝑅 (𝑗𝑅 ) such that ↘𝑉,𝑊≃ is in a corner of 𝑍 𝑎1
↔2(↘𝑘,𝑙≃)-cuboid. The vertex

↘𝑉,𝑊≃ has !ve neighbors, which are not in 𝑍 𝑎1
↔2(↘𝑘,𝑙≃). With Corollary 3.10 we have that for

𝑋 ↓ 𝑅 (𝑗𝑅 ) and𝑌 in the corner of 𝑍 𝑎𝐿
↔2 (𝑋) that𝑌 has 5𝑄 neighbors in 𝑗𝑅 .
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3 Embedding a Tree in Di!erent Products of Two Paths and a Clique

For the fourth statement, let𝑌 = ↘𝑉,𝑊, 𝑢≃ ↓ 𝑅 (𝑗𝑅 ) such that ↘𝑉,𝑊≃ is not a corner but on
the edge of an 𝑍 𝑎1

↔2(↘𝑘,𝑙≃)-cuboid. Then ↘𝑉,𝑊≃ has three neighbors outside of 𝑍 𝑎1
↔2(↘𝑘,𝑙≃).

With Corollary 3.10 we have that𝑌 has 3𝑄 neighbors in 𝑗𝑅 .
To prove the !fth statement we use this strategy, but we also use the same argumentation

for space around the wanted vertices as presented by Biedl, Eppstein, and Ueckerdt [BEU23].
Let 𝑏 = ↘𝑉,𝑊, 𝑢≃ ↓ 𝑗𝑅 such that ↘𝑘,𝑙≃, ↘𝑉,𝑊≃ are in the middle of two 5 ⇐ 5 squares in 𝑗1. Let
𝑌 ,𝑣 be two vertices in the corners, which are connected through an edge. Biedl, Eppstein, and
Ueckerdt state that six vertices that are adjacent to either𝑌 or 𝑣 and have at least distance 3
to ↘𝑉,𝑊≃ and ↘𝑘,𝑙≃ to force that the edge 𝑌𝑣 is diagonal [BEU23]. With Corollary 3.10, we
need 6𝑄 vertices to force 𝑌𝑣 to be aslope or diagonal. Since we do not know more about
these blocks, the 6𝑄 vertices should be distributed equally over the two blocks. So 3𝑄 vertices
are used per block and 𝑄 vertices have to be free, so that the corner of an other block can !t
in.

Now we construct a gadget𝐿𝑅 (𝑋) for a gadget tree𝑚 ↑. Figure 3.6 shows𝐿𝑅 (𝑋) embedded in
𝑗𝑅 . The idea and the gadget for𝑄 = 1 is the same as presented by Biedl, Eppstein, and Ueckerdt
for proving that embedding a tree in 𝑗1 is NP-complete [BEU23]. We apply Corollary 3.10. We
construct a rooted tree 𝐿𝑅 (𝑋). Let 𝑄 ↓ ε and 𝑋 the root of 𝐿𝑅 (𝑋). Let 𝑋 have (𝑄 ↙ 1) + 8𝑄
children 𝑏1, . . .𝑏 (𝑅↙1)+8𝑅 . Let 𝑏1, . . .𝑏8𝑅↙4 have two children each. Let 𝑏8𝑅↙3, . . . ,𝑏8𝑅 have
two children 𝑏1𝑈 ,𝑏

2
𝑈 each with 𝑏1𝑈 having 3𝑄 children for 𝑓 ↓ {8𝑄 ↙ 3, 8𝑄 ↙ 2, 8𝑄 ↙ 1, 8𝑄}.

To construct the gadget tree 𝑚 ↑ we use Lemma 3.1. Note that 𝐿𝑅 is a tree by construction.
We have four vertices of degree 3𝑄 + 1, i.e. 𝑌1

𝑈 which we use as connecting vertices. Note
that, every gadget contains a constant number of vertices, since 𝑄 is given by 𝑗𝑅 . Thus,
constructing 𝑚 ↑ from 𝑚 is possible in polynomial time.

Theorem 3.12: Let 𝑚 be a tree, 𝑄 ↓ ε arbitrary and 𝑚 ↑ a gadget tree as de"ned above. Then it
holds
𝑚 → 𝑖1 if and only if 𝑚 ↑ → 𝑗𝑅 .

Proof. Let 𝑚 → 𝑖1. We show that there is an embedding 𝑔 of 𝑚 ↑ in 𝑗𝑅 . To embed a gadget
𝐿 (𝑋). We embed every child of 𝑋 that is a leaf as vertical copy of 𝑔 (𝑋). Let𝑌1, . . . ,𝑌4 be the
connecting vertices. Embed every 𝑋𝑌𝑇- path 𝑎𝑇 such 𝑎𝑇 is in the same layer 𝑔 (𝑋) and 𝑔 (𝑌𝑇) is
in a corner of 𝑍 𝑎𝐿

↔2 (𝑋). Let 𝑢𝑇 the vertex on 𝑎𝑇 with degree 2. We have that 𝑢𝑇 has another child
𝑢1𝑇 in𝐿 (𝑋). Embed 𝑢1𝑇 in the same layer as 𝑢𝑇 and such that 𝑔 (𝑢1𝑇 ) is in 𝑍 𝑎𝐿

2 (𝑋) and in the right
side of 𝑌𝑇 . Embed all children of 𝑌𝑇 outside of 𝑍 𝑎𝐿

↔2 (𝑋) as shown in Figure 3.6a. Embed the
remaining children 𝑏1, . . . ,𝑏8𝑅↙4 of 𝑋 arbitrary, since they all have two children 𝑏1𝑇 ,𝑏

2
𝑇 each.

Embed 𝑏1𝑇 𝑏
2
𝑇 as shown in Figure 3.6. Two gadgets are connected through a diagonal or slanted

edge. Thus 𝑔 is an embedding of 𝑚 ↑ in 𝑗𝑅 .
To show the other direction let𝑚 ↑ → 𝑗𝑅 with an embedding𝑔 . To show that𝑚 is embeddable

into 𝑖1 it is su$cient to show that the construction of the gadgets and𝑚 ↑ already enforces, that
for every two adjacent gadgets 𝐿 (𝑏) and 𝐿 (𝑋) the 𝑔 (𝑏)𝑔 (𝑋)-path is a shortest path of length
5. Having this assumption one can identify each gadget with its root in 𝑚 and the connecting
paths with edges in 𝑚 . Since we only have four connecting vertices per gadgets, each gadget
has at most four adjacent gadgets. To do that, let 𝑋 ↓ 𝑅 (𝑚 ). With Lemma 3.11 (1), we have
that |𝑍 𝑎𝐿

1 (𝑔 (𝑋)) | = 8 + 9(𝑄 ↙ 1) = |𝑍𝑄𝐿 (𝑍 )
1 (𝑋) |. Thus the complete 1-hop-neighborhood of

𝑔 (𝑋) in 𝑗𝑅 is covered by 𝑔 (𝑍𝑄𝐿 (𝑍 )
1 (𝑋)). Since 8𝑄 children of 𝑋 have two children, we have

that |𝑍𝑄𝐿 (𝑍 )
2 (𝑋) | = 2 · 8𝑄 = 16𝑄 . By Lemma 3.11 (2) we have that this is exactly 𝑍 𝑎𝐿

2 (𝑋). Thus
the 𝑔 (𝑍𝑄𝐿 (𝑍 )

↔2 (𝑋)) covers 𝑍 𝑎𝐿
↔2 (𝑔 (𝑋)) completely. We have that 𝑍 𝑎𝐿

↔2 (𝑔 (𝑋)) is a cuboid of size
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3.4 Embedding a Tree in the 𝑄-Full-Grid

(a) The embedding of𝐿 (𝑋) within the layer where
𝑋 is embedded. Note that 𝑋 is presented in orange.
The blue edges are all incidient to the connecting
vertex. The yellow edge shows where a connecting
edge might be.

(b) The embedding of 𝐿 (𝑋) on a layer where 𝑋 is
not embedded. Note that the vertical copy of 𝑋 is
connected to 𝑋 and the whole 1-hop neighborhood
is also connected to 𝑋 .

Figure 3.6: The embedding a gadget 𝐿𝑅 (𝑋) divided into di"erent sorts of layers. The blue
vertices of Figure 3.6b are vertical copies of the blue vertices of Figure 3.6a and are all connected
to the connecting vertices in Figure 3.6a. The whole 1-hop-neighborhood of 𝑋 is connected to
𝑋 .

5 ⇐ 5 ⇐ 𝑄 , if we identify a layer with a ε ⇐ε. Every connecting vertex has 3𝑄 + 1 adjacent
vertices outside of 𝑍 𝑎𝐿

↔2 (𝑔 (𝑋)). With Lemma 3.11 (3) and (4) we have that each connecting
vertex can only be placed in the corner of 𝑍 𝑎𝐿

↔2 (𝑔 (𝑋)). With Lemma 3.11 (3) we have that
two connecting vertices cannot be placed in the same corner, since they need 2 · 3𝑄 adjacent
vertices outside 𝑍 𝑎𝐿

↔2 (𝑋) but there are only 5𝑄 . From this follows that every gadget 𝐿 (𝑋)
covers the whole at-most-2-neighborhood of their root 𝑋 and that every two adjacent gadgets
𝐿 (𝑏),𝐿 (𝑋), 𝑔 (𝑏) and 𝑔 (𝑋) are connected through a shortest path of length 5. As already
mention we !nd an embedding of 𝑚 in 𝑖1.

With this equivalence we show that the problemR of deciding whether a tree is embeddable
in 𝑗𝑅 is NP-complete.

Theorem 3.13: Deciding whether a tree 𝑚 is embeddable in the 𝑄-full grid is NP-complete.

Proof. Note that by Lemma 3.2 R is in NP. So it remains to show that R is NP-hard. To do
this, we reduce R to the problem P of deciding whether a tree 𝑚 is embeddable in 𝑖1. For the
reduction we build a gadget tree 𝑚 ↑ of 𝑚 . As given above, the construction of 𝑚 ↑ is possible
in polynomial time. Theorem 3.12 gives us the equivalence of P and deciding whether 𝑚 ↑ is
embeddable into 𝑗𝑅 . Thus, we have that R is NP-complete.
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4 Embedding a Caterpillar in Di!erent
Products of Two Graphs and a Clique

In this chapter we show that deciding whether a caterpillar is embeddable into the𝑄-rectangle
grid or the 𝑄-full grid respectively is possible in linear time. By showing this, we generalize
the statement that a deciding whether a caterpillar is embeddable in 𝑗1 is possible in linear
time presented by Biedl, Eppstein, and Ueckerdt [BEU23]. We use the notation for the 𝑄-full
grid and the 𝑄-rectangle grid as in Chapter 3. We de!ne a caterpillar 𝑜 as a path 𝑇 , where
every vertex of 𝑇 is adjacent to either other vertices on 𝑇 or leaves. We say that 𝑇 is the spine
of the caterpillar and every vertex that is not on the spine is a 𝑤𝑛𝑥. We denote the edges as
diagonal that distinguish 𝑖1 and 𝑗1. For 𝑗𝑅 we de!ne that an edge 𝑏𝑋 is diagonal aslope if 𝑏
and 𝑋 are in di"erent layers and the edge 𝑏𝑋 ↑ is diagonal for 𝑋 ↑ being the vertical copy of 𝑋 on
the layer as 𝑏.
The following proofs and statements follow closely the respective theorem presented by

Biedl, Eppstein, and Ueckerdt, but with di"erent values for the most parts [BEU23].

4.1 Embedding a Caterpillar in the 𝑄-Rectangle Grid

In this section we show that embedding a caterpillar 𝑜 in a 𝑄-rectangle grid 𝑖𝑅 is solvable in
linear time. We use a similar argument as stated by Biedl, Eppstein, and Ueckerdt [BEU23].
The main di"erence is, that a rectangle grid does not have diagonal nor slanted edges thus
the legs of the caterpillar cannot interfere with each other.

Theorem 4.1: Let 𝑜 be a caterpillar, 𝑄 ↓ ε then the following are equivalent

(1) 𝑜 → 𝑎↗⊋𝑎↗⊋𝑑𝑅 .

(2) 𝑜 can be embedded such that all spine edges are horizontal and the spine is a straight path.

(3) Each vertex on the spine has at most 𝑄 + 3 neighbors.

