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1
�−1

for each clause: independently draw k variables without repetition

independently negate each variable with probability 1
2

Geometry: Geometric Random k-SAT

sample d-dimensional positions
connection weight for clause c and variable v:

d = 2 variables clauses

X(c, v) = (
wv

‖c − v‖d)

1/T

for clause c: draw k di�erent variables with
probabilities proportional to X(c, v)

[Ansótegui, Bonet, Levy 2009]

[Giráldez-Cru, Levy 2017]
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Simplifying Assumptions
each clause contains the k = 3 closest variables (T = 0)
2-dimensional ground space (square) variables clauses

Order-k Voronoi Diagram

uniform weights

O(n) regions [Bohler et al. 15]

Ω(
n

polylog n) clauses

⇒ region with Ω(
log n

log log n) clauses

[Raab, Steger 98]

(a.a.s.)

k-tuple of vars with !(1) clauses
unsatisfiable subformula of
constant size
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weighted, 2D, k = 3
unweighted, 3D, k = 4

Ω (n2) in each of these se�ings:
[Aurenhammer, Edelsbrunner 84]

[Klee 80][Seidel 87]

our result: random positions ⇒ only O(W) regions for (W = total weight)
arbitrary constant k
arbitrary constant dimension
p-norm for p ∈ ℕ+ ∪ {∞}

Higher Temperatures
relax requirement that each clauses contains the k closest variables

⇒ previous argument applies to weighted variables and higher dimensions

our result: enough clauses contain the k closest variables if T < 1

⇒ previous argument applies to higher-temperature regime
(given some reasonable technical assumptions)
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T = 1

increasing power-
law exponent

The Big Picture
heterogeneous variables:
not very helpful
underlying geometry:
very helpful

Are We Done Now?
the geometric instances are unrealistically easy (at least in the limit)

geometric model provides an easy average case
→ the truth might lie between average and worst case

first theoretical evidence that underlying geometry helps
→ further investigations could help close the theory–practice gap


