The Impact of Heterogeneity and Geometry on the Proof Complexity of Random Satisfiability

Thomas Bläsius (M.), Tobias Friedrich (Masso), Andreas Göbel (Masso), Jordi Levy (CSIC), Ralf Rothenberger (Masso)

Digital Engineering • Universität Potsdam

k-SAT

input: CNF-formula with k literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

1

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

1

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

$$\frac{x_1 \lor x_3}{x_1 \lor x_2}, \quad x_2 \lor \neg x_3$$

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

$$\begin{array}{c} \vdots \\ x_1 \lor x_3, \quad x_2 \lor \neg x_3 \\ \hline x_1 \lor x_2, \quad \neg x_1 \lor x_2 \\ \hline x_2 \\ \hline x_2 \\ \hline \end{array} \begin{array}{c} \vdots \\ \neg x_2 \lor \neg x_3, \quad \neg x_2 \lor x_3 \\ \hline \neg x_2 \\ \hline \end{array}$$

k-SAT

• input: CNF-formula with *k* literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

k-SAT

input: CNF-formula with k literals per clause

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

goal: find satisfying assignment

 $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

... or prove that no such assignment exists

$$\begin{array}{c} \vdots \\ x_1 \lor x_3, \quad x_2 \lor \neg x_3 \\ x_1 \lor x_2, \quad \neg x_1 \lor x_2 \\ \hline x_2$$

Theory vs. Practice

- NP-hard for $k \ge 3$
- industrial instances: efficiently solvable for millions of variables

Typical Properties of Industrial SAT Instances

Heterogeneity

Typical Properties of Industrial SAT Instances

Typical Properties of Industrial SAT Instances

Geometry

6565 variables, 20487 clauses

Heterogeneity: Power-Law Random k-SAT [Ansótegui, Bonet, Levy 2009]

- for each clause: independently draw k variables without repetition
- variable $v \in \{1, ..., n\}$ is chosen with probability proportional to $w_v = v^{-\frac{1}{\beta-1}}$
- independently negate each variable with probability $\frac{1}{2}$

Heterogeneity: Power-Law Random k-SAT [Ansótegui, Bonet, Levy 2009]

- for each clause: independently draw k variables without repetition
- variable $v \in \{1, ..., n\}$ is chosen with probability proportional to $w_v = v^{-\frac{1}{\beta-1}}$
- independently negate each variable with probability $\frac{1}{2}$

Geometry: Geometric Random k-SAT

- related to:
 - popularity-similarity SAT [Giráldez-Cru, Levy 2017]
 - □ hyperbolic random graphs [Krioukov et al. 2010]
 - □ GIRGs [Bringmann, Keusch, Lengler 2017]

Heterogeneity: Power-Law Random k-SAT [Ansótegui, Bonet, Levy 2009]

- for each clause: independently draw k variables without repetition
- variable $v \in \{1, ..., n\}$ is chosen with probability proportional to $w_v = v^{-\frac{1}{\beta-1}}$
- independently negate each variable with probability $\frac{1}{2}$

Geometry: Geometric Random k-SAT

- related to:
 popularity-similarity SAT [Giráldez-Cru, Levy 2017]
 hyperbolic random graphs [Krioukov et al. 2010]
 GIRGs [Bringmann, Keusch, Lengler 2017]
- sample *d*-dimensional positions

Heterogeneity: Power-Law Random k-SAT [Ansótegui, Bonet, Levy 2009]

- for each clause: independently draw k variables without repetition
- variable $v \in \{1, ..., n\}$ is chosen with probability proportional to $w_v = v^{-\frac{1}{\beta-1}}$
- independently negate each variable with probability $\frac{1}{2}$

Geometry: Geometric Random k-SAT

□ GIRGs

related to: • variables • clauses d = 2popularity-similarity SAT [Giráldez-Cru, Levy 2017] hyperbolic random graphs [Krioukov et al. 2010] [Bringmann, Keusch, Lengler 2017] sample *d*-dimensional positions

Heterogeneity: Power-Law Random k-SAT [Ansótegui, Bonet, Levy 2009]

- for each clause: independently draw k variables without repetition
- variable $v \in \{1, ..., n\}$ is chosen with probability proportional to $w_v = v^{-\frac{1}{\beta-1}}$
- independently negate each variable with probability $\frac{1}{2}$