Proof. The implication (2) to (1) follows immediately since (2) already provides an embedding
of 𝑜 .
Now we show the implication (1) to (3). Let 𝑋 ↓ 𝑅 (𝑖𝑅 ). With Lemma 3.5 we have that

|𝑍𝑊𝐿
1 (𝑋) | = (𝑄 ↙ 1) + 4 = 𝑄 + 3. Then, each vertex on the spine of the caterpillar can have at

most 𝑄 + 3 neighbors and (3) holds.
In the following we show (3) to (2). Consider a caterpillar 𝑜 with spine 𝑐 that satis!es

(3). We show that there exists an embedding 𝑔 of 𝑜 in 𝑖𝑅 . Embed 𝑐 as a straight path in
one layer of 𝑖𝑅 . Note that only embedding 𝑐 without any legs of the caterpillar is possible,
since 𝑐 is only a path. Let 𝑏, 𝑋 ↓ 𝑅 (𝑖𝑅 ) and 𝑏𝑋 ↓ 𝑆 (𝑖𝑅 ) horizontal. Then we have that
𝑍𝑊𝐿
1 (𝑏) ′ 𝑍𝑊𝐿

1 (𝑋) = ∞. This holds because in one layer there are no triangles, thus 𝑏 and 𝑋
cannot share neighbors in their own layer. We have that 𝑏 and 𝑋 are only adjacent to their
respective vertical copies in other layers. Since 𝑏 and 𝑋 are in the same layer, there is no
common neighbor of 𝑔 (𝑏) and 𝑔 (𝑋) in another layer. We have that each vertex 𝑋 on the
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4 Embedding a Caterpillar in Di!erent Products of Two Graphs and a Clique

spine, except the end points, have 𝑄 + 1 neighbors in 𝑖𝑅 which are not on the spine and 𝑋 has
two neighbors on the spine. So 𝑋 has 𝑄 + 3 neighbors in 𝑜 . The end vertices 𝑉,𝑊 have 𝑄 + 2
neighbors not on the𝑐 and one neighbor on𝑐 , thus 𝑉 and𝑊 also have𝑄 +3 possible neighbors.
Since (3) states that each vertex on 𝑐 has at most 𝑄 + 3 neighbors, 𝑜 can be embedded such
that 𝑔 (𝑐) is a straight and horizontal path.

We justify the linear running time by using an adjacency list for saving the caterpillar. Then
we can determine the degree of every vertex in linear time. Since Theorem 4.1 (3) states that
every vertex can have at most degree 𝑄 + 3, it is su$cient to look at each vertex separately.

4.2 Embedding a Caterpillar in the 𝑄-Full Grid

We show that deciding whether a caterpillar is embeddable in the 𝑄-full grid is solvable in
linear time. The statement and proof are nearly the same as presented by Biedl, Eppstein, and
Ueckerdt but here we consider 𝑄 layers, which is visible in (3) and some adjusted values in
the proof [BEU23].

Theorem 4.2: Let 𝑜 be a caterpillar, 𝑄 ↓ ε, then the following are equivalent:

(1) 𝑜 ∝ 𝑎↗ ⫅̸ 𝑎↗ ⫅̸ 𝑑𝑅

(2) 𝑜 can be embedded such that all spine edges are diagonal or slanted diagonal.

(3) For every subpath 𝑎 of the spine 𝑇 of𝑜 , it holds
∑

𝑍↓𝑁 (𝑐 ) 𝑝𝑛𝑥(𝑋) ↔ (5𝑄 +1) |𝑅 (𝑎) | +4𝑄 ↙2.

Proof. First we show the implication from (1) to (3). Let 𝑔 be an embedding of 𝑜 in 𝑗𝑅 .
Let 𝑎 be any subgraph of the spine 𝑇 of 𝐿 and 𝑌 ↓ 𝑅 (𝑜) With Lemma 3.11 (1) we have
that |𝑍𝑑

1 (𝑌) | ↔ |𝑍 𝑎𝐿
1 (𝑔 (𝑌)) | = (𝑄 ↙ 1) + 8𝑄 . For any 𝑏𝑋 ↓ 𝑆 (𝑗𝑅 ) with 𝑏 = ↘𝑘,𝑙, 𝑠≃,𝑋 =

↘𝑘↑,𝑙↑, 𝑠↑≃ we have that |𝑍 𝑎𝐿
1 (𝑏) ′ 𝑍 𝑎𝐿

1 (𝑋) | ∈ 2𝑄 + 2(𝑄 ↙ 1). This equation holds because
|𝑍 𝑎1

1 (↘𝑘,𝑙≃)′𝑍 𝑎1
1 (↘𝑘↑,𝑙↑≃) | ∈ 2, since ↘𝑘,𝑙≃↘𝑘↑,𝑙↑≃ ↓ 𝑆 (𝑗1) is diagonal, they have two vertices

that are adjacent to both ↘𝑘,𝑙≃ and ↘𝑘↑,𝑙↑≃. With Corollary 3.10 we have that 𝑏 and 𝑋 are
also neighboring all vertical copies of the vertices in the common neighborhood of ↘𝑘,𝑙≃
and ↘𝑘↑,𝑙↑≃. Also with Corollary 3.10 𝑏 and 𝑋 are both adjacent to the vertical copies of
both 𝑔 (𝑏) and 𝑔 (𝑋). Since caterpillars contain no triangles we have that for 𝑉,𝑊 ↓ 𝑅 (𝑜)
|𝑍𝑄

1 (𝑉) ′ 𝑍𝑄
1 (𝑊) | = 0. Thus, for each 𝑏𝑋 ↓ 𝑆 (𝑎) we have that their neighborhood has not full

size each. So we can estimate the degrees of vertices of 𝑎 .
∑

𝑍↓𝑁 (𝑐 )
𝑝𝑛𝑥(𝑋) ↔ ((𝑄 ↙ 1) + 8𝑄) |𝑅 (𝑎) | ↙ (2𝑄 + 2(𝑄 ↙ 1)) |𝑆 (𝑎) |

= ((𝑄 ↙ 1) + 8𝑄) |𝑅 (𝑎) | ↙ (2𝑄 + 2(𝑄 ↙ 1)) ( |𝑅 (𝑎) | ↙ 1)
= (6𝑄 ↙ (𝑄 ↙ 1) |𝑅 (𝑎) | + 2𝑄 + 2(𝑄 ↙ 1)
= (5𝑄 + 1) |𝑅 (𝑎) | + 4𝑄 ↙ 2.

Now we show the implication from (3) to (2).
Let 𝑜 be a caterpillar with spine 𝑇 = 𝑋1𝑋2...𝑋𝑆 . Note that we identify both 𝑎↗ components

with ϖ and we numerate the vertices of the 𝑑𝑅 . Consider an embedding 𝑔 of 𝑜 in 𝑗𝑅 by
with 𝑔 (𝑋𝑇) = ↘𝑒, 𝑒,𝑁≃. Note that the vertex component of 𝑑𝑅 does not matter because of
Corollary 3.10, so we just leave it out of the notation. Every leaf is embedded on vertex ↘𝑒, 𝑓≃
with 𝑒 + 𝑓 as small as possible. We have that for the !rst vertex 𝑋 with degree of at least
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4.2 Embedding a Caterpillar in the 𝑄-Full Grid

2 + 2𝑄 + (𝑄 ↙ 1) the adjacent leaves are embedded on ↘𝑒, 𝑒 ↙ 1≃, ↘𝑒 ↙ 1, 𝑒≃, ↘𝑒 ↙ 1, 𝑒 ↙ 1≃, but note
that on ↘𝑒 ↙ 1, 𝑒 ↙ 1≃ might also be another vertex of the 𝑇 . If each vertex of 𝑇 has degree less
than 1 + 3𝑄 , one can embed 𝑜 by this construction. Assume for the sake of contradiction
that there is a vertex 𝑋 𝑈 of 𝑇 such there is a leaf of 𝑋 𝑈 is not embedded by 𝑔 . Then we have
deg𝑄 (𝑋 𝑈 ) ∈ 1 + 3𝑄 otherwise there is not enough space which cannot be used by any other
vertex on 𝑇 . Let 𝑋𝑇 be the vertex with the largest index 𝑒 ↔ 𝑓 such that 𝑋𝑇 has leaves embedded
on ↘𝑒↙1, 𝑒↙1≃, ↘𝑒, 𝑒↙1≃, ↘𝑒↙1, 𝑒≃. Note that deg𝑄 (𝑋𝑇), deg𝑄 (𝑋 𝑈 ) ∈ 1+3𝑄 . Let 𝑎 = 𝑋𝑇 . . . 𝑋 𝑈 be the
subpath of the spine. We have that every vertex in𝑅 (𝑔 (𝑎))↖𝑍 𝑎𝐿

1 (𝑔 (𝑎)) is covered by a vertex
of 𝑅 (𝑎) ↖ 𝑍𝑄

1 (𝑎). So, |𝑅 (𝑔 (𝑎)) ↖ 𝑍 𝑎𝐿
1 (𝑔 (𝑎)) | = (5( 𝑓 ↙ 𝑒) + 9)𝑄 . This holds with |𝑍 𝑎1

1 (𝑎) | =
(5( 𝑓 ↙ 𝑒) + 9) and Corollary 3.10. We have that |𝑅 (𝑎) ↖𝑍𝑄

1 (𝑎) | = ∑
𝑍↓𝑁 (𝑐 ) 𝑝𝑛𝑥(𝑋) ↙ ( 𝑓 ↙ 𝑒 + 1),

since every vertex on 𝑎 only appears once. Then it follows:

|𝑅 (𝑎) ↖ 𝑍𝑄
1 (𝑎) | ∈ |𝑅 (𝑔 (𝑎)) ↖ 𝑍 𝑎𝐿

1 (𝑔 (𝑎)) |
∋△

∑
𝑍↓𝑁 (𝑐 )

𝑝𝑛𝑥(𝑋) ↙ ( 𝑓 ↙ 𝑒 + 1) ∈ (5( 𝑓 ↙ 𝑒) + 9)𝑄

∋△
∑

𝑍↓𝑁 (𝑐 )
𝑝𝑛𝑥(𝑋) ∈ (5( 𝑓 ↙ 𝑒) + 9)𝑄 + ( 𝑓 ↙ 𝑒 + 1) = ((5𝑄 + 1) ( 𝑓 ↙ 𝑒 + 1) + 4𝑄

= (5𝑄 + 1) |𝑅 (𝑎) | + 4𝑄 .

Therefore 𝑎 does not satisfy the assumption from (3).
The implication from (2) to (1) holds immediate, because (2) already assumes that 𝐿 is

embedded in 𝑗𝑅 .

To justify the linear running time for deciding whether a caterpillar is embeddable into
𝑗𝑅 , we embed use Theorem 4.2 (2). For this we use the idea of embedding the caterpillar 𝑜 as
presented in the proof. Since we identify 𝑎↗ with ϖ, we start by embedding the !rst vertex of
the spine 𝑇 of 𝑜 on a vertex (0,0,x), 𝑉 ↓ [𝑄]. Let 𝑔 (𝑋) = ( 𝑓, 𝑓, 𝑉) for each vertex 𝑋 on 𝑇 of 𝑜
and 𝑓 > 0. Embed every other vertex 𝑋 of 𝑜 in such a way that for 𝑔 (𝑋) = ↘𝑘,𝑙, 𝑠≃ 𝑘 + 𝑙 + 𝑠 is
minimal. From the proof of Theorem 4.2 (2) we have that this way of embedding provides
enough space to embed all edges if 𝑜 is indeed embeddable. Since we only have to look at
every vertex and edge of 𝑜 once to embed them, we only need linear time.

21





5 Embedding Graphs in the Strong Product
of Two Paths

In this chapter we show that embedding a simple and connected graph 𝐿 into the strong
product of a path of in!nite length and a path of any given constant length can be done in
polynomial time if 𝐿 is embeddable. Note that Biedl, Eppstein, and Ueckerdt showed that
embedding a tree in a 1-full grid is NP-complete, so it is necessary that the second path is
!nite and the length is given ([BEU23]). We also show that embedding a tree 𝑚 in a grid of
height 2 is possible in linear time, if 𝑚 is embeddable.

We de!ne 𝑎↗ ⫅̸ 𝑎𝑀 as k-wide crossed ladder 𝑦𝑀 for some 𝑁 ↓ ε. We abbreviate 𝑦2 by crossed
ladder. We give some notation for the 𝑁-wide crossed ladder that follows from Figure 5.1.
Recall that we identify 𝑎↗ with ϖ, so we have that the vertices of the 𝑦𝑀 numbered in

ascending order from left to right. Let 𝑏 = ↘𝑘,𝑙≃,𝑋 = ↘𝑉,𝑊≃ ↓ 𝑅 (𝑦𝑀 ) with 𝑘, 𝑉 ↓ 𝑅 (𝑎↗). We
say 𝑏 is left of 𝑋 , if 𝑘 < 𝑉 . If 𝑘 > 𝑉 we say 𝑏 is right of 𝑋 . We call 𝑏 the vertical copy of 𝑋 if
𝑘 = 𝑉 . We de!ne a column by the induced subgraph 𝑑 of 𝑦𝑀 , where all vertices are vertical
copies of each other. An edge connecting two vertical copies with each other we call vertical.
In this chapter we talk about subtrees of trees 𝑚 starting at a given vertex 𝑋 . By that we

refer to all connected components which occur when deleting the vertex 𝑋 from 𝑚 and add 𝑋
to each component as a leaf.
We !rst show that embedding a tree in the crossed ladder is possible in polynomial time.

We re!ne the presented algorithm and show that embedding a tree in the crossed ladder is
possible in linear time. After we show that deciding whether a simple and connected graph is
embeddable in 𝑦𝑀 is possible in polynomial time. We see that the running time also depends
on 𝑁 .

