
Beating the Worst-Case: Analysis of a Practical
Algorithm for Treewidth

Besser als im Worst-Case: Analyse eines Praktischen

Algorithmus für Baumweite

Marcus Wilhelm

Universitätsmasterarbeit
zur Erlangung des akademischen Grades

Master of Science
(M. Sc.)

im Studiengang
IT Systems Engineering

eingereicht am 24. August 2020 am
Fachgebiet Algorithm Engineering der

Digital-Engineering-Fakultät
der Universität Potsdam

Gutachter Prof. Dr. Tobias Friedrich
Prof. Dr. Anja Lehmann

Betreuer Dr. Thomas Bläsius
Maximilian Katzmann

0Abstract
Many NP-hard graph problems can be solved in polynomial time if the input
instance is a tree. The same holds for input graphs that have small treewidth, a
parameter describing how tree-like a graph is. While many graph problems are
�xed-parameter tractable when parametrized by treewidth, in most cases this
requires the computation of a tree decomposition of the input graph, which is
NP-hard as well.

By contrast, an algorithm (PID-BT), submitted to the PACE Challenge 2017
achieved surprisingly fast running times on real-world networks despite the prob-
lem’s hardness. This points at a big gap between the theoretical understanding
of the problem and the practical performance of the algorithm.

In this thesis, we work towards reducing this gap, focussing on hyperbolic
random graphs (HRGs) as a realistic model of real-world networks. On the
theoretical side, we start by giving an intuitive presentation of the algorithm and
show a super-polynomial lower bound on its expected running time on HRGs.
This indicates that the observed performance in practice might be due to the
implementation’s preprocessing. We con�rm this via empirical experiments,
that show that the employed greedy heuristics discard a large linear part of the
graph. We also explain this theoretically, by proving the existence of a linear
expected number of simplicial vertices in HRGs.

iii

0Zusammenfassung

Viele NP-schwere Graphenprobleme können in Polynomialzeit gelöst werden,
solange die Eingabe ein Baum ist. Selbiges gilt für Graphen mit kleiner Baum-
weite, einem Parameter der beschreibt, wie baumähnlich ein Graph ist. So sind
viele Graphenprobleme festparameterberechenbar bei Parametrisierung nach
Baumweite, jedoch benötigen die meisten dieser Ansätze eine Baumzerlegung
der Eingabe, deren Berechnung ebenfalls NP-schwer ist.

Ein Algorithmus, genannt PID-BT, welcher bei der PACE Challenge 2017 ein-
gereicht wurde, erzielte trotz der Schwere des Problems außerordentlich gute
Laufzeiten. Dies weißt auf eine große Lücke zwischen dem theoretischen Ver-
ständnis des Problems und der tatsächlichen Leistungsfähigkeit des Algorithmus
in der Praxis hin.

In dieser Arbeit versuchen wir daher diese Lücke zu verkleinern, wobei wir
uns dabei auf hyperbolische Zufallsgraphen (HZGs) als realistisches Modell
für Echtweltgraphen konzentrieren. Auf der theoretischen Seite geben wir zu
diesem Zwecke eine neue intuitivere Beschreibung von PID-BT und beweisen
außerdem eine superpolynomielle untere Schranke für die erwartete Laufzeit
des Algorithmus auf HZGs. Dies weißt darauf hin, dass die gute Laufzeit der
Implementierung auf deren Vorverarbeitung zurückzuführen ist, was wir auch
experimentell bestätigen. Im Detail beobachten wir, dass die Vorverarbeitung
einen linear großen Teil der Eingabe entfernt und können dies ebenfalls theo-
retisch erklären, indem wir eine erwartete lineare Anzahl simplizialer Knoten
nachweisen.

v

0Contents
Abstract iii

Zusammenfassung v

Contents vii

1 Introduction 1
1.1 Related Work . 3
1.2 Outline . 6

2 Preliminary Considerations 7
2.1 Basic De�nitions and Concepts 7
2.2 Empirical Running Time of PID-BT 13

3 Positive-Instance Driven Dynamic Programming for Treewidth 17
3.1 Graph Searching and Treewidth 17
3.2 A Partial Solution Perspective on PID-ACP 19
3.3 A Partial Solution Perspective on PID-BT 22
3.4 Example for PID-BT . 29
3.5 Running Time Bounds for PID-BT 31

4 Greedy Preprocessing 43
4.1 Greedy Tree Decompositions . 44
4.2 Identifying Safe Separators . 45
4.3 Empirical Analysis . 47
4.4 Theoretical Analysis . 49

4.4.1 Simplicial Vertices . 52
4.4.2 Safe Separators . 61
4.4.3 Structure of the Inner Neighbourhood. 67

5 Conclusions & Outlook 73

vii

Bibliography 77

Declaration of Authorship 83

viii

1 Introduction

Many problems that are NP-hard on general graphs, like for instance Vertex
Cover, Independent Set, etc. are e�ciently solvable on trees. Intuitively,
these problems should not immediately become hard for inputs that are only
slightly more complex than trees. Indeed, many hard problems are still e�ciently
solvable on, e.g. cactus graphs and series parallel graphs. The treewidth of a
graph is a parameter that generalizes this idea, by describing how tree-like a
graph is. The more a graph resembles a tree, the smaller its treewidth, with
actual trees having treewidth 1 and cliques having treewidth = − 1. Treewidth
is a central tool in the �eld of parametrized algorithms, and many hard graph
problems are �xed-parameter tractable (FPT) when parametrized by treewidth.
This means that they have an algorithm running in time $ (5 (:) · poly(=)),
where : is the treewidth of the input graph and 5 is a computable function. For
example, a maximum independent set of a graph with treewidth : can be found
in $

(
2: · poly(=)

)
time. Even more generally, for every problem that can be

expressed with a formula in monadic second-order logic (MSO2) there is an FPT
algorithm parametrized by the treewidth of the input graph exists, as proven by
Courcelle’s theorem [Cou90].

Most of these algorithms, however, depend on a so-called tree decomposition
as input. A tree decomposition is a tree-like structure that acts as a witness
for the treewidth of a graph and that allows dynamic programming approaches
similar to the ones used on actual trees. Unfortunately, deciding if the treewidth
of a graph is at most : is NP-complete [ACP87] and �nding an optimal tree
decomposition is NP-hard. Both problems are solvable with FPT running time
parametrized by treewidth, but so far these approaches were of rather limited
practical use.

A major motivation for the development of practically feasible treewidth
algorithms was presented in the Parameterized Algorithms and Computational
Experiments (PACE) Challenge. In the PACE challenge 2016 and 2017 participants
were invited to implement algorithms that compute tree decompositions. The
submissions were evaluated and ranked based on their performance on a number

1

Chapter 1 Introduction

of graphs, motivating the participants to design algorithms that work well in
practice.

The winner of PACE’16 was Hisao Tamaki, whose submission was based on
an algorithm by Arnborg et al. [ACP87] that is also known as ACP algorithm.
For the PACE Challenge 2017, Hisao Tamaki and Hiromu Ohtsuka extended
an algorithm by Bouchitté and Todinca [BT02] (BT-algorithm). The resulting
algorithm, which we call PID-BT, was very successful and won the second
place in the challenge, falling behind a more optimized C++ implementation
of Tamaki’s algorithm from 2016. In particular, the relative performance of the
algorithm was especially good on the harder evaluation instances. For example,
the algorithm solved instances with thousands of vertices and tens of thousands
of edges within minutes.

Considering that no polynomial algorithm for treewidth can exist unless
P = NP, this performance is very surprising. Consequently, the question arises
how it can be that the PID-BT algorithm works so well in practice, despite
negative theoretical results like the NP-hardness of treewidth. In this thesis, we
search for an answer to this question, by analysing and understanding the PID-
BT algorithm. As the algorithm is particularly designed for practical application,
this does not only include studying the algorithm itself but also how it relates
to its input instances. In this respect, we focus on a speci�c class of input
instances called real-world scale-free networks. These are networks from many
di�erent domains, such as social networks, communication networks, and protein
interaction networks that are relevant to practical applications and that were
observed to share certain characteristics. We need a model of these networks that
is a realistic representation and also accessible to analysis. For this purpose, we
use hyperbolic random graphs (HRGs), because they exhibit the most important
traits of scale-free networks, such as a heterogeneous degree distribution, high
clustering and small diameter. Additionally, hyperbolic random graphs are both
mathematically tractable and can be e�ciently generated, which allows us to
analyse them theoretically as well as empirically.

Our experiments on sampled HRGs con�rm the impressive running times of
PID-BT on practical instances with thousands of vertices. Very importantly, we
also observed that the preprocessing employed by the implementation plays a
major role in the performance of the algorithm. Consequently, in this thesis,
we do not only analyse the PID-BT algorithm itself, but also the heuristics
used in the preprocessing of the PACE’17 implementation. One of our main

2

Related Work Section 1.1

contributions in this context is a proof that explains why the preprocessing is able
to reduce the instance size by an asymptotically constant factor in expectation.
Also, we contribute to the analysis of greedy heuristics for tree decompositions
in a general way, by developing new su�cient conditions for the safeness of
separators in graphs. To the best of our knowledge, our results constitute the
�rst theoretical analysis of such greedy heuristics in general and on a practically
relevant graph model such as hyperbolic random graphs.

We also analyse the PID-BT algorithm without the preprocessing and derive
various bounds for the running time on a number of graph classes. This includes
a super-polynomial lower bound for the expected running time on hyperbolic
random graphs. Further, we also provide a novel way of presenting the algo-
rithm itself. This is accomplished by framing it as a natural extension of the
algorithm Tamaki submitted in the 2016 PACE challenge and by highlighting
how the basic idea behind it can be seen from a perspective of the construction
of partial solutions. Although this is not in itself a novel result, it is nevertheless
scienti�cally valuable. One of the basic virtues of science is reproducibility. In
maths and theoretical computer science the lucid, graspable, and maybe even
elegant presentation of concepts, proofs, and algorithms is a core aspect of repro-
ducibility. For this reason, our intuitive description of the algorithm constitutes
another important contribution of this thesis.

1.1 Related Work

Treewidth was �rst introduced in 1986 by Robertson and Seymour via the de�-
nition of tree decompositions [RS86]. Apart from this original de�nition, there
exists a multitude of equivalent characterizations of treewidth, some of which
were discovered independently. Before Robertson and Seymour, Bertelè and
Brioschi [BB72], as well as Halin [Hal76], invented de�nitions that are equivalent
to treewidth. In this thesis, we use the de�nition via tree decompositions, a
characterisation via graph searching games by Seymour and Thomas [ST93] and
a de�nition via chordal graphs [PS97]. See [Bod98] for a survey of equivalent
de�nitions and characterizations of treewidth.

The usefulness of treewidth comes from the fact that many generally hard
problems are e�ciently solvable on graphs of small treewidth. One common
algorithmic application is dynamic programming on tree decompositions, which
can be seen as a direct extension of folklore algorithms for, e.g. vertex cover

3

Chapter 1 Introduction

or independent set on trees. There are also approaches in which no explicit
witness of the treewidth is required, such as for :-path, feedback vertex set, and
vertex cover. Most of these are based on structural properties (e.g. a graph of
treewidth : contains a :-path) or based on a theorem that states that graphs
of large treewidth contain large grids as minor [RST94][CC16]. A survey by
Bodlaender covers more algorithmic applications of small treewidth [BK07].

In summary, many theoretical algorithmic results require graphs with small
treewidth in order to be feasible in practice. There are speci�c graph classes like,
for instance, graphs arising from the control �ow of certain (commonly used)
programming languages, for which constant treewidth could be shown [Tho98].
However, for a long, time it was rather unclear how commonly graphs with
small treewidth appear in general settings within the real world. A study by
Maniou et al. [MSJ19] surveyed the treewidth of graphs from 25 datasets from 8
di�erent domains and found that the tested graphs generally have a rather large
treewidth, except for infrastructure networks which were found to exhibit a
treewidth of $ (=2/3). Still, even such a sub-linear treewidth is very likely too
large to run heavy exponential algorithms on these graphs in practice.

There are many algorithms for the exact computation of treewidth. A classical
result by Arnborg, Corneil, and Proskurowski [ACP87] shows an algorithm that
decides whether a graph has treewidth at most : in time $ (=:+2). We refer to
this algorithm as ACP algorithm. There are also algorithms that decide treewidth
in 5 (:) · =2 time for a computable function 5 and a constant 2 , �tting into the
framework of �xed-parameter tractability by Downey and Fellows [DF99]. The
�rst algorithm for treewidth with such a running time was proposed by Robertson
and Seymour [RS86][RS95]. A notable improvement of this algorithm due to
Bodlaender [Bod93] even runs in linear time for constant : , but is completely
infeasible in practice due to large constants and its running time dependency
in : . A di�erent approach has been proposed by Bouchitté and Todinca [BT02].
Their algorithm, which we refer to as BT algorithm, decides treewidth in time
polynomial in the number of minimal separators by listing all minimal separators
and some other combinatorial structures. This algorithm is useful for a number
of graph classes that all have a polynomial number of minimal separators. A
di�erent approach by Gogate and Dechter is based on a branch and bound
technique and has been implemented and evaluated practically.

A problem with all algorithms mentioned above is that they are of very limited
applicability in most practical circumstances. This is con�rmed in an experi-

4

Related Work Section 1.1

mental study by Röhrig [Röh98] and indirectly also in other practical studies
that either were not able to compute the treewidth of larger graphs [Bod+06] or
that needed to rely on heuristics as the only way to obtain upper bounds for the
treewidth [MSJ19].

The development of practically feasible treewidth algorithms was sparked by
the Parameterized Algorithms and Computational Experiments (PACE) Chal-
lenge 2016 [Del+17]. The winning approach was developed by Hisao Tamaki
based on the ACP algorithm. Bannach and Berndt [BB19] describe and general-
ize the algorithm, which we refer to as PID-ACP. It is based on an equivalent
de�nition of treewidth that is explained in more detail in Section 3.1. In the
PACE Challenge 2017 [Del+18], Hisao Tamaki and Hiromu Ohtsuka submit-
ted an improved algorithm. The algorithm is based on the BT algorithm and
Tamaki’s formal description of the algorithm, Positive-instance driven dynamic
programming for treewidth [Tam19], won a best paper award at ESA 2017.

Heuristics for upper and lower bounds seem to work a lot better than exact ap-
proaches in practice. A survey by Bodlaender gives a broad overview of di�erent
ways to compute treewidth or upper/lower bounds for treewidth both exactly
and heuristically [Bod05]. This includes heuristic approaches that �nd upper
bounds on the treewidth by greedily constructing an elimination scheme of the
graph. In practice, such heuristics (e.g. the Min-Fill heuristic) seem to perform
extremely well on many instances, often producing close to optimal tree decom-
positions. Experimental analyses of this phenomenon have been conducted by
van Dijk et al. [DHS06] and Maniu et al. [MSJ19]. One of the preprocessing rules
discussed by Bodlaender is based on so-called safe-separators [BK06], which we
also explore.

Hyperbolic random graphs were �rst introduced by Krioukov et al. [Kri+10]
and as an acronym of the authors’ names are also referred to as KPKVB random
graphs. In the original paper, the authors establish that the graphs described
by this model share important characteristics of real-world networks, namely a
power-law degree distribution and a high clustering coe�cient. This means that the
number of vertices with degree : is proportional to :−V for a constant V (usually
between 2 and 3) called the power-law exponent and that vertices are more likely
to be adjacent if they have a common neighbour. There are also experimental
evaluations that show how closely real-world networks resemble hyperbolic
random graphs. For instance, Boguñá et al. [BPK10] studied an embedding of
an Internet graph into the HRG model, showing remarkable properties such

5

Chapter 1 Introduction

as the high quality and resilience of a greedy routing strategy based on the
geometry of the embedding. Apart from being a good representation of real-
world networks, the model is also accessible to theoretical analysis. Gugelmann
et al. [GPP12] gave rigorous proofs for the power-law degree distribution and
high clustering coe�cient as well as the average and maximum degree within
the network. In further analyses, many more properties have been studied
like the component structure [BFM13], the diameter [FK15][MS19], the clique
size [BFK18], and the treewidth [BFK16]. Hyperbolic random graphs can be
e�ciently generated [Blä+19]. There is also a generalisation of hyperbolic
random graphs called geometric inhomogeneous random graphs (GIRGs) that was
introduced by Bringmann et al. [BKL17]. HRGs can be seen as closely related
special cases of GIRGs in the sense that there is a coupling between GIRGs
and HRGs that produces a GIRG that is very close to being a sub-graph and
super-graph of the generated HRG.

There are also analyses of algorithms on HRGs. The motivation behind these
is that many algorithms have been observed to perform better on typical real-
world networks than on worst case graphs. Thus the analyses can be seen as an
attempt to explain these observations in order to gain a better understanding
of the underlying phenomena. For example, it has been shown that on HRGs
the maximum clique can be found in polynomial time [BFK18], bidirectional
breath-�rst search runs in sub-linear expected time [Blä+18], and that vertex
cover can be solved in polynomial time using a reduction rule that also works
well in practice [Blä+20]. Other studies consider and explain the e�ectiveness of
greedy routing on HRGs [Bri+17].

1.2 Outline

In the remainder of this thesis we �rst introduce basic concepts and de�nitions
and report on our experimental set-up and the empirical running time of the
PID-BT algorithm on HRGs. Next, in Chapter 3, we present PID-BT as an
intuitive extension of PID-ACP and give a theoretical analysis of the algorithm
including upper and lower running time bounds on various graph classes. The
preprocessing used for PID-BT is discussed in Chapter 4, along with both an
empirical and theoretical analysis of its e�ectiveness. Finally, we conclude with
a review of our results and some remarks about open questions and promising
directions for future work in Chapter 5.

6

2 Preliminary Considerations

In this chapter, we introduce the notation and important de�nitions used through-
out the thesis and provide an overview of the experimental set-up and the main
�ndings of our empirical observations.

2.1 Basic Definitions and Concepts

For a set - we write
(
-
:

)
for the set of :-element subsets of - . Let + be a �nite

set. Then for � ⊆
(
+
2
)
, we call � = (+ , �) an undirected graph, or simply graph

with vertices + and edges �. If not clear from context, we write + (�) for the set
of vertices of � and � (�) for the set of edges. We generally assume a graph �
to be simple, that is we forbid self-loops or, equivalently, assume the relation on
+ de�ned by � to be irre�exive. Also, we often use = for the number of vertices
of a graph, if the graph we are referring to is clear from the context.

We say that two vertices {,| ∈ + are adjacent if they have an edge, that is
if {{,|} ∈ �. The (open) neighbourhood of a vertex { is the set of all vertices {
is adjacent to, written as #� ({) = {| ∈ + | {{,|} ∈ �}. The degree of a vertex
written as deg� ({) = |# ({) | is the size of its open neighbourhood. We de�ne the
closed neighbourhood of a vertex as the union of the open neighbourhood and
the vertex itself, written as #� [{] = # ({) ∪ {{}. If the graph we are referring to
is clear from context, we omit the subscript from our notation. This also applies
to the de�nitions that follow.

The concept of open and closed neighbourhood is canonically extended to
sets of vertices as follows. For a set* ⊆ + of vertices the open neighbourhood is
(*) = (⋃D∈* # (D)) * and the closed neighbourhood is # [*] = # (*) ∪* .

A vertex set * ⊆ + is called a clique if any two vertices {,| ∈ * are adjacent.
A graph whose vertices form a clique is called a complete graph, and we write
 = for the complete graph with = vertices. We say that the vertices {1, . . . , {:
form a cycle of length : if for 1 ≤ 8 ≤ : the vertices {8 and {8+1 mod : are adjacent.
If for all {1, . . . , {: contains no vertex twice, we call the cycle simple. A set of

7

Chapter 2 Preliminary Considerations

vertices * ⊆ + forms an induced cycle if there is a simple cycle that covers all
edges between vertices of* .

For a graph� = (+ , �) and a subset of vertices* ⊆ + we denote the (induced)
sub-graph as� [*] =

(
* , � ∩

(
*
2
))

. Notation wise, if� is a sub-graph of� then�
is a super-graph of� . We write� * as shorthand notation for� [+ *]. Similar
the complement graph � of � is de�ned as � =

(
+ ,

{
{{,|} ∈

(
+
2
)
| {{,|} ∉ �

})
.

In a slight abuse of notation we denote the graph derived by completing a vertex
set * ⊆ + to a clique with � + clique(*) =

(
+ , � ∪

(
*
2
))

. A contraction of an
edge {{,|} ∈ � is an operation that transforms � to a graph � ′ = (+ ′, � ′) by
replacing the vertices { and | with a new vertex {| and modifying the edges so
that {| is adjacent with #� ({) \ {|}∪#� (|) \ {{}. If a graph� ′ can be obtained
from � through a series of contractions and deletions of edges or vertices, we
call � ′ a minor of � .

Further, a vertex { ∈ + is called simplicial if its neighbourhood is a clique.

