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Asymmetries

Definition: The Metric Asymmetric Traveling Salesman Problem (ATSP)
Given a complete, directed, weighted graph with non-negative arcs
weights which satisfy the triangle inequality, find a cheapest Hamiltonian
cycle.
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ATSP

• 2
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Singh)
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Vygen)

best lower bounds: 123
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74 (Karpinski et al.)
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• 3-approximation
• k: number of one-way arcs in a

minimum spanning arborescence
of the graph

Goal: FPT runtime
f(k) · nO(1)

Additionally:

• adapted algorithms for β-asymmetry

• experimental evaluation
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G

Def. One-way arc: arc (u, v) in tree with c(u, v) < c(v, u)
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Generalized Tree Doubling Algorithm

Now: Connect τ into tour of G

Consider components Ti−1, Ti, Ti+1 ∈ τ :

Ti−1

Ti

Ti+1

Cost of path pi through Ti? c(pi) ≤ 2c(Ti)

thus
∑
c(pi) ≤

∑
2c(Ti) ≤ 2TSP(G)

Theorem: The algorithm computes a 3-approx. for ATSP in O∗(2k)
where k is the number of one-way edges in a given min. spanning
arborescence.
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G M

Analysis:∑
c(pi) ≤

∑
2c(Ti) ≤ 2TSP (G) still

holds
τ ≤ TSP (G) still holds

→ 3-approximation
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Theorem: Metric ATSP can be ( 74 + 3
4β)-approximated in O∗(2kβ ),

where kβ is the size of a vertex cover for the graph induced by all
β-asymmetric links, for any β ≥ 1.

Theorem: Metric ATSP can be (2 + β)-approximated in O∗(2kβ ), where
kβ is the number of β-one-way arcs in a given minimum spanning
arborescence, for any β ≥ 1.

Problem: the instances are too asymmetric

Generalized tree doubling algorithm

Generalized Christofides algorithm
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3
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polynomial runtime
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The generalized Christofides algorithm

G

5
2 · c(OPT )

Theorem: The algorithm computes a 2.5-approx. for ATSP in
O(2kk2 + n3), where k is the size of a minimum vertex cover on the
graph induced by the asymmetric links.
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Christofides
polynomial

vertex cover
2-approx.
polynomial

2
3 log n-approx.
polynomial

Approximation factor 2
3 log n+ 1.5?

2
3 log k + 1.5!
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