Note that both algorithms assume that the respective graph𝐿 to embed is connected. For
disconnected graphs we use the algorithms on each component and 𝐿 is embeddable only if
every connected component of𝐿 is embeddable. This is su$cient, because the 𝑎↗ component
of 𝑦𝑀 provides enough space to embed every graph component in a sequential way.

5.1 Embedding a Tree in the Crossed Ladder

We show that embedding a tree in a crossed ladder is possible in polynomial time. To do so,
we normalize the embedding of a tree in 𝑦2 and present an algorithm that !nds an embedding
if the tree is embeddable. After this, we give a modi!cation of the presented algorithm and
show that embedding 𝑚 in 𝑦2 is possible in linear time.

Let 𝑎2 be the path of length 1 with𝑅 (𝑎2) = {𝑘,𝑙}. We de!ne some notation for referring to
di"erent parts of the crossed ladder 𝑦2, that is made clear by looking at Figure 5.2.
We de!ne the top layer by the induced subgraph of 𝑦2 where every vertex contains the

vertex component 𝑘. We de!ne the bottom layer by the induced subgraph of 𝑦2 where every
vertex contains the vertex component 𝑙. We say an edge is diagonal if it connects two vertices
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5 Embedding Graphs in the Strong Product of Two Paths

Figure 5.1: A k-wide crossed ladder.

Figure 5.2: A crossed ladder or 2-wide crossed ladder. The vertices are numerated in an
ascending way from left to right. This is the representation used in the proof.

in the bottom and the top layer and is not vertical. We call an edge 𝑛 horizontal if 𝑛 is in either
the top or the bottom layer. We de!ne an diagonal edge 𝑏𝑋 as backwards, if 𝑏 is left of 𝑋 . We
say that 𝑏𝑋 is forwards if 𝑏 is right of 𝑋 .
The next lemma provides a normalization of the embedding of a tree in 𝑦2 that we use as

ground structure for the algorithm.

Lemma 5.1: For every embedding 𝑔 of a tree𝑚 with a leftmost and a rightmost vertex 𝑔 (𝑧),𝑔 (𝛥 )
respectively in the crossed ladder, there is an embedding 𝛩 that embeds the 𝑧𝛥 -path in the top
layer and𝛩 (𝑧) and𝛩 (𝛥 ) are the leftmost and rightmost vertices respectively.

Proof. Consider an embedding 𝑔 of a tree 𝑚 in the crossed ladder with a leftmost and a
rightmost vertex 𝑔 (𝑧),𝑔 (𝛥 ) respectively. Then we have that no other vertex of 𝑚 is embedded
on the left of 𝑔 (𝑧) nor on the right of 𝑔 (𝛥 ). Starting from 𝑔 , we give a construction of a new
embedding𝛩 where the 𝑧𝛥 -path 𝑎 is embedded in the top layer and every other vertex of 𝑚 is
embedded on the bottom layer.
We assume that 𝑔 (𝑧) is already in the top layer, otherwise we %ip 𝑔 (𝑚 ) by replacing each

vertex 𝑔 (𝑉) by its vertical copy. In the following we give a construction of 𝑔 ↑ that ensures
that 𝑎 is embedded in the top layer. If 𝑎 is not already embedded in the top layer, then there
are vertical, diagonal backward or diagonal forward edges that change the layer. For each of
the edge types, we give a transformation of 𝑔 to 𝑔 ↑ such that this edge type is replaced by
another type.

First, we look at the case that 𝑔 (𝑎) contains a diagonal forward edge 𝑛 . We transform 𝑛 to
a horizontal edge. To do that, we show a more general statement: Let 𝐿 be a graph. Let 𝛬 be
an embedding of 𝐿 in 𝑦2 such that 𝛬 (𝑉) is a vertical copy of 𝛬 (𝑊), with 𝛬 (𝑉) in the top layer
and 𝛬 (𝑊) in the bottom layer for 𝑉,𝑊 ↓ 𝑅 (𝐿). Then we have that there is an embedding 𝛬 ↑

such that 𝛬 ↑(𝑉) is in the bottom layer and 𝛬 ↑(𝑊) is in the top layer and 𝛬 (𝑢) = 𝛬 ↑(𝑢) for all
𝑢 ↓ 𝑅 (𝐿) with 𝑢 ω 𝑉 and 𝑢 ω 𝑊.

To show the general statement, we examine the 1-hop-neighborhood of 𝛬 (𝑉) and 𝛬 (𝑊) in 𝑦2.
Note that 𝑍 𝑒2

1 (𝛬 (𝑉)) ↖ {𝛬 (𝑉)} = 𝑍 𝑒2
1 (𝛬 (𝑊)) ↖ {𝛬 (𝑊)}. Therefore changing vertical copies of

each other is only a local operation, so the rest of 𝛬 , which is not in the 1-hop-neighborhood
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5.1 Embedding a Tree in the Crossed Ladder

of neither 𝛬 (𝑉) nor 𝛬 (𝑊) just stays the same for 𝛬 ↑. We have that each diagonal edge incident
to 𝛬 (𝑉) or 𝛬 (𝑊) changes to an horizontal edge and each horizontal edge to a diagonal edge,
since only the 𝑎2 component of 𝛬 (𝑉) and 𝛬 (𝑊) change.
We apply that result to 𝑔 having a diagonal forward edge 𝑔 (𝑏)𝑔 (𝑋). With this claim set

𝑔 (𝑉) = 𝑔 ↑(𝑊) and 𝑔 (𝑊) = 𝑔 ↑(𝑉). We do that for every forward diagonal edge in 𝑔 (𝑎). Then
we get an embedding 𝑔 ↑ without any forward vertical edges.

For the following two cases, assume that 𝑔 (𝑎) contains a vertical edge or a diagonal
backward edge 𝑔 (𝑏)𝑔 (𝑋). We treat both cases similar. We replace a vertical edge by a diagonal
forward edge and the diagonal backward edge by a vertical edge. Both of them require that
𝑔 (𝑋) is translated by one vertex to the right. To obtain a new embedding 𝑔 ↑, we divide 𝑚
into three subtrees 𝑦, 𝛯 and 𝑖. Let 𝑏↑ be the left neighbor of 𝑏 in 𝑎 and let 𝑋 ↑ be the right
neighbor of 𝑋 in 𝑎 . We delete the edges 𝑏↑𝑏 and 𝑋𝑋 ↑ from 𝑚 , then we get a forest 𝑚 ↑ with three
connected components. Let 𝑦 be the connected component of 𝑚 ↑ containing 𝑏↑, 𝛯 be the
connected component fo 𝑚 ↑ containing 𝑏𝑋 and 𝑖 be the connected component containing 𝑋 ↑.
In the following we construct an embedding 𝑔 ↑ of𝛯 , 𝑦 and 𝑖 from 𝑔 and show that 𝑔 ↑ is

again an embedding of𝑚 in 𝑦2. Assume for the sake of contradiction that the rightmost vertex
from 𝑔 (𝑦) is not on the left of 𝑔 (𝑖). Then we !nd vertices 𝑘 and 𝑘↑ such that 𝑘 ↓ 𝑅 (𝑔 (𝑦)) and
𝑘↑ ↓ 𝑅 (𝑔 (𝑖)) with 𝑘 and 𝑘↑ being vertical copies of each other. For the !rst case assume that
𝑔 (𝑏)𝑔 (𝑋) is vertical. Since 𝑔 (𝑏)𝑔 (𝑋) is between 𝑔 (𝑦) and 𝑔 (𝑖) and there is no edge crossing
a vertical edge in 𝑦2, that contradicts the assumption that such 𝑘 and 𝑘↑ exist. Now assume
that 𝑔 (𝑏)𝑔 (𝑋) is a diagonal backward edge. Then we have that the vertical copies of 𝑔 (𝑏) and
𝑔 (𝑋) both belong to 𝑔 (𝑎). From this we have that 𝑘 and 𝑘↑ do not exist.

Set 𝑔 ↑(𝑦) = 𝑔 (𝑦) and 𝑔 ↑(𝑖) is the translation of 𝑔 (𝑖), by one vertex to the right. 𝑔 ↑ is a
proper embedding of 𝑖 and 𝑦, since 𝑔 (𝑖) is entirely to the right of 𝑔 (𝑦). Further shifting to
the right will not interfere with 𝑔 (𝑦).
Now it remains to show that 𝑔 ↑(𝛯) is an embedding. Let 𝑔 (𝑏) = 𝑔 ↑(𝑏) and 𝑔 ↑(𝑋) is the

same as 𝑔 (𝑋) but translated by one vertex to the right. When looking at 𝑔 (𝛯), let 𝑇𝑒 be the
subtrees starting in 𝑏 and 𝑔 (𝑇𝑒) is on the left of 𝑔 (𝑏). Then we set 𝑔 ↑(𝑇𝑒) = 𝑔 (𝑇𝑒). Let 𝑇𝑊
be the subtrees starting in 𝑋 and 𝑔 (𝑇𝑊) is on the right of 𝑔 (𝑋), then set 𝑔 ↑(𝑇𝑊) is the same as
𝑔 (𝑇𝑊) but translated by one vertex to the right. The embedding of 𝑇𝑒 and 𝑇𝑊 is possible since
the the rest of 𝑔 ↑ is locally the same as 𝑔 .
We have that 𝑔 (𝑏) has one adjacent vertex on the right 𝑏𝑊 that is not in 𝑔 (𝑎). Note that the

vertical copy of 𝑏𝑊 is used by 𝑔 (𝑉) with 𝑉 ↓ 𝑅 (𝑎). Assume that 𝑏 has a child vertex 𝑢 with
𝑔 (𝑢) = 𝑏𝑊 . Let 𝑎𝑊 be the subpath starting in 𝑏, with second vertex 𝑢. Then we have that the
vertices in𝑅 (𝑔 (𝑎𝑊)) translated by one to the right are not used in 𝑔 ↑. Then we have that there
is a path 𝑎𝑓 𝑔𝑕𝑕 of length |𝑎𝑊 | + 1 in 𝑦2 starting in 𝑔 ↑(𝑏), that is not covered by 𝑔 . Then we
embed 𝑎𝑊 in 𝑎𝑓 𝑔𝑕𝑕 in 𝑔 ↑. For 𝑋 we consider a similar case: We have that 𝑔 (𝑋) has one adjacent
vertex on the left 𝑋𝑒 that is not in 𝑔 (𝑎). Note that the vertical copy of 𝑋𝑒 is used by 𝑔 (𝑉) with
𝑉 ↓ 𝑅 (𝑎). Assume that 𝑋 has a child vertex 𝑘 with 𝑔 (𝑘) = 𝑋𝑒 . Let 𝑎𝑒 be the subpath starting
in 𝑋 , with second vertex 𝑘. Then we have that the vertices in 𝑅 (𝑔 (𝑎𝑒)) are not in 𝑔 ↑. We also
have that 𝑔 (𝑋) is translated by one to the right for 𝑔 ↑. Note that 𝑔 (𝑋) is not used by 𝑔 ↑. Then
we have that there is a path 𝑎𝑓 𝑔𝑕𝑕 of length |𝑎𝑒 | + 1 in 𝑦2 starting in 𝑔 ↑(𝑋), that is not covered
by 𝑔 . Then we embed 𝑎𝑊 in 𝑎𝑓 𝑔𝑕𝑕 in 𝑔 ↑.

Now we can use these transformations to get an embedding𝛩 from 𝑔 , with𝛩 is an embed-
ding of 𝑚 where𝛩 (𝑎) is embedded in the top layer. To do so, make sure, that𝛩 (𝑧) is in the
top layer. Then iterate from left to right in 𝑔 (𝑎) and use the presented transformations until
each edge of 𝑎 is embedded horizontally.
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5 Embedding Graphs in the Strong Product of Two Paths

We describe an algorithm FindCrossedLadderEmbedding to !nd an embedding 𝑔 that em-
beds a tree 𝑚 with only a path on the top layer if 𝑚 is embeddable. So, let 𝑚 be a tree that
should be embedded. First, check whether the maximum degree of𝑚 is at most 5. If the degree
is higher, the tree cannot be embedded. Then, iterate over all tuples of vertices. For each tuple
(𝑧, 𝛥 ) embed the 𝑧𝛥 -path 𝑎 in the top layer. Check if 𝑎 contains at least half of the vertices of
𝑚 . If this is not the case continue with the next tuple. Then, we use some sort of line sweep
algorithm. Starting from 𝑧 iterate over each vertex in 𝑎 and consider the subtrees that have
the current vertex as root and do not contain any vertex of 𝑎 and embed them as far to the
left as possible. To do that, we save two values. The !rst value is the length of the path in the
bottom layer of 𝑦2 that is not in the image of the current embedding and ends on the vertical
copy of current vertex. We say that these vertices are unused. We de!ne needed vertices as the
number of vertices that are used in the bottom layer and are on the right of the current vertex.
Let 𝑋 be the current vertex. Let 𝒾 the set of subtrees starting in 𝑋 and not containing any

other vertex of 𝑎 . We have that 𝑋 has at most three children. If 𝑋 has no children we continue
with the next vertex and increase the number of unused vertices.