Components, blocks, separators. A path of length ; from {0 to {; is a se-
quence of vertices {0, . . . , {; such that for 8 ∈ 0 . . . ; − 1, {8 is adjacent to {8+1. A
vertex set� ⊆ + is called connected if for every {,| ∈ � there is a path from { to
|. If � is connected and no superset � ′ ⊆ + of � is connected, then we call � a
connected component of� . A connected graph that contains no cycles is called
a tree.

Let (⊆ + be a set of vertices. We call the vertex set � ⊆ + a component
associated with (, if � is a connected component in� \ (. Further, if removing (
from � increases the number of connected components in the remaining graph,
we call (a separator. For a separator (and a component � associated with (,
the pair ((,�) is called a block. Next, we call a component � associated with (
full if # (�) = (. Accordingly, a block ((,�) is called full if� is a full component
associated with (. In this case we have ((,�) = (# (�),�). See Figure 3.1 (a) for
an example of full and non-full components. A separator (is called minimal if
there are at least two full components associated with it.

Treewidth. The treewidth of a graph can be de�ned via tree decompositions.
A tree decomposition of a graph � is a tuple (),]), where) is a tree and] :
+ ()) ↦→ 2+ (�) is a function mapping nodes of) to sets of vertices of � (called
bags), such that

8

Basic Definitions and Concepts Section 2.1

1. each vertex appears in some bag of the tree, that is for all { ∈ + (�) there
is a C ∈ + ()) with { ∈] (C);

2. the endpoints of each edge are contained together in some bag, that is for
all edges {D, {} ∈ � (�) there is a node C ∈ + ()) with {D, {} ⊆] (C);

3. the bags of each vertex form a subtree of) , that is for each vertex { ∈ + (�)
the set {C ∈ + ()) | { ∈] (C)} is connected in) .

For simplicity we call two bags] (C1),] (C2) adjacent, if C1 and C2 are adjacent in) .
The width of a tree decomposition (),]) is de�ned as the size of the biggest bag
decremented by one, i.e. max{|] (C) | | C ∈ + ())} − 1. The treewidth tw(�) of �
is the minimum width of any tree decomposition for � .

The following equivalent characterisation of treewidth is important for Sec-
tion 4.1. A graph� is called chordal if every induced cycle in� has length exactly
three. We now de�ne the clique number l (�) as the size of the largest clique
in a graph � and the chordal-width of � as the minimum clique number of any
super-graph � ′ = (+ , � ′) with � ⊆ � ′ of � that is chordal. Then, the treewidth
of � is the chordal-width of � decremented by one [PS97]

tw(�) = chordal −width(�) − 1.

Hyperbolic Random Graphs. In order to de�ne hyperbolic random graphs,
we �rst need to introduce the hyperbolic plane. After choosing a point $ as the
origin and some ray originating in $ as a reference for angles, any point ? of
the hyperbolic plane is identi�ed by its polar coordinates. We write A (?) for the
radius of ? , which is the hyperbolic distance between $ and ? and \ (?) for the
angle of ? which is the angle between between ? ,$, and the reference ray. Then
the hyperbolic distance between two points ? and @ is

dist(?, @) = acosh(cosh(A (?)) cosh(A (@)) − sinh(A (?)) sinh(A (@)) cos(J\ (?, @))),

where J\ (?, @) denotes the angular distance between ? and @ and cosh(G) =
(4G + 4−G)/2, sinh(G) = (4G − 4−G)/2. In general all angles and arithmetic op-
erations with angles are performed modulo 2c and positive angles between 0
and c stand for anticlockwise rotations. The functions cosh(G) and sinh(G) are
asymptotically approximated as 1

24
G ± > (1).

9

Chapter 2 Preliminary Considerations

We write �? (A) for the disk of radius A around point ? , that is the set of points
which have hyperbolic distance at most A . In cases in which the angle of the point
is 0 (or not relevant), we simply write �A1 (A2) for the disk of radius A2 around
point (A1, 0). The biggest intuitive di�erence between the Euclidean plane and
the hyperbolic plane is that the hyperbolic plane somehow contains more space.
For example, a Euclidean disk with radius A has circumference 2cA and area cA 2,
which are both polynomial functions in A . In contrast to that, a hyperbolic disk
with radius A has circumference 2c (sinh(A)) and area 2c (cosh(A − 1), which
is exponential in A . There are several models that can visualize the hyperbolic
plane in Euclidean space. For drawings of hyperbolic random graphs, we use the
native representation, which works by simply treating hyperbolic coordinates
as Euclidean polar coordinates. This way, shapes far away from the origin are
distorted, leading to for example tear-drop shaped circles (see Figure 4.4 (a)).

We can now de�ne hyperbolic random graphs, which are sampled by distribut-
ing = points in the disk �$ (') according to a quasi-uniform distribution and
connecting any two points if their hyperbolic distance is at most '. The radius '
of the disk is set to ' = 2 log= +� for a constant � ∈ ℝ. The coordinates of the
= points are sampled as follows. The angular coordinate is drawn uniformly at
random from [0, 2c] and the radius A ∈ [0, '] of each point is drawn according
to the probability density function

5 (A, \) = 5 (A) = 1
2c

U sinh(UA)
coshU' − 1 =

U

2c 4
−U ('−A)

(
1 +K

(
4−U' − 4−2UA

))
. (2.1)

The constant U ∈
(1
2 , 1

)
a�ects how strongly the probability density rises for

values of A closer to '. This a�ects the power-law exponent 2U + 1 of the degree
distribution of the generated graph. The expected average degree of a hyperbolic
random graph is constant and determined by Gugelmann et al. [GPP12, Lemma
2.3] as

2U24−�/2
c (U − 1/2)2 (1 + > (1)) .

The > (1) in the above formula comes from the fact that in general we are de-
scribing and analysing the asymptotic properties of hyperbolic random graphs
for large = under the assumption that � and U are constant.

We will now state a number of useful lemmas that we use in our proofs and
analyses. Many of these lemmas are helping us deal with the probabilities of
events in which vertices fall or do not fall within certain regions of the disk.

10

Basic Definitions and Concepts Section 2.1

In general, the probability with which a vertex lies in a region � ⊆ �'0 is
given by the region’s probability measure ` (�) =

∫
�
5 (\, A)d\dA . To calculate

or simplify such an integral, the asymptotic approximation of the probability
density function given in Equation (2.1) is useful.

Gugelmann et al. [GPP12] and Kromer [Kro17] further give equations for the
measure of commonly needed regions.

I Lemma 2.1 (Lemma 3.3 in [Kro17]). For any 0 ≤ A,< ≤ ' we have

` (�0(A)) = 4−U ('−A) (1 −K (4−UA)), (2.2)

as well as

` (�A (') ∩ �0(' −<)) =
{
` (�0(' −<)), if A ≤ <,

4U
c (2U−1) 4

<−A
2 −U< · Y, if A > <,

(2.3)

where Y = 1 ±$
(
4 (<−A) (U− 1

2)
)
. J

The �rst measure in the above lemma describes the region of a disk with
radius A around the centre. The second measure is the intersection of a disk with
radius ' around a point with radius A and a disk with radius ' −< around the
origin. For< = 0 this region is exactly the region in which vertices are adjacent
to a vertex { at (A, 0). We can thus call this the region of the neighbourhood of {.
For larger values of<, the region is restricted to neighbours of radius at most
'−<. By restricting the neighbourhood of { to vertices with radius at most A , we
can de�ne the region of the inner neighbourhood of { as �{ (') ∩ �0(A). Similarly,
the region of the outer neighbourhood consists of all points of the region of the
neighbourhood that have radius at least A . Using these de�nitions, we can also
talk about the vertices in the inner/outer neighbourhood of {, which are subsets
of the neighbourhood of {. If the context makes it clear what we are referring to,
we often shorten this notation and simply write inner/outer neighbourhood for
either the regions or the sets of vertices. This is also done with other regions
of the disk, or respectively the sets of vertices lying in those regions, that we
introduce in Section 4.4.

When calculating the measures of interesting regions, we often need to in-
tegrate over points in the region of the neighbourhood of a vertex. For this
sake, it is necessary to know the outermost angles of the neighbourhood of a

11

Chapter 2 Preliminary Considerations

vertex at certain radii. Gugelmann et al. [GPP12, Lemma 3.1] gave a convenient
asymptotic expression for this.

I Lemma 2.2 (Lemma 3.1 in [GPP12]). Let {,| be vertices with radii A1 and
A2 such that A1 + A2 ≥ '. The maximum angular distance between { and | such
that they are still adjacent is

\ (A1, A2) = arccos
(
cosh(A1) cosh(A2) − cosh(')

sinh(A1) sinh(A2)

)
= 24

'−A1−A2
2

(
1 +K

(
4'−A−~

))
.

J

We say that a vertex { is between two vertices D,|, if the angle di�erence
between D and { plus the angle di�erence between { and | equals the angle
di�erence between D and |. The following lemma gives us a simple rule for
the adjacency of vertices that lie between adjacent vertices. This can be used
to deduce that the left and right halves of the inner neighbourhood of a vertex
form cliques (see Lemma 4.20).

I Lemma 2.3 (Lemma 5.4 in [Kro17]). Let D, {,| ∈ + be vertices such that {
lies between D and |, and let {D,|} ∈ �. If A ({) ≤ A (D), then { is connected to
|. J

We already saw that for a region (of the disk and a �xed vertex { the proba-
bility with which { is in (is given by the measure of (, that is Pr[{ ∈ (] = ` (().
Note that in this notation the vertex { is treated as the point (A ({), \ ({)). By
de�ning indicator random variables -{ that are 1 if { ∈ (, we can express
the expected number of vertices that lie in (as � [∑{∈+ -{] =

∑
{∈+ � [-{] =∑

{∈+ Pr[-{ = 1] = = · ` ({ ∈ (). Krohmer gives the following equation for the
probability with which at least one vertex lies in ([Kro17]

Pr[∃{ ∈ (] = 1 − (1 − ` (())= ≥ 1 − 4−= ·` (() , (2.4)

where ∃{ ∈ (is used as informal notation for the event in which at least one
vertex lies in (. Similarly, we can derive the probability for the event in which
no vertex falls into (as

Pr
[
�{ ∈ (

]
= (1 − ` (())= ≥ 1 − = · ` ((), (2.5)

12

Empirical Running Time of PID-BT Section 2.2

where again �{ ∈ (is used as informal notation for the event in which no
vertex lies in (. The estimate used for the inequality is however rather pessimistic.
We derive a more accurate inequality for a special case in the lemma below.

I Lemma 2.4. Let (be a region of the hyperbolic disk �$ (') such that there
is a constant 2 with ` (() ≤ 2

=
. Then the probability with which no vertex falls

into (is asymptotically at least constant and given as J

Pr
[
�{ ∈ (

]
≥

(
1 − 2

=

)=
≥ 4−2

(
1 − 2

2

=

)
∈ S (4−2) (2.6)

Proof. The basic exponential inequality
(
1 + G

=

)= ≥ 4G
(
1 − G2

=

)
is commonly

known and holds for = ≥ 1 and |G | ≤ =. The claimed statement follows by
setting G to −2 . �

2.2 Empirical Running Time of PID-BT

When coming up with intuitions, hypotheses and ideas for proofs, it is always
helpful to be able to quickly evaluate these ideas. In the case of hyperbolic
random graphs, this can often be done experimentally by generating graphs and
checking whether the assumption in question holds empirically. In the following,
we present the basic set-up with which we conducted experiments and some of
the main results in order to motivate the structure of the remainder of the thesis.

For the e�cient generation of HRGs, we used the tool girgs [PW19], which
is based on a paper by Bläsius et al. [Blä+19]. The implementation of PID-BT and
its preprocessing was taken from the open-source repository [TO17] containing
the original submission to the PACE challenge. The experiments were conducted
on an ordinary laptop with 12GB RAM and Intel Core i7-5600U CPU.

The good performance of PID-BT on the instances of the PACE challenge
already con�rms the practical applicability of the algorithm to some extent. Still,
good performance on more and realistic instances would make the algorithm
even more interesting for further study. To that end, we conducted experiments
about the performance of PID-BT with and without preprocessing on hyperbolic
random graphs.

Figure 2.1 shows the run time of the PACE’17 implementation of PID-BT with
the preprocessing enabled by default. For each =, the running time shown is the

13

Chapter 2 Preliminary Considerations

0 5000 10000

Graph size (n)

100

101

102

103

R
u
n
n
in

g
ti

m
e

(s
)

(a) Semilogarithmic plot.

102 103 104

Graph size (n)

100

101

102

103

R
u
n
n
in

g
ti

m
e

(s
)

(b) Logarithmic plot.

Figure 2.1: Running times of PID-BT with preprocessing on HRG instances with =
vertices, U = 0.75, and average degree 10.

average over �ve random graphs generated with di�erent random seeds. An
exponential function would display as a straight in the semi-logarithmic plot.
Thus the running time of the algorithm seems to be sub-exponential in =, as
the observed running times depicted in Figure 2.1 (a) clearly follow a concave
function. At the same time, polynomial functions of the form 5 (=) = 0 · =1 show
as straight lines on the logarithmic plot. The observed run times depicted in
Figure 2.1 (b) rather follow a convex function. This indicates that the running
time of PID-BT is probably not polynomial. In summary, the runtime of the
algorithm appears to be sub-exponential and super-polynomial. Given the NP-
hardness of determining the treewidth of a graph, this con�rms the algorithm
as an interesting object of study.

In order to estimate how strongly the performance of the algorithm is in�u-
enced by the preprocessing, we conducted the same experiment without the
preprocessing step. This was achieved by altering the source code of the PACE
submission of PID-BT so that no safe separators are searched and found. We
found that the algorithm’s running time increases considerably if no preprocess-
ing is applied. See Figure 2.2 for plots of the running times with and without
preprocessing. In the experiments without preprocessing a time-out of 30 min-
utes was used and any execution time above that was truncated to 30 minutes.
Note the range of graph sizes drawn on the x-axis of Figure 2.2 (b) is substantially
smaller than in Figure 2.2 (a). It is clear that the preprocessing step plays an

14

Empirical Running Time of PID-BT Section 2.2

0 5000 10000

Graph size (n)

0

1000

2000

3000

R
u
n
n
in

g
ti

m
e

(s
)

(a) With preprocessing.

100 200 300

Graph size (n)

0

500

1000

1500

R
u
n
n
in

g
ti

m
e

(s
)

(b) Without preprocessing (time-out: 30m).

Figure 2.2: Comparison of running times of PID-BT with and without preprocessing
on HRG instances with = vertices, U = 0.75, and average degree 10.

essential role in the performance of the algorithm. As a consequence, in this
thesis we analyse the PID-BT algorithm and the preprocessing separately.

While Figure 2.2 shows the strong e�ect of the preprocessing, it does not
provide any explanation of how this e�ect is achieved. To remedy this, our dis-
cussion of the preprocessing in Chapter 4 includes more �ne grained experiments
that show more clearly in which ways the preprocessing works well. Addition-
ally, we include a few empirical results in our discussions of the theoretical
analysis of the preprocessing in Section 4.4.

15

3 Positive-Instance Driven Dynamic
Programming for Treewidth

The goal of this section is to present the PID-BT algorithm by Hisao Tamaki in a
clean and intuitive way and to analyse its running time. We do so by viewing
the algorithm as an extension of the PID-ACP algorithm described by Bannach
and Berndt [BB19] that Tamaki submitted to the PACE challenge 2016. Both
algorithms take a graph � = (+ , �) and a positive number : and decide if the
treewidth of � is at most : . In the yes case, the algorithms also construct a tree
decomposition of � . On a basic level, both algorithms are essentially dynamic
programs that keep track of di�erent combinatorial structures. The core idea that
we apply to the descriptions of both algorithms is to view these combinatorial
structures mainly as partial solutions of the problem. This way, the algorithms
are understood as dynamic programs that build tree decompositions of sub-
graphs of the input instance. To the best of our knowledge, this perspective has
so far not been explicitly used in the existing literature to understand or present
these algorithms. Using this new perspective, we are able to derive interesting
insights on the PID-ACP algorithm and describe the PID-BT algorithm in a very
intuitive way.

In the remainder of this chapter, we �rst present the PID-ACP algorithm
and derive a few insights about it by employing a partial solution perspective.
We then proceed with our description of the PID-BT algorithm and give a
short example to help the reader strengthen their intuitions about some of the
combinatorial structures used by the algorithm. Finally, we conclude the section
with a theoretical analysis that includes a super-polynomial lower bound on the
expected running time of PID-BT on hyperbolic random graphs.

3.1 Graph Searching and Treewidth

The PID-ACP algorithm builds upon another equivalent characterisation of
treewidth. This characterisation can be derived via a game in which cops try
to catch a robber by jumping between vertices of a graph. At the beginning
of the game, the cops player chooses (up to) : vertices, which are occupied by

17

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

cops. Afterwards, the robber player chooses a vertex on which the robber is
placed. The game then proceeds in rounds until the robber is caught. In each
round, the cop player chooses a subset of the cops that will be relocated, removes
them from the graph, and announces the vertices on which they will be placed.
The robber then may walk any number of steps along edges of the graph, while
avoiding vertices currently occupied by cops. Subsequently, the cops are placed
on the announced positions, and the next round begins. If at some point a cop
is placed onto the vertex holding the robber, the robber is caught and the cop
player wins. Furthermore, we say the cop player has a winning-strategy with :
cops on a graph � , if : cops su�ce to always catch the robber regardless of the
robber players’ moves. Seymour and Thomas [ST93] showed that a graph has
treewidth at most : if and only if there is a winning-strategy for : + 1 cops on
that graph.

This equivalent characterisation of treewidth can be turned into an algorithm
by simulating the states of the game and checking if there is a winning-strategy
for the cops. This is the basis of the PID-ACP algorithm as described by Bannach
and Berndt [BB19]. The ACP algorithm [ACP87] can also be seen as a simulation
of the game even though this perspective is not the primary motivation behind
the algorithm. The idea is to model states of the game as vertices of a con�guration
graph and moves as cop-edges and robber-edges in that graph. A state of the
game can be represented as a con�guration, a subset � ⊆ + of vertices on which
the robber can still move. This means that instead of the robber’s exact position,
only the components that may contain the robber are stored. In order to make
sure that these con�gurations correspond to valid states of the game, only subsets
� with at most : + 1 neighbours (representing the positions of the cops) are
allowed. The placement of a single cop is then modelled via a cop-edge from
a con�guration � with |# (�) | ≤ : to � ′ = � \ { for a vertex {. We call this a
jump move. Note that turns in which multiple cops are moved are represented
by chains of multiple cop-edges. The movement of the robber does not have to
be modelled explicitly except when the robber’s sub-graph is split into multiple
components. Thus, for a con�guration � that consists of at least two connected
components �1, . . . ,�ℓ , there are robber-edges from � to all �8 , 1 ≤ 8 ≤ ℓ . We
call this a reveal move, as it reveals the component of the robber.

The start con�guration of the game is the state containing all vertices of the
original graph, as this represents a situation in which the robber can be on any
vertex, and no cop has been placed. The winning con�gurations are all sets of

18

A Partial Solution Perspective on PID-ACP Section 3.2

single vertices with degree at most : . This is motivated by the fact that this
represents a state of the game in which at least one cop is remaining and hence
able to catch the robber.

We can check whether there is a winning strategy using a simple dynamic
program that marks nodes in the con�guration graph. We start by marking all
winning con�gurations. Next, a con�guration is marked if it has a cop-edge to
an already marked con�guration or if all of its outgoing robber-edges lead to
marked con�gurations. This leads to the start con�guration being marked, if and
only if the cops have a winning strategy. In order to improve the performance,
the algorithm does not explicitly compute the entire graph, but only the part of
the graph that can be reached from a winning con�guration.

In the worst-case, this can still lead to S (2=) considered con�gurations, how-
ever it seems to be substantially less on some instances in practice. For instance,
Bannach and Berndt show polynomial bounds for certain graph classes. As an
example for a worst-case with S (2=) con�gurations, consider a star with = − 1
leaves. Here any subset of the leaves is valid as it has only one neighbour and it
can be reached by a sequence of jump moves.

3.2 A Partial Solution Perspective on PID-ACP

The moves of the game that underlies the PID-ACP algorithm can be consid-
ered in the reverse direction, like in the dynamic program from the previous
paragraph. This way, each con�guration � can be seen as a partial solution and
each (reversed) move extends partial solutions. In particular, if a con�guration
� is marked by the dynamic program, this guarantees the existence of a tree
decomposition of width at most : of� [# [�]] with a bag containing # (�) acting
as an interface to the rest of the graph. Note that when taking this reversed
perspective on the algorithm, then the winning con�gurations are what we
start with and the start con�guration is the target that the algorithm is working
towards.

A reversed jump move represents adding one vertex { ∈ + \� to � and can
only take place if |# (� ∪ {{}) | ≤ : . Looking at partial solutions, it now becomes
clear why the size was limited by : and not : + 1. In order to construct a partial
solution for�∪{{}, the tree decomposition of� is extended by connecting a new
bag containing # (� ∪ {{}) ∪ {{} to the old interface bag # (�) and appending a
new interface bag # (� ∪ {{}). Only if |# (� ∪ {{}) | ≤ : , it can be guaranteed

19

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

that the intermediate bag contains at most : + 1 vertices. In analogy to nice tree
decompositions, we call the reversed jump move an insert move.

