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Asymmetries

Definition: The Metnc Asymmetric ravellng Salesman Problem (ATSP)
Given a complete, directed, weighted graph with non-negative arcs
weights which satisfy the triangle inequality, find a cheapest Hamiltonian

cycle.
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e 2-approx. (tree doubling) o = log, n-approx. (Feige and
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Vygen)

best lower bounds: 122 vs. £2 (Karpinski et al.)
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Goal: FPT runtime

(k) - O
Generalized Generalized
Christofides algorithm tree doubling algorithm
e 2.5-approximation e 3-approximation
e k: size of a minimum vertex e k: number of one-way arcs in a
cover of the graph induced by minimum spanning arborescence
the asymmetric links of the graph

Additionally:
e adapted algorithms for 5-asymmetry

e experimental evaluation
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A tree based approach?

Def. One-way arc: arc (u,v) in tree with c(u,v) < c(v, u)
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Generalized Tree Doubling Algorithm

Now: Connect 7 into tour of GG
Consider components T;_1,T;,T;11 € T:
1i 1

Cost of path p; through 137 ¢(p;) < 2¢(T;)
thus > c(p;) <> 2¢(T;) < 2TSP(G)
Theorem: The algorithm computes a 3-approx. for ATSP in O*(2F)

where k is the number of one-way edges in a given min. spanning
arborescence.



Algorithm revisited




Algorithm revisited




Algorithm revisited

(P




Algorithm revisited

(&




Algorithm revisited

G

=) (&

Analysis:

/




Algorithm revisited

()&

AnaIyS|s

S ep) <3 2¢(Ty) < 2TSP(G) still
holds




Algorithm revisited

G

=) (&

Analysis:

S eps) <3 2¢(Ty) < 2TSP(G) still
holds
T < TSP(G) still holds




Algorithm revisited

G

=) (&

Analysis:

S eps) <3 2¢(Ty) < 2TSP(G) still
holds
T < TSP(G) still holds

— 3-approximation
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Approximation guarantee vs runtime

Problem: the instances are too asymmetric

Idea: ignore asymmetries up to a factor of 3

Generalized Christofides algorithm

Theorem: Metric ATSP can be (£ + 23)-approximated in O*(2%7),
where kg is the size of a vertex cover for the graph induced by all
B-asymmetric links, for any 8 > 1.

Generalized tree doubling algorithm

Theorem: Metric ATSP can be (2 + [3)-approximated in O*(2%#), where
ks is the number of B-one-way arcs in a given minimum spanning
arborescence, for any 8 > 1.
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e TSPLIB: most common TSP benchmark; 19 asymmetric instances

ftva7

60
® Generalized Christofides algorithm
Generalized tree-doubling algorithm
50 -
o
40 T .
)
N ([
230
e °
)
Y4
20 T .
o
o
10 A
[
]
0 [
1.0 1.2 14 1.6

approximation factor

rog443

175 -

150 A

125 ~

=

o

o
1

kernel size

~
(9,
1

Ul
o
1

25

® Generalized Christofides algorithm
Generalized tree-doubling algorithm

L
Ps e

T T T T T T
1.00 105 110 115 1.20 1.25
approximation factor




Evaluation

e road networks by Rodriguez and Ruiz



Evaluation

e road networks by Rodriguez and Ruiz
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The generalized Christofides algorithm

Theorem: The algorithm computes a 2.5-approx. for ATSP in
O(2%k? + n3), where k is the size of a minimum vertex cover on the
graph induced by the asymmetric links.
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Approximation factor %logn + 1.57
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vertex cover 2 Cho
D_approx. > 5108 n-approx. ristofides
polynomial polynomial polynomial

Approximation factor W?

2logk + 1.5



Unfavourable edge-case?




Unfavourable edge-case?




Unfavourable edge-case?




Unfavourable edge-case?

Ve




Unfavourable edge-case?