If 𝑋 has one child𝑌 we have a closer look at the subtree 𝑇 . There are two possible shapes
of 𝑇 . For the !rst shape we have that 𝑌 has two children 𝑌1,𝑌2 itself. Both of 𝑌1,𝑌2 start
a path 𝑎1, 𝑎2 maybe of length 1. We embed 𝑎1 and 𝑎2 such that as many as possible unused
vertices are now in the image of 𝑔 . Next we update the unused vertices and needed vertices.
For the second shape assume that 𝑇 is a path. Then we look at the following vertex 𝑏 on 𝑎 . If
this 𝑏 has exactly one subtree 𝑇𝑏 that is a path, we try to embed 𝑇 and 𝑇𝑏 such that as many
unused vertices as possible are used by 𝑔 . Update the needed and the unused vertices. We do
not continue with looking at 𝑏 in the line sweep scheme, but with the next vertex after 𝑏. If 𝑏
has a di"erent number of children or 𝑇𝑏 is not a path, we try to embed 𝑇 such that as many
vertices of the unused vertices as possible are used in 𝑔 .

If 𝑋 has two children 𝑏,𝑌 we have that the subtrees 𝑇𝑏, 𝑇𝑖 starting in 𝑏 and𝑌 respectively
are paths. Then we embed 𝑇𝑏, 𝑇𝑖 such that as many unused vertices as possible are used by 𝑔
and update the unused and needed vertices.
If 𝑋 has three children, let 𝑇1, 𝑇2, 𝑇3 be the subgraphs starting in one of the children of 𝑋

each. We check without loss of generality that 𝑇1, 𝑇3 are paths and 𝑇2 is a leaf. We embed 𝑇2
as the copy of 𝑔 (𝑋) and embed 𝑇1, 𝑇3 such that as many unused vertices as possible are used.
When arriving at 𝛥 make sure that there are no needed vertices left. If this is the case,

there is an embedding 𝑔 with 𝑧 as leftmost vertex and 𝛥 as the rightmost vertex. Otherwise
start with the next tuple. If all tuples are used and no embedding is found, then there is no
embedding of 𝑚 in 𝑦2.

Lemma 5.2: Let𝑚 be a tree. The algorithm FindCrossedLadderEmbedding described above "nds
an embedding 𝑔 of 𝑚 if 𝑚 is embeddable in 𝑎↗ ⫅̸ 𝑎2.

Proof. With Lemma 5.1 we have that it is su$cient to !nd an embedding 𝑔 of 𝑚 that embeds
a path 𝑎 in the top layer of 𝑦2 where the end points of 𝑎 are embedded as the leftmost and
rightmost vertices.
The algorithm iterates through all possible tuples of vertices so it checks all possible paths.

For the following proof, consider a path 𝑎 with end points 𝑧 and 𝛥 .
First we distinguish the di"erent subtrees having a vertex on 𝑎 as root. Each embedding

of a vertex 𝑋 ↓ 𝑅 (𝑎) has at most three children in the crossed ladder, because every vertex
on the top layer has three neighbors on the bottom layer. By assumption the children of 𝑋
are always embedded in the bottom layer. Each subtree 𝑇 starting in a vertex of 𝑎 is either a
path or 𝑋 has a child 𝑏 that has two children itself. If 𝑏 has two own children 𝑏1 and 𝑏2 we
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5.1 Embedding a Tree in the Crossed Ladder

have that the subtrees starting in 𝑏1 and 𝑏2 are paths. These are the only two possibilities
because every vertex on the bottom layer has only two neighbors on the bottom layer and 𝑇
does not have an edge changing the layer since otherwise either 𝑔 (𝑧) or 𝑔 (𝛥 ) is not the left or
rightmost vertex or there is a circle.
Note that the algorithm is greedy. We show that FindCrossedLadderEmbedding !nds a

feasible embedding and that if FindCrossedLadderEmbedding !nds an embedding 𝑔 , then 𝑔
is optimal. To show that the solution is optimal we use the exchange argument. Let 𝑚 be a
tree with an optimal embedding 𝑔𝑗𝑘𝑙 , that is not reachable by FindCrossedLadderEmbedding.
Note that 𝑔𝑗𝑘𝑙 also embeds only a path in the top layer with 𝑔𝑗𝑘𝑙 (𝑧) as the leftmost vertex and
𝑔𝑗𝑘𝑙 (𝛥 ) as the rightmost vertex for some 𝑧, 𝛥 ↓ 𝑅 (𝑚 ). Let 𝑎 be the 𝑧𝛥 -path. We have that 𝑔𝑗𝑘𝑙 is
not reachable by FindCrossedLadderEmbedding, if there is a vertex 𝑘 on 𝑎 with a subtree 𝑇 such
that 𝑇 is not embedded as far to the left as possible. Thatmeans, that there is another embedding
that embeds 𝑇 to the left of 𝑔𝑗𝑘𝑙 (𝑉) for 𝑔𝑗𝑘𝑙 (𝑉) being the rightmost vertex of 𝑔𝑗𝑘𝑙 (𝑇). Take
the leftmost vertex 𝑘 for which there is an 𝑇 that is not embedded as far to the left as possible
by 𝑔𝑗𝑘𝑙 . Let 𝑔𝑄𝑔 be a greedy embedding of 𝑚 . Note that FindCrossedLadderEmbedding tries
the tuple (𝑧, 𝛥 ) as leftmost and rightmost vertex for the path embedded on the top layer. Thus
we consider that 𝑔𝑄𝑔 (𝑧) is the leftmost vertex and 𝑔𝑄𝑔 (𝛥 ) is the rightmost vertex of the greedy
embedding of 𝑚 . By assumption we have that 𝑔𝑄𝑔 (𝑇) is as far to the left as possible. In the
following we divide 𝑎 into two di"erent subgraphs, so that we combine 𝑔𝑄𝑔 and 𝑔𝑗𝑘𝑙 to a
new embedding of𝑚 . Let 𝑎𝑔 be a subpath of 𝑎 starting at the right neighbor 𝑙 of 𝑘 and ending
in 𝛥 . Let 𝑎𝑚 be the subpath of 𝑎 from 𝑧 to 𝑘. Construct 𝑚 ↑ by deleting 𝑏𝑋 from 𝑚 . Let 𝑇 𝑚 be
the connected component of 𝑚 ↑ containing 𝑎 𝑚 and let 𝑇𝑔 be the connected component of
𝑚 ↑ containing 𝑎𝑔 . We construct a new embedding 𝛩 by joining 𝑔𝑄𝑔 (𝑎 𝑚 ) and 𝑔𝐿𝑘𝑙 (𝑎𝑔 ). For
combining 𝑔𝑄𝑔 (𝑎 𝑚 ) and 𝑔𝑗𝑘𝑙 (𝑎𝑔 ) we have to make sure that 𝑔𝑄𝑔 (𝑎 𝑚 ) does not contain any
vertices that are also in 𝑔𝑗𝑘𝑙 (𝑎𝑔 ). Let 𝑋𝑔𝑗𝑘𝑙 be the rightmost vertex on the bottom layer of
𝑔𝑗𝑘𝑙 (𝑇 𝑚 ). Let 𝑋 𝑚𝑗𝑘𝑙 be the leftmost vertex on the bottom layer of 𝑔𝑗𝑘𝑙 (𝑇𝑔 ). We de!ne 𝑋𝑔𝑄𝑔 and
𝑋𝑔𝑄𝑔 like 𝑋

𝑔
𝑗𝑘𝑙 and 𝑋 𝑚𝑗𝑘𝑙 respectively. We look at two di"erent cases. First assume that 𝑋𝑔𝑗𝑘𝑙 is on

the left of 𝑋 𝑚𝑗𝑘𝑙 . By construction of 𝑇𝑚 we have that 𝑋𝑔𝑄𝑔 is on the left of 𝑋𝑔𝑗𝑘𝑙 . Thus 𝑋𝑔𝑗𝑘𝑙 is on the
left of 𝑋 𝑚𝑗𝑘𝑙 . From this follows that we can build an embedding𝛩 using 𝑔𝑗𝑘𝑙 (𝑇𝑔 ) and 𝑔𝑄𝑔 (𝑇 𝑚 ).

Now assume that 𝑋𝑔𝑗𝑘𝑙 is on the right of 𝑋 𝑚𝑗𝑘𝑙 . Let 𝑉 be the !rst vertex on the𝑔𝑗𝑘𝑙 (𝑘)𝑋𝑔𝑗𝑘𝑙 -path.
Then we have that 𝑔𝑗𝑘𝑙 (𝑘)𝑉 is a diagonal forward edge. Otherwise it is not possible that 𝑋 𝑚𝑗𝑘𝑙
is on the left of 𝑋𝑔𝑗𝑘𝑙 . Since 𝑋𝑔𝑄𝑔 is on the left of 𝑋𝑔𝑗𝑘𝑙 , we have that 𝑔𝑄𝑔 (𝑘)𝑉 is either vertical
or diagonal backwards. In this case it is not possible for the vertex embedded on 𝑋 𝑚𝑗𝑘𝑙 to be
embedded on the left of 𝑔𝑗𝑘𝑙 (𝑘) or on the vertical copy of 𝑔𝑗𝑘𝑙 (𝑘). From this follows that we
can build an embedding𝛩 using 𝑔𝑗𝑘𝑙 (𝑇𝑔 ) and 𝑔𝑄𝑔 (𝑇 𝑚 ).
So, we have 𝛩 which is reached by FindCrossedLadderEmbedding until at least 𝑘. By

iterating from left to right through 𝑎 and use of the exchange argument we produce a solution
reachable by the algorithm. Therefore, if there is a solution with the de!ned endpoints there
is also one, where the subtrees of each vertex on 𝑎 are embedded as far to the left as possible.

Now we have to show that the algorithm indeed !nds a solution which satis!es the claim,
i.e. it !nds a solution which is embedded as far to the left as possible. With Lemma 5.1 we
have that by embedding a path on the top layer a solution can be found if there is one. Since
the algorithm iterates over all pairs of vertices and chooses them as leftmost and rightmost
vertex FindCrossedLadderEmbedding !nds an embedding of𝑚 if there is one. Assume there is
an embedding of 𝑚 . By the algorithm we have that there is a leftmost and a rightmost vertex
that are embedded on the top layer. Each other vertex is placed between these vertices either
on the top or on the bottom layer. So we have a solution to embed 𝑚 in the 𝑦2.
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After we prove that the algorithm decides the problem in polynomial time, we give an
modi!cation of the algorithm, that has only linear running time.

Theorem 5.3: Let 𝑚 be a tree. Finding an embedding 𝑔 of 𝑚 in 𝑦2, if one exists, is possible in
polynomial time.

Proof. We use FindCrossedLadderEmbedding. With Lemma 5.2 we have that this algo-
rithm !nds an embedding of 𝑚 if 𝑚 is embeddable in 𝑦2. If 𝑚 is not embeddable, then
FindCrossedLadderEmbedding does not !nd an embedding.

It remains to show that FindCrossedLadderEmbedding terminates in polynomial time. First,
we show that FindCrossedLadderEmbedding terminates. The outer loop iterates through every
pair of vertices of 𝑚 . Since |𝑅 (𝑚 ) | < ↗, there are only !nite iterations because we do not
change 𝑚 within the loop. In the loop we only look at each vertex once so we only need !nite
time within the loop body. Hence, FindCrossedLadderEmbedding terminates.
Now we show that FindCrossedLadderEmbedding needs polynomial time. First, checking

whether the maximum degree is less or equal to 5 is possible in 𝑂 (𝑃2). The loop makes at
most 𝑃2 iterations. Within the loop we check the length of the current 𝑧𝛥 -path 𝑎 . This is
possible in 𝑂 (𝑃). Then, the line-sweep algorithm starts. One step in the line sweep algorithm
checks the size and the number of the subtrees 𝒾 starting in the current vertex and not
containing 𝑎 . Each tree of 𝒾 has at most length 𝑆

2 , because otherwise there is not enough
place to embed𝒾 between 𝑧 and 𝛥 . This is possible in𝑂 (𝑃). Comparing the size of each 𝑇 ↓ 𝒾
with the saved number and determine which subgraph has to embedded where is in 𝑂 (1).
Thus one step in the line sweep algorithm is in 𝑂 (𝑃). The line sweep algorithm has at most 𝑃
iterations so the whole line sweep algorithm needs 𝑂 (𝑃) ·𝑂 (𝑃) = 𝑂 (𝑃2) time. One iteration
of the outer loop needs 𝑂 (𝑃2) +𝑂 (𝑃) time. For the whole loop we need 𝑂 (𝑃2) · 𝑃2 = 𝑂 (𝑃4).
So, in total the algorithm only needs 𝑂 (𝑃4) + 𝑂 (𝑃2) = 𝑂 (𝑃4) time. From this follows that
FindCrossedLadderEmbedding !nds an embedding of 𝑚 in 𝑦2 in polynomial time.