A reversed reveal move simply takes two con�gurations � and � , represent-
ing tree decompositions of # [�] and # [�] and creates a con�guration that
represents a tree decomposition of # [�] ∪ # [�], by simply joining the tree
decompositions. For a reversed reveal move, |# (� ∪ �) | ≤ : + 1 has to hold as
(� ∪ �) is the new interface bag connected to the interface bags of the tree
decompositions of � and � . We call a reversed reveal move a join move.

The algorithm can now be seen as starting with the winning con�gurations
and applying all possible insert and join moves until a con�guration covering
the whole graph (i.e., the start con�guration) is found. Interestingly, for the
computation of treewidth, a lot of these moves can be ignored.

In the following lemmas, we restrict the types of moves that are necessary to
arrive at reachable con�gurations, i.e., con�gurations that can be reached from
the winning con�gurations via a sequence of insert and join moves. Note that a
con�guration is reachable if and only if it is marked by the labelling procedure
and that reachable con�gurations are vertex sets� whose closed neighbourhood
has a tree decomposition of width at most : with a bag containing # (�). In
particular, we show that a reachable con�guration can be reached by only
using adjacent moves. We call an insert move adjacent if it adds a vertex { to a
con�guration � with { ∈ # (�)
I Lemma 3.1. Any con�guration that is reachable can also be reached, when
restricting insert moves to adjacent ones. J

Proof. Consider a con�guration that can be reached by a sequence of moves S.
Suppose S contains a non-adjacent insert move that transforms a con�guration
� to a con�guration � ′. Then � ′ = � ∪ {{} for some vertex { ∉ # [�] and
|# (� ′) | ≤ : . This means that |# ({) | ≤ : and thus {{} is one of the winning
con�gurations the game starts with. This means that the insert move can be
replaced by a join move that joins C and {{}. This can be done to any non-
adjacent insert move, and thus the lemma follows. �

Similarly, we call a join move adjacent, if it joins two con�gurations � and �
with # (�) ∩ # (�) ≠ ∅.
I Lemma 3.2. Assume the input graph to be connected. If the start con�gu-
ration is reachable, then it can also be reached, when restricting join moves to
adjacent ones. J

20

A Partial Solution Perspective on PID-ACP Section 3.2

Proof. Assume the start con�guration can only be reached by using non-adjacent
join moves. Among all sequences of moves leading to the start con�guration
with minimum number of non-adjacent join moves, choose a sequence S such
that the number of moves after the last non-adjacent join move is minimal. In
the following, we show that we can contradict the choice of S by lowering
the number of non-adjacent join moves or the number of moves after the last
non-adjacent join move " in S. Let � and � be the con�gurations joined in " .
We have three cases:

1. The move after " is an insert move. This means that " adds a vertex {
to � ∪ �. As # (�) ∩ # (�) = ∅, |# (� ∪ {{}) | ≤ |# (� ∪ � ∪ {{}) |. This
means that { could also have been inserted into � before the join with � ,
reducing the number of moves that follow after the join or making the
join adjacent.

2. The move after " is an adjacent join move that joins � and � with a
con�guration � that is, without loss of generality, adjacent to �. Then,
similarly to case 1, |# (� ∪ �) | ≤ |# (� ∪ � ∪ �) |. The joins can be
rearranged, so that � and � are joined prior to the join with �, again
reducing the number of non-adjacent joins or the number of moves that
follow after " .

3. " is the last move. In a connected graph, the result of a non-adjacent join
is a con�guration with non-empty neighbourhood and, thus, cannot be
the start con�guration. This means that a non-adjacent join cannot be the
last move, making this case impossible.

Both in case 1 and case 2, the moves can be rearranged so that the next move after
" occurs before" . This always reduces the number of moves after" and might
make " adjacent if the added vertices are adjacent to � and � , contradicting
the choice of S. �

I Corollary 3.3. Assume the input graph to be connected. If the start con�gu-
ration is reachable, then it can also be reached using only adjacent moves. J

Proof. Let S be a sequence of moves leading to the start con�guration. First use
Lemma 3.1 to replace all non-adjacent insert moves in S. Then use Lemma 3.2 to
remove all non-adjacent join moves. This works, because the proof of Lemma 3.2

21

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

does not introduce new non-adjacent insert moves: the only step at which a non-
adjacent insert move might be created is in case 1 of the proof. However if adding
{ to � ∪ � is non-adjacent, then adding { to either � or � must be non-adjacent
as well, contradicting the statement that all insert moves are adjacent. �

This means that the partial solution perspective helped us discover a way in
which the graph searching algorithm could be sped up, by ignoring non-adjacent
moves in the labelling procedure.

3.3 A Partial Solution Perspective on PID-BT

In this section, we explain the PID-BT algorithm Tamaki submitted in the 2017
PACE challenge. In our description, we show how the algorithm can be seen as
an extension or adaptation of the PID-ACP algorithm described and analysed
in the previous sections. The motivation behind the adaptations is to reduce
the number of partial solutions the algorithm has to consider before �nding a
valid solution for the entire input instance or disproving the existence of such a
solution. This is accomplished by two main ideas.

The �rst one is that a total ordering of the vertices is assumed and partial
solutions are explored based on this order. This helps in restricting the number
of ways in which a partial solution can be derived from other partial solutions.

The second idea is that the partial solutions themselves are structurally re-
stricted. The graph searching algorithm discussed in the previous sections
considers partial solutions whose interface corresponds to arbitrary reachable
states of the cops and robber game. The PID-BT algorithm improves on this by
restricting the interfaces of partial solutions to vertex sets with more narrow
combinatorial properties. This restriction was already part of the BT algorithm
by Bouchitté and Todinca [BT02]. The di�erence is that the BT algorithm con-
siders arbitrary partial solutions that have the combinatorial properties, while
PID-BT only considers positive partial solutions that additionally correspond to
a sub-graph with treewidth at most : .

In the following, we explain the combinatorial property used by the BT and
PID-BT algorithms and how it is used in combination with a vertex ordering to
restrict the order in which partial solutions are explored. As a reminder, note
that the algorithms receive a graph� = (+ , �) and an integer : > 0 as input and
decide whether tw(�) ≤ : .

22

A Partial Solution Perspective on PID-BT Section 3.3

The combinatorial constraint placed on the interface of partial solutions is
that they have to be potential maximal cliques. A vertex setS is called a potential
maximal clique (PMC) if there is a minimal set of edges that completes � into a
chordal super-graph of� in which S is a maximal clique. A tree decomposition
(),]) of � is called canonical, if every bag] (C) is a potential maximal clique and
for every pair of adjacent bags] (C1),] (C2) the vertex set] (C1) ∩] (C2) is a minimal
separator in � . We later discuss how PMCs can be recognized in polynomial
time, but �rst, we discuss a more fundamental statement. The following lemma
is important both for the BT algorithm and PID-BT.

I Lemma 3.4 (Lemma 1 in [Tam19]). Let� be a graph with tw(�) = : . Then
there is a canonical tree decomposition of � with width : . J

This means that in order to show that a graph has treewidth at most : , it
su�ces to search for a canonical tree decomposition of width: . The BT algorithm
does this by enumerating all potential maximal cliques of size up to : + 1 and
all minimal separators of size up to : . The algorithm then tries to combine
PMCs and minimal separators into valid partial solutions, which allows it to
decide treewidth in time proportional to the product of the number of minimal
separators, the number of PMCs and some polynomial factors in=. PID-BT works
similarly, but does not need to list all PMCs and minimal separators. Instead, only
relevant PMCs and minimal separators are considered that arise from already
found valid partial solutions. This way, partial solutions are restricted to positive
ones that correspond to sub-graphs of treewidth at most : , hence the name
positive-instance driven. Below, we �rst explain the intuition behind how this
is achieved using a total ordering of the vertices to orient the partial solutions,
before going into more exact details, de�nitions, and lemmas.

Let < be the aforementioned (strict) total order of + and let min(*) stand
for the minimum vertex of a vertex set * ⊆ + according to <. We say that a
vertex set *1 precedes a vertex set *2 if min(*1) < min(*2). The goal is to let
the algorithm process the graph and partial solutions in a descending way, �rst
building partial solutions consisting of vertices high in the ordering and working
towards partial solutions that include more minimal vertices.

To clarify this rough intuition, consider a PMC S . We said that PMCs are the
interfaces of partial solutions (compare Section 3.2). This means that S repre-
sents the interface of a partial solution. It remains to establish which other parts
of the graph are included in that partial solution. We want the algorithm to go

23

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

through the vertices in descending order. To that end, a connected set� is called
inbound, if there is a full block (# (�), �) associated with # (�) such that �
precedes� . Otherwise,� is called outbound. Following the intuition, we want S
to represent a partial solution that excludes the associated outbound components
and includes the inbound ones. For technical reasons, we also have to exclude
components whose neighbourhood is the subset of the neighbourhood of an
outbound component. This is less complicated than it seems, because for two
outbound components �1, �2 associated with a PMC, either # (�1) ⊆ # (�2) or
(�2) ⊆ # (�1) holds [Tam19, Lemma 4]. This means that S has an associated
outbound component � with maximal neighbourhood # (�). This lets us de�ne
the outlet of S , as outlet(S) = ∅, if S does not have an associated non-full
outbound component, and as outlet(S) = # (�) for the maximal neighbour-
hood # (�) of any outbound component � associated with S . We call all other
components, whose neighbourhood is not a subset of the outlet, the support
of S (support(S)) as these are the components that contribute to the partial
solution represented byS . See Figure 3.1 (c) for a visual depiction of a PMC with
outlet and support. All components in the support are inbound. In summary,
the PMC S represents a partial solution of � without all components whose
neighbourhood is a subset of the outlet, or equivalently of S and all components
in the support of S .

This partial solution is positive or valid if the graph induced by S and the
components in its support has a tree decomposition of width at most : that has
a bag containing S . Consequently, we call S :-feasible if |S | ≤ : + 1 and for
each component �8 ∈ support(S), � [# [�8]] has a tree decomposition of width
at most : with a bag containing # (�8). This is motivated by the fact that partial
solutions of the # [�8] can be joined together at their interface bags # (�8) with
a new bag containing S , resulting in a tree decomposition of S and its support.
In the case in which outlet(S) = ∅, the support of S contains all components
associated with S . This means that a valid partial solution represented by a
PMC with an empty outlet is a valid solution for the whole graph. The following
lemma con�rms this intuition.
I Lemma 3.5 (Lemma 5 in [Tam19]). The treewidth of a graph is at most
: if and only if it contains a :-feasible potential maximal clique with empty
outlet. J

In consequence, the goal of the algorithm is to either �nd a :-feasible PMC
with empty outlet or to disprove the existence of such a PMC. The algorithm

24

A Partial Solution Perspective on PID-BT Section 3.3

starts with trivially :-feasible PMCs consisting of the closed neighbourhood of
a single vertex and tries to �nd new ones that cover larger parts of the graph.
The core of the algorithm lies in recurrent relationships between PMCs and
auxiliary structures called I-blocks and O-blocks. These recurrences make it
possible to enumerate all :-feasible PMCs, in a way that relies only on already
found :-feasible PMCs and :-feasible I-blocks and O-blocks. In the following,
we de�ne these structures, explain how they �t in with our understanding of
PMCs, and describe the recurrences used by the algorithm.

I-blocks and O-blocks are based on the de�nitions of inbound and outbound
components and generalize our concept of partial solutions. We call a full block
(# (�),�) with |� | ≤ : an I-block, if � is inbound. If otherwise � is outbound,
it is an O-block. Note that the neighbourhood of an inbound component � is a
minimal separator, as there must be another component � with # (�) = # (�)
that precedes � . Consequently, if the neighbourhood of a component is not a
minimal separator, then the component is outbound. Also, observe that a vertex
set (has at most one outbound associated full component � with # (�) = (,
while all other associated full components are inbound. We call an O-block
whole if its neighbourhood is a minimal separator and split otherwise. The
concept of a split O-block seems quite di�erent from that of a whole O-block
or I-block. Indeed, an outbound component that is associated with a PMC is
always whole [Tam19, Lemma 3]. However, we still need the de�nition of split
O-blocks, as they are needed in order to �nd all :-feasible PMCs. Also, split and
whole O-blocks are given the same name in accordance with the notation in the
original publication [Tam19].

Next, we extend the notion of feasibility to I-blocks and O-blocks. A connected
vertex set � is called :-feasible if there is a tree decomposition of � [# [�]] of
width at most : with a bag containing # (�). An I-block (# (�),�) is called
:-feasible, if � is :-feasible. An O-block (# (�), �) is :-feasible, if # (�) is the
union of the neighbourhoods of :-feasible inbound components. This way, :-
feasible I-blocks and O-blocks naturally extend our intuition about the feasibility
of PMCs and the concept of partial solutions.

Before going into the details of the recurrences used by the algorithm, we
show how PMCs can be identi�ed in polynomial time and introduce a de�nition
that makes it easier to refer to the vertices that are part of the partial solution
represented by a PMC. A vertex set (is called cliquish if for all pairs of distinct

25

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

v2v1

v3

v4

(a) Examples for components
and separators. {{1} is a full
component associated with
{{3, {4}, {{2} a non-full one.
Also {{2} is a full component
associated with the minimal
separator {{4}.

K

S

A B

C

(b) Example for a crib,
crib((,) = � ∪ � ∪ \ (. �
is not part of crib((,) as its
neighbourhood is contained in
(.

Ω

outlet(Ω) = N(A)

C1 C2

A

(c) Example a PMC S , where
� is an outbound component
assoc. with S s.t. outlet(S) =
(�) and support(S) =

{�1,�2}

Figure 3.1: Visual examples for some of the de�nitions needed for PID-BT.

vertices D, { ∈ (, D and { are adjacent, or there is a component � associated with
(such that D, { ∈ # (�).

I Lemma 3.6 (Lemma 2 in [Tam19]). A separator (of� is a potential maxi-
mal clique of � if and only if (1) (has no full component associated with it and
(2) (is cliquish. J

This can easily be checked in polynomial time. Next, consider a PMC S

with outlet (. If S is :-feasible, this stands for a partial solution of S and all
components associated with S , whose neighbourhood is not a subset of (. In
order to introduce a short notation for this, we generalise it as follows. For ⊆ +
and (⊂ , we de�ne the crib of (with respect to , written as crib((,), as the
union of \ (and all components � associated with whose neighbourhood
(�) is not a subset of (. See Figure 3.1 (b) for a visual depiction of a crib. For a
cliquish and (⊂ , crib((,) is a full component associated with ([Tam19,
Lemma 3]. We can now say that the feasibility of S stands for the existence of a
partial solution of crib(outlet(S), S).

This intuition is nicely con�rmed by the following statement, which also gives
us a recurrence between :-feasible I-blocks and PMCs.

I Lemma 3.7 (Lemma 7 in [Tam19]). An I-block (# (�),�) is :-feasible
if and only if there is some :-feasible PMC S with outlet(S) = # (�) and
crib(>DC;4C (S), S) = � . J

26

A Partial Solution Perspective on PID-BT Section 3.3

This way, we can �nd :-feasible I-blocks, based on found :-feasible PMCs.
Any :-feasible whole O-block is also easily found, as the neighbourhood of any
inbound component has an associated outbound component. Split O-blocks
can be found by looking for full components associated with the union of the
neighbourhoods of an inbound and an outbound component that already have
been found.

In order to describe the recurrences used to �nd all :-feasible PMCs, we de�ne
buildable PMCs as a more general type of PMC that includes :-feasible PMCs,
while being easier to construct. We say a PMC S with |S | ≤ : + 1 is :-buildable
if one of the following cases applies. Either

1. S = # [{] for a { ∈ + ,

2. there is a subset C of BD??>AC (S) such that S =
⋃
�∈C # (�) and every

member of C is :-feasible, or

3. S = # (�) ∪ (# ({) ∩ �) for some :-feasible O-block (# (�), �) and a
vertex { ∈ # (�).

Tamaki proves that all :-feasible PMCs are :-buildable [Tam19, Lemma 9]. Thus,
by �nding all :-buildable PMCs the algorithm is guaranteed to also �nd all
:-feasible PMCs.

With all the foundations set, we can now describe the algorithm in detail. The
basic idea is to list all :-buildable PMCs and all :-feasible I-blocks and O-blocks,
using previously found structures for the discovery of new ones. To that end,
the algorithm maintains collections of all found PMCs, :-feasible PMCs, and
:-feasible I-/ and O-blocks. In the following description of the algorithm, we
assume that newly discovered structures are implicitly added to these collections
and eventually processed by the applying procedures. To start, all case 1 :-
buildable PMCs S with |S | ≤ : + 1 are registered by checking for each { ∈ � if
[{] is a PMC.

Potential Maximal Cliques. For every PMCS that is discovered this way or
at a later step of the algorithm the same procedure is applied. If all components
in support(S) are :-feasible (this includes the case where support(S) = ∅), then
S is registered as a :-feasible PMC.

27

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

Feasible PMCs. For every newly found :-feasible PMC S , if outlet(S) = ∅
then the algorithm has found a witness for tw(�) ≤ : . In this case, the algorithm
could return immediately, but in accordance with Tamaki’s description of the
algorithm, we assume that it returns only after listing all structures. Otherwise,
crib(outlet(S), S) is a potentially newly discovered :-feasible I-block.

Feasible I-blocks. For every newly found :-feasible I-block (# (�),�) the fol-
lowing procedure is followed. First, for any already discovered O-block (# (�), �)
with� ⊆ � the vertex set := # (�) ∪# (�) is constructed. If | | ≤ : + 1 and
is a PMC, a new PMC is discovered. This corresponds to case 2 in the de�nition of
:-buildable PMCs. If | | ≤ : and there is a unique full component � associated
with , then a new O-block (# (�), �) is discovered. Next, the outbound full
component � associated with # (�) is the component part of a potentially new
O-block (# (�), �). Subsequently for each O-block (# (�), �) that had already
been discovered before processing the current I-block and for each { ∈ # (�),
all PMCs with | | ≤ : + 1 of the form = # (�) ∪ (# ({) ∩�) are registered.
This step corresponds to case 3 of :-buildable PMCs. All newly discovered PMCs
are processed according to the procedure above, before starting to process the
next I-block in the collection of I-blocks.

If at some point all I-blocks have been exhaustingly processed, but no:-feasible
PMC with empty outlet was found, the algorithm returns with negative result.
Note that sometimes the processing of an I-block leads to the re-discovery of an
already found PMC. In this case, the I-block could be the last missing :-feasible
component in the support, which means that the PMC will be recognized as
:-feasible.

The correctness of the algorithm is shown by inductively showing that all
:-feasible I-blocks, :-feasible O-blocks, :-buildable PMCs and :-feasible PMCs of
any size are discovered [Tam19, Theorem 1]. Let I:

�
and O:

�
denote the number

of :-feasible I-/O-blocks for the given : and let P:
�

be the number of :-buildable
potential maximal cliques. As with similar notations we omit the subscript � if
the graph is clear from the context. Then, the running time of the algorithm on a
graph� is in$∗(I: · O:), where$∗ hides asymptotically polynomial factors. As
all of these mentioned structures are listed exhaustingly, the algorithm further
runs in S (I: + O: + P:) time.

28

Example for PID-BT Section 3.4

4 6 1 9 3

2 8 5 7
(a) Example graph.

4 6 1 9 3

2 8 5 7

(b) A PMC (gray) with in-
bound (blue) and outbound
(orange) components.

4 6 1 9 3

2 8 5 7

(c) The four case 1 1-buildable
PMCs (gray).

Figure 3.2: Example graph with annotated structures.

3.4 Example for PID-BT

Following the description of PID-BT we now discuss a brief example in order to
strengthen our intuition of the algorithm. Insights from the example are then
used as the foundation of formalized proofs of upper and lower running time
bounds on elementary graph classes in Section 3.5.

We want to explore the behaviour of the algorithm on the graph depicted in
Figure 3.2 (a) with : = 1. The vertex ordering is determined by the numbers
inside the vertices.

We start with a few examples for PMCs, I-blocks and O-blocks. The set
{1, 9} is a PMC with three associated non-full components {4, 6}, {3}, {2, 8, 5, 7},
see Figure 3.2 (b). The components {4, 6} and {3} are inbound, because their
neighbourhoods have an associated full component that contains a smaller vertex.
The set {2, 8, 5, 7} is a whole outbound component and {1, 2, 8, 5, 7} is an example
for a split outbound component. This means that {1} is the outlet of the PMC
{1, 9} and {3} is the only component in its support. If the PMC is 1-feasible,
then there is a valid partial solution for tw(�) ≤ 1 of {1, 9, 3} that has {1, 9} as
interface.

