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Theory vs. Practice
= NP-hard for k = 3

» industrial instances: efficiently solvable for millions of variables




Typical Properties of Industrial SAT Instances

Heterogeneity

power-law: k™7
(B >2)

fraction of variables

variable degree k
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Random SAT with Heterogeneity and Geometry

Heterogeneity: Power-Law Random k-SAT  [Ansétegui, Bonet, Levy 2009]

= for each clause: independently draw k variables without repetition
1
= variable v € {1,..., n} is chosen with probability proportional to w, = v 71

= independently negate each variable with probability 7

Geometry: Geometric Random k-SAT

= related to: d=2  ®variables M clauses
0 popularity-similarity SAT [Giraldez-Cru, Levy 2017]

@
0 hyperbolic random graphs [Krioukov et al. 2010]

0 GIRGs [Bringmann, Keusch, Lengler 2017]
s sample d-dimensional positions

= connection weight for clause ¢ and variable v:

W 1/T
X(c,v) = °
(6 ) (nc—vud>

s for clause c¢: draw k different variables with

probabilities proportional to X(c, v)
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Proof Complexity Lower Bounds [Ben-Sasson, Wigderson 01]
= resolution width w = largest clause in resolution proof (min over all proofs)
= |lower bounds on the resolution proof size — lower bounds for solvers

o exp(Q(w?/n)) — CDCL

o exp(Q(w)) for tree-like resolution — DPLL
= high bipartite expansion = high width

clauses
Ds increasing heterogeneity
variables <

100 Il T } N
L ! /4

Our Lower Bounds (simplified) 0.75 - | k
~ ' i J/ 3
= resolution width w € Q(n*) By 4
X 0.50 Y74 — 5
= holds for arbitrarily large constant /'//'// — e
clause—variable ratio 0.25 Yy //4 - 7
(super-constant ratio: slightly weaker bounds) 0.00 Y/ /4 - 8

» f-range matches that of a constant 2.0 25 3.0

satisfiability threshold power-law exponent f
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Simplifying Assumptions
= each clause contains the k = 3 closest variables (T = 0)
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(a.a.s.) ) ) loo n D
= region with € (1og1gogn) clauses .\
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= k-tuple of vars with (1) clauses

s unsatisfiable subformula of

constant size ®
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= Q(n?) in each of these settings:
o weighted, 2D, k = 3 [Aurenhammer, Edelsbrunner 84]
o unweighted, 3D, k = 4 [Klee 80][Seidel 87]
m our result: random positions = only O(W) regions for (W = total weight)
o arbitrary constant k
o arbitrary constant dimension
o p-norm for p € IN" u {0}

= previous argument applies to weighted variables and higher dimensions

Higher Temperatures
= relax requirement that each clauses contains the k closest variables

m our result: enough clauses contain the k closest variables if T < 1
(given some reasonable technical assumptions)

= previous argument applies to higher-temperature regime
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geometric model

increasing temperature

<
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» the geometric instances are unrealistically easy (at least in the limit)

» first theoretical evidence that underlying geometry helps

— further investigations could help close the theory—practice gap

s geometric model provides an easy average case
— the truth might lie between average and worst case