5.1.1 Linear Running Time for Embedding a Tree in a Crossed Ladder

In the following we give a modi!cation of FindCrossedLadderEmbedding, which !nds an
embedding of a tree 𝑚 in linear time. To do that, we construct 𝑧𝛥 -paths instead of trying each
possible path. We also have a closer look at the inner loop and use a data structure when
saving the tree, such that determine the degree of the vertices is easier.
In the following we give the construction of the 𝑧𝛥 -paths 𝑎 and in Lemma 5.4 we give

an explanation why this construction provides a path that can be used instead of trying all
possible paths in FindCrossedLadderEmbedding.
Now, we construct the paths𝒽 we use in the algorithm instead of trying every possible

path. To !nd 𝒽 we construct the longest possible paths, that contains every vertex of degree
at least 4 and su$cient vertices of degree 3.

First, we determine the degree of each vertex of the given tree 𝑚 . Next, we !nd a path 𝑎 ↑ in
𝑚 that contains every vertex with degree at least 4. Let 𝑋 be an endpoint of 𝑎 ↑. Then, we look
at the subtrees 𝒾 of 𝑚 which are adjacent 𝑋 but do not contain 𝑎 ↑ and determine the longest
and most useful subpath to extend 𝑎 ↑ to 𝑎 . Note that we do the following for both end points
of 𝑎 ↑.
We distinguish two cases for 𝒾. First, assume that every subtree 𝑇 in 𝒾 maximal degree

2. i.e. every 𝑇 is a path. Then, we take the longest path 𝑇𝑒 of 𝒾 and embed them in the top
layer. Then we have that if there is an embedding of 𝑚 every other subpath than 𝑇𝑒 in 𝒾 is
now embeddable in the bottom layer, since if there is an embedding with a shorter path 𝑇 ↑ in
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5.1 Embedding a Tree in the Crossed Ladder

the top layer one can change 𝑇 ↑ and 𝑇𝑒 . Now, assume that at there is a tree 𝑇 ↓ S such that
𝑇 contains a vertex of degree 3. To !nd a path 𝑎𝑂 to embed in the top layer, we !rst select
a subtree 𝑇 , in which we !nd 𝑎𝑂 . If the end point 𝑋 has degree 5 then there is exactly one
subtree 𝑇𝑍 containing a vertex of degree 3. Then we take 𝑇𝑍 as 𝑇 . Now assume that 𝑋 is of
degree 4. Then we have that at most two subgraphs 𝑇1 and 𝑇2 may contain a vertex of degree
3 each. If only 𝑇1 contains a vertex of degree 3, then we take 𝑇1 as 𝑇 . In the following assume
that both 𝑇1 and 𝑇2 both contain at least one vertex of degree 3. First we look at the neighbor
𝑋1,𝑋2 of 𝑋 in both 𝑇1 and 𝑇2 respectively. If both are of degree 3,𝑚 is not embeddable. If one of
them is of degree 3, say 𝑋1, then we select 𝑇2 as 𝑇 . If both 𝑋1 and 𝑋2 are not of degree 3 then 𝑚
is not embeddable, since in this case there is a vertex𝑌 of degree 3, that is embedded on the
bottom layer, without having an edge to the top layer. This is not possible.
In the following we determine the path 𝑎𝑂 in 𝑇 to embed in the top layer. We We want to

that 𝑎𝑂 contains every vertex of degree 3, which is not adjacent to another vertex of degree
3 and is as long as possible. To do this, we build an auxiliary graph 𝐿 where every path in
𝑇 between to vertices of degree other than 2 is replaced by an edge. Then we !nd a longest
path 𝑎𝑚 in 𝐿 , starting in 𝑋 . Then we look at the second and third to last vertex 𝑋1,𝑋2 of 𝑎𝑚 . Let
𝑋3 be the neighbor of 𝑋2, which is not on 𝑎𝑚 . If 𝑋3 is of degree 1, then we choose the 𝑋𝑋1-path
in 𝑇 . Every subpath starting in 𝑋1 is a path, by construction of𝐿 . We take the longest subpath
𝑎𝑍1 starting in 𝑋1 and join the 𝑋𝑋1-path and 𝑎𝑍1 to 𝑎𝑂 . If 𝑋3 is of degree 3, there are two cases.
Assume that 𝑋1𝑋2 ↓ 𝑆 (𝑚 ) and 𝑋2𝑋3 ϑ 𝑆 (𝑚 ). Then we select the 𝑋𝑋3-path 𝑎𝑍3 and join 𝑎𝑍3 with
the longest subpath starting in 𝑋3 to 𝑎𝑂 . If 𝑋1𝑋2 ϑ 𝑆 (𝑚 ) and 𝑋2𝑋3 ↓ 𝑆 (𝑚 ), we select the 𝑋𝑋1-path
𝑎𝑍1 and join 𝑎𝑍1 with the longest subpath starting in 𝑋1 to 𝑎𝑂 .
If both of the edges 𝑋1𝑋2,𝑋2𝑋3 ↓ 𝑆 (𝑚 ), then we save two paths. The !rst path 𝑎1

𝑂 contains
the 𝑋𝑋1-path in 𝑚 and the longest subpath starting in 𝑋1 and the second path is 𝑎3

𝑂 containing
the 𝑋𝑋3-path in 𝑚 and the longest subpath starting in 𝑋3. To construct 𝑎 , we join 𝑎𝑂 and 𝑎 ↑.
Note that we have at most four di"erent paths 𝑎 , since for each end vertex 𝑋 we get at most 2
di"erent 𝑎𝑂 .

Lemma 5.4: Let 𝑚 be a tree. Then we "nd an embedding 𝑔 of 𝑚 in 𝑦2 with a path 𝑎 as described
above on the top layer if and only if there exists an embedding of 𝑚 in 𝑦2.

Proof. First, note that if there is an embedding with 𝑎 on the top layer, then we have an
embedding of 𝑚 in 𝑦2.
Now assume that we have an embedding �̃� of 𝑚 and let �̃� (𝑧), �̃� (𝛥 ) the leftmost and the

rightmost vertex in the embedding respectively.
By Lemma 5.1 we !nd an embedding 𝑔 ↑ of 𝑚 with the 𝑧𝛥 -path 𝑎 embedded on the top

layer. First, we show that every vertex of 𝑚 with degree at least 4 is in 𝑎 . Then we give a
transformation from 𝑎 to 𝑎 .

Note that every vertex in 𝑦2 has degree 5. Every vertex in 𝑦2 is adjacent to two vertices in
the same layer. Since every vertex 𝑋 of 𝑚 embedded in the bottom layer is adjacent to at most
one vertex in the top layer, we have that 𝑋 has at most degree 3. Since we 𝑔 ↑ embeds 𝑚 with
𝑎 in the top layer, 𝑎 contains every vertex of 𝑚 with degree at least 4. Note that the path 𝑎 ↑

between the leftmost and the rightmost vertex of degree 4 respectively is unique. Thus, 𝑎 ↑ is
a subpath of both 𝑎 and 𝑎 .
In the following we show that transforming 𝑎 , where 𝑎 is not 𝑎 ↑ preserves that we still

!nd an embedding 𝑔 of 𝑚 . Let 𝑋 be an endpoint of 𝑎 . Then, every subtree 𝒾 staring in 𝑋 ,
but not containing 𝑎 , only contains vertices of degree at most 3. Let 𝑎𝑛𝑜𝑝𝑗 be the 𝑋𝛥 -path or
the 𝑋𝑧-path respectively selected by FindCrossedLadderEmbedding and let 𝑎𝑞 ↑ be the 𝑋𝛥 -path
or the 𝑋𝑧-path respectively given by 𝑔 ↑. If 𝑎𝑛𝑜𝑝𝑗 is the same path as 𝑎𝑞 ↑ , then nothing has to
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5 Embedding Graphs in the Strong Product of Two Paths

change. Assume that 𝑎𝑞 ↑ and 𝑎𝑛𝑜𝑝𝑗 are in di"erent subtrees starting in 𝑋 . Let 𝑚𝑕 be the subtree
containing 𝑎𝑛𝑜𝑝𝑗 and 𝑚𝑛 be the subtree containing 𝑎𝑞 ↑ . In the following we show that there
is a transformation form 𝑚𝑕 to 𝑚𝑛 . First, we build an auxiliary graph of 𝑚 as described above.
Note that 𝑚𝑕 and 𝑚𝑛 are di"erent, if they are di"erent in 𝐿 .
We have a closer look at vertices of degree 3 within an arbitrary embedding𝛩 of 𝑚 in 𝑦2. If

a vertex 𝑋 of degree 3 is embedded on the bottom layer, both of the subgraphs 𝑇1, 𝑇2 starting
in 𝑋 on the bottom layer are paths. Otherwise there is edge going to the top layer. Thus in 𝐿
we !nd a path 𝑎𝑚 such that for every vertex 𝑋 of degree 3 on 𝑎𝑚 there is a subpath starting
𝑇𝑍 in 𝑋 of length at most 2. Note that 𝑇𝑍 goes to the bottom layer and contains at most one
vertex of degree 3.
Assume that the paths 𝑎𝑛, 𝑎𝑕 found in 𝐿 for 𝑚𝑛 and 𝑚𝑕 respectively in 𝑚 di"er at a vertex 𝑋

which is at least the fourth to last vertex on 𝑎𝑚 . Then we have that at least two vertices 𝑏,𝑌
of degree 3 are in the bottom layer in 𝑚𝑕 . By construction we have that 𝑏 and 𝑌 are in the
same path, but this is not possible. So, we know that 𝑎𝑛 and 𝑎𝑕 di"er in the last two vertices.
Let 𝑋 the last vertex which is chosen on both paths 𝑎𝑛 and 𝑎𝑕 . Let 𝑋𝑛 the selected neighbor of
𝑋 by the algorithm and 𝑋𝑕 the selected vertex by 𝑔 ↑. From thus follows that 𝑋𝑋𝑛 ↓ 𝑆 (𝐿) and
𝑋𝑋𝑕 ↓ 𝑆 (𝐿). If one of 𝑋𝑋𝑕 and 𝑋𝑋𝑛 does not exist in𝑚 , then the respective vertex 𝑋𝑛 , 𝑋𝑕 is in the
𝑎𝑚 . Otherwise there is no embedding, because in this case there is a vertex of degree 3, that is
embedded in the bottom layer without an edge to the top layer. This is not possible. If both
edges exists, then we have that both 𝑋𝑛,𝑋𝑕 start paths, that are usable in the algorithm, so the
only di"erence is in selecting the last vertex. Since the algorithm only selects the longest path
ending, it is possible to change the selected path.
Thus we have a transformation from 𝑚𝑕 to 𝑚𝑛 .

To use this construction of paths in the algorithm, we need that the construction of the
paths is possible in linear time. To do that, we have a closer look at the used algorithms and
data structures.

Lemma 5.5: Constructing a path 𝑎 of a tree 𝑚 as described above is possible in linear time.

Proof. We assume that 𝑚 is given as adjacency list 𝑕𝑦𝑉 . Then we iterate over 𝑕𝑦𝑉 and
determine the degree of every vertex. While doing that we save a reference to every vertex
with degree at least 4. This is possible in 𝑂 (𝑃), since determining the degree of each vertex in
an adjacency list is possible in 𝑂 (𝑃 +𝛱), but for a tree it holds that𝛱 = 𝑃 ↙ 1.

Next, we have to !nd a path, which contains every vertex with degree at least 4. Note that
every two vertices in a tree are connected through a unique path. So, we select one of the
vertices of degree at least four. Starting there, we do a modi!ed depth !rst search (mDFS).
The mDFS !nds a path 𝑎 which contains every vertex with degree at least 4, by skipping
every vertex with degree 2 during its backtracking step. First, we mark every vertex of degree
at least 4, we say big vertex, as not found. We also initialize a found path, as an empty path.
During the mDFS we add already con!rmed paths to the found path, to construct 𝑎 . We start
the mDFS at a big vertex 𝑋 and mark 𝑋 as found. When exploring a new vertex 𝑌 we add
𝑋𝑌 to the possible path. If𝑌 is a big vertex we mark𝑌 as found. Then we join the possible
path to the found path. During the backtracking step starting from 𝑉 , we distinguish if the
current edge 𝑛 = 𝑉𝑊 is on the possible path or in the found path. If 𝑛 is on the possible path,
we backtrack as known from a DFS and delete 𝑛 from the possible path. When backtracking
on the found path 𝑊 is not a big vertex, we immediately backtrack further, even if 𝑊 still has
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5.1 Embedding a Tree in the Crossed Ladder

unexplored edges left. If 𝑊 is a big vertex we do the backtracking known from DFS. When the
algorithm terminates and all big vertices are found, then we have the found path contains all
big vertices and we take 𝑎 as the found path.