In the following, we write -? to signify that the vertex set - is a PMC, and
-8 /-> for a full I-block / O-block (# (-), -). In the example graph there are four
vertices whose closed neighbourhood has size only 2. These neighbourhoods
are the case 1 1-buildable PMCs {2, 8}? , {9, 3}? , {4, 6}? , {5, 7}? (see Figure 3.2 (c))
the algorithms identi�es at the start. These PMCs consist of a leaf vertex and
its neighbour, that is adjacent to an associated outbound component containing
the vertex 1. This means that for each of these PMCs, the outlet consists of
the non-leaf vertex. All of these PMCs have empty support as they either
have no associated inbound components, or in the case of {2, 8}? the inbound

29

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

4 6 1 9 3

2 8 5 7

(a) A PMC (gray) with outlet
(green) and crib of the outlet
w.r.t. the PMC (yellow).

4 6 1 9 3

2 8 5 7

(b) Inbound (blue) and out-
bound (orange) component as-
soc. with outlet (green) of
PMC {5, 7}? .

4 6 1 9 3

2 8 5 7

(c) PMC (gray) with empty
outlet and assoc. inbound
(blue) components.

Figure 3.3: More structures on the example graph.

component {5, 7}8 is adjacent only to the outlet. Thus, the initial case 1 PMCs
are all recognised as 1-feasible. Next, for each of the PMCs, the crib of the outlet
with respect to the entire PMC is identi�ed as the component part of a 1-feasible
I-block. In all four cases, this is the degree 1 vertex of the PMC, as depicted in
Figure 3.3 (a) for {5, 7}? where crib({5}, {5, 7}) = {7}.

We now follow the events related to the I-block {7}8 . During its processing,
the 1-feasible full outbound component {4, 6, 1, 9, 3, 2, 8} associated with {5} is
found (see Figure 3.3 (b)) and subsequently the case 3 1-buildable PMC {5, 8}? is
found by evaluating # ({4, 6, 1, 9, 3, 2, 8}) ∪ (# (5) ∩ {4, 6, 1, 9, 3, 2, 8}) = {5, 8}:

#
(

4 6 1 9 3
2 8 5 7

)
∪

(
#

(
4 6 1 9 3

2 8 5 7

)
∩ 4 6 1 9 3

2 8 5 7

)
=

4 6 1 9 3
2 8 5 7 .

The outlet of {5, 8}? is {8} and {7} is the only component in its support,
making {5, 8}? 1-feasible. By building crib(outlet({5, 8}), {5, 8}), this leads to the
discovery of the 1-feasible I-block {5, 7}8 . When processing {5, 7}8 , the algorithm
discovers the next 1-feasible O-block {1, 3, 4, 6, 9}> and by using another case 3
construction for buildable PMCs, the PMC {1, 8}? , see Figure 3.3 (c). This PMC
only has associated inbound components and thus an empty outlet. As soon as
all of its inbound components {4, 6}, {3, 9}, {2}, and {5, 7} have been recognized
as 1-feasible, {1, 8}? is found to be 1-feasible, too. This way, the algorithm �nds
that the treewidth of the graph is indeed 1.

Note that this is just one example for how the algorithm can �nd {1, 8}? .
Depending on the order in which the PMCs and I-blocks are found and processed,
{1, 8}? can also be constructed as a case 2 1-buildable PMC, by combining
{4, 6, 1, 9, 3}> and {4, 6}8 as {1, 8}? = # ({4, 6, 1, 9, 3}) ∪ # ({4, 6}):

#
(

4 6 1 9 3
2 8 5 7

)
∪ #

(
4 6 1 9 3

2 8 5 7

)
=

4 6 1 9 3
2 8 5 7 .

30

Running Time Bounds for PID-BT Section 3.5

This example already gives us a good intuition for the behaviour of the al-
gorithm and the meaning of the various de�ned structures and their interplay.
In the next section, we deepen this understanding by deriving bounds for the
number of PMCs, I-, and O-blocks in graphs of di�erent graph classes.

3.5 Running Time Bounds for PID-BT

Just as previously we use I: and O: for the number of :-feasible I-/O-blocks in
a graph for a given : and P: for the number of :-buildable potential maximal
cliques. Subscripts are added to this notation in case the graph that is referred
to is not clear from the context.

In the following, we establish inequalities between the number of :-feasible I-
and O-blocks and :-buildable PMCs and discuss their limitations. Subsequently,
we derive upper and lower bounds for I- and O-blocks on basic graph classes for
di�erent values of : .

I Lemma 3.8. Let � be a graph. Then the following inequalities hold.

1. I: ≤ = · O:

2. I: ≤ P:

3. The number of :-feasible whole O-blocks is at most = · P:

4. (a) P: ≤ (= + 1):+1, (b) I: ≤ (= + 1):+1, and (c) O: ≤ (= + 1):

J

Proof. 1. The neighbourhood of an inbound component is a minimal separa-
tor. There can be at most = (or actually = − 1) full components associated
with a minimal separator. The statement follows, as exactly one of these
full components is outbound, while all others are inbound.

2. Follows directly from Lemma 3.7.

3. For a :-feasible whole O-block (# (�), �) there exists a :-feasible I-block
(# (�),�) and by Lemma 3.7 there exists a PMC with outlet # (�). For two
outbound components �1 and �2 associated with a PMC, either # (�1) ⊆
(�2) or # (�2) ⊆ # (�1) holds [Tam19, Lemma 4]. Further, # (�1) ≠

31

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

(�2) holds, because otherwise either �1 or �2 would be inbound. Thus,
the number of outbound components per PMC is at most the size of the
outlet which is at most =.

4. A potential maximal clique is a subset of + of size up to : + 1. There are
no more than (= + 1):+1 such subsets (a). The next inequality (b) follows
directly, as I:

�
≤ P:

�
. O-blocks are uniquely identi�ed by their neighbour-

hood, as no two outbound components can have the same neighbourhood.
The neighbourhood of a :-feasible O-block consists of up to : vertices,
which gives the claimed inequality (c).

�

It would be useful to also �nd upper bounds for the number of :-feasible O-
blocks in terms of the number of :-feasible PMCs. For whole :-feasible O-blocks,
this is straightforward, as the neighbourhood of a full inbound component is
also the neighbourhood of a unique full outbound component. For the number of
:-feasible split O-blocks however, there does not seem to be such an easy upper
bound in terms of the number of :-feasible I-blocks or PMCs. This allows the
construction of graphs with S (=): :-feasible split O-blocks and linear number
of :-feasible PMCs. Before giving an example of this and showing how it can
be transformed to a lower bound for the running time of PID-BT on hyperbolic
random graphs, we �rst analyse the number of :-feasible I-blocks and / or
:-buildable PMCs on a few more elementary graph classes.

I Proposition 3.9. Let) be a tree with = vertices. For any : > 0, the number
of :-feasible I-blocks in) is inK (=). J

Proof. As I: ≤ P: it su�ces to show an upper bound on the number of PMCs.
A vertex set is a PMC, if there is no full component associated with it and it is
cliquish. This means that any PMC must consist of two adjacent vertices because
both a single vertex and a pair of non-adjacent vertices have an associated full
component (unless = = 1) and more than two vertices are not cliquish. Thus, in
a tree, we have I: ∈ $ (=) for any : .

We also have I: ∈ S (=) because for every edge that is not incident to the
minimum vertex {min, one of the two connected components separated by the
edge is a :-feasible inbound component. �

A similar result can be obtained for circles.

32

Running Time Bounds for PID-BT Section 3.5

I Proposition 3.10. Let � be a circle graph with = vertices. For any : ≥ 2, the
number of :-feasible I-blocks in � is inK (=2) and the number of PMCs in � is
inK (=3). J

Proof. Let {min be the minimum vertex in the total ordering of + (�). Then
every connected vertex set � such that {min is not element of # [�] is a :-
feasible I-block. As there are onlyK (=2) connected vertex sets in� and inbound
components are connected vertex sets, this means that I: ∈ K (=2).

Regarding PMCs, �rst, we show that any PMC has 3 vertices. To see this, note
that any set of at most 2 vertices has an associated full component. Further, any
set with 4 or more vertices is not cliquish, because it contains a pair of vertices
that are neither directly adjacent nor adjacent to the same component.

Next, consider a PMC S with three vertices of which none is {min or a neigh-
bour of {min. There are either one, two, or three components associated withS , of
which one contains {min and is thus outbound. If present, the other components
are inbound and in the support of S . The inbound components further are :-
feasible, which means thatS is :-feasible, too. As there are (=−3) · (=−4) · (=−5)
variants of such an S , we conclude P: ∈ K (=3). �

Interestingly while the number of PMCs is higher in circles than in trees, there
are no split O-blocks in circles, and thus the number of :-feasible O-blocks in a
circle is inK (=2). Next, we look at slightly more complex graph classes. We call
graph � a cactus graph, if any two simple circles in � share at most one vertex.

I Proposition 3.11. Let � be a cactus graph. Then for any : ≥ 2, the number
of PMCs in � is in $ (=3) and the number of :-feasible I-blocks is in $ (=2). J

Proof. First, we assume that � does not contain degree 1 vertices and establish
that the vertices of any PMC S lie on a single circle � in � . Suppose otherwise
thatS is a PMC that lies on two circles but not on one. IfS contains a cut vertex
that belongs to both circles or separates the circles, thenS is not cliquish as there
would be a pair of non-adjacent vertices without common adjacent component.
Otherwise, as S can not contain more than 2 vertices per circle, there is a full
component associated with S . Adding more vertices to S cannot resolve this
issue, and thus we conclude that any PMC in � lies on a single circle. Thus, by
the same argumentation as in Proposition 3.10, the number of PMCs is upper
bounded by $ (=3).

33

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

An inbound component � cannot be a separator, thus the part of � that is
adjacent to # (�) must lie in a single circle. In that circle � has (up to) two
endpoints. This means that per circle � there are no more than$ (|� |2) inbound
components, resulting in a total of at most $ (=2) :-feasible I-blocks.

Both bounds also hold if we allow degree 1 vertices in � , as appending a tree
only adds a linear amount of PMCs and I-blocks. �

The invariance of the number of PMCs and I-blocks to higher values of : does
however not carry over to all graphs of larger treewidth. Consider for exam-
ple a graph that is a rectangular grid with 0 × 1 vertices, which has treewidth
: = min(0, 1). On such a graph there are 2S (:) paths between certain vertices
with distance linear in : and all of these paths form :-feasible inbound com-
ponents. Even more interestingly, such a lower bound can also be found on
graphs of constant treewidth such as series parallel graphs, as shown in the next
proposition.

I Proposition 3.12. For any : ≥ 2 there is a series parallel graph � , such that
� contains 2S (:) :-buildable PMCs and :-feasible I-blocks. J

Proof. We construct � by parallel composition of : paths with 4 vertices. Let
B and C be the vertices at which the paths have been joined and de�ne C as the
minimum vertex in the total order of vertices.

Then any vertex set with B and any combination of neighbours of B forms
an inbound component. Such a component is also :-feasible, because when
searching for a tree decomposition of width : even traversing all : paths in
parallel is valid. As each of these inbound components has at most : neighbours,
the described components and their neighbourhoods form :-feasible I-blocks.
This yields a lower bound of 2: on the number of :-feasible I-blocks in � .

Similarly, we �nd 2:−1 :-feasible PMCs by choosing the two vertices between
B and C on one of the paths and one of these two vertices on all other paths. It is
easy to see that such a vertex set has no full associated component and is cliquish.
Further, the associated component containing B is :-feasible and inbound, as
established above. As for : − 1 paths either the vertex adjacent with B or the one
adjacent with C is chosen, this gives us 2:−1 :-feasible PMCs. �

Instances that have an exponential number of O-blocks are even easier to
construct. In the following example we show that even trees can have a number
of O-blocks exponential in : .

34

Running Time Bounds for PID-BT Section 3.5

{0

{1

{2

{3

{4

{5

{6

{7

{8

{9

{10

{11

{12

Figure 3.4: Acyclic graph �∗ℓ with exponential number of O-blocks for ℓ = 6.

I Proposition 3.13. For every ℓ ∈ ℕ there is a tree �∗ℓ with 2ℓ + 1 vertices
and contains S (ℓ:) :-feasible O-blocks and $ (ℓ) :-feasible I-blocks for : up to
ℓ − 2. J

Proof. We construct �∗ℓ from a star with {0 as central vertex and {1, . . . , {ℓ as
leaves by appending a vertex {8+ℓ to {8 for each 8 ∈ 1, . . . , ℓ , as depicted in
Figure 3.4 for ℓ = 6. We assume the total vertex ordering implied by the vertices’
indices. For simplicity we call the length-2 paths connected to {0 arms.

An inbound component � cannot span multiple arms, because then it would
have to contain {0 which means that there cannot be another component �
with the same neighbourhood that precedes � . This means that all inbound
components consist either of a leaf vertex or a complete arm (except the one
containing {1). Thus, there are only $ (ℓ) :-feasible I-blocks in �∗ℓ .

In contrast to that, outbound components can span multiple arms. In fact, any
union of {0 and the vertices of up to ℓ − 2 arms forms an outbound component,
because there is no other full component associated with its neighbourhood. The
neighbourhood of such an outbound component consists of degree-2 vertices
that are the neighbourhoods of :-feasible inbound components. This gives us
S (ℓ:) :-feasible O-blocks for : up to ℓ − 2. �

Note that this example can be easily generalized to graphs of larger treewidth
by replacing each {8 by a bigger structure of connected vertices. In particular
replacing, e.g. {2ℓ by a :-clique increases the treewidth to : − 1. This serves as

35

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

another example for an almost trivial instance on which PID-BT already has
exponential running time in : .

We can express the generalized structure of the graphs�∗ℓ in a lemma that we
can then use to show a lower bound for the number of :-feasible O-blocks in
hyperbolic random graphs. Consider the following generalisation of�∗ℓ . Let�
be a graph with some vertex ordering, � be a connected vertex set containing
the minimum vertex, and �1, . . . ,�ℓ be the connected components associated
with � . Further for 1 ≤ 8 ≤ ℓ assume �8 \ # (�) ≠ ∅ and let (8 = # (�) ∩�8 . In
resemblance to the structure of�∗ℓ , we call the tuple (�, (�1, . . . ,�ℓ), ((1, . . . , (ℓ))
a star decomposition � with centre � , arms �1, . . . ,�ℓ and joints (1, . . . , (ℓ . As
an example, consider the canonical star decomposition of �∗ℓ , where {{0} is the
centre, all components associated with {{0} are arms and the joint of each arm
consists of the degree-two vertex connected with {0. A star decomposition is
J-thin if each joint (8 has size at most J. We can now formulate the lemma
that generalizes the idea from Proposition 3.13 to graphs with suitable star
decompositions.
I Lemma 3.14. Let � be a graph and (�, (�1, . . . ,�ℓ), ((1, . . . , (ℓ)) be a J-thin
star decomposition of� for a constant J. Suppose that for each arm�8 the block
((8 ,�8 \ (8) is a :-feasible I-block for the target value : for the treewidth. Then
� contains at least S

(
ℓ 5 (:)

)
:-feasible O-blocks for some 5 (:) ∈ S (:). J

Proof. We consider the union C of some arms and de�ne the vertex set C as
+ (�) \ C. Assuming # (C) ≤ : , we �rst show that (# (C), C) is a :-feasible
O-block and then show that there are enough choices for such an C to prove the
claimed bound. First note that (# (C), C) is an O-block because C is connected
and its neighbourhood is distributed across multiple of its associated components
and thus there exists no other full component associated with # (C). We have
(C) ≤ : by assumption and also the neighbourhood of C is the union of some
joints (8 . By assumption these (8 are the neighbourhoods of :-feasible inbound
components and hence C is a :-feasible O-block.

It remains to show that there are many such outbound components. If C
has G arms, then its complement C has at most J · G neighbours. Thus, there
is an 5 (:) ∈ S (:) such that the complement of a union of 5 (:) arms has a
neighbourhood of size at most : . This means that there are at least

(
ℓ

5 (:)
)
∈

S
(
ℓ 5 (:)

)
choices of C. �

In the following, we show that we can �nd a star decomposition suitable for

36

Running Time Bounds for PID-BT Section 3.5

the above lemma in hyperbolic random graphs, allowing a lower bound for the
expected running time of PID-BT on HRGs to be derived.

The rough idea is that a HRG contains many vertices of constant degree that
are connected to the giant component. We can also �nd a subset of these vertices
that has disjoint neighbourhoods. To construct a star decomposition, we use the
closed neighbourhoods of these vertices as arms and the remainder of the giant
component as the centre.

Let { ∈ G stand for the event in which vertex { is in the giant component of
the HRG.

I Lemma 3.15. Let { be a vertex in a hyperbolic random graph. There are
constants 21 and 2A such that Pr[{ ∈ G | A ({) ≥ ' − 2A] ≥ 21. J

Proof. There is a constant 2 > 0 such that with probability 1 − > (1) the largest
component of a HRG contains at least 2 ·= vertices [BFM13, Theorem 1.1]. Further,
for a constant 2A > 0 the expected number of vertices with radius at most '−2A is
a constant fraction of =. We can thus choose 2A so that with constant probability
only = ·21

2 vertices have radius smaller than ' − 2A .
As we only want to derive a constant lower bound for Pr[{ ∈ G | A ({) ≥ ' − 2A]

and the above events happen with probability 1 − > (1) andK (1), it su�ces to
show a constant lower bound for { ∈ G under the additional condition that the
giant component contains 2 ·= vertices and that at most = ·212 vertices have radius
smaller than ' − 2A .

Now, the remainder of the giant component has radius at least ' − 2A . These
are at least = ·212 vertices, which is a constant fraction of all vertices and therefore
also at least a constant fraction of the vertices with radius at least ' − 2A . We
can choose 21 = 2

2 to derive the claimed bound. �

Let EA = A ({) ≥ ' − 2A be the event in which vertex { has radius at least ' − 2A .
We now show statements that give us arbitrarily small probabilities for { having
large degree and for { having a large sum of degrees of its neighbours.

I Lemma 3.16. Let { be a vertex in a hyperbolic random graph that has radius
at least ' − A2 for a constant A2 . Then there is a constant J'−2A such that for any
3 > 0 we have Pr[deg({) > 3 | EA] ≤ J'−2A

3
. J

Proof. The expected degree of a vertex grows with decreasing radius, so the
worst case occurs if { has radius ' − 2A . Via Equation (2.3) we can calculate the

37

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

expected degree as J'−2A = = · ` (�$ (') ∩ �'−2A (')) ∈ K (1). Thus, Markov’s
inequality gives us the claimed bound for any 3 > 0. �

I Lemma 3.17. Let { be a vertex in a hyperbolic random graph that has radius
at least ' − 2A for a constant 2A . Then there is a function 5O (=) ∈ $

(
=2−2U

)
such

that for any 3 > 0 we have Pr
[∑

D∈# ({) deg(D) > 3
�� EA] ≤ 5O (=)

3
. J

Proof. The degrees of the neighbours of a vertex with radius A sum to$ (=4−(U−1/2)A)
in expectation [Blä+18, Section 3.2.2], so the worst case occurs at A ({) = '−A2 . So
for some 5O (=) ∈ $ (=4−(U−1/2) ('−A2)) we have E

[∑
D∈# ({) deg(D)

�� EA] ≤ 5O (=).
We get

5O (=) ∈ $
(
=4−(U−1/2) ('−A2)

)
= $

(
=4−(U−1/2) (2 log=+�−A2)

)
= $

(
=2−2U

)
and the claimed bound then follows via Markov’s inequality. �

I Theorem 3.18. Let � be a hyperbolic random graph. In expectation, there
are S (=2U−1)S (=1−U) :-feasible O-blocks in � for : = tw(�). J

Proof. We want to show that the giant component of � contains a thin star
decomposition as required for Lemma 3.14. The basic idea is that we select
vertices close to the boundary of the disk that are part of the giant component,
have few neighbours and for which the sum of degrees of their neighbours is
not too large. We can then �nd many non-overlapping closed neighbourhoods
of these vertices and use these as the arms of a star decomposition to derive the
claimed lower bound.

From Lemma 3.15, there are constants 2A and 21 such that

Pr[{ ∈ G | A ({) ≥ ' − 2A] ≥ 21.

Now let E1(J) = deg({) ≤ J be the event that { has degree at most J
and E2(J) =

∑
D∈# ({) deg(D) ≤ J be the event that the sum of degrees of the

neighbours of { is at most J. For suitable constants J1, J2 we have

Pr[E1(J1) ∧ E2(J2) ∧ { ∈ G | EA]

38

Running Time Bounds for PID-BT Section 3.5

= 1 − Pr[¬E1(J1) ∨ ¬E2(J2) ∨ { ∉ G | EA]

and via a union-bound we derive

≥ 1 − Pr[¬E1(J1) | EA] − Pr[¬E2(J2) | EA] − Pr[{ ∉ G | EA]
= 1 − Pr[¬E1(J1) | EA] − Pr[¬E2(J2) | EA] − 1 + Pr[{ ∈ G | EA]
= Pr[{ ∈ G | EA] − Pr[¬E1(J1) | EA] − Pr[¬E2(J2) | EA]
≥ 21 − Pr[¬E1(J1) | EA] − Pr[¬E2(J2) | EA] . (3.1)

This means that we need to upper bound the probability for ¬E1(J1) and
¬E2(J2) by small constants, which we can do by choosing J1 and J2(=) appro-
priately.