Geometry: Geometric Random k-SAT

- related to:
 - popularity-similarity SAT [Giráldez-Cru, Levy 2017]
 - hyperbolic random graphs [Krioukov et al. 2010]
 GIRGs [Bringmann, Keusch, Lengler 2017]
- sample *d*-dimensional positions
- connection weight for clause c and variable v:

$$X(c, v) = \left(\frac{w_v}{\|\boldsymbol{c} - \boldsymbol{v}\|^d}\right)^{1/2}$$

 for clause c: draw k different variables with probabilities proportional to X(c, v)

uniform model

▲ power-law model

heterogeneity

uniform model

Proof Complexity Lower Bounds

- [Ben-Sasson, Wigderson 01]
- *resolution width* w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size
 - $\exp(\Omega(w^2/n))$
 - $\exp(\Omega(w))$ for tree-like resolution

Proof Complexity Lower Bounds[Ben-Sasson, Wigderson 01]• resolution width w = largest clause in resolution proof (min over all proofs)• lower bounds on the resolution proof size \rightarrow lower bounds for solvers• $\exp(\Omega(w^2/n))$ • $\exp(\Omega(w))$ for tree-like resolution• $\exp(\Omega(w))$ for tree-like resolution

Proof Complexity Lower Bounds

- *resolution width* w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $\square \exp(\Omega(w^2/n))$ $\rightarrow CDCL$
 - $\square \exp(\Omega(w))$ for tree-like resolution $\rightarrow \text{DPLL}$
- high bipartite expansion \Rightarrow high width

clauses variables

Proof Complexity Lower Bounds

- *resolution width* w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $\square \exp(\Omega(w^2/n))$ $\rightarrow CDCL$
 - $\square \exp(\Omega(w))$ for tree-like resolution $\rightarrow \text{DPLL}$
- high bipartite expansion \Rightarrow high width

clauses

variables

Proof Complexity Lower Bounds

- *resolution width* w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $\ \ \, = \ \, \exp(\Omega(w^2/n)) \qquad \longrightarrow \mathsf{CDCL}$
 - □ $\exp(\Omega(w))$ for tree-like resolution \rightarrow DPLL
- high bipartite expansion \Rightarrow high width

clauses

variables

k

8

3.0

power-law exponent β

Proof Complexity Lower Bounds

- resolution width w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $\ \ \, = \ \, \exp(\Omega(w^2/n)) \qquad \longrightarrow \mathsf{CDCL}$

clauses

variables

- $= \exp(\Omega(w)) \text{ for tree-like resolution } \longrightarrow \mathsf{DPLL}$
- high bipartite expansion \Rightarrow high width

- resolution width $w \in \tilde{\Omega}(n^x)$
- holds for arbitrarily large constant clause-variable ratio

increasing heterogeneity
1.00
0.75

$$x ext{ 0.50}$$

0.25
 0.25
 2.0
 2.5
 3.0
power-law exponent β

Proof Complexity Lower Bounds

- resolution width w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $= \exp(\Omega(w^2/n)) \longrightarrow \mathsf{CDCL}$

clauses

- $= \exp(\Omega(w)) \text{ for tree-like resolution} \longrightarrow \mathsf{DPLL}$
- high bipartite expansion \Rightarrow high width

Our Lower Bounds (simplified)

- resolution width $w \in \tilde{\Omega}(n^x)$
- holds for arbitrarily large constant clause-variable ratio (super-constant ratio: slightly weaker bounds)

increasing heterogeneity
1.00
0.75
0.50
0.25
0.00
2.0
2.5
3.0
power-law exponent
$$\beta$$

Proof Complexity Lower Bounds

- *resolution width* w = largest clause in resolution proof (min over all proofs)
- lower bounds on the resolution proof size \rightarrow lower bounds for solvers
 - $= \exp(\Omega(w^2/n)) \longrightarrow \text{CDCL}$
 - $\exp(\Omega(w))$ for tree-like resolution $\rightarrow \text{DPLL}$
- high bipartite expansion ⇒ high width

variables

clauses

Our Lower Bounds (simplified)

- resolution width $w \in \tilde{\Omega}(n^x)$
- holds for arbitrarily large constant clause-variable ratio (super-constant ratio: slightly weaker bounds)
- β -range matches that of a constant satisfiability threshold

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

variables

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

Order-k Voronoi Diagram

clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- uniform weights

variables

clauses

Simplifying Assumptions

uniform weights

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)

variables
 clauses

Order-*k* **Voronoi Diagram** • O(n) regions [Bohler et al. 15] • $\Omega\left(\frac{n}{\text{polylog }n}\right)$ clauses [Raab, Steger 98] (a.a.s.) \Rightarrow region with $\Omega\left(\frac{\log n}{\log\log n}\right)$ clauses