Before we go further, we show that the mDFS !nds the path 𝑎 containing all big vertices if
it exists. We show that by induction. If at most one big vertex exist, then the algorithm !nds
a path 𝑎 containing all big vertices, since the mDFS starts at a big vertex 𝑋 . So assume that
there are at least two big vertices. Since 𝑚 is connected, the mDFS !nds a next big vertex𝑌 ,
since until this point we only use the normal DFS. When backtracking, the algorithm does
not look for further paths that start at vertices which are already on 𝑎 . We have that if there
is a vertex 𝑏 that connects three di"erent subgraphs containing at least one big vertex each,
there is no path that contains all of these big vertices. Thus, the algorithm ignores all of
these possible paths starting between two already found big vertices. Because 𝑎 is unique, it
does not matter at which vertex the algorithm starts. Now we show that the alternation of
the algorithm do not change the running time of the DFS. Saving or deleting an edge when
exploring or backtracking is possible in 𝑂 (1). Adding the possible path to the found path is
also possible in 𝑂 (1), since we only can add those paths to the start or the end of the already
found path, since we use lists. Marking big vertex as found and checking whether a vertex is
a big vertex by using an array are both also possible in 𝑂 (𝑃). Thus this algorithm still needs
𝑂 (𝑃 +𝛱) = 𝑂 (𝑃), for trees.

Next, we search for subgraphs 𝒾 of 𝑚 which start at the end points of 𝑎 and not containing
any vertices of 𝑎 . For any trees in 𝒾, we determine whether they contain any vertices of
degree 3. We do that, by using a Depth !rst search (DFS) starting at the respective endpoint 𝑋
and save if we !nd a vertex of degree 3. When backtracking to 𝑋 , we save for the subtree 𝑇
whether 𝑇 contains a vertex of degree 3. Note that the running time is 𝑂 (𝑃). The selection of
the needed subtree 𝑇 based on the degree of 𝑋 and the degree of the neighbors of 𝑋 is possible
in 𝑂 (𝑃). We need to do the DFS at most eight times, but since eight is a constant, it remains
in 𝑂 (𝑃).
The auxiliary graph 𝐿 is needed, since we only have vertices of degree 3 on the bottom

layer, if they are adjacent to a vertex of degree at least 3 on the top layer. For building 𝐿 , we
use a DFS. We modify the DFS and call it𝐿 ↙𝛴𝑗𝑇 , such that we build the𝐿 during exploring
𝑚 . During the 𝐿 ↙ 𝛴𝑗𝑇 if we explore a new vertex of degree 3 we save it as current vertex.
Every time we explore a new vertex 𝑌 of degree 3 or 1, we add 𝑌 to 𝐿 by adding an edge
between𝑌 and the current vertex. Then we set𝑌 as the current vertex. If we backtrack to
a vertex 𝑉 of degree 3, we set 𝑉 as current vertex. This modi!cation provides 𝐿 , because
𝐿 ↙ 𝛴𝑗𝑇 skips vertices of degree 2 when building𝐿 . Since we already saved the degrees of
the vertices one can add a vertex and an edge in𝑂 (1). So,𝐿 ↙𝛴𝑗𝑇 needs 𝑂 (𝑃) and is used at
most once for each side of 𝑎 .

Next, we want to !nd the longest path 𝑎𝑄 in the auxiliary graph starting in 𝑋 . Since 𝐿 is a
tree, we use a breadth-!rst search (BFS) and save the distances for each vertex and the parent
vertex, so !nd 𝑎𝑄 . The running time for BFS is in 𝑂 (𝑃 +𝛱) = 𝑂 (𝑃) and the modi!cation are
in 𝑂 (1), so the total running time for the BFS is still in 𝑂 (𝑃).
We look the last three vertices and their neighbors on 𝑎𝑄 and compare their degrees. These

comparisons are in 𝑂 (1) Since we already know that the degree is at most three, we have
that choosing the vertex is in 𝑂 (1). At last, we again search for the longest path starting in
the respective vertex. Since all remaining vertices are at most of degree 2, we just follow the
paths and count the vertices, so we have that this is also in 𝑂 (𝑃).
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We showed, that each operation for constructing 𝑎 is in𝑂 (𝑃). Since every of these operations
happens sequentially and only for a bounded number of times, we have that whole construction
is in 𝑂 (𝑃).

With this construction of a path, we replace the loop FindCrossedLadderEmbedding by the
given construction of 𝑎 .

Theorem 5.6: FindCrossedLadderEmbedding modi"ed with the construction of paths 𝑎 as
described above instead of creating all possible paths needs linear running time and also provides
an embedding of a tree 𝑚 in 𝑦2 if one exists.

Proof. Note that the modi!ed algorithm still provides an embedding of a tree 𝑚 in 𝑦2 if one
exists by Lemma 5.4.

Now, we look at the running time of the modi!ed algorithm. First we determine the degree
of each vertex. Since the construction of 𝑎 also determines the degrees of each vertex, we
just combine that and terminate the algorithm if there is a vertex with degree greater than 5.
So the determination of the maximum and constructing the paths only need 𝑂 (𝑃) time by
Lemma 5.5. Note that we may have up to four di"erent versions of 𝑎 . So we have to do the
line sweep algorithm at most four times. Since this is a constant number of times, we only
need to show that the line sweep algorithm itself is in 𝑂 (𝑃).
We do not change the line sweep algorithm but we have a closer look on the line sweep

part. We determine how many times each vertex is used in the line sweep part. We have
that every vertex on 𝑎 is only used when the line sweep algorithm iterates to it. For every
vertex 𝑌 of 𝑚 and not on 𝑎 we !nd exactly one vertex 𝑋 of 𝑎 that is the root of a subtree 𝑇
containing𝑌 . From this follows that𝑌 is only investigated in the line sweep step of 𝑋 . Now
we determine how many times𝑌 is used during the line sweep step of 𝑋 . First, one determines
the size of 𝑇 . To do that, 𝑌 is used once. Then we embed 𝑌 in the crossed ladder, where 𝑌
is used a second time. Thus we have that each vertex not in 𝑎 is used two times during the
line sweep algorithm and each vertex in 𝑎 only once. From this we have that the whole line
sweep part is already in 𝑂 (𝑃).
With that, we have that !nding an embedding of a tree in the crossed ladder is indeed in

𝑂 (𝑃).

In this subsection we showed that !nding an embedding of a tree in the crossed ladder is
possible in linear time, when using the correct data structures.

5.2 Embedding a Graph in the k-Wide Crossed Ladder

In the following we show that for a !nite graph 𝐿 and a constant 𝑁 one can decide in
polynomial time if there exists an embedding of 𝐿 in a 𝑁-wide crossed ladder 𝑦𝑀 .
To solve that problem, we look at the embedding 𝑔 of a graph 𝐿 and !nd piecewise

embeddings 𝛩1, . . . ,𝛩 𝑈 by looking at columns of 𝑦𝑀 . We shall see, that 𝛩1, . . . ,𝛩 𝑈 can be
combined again to 𝑔 . With this observation we show that there is an embedding of𝐿 by using
piecewise embeddings𝛩1, . . . ,𝛩 𝑈 in the algorithm that decides whether𝐿 is embeddable in 𝑦𝑀 .
In Figure 5.3 we give an example, where 𝐿 is embedded and we !nd parts 𝑀1, . . . ,𝑀 𝑈 of

𝑔 (𝐿) of size 𝑎3 ⫅̸ 𝑎𝑀 , such that each column of 𝑔 (𝐿) corresponds to the center column of one
of 𝑀1, . . . ,𝑀 𝑈 . We can retrieve 𝑔 of 𝐿 by putting 𝑀1, . . . ,𝑀 𝑈 together, such that 𝑀𝑇 and 𝑀𝑇+1
overlap by two columns.
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Figure 5.3: The graph 𝐿 in the upper image is embedded in a 𝑁-wide crossed ladder. In
the lower images a sequence of con!gurations is shown, which embed 𝐿 . The !rst one is a
start con!guration, the last one is an end con!guration. Each con!guration between them,
including the end con!guration, is a following con!guration. The vertices are color coded in
the graph and the con!gurations.

Let |𝑅 (𝐿) | = 𝑃. We have at most 𝑃3𝑀 di"erent embeddings of induced subgraphs𝐿1, . . . ,𝐿 𝑈

of 𝐿 , because each vertex of 𝐿 can only be embedded on 3𝑁 di"erent positions in 𝑎3 ⫅̸ 𝑎𝑀 .
The edges within each𝐿𝑇 are given by𝐿 since 𝐿𝑇 is an induced subgraph. We use 𝐿1, . . . ,𝐿 𝑈 ,
to de!ne an algorithm, which generates such 𝑀1, . . . ,𝑀 𝑈 and !ts them together. Since the
algorithm only generates each time only a number of con!gurations polynomial in 𝑃, we
show that this algorithm decides the problem whether 𝐿 is embeddable in 𝑦𝑀 in polynomial
time.

In the following we call𝑀1, . . . ,𝑀 𝑈 con!gurations, which are de!ned as follows: Let𝑅 (𝑎3) =
{1, 2, 3} be the vertex set of 𝑎3 and 𝑑 = 𝑎3 ⫅̸ 𝑎𝑀 a graph. Then, we have three columns of 𝑑 ,
which we enumerate such that the 𝑒𝑙𝑟 column 𝑑𝑇 contains the vertex component 𝑒 of 𝑎3.

Let 𝑈 → 𝑅 (𝐿), which we will specify later and let 𝑠 : 𝑈 ⇔ 𝑅 (𝑑) be a map. We de!ne 𝑈𝑇 as
a set such that 𝑠 (𝑈𝑇) → 𝑅 (𝑑𝑇). We also de!ne the restriction 𝑠𝑇 : 𝑈𝑇 ⇔ [𝑁] with 𝑠𝑇 (𝑋) = 𝑏 for
𝑠 (𝑋) = ↘𝑒,𝑏≃, that maps vertices of𝐿 to their vertex component of 𝑎𝑀 if 𝑠 maps them to the 𝑒𝑙𝑟
column of 𝑑 . Let 𝐿 be a graph. We say 𝑠 is a con"guration, if the following two criteria are
ful!lled. First, the map 𝑠 is an embedding of 𝐿 ↑ for 𝐿 ↑ being the induced subgraph of 𝐿 on
the vertex set 𝑈 ω ∞. Second, the whole 1-hop-neighborhood of 𝑈2 in 𝐿 is embedded by 𝑠 i.e.
𝑍𝑄
1 (𝑈2) → 𝑈 .
For combining two con!gurations 𝑠𝑠, 𝑠𝑡 , the last two columns of 𝑠𝑠 have to match the !rst

two columns of 𝑠𝑡 . More formally, let 𝑠𝑠 : 𝑕 ⇔ 𝑅 (𝑑), 𝑠𝑡 : 𝛶 ⇔ 𝑅 (𝑑) be two con!gurations.
Then we say 𝑠𝑡 is a following con"guration of 𝑠𝑠 if 𝑕2 = 𝛶1 and for all𝑉 ↓ 𝑕2 we have
𝑠2𝑠 (𝑉) = 𝑠1𝑡 (𝑉) and 𝑕3 = 𝛶2 and for all 𝑉 ↓ 𝑕3 it holds that 𝑠3𝑠 (𝑉) = 𝑠2𝑡 (𝑉).

A con!guration is called start con"guration if no vertices are embedded in the !rst column
and a con!guration is called end con"guration if no vertices embedded in the third column.

For the following algorithm, we consider sequences of con!gurations. Let (𝑠𝑇)𝑇↓ [𝑔 ] , 𝛥 ↓ ε
be a sequence of con!gurations, where 𝑠𝑇+1 is a following con!guration of 𝑠𝑇 for all 𝑒 ↓ [𝛥 ↙ 1].
We say a sequence is closed, if the !rst con!guration is a start con!guration and the last
con!guration 𝑠𝑔 is an end con!guration.
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Lemma 5.7: Let 𝐿 be a graph. Let 𝑔 an embedding of 𝐿 in 𝑦𝑀 . Then there is a closed sequence
of con"gurations (𝑠𝑇)𝑇↓ [𝑔 ] , 𝛥 ↓ ε, where each con"guration has one column of 𝑔 (𝐿) as middle
column.

Proof. To see this, we enumerate the columns from left to right in 𝑔 (𝐿). We construct a start
con!guration 𝑠1 by restricting 𝑔 to the !rst column containing the leftmost vertex of 𝑔 (𝐿),
the column on its left and the second column. For constructing the 𝑒𝑙𝑟 con!guration 𝑠𝑇 , we
restrict 𝑔 to its 𝑒 ↙ 1𝑙𝑟, 𝑒𝑙𝑟, 𝑒 + 1𝑙𝑟 column. We have an end con!guration, since the (𝛥 + 1)𝑙𝑟
column does not contain any vertices but is the third column of 𝑠𝑔 .