By Lemma 3.16 there exists a constant J'−2A such that

Pr[deg({) > 3 | EA] ≤
J'−2A
3

for 3 > 0. This allows is to choose J1 su�ciently large such that

Pr[¬E1(J1) | EA] ≤
21
4 . (3.2)

Similarly, by Lemma 3.17 there is a 5O ∈ $
(
=2−2U

)
such that

Pr

∑
D∈# ({)

deg(D) > 3

������ EA
 ≤

5O (=)
3

for 3 > 0. This allows is to choose J2 as a function in $
(
=2−2U

)
with su�ciently

large constants such that

Pr[¬E2(J2) | EA] ≤
5O (=)
J2(=)

≤ 214 . (3.3)

So, putting Equation (3.2) and Equation (3.3) into Equation (3.1), we get

Pr
deg({) ≤ J1 ∧

∑
D∈# ({)

deg(D) ≤ J2(=) ∧ { ∈ G

������ EA
 ≥

21
2 .

39

Chapter 3 Positive-Instance Driven Dynamic Programming for Treewidth

As Pr[EA] = Pr[A ({) ≥ ' − 2A] = 1−` (�$ ('−2A)) = 1−4−U2A · (1 − > (1)) ≥ 22
for some constant 22, we get

Pr
deg({) ≤ J1 ∧

∑
D∈# ({)

deg(D) ≤ J2(=) ∧ { ∈ G ∧ A ({) ≥ ' − 2A
 ≥

21 · 22
2 .

So the expected number of vertices that have the above properties is at least
= · 21 ·222 ∈ K (=). Let * be this set of vertices. We now show that we can select
K (=2U−1) vertices of* such that they have disjoint neighbourhoods. The sum
of the degrees of a vertex { ∈ * is at most $

(
=2−2U

)
. So, in the worst-case,

every vertex in the neighbourhood of { only connects to other vertices in * .
This means that by selecting { we obstruct at most $

(
=2−2U

)
other vertices in*

whose neighbourhood intersects # ({). Thus, the expected number of vertices
with degree at most J1 and radius at least ' − 2A and that belong to the giant
component and that have disjoint neighbourhoods is at least

S

(= · 21 · 22
4=2−2U

)
= S

(
=1−(2−2U)

)
= S

(
=2U−1

)
.

We can now verify that the star decomposition that uses the closed neigh-
bourhoods of these vertices as arms and the remainder of the giant component
as the centre has the desired properties. Suppose that the minimum vertex of
the ordering of + (�) is in the centre of the star decomposition. First of all, this
construction indeed yields a star decomposition, because the selected vertices
are part of the giant component and each closed neighbourhood is a component
associated with the centre, because the neighbourhoods are disjoint. Next, the
star decomposition is J1-thin because the selected vertices have constant degree
at most J1. Then, for each selected vertex { the block (# ({), {{}) is a :-feasible
I-block, because |# [{] | ≤ J1+1, while the treewidth : of� is inK (=1−U) [BFK16,
Theorem 9].

If the minimum vertex of the giant component is not in the centre of the
star decomposition, we can add its closed neighbourhood to the centre without
changing the asymptotic number of arms. So, in expectation we can select
S

(
=2U−1

)
vertices with disjoint neighbourhoods as the arms of a J1-thin star

decomposition, which lets us apply Lemma 3.14 to derive the claimed bound. �

40

Running Time Bounds for PID-BT Section 3.5

I Corollary 3.19. The expected running time of PID-BT on a hyperbolic ran-
dom graph is in 2S (=1−U) · poly(=). J

Proof. Follows from Theorem 3.18 via a simple transformation

S (=2U−1)S (=1−U) = 2S (=1−U) ·log(S (=2U−1))

= 2S (=1−U) · (2U−1) log(S (=))

= 2S (=1−U) · poly(=)

�

This a�rms the experimental results in which PID-BT did not perform well
without the preprocessing procedure.

41

4 Greedy Preprocessing

In addition to the PID-BT algorithm itself, Tamaki’s submission for the PACE’17
challenge also performs a preprocessing step. This section explains the algo-
rithms and heuristics used in the preprocessing and partially explains their
e�ectiveness both empirically and theoretically.

The idea of the preprocessing is based on so-called safe separators which were
introduced by Bodlaender and Koster [BK06]. A separator (in � is called safe
for treewidth or simply safe if completing (into a clique does not increase the
treewidth of � . Safe separators are useful because they can be used to split �
into smaller sub-graphs � [� ∪ (] + clique(() for each component � associated
with (. For a safe (, the treewidth of� then is the maximum treewidth of� [� ∪
(] + clique(() over all components � associated with (. As tree decompositions
of these sub-graphs have a bag containing (, an optimal tree decomposition of�
can be obtained by combining optimal solutions of the sub-graphs using a new
bag (to join the tree decompositions.

In consequence, the goal of the preprocessing step is to identify many safe
separators so that the original problem is split into smaller and at best also easier
sub-problems. Of course, this is no easy task, as the NP-hardness of deciding
the treewidth of a graph directly transfers to the problem of deciding whether a
separator is safe. For example, a treewidth instance (�,:) can be reduced to a
safe separator instance by appending a path of : + 2 vertices to � and asking if
the �rst : + 1 vertices of the path are a safe separator.

This means that in most practical settings, it is reasonable to rely on heuristics
in order to identify safe separators. The preprocessing procedure proposed
by Tamaki does this in both of its two steps. In the �rst step, multiple greedy
heuristics are used to compute (possibly non-optimal) tree decompositions of
the input graph. As the intersection of adjacent bags in a tree decomposition is a
separator of the graph, the greedy tree decompositions are then used as sources
of potentially safe separators. In the second step, the separators from the greedy
tree decompositions are heuristically checked for safeness.

We now �rst explain how the preprocessing utilises the found safe separators

43

Chapter 4 Greedy Preprocessing

in order to simplify the problem. Afterwards, we describe the greedy heuristics
used to compute tree decompositions and di�erent su�cient conditions that
heuristically identify the safeness of separators.

As explained above, safe separators are used to split a given instance into
smaller sub-instances. In addition to that, the safe separators can also be used to
derive lower bounds for the treewidth of the graph. If for example (is a safe
separator in� , then tw(�) = tw(� + clique(()) ≥ |(|. The highest lower bound
found this way is then used to identify sub-instances that are already optimally
solved by one of the greedy tree decompositions. To see how this works note
that a tree decomposition of� can be converted into an equally or less wide tree
decomposition of a sub-graph� ′ of� by intersecting each bag with+ (� ′). This
way, the preprocessing can already eliminate all safely separated sub-graphs
for which the width of a converted greedy tree decomposition is below the
lower bound. The PID-BT algorithm is then only called on the remaining safely
separated sub-graphs.

4.1 Greedy Tree Decompositions

The basic idea for how the greedy heuristics compute tree decompositions is
for example described by Bodlaender [Bod05]. The approach is closely related
to an algorithm that can �nd the treewidth or a tree decomposition of chordal
graphs in polynomial time. This is done via a perfect elimination ordering, that
is an ordering {1, . . . , {= of the vertices such that {8 is simplicial in� [{8+1, . . . , {=]
for 8 ∈ 1, . . . , = − 1. Given such a perfect elimination ordering, the treewidth of
� = �0 is equal to the maximum degree of any {8 in �8 = � [{8+1, . . . , {=] over
8 ∈ 1, . . . , =− 1. Even though non-chordal graphs do not have perfect elimination
orderings, the procedure can be adapted to work with any ordering. That way,
the solution becomes an upper bound for the treewidth and matches the exact
solution, if the given ordering is a perfect elimination ordering. Just as described
for chordal graphs, the adapted algorithm still iterates through the ordering and
considers the degree of the current vertex {8 in the remainder of the graph �8 .
The di�erence is that in order to handle non simplicial vertices,�8 is constructed
from �8−1 by not only removing {8−1, but by additionally completing # ({8−1)
into a clique. See Algorithm 1 for a description of how this approach can be used
to recursively compute an explicit tree decomposition.

Interestingly, this way of computing the treewidth / a tree-decomposition

44

Identifying Safe Separators Section 4.2

Algorithm 1: Recursive computation of a tree decomposition of �
1 if � consists of a single clique then
2 return tree decomposition with single bag + (�);
3 select vertex { ∈ + (�) according to an ordering (or some heuristic);
4 let � ′← � [+ (�) \ {{}] + clique(# (+));
5 recursively compute tree decomposition) of � ′;
6 construct) ′ by appending new bag #� [{] to) and connecting it to a bag

containing #� ({);
7 return) ′;

yields an optimal solution if and only if for each vertex { in the ordering the
neighbourhood # ({) is a safe separator in the remaining graph �8 . This means
that it is desirable to choose the next vertex in the ordering in a way that makes
it likely for that vertex to have a safe neighbourhood. In the preprocessing
employed in the PACE’17 submission of PID-BT, three di�erent heuristics are
used for this. The Min-Degree-Heuristic selects a vertex with minimum degree
in the remaining graph. The Min-Fill-Heuristic selects a vertex with minimum
�ll, where �ll({) =

���� (
� [# ({)]

)��� is the number of missing edges in � [# ({)].
Lastly, the Min-Defect-Heuristic selects a vertex with minimum defect, where
defect({) = |{| ∈ # ({) | |# ({) \ # (|) | > 1}| is the number of neighbours of {
that are not connected to all other neighbours of {. Intuitively it is clear that all
three heuristics try to minimise the number of edges added into the graph. Note
that the Min-Fill and Min-Defect-Heuristics always select a simplicial vertex, if
the graph contains any, and are thus optimal on chordal graphs.

In the next section we look into safe separators, conditions for safeness and
heuristics to identify safeness in more detail. This will also improve our intuition
about the heuristics above.

4.2 Identifying Safe Separators

The decision problem of whether a separator is safe is NP-hard, as discussed
above. Nevertheless there are su�cient conditions for safeness that allow to
identify at least some safe separators. In the following we give a brief and incom-
plete selection of such conditions with the aim of explaining the preprocessing

45

Chapter 4 Greedy Preprocessing

employed by Tamaki and some simpler heuristics that we also analyse theo-
retically. For a more complete introduction to conditions for safeness, see the
articles by Bodlaender et al. [Bod+01] and Bodlaender and Koster [BK06].

Clearly, any separator that is a clique is safe. Bodlaender also extends this to
separators that are what he calls almost clique separators, that is separators (
for which there is a B ∈ (such that (\ B is a clique.

I Lemma 4.1 (Corollary 14 in [BK06]). If (is an almost clique minimal
separator of � , then (is safe for treewidth. J

While these �rst two conditions already are useful for our analysis on hy-
perbolic random graphs (see Section 4.4), we also want to discuss the safeness
condition used in Tamaki’s preprocessing. To that end we de�ne a labelled minor
of � as a graph � ′ that can be obtained from � by performing deletions of
vertices and edges or labelled edge contractions, that is contractions in which
the new vertex keeps the label of one of the endpoints of the contracted edge.

I Lemma 4.2 (Lemma 11 in [BK06]). Let (be a separator of � . If for each
component � associated with (,� \� contains a clique on (as a labelled minor,
then (is safe. J

A separator (that ful�ls the above condition is called minor-safe. Note that
minor-safeness also is an extension of the two su�cient conditions for safeness
mentioned above in the sense that any clique separator or almost clique minimal
separator is also minor-safe. In the preprocessing step used to speed up PID-BT
in the PACE’17 challenge, minor-safeness is checked heuristically in a way that
may miss some minor-safe separators but never declares a non-safe separator as
safe. For each component� , the idea is to greedily contract edges in� \ (� ∪ ()
in an attempt to maximise the number of vertices adjacent to both endpoints
of missing edges in (. This way, the algorithm tries to build a labelled minor
of � in which (is a clique. We refer to Tamaki’s publication [Tam19] for more
details, as this high-level view of the heuristic su�ces for our purposes.

Combining this overview of the preprocessing and the results about upper and
lower bounds without preprocessing from Section 3.5, we observe that intuitively
the PID-BT algorithm and the preprocessing work tightly together. Consider for
example an instance� that consists of a complex graph�0 with higher treewidth
and a tree or series parallel graph �1 that is appended to �0 .

If PID-BT tries to solve such an instance, the addition of �1 to �0 leads to
an increase in the running time that is exponential in the treewidth of �0 . The

46

Empirical Analysis Section 4.3

reason for this is that PID-BT uses a value of : that is determined by the complex
graph �0 when searching for I-blocks, O-blocks and PMCs in the appended
simple graph �1 . This seems to be unnecessary and is indeed prevented by
the preprocessing if the greedy heuristics are able to �nd a safe separator that
separates the appended structure from the rest of the graph. In this case the
PID-BT algorithm is then called separately on the�0 and�1 . This way, the value
of : that is used on the simple graph is no longer determined by the treewidth
of the more complex graph and thus the number of I-blocks, O-blocks and PMCs
is drastically lower. In the case in which the appended �1 is a tree, the greedy
tree-decompositions obtained using the Min-Fill or Min-Defect heuristics even
already contain an optimal solution of�1 , as trees are chordal graphs and have a
perfect elimination scheme. This means that PID-BT does not have to be called
on �1 and is only called on �0 or separated sub-graphs of �0 .

Overall, it seems like the preprocessing elegantly lets PID-BT bypass some
of the cases in which otherwise the running time would increase signi�cantly.
This is con�rmed by the experiments reported on in Section 2.2.

In the remainder of this section, we show the results of more �ne-grained
experiments that highlight the generation of greedy tree decompositions and
the use of safe separators in order to split the graph. In Section 4.4 we proof
interesting properties about the heuristics used in the preprocessing that partially
explain some of our empirical observations and derive further new conditions
for safeness.

4.3 Empirical Analysis

To investigate the e�ectiveness of the preprocessing on HRGs, we conducted
some experiments, using the general set-up for the experiments as described
in Section 2.2. We ran PID-BT with preprocessing on graphs of di�erent sizes,
with small adjustments to the source code in order to collect information about
the greedy tree decompositions, found safe separators and the safely separated
sub-instances. In order to reduce the e�ects of random noise, �ve graphs with
di�erent random seeds were generated for each graph size.

It was found that the greedy heuristics are very good at �nding close to
optimal tree decompositions. Figure 4.1 shows the average widths achieved
by the greedy heuristics for treewidth and the lower bounds extracted from
safe separators. We note that the data for the plot was obtained by running

47

Chapter 4 Greedy Preprocessing

10 20 30

Treewidth

10

20

30

T
re

ew
id

th
(a

v
g
)

b
y

h
eu

ri
st

ic

Actual tw

min-defect tw

min-fill tw

min-degree tw

(a) Widths of greedy tree decompositions.

10 20 30

Treewidth

10

20

30

T
re

ew
id

th
lo

w
er

b
o
u
n
d

(a
v
g
)

Actual tw

min-defect

min-fill

min-degree

(b) Lower bounds for treewidth.

Figure 4.1: Comparison of lower and upper bounds from treewidth heuristics in pre-
processing of PID-BT on HRG instances with U = 0.75, and average degree 10.

the adapted PACE’17 submission of PID-BT on graphs of di�erent sizes with
5 di�erent random seeds per graph size. The resulting instances were then
grouped by treewidth, meaning that each data point shown in Figure 4.1 is the
average width of greedy tree decompositions produced by one of the heuristics
on a selection of graphs with the same treewidth and potentially heterogeneous
vertex count. Especially the Min-Fill Heuristic is able to �nd very close to optimal
tree decompositions even on the bigger instances with treewidth up to 30 and
more than 10.000 vertices. The lower bounds derived from the safe separators
found in the greedy tree decompositions do not di�er based on the used greedy
heuristic. This indicates that the di�erent tree decompositions contain equally
big detectable safe separators. Overall, the lower bounds do not match the
actual treewidth of the graphs, especially on larger instances of higher treewidth.
However, this does not seem to be a problem, as shown by the next experiments.

Figure 4.2 (a) shows the number of detected safe separators in greedy tree
decompositions of HRGs. The plot shows the average number over a sample of
�ve graphs generated with di�erent random seeds for each vertex count. The
number of found safe separators appears to be linear in the size of the graph
with for example about 7700 safe separators in a HRG with 10000 vertices. After
splitting the graph along these safe separators, only small instances remain, for
many of which the width of a greedy tree decomposition is already below the
lower bound. As depicted in Figure 4.2 (b), the remaining instances, which are
not solved by the preprocessing and have to be solved with PID-BT, are very

48

Theoretical Analysis Section 4.4

0 5000 10000

Graph size (n)

0

2500

5000

7500

S
a
fe

se
p

a
ra

to
rs

fo
u

n
d

(a
v
g
)

min-fill

min-defect

min-degree

(a) Number of found safe separators.

0 5000 10000

Graph size (n)

0

100

200

S
iz

e
o
f

P
ID

-B
T

in
st

a
n
ce

s

Largest (avg)

2nd largest (avg)

3rd largest (avg)

(b) Sizes of sub-instances after preprocessing.

Figure 4.2: Safe separators detected and size of remaining non-greedily solved sub-
instances after preprocessing of PID-BT on HRG instances with U = 0.75, and average
degree 10.

small. The plot shows the average size of the largest, second largest and third
largest remaining sub-instance over a sample of �ve HRGs with di�erent random
seeds for each vertex count. The size of the largest sub-instance seems to be
roughly linear in the vertex count of the input graph with about 200 vertices
in a 10000 vertex graph. In most cases there remains only one sub-instance of
substantial size and the other remaining safely separated sub-instances contain
only a negligibly small amount of vertices.

Overall, we conclude that both parts of the preprocessing perform very well
on hyperbolic random graphs. First, especially the Min-Fill heuristic is able to
construct almost optimal tree decompositions. Secondly, the greedy search for
safe separators is able to identify many safe separators that allow the instance
to be split into sub-instances of considerably reduced size. We conduct a the-
oretical analysis of the preprocessing in Section 4.4, partially explaining these
observations.

4.4 Theoretical Analysis

While the empirical analysis of HRG instances can already give some perspective
on the preprocessing, our goal is to develop a more mathematically grounded
understanding of how and why the preprocessing works on these graphs. The
actual preprocessing procedure described in Chapter 4 is rather complex, so it is

49

Chapter 4 Greedy Preprocessing

important to make simpli�cations where needed and formulate meaningful and
clear directions of research. To the best of our knowledge the greedy heuristics
for treewidth used in the preprocessing have so far not been studied on HRGs
or similar models for real-world networks. This makes it necessary to �rst gain
a basic understanding of these heuristics before trying to understand their role
in some larger context of �nding safe separators or even the whole treewidth
computation.

Computing a tree-decomposition of hyperbolic random graphs according to
the Min-Fill, Min-Defect, or Min-Degree heuristics can be seen as a random
process in which a random graph is drawn and subsequently modi�ed according
to the rules of the heuristic. Unfortunately such a random process is very hard
to analyse, especially when one tries to make statements about deeper structures
such as the computed treewidth or the number or even size of encountered safe
separators. One simpli�cation we therefore make is a simpler greedy heuristic
based on the geometry of hyperbolic random graphs.

As HRGs are denser and have higher-degree vertices in the centre than in the
outer regions of the disk, we can expect all of the heuristics mentioned above to
rather pick vertices with larger radius in the beginning and vertices with smaller
radius in the end. Following this intuition, we introduce the assumption of a
heuristic that simply picks the remaining vertex with the largest radius. Under
that assumption, the neighbourhood of each selected vertex in the remaining
graph is equal to its inner neighbourhood. This is useful for our analysis, as
it appears that the inner neighbourhood has more structure than the general
neighbourhood of a vertex. We explore the structure of inner neighbourhoods
throughout this section and in particular in Section 4.4.3. We want to stress that
analysing a heuristic that selects the vertices in descending order of their radii
does not seem to be a far stretch of what we can observe from, e.g. the Min-Fill
heuristic. Indeed, the experiments reported on in Figure 4.3 con�rm this. It can
be seen that empirically the majority of selected vertices has no or only very few
neighbours with larger radius at the time of their selection. This observation
holds especially for smaller values of U and more in the earlier iterations than
in the last ones. Still, overall we can conclude that the most important feature
of our assumed heuristic seems to be shared by the original heuristics, at least
before reaching the tightly connected core of the graph.

The remainder of this section discusses di�erent approaches for proving
that the inner neighbourhood of a vertex is a safe separator. In particular, we

50

Theoretical Analysis Section 4.4

0 2500 5000 7500 10000

Iteration

10

12

14

16

18

R
a
d

iu
s

o
f

se
le

ct
ed

n
o
d

e

(a) HRG with = = 104, U = 0.55.

0 2500 5000 7500 10000

Iteration

0

10

20

30

#
n

ei
g
h
b

o
u

rs
w

it
h

la
rg

er
r

(b) HRG with = = 104, U = 0.55.

0 2500 5000 7500 10000

Iteration

8

10

12

14

R
a
d

iu
s

o
f

se
le

ct
ed

n
o
d

e

(c) HRG with = = 104, U = 0.75.