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- variables
 clauses

uniform weights

Simplifying Assumptions

- each clause contains the k = 3 closest variables (T = 0)
- 2-dimensional ground space (square)
- variables
 clauses

uniform weights

Weighted Variables & Higher Dimensions

- $\Omega(n^2)$ in each of these settings:
 - weighted, 2D, k = 3
 - \square unweighted, 3D, k = 4

[Aurenhammer, Edelsbrunner 84] [Klee 80][Seidel 87]

Weighted Variables & Higher Dimensions

- $\Omega(n^2)$ in each of these settings:
 - weighted, 2D, k = 3 [Aurenhammer, Edelsbrunner 84]
 unweighted, 3D, k = 4 [Klee 80][Seidel 87]
- our result: random positions ⇒ only O(W) regions for (W = total weight)
 arbitrary constant k
 - arbitrary constant dimension
 - □ *p*-norm for $p \in \mathbb{N}^+ \cup \{\infty\}$

Weighted Variables & Higher Dimensions

- Ω (n²) in each of these settings:
 weighted, 2D, k = 3 [A
 - unweighted, 3D, k = 4

[Aurenhammer, Edelsbrunner 84]

- [Klee 80][Seidel 87]
- our result: random positions ⇒ only O(W) regions for (W = total weight)
 □ arbitrary constant k
 - arbitrary constant dimension
 - □ *p*-norm for $p \in \mathbb{N}^+ \cup \{\infty\}$

 \Rightarrow previous argument applies to weighted variables and higher dimensions

Weighted Variables & Higher Dimensions

- Ω (n²) in each of these settings:
 □ weighted, 2D, k = 3
 - unweighted, 3D, k = 4

[Aurenhammer, Edelsbrunner 84]

- [Klee 80][Seidel 87]
- our result: random positions ⇒ only O(W) regions for (W = total weight)
 □ arbitrary constant k
 - arbitrary constant dimension
 - □ *p*-norm for $p \in \mathbb{N}^+ \cup \{\infty\}$

 \Rightarrow previous argument applies to weighted variables and higher dimensions

Higher Temperatures

relax requirement that each clauses contains the k closest variables

Weighted Variables & Higher Dimensions

- $\Omega(n^2)$ in each of these settings:
 - weighted, 2D, k = 3 [Aurenhammer, Edelsbrunner 84]
 unweighted, 3D, k = 4 [Klee 80][Seidel 87]
- our result: random positions ⇒ only O(W) regions for (W = total weight)
 arbitrary constant k
 - arbitrary constant dimension
 - □ *p*-norm for $p \in \mathbb{N}^+ \cup \{\infty\}$
 - \Rightarrow previous argument applies to weighted variables and higher dimensions

Higher Temperatures

- relax requirement that each clauses contains the k closest variables
- *our result:* enough clauses contain the k closest variables if T < 1

(given some reasonable technical assumptions)

Weighted Variables & Higher Dimensions

- $\Omega(n^2)$ in each of these settings:
 - weighted, 2D, k = 3 [Aurenhammer, Edelsbrunner 84]
 unweighted, 3D, k = 4 [Klee 80][Seidel 87]
- *our result:* random positions ⇒ only O(W) regions for (W = total weight)
 arbitrary constant k
 - arbitrary constant dimension
 - □ *p*-norm for $p \in \mathbb{N}^+ \cup \{\infty\}$
 - \Rightarrow previous argument applies to weighted variables and higher dimensions

Higher Temperatures

- relax requirement that each clauses contains the k closest variables
- *our result:* enough clauses contain the k closest variables if T < 1

(given some reasonable technical assumptions)

 \Rightarrow previous argument applies to higher-temperature regime

- heterogeneous variables: not very helpful
- underlying geometry: very helpful

The Big Picture

- heterogeneous variables: not very helpful
- underlying geometry: very helpful

Are We Done Now?

The Big Picture

- heterogeneous variables: not very helpful
- underlying geometry: very helpful

Are We Done Now?

the geometric instances are unrealistically easy (at least in the limit)

The Big Picture

- heterogeneous variables: not very helpful
- underlying geometry: very helpful

Are We Done Now?

- the geometric instances are unrealistically easy (at least in the limit)
- first theoretical evidence that underlying geometry helps
 - \rightarrow further investigations could help close the theory-practice gap

The Big Picture

- heterogeneous variables: not very helpful
- underlying geometry: very helpful

Are We Done Now?

- the geometric instances are unrealistically easy (at least in the limit)
- first theoretical evidence that underlying geometry helps
 - \rightarrow further investigations could help close the theory-practice gap
- geometric model provides an easy average case
 - \rightarrow the truth might lie between average and worst case