Lemma 5.7 shows, that we can construct a closed sequence of con!gurations from an
embedding of a graph 𝐿 . We also want to construct an embedding of a graph 𝐿 from a
sequence of con!gurations. Then !nding an embedding of 𝐿 is equivalent to !nding a closed
sequence of con!gurations for𝐿 . In general it is not possible to retrieve an embedding from a
(closed) sequence of con!gurations, because it could be the case that same vertices of 𝐿 , are
in multiple, non consecutive con!gurations. We now want to construct a map and a subgraph
of 𝑦𝑀 that ful!lls this idea of an embedding. As we identify 𝑎↗ with ϖ, we say that 𝑦𝑇𝑀 is the
column of 𝑦𝑀 , where every vertex contains the vertex component 𝑒 ↓ 𝑅 (𝑎↗). Having a closed
sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑔 ], 𝛥 ↓ ε we identify 𝑦𝑇𝑀 with the middle column of the 𝑒𝑙𝑟
con!guration by a function 𝑟 with 𝑟 (𝑠𝑇) = 𝑦𝑇𝑀 . For a closed sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑔 ] ,
𝛥 ↓ ε and a graph 𝐿 , let

𝑈 = {𝑋 | 𝑋 ↓ 𝑅 (𝑦𝑀 ), ⇒𝑌 ↓ 𝑅 (𝐿), ⇒𝑒 ↓ [𝛥 ] : 𝑟 (𝑠𝑇 (𝑌)) = 𝑋}

be the set of vertices in 𝑦𝑀 where a vertex of 𝐿 is mapped to by any con!guration in the
con!guration sequence. We de!ne the induced mapping of a closed sequence (𝑠𝑇)𝑇↓ [𝑔 ] by
𝛷 : 𝑈 ⇔ 𝑅 (𝐿) with 𝛷 (𝑋) = 𝑌 . We have that𝑌 is the vertex in 𝐿 that is mapped to 𝑋 by any
con!guration. We de!ne the induced graph 𝛹𝑢 = (𝑈 , 𝑆) → 𝑦𝑀 where 𝑘𝑙 ↓ 𝑆 if and only if there
is a con!guration in the con!guration sequence containing 𝛷 (𝑘)𝛷 (𝑙) ↓ 𝑆 (𝐿).

Let 𝐿 be a graph. Then we state that we there is a closed sequence of con!gurations if and
only if 𝐿 is embeddable in 𝑦𝑀 . To prove that we !rst have a closer look at closed sequences
and therefore 𝛹𝑢 . We show that there is a connected component 𝑜 in 𝛹𝑢 such every vertex of
𝐿 is mapped to exactly one vertex of 𝑜 .

We start by showing that every vertex of 𝐿 is mapped to at least one vertex of 𝛹𝑢 .

Lemma 5.8: Let 𝐿 be a connected graph and 𝑁 ↓ ε. Let (𝑠𝑇)𝑇↓ [𝑙 ] , 𝑟 ↓ ε be a closed sequence of
con"gurations with an induced mapping 𝛷 . Then there is a connected component 𝑜 in 𝛹𝑢 such
that 𝛷 is surjective on 𝑜 . That means that for every vertex 𝑋 of 𝐿 there is at least one vertex𝑌 in
𝑜 such that 𝛷 (𝑌) = 𝑋 .

Proof. Let (𝑠𝑇)𝑇↓ [𝑙 ], 𝑟 ↓ ε be a closed sequence of con!gurations. Let 𝛷 the induced mapping
and 𝛹𝑢 the induced graph. Since every con!guration embeds at least one vertex on the center
column, we have that 𝛹𝑢 contains at least one connected component. Chose the connected
component 𝑜 , such that there is a vertex 𝛥 ↓ 𝑅 (𝛹𝑢 ) with 𝛥 being in the end con!guration 𝑠𝑙 .
Let 𝛥𝑄 = 𝛷 (𝛥 ). By de!nition of the con!guration we have that the whole 1-hop neighborhood
in𝐿 of any vertex 𝑋 ↓ 𝑅 (𝐿) is also embedded in a con!guration. By de!nition of the induced
mapping we also have every vertex of 𝐿 is mapped to 𝑦𝑀 and that for every two vertices 𝑉,𝑊
that are adjacent in𝐿 their mappings 𝛷 (𝑉), 𝛷 (𝑊) are adjacent. Since𝐿 is connected, we !nd a
𝛥𝑄𝑋-path for every 𝑋 ↓ 𝑅 (𝐿), if 𝑋 is embedded in a center column. Since we already know
that 𝛥𝑄 = 𝛷 (𝛥 ), we !nd an 𝛥𝑋 ↑-path in 𝑜 , such that 𝑋 = 𝛷 (𝑋 ↑).
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Assume for the sake of contradiction that there is a vertex 𝑌 ↓ 𝑅 (𝐿) such that there is
no vertex in 𝑅 (𝑜) that is mapped to 𝑌 by 𝛷 . We still have an 𝛥𝑄𝑌-path 𝑎 in 𝐿 . We !nd a
vertex𝑌 ↑

𝑄 on 𝑎 , such that there is still a vertex𝑌 ↑ with 𝛷 (𝑌 ↑) = 𝑌 ↑
𝑄 but there is no mapping

for the following vertex of 𝑌 ↑
𝑄 on 𝑎 . This is the case if 𝑌 ↑

𝑄 is in the !rst or third column of
a con!guration. If 𝑌 ↑

𝑄 is on the third column of a con!guration, then there is a following
con!guration, where𝑌 ↑ is on the center column. By de!nition of a con!guration the whole
1-hop-neighborhood in𝐿 of𝑌 ↑ is embedded in 𝑦𝑀 , so we have a contradiction. If𝑌 ↑

𝑄 is on the
!rst column of a con!guration 𝑠𝑣 , then we !nd a con!guration, for which 𝑠𝑣 is a following
con!guration. Thus 𝑌 ↑ is again in the center column of a con!guration. This is again a
contradiction.
We have that for every vertex 𝑋 of 𝐿 there is a vertex𝑌 of 𝑦𝑀 for which 𝛷 (𝑌) = 𝑋 . Thus 𝛷

is surjective on 𝑅 (𝑜).

It remains to show that 𝛷 is injective when restricting 𝛹𝑢 to one connected component.
Before proving that, we show a more general statement. That statement claims that if we
have a cycle 𝑜 to embed into 𝑦𝑀 , the induced graph 𝛹𝑢 does not embed 𝑜 multiple times in a
connected component. That means that if we have a cycle 𝑜 and the connected component 𝛺 ,
if we follow𝑜 and the respective vertices in 𝛺 , induced by 𝛷 we run multiple times through𝑜
i.e. We !nd multiple sequences of vertices of 𝛺 , such that 𝛷 maps them to the sequence of
vertices of 𝑜 .

Lemma 5.9: Let𝑜 = 𝑋0𝑋1 . . . 𝑋𝑔𝑋0 be a cycle of length 𝛥 + 1 ↓ ε. Then there is no closed sequence
of con"gurations with induced mapping 𝛷 such that 𝛹𝑢 contains a connected component 𝛺 where
𝑜 is multiple times embedded i.e. there are multiple sequences 𝑞1, . . . , 𝑞 𝑈 of vertices of 𝛺 of length
𝛥 + 1 such that 𝛷 (𝑞1) = 𝑜 . The sequences 𝑞1, . . . , 𝑞 𝑈 may only overlap in their "rst and last vertex
respectively.

Proof. Note that a cycle of arbitrary length is embeddable in 𝑦𝑀 , for 𝑁 ∈ 2. We denote the
vertices of 𝑜 by 𝑋0𝑋1 . . . 𝑋𝑔𝑋0 and the vertices of 𝛺 by 𝑏.

Assume that there is a shortest closed sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑔 ], 𝛥 ↓ ε such that
the induced graph 𝛹𝑢 has a connected component 𝛺 where 𝑜 is embedded multiple times as
described above, i.e. 𝛺 = 𝑢0, . . . , 𝑢𝑚 , 𝑢0 with 𝛷 (𝑢 𝑈 ) = 𝑋 ( 𝑈 mod 𝑀 ) for all 𝑓 ↓ [𝑧], 𝑧 ↓ ε.

First, we show that𝛺 is again a cycle. Assume without loss of generality, that 𝑋0 is embedded
by 𝑠1. By de!nition of con!guration we !nd an 𝑏0𝑏𝑔 -path 𝑎 in 𝛺 such that 𝛷 (𝑏𝑇) = 𝑋𝑇 for all
𝑏𝑇 ↓ 𝑅 (𝑎) → 𝑅 (𝛺 ) and 𝑒 ↓ [0, 𝛥 ]. We have that 𝑏𝑔 is adjacent to vertex �̃�0, with 𝛷 (�̃�0) = 𝑋0.
Then we have 𝑏0 ω �̃�0 since we assume that 𝛺 contains multiple copies of 𝑜 . Note that for
every vertex except 𝑏0 and �̃�0 the whole 1-hop-neighborhood in 𝛺 is already covered, thus by
considering further vertices, the vertices are connected to 𝑏0 or the second to last considered
vertex. Since the sequence of con!gurations is closed by assumption, we have that for every
vertex in𝑜 the whole neighborhood in𝛺 is covered. From this follows that𝑏0 also is connected
to a vertex �̃�𝑔 with 𝛷 (�̃�𝑔 ) = 𝑋𝑔 . Thus, after some !nite number of copies of 𝑜 , there is a vertex
�̃�𝑔 with 𝛷 (�̃�𝑔 ) = 𝑋𝑔 that is adjacent 𝑏0 and thus closes the cycle.

In the following we show that there is no closed con!guration sequence that contains one
vertex of 𝑜 twice. Assume for the sake of contradiction that there is such a closed sequence
of con!gurations. Let 𝑧 be the leftmost vertex and 𝛥 be the rightmost vertex of 𝛺 respectively.
Since 𝛺 is a cycle, we have a 𝑧𝛥 -paths 𝑎𝑛 and a 𝛥 𝑧-path 𝑎𝑤 . Assume that that 𝑎𝑛 is at most as
long as 𝑎𝑤 .
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First assume that 𝑎𝑛 does not contain a copy of 𝑜 i.e. the image of 𝑅 (𝑎𝑛) under 𝛷 is a real
subset of 𝑅 (𝑜). Since we have that the path 𝑎𝑛𝑎𝑤 contains at least two copies of 𝑜 , there is a
subpath 𝑎𝑂 of 𝑎𝑤 such that 𝛷 (𝑏𝑛) = 𝛷 (𝑏𝑂 ) for 𝑏𝑛 ↓ 𝑅 (𝑎𝑛) and 𝑏𝑂 ↓ 𝑅 (𝑎𝑂 ). In the following
we use the notation of 𝑏𝑛 ↓ 𝑅 (𝑎𝑛) and 𝑏𝑂 ↓ 𝑅 (𝑎𝑂 ). Let 𝑓 be the length of 𝑎𝑛 . We have that
𝑏𝑛0 is on the left side of 𝑏𝑂0 . Otherwise either 𝑏

𝑛
0 = 𝑧 is not the leftmost vertex of 𝑜 or there

are two vertices in the same column in 𝛺 that 𝛷 maps to the same vertex of 𝑜 . We also have
that 𝑏𝑛𝑈 = 𝛥 is on the right side of 𝑏𝑂𝑈 because either 𝛥 is not the rightmost vertex or there are
two vertices in a column that 𝛷 maps to the same vertex of 𝑜 . When iterating through 𝑎1 and
𝑎𝑂 , starting in 𝑧 or 𝑏𝑂𝑛 respectively, we !nd vertices 𝑋𝑛𝑇 ,𝑋

𝑂
𝑇 such that 𝛷 (𝑋𝑛𝑇 ) = 𝛷 (𝑋𝑂𝑇 ) and 𝑋𝑛𝑇 is

on the left side of 𝑋𝑂𝑇 but 𝑋𝑛𝑇+1 is not on the left side of 𝑋𝑂𝑇+1. Thus 𝑋
𝑛
𝑇 and 𝑋𝑂𝑇 are in the same

column or in consecutive columns of 𝛺 . From this follows that there is a con!guration that
contains 𝑋𝑛𝑇 and 𝑋𝑂𝑇 , which is not possible by de!nition of a con!guration.

In the other case assume that both 𝑎𝑛 and 𝑎𝑤 contain at least one full copy of 𝑜 .
So let 𝑉0 . . . 𝑉𝑔 be a copy of𝑜 in 𝑎𝑛 and𝑌0 . . .𝑌𝑔 be a copy of𝑜 in 𝑎𝑤 . i.e. 𝛷 (𝑉𝑇) = 𝛷 (𝑌𝑇) = 𝑋𝑇

for all 𝑒 ↓ [0, 𝛥 ]. By assumption we have that 𝑉0 is the leftmost vertex in 𝛺 . Then we have that
𝑌0 is at least two columns to the right of 𝑉0, otherwise either the con!guration containing
𝑋0 on the middle column is not a valid con!guration or 𝑋0 is not embedded as leftmost as
possible. We also have, that 𝑌𝑔 has to be in the same column as 𝑉0 or on the column one
to the right, because we have by construction that the edge 𝑉0𝑌𝑔 exists. From this follows
that 𝑉𝑔 is not in the !rst two columns. So we have that 𝑉𝑔 is on the right of𝑌𝑔 and 𝑉0 is on
the left of 𝑌0. By iterating through 𝑎𝑛 and 𝑎𝑤 , we !nd an index 𝑒 such that 𝑉𝑇 and 𝑌𝑇 are in
consecutive columns or the same column of 𝛺 . This is the case for the !rst 𝑒 for which𝑌𝑇 is
not anymore on the right side of 𝑉𝑇 . So we !nd two embeddings of the same vertex 𝑋𝑇 within
a con!guration. This is a contradiction.
Thus, we see that there are not possible to embedmultiple copies of a𝑜 within one connected

component.

