From Symmetry to Asymmetry: Generalizing TSP Approximations by Parametrization

Lukas Behrend¹, Katrin Casel¹, Tobias Friedrich¹, Gregor Lagondzinski¹, Andreas Löser¹, Marcus Wilhelm²

Digital Engineering • Universität Potsdam

From Symmetry to Asymmetry: Generalizing TSP Approximations by Parametrization

Lukas Behrend¹, Katrin Casel¹, Tobias Friedrich¹, Gregor Lagondzinski¹, Andreas Löser¹, Marcus Wilhelm²

Digital Engineering • Universität Potsdam

From Symmetry to Asymmetry: Generalizing TSP Approximations by Parametrization

Lukas Behrend¹, Katrin Casel¹, Tobias Friedrich¹, Gregor Lagondzinski¹, Andreas Löser¹, Marcus Wilhelm²

Digital Engineering • Universität Potsdam

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Definition: The Traveling Salesman Problem Given a complete undirected graph with non-negative edge weights, find a cheapest Hamiltonian cycle.

Asymmetries

Asymmetries

Exact Solutions

• $\mathcal{O}(2^n n^2)$ by Held and Karp

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

ATSP

• $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

- $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)
- \$\mathcal{O}(\log n / \log \log n)\$-approx.
 (Asadpour et al.)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

- $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)
- \$\mathcal{O}(\log n / \log \log n)\$-approx.
 (Asadpour et al.)
- 5500-approx (Svensson et al.)

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

- $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)
- \$\mathcal{O}(\log n / \log \log n)\$-approx.
 (Asadpour et al.)
- 506-approx (Svensson et al.)
State of the Art

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

ATSP

- $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)
- \$\mathcal{O}(\log n / \log \log n)\$-approx.
 (Asadpour et al.)
- $22 + \varepsilon$ -approx. (Traub and Vygen)

State of the Art

Exact Solutions

- $\mathcal{O}(2^n n^2)$ by Held and Karp
- practical solvers without worst case guarantees

Polynomial approximations

TSP

- 2-approx. (tree doubling)
- $\frac{3}{2}$ -approx. (Christofides / Serdyukov)
- $\frac{3}{2} \varepsilon$ -approx. (Karlin et al.)

ATSP

- $\frac{2}{3}\log_2 n$ -approx. (Feige and Singh)
- \$\mathcal{O}(\log n / \log \log n)\$-approx.
 (Asadpour et al.)
- $22 + \varepsilon$ -approx. (Traub and Vygen)

best lower bounds:
$$\frac{123}{122}$$
 vs. $\frac{75}{74}$ (Karpinski et al.)

Goal: FPT runtime $f(k) \cdot n^{\mathcal{O}(1)}$

Goal: FPT runtime $f(k) \cdot n^{\mathcal{O}(1)}$

Generalized Christofides algorithm

- 2.5-approximation
- k: size of a minimum vertex cover of the graph induced by the asymmetric links

Goal: FPT runtime $f(k) \cdot n^{\mathcal{O}(1)}$

Generalized Christofides algorithm

- 2.5-approximation
- k: size of a minimum vertex cover of the graph induced by the asymmetric links

- 3-approximation
- k: number of one-way arcs in a minimum spanning arborescence of the graph

Goal: FPT runtime $f(k) \cdot n^{\mathcal{O}(1)}$

Generalized Christofides algorithm

- 2.5-approximation
- k: size of a minimum vertex cover of the graph induced by the asymmetric links

Generalized tree doubling algorithm

- 3-approximation
- k: number of one-way arcs in a minimum spanning arborescence of the graph

Additionally:

• adapted algorithms for β -asymmetry

Goal: FPT runtime $f(k) \cdot n^{\mathcal{O}(1)}$

Generalized Christofides algorithm

- 2.5-approximation
- k: size of a minimum vertex cover of the graph induced by the asymmetric links

Generalized tree doubling algorithm

- 3-approximation
- k: number of one-way arcs in a minimum spanning arborescence of the graph

Additionally:

- adapted algorithms for β -asymmetry
- experimental evaluation

Question: Can we upper bound the cost of τ ?

Question: Can we upper bound the cost of τ , given that M is minor of G?

Question: Can we upper bound the cost of τ , given that M is minor of G?

Lemma: Let H be a minor of metric graph G, then $TSP(H) \leq TSP(G)$.

Question: Can we upper bound the cost of τ , given that M is minor of G?

Lemma: Let H be a minor of metric graph G, then $TSP(H) \leq TSP(G)$.

$$cost(\tau) = TSP(M) \le TSP(G)$$

Question: Can we upper bound the cost of τ , given that M is minor of G?

Lemma: Let H be a minor of metric graph G, then $TSP(H) \leq TSP(G)$.

$$cost(\tau) = TSP(M) \le TSP(G)$$

Now: Connect τ into tour of G

Now: Connect τ into tour of GConsider components $T_{i-1}, T_i, T_{i+1} \in \tau$:

Cost of path p_i through T_i ?
Generalized Tree Doubling Algorithm

Now: Connect τ into tour of GConsider components $T_{i-1}, T_i, T_{i+1} \in \tau$:

Cost of path p_i through T_i ? $c(p_i) \leq 2c(T_i)$

Generalized Tree Doubling Algorithm

Now: Connect τ into tour of GConsider components $T_{i-1}, T_i, T_{i+1} \in \tau$:

Cost of path p_i through T_i ? $c(p_i) \le 2c(T_i)$ thus $\sum c(p_i) \le \sum 2c(T_i) \le 2TSP(G)$

Generalized Tree Doubling Algorithm

Now: Connect τ into tour of GConsider components $T_{i-1}, T_i, T_{i+1} \in \tau$:

thus $\sum c(p_i) \leq \sum 2c(T_i) \leq 2TSP(G)$

Theorem: The algorithm computes a 3-approx. for ATSP in $\mathcal{O}^*(2^k)$ where k is the number of one-way edges in a given min. spanning arborescence.

Problem: the instances are too asymmetric

Problem: the instances are too asymmetric

Idea: ignore asymmetries up to a factor of β

Generalized Christofides algorithm

Theorem: Metric ATSP can be $(\frac{7}{4} + \frac{3}{4}\beta)$ -approximated in $\mathcal{O}^*(2^{k_\beta})$, where k_β is the size of a vertex cover for the graph induced by all β -asymmetric links, for any $\beta \geq 1$.

Problem: the instances are too asymmetric

Idea: ignore asymmetries up to a factor of β

Generalized Christofides algorithm

Theorem: Metric ATSP can be $(\frac{7}{4} + \frac{3}{4}\beta)$ -approximated in $\mathcal{O}^*(2^{k_\beta})$, where k_β is the size of a vertex cover for the graph induced by all β -asymmetric links, for any $\beta \geq 1$.

Generalized tree doubling algorithm

Theorem: Metric ATSP can be $(2 + \beta)$ -approximated in $\mathcal{O}^*(2^{k_\beta})$, where k_β is the number of β -one-way arcs in a given minimum spanning arborescence, for any $\beta \geq 1$.

• TSPLIB: most common TSP benchmark; 19 asymmetric instances

• TSPLIB: most common TSP benchmark; 19 asymmetric instances

• TSPLIB: most common TSP benchmark; 19 asymmetric instances

• road networks by Rodríguez and Ruiz

• road networks by Rodríguez and Ruiz

symmetric subgraph

symmetric subgraph

symmetric subgraph

symmetric subgraph

symmetric subgraph

graph induced by the asymmetric links.

Approximation factor $\frac{2}{3}\log n + 1.5$?