0 2500 5000 7500 10000

Iteration

0

10

20

30

#
n

ei
g
h
b

o
u

rs
w

it
h

la
rg

er
r

(d) HRG with = = 104, U = 0.75.

0 2500 5000 7500 10000

Iteration

8

10

12

14

R
a
d

iu
s

o
f

se
le

ct
ed

n
o
d

e

(e) HRG with = = 104, U = 0.95.

0 2500 5000 7500 10000

Iteration

0

5

10

15

#
n

ei
g
h
b

o
u

rs
w

it
h

la
rg

er
r

(f) HRG with = = 104, U = 0.95.

Figure 4.3: Experiment in which HRGs with 104 vertices average degree about 23 and
di�erent values of U were generated and vertices were deleted according to the Min-Fill
heuristic. The left column shows the radius of the vertex deleted in each iteration, the
right column shows how many neighbours had a larger radius than the deleted vertex
of each iteration. Brighter colours signify a higher density of points in the plots.

51

Chapter 4 Greedy Preprocessing

show that there is an expected linear number of vertices with clique (inner)
neighbourhoods in Section 4.4.1 and give new conditions for the safeness of
separators in Section 4.4.2.

4.4.1 Simplicial Vertices

In resemblance to the de�nition of simplicial vertices, we call a vertex inner
simplicial if its inner neighbourhood is a clique. In the following we want to
show that asymptotically for large =, a constant fraction of all vertices is inner
simplicial in expectation. In the proof for this, we consider di�erent parts of the
inner neighbourhood and argue that these parts are likely to be empty, form a
clique, etc. In order to nicely formulate these statements, we establish labels for
certain areas within the inner neighbourhood of a vertex.

Let { be a vertex. First, we say that the left half of the neighbourhood of {
consists of all points in the neighbourhood of { for which there exists a positive
angle \ ′ ≤ c such that \ (D) + \ ′ = \ ({). Equivalently, for points in the right half
of {’s neighbourhood, there is a positive angle \ ′ such that \ (D) −\ ′ = \ ({). The
left inner and right inner neighbourhood of { are de�ned analogously.

Next, we assume that A ({) > '
2 and call the points with radius A ({) and angle

\ ({) ± \ (A ({), A ({)) the left and right corner points of the inner neighbourhood
of {. Regardless of their actual existence in a graph, it is sometimes useful to talk
about vertices lying on these points. These hypothetical vertices are called left
and right corner vertices of the inner neighbourhood of { or simply left and right
corner vertices of {. The corner vertices allow us to de�ne a region in which all
contained vertices form a clique. We call this the central inner neighbourhood of
{ and de�ne it as the subset of the inner neighbourhood of { that

• has radius at most ' − A ({),

• or is part of the left inner neighbourhood of both { and of {’s right corner
vertex,

• or, symmetrically, is part of the right inner neighbourhood of { and of {’s
left corner vertex.

The left and right central inner neighbourhood are de�ned canonically as the
intersection of the central inner neighbourhood and the left or right inner neigh-
bourhood. See Figure 4.4 (a) for an illustration that visualises the construction

52

Theoretical Analysis Section 4.4

(a) Visualisation of the left
central inner neighbourhood.

(b) The possible positions of
| in the �rst (blue) and sec-
ond (green) case of the proof
of Lemma 4.3.

(c) The second case of the
proof of Lemma 4.3 (|: green,
2: light blue).

Figure 4.4: Visualisations related to the central inner neighbourhood and Lemma 4.3.

of the left central inner neighbourhood of a vertex. As mentioned in the pre-
liminaries, there is a direct correspondence between regions of the hyperbolic
disk and the sets of vertices that are contained in such a region. This allows us
to generalise the names of regions such as for example left central inner neigh-
bourhood to also refer to the set of vertices that lie within that region. It will
always be clear from the context if we are referring to a set of vertices or to a
region of the hyperbolic disk. We can now prove the claimed statement about
the central inner neighbourhood, which we later use to derive a lower bound
for the probability with which a vertex is inner simplicial.

I Lemma 4.3. Let { be a vertex with radius A > '
2 and let D be a neighbour in

the central inner neighbourhood of {. Then D is adjacent to all vertices in the
inner neighbourhood of {. J

Proof. We want to show that any vertex | in the inner neighbourhood of {
connects to D. As the left and right half of {’s inner neighbourhood form a
clique, it remains to consider cases where D and | lie in opposite halves of {’s
neighbourhood, so without loss of generality assume that D is in the left and| in
the right part of the neighbourhood of {. Also, assume that A > '/2 as otherwise,
the inner neighbourhood of { forms a clique anyway.

Next, as decreasing the radius only grows the neighbourhood of |, it su�ces

53

Chapter 4 Greedy Preprocessing

to show that the statement holds for all | on the outer boundary of {’s right
inner neighbourhood.

First note that for the outermost point of the boundary, that is when | lies on
the position of the right corner vertex of {, 2 = (A, \ ({) + \ (A, A)), the statement
holds, because either A (D) ≤ ' − A or D has distance at most ' from | by the
de�nition of the central inner neighbourhood. All other positions of | on the
boundary are characterised either by having radius A (|) = A or by having
distance exactly ' to {. In the �rst case, depicted a dark blue line in Figure 4.4 (b),
it is clear that D and | are adjacent if A (D) ≤ ' − A . Otherwise | lies between 2
and D and so D and | are adjacent by Lemma 2.3.

Now consider the second case in which| has distance' from { (and thus lies on
the green line in Figure 4.4 (b)). We want to show that the inner neighbourhood
of {’s right corner vertex 2 is contained in # (|), as can depicted in Figure 4.4 (c).
The circle with radius ' around | intersects the one around 2 in {. We proof
that a second intersection is in some point with radius larger than A . To see
this, observe that the position G of the second intersection can be obtained by
mirroring { along the line�, through 2 and | (see Figure 4.5 (a)). As the origin
is on the same side as { with respect to�, , the line segment from the origin to G
intersects�, in some point with equal distance from G as from {. By the triangle
inequality this means that A (G) ≥ A . Two (non-identical) circles intersect in at
most two points, thus the circles around| and 2 have no other intersections. This
means that if the neighbourhood of| contains the neighbourhood of 2 at radius A ,
then also for all radii up to A . This holds, since at radius A the neighbourhood of|
goes from \ ({) to \ ({) +2\ (A, A (|)) while the neighbourhood of 2 goes from \ ({)
to \ ({) + 2\ (A, A), where \ (A, A (|)) > \ (A, A) (see Figure 4.4 (c)). In consequence,
(|) contains 2’s inner neighbourhood. As D is in the inner neighbourhood of 2 ,
it is adjacent to |. �

We call the region that remains after subtracting the central inner neigh-
bourhood from the inner neighbourhood of a vertex the peripheral inner neigh-
bourhood. From the lemma, we deduce that a vertex is inner simplicial if its
peripheral inner neighbourhood is empty, because in this case, only the central
inner neighbourhood remains, which forms a clique. We can get a lower bound
on the probability for this to happen by �nding an upper bound on the measure
of the peripheral neighbourhood.

54

Theoretical Analysis Section 4.4

(a) Sketch of the mirroring construction in the
proof of Lemma 4.3.

θ(r, r)

R−r≤x≤r︷ ︸︸ ︷

(b) Illustration of the integral from Lemma 4.4.

Figure 4.5: Visualisations for the proofs of Lemma 4.3 and Lemma 4.4.

I Lemma 4.4. Let { be a vertex with radius A > '
2 and let (be its peripheral

inner neighbourhood. Then, the measure of (is

` (() ≤ 2
c
4−'(U− 1

2)−A (1−U) ·
(
1 +K

(
4'−2A

))
· (1 −K (4−UA)) .

J

Proof. Let (′ be the area of the right peripheral inner neighbourhood. Then
we have 2` ((′) = ` ((). We can compute ` ((′) by integrating the probability
density function over all points in (′. The minimum radius of any point in (′ is
' − A . For any radius G between ' − A and A , (′ spans all angles from the edge of
the neighbourhood of the right corner vertex of {’s inner neighbourhood to the
edge of the neighbourhood of {, that is from \ (A, G) − \ (A, A) to \ (A, G). This is
depicted in Figure 4.5 (b). The angular coordinates of { and the corner vertices
of its inner neighbourhood di�er exactly by \ (A, A). Hence, we get

` ((′) =
∫ A

'−A

∫ \ (A,G)

\ (A,G)−\ (A,A)
5 (G)d\dG = \ (A, A)

∫ A

'−A
5 (G)dG .

We substitute \ (A, A) according to Lemma 2.2 to obtain.

` ((′) ≤ \ (A, A)
∫ A

0
5 (G)dG

55

Chapter 4 Greedy Preprocessing

= 2 · 4 '−2A2
(
1 +K

(
4'−2A

))
·
∫ A

0
5 (G)dG

We note that the integral equals 1
2c ` (�0(A)). Thus, we can simplify the integral

according to Equation (2.2) and get

= 2 · 4 '−2A2
(
1 +K

(
4'−2A

))
· 1
2c 4

U (A−') (1 −K (4−UA))

=
1
c
4−'(U− 1

2)−A (1−U) ·
(
1 +K

(
4'−2A

))
· (1 −K (4−UA)),

which matches the claimed bound. �

Holding on to the notation from the above lemma, for 2 > 0 let ('−2 be the
peripheral inner neighbourhood of a vertex with radius ' − 2 .

I Corollary 4.5. The measure ` (('−2) of the peripheral inner neighbourhood
of a vertex with radius ' − 2 can be upper bounded as

` (('−2) ≤
2
=c
· 4�/2+2 (1−U) ·

(
1 +K

(
=−2 · 422−�

))
J

Proof. Using Lemma 4.4, we can compute an upper bound for the measure of
('−2 as

` (('−2) ≤
2
c
4−'(U− 1

2)−('−2) (1−U) ·
(
1 +K

(
4−'+22

))
·
(
1 −K

(
4−U'+U2

))
=
2
c
4−

1
2'+2 (1−U) ·

(
1 +K

(
4−'+22

))
·
(
1 −K

(
4−U'+U2

))
≤ 2
c
4−

1
2 (2 log=+�)+2 (1−U) ·

(
1 +K

(
4−'+22

))
·
(
1 −K

(
4−U'+U2

))
=

2
=c
· 4�/2+2 (1−U) ·

(
1 +K

(
=−2 · 422−�

))
.

�

We can use this to prove that at least a constant fraction of vertices is inner
simplicial.

I Theorem 4.6. Let � be a hyperbolic random graph. Then, the expected
number of inner simplicial vertices in � is in S (=). J

56

Theoretical Analysis Section 4.4

Proof. By Lemma 4.3 a vertex { is inner simplicial if its peripheral inner neigh-
bourhood is empty. Assuming A ({) ≥ ' − 2 for a constant 2 , we have ` (('−2) ≤
2
=c
·4�/2+2 (1−U) (1+> (1)) from Corollary 4.5. This means that asymptotically there

is a constant 2 ′ such that ` (('−2) ≤ 2′

=
. Using the inequality from Lemma 2.4, we

can give the following lower bound on the probability of the event of an empty
peripheral inner neighbourhood

Pr[{ is inner simplicial | A ({) ≥ ' − 2] ≥ Pr
[
�D ∈ ('−2

]
= (1 − ` (('−2))=

≥ 4−2′
(
1 − 2

′2

=

)
= 4−2

′ (1 − > (1)) ∈ S (1) .

This means that { is inner simplicial with at least constant probability. Note
that this probability increases if the radius of { is increased. For each vertex
{ ∈ + we can de�ne an indicator random variable -{ to be 1 if { is simplicial
according to the above condition and 0 otherwise. In a hyperbolic random graph
the probability for a vertex { to have radius larger than ' − 2 is asymptotically
constant:

Pr[A ({) ≥ ' − 2] = 1 − ` (�$ (' − 2)) = 1 − 4−U2 ·
(
1 −K

(
4−U'+U2

))
∈ K (1).

Thus, we get Pr[-{ = 1] ≥ Pr[A ({) ≥ ' − 2] · S (1) ∈ S (1). The number - of
inner simplicial vertices in� can be written as the sum of these random variables
- =

∑
{∈+ -{. By the linearity of expectation, this implies that the expected

number of inner simplicial vertices is at least S (=). �

The following more general statement follows similarly.
I Corollary 4.7. Let � be a hyperbolic random graph. In expectation � has
S (=) simplicial vertices. J

Proof. Let 2 > 0 be a constant and { be a vertex with radius ' − 2 . In the proof
of Theorem 4.6 we use the upper bound on ` (('−2) from Corollary 4.5 in order
to derive a lower bound for the probability of a vertex to be inner simplicial. We
can add the area (out = �0(') ∩ �'−2 (') \ �0(' − 2) of the outer neighbourhood
of { to that measure in order to enforce that { has no other neighbours if the
considered area contains no vertices. We get

` (('−2 ∪ (out) ≤ ` (('−2) + 2
∫ '

'−2

∫ \ ('−2,'−2)

0
5 (G)d\dG

57

Chapter 4 Greedy Preprocessing

= ` (('−2) + 44−
1
2'+2

(
1 ±K

(
4−'+22

)) ∫ '

'−2
5 (G)dG

where
∫ '
'−2 5 (G)dG = 1

2c ` (�0(') \ �0(' − 2)) ≤ 1. Thus, the term simpli�es to

≤ ` (('−2) + 4
1
=
4

1
2�+2

(
1 ±K

(
4−'+22

))
∈ $

(
1
=

)
.

This means that the probability for a vertex with radius '−2 to be inner simplicial
and have no outer neighbours is at least constant. The rest of the proof follows
as in the proof of Theorem 4.6 by de�ning indicator random variables for the
simpliciality of each vertex and using the linearity of expectation on their sum.

�

These two results o�er a partial explanation for the e�ectiveness of the pre-
processing procedure used in the implementation of PID-BT. As discussed in
Section 4.1, the Min-Defect and Min-Fill heuristic choose simplicial vertices if
the graph contains any. Corollary 4.7 implies that in expectation on a hyper-
bolic random graph, these heuristics �rst select and remove S (=) simplicial
vertices before selecting any other vertex. For each removed simplicial vertex,
the constructed tree decomposition contains two adjacent bags whose inter-
section is the neighbourhood of the simplicial vertex. This neighbourhood is
subsequently recognised as a safe separator that separates the simplicial vertex
from the remainder of the graph. Thus in expectation, the preprocessing removes
at leastS (=) vertices from the graph, which matches our empirical observations.
We can expect the heuristics to �nd even more simplicial vertices after removing
all simplicial vertices that are initially present in the graph. This is empirically
con�rmed by the experimental results presented in Figure 4.6. Here, we plot the
number of vertices that remain after iteratively removing all simplicial vertices in
HRGs of di�erent size and power-law exponents. The set-up for this experiment
is the same as in Section 4.3. It can be seen that iteratively removing simplicial
vertices removes a constant fraction of vertices, that is larger for smaller values
of U .

We also conducted experiments to empirically verify our theoretical results.
Figure 4.7 shows the number of simplicial vertices in GIRGs generated with
di�erent average degrees and power-law exponents. We used GIRGs instead of
HRGs, because the HRG generator does not reliably control the average degree,

58

Theoretical Analysis Section 4.4

0 2000 4000 6000 8000

Graph size (n)

0

1000

2000

3000

S
iz

e
o
f

n
o
n

si
m

p
l.

re
m

a
in

d
er

α=0.55

α=0.65

α=0.75

α=0.85

α=0.95

(a) Number of remaining vertices.

0 2000 4000 6000 8000

Graph size (n)

0.0

0.1

0.2

0.3

0.4

R
el

a
ti

v
e

si
ze

o
f

n
o
n

si
m

p
l.

re
m

a
in

d
er

α=0.55

α=0.65

α=0.75

α=0.85

α=0.95

(b) Relative share of remaining vertices.

Figure 4.6: Average number of remaining vertices after iteratively removing all simpli-
cial vertices in HRG instances with U = 0.75, and average degree 10.

especially on instances with only a few thousand vertices. For the purpose of
our experiment GIRGs and HRGs can be seen as equivalent, with the di�erence
that instead of a parameter U , we now control the power-law exponent directly.
As in Section 4.3 each data point is the average of �ve GIRGs that were sampled
with di�erent random seeds.

The plots con�rm our theoretical result by showing a roughly linear number
of simplicial vertices. However, even though the above theorem and corollary
seem to capture the asymptotic behaviour observed in our experiments, they also
appear to miss some aspects. For example, note that the plots of Figure 4.7 (a) and
Figure 4.7 (b) show a higher fraction of simplicial vertices in graphs with smaller
power-law exponent, which represents smaller values of U . Also Figure 4.7 (c)
and Figure 4.7 (d) show more simplicial vertices in graphs with lower average
degree, which represents smaller values of � . This stands in contrast to the
dependency on U and � that we �nd in Corollary 4.5. Here the lower bound
for the probability of a vertex to be inner simplicial is higher for higher values
of U and smaller values of � . This makes it seem like the (inner) simplicial
vertices explained by our theorem and corollary are only a fraction of the (inner)
simplicial vertices that are actually occurring. Still, even though our proof does
not yet cut to the core of the phenomenon, we are able to asymptotically explain
an expected linear amount of simplicial vertices.

In summary, our theoretical analysis contributes to our understanding of the

59

Chapter 4 Greedy Preprocessing

0 2500 5000 7500 10000

Graph size (n)

0

2000

4000

6000

S
im

p
li
ci

a
l

v
er

ti
ce

s

ple=2.2

ple=2.5

ple=2.8

(a) Number of simplicial vertices.

0 2500 5000 7500 10000

Graph size (n)

0.3

0.4

0.5

0.6

S
im

p
li

ci
a
l

v
er

ti
ce

s
(r

el
a
ti

v
e)

ple=2.2

ple=2.5

ple=2.8

(b) Relative share of simplicial vertices.

0 2500 5000 7500 10000

Graph size (n)

0

1000

2000

3000

4000

S
im

p
li
ci

a
l

v
er

ti
ce

s

-deg=10

-deg=25

-deg=50

(c) Relative share of simplicial vertices.

0 2500 5000 7500 10000

Graph size (n)

0.0

0.1

0.2

0.3

0.4

S
im

p
li

ci
a
l

v
er

ti
ce

s
(r

el
a
ti

v
e)

-deg=10

-deg=25

-deg=50

(d) Relative share of simplicial vertices.

Figure 4.7: Average number of simplicial vertices in GIRG instances with di�erent
power-law exponents and average degree 10 ((a), (b)) or power-law exponent 2.5 and
di�erent average degrees ((c), (d)).

60

Theoretical Analysis Section 4.4

preprocessing procedure as explained above. Additionally, it also serves as the
basis for a lower bound on the running time of PID-BT without preprocessing
that we explore in Theorem 3.18. In the next section, we develop a deeper
understanding of safeness and the inner neighbourhood of vertices in hyperbolic
random graphs.

4.4.2 Safe Separators

In the following, we want to explore further conditions for the safeness of sepa-
rators with the goal of gaining a deeper understanding for the preprocessing. We
give a counterexample for an intuitively promising approach and develop a novel
way of looking at safeness that allows to formulate new su�cient conditions for
safeness.

Intuitively, one might suspect that small minimal separators are safe if they
are a lot smaller than the treewidth of a graph. We can expect hyperbolic random
graphs to contain many small minimal separators in the outer region of the disk,
so it would be useful for our analysis if this intuition could be formulated as a
general statement. Unfortunately, the following counterexample shows that this
is not possible.

I Lemma 4.8. For any constant � > 4 ∈ ℕ, there exists a graph with a
(connected) minimal separator (with |(| ≤ 1

�
tw(�) that is not safe. J

Proof. We show the statement by constructing a graph� of treewidth�2 with a
connected minimal separator (of size � that is not safe for treewidth.

Let � contain a clique with �2 vertices, another clique with � (� − 1) + 2
vertices, a single vertex { and vertices (1, . . . , (� that form the separator ((as
depicted in Figure 4.8). The vertices of (form a path and additionally each (8 is
connected to { and to all vertices in the � (� − 1) + 2-clique. Also, { is connected
to all vertices in the �2-clique.
� has treewidth at least �2, because the �2-clique and { form a clique of size

�2 + 1. Further, � has treewidth at most �2, because the remainder of � can
easily be decomposed by forming bags �8 containing {, the � (� − 1) + 2-clique,
(8 and (8+1 for adjacent (8 , (8+1. As � ≥ 5, |�8 | ≤ �2. These bags along with a
bag of the other clique and { can be connected to a bag of just {.
(is not safe for treewidth, because when completed into a clique, (and the

� (� − 1) + 2 clique form a �2 + 2 clique, meaning the graph would no longer

61

Chapter 4 Greedy Preprocessing

 � (�−1)+2

(1 (2 (3 . . . (�

{

 �2

Figure 4.8: Sketch of the graph constructed in the proof of Lemma 4.8.

have treewidth �2. As (is connected and |(| = � ≤ (�2 + 1)/� = tw(�)/� , this
proves the statement. �

Note that the example in Lemma 4.8 can easily be extended to a separator
(with small constant pathwidth or treewidth. If the pathwidth of (is, e.g.
increased to : , : vertices (8 , . . . , (8+:−1 have to be together in a bag with the
upper clique and {. Following the above proof, we need to make sure that these
bags do not increase the treewidth�2 of� , because otherwise, (would no longer
be unsafe. This holds if � is big enough that � (� − 1) + 2 + : + 1 is still at most
�2 + 1.