With this we show that 𝛷 is injective one a connected component of 𝛹𝑢 .

Lemma 5.10: Let 𝐿 be a graph, 𝑁 ↓ ε. Let (𝑠𝑇)𝑇↓ [𝑔 ] 𝛥 ↓ ε a closed sequence of con"gurations
with the induced mapping 𝛷 . Then there is a connected component 𝛺 in 𝛹𝑢 such that 𝛷 is injective
on 𝛺 , i.e. for every vertex 𝑋 of 𝐿 there is at most one vertex𝑌 in 𝛺 such that 𝛷 (𝑌) = 𝑋 .

Proof. Let (𝑠𝑇)𝑇↓ [𝑔 ] and 𝛥 ↓ ε be a shortest closed sequence of con!gurations. Let 𝛷 be an
induced mapping and 𝛹𝑢 the induced graph. We take the connected component 𝛺 that contains
a vertex, that is embedded by 𝑠𝑔 .

Now, we show that 𝛷 is injective on 𝛺 . Assume that for the sake of contradiction, 𝛷 is not
injective. So there are two vertices 𝑋,𝑏 ↓ 𝑅 (𝛺 ) such that 𝛷 (𝑏) = 𝛷 (𝑋) = 𝑢 ↓ 𝑅 (𝐿). Then there
is a 𝑏𝑋-path 𝑎 in 𝛺 . Let𝑌 a vertex on 𝑎 then we have an 𝑏𝑌-path 𝑎𝑏 = 𝑌 = 𝑏1𝑏2𝑏2 . . .𝑏 𝑈 = 𝑏
and the𝑌𝑋-path 𝑎𝑍 = 𝑌 = 𝑋1𝑋2 . . . 𝑋𝑚 = 𝑋 .
Assume for contradiction that 𝛷 (𝑌) is not in a cycle in𝐿 . Then we have that 𝛷 (𝑏2) = 𝛷 (𝑋2),

since a path in a graph without a cycle is unique. It is not possible that both 𝑏2 and 𝑋2 are
mapped to the same vertex of 𝛺 because then there is a con!guration where a vertex of𝐿 is
embedded twice.

So, assume that 𝛷 (𝑌) is on a cycle𝑜𝑖 and that 𝛷 (𝑏2) ω 𝛷 (𝑋2). Let 𝑢↑ be !rst vertex in𝑅 (𝐿)
such that 𝑢↑ is on the same cycle as 𝛷 (𝑌) and on every 𝑢𝛷 (𝑌)-path and on 𝑎 . We have that 𝑢↑
always exists, because either it equals 𝑢 or we !nd a vertex on𝑜𝑖 that connects the remaining
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vertices with a bridge. We have that there are two vertices 𝑏𝑇 and 𝑋 𝑈 in 𝑎𝑏 and 𝑎𝑍 respectively
such that 𝛷 (𝑏𝑇) = 𝛷 (𝑋𝑇) = 𝑢↑. By construction we have that there is a cycle in 𝑜𝑖 containing
two vertices that map to 𝑢↑. With Lemma 5.9 this is not possible.
Thus a vertex does not appear multiple times in a connect component.

With these statement we show that it is su$cient to !nd a closed sequence of con!guration
for embedding a graph in 𝑦𝑀 .

Theorem 5.11: Let𝐿 be a connected graph and 𝑁 ↓ ε. Then 𝐿 is embeddable in 𝑦𝑀 if and only
if there is a closed sequence of con"gurations.

Proof. First, consider an embedding 𝑔 of 𝐿 in 𝑦𝑀 . Without loss of generality we assume
that the leftmost vertex is embedded in 𝑦1𝑀 and the rightmost vertex in 𝑦𝑔𝑀 for some 𝛥 ↓ ε
(otherwise we just translate 𝑔). Then, we interpret 𝑔 (𝐿) as induced graph 𝛹𝑢 for 𝛷 = 𝑔↙1. By
Lemma 5.7 we have a closed sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑙 ] , 𝑟 ↓ ε.

Now consider a shortest sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑔 ] . Let 𝑜 be a connected compo-
nent of 𝛹𝑢 . Since we have a shortest sequence of con!gurations we also have that there is a
vertex of 𝑜 in both the !rst and the last column of 𝛹𝑢 . Otherwise we !nd a shorter sequence
of con!gurations that only contains 𝑜 . So we assume that 𝛹𝑢 is connected and equals 𝑜 . With
Lemma 5.8 and Lemma 5.10 we have that 𝛹𝑢 contains every vertex of 𝐿 exactly once. By
de!nition of 𝛷 we have that each column used in 𝛹𝑢 can be identi!ed with a center column of
a con!guration in (𝑠𝑇)𝑇↓ [𝑔 ] . By de!nition of a con!guration we have that exactly those edges
that are in 𝑆 (𝐿) are mapped to 𝛹𝑢 . Thus we have 𝛹𝑢 is a copy of𝐿 and since 𝛹𝑢 is embedded in
𝑦𝑀 , 𝐿 has an embedding in 𝑦𝑀 .

With this theorem we build an algorithm EmbeddingInKWideCrossedLadder which checks
whether there is a closed sequence of con!gurations for a given graph 𝐿 . After we present
the algorithm, we show that it has polynomial running time.

The algorithm starts by generating all possible start con!gurations and stores them in a set
𝑇 . For each con!guration in 𝑇 , EmbeddingInKWideCrossedLadder !nds all possible following
con!gurations and saves them in a set 𝑇 ↑ if the same con!guration is not already in 𝑇 ↑. If
one of the following con!gurations is an end con!guration the algorithm terminates and
states that there exists an embedding of 𝐿 in 𝑦𝑀 . When every following con!guration of
every con!guration of 𝑇 is found, without EmbeddingInKWideCrossedLadder terminating, we
have 𝑇 ↑ as new set 𝑇 . The algorithm starts again !nding following con!gurations for every
con!guration of 𝑇 . If EmbeddingInKWideCrossedLadder does not !nd an end con!guration
within 𝑃 = 𝑅 (𝐿) iterations, EmbeddingInKWideCrossedLadder terminates and claims that no
embedding of 𝐿 in 𝑦𝑀 exists.

In the following lemma we show the correctness of EmbeddingInKWideCrossedLadder.

Lemma 5.12: The algorithm EmbeddingInKWideCrossedLadder described above decides whether
a connected graph 𝐿 is embeddable in the 𝑁-wide crossed ladder.

Proof. The algorithm only states that𝐿 is embeddable in 𝑦𝑀 if it !nds an end con!guration
𝑠𝑥 . Since the algorithm begins by creating start con!gurations and after that only following
con!gurations, we have that there is a closed sequence of con!gurations, ending in 𝑠𝑥 . With
Theorem 5.11 we have that 𝐿 is embeddable in 𝑦𝑀 .

There are two cases when EmbeddingInKWideCrossedLadder states that𝐿 is not embeddable
in 𝑦𝑀 . First, assume that the algorithm cannot create another following con!guration. Assume
for the sake of contradiction that 𝐿 is embeddable in 𝑦𝑀 . Then, by Theorem 5.11 it exists
a closed sequence of con!gurations (𝑠𝑇)𝑇↓ [𝑔 ], 𝛥 ↓ ε. Since the algorithm starts with all
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possible start con!gurations, 𝑠1 is created. Since the algorithm creates all possible following
con!gurations all (𝑠𝑇)𝑇↓ [𝑔 ] are created. textttEmbeddingInKWideCrossedLadder terminates
before creating 𝑠𝑔 the closed sequence does exist. This contradicts the assumption that 𝐿 is
embeddable.
The second case claims, that if after 𝑃 = |𝑅 (𝐿) | iterations there is no end con!guration,

there will be no end con!guration following. Note that an embedding of𝐿 contains at most 𝑃
vertices. Since𝐿 is connected, each con!guration of a closed con!guration sequence contains
at least one vertex of 𝐿 . So there is a closed sequence of con!gurations that contains at most
𝑃 con!gurations. Since the algorithm creates all possible start con!gurations and in each step
all possible following con!gurations it !nds an end con!guration after at most 𝑃 steps if there
is one. Otherwise there is no end con!guration and thus no closed sequence. By Theorem 5.11
there is no embedding of 𝐿 .

At last we show that the algorithm terminates and it decides in polynomial time whether
a graph is embeddable in 𝑦𝑀 . Note that the algorithm may have a better running time than
estimated in the proof but a tighter upper bound is not necessary to show polynomial running
time.

Theorem 5.13: Let 𝐿 be a graph and 𝑁 ↓ ε. Deciding whether 𝐿 → 𝑎↗ ⫅̸ 𝑎𝑀 is possible in
polynomial time.

Proof. To decide whether a graph 𝐿 is embeddable in the 𝑁-wide crossed ladder, we use
the algorithm described above. With Lemma 5.12 we have that the algorithm decides the
statement.
Now we show that EmbeddingInKWideCrossedLadder always terminates. Since we only

look at !nite graphs we have |𝑅 (𝐿) | < ↗. Since we do not change the graph within the loop
of the algorithm, it only makes !nite iterations. The loop body also terminates in !nite time,
since a con!guration is a combination of vertices of 𝐿 . The algorithm is deterministic and
thus it always terminates.

Next, we show that the algorithm has polynomial running time. To estimate the number of
possible con!gurations we determine the total number of possibilities N to place pairwise
di"erent vertices of 𝐿 in 𝑎3 ⫅̸ 𝑎𝑀 . We do not have a closer look at the edges, since they are
given by the vertices. Note that N is bigger than the number of con!gurations, since we also
count “con!gurations”, where vertices on the center column lack neighbors from 𝐿 . So an
upper bound for the number of con!gurations is N = 𝑃3𝑀 .

First, we create each possible con!guration. To do this, we pick an arbitrary set of vertices,
embed them in the center column and take the 1-hop-neighborhood to embed them around it.
At least we again pick arbitrary vertices to embed them in the !rst and last column. This is
possible in 𝑂 (𝑃), because we assume that !nding a neighbor of a vertex is possible in 𝑂 (1).
Thus generating all con!gurations is possible in𝑂 (N𝑃) = 𝑂 (𝑃3𝑀+1). We !nd all possible start
con!gurations in 𝑂 (N𝑁) = 𝑂 (N ), since we only look at each con!guration and determine
whether it is a start con!guration.
We have that there are at most 𝑃 iterations. In each iteration we !nd all following con-

!gurations for each found con!guration. Finding all possible following con!gurations for
one con!guration is possible in 𝑂 (N2𝑁), since we look at each possible con!gurations
and compare the overlapping columns. For adding a found con!guration we need at most
𝑂 (N ), since we have to make sure that each con!guration appears at most once in the set.
Thus, !nding all following con!gurations and save them is possible in 𝑂 (N 22𝑁). Since we
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have to !nd all following con!gurations for all con!gurations, we have a running time
for one iteration of 𝑂 (N 32𝑁). From this follows that we have a total running time of
𝑂 (N ) + 𝑂 (N𝑃) + 𝑃𝑂 (N 32𝑁) = 𝑂 (𝑃N + 𝑃N 3) = 𝑂 (𝑃(𝑃3𝑀 ) + 𝑃(𝑃3𝑀 )3) = 𝑂 (𝑃9𝑀+1) There-
fore the algorithm has polynomial running time, since 𝑁 is given.

It is possible to also check whether graphs that are not connected are embeddable in 𝑦𝑀 by
checking if every connected component is embeddable separately.
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6 Conclusion

In this thesis we saw that the complexity of deciding whether a tree or a graph is embeddable
into a grid is closely related to de!nition of the graph to embed and the graph to embed into.
We showed that deciding whether a tree is embeddable into the 𝑄-rectangle grid and the

𝑄-full grid is NP-complete. This suggests, that it is not relevant if we use the cartesian or the
strong product to for creating the grid. We also see that the multiple layers do not enlarge the
product graph enough, such that the decision problems becomes easier. For further research
it might be interesting to investigate if one can !nd a smallest clique size depending on the
tree, such that the tree is embeddable. We assume that one may !nd an approximation to
this clique size and that this size depends somehow on the amount and constellation of inner
vertices of the tree, where multiple branches start with length at least 2. If we have none
of such vertices, we have a caterpillar. We showed that deciding whether a caterpillar is
embeddable into both the 𝑄-rectangle grid and the 𝑄-full grid is possible in linear time.

As another case in this work, we restricted the product graph to the 𝑁-wide crossed ladder.
We investigated that deciding whether a graph is embeddable into the 𝑁-wide crossed ladder
is possible in polynomial time. In this case one can optimize the algorithm but we assume
that the problem will still be in 𝑂 (𝑃𝐿 (𝑀 ) ), because if the running time does not depend on 𝑁
anymore that would contradict the fact that the decision problem of deciding whether a tree
is embeddable in 𝑗1 is NP-complete. We also showed that !nding an embedding of a graph
in the 2-wide crossed ladder if one exists is possible in linear time. So for further research it
might be interesting if there is an constructive algorithm that also provides embeddings for
𝑁 > 2.
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