Consequentially, we need to look into safeness from a di�erent perspective.
In the following, we restate some basic facts about safe separators, which allow
us to derive new conditions for safeness.

In the original paper on safe separators Bodlaender and Koster [BK06] give
the following useful lemma.

I Lemma 4.9 (Lemma 5 in [BK06]). For every graph� , and every separator
(of � , the treewidth of � is at most the maximum over all components / of
� \ (of the treewidth of � [(∪ /] + clique((). J

This follows easily by combining the tree decompositions of the individual

62

Theoretical Analysis Section 4.4

components into a tree decomposition of � . This view directly implies the
following corollary, giving an equivalent characterisation of safeness.

I Corollary 4.10 (see De�nition 4 in [BK06]). Let (be a separator in� . (is
safe if and only if the treewidth of� is at least the maximum over all components
/ of � \ (of the treewidth of � [(∪ /] + clique((). J

Proof. If (is safe then tw(�) = tw(� + clique(()) and there is a tree decompo-
sition of� with a bag containing (of width tw(�). This tree decomposition can
be turned into equally or less wide tree decompositions of � [(∪ /] + clique(()
for each component / associated with (by intersecting each bag with (∪ / .

Analogically, if there are tree decompositions of� [(∪/] + clique(() for each
component / associated with (with a maximum width at most tw(�), these can
be joined at a bag containing (. This gives an optimum width tree decomposition
of � and also � + clique((), showing that (is a safe separator. �

Hence, in order to show the safeness of a separator (, it is su�cient to show
that tw(� [(∪�] + clique(()) ≤ tw(�) for all components � associated with (.
We can break this down to the individual components and say that a separator (
is safe with respect to � , if tw(� [(∪�] + clique(()) ≤ tw(�). Then (is safe if
and only if it is safe with respect to all components associated with it. This lets us
for example restate the su�cient condition from Lemma 4.2 in a per component
perspective.

I Lemma 4.11. Let (be a separator of � and � be a component associated
with (. (is safe with respect to � if � \� contains a clique on (as a labelled
minor. J

Proof. As � \� has a minor with (as a clique, � [(∪�] + clique(() is a minor
of � . Thus, tw(� [(∪ �] + clique(()) ≤ tw(�), as for any minor � of � ,
tw(�) ≤ tw(�). �

While this may already be interesting on its own, the real power of safeness
with respect to a component is that we can conclude that a separator is safe from
the fact that it is safe with respect to all of its components even though for each
component the safeness might be due to di�erent su�cient conditions. In the
following, we therefore want to introduce additional su�cient conditions for the
safeness of a separator with respect to a component. The intuition behind our
approach for this is somewhat related to the refuted approach discussed in the

63

Chapter 4 Greedy Preprocessing

beginning of this section. Basically, the idea comes from the fact that hyperbolic
random graphs are dense in the centre and sparse in the outer regions and this
should make it possible to conclude the safeness of small separators lying in
the outer part of the disk. With the following de�nition we can clarify what
is meant by sparse and formulate su�cient conditions, that rely on knowing a
lower bound for the treewidth in the graph.

I De�nition 4.12. We say that a vertex set � ⊆ + (�) has subtree-width at
most : , if there is an optimum width tree decomposition of � with a subtree g
such that the union of all bags in g contains � and each bag in g has at most
: + 1 vertices. The smallest : such that � has subtree-width at most : is called
the subtree-width of � . J

Informally, if the subtree-width of a set of vertices is : then the set of vertices
can safely be put into bags of size : + 1 and there are no bigger bags in between.
The following statements follow easily, but are useful to derive our su�cient
conditions for safeness with respect to a component.

I Lemma 4.13. Let (be a safe separator in � . Then (has subtree-width at
most |(| − 1. J

Proof. There is an optimum width tree decomposition of� with a bag containing
(. We can connect a bag containing only (to this bag to see that (has subtree-
width at most |(| − 1. �

I Lemma 4.14. Let � ⊆ + (�) be a vertex set in � and let � ⊆ � be a subset
of � . Then the subtree-width of � is at most the subtree-width of � . J

Proof. Follows directly because if � is contained in the bags of a subtree of a
tree decomposition, then these bags also contain � . �

I Corollary 4.15. Let � ⊆ + (�) be a vertex set in � . Then the subtree-width
of � is at most the treewidth of � . J

Proof. Follows from Lemma 4.14 because the subtree-width of + (�) equals the
treewidth of � . �

If a separator has small subtree-width, it can serve as a good interface to
the rest of the graph even if it contains many vertices. The following lemma
constitutes the most important insight about subtree-width.

64

Theoretical Analysis Section 4.4

I Lemma 4.16. Let (be a separator in � , � be a component associated with (
and ℓ ≤ tw(�) be a lower bound for the treewidth in� . If the neighbourhood of
(in � , # (() ∩� , has subtree-width at most : in � [�] such that |(| + : ≤ ℓ + 1,
then (is safe with respect to � . J

Proof. There is an optimum width tree decomposition of � [�] in which the
vertices of # (() ∩� all appear in a subtree g with bags of size at most : + 1. We
construct a tree decomposition of� [� ∪ (] + clique(() by adding the vertices of
(to the bags of g . This is indeed a tree decomposition as the bags are connected
as a tree, all vertices of � ∪ (appear in some bag, both for edges in � and for
edges between (and � there is a bag containing the endpoints, and the bags of
each vertex form a subtree. This tree decomposition has width at most tw(�),
as the modi�ed bags have size at most |(| + : ≤ ℓ + 1 and thus shows that (is
safe with respect to � . �

We derive two corollaries that capture interesting special cases of the above
lemma.

I Corollary 4.17. Let (be a separator in� ,� be a component associated with
(and ℓ ≤ tw(�) be a lower bound for the treewidth in � . If the neighbourhood
of (in � # (() ∩� is safe for treewidth and |(| + |# (() ∩� | ≤ ℓ + 1 then (is
safe with respect to � . J

Proof. Follows from Lemma 4.13 and Lemma 4.16, because # (() ∩� is safe. �

Note that the condition in the above corollary is in particular ful�lled by a
separator with clique neighbourhood in the considered component. Building
upon Corollary 4.15, the following statement gives a safeness condition with
respect to small components.

I Corollary 4.18. Let (be a separator in� ,� be a component associated with
(and ; ≤ tw(�) be a lower bound for the treewidth in� . If |(| + |� | ≤ ; + 1 then
(is safe with respect to � . J

Proof. Follows from Lemma 4.16 and Corollary 4.15, because in � [�] the set
(() ∩� has subtree-width at most C| (� [�]) ≤ |� | − 1. �

This condition is especially relevant for hyperbolic random graphs as it intu-
itively tells us that the inner neighbourhood of vertices with poly-logarithmic
degree is safe with respect to all components except one.

65

Chapter 4 Greedy Preprocessing

I Conjecture 4.19. Let 2 > 0 be a constant and let { be a vertex with radius
at least ' − 2 log log=. We conjecture that with high probability, the inner
neighbourhood of { has one associated component of linear size while all other
associated components have poly-logarithmic size. J

The motivation behind the conjecture is that for a vertex adjacent to the inner
neighbourhood of {, there are two cases: either it is connected to the giant
component or not in which case it is part of a di�erent associated component. A
lemma by Bläsius et al. [Blä+18, Lemma 6] states that with high probability there
exists a vertex adjacent to every other vertex in �$ (1/U (log= − log log=). Thus,
with high probability a component associated with the inner neighbourhood
of { that is not the giant component does not contain any vertex with radius
less than 1

U
(log= − log log=), because otherwise, it would be part of the giant

component. This means that all vertices in this component have an expected
poly-logarithmic degree. Similarly, we also expect the vertices of the component
to lie in a narrow angular sector that exceeds the angular width of the inner
neighbourhood of { by at most a constant factor. Intuitively this suggests that
the conjecture probably holds, even though some more work is required to
rigorously formulate statements about components and their relationship to the
presumed giant component.

If the conjecture holds, then it immediately follows that the inner neigh-
bourhood of { is safe with respect to the poly-logarithmic components. As the
treewidth of hyperbolic random graphs is polynomial, the poly-logarithmically
sized inner neighbourhood and component are asymptotically smaller than the
treewidth and so the safeness follows via Corollary 4.18.

Intuitively it seems also plausible that Lemma 4.16 may be applicable for
the safeness of the inner neighbourhood with relation to the giant component
inside. Let (be the inner neighbourhood of a vertex with radius ' − 2 log log=
for some constant 2 that maybe needs to be chosen suitably. The size of (is
poly-logarithmic with high probability, so for the application of Lemma 4.16
it would su�ce to show that the neighbourhood of (in the giant component
has poly-logarithmic subtree-width. We conjecture that this is the case with at
least constant probability. This conjecture is motivated by the fact that a vertex
with radius ' − 2 log log= does not have any neighbour with radius smaller
than ' − 2 · 2 ′ · log log= for some constant 2 ′ > 1 asymptotically almost surely.
Thus, the neighbourhood of (in the giant component also consists of vertices

66

Theoretical Analysis Section 4.4

with large radius and is presumably also located in a small region of the disk.
Intuitively, this supports the conjecture considerably.

4.4.3 Structure of the Inner Neighbourhood.

In the remainder of this section, we want to summarise our �ndings about
the structure of the inner neighbourhood. Based on these insights, we want
to motivate a possible approach to explain why the inner neighbourhoods of
vertices with large radius are likely to be safe separators. The exact details of
such an approach are however not yet clear and have to be left for future work.

We already know from Lemma 4.3 that all vertices in the central inner neigh-
bourhood are connected to the entire inner neighbourhood, which makes the
central inner neighbourhood a clique.

Using Lemma 2.3 we can derive that both the left and right half of the inner
neighbourhood also form a clique.

I Lemma 4.20. Let D be a vertex in a hyperbolic random graph. The right and
left half of the inner neighbourhood of D each form a clique. J

Proof. We show the statement for the right half of the inner neighbourhood,
as the other half follows analogously. Let { and | be two vertices in the right
inner neighbourhood of D such that { without loss of generality lies between D
and |. As D and | are adjacent and A ({) ≤ A (D), { and | are also adjacent by
Lemma 2.3. �

This means that the inner neighbourhood of any vertex can be decomposed
into (at most) two overlapping cliques: the union of the left inner neighbour-
hood and the central inner neighbourhood and the union of the right inner
neighbourhood and the central inner neighbourhood. We can also show that for
vertices with small enough radius neither the central inner neighbourhood nor
the peripheral inner neighbourhood are empty with high probability. We �rst
compute the measure of the central inner neighbourhood in the next lemma.

I Lemma 4.21. Let { be a vertex and � be the region of its central inner neigh-
bourhood. Then the measure of � is given as

` (�) = 2
c (2U − 1) 4

−'(U− 1
2)−A (1−U) ·

(
1 ±$

(
4−U'

)
−$

(
4−(U− 1

2) (2A−')
))
. (4.1)

J

67

Chapter 4 Greedy Preprocessing

Proof. � can be divided into an outer part with radius at least ' − A and an inner
part with radius up to '−A , as depicted in Figure 4.4 (a). We compute the measure
of � by computing the measures of these parts separately, and adding them

` (�) =` (�0(' − A)) + 2 ·
∫ A

'−A

∫ \ (A,G)−\ (A,A)

0
5 (G)d\dG

= ` (�0(' − A))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+2 ·
∫ A

'−A
\ (A, G) 5 (G)dG

´¹¹¹¸¹¹¶
B

−2 ·
∫ A

'−A
\ (A, A) 5 (G)dG

´¹¹¸¹¹¹¶
C

.

Summand A can be derived via Equation (2.2) as

` (�0(' − A)) = 4−UA (1 −K (4−UA)) .

Fur summand B we get∫ A

'−A
5 (G)\ (A, G)dG =

U

c

∫ A

'−A
4U (G−')+

'−A−G
2 ·

(
1 ±K

(
4'−A−G

)) (
1 +K

(
4−U' − 4−2UG

))
dG

=
U

c

(
1 +K

(
4−U'

)) ∫ A

'−A
4U (G−')+

'−A−G
2 ·

(
1 +$

(
±4'−A−G − 4−2UG

))
dG

As $
(
±4'−A−G − 4−2UG

)
= $

(
±4'−A−G

)
, this term can be transformed to

=
U

c

(
1 +K

(
4−U'

)) ∫ A

'−A
4U (G−')+

'−A−G
2 ·

(
1 ±$

(
4'−A−G

))
dG .

We now compute the integral without the error term and later compute and add
the error term.

U

c

(
1 +K

(
4−U'

)) ∫ A

'−A
4U (G−')+

'−A−G
2 dG

=
U

c

(
1 +K

(
4−U'

)) [1
U − 1

2
4G (U− 1

2)
]A
'−A

4−
A
2−'(U− 1

2)

=
U

c
(
U − 1

2
) (1 +K (

4−U'
)) (

4A (U− 1
2) − 4'(U− 1

2)−A (U− 1
2)

)
´¹¹¹¸¹¹¶

4
A (U− 12) ·

(
1−4−(U− 12) (2A−')

)
4−

A
2−'(U− 1

2)

68

Theoretical Analysis Section 4.4

=
U

c
(
U − 1

2
) · (1 +K (

4−U'
))
· 4−A (1−U)−'(U− 1

2) ·
(
1 − 4−(U− 1

2) (2A−')
)

For the error term we obtain∫ A

'−A
$

(
4G (U− 3

2)− 3
2A−'(U− 3

2)
)
dG

=$

([
4G (U− 3

2)
]A
'−A

4−
3
2A−'(U− 3

2)
)

=$

(
4−A (3−U)−'(U− 3

2) − 4−UA
)

=4−A (1−U)−'(U− 1
2) ·$

(
4−2A−' − 4−(U− 1

2) (2A−')
)
.

Note that −2A − ' ≤ −(2A − ') ≤ −
(
U − 1

2
)
(2A − '), which simpli�es the error

term. Together with the rest we obtain∫ A

'−A
5 (G)\ (A, G)dG =

U

c
4−A (1−U)−'(U− 1

2) ·
(
1 +K

(
4−U'

)) (
1 −$

(
4−(U− 1

2) (2A−')
))
.

For summand C we get∫ A

'−A
\ (A, A) 5 (G)dG

= 24
'
2 −A

(
1 ±K

(
4'−2A

))
· U2c 4

−U'
∫ A

'−A
4UG

(
1 +K

(
4−U' − 4−2UG

))
dG

=
U

c
4−'(U− 1

2)−A
(
1 ±K

(
4−(2A−')

)) (
1 +K

(
4−U'

)) ∫ A

'−A
4UGdG

=
1
c
4−'(U− 1

2)−A
(
1 ±K

(
4−(2A−')

)) (
1 +K

(
4−U'

)) [
4UA − 4U ('−A)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
4UA (1−4−U (2A−'))

=
1
c
4−'(U− 1

2)−A (1−U)
(
1 ±K

(
4−(2A−')

)) (
1 − 4−U (2A−')

) (
1 +K

(
4−U'

))
Where depending on A either

(
1 ±K

(
4−(2A−')

))
or

(
1 +K

(
4−U'

))
is the dominant

error term.

Omitting summand A and putting together B and C, we obtain

` (() =4−UA (1 −K (4−UA))

69

Chapter 4 Greedy Preprocessing

+ 2 · 2U
c
(
U − 1

2
) 4−A (1−U)−'(U− 1

2) ·
(
1 +K

(
4−U'

)) (
1 −$

(
4−(U− 1

2) (2A−')
))

− 2 · 1
c
4−'(U− 1

2)−A (1−U)
(
1 ±K

(
4−(2A−')

)) (
1 − 4−U (2A−')

) (
1 +$

(
4−U'

))
≥ 1
c (2U − 1) 4

−'(U− 1
2)−A (1−U)

·
(
0 + 2 · Uc (2U − 1)

c
(
U − 1

2
) (

1 +K
(
4−U'

)) (
1 −$

(
4−(U− 1

2) (2A−')
))

− 2 · c (2U − 1)
c

(
1 +$

(
4−U'

)) (
1 +K

(
4−(2A−')

)) (
1 − 4−U (2A−')

))
=

2
c (2U − 1) 4

−'(U− 1
2)−A (1−U) ·

(
1 ±$

(
4−U'

)
−$

(
4−(U− 1

2) (2A−')
))
.

�

I Corollary 4.22. Let { be a vertex with radius '
2 < A ≤ '−2− 1

1−U log log= for
a constant 2 = 1

1−U log
(
c (2U−1)
4�/2

)
. Then with high probability the left (respectively

right) half of the central inner neighbourhood of { contains at least one vertex.
J

Proof. We use Lemma 4.21 as a lower bound for the measure of the left/right
central inner neighbourhood which we benote by �half . We have

Pr
[
∃{ ∈ �half

]
= 1 − (1 − ` (�half))= ≥ 1 − 1

4= ·` (�half)
.

Where for = · ` (�half) we obtain

= · ` (�half) = = ·
1

c (2U − 1) 4
−'(U− 1

2)−A (1−U) · (1 ±$ (4−U') −$ (4−(U− 1
2) (2A−')))

=
=

c (2U − 1) · 4
−'(U− 1

2)−' (1−U)+(2− 1
1−U log log=) (1−U) · (1 ± > (1))

=
=

c (2U − 1) · (4
−(2 log=+�)/2+(2− 1

1−U log log=) (1−U)) · (1 ± > (1))

=
1

c (2U − 1) · 4
�/24 (2− 1

1−U log log=) (1−U) · (1 ± > (1))

= log= · (1 ± > (1))

70

Theoretical Analysis Section 4.4

by the choice of 2 =
log

(
c (2U−1)
4�/2

)
1−U . This gives us Pr[∃{ ∈ -] = 1 −$

(1
=

)
. �

Note that the restriction A > '
2 is not really a restriction, because in the other

case the inner neighbourhood has diameter less than ' and forms a clique
anyway. As the measure of the peripheral inner neighbourhood is also in
K (4−'(U− 1

2)−A (1−U)) by Lemma 4.4, it is clear that the statement in the corol-
lary above also applies for the peripheral inner neighbourhood.

In summary, we know a considerable collection of facts about the inner neigh-
bourhood of a vertex. We know that the left and right inner neighbourhood
and the central inner neighbourhood form cliques. Further, every vertex in the
central inner neighbourhood is adjacent to every other vertex in the inner neigh-
bourhood. From Section 4.4.1, we know that vertices with constant distance to
the outer boundary of the disk are simplicial with at least constant probability.
Moreover, for vertices with distance at least S (log log=) from the boundary
of the disk the left and right peripheral and also central inner neighbourhood
contain vertices with high probability.

Additionally, in the following lemma, we show that the treewidth of the central
inner neighbourhood of a vertex is equal to its pathwidth.

I Lemma 4.23. Let # <A ({) be the inner neighbourhood of a vertex {. Then
there is an optimal width tree decomposition of� [# <A ({)] that is a path decom-
position and tw(� [# <A ({)]) = pw(� [# <A ({)]). J

Proof. Let (), g) be a optimal tree decomposition of � [# <A ({)]. Assuming that
(), g) is not a path decomposition, we show that it can be transformed into one.
Let ! ⊆⊂ # <A ({) denote the left half of the inner neighbourhood and ' the right
half. As both ! and ' form a clique, there must be bags gℓ and gA that contain all
vertices of ! and ', respectively. If gℓ and gA are the same bag, then this bag alone
already is an optimum width tree decomposition that is a path decomposition.
Otherwise, gℓ and gA lie on a path % in the tree decomposition. As by assumption
(), g) is no path decomposition, there are bags that are not part of % . Consider
any bag � that does not lie on % . There must be a path in the tree decomposition
that connects � to a vertex �′ on % . As any vertex in � is either part of the left or
right half of the inner neighbourhood, it must also be contained in gℓ or gA . This
means that � ⊆ �′ and therefore omitting � (and all other bags in the subtree
below it when rooting on �′) from the tree decomposition does not invalidate it.
This way, an equally wide path decomposition of # <A ({) can be obtained. Thus,

71

Chapter 4 Greedy Preprocessing

pw(� [# <A ({)]) ≤ tw(� [# <A ({)]) and as any path decomposition is already a
tree decomposition pw(� [# <A ({)]) = tw(� [# <A ({)]). �

This means that computing the treewidth of the inner neighbourhood of a
vertex is just as hard as computing its pathwidth. However, the inner neighbour-
hood has a very particular structure, consisting of two distinct cliques that are
connected by edges and contain a number of vertices that connect to every other
vertex. This already tells us a lot about how optimal path/tree decompositions of
the graph induced by the inner neighbourhood can look like. For example, they
could start and end with bags that contain the left or respectively right clique
together with all vertices that connect to the entire inner neighbourhood. In
between those bags, there are bags in which vertices from the right clique are
introduced and vertices from the left clique are forgotten. It is however unclear
how exactly these bags in between can or have to look like depending on the
structure of the graph.

A generalisation of the structure of the inner neighbourhood would be to view
the graph induced by the inner neighbourhood as an arbitrary co-bipartite graph
(i.e. the complement of a bipartite graph). Doing so gives a pessimistic outlook
on understanding tree or path decompositions of the inner neighbourhood, as,
by the proof for the NP-hardness of treewidth by Arnborg et al. [ACP87], even
deciding the treewidth of co-bipartite graphs is NP-hard. This makes it appear
unlikely that we can get a thorough understanding of path decompositions of
the inner neighbourhood.

A di�erent perspective, from which we can maybe learn more, consists of
asking how the vertices of the inner neighbourhood of a vertex { are distributed
in the bags of optimal tree decompositions of the entire graph� . This is especially
interesting in relation to the safeness of the inner neighbourhood of {. Clearly,
there is an optimal tree decomposition of � in which the inner neighbourhood
of { appears in a common bag, if and only if it is safe. One interesting question
we can ask is therefore which properties a tree decomposition of� has to have in
order to allow or forbid rearranging it in a way that lets the inner neighbourhood
appear in a single bag. This approach, together with other directions for future
work, is discussed in the conclusion of this thesis.

72

5 Conclusions & Outlook

In this thesis, we described and analysed the PID-BT algorithm and its prepro-
cessing, focussing on hyperbolic random graphs as a model of realistic inputs.
This way, we make the algorithm more accessible to future improvements and
contribute to the understanding of practical treewidth computation in general.
We found that PID-BT without its preprocessing performs rather poorly, as
shown experimentally and by a super-polynomial lower bound for the expected
running time on HRGs. With the preprocessing, however, we observed vastly
lower running times. We showed both empirically and theoretically that on
hyperbolic random graphs the preprocessing can reduce the instance size by
a constant fraction and that this is at least partially due to a linear number of
simplicial vertices. We also introduced the concept of subtree-width and safe-
ness of a separator with respect to a component. This allowed us to derive new
su�cient conditions for safeness that, if a conjecture holds, apply to sub-linear
components associated with the inner neighbourhoods of vertices with radius
' −K (log log=) in a HRG.

There are many possible directions for future work. The most immediate ones
are of course trying to improve the bounds for the number of feasible O-blocks
and the number of simplicial vertices in hyperbolic random graphs. Feasible
O-blocks are rather complex structures, and it is already a good �rst step to
have any lower bound on them in hyperbolic random graphs. However, the
current proof hides extremely small constants behind asymptotic notation, and
it would be interesting to derive a tighter bound. Similarly, we hope that the
proof for the number of (inner) simplicial vertices can be improved. As discussed
at the end of Section 4.4.1, the current lower bound for the number of simplicial
vertices depends on the parameters U and� in a way that is not consistent to our
empirical observations. Thus, there is probably another way in which vertices
can be simplicial that dominates the one we considered. Investigating this might
lead to an entirely di�erent way of deriving a linear lower bound that might
have greater explanatory capacity. Besides, while a linear number of simplicial
vertices is enough to derive how the preprocessing is able reduce the instance

73

Chapter 5 Conclusions & Outlook

size by a linear amount, this does not yet explain how the Min-Fill heuristic is
able to construct almost optimal tree decompositions. This makes it even more
worthwhile to investigate safeness more directly.

We want to point out one promising direction for this, building upon the
insights from Section 4.4. The idea is to consider a separator (consisting of
the inner neighbourhood of some vertex { of a HRG � and how it is distributed
within the bags of a tree decomposition of � . Given what we know about
the structure of (, is it possible to �nd properties that allow or disallow for
(to be placed in a single bag? (is safe if and only if there is an optimal tree
decomposition of� with a bag containing (, so this is a very interesting question.
Intuitively it is clear that in many cases, (can be safe even if it is not a clique.
The goal is to either �nd a su�cient condition that allows the construction of a
bag containing (or a necessary condition that forbids (to be placed in a single
bag. Then, it remains to show that on HRGs the su�cient condition is likely to
apply or that the necessary condition is unlikely to apply. One way to �nd such a
condition could be to consider the bags in which (appears. As (consists of two
overlapping cliques (ℓ and (A , any tree decomposition of � contains a path P of
adjacent bags, whose endpoints contain (ℓ and (A . Additionally, every bag on P
contains the vertices of the central inner neighbourhood of {. Given this rich
structure, what ways are there to manipulate the tree decomposition in order
to construct a bag containing all vertices of (? Intuitively, it seems that if { has
small degree, as in for example (poly)logarithmic, then it should be unlikely that
there are local structures or properties in the tree decomposition that prevent
the safeness of (. Thus the problem probably lies in understanding how global
properties of the graph or tree decomposition relate to (and its safeness locally.

Next, Tamaki formulated the question of whether there is a way to bound
the number of feasible O-blocks in terms of the number of feasible potential
maximal cliques. In Lemma 3.8 we show that the number of whole O-blocks is
at most = times the number of feasible PMCs. It remains open, whether a similar
bound for split O-blocks can be achieved.

This directly leads to the next open question: how can the PID-BT algorithm be
improved? In our analysis in Section 3.5 we found that especially split O-blocks
lead to exponential running times in cases in which this seems unnecessary.
Maybe there is a way to replace split O-blocks by improved structures that restrict
the search more strongly. Similarly, so far it was assumed that the algorithm
exhaustively lists all feasible PMCs, I-blocks and O-blocks, even though in

74

practice it would terminate at the �rst feasible PMC with an empty outlet. How
pessimistic is this assumption? Are there cases in which it is asymptotically
better to stop at the �rst PMC with empty outlet? Maybe it is possible to derive
feasible PMCs in a more restricted order that terminates more quickly.

Another direction that we could only explore to a limited extent in this thesis is
subtree-width. In this thesis, we only used subtree-width to derive conditions for
the safeness of separators, but we argue that it would be interesting to investigate
the concept more thoroughly. In their empirical study on the treewidth of real-
world graphs Maniou et al. [MSJ19] report that similarly to hyperbolic random
graphs, many real-world networks consist of a densely connected core and a
tree-like fringe. They further �nd that this structure allows for low-width tree
decompositions of considerably large sub-graphs. We conjecture that this means
that there are also considerably large vertex sets that have a small subtree-
width. It would be worthwhile to explore if there is a general way to exploit this
algorithmically for di�erent applications.

On a more abstract level, one could also ask whether treewidth is small
enough in practice to be such a dominating concept in theory. One of the
goals of parametrized complexity is to explain why certain instances of hard
problems are sometimes e�ciently solvable. Arguably, treewidth has only small
explanatory capacity in this respect, and while hyperbolic random graphs and
similar models seem to do better at explaining practical tractability, they are
limited to very narrow domains. Maybe it is possible to identify better models
or more realistic parameters in an attempt to bridge the gap between theory and
practice.

75

5Bibliography
[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity

of Finding Embeddings in a k -Tree. SIAM. J. on Algebraic and Discrete
Methods (Apr. 1987), 277–284. doi: 10.1137/0608024 (see pages 1, 2, 4, 18,
72).

[BB19] Max Bannach and Sebastian Berndt. “Positive-Instance Driven Dynamic
Programming for Graph Searching.” In: Algorithms and Data Structures. Ed.
by Zachary Friggstad, Jörg-Rüdiger Sack, and Mohammad R Salavatipour.
Vol. 11646. Springer International Publishing, 2019, 43–56. doi: 10.1007/978-
3-030-24766-9_4 (see pages 5, 17, 18).

[BB72] Umberto Bertelè and Francesco Brioschi. Nonserial dynamic program-
ming. Mathematics in science and engineering v. 91. New York: Academic
Press, 1972. isbn: 978-0-12-093450-8 (see page 3).

[BFK16] Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic Ran-
domGraphs: Separators and Treewidth. In: 24th Annual European Sym-
posium on Algorithms (ESA 2016). Vol. 57. LIPIcs. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 15:1–15:16. doi:
10.4230/LIPIcs.ESA.2016.15 (see pages 6, 40).

[BFK18] Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in Hy-
perbolic Random Graphs. en. Algorithmica 80:8 (Aug. 2018), 2324–2344.
doi: 10.1007/s00453-017-0323-3 (see page 6).

[BFM13] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. “On the giant
component of random hyperbolic graphs.” en. In: The Seventh European
Conference on Combinatorics, Graph Theory and Applications. Pisa: Scuola
Normale Superiore, 2013, 425–429 (see pages 6, 37).

[BK06] Hans L. Bodlaender and Arie M.C.A. Koster. Safe separators for treewidth.
Discrete Mathematics 306:3 (Feb. 2006), 337–350. doi: 10.1016/j.disc.2005.12.
017 (see pages 5, 43, 46, 62, 63).

[BK07] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization
on Graphs of Bounded Treewidth. en. The Computer Journal 51:3 (Nov.
2007), 255–269. doi: 10.1093/comjnl/bxm037 (see page 4).

77

https://doi.org/10.1137/0608024
https://doi.org/10.1007/978-3-030-24766-9_4
https://doi.org/10.1007/978-3-030-24766-9_4
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1016/j.disc.2005.12.017
https://doi.org/10.1016/j.disc.2005.12.017
https://doi.org/10.1093/comjnl/bxm037

[BKL17] Karl Bringmann, Ralph Keusch, and Johannes Lengler. Sampling Geomet-
ric Inhomogeneous Random Graphs in Linear Time. In: 25th Annual
European Symposium on Algorithms (ESA 2017). Vol. 87. LIPIcs. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 20:1–
20:15. doi: 10.4230/LIPIcs.ESA.2017.20 (see page 6).

[Blä+18] Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katz-
mann, Felix Montenegro-Retana, and Marianne Thie�ry. E�cient Short-
est Paths in Scale-Free Networks with Underlying Hyperbolic Ge-
ometry. In: 45th International Colloquium on Automata, Languages, and
Programming (ICALP 2018). Vol. 107. LIPIcs. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 20:1–20:14. doi: 10.4230/
LIPIcs.ICALP.2018.20 (see pages 6, 38, 66).

[Blä+19] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer,
Manuel Penschuck, and Christopher Weyand. E�ciently Generating Ge-
ometric Inhomogeneous and Hyperbolic Random Graphs. In: 27th
Annual European Symposium on Algorithms (ESA 2019). Vol. 144. LIPIcs.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, 21:1–21:14. doi: 10.4230/LIPIcs.ESA.2019.21 (see pages 6, 13).

[Blä+20] Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Maximilian Katz-
mann. SolvingVertexCover in Polynomial TimeonHyperbolic Ran-
dom Graphs. In: 37th International Symposium on Theoretical Aspects
of Computer Science (STACS 2020). Vol. 154. LIPIcs. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 25:1–25:14. doi:
10.4230/LIPIcs.STACS.2020.25 (see page 6).

[Bod+01] Hans L. Bodlaender, Arie M.C.A. Koster, Frank van den Eijkhof, and Linda
C. van der Gaag. Pre-processing for Triangulation of Probabilistic
Networks. eng. Tech. rep. 01-39. URN: urn:nbn:de:0297-zib-6655. Takustr.
7, 14195 Berlin: Zuse Institute Berlin (ZIB), 2001 (see page 46).

[Bod+06] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch,
and Dimitrios M. Thilikos. On Exact Algorithms for Treewidth. In: Al-
gorithms – ESA 2006. Ed. by Yossi Azar and Thomas Erlebach. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, 672–683. doi: 10.1007/11841036_60
(see page 5).

[Bod05] Hans L. Bodlaender. Discovering Treewidth. In: SOFSEM 2005: Theory
and Practice of Computer Science. Ed. by Peter Vojtáš, Mária Bieliková,
Bernadette Charron-Bost, and Ondrej Sýkora. Vol. 3381. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, 1–16. doi: 10.1007/978-3-540-30577-4_1
(see pages 5, 44).

78

https://doi.org/10.4230/LIPIcs.ESA.2017.20
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.STACS.2020.25
https://doi.org/10.1007/11841036_60
https://doi.org/10.1007/978-3-540-30577-4_1

[Bod93] Hans L. Bodlaender. A Linear Time Algorithm for Finding Tree-De-
compositions of Small Treewidth. In: Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing. STOC ’93. San Diego,
California, USA: Association for Computing Machinery, 1993, 226–234. doi:
10.1145/167088.167161 (see page 4).

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. en. Theoretical Computer Science 209:1-2 (Dec. 1998), 1–45. doi:
10.1016/S0304-3975(97)00228-4 (see page 3).

[BPK10] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustain-
ing the Internet with hyperbolic mapping. Nature Communications
1:62 (Dec. 2010), 8. doi: 10.1038/ncomms1063 (see page 5).

[Bri+17] Karl Bringmann, Ralph Keusch, Johannes Lengler, Yannic Maus, and Anisur
Rahaman Molla. Greedy Routing and the Algorithmic Small-World
Phenomenon. en. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing. Washington DC USA: ACM, July 2017, 371–380.
doi: 10.1145/3087801.3087829 (see page 6).

[BT02] Vincent Bouchitté and Ioan Todinca. Listing all potential maximal
cliques of a graph. en. Theoretical Computer Science 276:1-2 (Apr. 2002),
17–32. doi: 10.1016/S0304-3975(01)00007-X (see pages 2, 4, 22).

[CC16] Chandra Chekuri and Julia Chuzhoy. Polynomial Bounds for the Grid-
Minor Theorem. en. J. ACM 63:5 (Dec. 2016), 1–65. doi: 10.1145/2820609
(see page 4).

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Rec-
ognizable sets of �nite graphs. en. Information and Computation 85:1
(Mar. 1990), 12–75. doi: 10.1016/0890-5401(90)90043-H (see page 1).

[Del+17] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian
Komusiewicz, and Frances A. Rosamond. The First Parameterized Al-
gorithms and Computational Experiments Challenge. In: 11th Inter-
national Symposium on Parameterized and Exact Computation (IPEC 2016).
Vol. 63. LIPIcs. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, 30:1–30:9. doi: 10.4230/LIPIcs.IPEC.2016.30 (see
page 5).

[Del+18] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.
The PACE 2017 Parameterized Algorithms and Computational Ex-
periments Challenge: The Second Iteration. In: 12th International Sym-
posium on Parameterized and Exact Computation (IPEC 2017). Vol. 89. LIPIcs.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 30:1–30:12. doi: 10.4230/LIPIcs.IPEC.2017.30 (see page 5).

79

https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1145/3087801.3087829
https://doi.org/10.1016/S0304-3975(01)00007-X
https://doi.org/10.1145/2820609
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Ed. by
David Gries and Fred B. Schneider. Monographs in Computer Science. New
York, NY: Springer New York, 1999. isbn: 978-1-4612-6798-0 978-1-4612-
0515-9. doi: 10.1007/978-1-4612-0515-9 (see page 4).

[DHS06] Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob.Computing
treewidth with LibTW. Tech. rep. University of Utrecht, 2006. url: http:
//www.treewidth.com/treewidth/ (see page 5).

[FK15] Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic
Random Graphs. In: Automata, Languages, and Programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, 614–625. doi: 10.1007/978-3-
662-47666-6_49 (see page 6).

[GPP12] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random Hy-
perbolic Graphs: Degree Sequence and Clustering. In: Automata, Lan-
guages, and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, 573–585. doi: 10.1007/978-3-642-31585-5_51 (see pages 6, 10–12).

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry 8:1-2 (Mar.
1976), 171–186. doi: 10.1007/BF01917434 (see page 3).

[Kri+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat,
and Marián Boguñá. Hyperbolic geometry of complex networks. Phys.
Rev. E 82:3 (Sept. 2010), 036106. doi: 10.1103/PhysRevE.82.036106 (see
page 5).

[Kro17] Anton Kromer. Structures&Algorithms inHyperbolicRandomGraphs.
PhD thesis. University of Potsdam, May 2017. url: https://publishup.uni-
potsdam.de/opus4-ubp/�les/39597/krohmer_diss.pdf (see pages 11, 12).

[MS19] Tobias Müller and Merlijn Staps. The diameter of KPKVB random
graphs. Adv. Appl. Probab. 51:2 (June 2019), 358–377. doi: 10.1017/apr.
2019.23 (see page 6).

[MSJ19] Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study
of the Treewidth of Real-World Graph Data. In: 22nd International
Conference on Database Theory (ICDT 2019). Vol. 127. LIPIcs. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 12:1–
12:18. doi: 10.4230/LIPIcs.ICDT.2019.12 (see pages 4, 5, 75).

[PS97] Andreas Parra and Petra Sche�er. Characterizations and algorithmic
applications of chordal graph embeddings. Discrete Applied Mathemat-
ics 79:1-3 (Nov. 1997), 171–188. doi: 10.1016/S0166-218X(97)00041-3 (see
pages 3, 9).

[PW19] Manuel Penschuck and Christopher Weyand. girgs. https://github.com/
chistopher/girgs/. 2019 (see page 13).

80

https://doi.org/10.1007/978-1-4612-0515-9
http://www.treewidth.com/treewidth/
http://www.treewidth.com/treewidth/
https://doi.org/10.1007/978-3-662-47666-6_49
https://doi.org/10.1007/978-3-662-47666-6_49
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1007/BF01917434
https://doi.org/10.1103/PhysRevE.82.036106
https://publishup.uni-potsdam.de/opus4-ubp/files/39597/krohmer_diss.pdf
https://publishup.uni-potsdam.de/opus4-ubp/files/39597/krohmer_diss.pdf
https://doi.org/10.1017/apr.2019.23
https://doi.org/10.1017/apr.2019.23
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1016/S0166-218X(97)00041-3
https://github.com/chistopher/girgs/
https://github.com/chistopher/girgs/

[Röh98] Hein Röhrig. Tree decomposition: A feasibility study. English. Diplo-
marbeit. Saarbrücken: Max-Planck-Institut für Informatik in Saarbrücken,
Sept. 1998. url: http://edoc.mpg.de/518016 (visited on 08/06/2020) (see
page 5).

[RS86] Neil Robertson and P.D Seymour. Graph minors. II. Algorithmic as-
pects of tree-width. en. Journal of Algorithms 7:3 (Sept. 1986), 309–322.
doi: 10.1016/0196-6774(86)90023-4 (see pages 3, 4).

[RS95] N. Robertson and P.D. Seymour.GraphMinors .XIII. TheDisjoint Paths
Problem. en. Journal of Combinatorial Theory, Series B 63:1 (Jan. 1995), 65–
110. doi: 10.1006/jctb.1995.1006 (see page 4).

[RST94] N. Robertson, P. Seymour, and R. Thomas. Quickly Excluding a Planar
Graph. en. Journal of Combinatorial Theory, Series B 62:2 (Nov. 1994), 323–
348. doi: 10.1006/jctb.1994.1073 (see page 4).

[ST93] P.D. Seymour and R. Thomas. Graph Searching and a Min-Max Theo-
rem for Tree-Width. en. Journal of Combinatorial Theory, Series B 58:1
(May 1993), 22–33. doi: 10.1006/jctb.1993.1027 (see pages 3, 18).

[Tam19] Hisao Tamaki. Positive-instance driven dynamic programming for
treewidth. en. Journal of Combinatorial Optimization 37:4 (May 2019),
1283–1311. doi: 10.1007/s10878-018-0353-z (see pages 5, 23–28, 31, 46).

[Tho98] Mikkel Thorup. All Structured ProgramsHave Small TreeWidth and
Good Register Allocation. Information and Computation 142:2 (May
1998), 159–181. doi: 10.1006/inco.1997.2697 (see page 4).

[TO17] Hisao Tamaki and Hiromu Ohtsuka. PACE2017-TrackA. https://github.com/
TCS-Meiji/PACE2017-TrackA. 2017 (see page 13).

81

http://edoc.mpg.de/518016
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1006/inco.1997.2697
https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/TCS-Meiji/PACE2017-TrackA

5Declaration of Authorship

I hereby declare that this thesis is my own unaided work. All direct or indirect
sources used are acknowledged as references.

Potsdam, August 24, 2020
Marcus Wilhelm

83

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Preliminary Considerations
	2.1 Basic Definitions and Concepts
	2.2 Empirical Running Time of PID-BT

	3 Positive-Instance Driven Dynamic Programming for Treewidth
	3.1 Graph Searching and Treewidth
	3.2 A Partial Solution Perspective on PID-ACP
	3.3 A Partial Solution Perspective on PID-BT
	3.4 Example for PID-BT
	3.5 Running Time Bounds for PID-BT

	4 Greedy Preprocessing
	4.1 Greedy Tree Decompositions
	4.2 Identifying Safe Separators
	4.3 Empirical Analysis
	4.4 Theoretical Analysis
	4.4.1 Simplicial Vertices
	4.4.2 Safe Separators
	4.4.3 Structure of the Inner Neighbourhood.

	5 Conclusions & Outlook
	Bibliography
	Declaration of Authorship

